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Abstract 

Output data from a computer simulation of two air traffic control (ATC) scenarios were 

fit to workload ratings that ATC subject matter experts provided while observing each 

scenario in real time.  Simulation output enabled regressions to test the assumptions of 

a variety of workload prediction models.  The models included operational models that 

use observable situational and behavior variables (such as number of aircraft and 

communications by type) and theoretical models that use queuing and cognitive 

architecture variables (such as weightings of activities performed, amount of busy time, 

and sensory and cognitive resource usage) to predict workload.  Regression results 

suggest models that include number of activities performed weighted by priority are 

best able to account for the highest amount of variance in subjective workload ratings. 
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PREDICTING SUBJECTIVE WORKLOAD RATINGS:  A COMPARISON AND 

SYNTHESIS OF THEORETICAL MODELS 

 Concurrent with technological developments that have extended human physical 

and sensory capabilities has been an increase in the cognitive complexity of tasks 

humans are routinely asked to perform.  Examples include the statistical analyst 

responsible for graphically representing the relationships among three different types of 

measures, the nuclear power plant operator responsible for monitoring numerous 

sensors for cues indicating the necessity of a certain switch action, and the air traffic 

controller responsible for efficiently directing growing levels of traffic while continuing 

to maintain safe aircraft separation.  Tasks such as these require the performer to attend 

to vast amounts of incoming information and manage several ongoing activities in 

parallel.   

 Unfortunately, cognitively complex tasks tax the mental capabilities of human 

operators and give rise to situations of high workload.  Workload is a term often used to 

refer to the amount of work or effort required to perform an activity over a given time 

period (Manning, Mills, Fox, Pfeiderer, & Mogilka, 2001b; Xie & Salvendy, 2000).  

When complex tasks place high attentional demands on an operator, the result is an 

overall increase in workload.   

 Although there are variables shown to moderate the exact relationship between 

performance and workload for given situations (Hancock, Williams, Manning, & 

Miyake, 1995; Jex, 1988; Raby & Wickens, 1994; ), in general, high workload levels 

tend to be associated with increases in operator error and decreases in overall 

performance (Lysaght et al., 1989; Morisson & Wright, 1989; Morrow, Lee, & 
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Rodvold, 1990).  These findings, coupled with the growing amount of complex tasks 

found in today’s work environments, have led to a growing interest in workload 

research.   This is particularly true in the domain of air traffic control (ATC) where 

safety and operational efficiency often hinge upon human performance of highly 

complex tasks.  Researchers recognize that workload levels inherent to cognitively 

complex ATC tasks may lead these tasks to be vulnerable to performance decrements. 

 Human factors researchers seek to understand workload and its characteristics so 

as to aid in the design of new systems that are hoped to reduce the occurrence of these 

performance decrements.  If a thorough understanding of workload is attained the 

knowledge can be applied to the design of human-machine systems that reduce 

cognitive task complexity and foster appropriate workload levels.  The pursuit of these 

goals requires identifying the factors that go into workload and developing tools that 

can measure and predict workload levels.   

Unfortunately, the findings of workload research over the last three decades 

have revealed the construct to be a challenging one to characterize (Hendy, Liao, & 

Milgram, 1997; Meshkati, 1988; Xie & Salvendy, 2000). Workload seems to result 

from several different contributing factors.  These factors include operator individual 

differences, fatigue, expertise, environment, time pressure, number of tasks, task 

modality, and task difficulty.  The workload construct also seems to be 

multidimensional as well (Hart & Staveland, 1988; Hendy, Liao, & Milgram, 1997; 

Reid & Nygren, 1988).  Hart and Staveland’s National Aeronautics and Space 

Administration Task Load INDEX (NASA TLX) for example, measures workload 
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along the dimensions of performance, frustration, effort, and mental, physical, and 

temporal demand.   

Workload is also not a construct that can be directly measured (Xie & Salvendy, 

2000).  Rather it must be measured indirectly through related variables like primary and 

secondary task performance, physiological data, and subjective workload ratings.  

Numerous studies have been performed that explore the validity of these three 

measurement approaches (Gopher & Braune, 1984; Hart & Staveland, 1988; Lysaght et 

al., 1989; Reid & Nygren, 1988; Sarno & Wickens, 1995; Stein, 1985; Xie & Salvendy, 

2000).  The studies show that each of the three workload measurement approaches has 

both advantages and disadvantages depending upon the environment and domain from 

which the workload measures are to be taken and the purpose for which the measures 

are intended to be used.   

 Despite obstacles, advancement in workload research has enabled the 

development of mathematical models used to support analysis of operator workload.  

Many of these models have been developed for use in the ATC domain.  Computer 

workload models provide predictions of workload that approximate those that would 

otherwise have to be gained from the use of system prototypes and SME interactions.  

Through the use of valid workload models, analysts can predict how effective a system 

will be and where failures or reduction in performance are likely to occur.   

Whereas many variables have the potential to moderate workload, there are a 

large number of variables that modelers can choose from to make workload predictions.  

Consequently, many different types of models have been developed to predict workload 

and workload related concepts such as dynamic density (Aldrich & Szabo,1986; 
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Kopardekar & Magyarits, 2003; North & Riley, 1989; Parks & Boucek, 1989; Rogers, 

Mogford & Mogford, 1998; Sarno & Wickens, 1995;  Schmidt, 1978).  These models 

vary in the domains to which they have been applied and in the amount and method of 

validation they have received.  These models often differ in their approaches as well.  

Some approaches rely on objective variables observable in the environment or situation 

while other models rely on variables derived from theoretical constructs or processes.  

Even though these models were created to predict the same general theoretical concept, 

the model approaches rely on entirely distinct sets of predictor variables.   

One type of model applied to workload predictions is the queuing model.  

Queuing theorists model complex task performance by representing the process in terms 

of servers and clients (Schmidt, 1978; Tulga & Sheridan, 1980).  Servers are processors 

capable of serving the clients who wait in queues to use them.  Schmidt (1978) applied 

the queuing approach to the prediction of workload in the ATC domain.  In his model 

the air traffic controller is represented as a server and the air traffic control tasks to be 

completed were represented as the customers of the server.  In this type of theoretical 

model, number of activities, the difficulty associated with performing activities, and the 

relative priority of activities are used to predict the impact of workload (Schmidt, 1978; 

Tulga & Sheridan, 1980).   

 Researchers in the ATC domain have used the occurrence of certain quantifiable 

situational factors and observable air traffic controller behaviors as variables to predict 

workload (Cardosi, 1993; Manning, Mills, Fox, Pfleiderer, & Mogilka, 2001a; Morrow 

& Rodvold, 1998; Porterfield, 1997).  Variables such as these are often selected for 

analysis as they provide objective measures of workload that can be accessed without 
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interfering with an air traffic controller’s work.  The discussion herein shall refer to 

models that use these types of variables as operational models due to the specificity of 

these types of variables to a given domain.   

 The identification of variables to be used in operational models requires an 

understanding of the domain under consideration.  In the ATC domain, for example, 

controllers typically monitor a radar scope showing the position of aircraft and deliver 

control commands to the aircraft vocally over a radio channel.  Control commands, or 

clearances, include changes to aircraft altitude, heading, and speed.  Clearances are 

given to direct aircraft to particular waypoints on the way to a destination, increase or 

assure a safe distance between all aircraft, or slow and descend an aircraft so as to land 

on a runway.  Furthermore, different types of controllers control the aircraft at different 

points in its journey.  In our example, an Air Route Traffic Control Center (or simply 

Center) controller may hand off an aircraft to a Terminal Radar Approach Control 

(TRACON) controller who slows and descends the aircraft, and hands the aircraft off to 

a Tower controller for landing.  From these ATC activities, researchers have identified 

variables such as number of aircraft under control, number of clearances by type, and 

number of handoffs performed as means to estimating workload (Cardosi, 1993; 

Manning et al., 2001a; Morrow & Rodvold, 1998; Porterfield, 1997).   

 One of the most comprehensive analyses of operational variables in the ATC 

domain to date was performed by Manning, et al. (2001a).  In this study a wide range of 

operational variables were used in a regression analysis to predict workload.  Twenty-

three operational variables such as total aircraft controlled, total handoffs initiated, and 

number of altitude changes, were analyzed along with variables for number of 
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communications and communication time.  The operational variable values were 

derived from recordings of actual air traffic control. Manning, et al. first used a 

Principle Components Analysis on the values and reduced the variables into five sets.  

These sets were then used in multiple regression analyses to predict controller 

subjective workload ratings.  In this way the authors were able to identify a model that 

could predict 72% of the variance in workload.   

 In addition to the number of variables used, the Manning, et al. (2001a) study 

was also interesting in the way it collected the workload values that the operational 

variables were used to predict.  In that study, workload was represented by subjective 

workload ratings.  Although criticized due to findings that show dissociation between 

subjective workload ratings and performance (Gopher & Braune, 1984), subjective 

ratings are among the most popular workload measurement techniques.  The subjective 

technique has a great deal of face validity and theoretically allows the researcher to tap 

personal perceptions of workload that result from the interactions of both the observable 

and unobservable workload factors (Stein, 1998).  Subjective workload ratings are 

usually collected from operators as they perform their tasks or shortly afterward.  

Operators report the amount of workload personally experienced.  However, in the 

Manning, et al. (2001a) study, controller subject matter experts (SMEs) observed 

recordings of air traffic control and indicated the amount of workload they believed the 

controller controlling the traffic was experiencing instead.   

 Although the Manning, et al. (2001a) study showed that operational variables 

provided promising results for predicting controller workload in a known ATC system, 

the ability of operational models to predict workload for a system that does not as yet 
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exist remains to be determined.  Take, for example, the application of the operational 

modeling approach to the prediction of workload associated with an ATC operational 

concept that includes the use of new technology (e.g. datalink) to deliver aircraft 

clearances.  The operational approach would seem to assume that a message delivered 

by voice would result in the same amount of additional workload as a message 

delivered by a new technology.  It may be the case that the weighting of workload 

predictive variables is different for a system that uses a different mode of 

communication, supports the controller with automated decision aids, or relies on a 

different set of procedures.   

 Cognitive models are a type of theoretical model that may be useful for the 

prediction of workload with proposed new systems.  Cognitive models allow for a 

representation of performance at the sensory and cognitive resource level.  Although 

this level of representation requires an additional investment in time and effort, it 

provides a theoretical way to account for the unobservable aspects of workload that 

operational models do not.  By modeling the cognitive aspects of workload that all tasks 

can be broken down into, cognitive modeling may provide a way to account for the 

differences between any alternate systems that are modeled. 

 Early cognitive models included a variety of information processing models 

fashioned after the one described by Atkinson and Shiffrin (1968).  These models were 

created to account for empirical data regarding the allocation of attention, multiple task 

performance, and the location of processing bottlenecks (Norman, 1968; Treisman, 

1970).  The information processing models were limited in that they implied the 

existence of only a single resource pool to be used by all types of cognitive processes.  
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Information processing models therefore failed to account for why tasks that shared 

certain characteristics in common seemed to interfere with each other more than others 

and why some tasks could be performed in parallel with little adverse impact. Multiple-

resource theory was developed to explain data that the information processing models 

could not.     

 Although there are many types of cognitive models, most cognitive models 

applied to workload research are based on Wicken’s Multiple-Resource Theory (1984).  

Multiple-Resource Theory posits that there are separate and independent pools of 

resources for separate types of processing.  There are different sensory resources (audio, 

visual, etc.) and different response resources (manual, vocal, etc.) for example.  If two 

tasks require the use of the same resource, interference will occur and task performance 

will suffer.  As the concept of workload assumes that human performance is limited by 

finite resources, Multiple-Resource models rely on sensory and cognitive resource 

usage and resource interference to predict workload.   

 Models such as those based on Multiple-Resource Theory were developed to 

describe cognitive processes at a minute level.  Before these models could be applied to 

the prediction of workload, a method of extrapolating the models to represent the 

processing involved in complicated real world tasks was needed.  A technique already 

seeing a great deal of application to the study of complex tasks was task analysis.  Task 

analysis is a means of describing all the steps that must be carried out to perform a 

function and the sequence with which those steps must be taken (Sanders & 

McCormick, 1993).  In task analysis, activities such as knowledge elicitation and role-

playing exercises are used to identify functions and then break those functions down 
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into activities.  Many types of task analyses produce task networks.  In task networks, 

activities are further broken down into tasks and the information requirements for each 

task are defined.  Task analysis provides a means to extrapolate cognitive models for 

efficient application to complex real world situations. 

 Aldrich and Szabo (1986) developed a process whereby the uses of theoretical 

cognitive, sensory, and motor resources were mapped on to a task network.  Their 

model became known as the VACP model because separate task networks were created 

for Visual, Auditory, Cognitive, and Psychomotor resource usage.  Tasks along these 

networks were also rated for difficulty.  Workload predictions were calculated for any 

given moment by adding up the difficulty ratings for all tasks being performed at that 

moment.  The VACP model was capable of providing additional information regarding 

which of an operator’s resources were being utilized when and with what frequency. 

 Another early workload prediction model utilizing Multiple-Resource theory 

was Parks and Boucek’s Time-Line Analysis and Prediction (TLAP) model (1989).  

This model was developed at Boeing to predict pilot workload.  Similar to the VACP 

approach, the approach created by Parks and Boucek used separate task networks for 

separate resource types.  Task networks were created for cognitive, visual, auditory, 

manual hands, and manual feet resource usage.  By enhancing their task analysis with a 

cognitive architecture, Parks and Boucek were able to provide a theory based prediction 

of when tasks could be performed in parallel.  The aggregate ratio of overall operator 

busy time to time available, that emerged from these theoretical task networks, was 

used to predict level of workload.  
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 Theorizing that the earlier cognitive approaches to workload prediction could be 

improved by accounting for cognitive resource interference, North and Riley (1989) 

extended the above approaches by incorporating an interference matrix into their 

Workload Index (W/INDEX) model.  The interference matrix indicated the degree to 

which tasks interfere with each other at the resource level.  Values were estimated to 

represent how much different parallel resource usages would interfere with 

performance.  Workload predictions were found similar to the VACP approach except 

that the amount of relative task interference was included in the calculations.   

Without validation it would be impossible to know whether models such as 

W/INDEX perform better at workload prediction than models such as VACP or TLAP.  

Although it is important that any model type be validated, validation is particularly 

important for cognitive models.  Cognitive models are based on cognitive theories that 

may be controversial or otherwise difficult to confirm.   

Sarno and Wickens (1995) tested and compared the assumptions of Parks and 

Boucek’s (1989) TLAP, Aldrich and Szabo’s (1986) VACP, and North and Riley’s 

(1989) W/INDEX.  These models were tested against two types of performance data: 

data recorded from participants as they attempted a combination of derived tracking, 

monitoring, and decision making tasks, and data collected from participants as they took 

part in a TASKILLAN helicopter simulation.  All models tested accounted for between 

56 and 84% of the performance variation in the derived tasks but accounted for only 12 

to 42% of the variance in TASKILLAN performance.  By removing and combining 

model features, Sarno and Wickens were able to narrow down which model features 

were associated with increases in prediction performance.  Results showed that 
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prediction performance was best for models that represented the use of multiple 

resources.  The results also showed that workload prediction was not improved for 

models when the degree of resource usage interference was included in the calculations. 

Although Sarno and Wicken’s study was useful for a comparison among 

subtypes of cognitive models, for designers and researchers to answer the broader 

question of whether workload can be better characterized by queuing, operational, or 

cognitive model variables requires that the model types be tested together, in the same 

domain, and against the same data.  All three types of models have been employed with 

some degree of success to the analysis of real world problems.  However, even when 

differing model types have been applied to the same domain, they were not validated 

against the same data set.   

Fortunately, Boeing Air Traffic Management’s Regional Traffic Model (RTM) 

has made it possible to compare the predictive value of operational, cognitive, and 

queuing variables simultaneously.  This model was developed as an analysis tool for the 

ATC domain.  The RTM output includes variables such as number of aircraft under 

control, and number of communications given by type.  Furthermore, the cognitive 

architecture found within the Human Agent Module (HAM) of the RTM models the use 

of cognitive, sensory, and motor resources and records when tasks requesting those 

resources are in conflict.    

This dissertation used output from the RTM and HAM to test and compare the 

assumptions of both the operational and theoretical models.  Two air traffic scenarios 

were run using the RTM and the output was used to derive queuing, operational, and 

cognitive model variables.  The variables used are shown in Table 1.  These variables 
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were used in regression analysis to predict subjective workload ratings.  The workload 

ratings were provided by ATC SME’s who observed the two scenarios as they were 

being run by the model in real time.  

Table 1 

Operational and Theoretical Variables Used to Predict Workload 

Operational Variables Theoretical Variables 

Number of Communications Task Load 

Communication Congestions Number of Activities 

Number of Aircraft Controlled Number of Activities by Priority 

Number of Handoffs Number of Activities by Difficulty 

Number of Altitude Changes Number of Tasks Performed 

Number of Heading Changes Visual Resource Use 

Number of Speed Changes Spatial Cognition Resource Use 

 Verbal Cognition Resource Use 

 Resource Usage Conflicts 

 

In this dissertation the validity of each of the three model types was first tested 

individually.  The test of operational variables performed for this dissertation was 

comparable to that performed by Manning, et al. (2001a).  Similarly, the test of 

cognitive variables performed was comparable to that performed by Sarno and Wickens 

(1995) except that in this dissertation the cognitive variables were used to inform the 

relationship between the usage of different cognitive resources and subjective workload 

instead of task performance.  A comparison of the predictive value of each of the 
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different model types resulting from the analyses may serve to narrow the range of 

plausible theories used to characterize the workload construct. 

 After testing the models individually, regressions were performed to predict 

workload using combinations of variables from across the operational and theoretical 

model types.  The test of these combinations was performed to identify the overall 

model that best predicted workload.  It was proposed that the additional detail provided 

by theoretical models could combine with the predictive value of operational variables 

to provide a wide-ranging picture of the workload experience.  This analysis 

consequently serves the more practical goal of this dissertation:  to provide ATC 

researchers with a quantitative tool that can be used to predict the workload of alternate 

ATC systems.  The results of this analysis furthers the continuing effort to find a 

workload prediction equation that can be used in lieu of actual workload ratings, prior 

to human-in-the-loop simulations or when physical prototypes are not yet available.    
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Method 

Participants 

Two ATC SMEs were compensated for their participation in this study.  Both of 

these participants were ex-air traffic controllers currently employed as ATC training 

consultants.  One participant’s area of specialization was in control for TRACON 

environments and the other participant’s area of specialization was in control for Center 

environments.   

Materials 

The Regional Traffic Model   

Boeing Air Traffic Management’s Regional Traffic Model is a fast time 

modeling tool developed to allow engineers and decision makers to compare and assess 

the impact of theoretical new technologies and procedures on air traffic management 

performance.  The model was designed to provide trade studies with higher fidelity 

analyses than are provided through the use of economic analysis tools but in a shorter 

time span and at a lesser cost than analyses provided through the use of human-in-the-

loop simulations.  The model was also designed to be flexible so as to model efficiently 

a variety of alternate air traffic management operational concepts prior to making 

investments in the development of physical system prototypes.  Through the use of 

models like the RTM, analysts can predict to some degree how effective a system will 

be and where failures or reductions in performance are likely to occur.  Analysts can 

make changes to the system as it is represented in the model and collect further data in a 

relatively quick and cost efficient fashion.   
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 The RTM is made up of a number of modules that represent the generic 

functionalities inherent in the air traffic management system.  These modules include 

Aircraft, Airspace, Communication, Surveillance, Traffic Generation, and Human 

Agent modules among others.  In the Traffic Generation Module, for example:  

 [stochastic traffic generation] can be configured in terms of inter-arrival times 

 to specify various demand scenarios as well as in terms of traffic type and  wake 

vortex class composition.  This provides the ability to represent aircraft  arrivals into 

Center airspace at appropriate miles-in-trail (Haraldsdottir, Schoemig, Warren, Tong, & 

Crutchfield, 2004, p. 2). 

The Surveillance module represents the accuracy and delay associated with Radar or 

other technological sensor systems. 

The HAM was developed as part of the RTM to represent the behavior and 

performance of human air traffic controllers and pilots.  It was also developed to enable 

the prediction of the possible impact different operational concepts will have on the 

performance of human operators.  Increase and reduction of human operator workload 

is one type of impact with which ATC analysts are often concerned.  The HAM is a part 

task network model and part cognitive architecture model.  Whereas, there are modules 

in the RTM that produce data regarding traffic generation, aircraft performance, aircraft 

spacing, surveillance, and communication channel performance, the HAM produces 

data regarding the time of occurrence, duration, and frequency of controller activities 

and tasks, and the usage of sensory and cognitive resources in the completion of those 

tasks.  These data are used to derive human task performance delay, error rate, and 
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communication channel congestion metrics and can be used to predict the impact a 

given system has on the mental workload of the controller. 

 The controller HAM controls air traffic in a way that is representative of how 

traffic is controlled today or in a way that we expect it to be controlled in alternate 

operational concepts.  It accepts control of an aircraft and guides it along its course by 

issuing altitude, heading, or speed clearances through the communication channels.  The 

controller HAM also uses these clearances to maintain safe distances between the 

aircraft.  In today’s air traffic environment, controllers are differentiated by the type of 

airspace they control.  TRACON controllers control the airspace immediately around 

airports and deal with the arrival and departure phases of flight.  Center controllers 

typically deal with aircraft undergoing the en route phase of flight often associated with 

higher altitudes.  The controller HAM is capable of representing both of these types of 

controllers.   

 The HAM was designed and coded by Craig Rosenberg to meet the 

requirements and specifications provided by the author of this dissertation.  The 

specifications included the processes and resources that would make up the model’s 

cognitive architecture. Figure 1 presents a diagram of the theoretical cognitive 

architecture the model represents.  The HAM and RTM were developed for use by 

Boeing Air Traffic Management and the details of the model are proprietary to Boeing.  

However, accompanying Figure 1 is a general description of how the HAM works.   
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Figure 1.  Cognitive Architecture represented in the Human Agent Module. 

 The controller HAM accomplishes ATC by first receiving traffic related events 

from other RTM modules.  Events include notification that an aircraft has passed a 

waypoint or deviated from assigned speed among others.  The processing of these 

events may be delayed depending upon the availability of the sensory resources 

represented within the HAM.  Once the existence of an event is known, the event must 

be recognized.  The HAM recognizes events by associating them with programmed 

activities and tasks.  In the HAM, activities are made up of two or more tasks.  The 

representative activities performed in response to the events were obtained from 
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previously performed task analyses (Human Technology Inc., 1991; Rodgers and 

Drechsler, 1995) and through knowledge elicitation from controller SMEs.  A relative 

priority ranking for each of the activities was also elicited.  Table 2 provides a listing of 

many of the activities and tasks this version of the HAM simulated.     

Table 2 

HAM Activities and Tasks 

Activities Tasks 

Conflict Detection and 

Resolution 

Review radar display for potential violation of  

aircraft separation standard 

 Mentally project aircraft future position/altitude/path 

 

Determine if aircraft are separated by less then  

prescribed minima 

 Review potential conflict situation for resolution 

 

Determine appropriate action to resolve aircraft  

conflict situation 

 Determine if conflict is resolved 

Receive Handoff Determine that aircraft is entering the sector 

 Determine response to handoff request 

 Coordinate with adjacent controller 

 Receive handoff request 

 Accept the Handoff 
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Activities Tasks 

 Controllers response to the request 

 Review if the restrictions have been met 

 Wait for pilot to check in and issue instructions 

Establish Radio 

Communication Receive initial radio contact from pilot 

 Verify completeness of message 

 Verify aircraft has proper ATIS code 

 Provide correct ATIS code to pilot 

Initiate Handoff Determine that aircraft is leaving the sector 

 Discuss transfer of control 

 Determine adjacent controller request 

 Initiate handoff 

 Receive handoff acceptance 

 Issue change of frequency to the pilot 

Control Instructions Formulate clearance with appropriate instruction 

 Issue clearance and instruction to the pilot 

 

Detect acknowledgment/readback of issued  

clearance 

 Verify aircraft compliance with the clearance 

 Query pilot regarding compliance with clearance 
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Activities Tasks 

Conformance Violation 

Review radar display for potential violation of  

conformance criteria 

 Determine maneuver to restore flight 

 Determine if aircraft is in conformance 

 

 When the controller HAM performs tasks associated with traffic events it calls 

upon representations of sensory, cognitive, and vocal resources.  These resources make 

up the HAM’s cognitive architecture.  Tasks are theorized to require certain resources 

be available before it can be successfully completed.  If a task requires a resource that is 

currently in use a resource conflict is logged and the subsequent task is placed in a 

model queue until the other task is completed.  If two tasks require the same resource 

simultaneously, the task associated with the higher priority activity will gain access to 

the resource first.  In this way controller activities can be interrupted by higher priority 

activities but tasks cannot. 

 Finally the performance of the HAM is set through parameters associated with 

each task.  Therefore not only is the HAM able to represent the way in which a human 

solves given air traffic control problems but also, through instantiation of these 

parameters, represent human performance accuracy and delay in the implementation of 

the solution.    

Total Airport and Airspace Modeler (TAAM) 

 The TAAM tool, from Preston Aviation Solutions, provides a viewer 

functionality that enables visualization of model results using a perspective similar to 
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ATC radar displays.  This tool allows RTM data to be replayed at a rate representative 

of real time.  Aircraft are depicted as radar targets accompanied by data blocks that 

show aircraft speed and altitude.  Sector boundaries and the airway routes on which the 

aircraft flew were also depicted.  

Procedure 

 The RTM was used to run two 150 minute air traffic scenarios.  These scenarios 

depicted a representation of westbound arrivals from three Chicago Center sectors into 

Chicago O’Hare’s (ORD) TRACON and runway 14L (as a part of a “14s a Pair” 

runway configuration).   One of the scenarios modeled a Low Traffic level condition 

and the other modeled a High Traffic level condition.  The RTM output from these runs 

included a record of human controller task completions, air-ground communications, 

and sensory and cognitive resource use.   

 An illustration of the approximate lateral profile followed by the simulated 

aircraft can be seen in Figure 2. Aircraft enter the Center sector at the FLINT and 

SALEM waypoints and travel westward.  The Center sector controller merges the two 

traffic streams at PULMAN before handing the aircraft off to the next controller.  

Aircraft enter the TRACON just after PIVOT in the Northeast and after BEARZ in the 

south.  The TRACON Final controller takes control of the air traffic from the south just 

after the northward vector, merges the two traffic streams, and vectors the aircraft along 

the trombone to ensure spacing at the Final Approach Fix (FAF) before handing the 

aircraft off to the Tower controller. 

The RTM Traffic Generator parameters were populated to provide aircraft that 

differed in equipage (weight and performance classes).  The ratio of aircraft equipage 
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types used was representative of traffic into ORD during a typical day from August 

2000.  The scenario that depicted the Low Traffic condition was populated such that 

approximately 15 aircraft would land on runway 14L per hour.  The scenario that 

depicted the High Traffic condition was populated such that approximately 24 aircraft 

would land per hour. 
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Figure 2.  Illustration of lateral flight paths modeled within the RTM. 

The RTM input parameters that represented the behavior and performance of 

both the humans and the technological systems in these scenarios were chosen and 

instantiated to model the way traffic is controlled today with today’s technology.  Air 
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routes used in the model of Center airspace and vectors used in the model of TRACON 

airspace matched those used in current Chicago operations.  Communication system 

performance matched that of today’s analog voice systems.  Parameters associated with 

controller and pilot performance can be found in Appendix A.   

The output from the two model runs was loaded into the TAAM viewer and 

replayed in real-time for the participants to observe.  The participants each viewed 80 

minutes of the output, 40 minutes from the low traffic level condition and 40 minutes 

from the high traffic level condition.  Each time segment observed started with a 

representative number of aircraft already in its respective airspace.  The TAAM 

depicted display was limited to the Pullman sector for the participant that specialized in 

Center control and the ORD sector for the participant that specialized in TRACON 

control.  Prior to viewing, both participants were briefed as to the nominal flight profiles 

used in the respective scenarios.  It is also worthy of note that, as the RTM produces no 

audible output, participants viewing the scenarios had to infer communication messages 

by observing changes to aircraft heading, speed, and altitude visible in the aircraft data 

blocks.   

Workload ratings were elicited from the participants as they observed the 

scenarios.  The workload rating collection procedure was a modification of the Air 

Traffic Workload Input Technique (Stein, 1985).  The participants were informed that at 

4-minute intervals during the scenarios they would be asked to estimate the level of 

workload they believed someone controlling the current traffic situation would be 

experiencing.  The participants provided their answers, in pencil and paper format, on a 

scale from 1 to 10 with 1 being extremely low workload and 10 being extremely high 
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workload (instructions used are provided in Appendix B).  Upon completion of both 

scenarios the observers were asked to indicate in writing any criteria they purposely 

tried to use when deciding upon what workload level to indicate. 

Results 

 Several variables were selected from the scenario output for regression analysis 

to predict the workload ratings.  These variables are related to three different theoretical 

model types that have been used to predict workload in previous studies and are further 

defined below.  Descriptive statistics and correlations for these variables and the 

workload ratings are also provided.  The correlations are followed by the model 

performance results for each of the three different theoretical model types.  In the last 

part of this section all types of predictor variables are combined to identify the models 

that predict the greatest variance in participant workload ratings. 

Variables Selected 

 Several RTM output variables were selected for analysis to predict the workload 

ratings provided by the participants.  These variables were selected based on their 

theoretical ability to predict workload as suggested in previous studies.  These variables 

were derived from scenario output for each 4-minute period that a workload rating was 

collected.  The way in which each of these variables is derived from the model is 

described below.  The descriptions are organized according to the theoretical model 

type with which the variable is most associated. 

Queuing Models 

 The variables in this category represent those used by Parks and Boucek in their 

TLAP approach (1989) and Schmidt in his queuing analysis approach (1978) to predict 
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workload.  Although ultimately derived from data at the task level, the variables used in 

these approaches are aggregate measures such as frequency, difficulty, and relative 

priority of activities, and overall task load.  The following variables were chosen to 

represent queuing variables from the RTM output: 

Number of Activities Performed.  This is the number of Activities that were 

processed, to the point of using at least one sensory, cognitive, or motor resource, 

during a 4-minute time period. 

Number of Activities Performed Weighted by Difficulty.  This is the number of 

Activities that were processed, to the point of using at least one sensory, cognitive, or 

motor resource, during a 4-minute time period multiplied by a difficulty rating for the 

activity provided by a controller SME. 

Number of Activities Performed Weighted by Priority.  This is the number of 

Activities that were processed, to the point of using at least one sensory, cognitive, or 

motor resource, during a 4-minute time period multiplied by a priority rating for the 

activity provided by a controller SME. 

Task Load.  Taskload is the ratio of time on tasks to total time available.  It is 

calculated by finding the amount of time in every 4-minute period that the controller is 

not performing any tasks (singly or in parallel) in seconds, subtracting that from 240 

seconds, and then dividing the difference by 240 to obtain the ratio.  The tasks 

considered in this analysis are only the tasks that use cognitive, sensory, or motor 

resource representations.  Other tasks, such as those that involve waiting for a given 

Event to occur, are not included.  When the controller is not using the Visual Resource 

in the completion of a particular task, it defaults to the use of the Visual Resource to 
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perform scans of the radarscope for new events.  This time spent using the Visual 

Resource performing the general monitoring task is not included in the total time on 

tasks calculation as it is assumed to occur when the controller has nothing else with 

which to occupy its time. 

Operational Models 

 This category represents variables related to observable behaviors, specific to 

the ATC domain.  Variables such as communication channel congestion, number of 

aircraft under control, and number of handoffs performed are studied to provide a non-

intrusive and reliable means to predict controller workload and airspace complexity 

(Cardosi, 1993; Manning, et al., 2001a; Morrow & Rodvold, 1998; Porterfield, 1997).  

The following variables were chosen to represent operational models from the RTM 

output: 

Number of Communications.  This is the number of communications sent by the 

controller during a 4-minute time period.  Both the total number of communications and 

the number of each particular type of communication (heading, speed, and altitude 

clearances and frequency changes) will be examined in the analysis. 

Communication Channel Congestion.  This is the sum of all the time durations 

that the communication channel was in use during a 4-minute time period. 

Number of Aircraft.  This is the number of aircraft in a controller’s airspace 

during a 4-minute time period. 

Number of Handoffs Completed.  This is the number of frequency changes issued 

to aircraft in a particular sector during a 4-minute time period. 

Cognitive Models 
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  This category represents variables used by cognitive models based on multiple 

resource theory.  These models include VACP (Aldrich & Szabo, 1986) and the 

W/INDEX (North & Riley, 1989).  The following variables were chosen to represent 

cognitive variables from the RTM output: 

Number of Tasks Performed.  This is the number of tasks that utilize cognitive, 

sensory, or motor resources that were initiated during each 4-minute time period.  The 

general monitoring task is not included in this calculation. 

Resource Usage Conflicts.  A resource request conflict occurs when a task 

requests the use of a sensory, motor, or cognitive resource that is already currently 

being used by another task.  The request conflicts are a theoretical representation of 

resource interference experienced by individuals engaged in multi-tasking.  These 

request conflicts will be summed for every 4-minute time period. 

Descriptive Statistics 

 The average values for the derived variables and the participant provided 

workload ratings are shown in Table 3.  At the time the scenarios were run, the version 

of the RTM used was experiencing bugs causing some anomalous aircraft and controller 

behaviors.  For this reason, workload ratings and model output that were collected for 4-

minute time periods in which the anomalous behavior occurred were excluded from the 

analysis.  Fifteen TRACON and fifteen Center workload ratings remained and were 

combined for the analysis.   

 All derived variable values showed an increase from the Low Traffic condition 

to the High Traffic condition.  The increase of these variables across traffic levels 

would suggest that all of these variables share a positive relationship.  Number of 



  

28 

aircraft controlled was greater for the TRACON controller, as was the proportionate 

increase in number of aircraft from Low Traffic condition to High Traffic condition.  

This was due to the fact that the TRACON sector was being fed by more than one 

Center sector.  An increase in runway arrival rate was attained by proportionately 

increasing air traffic frequencies at each of the Center airspace entry points. 

 Workload levels were rated higher for the TRACON sector than for the Center 

sector.  The Center sector controller for this model did not have to perform some of the 

common tasks that many real Center controllers would have to perform, including those 

related to pilot requests and overflights.  Neither sector under Low or High Traffic 

conditions were rated as presenting the simulated controller with more than a moderate 

level of workload.  These low ratings may have given rise to a floor effect for some 

variables. 

Table 3. 

Means of the Workload Ratings and Derived Predictor Variables. 

 TRACON Center 

Variable per 4 minute Time Segment 

Low 

Traffic

High  

Traffic 

Low  

Traffic 

High  

Traffic

Workload Ratings 3.57 5.25 2.00 2.57 

Task Load (percentage of time performing tasks) 56.79 78.96 38.33 42.50 

Number of Activities 9.43 17.25 4.38 7.71 

Number of Activities Weighted by Priority 39.86 71.63 16.38 28.14 

Number of Activities Weighted by Difficulty 37.71 66.00 14.13 24.86 
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 TRACON Center 

Variable per 4 minute Time Segment 

Low 

Traffic

High  

Traffic 

Low  

Traffic 

High  

Traffic

Number of Communications 10.29 19.88 4.50 19.00 

Communication Congestion (seconds) 50.15 92.37 22.32 91.07 

Number of Aircraft 3.00 5.38 2.00 2.71 

Number of Handoffs 1.00 1.63 0.63 1.71 

Number of Altitude Changes 1.71 3.50 1.88 3.14 

Number of Heading Changes 5.14 9.50 0.63 9.00 

Number of Speed Changes 1.71 3.38 0.63 3.43 

Number of Tasks 28.57 54.63 13.25 53.29 

Task Specific Visual Resource Use 10.29 20.00 5.13 19.71 

Task Specific Spatial Cognition Resource Use 2.57 4.75 0.63 4.86 

Task Specific Verbal Cognition Resource Use 15.00 28.25 7.50 27.00 

Resource Usage Conflicts 2.57 7.88 0.00 6.43 

 

Participant Reported Criteria 

After observing both scenarios, each participant provided in writing the criteria they 

personally chose to use when estimating workload.  Together the participants reported 

using number of aircraft, potential number of conflicts, controller/pilot communication 

load, and handoff requirements as mental criteria for judging workload levels for the 
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two scenarios.  If the participants successfully adhered to the reported criteria, variables 

related to the criteria would be highly predictive of the workload ratings. 

Correlations 

 Pearson correlations were found for all pairs of output variables.  These 

correlations indicate the strength and direction of the relationship between each variable 

pair.  As these variables are derived from the same model output, it is expected that a 

higher than average degree of correlation be found for some variables.  Extraneous 

factors present in the real world or even a lab environment will attenuate the visible 

relationships between variables.  However, this analysis is interesting because it allows 

us to quantify the relationships between variables from different theoretical model 

types.   

 Tables 4 and 5 show the Pearson r for each of the comparisons.  Correlation 

values shown in the table with an asterisk are significant to the .05 level.  As indicated 

by the descriptive statistics, all of the variable pairs were shown to have positive 

relationships.   

 Overall there was a high degree of correlation among the variables.  Some 

correlations found were greater than .9.  The relationship between Number of Tasks 

performed and Number of Communications for example, was .97.  This is indicative of 

the fact that most Tasks were performed for the purpose of either creating or delivering 

clearances.  Other variables such as Number of Activities, Number of Activities 

Weighted by Difficulty and Number of Activities Weighted by Priority are highly 

correlated because they share the same root output.   
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Table 4   

Correlations between Derived Queuing and Operational Variables, TRACON and 

Center Sector Combined, for the Two Model Runs 

 nact prior diff ncom cong nac nho nalt nhdg nspd tld 

Activities 
Weighted  
by Priority 

.99* 1.0          

Activities 
Weighted  
by 
Difficulty 

1.0* .99* 1.0         

Number of 
Commun-
ications 

.72* .68* .69* 1.0        

Commun-
ication 
Congestion  

.71* .67* .67* .99* 1.0       

Number of 
Aircraft 

.84* .86* .85* .62* .62* 1.0      

Handoffs .54* .51* .50* .68* .73* .33 1.0     

Altitude 
Changes 

.55* .50* .52* .70* .65* .35 .27 1.0    

Heading 
Changes 

.70* .68* .68* .97* .95* .65* .61* .57* 1.0   

Speed 
Changes 

.57* .55* .53* .88* .89* .58* .71* .43* .84* 1.0  

Task Load  .65* .69* .67* .36 .36 .73* .21 .26 .38* .33 1.0 

 

Strong relationships were also found among variables used in different 

theoretical model types.   For example, Number of Communications was highly related 

to Verbal Cognition Resource Use.  This relationship results from the reliance 

communication tasks have on the use of the verbal cognitive resource for the 

formulation of message content.  The relationships between the Visual Resource Use 
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and both the number of aircraft Heading Changes and the number of aircraft Speed 

Changes was also high, indicative of a reliance on the visual resource for the 

completion of these two tasks as well. 

Table 5   

Correlations between Derived Cognitive Variables and Queuing and Operational 

Variables, TRACON and Center Sector Combined, for the Two Model Runs 

 ntask nvis nspat nverb confli 

Number of Activities .65* .60* .46* .70* .60* 

Activities Weighted  
by Priority 

.62* .57* .45* .66* .59* 

Activities Weighted  
by Difficulty 

.62* .57* .44* .67* .59* 

Number of Commun-
ications 

.97* .93* .82* .99* .83* 

Communication 
Congestion  

.96* .93* .83* .96* .81* 

Number of Aircraft .63* .63* .55* .61* .60* 

Handoffs .63* .63* .54* .60* .39* 

Altitude Changes .63* .52* .40* .74* .68* 

Heading Changes .97* .93* .86* .96* .82* 

Speed Changes .90* .91* .82* .85* .71* 

Task Load  .37* .37* .34 .36 .33 

 

Model Performance by Type 

 Each of the variables recorded was used in a regression analysis to predict 

workload ratings.  In some cases, pairs of variables from a model type were analyzed 

together.  The results of these analyses are provided in the tables below.  The tables 
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provide both the R and the R2 value indicating the amount of variance accounted for by 

a model.  The tables also provide the F and the p values indicating the level of 

significance the model reached.  These results indicate the ability to predict subjective 

workload for each of the independent theoretical model types as represented by the 

HAM and the RTM.  Successful models identify candidates for variables that could be 

used in place of subjective workload ratings when it comes to predicting workload for 

new ATC systems. 

Queuing Models 

 Activity Variables.  The variables tested here include Number of Activities 

Performed and Number of Activities Performed weighted by either difficulty or priority.  

These variables represent aggregates of tasks performed to complete activities.  Results 

are presented in Table 6.  All three models did well at predicting workload accounting 

for between 72 and 77% of variance.  It is interesting to note that the best predicting 

model of the three used priority, a relative measure of time criticality, to weight the 

number of activities.  As has been suggested in the literature before (Hendy, Liao, & 

Milgram, 1997), time pressure may play an important role in the subjective experience 

of workload. 

Table 6 

Performance of the Activity Models 

Variables R R2 F p 

Number of Activities Performed .849 .721 72.335 .000 

Number of Activities Weighted  
by Difficulty 

.857 .735 77.714 .000 
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Variables R R2 F p 

Number of Activities Weighted  
by Priority 

.876 .767 92.346 .000 

 
 Task Load.  The amount of time the HAM was engaged in using sensory or 

cognitive resources was derived and the ratio of busy time to free time was calculated 

for each 4-minute time period.  This Task Load ratio was analyzed in a linear regression 

to predict the subjective workload ratings.  Table 7 provides the regression analysis 

results.  The Task Load model was successful at predicting 45% of the variance in 

workload ratings. 

Table 7 

Performance of the Task Load Model 

Variables R R2 F p 

Task Load .671 .450 22.880 .000 

 
 The Task Load Model uses an aggregate of the data provided by the Activity 

Models in its prediction of workload.  The Activity Models use an aggregate of the 

tasks completed in its prediction of workload.  The results of this analysis suggest that 

the Activity Models are better predictors of workload than the Task Load models.  

Neither of these Queuing Models represent tasks at the individual resource level and 

may therefore be relatively insensitive to what occurs inside of activities.  However, 

they require less advanced work to prepare than cognitive models do.  These results 

suggest that Activity Models may provide a powerful tool to predict workload at an 

appropriate stage of the design process before many of the task performance details 

associated with a system are known. 
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Operational Models 

 Communications.  As communication variables have been used to estimate 

workload level in the ATC domain, number of communications and amount of time the 

radio communication channel was busy were analyzed separately using linear 

regression to predict the subjective workload ratings.  Table 8 provides the regression 

analysis results.  Neither model predicted more than 38% of the variance in subjective 

workload ratings.  This performance result falls below the 49% found by Manning et al. 

(2001a). 

Table 8 

Performance of the Communication Models 

Variables R R2 F p 

Number of Communications .610 .372 16.579 .000 

Communication Congestion .596 .355 15.406 .001 

 
 Other Operational Models.  Other operational variables identified as possible 

predictors of controller workload were analyzed.  Combinations of these variables and 

communication model variables were also tested.  Table 9 provides the regression 

analysis results.  Numbers of individual clearance types were not good predictors of 

workload.  Of all the clearances, Number of Heading Clearances was the best predictor 

accounting for only 38% of the variance. 

Number of Aircraft by itself performed well predicting 69%.  In fact all six of 

the best performing models (predicting between 69 and 70% of the variance) included 

Number of Aircraft as one of the variables.  These results paired with the participant 
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reported criteria suggest that a measure as simple as Number of Aircraft under control 

can be a fairly accurate representative of subjective workload. 

Table 9 

Performance of the Other Operational Models 

Variables R R2 F p 

Number of Altitude Clearances .390 .152 5.035 .033 

Number of Heading Clearances .619 .384 17.425 .000 

Number of Speed Clearances .541 .292 11.565 .002 

Number of Handoffs Performed .376 .141 4.610 .041 

Number of Aircraft .828 .686 61.161 .000 

Number of Altitude Clearances and 
Number of Heading Clearances 

.621 .385 8.463 .001 

Number of Altitude Clearances and 
Number of Speed Clearances 

.569 .323 6.450 .005 

Number of Altitude Clearances and 
Number of Handoffs Performed 

.480 .231 4.046 .029 

Number of Altitude Clearances and 
Number of Aircraft 

.835 .697 31.041 .000 

Number of Altitude Clearances and 
Communication Congestion 

.596 .355 7.430 .003 

Number of Heading Clearances and  
Number of Speed Clearances 

.620 .385 8.447 .001 

Number of Heading Clearances and  
Number of Handoffs Performed 

.619 .384 8.401 .001 

Number of Heading Clearances and  
Number of Aircraft 

.835 .698 31.186 .000 

Number of Heading Clearances and  
Communication Congestion 

.620 .384 8.414 .001 

Number of Speed Clearances and 
Number of Handoffs Performed 

.541 .292 5.580 .009 

Number of Speed Clearances and 
Number of Aircraft 

.832 .692 31.306 .000 

Number of Speed Clearances and 
Communication Congestion 

.596 .355 7.442 .003 
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Variables R R2 F p 

Number of Handoffs Performed and 
Number of Aircraft 

.836 .698 31.275 .000 

Number of Handoffs Performed and  
Communication Congestion 

.602 .362 7.659 .002 

Number of Aircraft and Communication 
Congestions 

.835 .697 31.044 .000 

 
 Operational Models of workload were as good predictors for the model as they 

were for the data collected by Manning et al. (2001a).  Models that include one of the 

easiest types of variables to obtain for ATC, Number of Aircraft, did the best at 

predicting the subjective workload ratings of our participants.  Unfortunately, the 

Number of Aircraft found in a scenario tells us very little about how one system 

contributes to workload levels versus another. 

Cognitive Models 

 Resource Usage.  The total number of Tasks completed by the HAM as well as 

the number of calls to the Visual Processor and Verbal and Spatial Cognition Resources 

for each 4-minute segment was recorded.  These variables were analyzed separately 

using linear regression to predict the subjective workload ratings.  Table 10 provides the 

regression analysis results.  The highest performing variable from this list, Number of 

Tasks Performed, was successful at accounting for 36% of the variance in subjective 

workload ratings.  These results suggest that an aggregate of cognitive and sensory 

resource usage may be as valuable for the prediction of workload as the usage of any 

particular resource by itself. 
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Table 10 

Performance of the Resource Usage Models 

Variables R R2 F p 

Number of Tasks Performed .599 .358 15.643 .000 

Use of the Spatial Cognition Resource .521 .271 10.432 .003 

Use of the Verbal Cognition Resource .592 .350 15.106 .001 

Use of the Visual Processor Resource .584 .341 14.502 .001 

 
 Resource Usage Conflicts.  When a task requires the usage of a sensory, motor, 

or cognitive resource that is already being used by another task, the second task must 

wait until the first task stops using the resource before it can proceed.  The number of 

these resource usage conflicts that occurred during each 4-minute time segment was 

used in a linear regression analysis to predict subjective workload ratings.  Another 

model that combined number of resource conflicts with total number of tasks performed 

in each 4-minute time period was also analyzed.  Due to the previous prediction 

performance given by the W/INDEX model used in Sarno and Wickens (1995) study it 

was theorized that these two variables might perform well together as subjective 

workload predictors.  Table 11 provides the regression analysis results.  The Resource 

Usage Conflicts model predicted roughly 41% of the variance while the combined 

model predicted roughly 42%.  It is interesting to note that Sarno and Wicken’s version 

of the W/INDEX model predicted a similar amount (42%) of the variance in 

TASKILLAN performance data. 
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Table 11 

Performance of the Resource Usage Conflicts Models 

Variables R R2 F p 

Resource Usage Conflicts .639 .408 19.279 .000 

Resource Usage Conflicts and  
Number of Tasks Performed 

.645 .416 9.628 .001 

 

 The Cognitive Models did only a moderate job at predicting workload.  It is 

interesting to note that Resource Usage Conflicts predicted relatively well considering 

that this variable requires the most detail about how tasks are being carried out and 

relies heavily on cognitive theory.  Although the Cognitive Models may not fare well by 

themselves, they can potentially provide designers with useful information regarding 

resource usage. 

Combining Variables 

 As the RTM and HAM produce variables for all three theoretical model types 

from the same scenario, it was theorized that the model types could be directly 

compared by using the different variables in a regression analysis.  In this study, 

however, there was not a sufficient amount of workload ratings to perform any 

regression procedures using more than two variables at a time.  Therefore the analysis 

was conducted by testing all variables (except where prohibited by co-linearity) in pairs.   

 The regressions identified seventeen variable pairs that produced models 

accounting for over 75% of the variance in workload ratings.  A Bootstrap analysis 

procedure was applied to the predicted workload values of each of these models.  

Results of this analysis showed that none of the predicted values of any of the models 
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were significantly different from any of the others.  Although comparing the amount of 

variance accounted for across the various models may provide hints as to trends in 

model performance, the small number of workload ratings collected does not allow for 

statistically reliable comparisons to be made. 

 All seventeen top predicting pairs included either Number of Activities 

Weighted by Priority or Number of Activities Weighted by Difficulty as a variable.  

Number of Activities Weighted by Priority in combination with any one of either 

Taskload, Number of Aircraft, Spatial Cognitive Resource Use, or Number of Resource 

Conflicts produced the four best prediction models.  Table 12 describes the top five 

workload predicting models. 

Table 12 

Model Performance for the Top Five Predicting Models 

Model R R2 F p 

Activity by Priority and Resource  
Conflicts 

0.889 0.791 50.950 0.000

Activity by Priority and Number of  
Aircraft 

0.889 0.790 50.689 0.000

Activity by Priority and Use of Spatial  
Cognition 

0.887 0.787 49.869 0.000

Activity by Priority and Taskload .881 .775 46.578 .000

Activity by Difficulty and Number of  
Aircraft 

.878 .770 45.298 .000

 
 The model pairing Number of Activities Weighted by Priority and Number of 

Resource Conflicts produced the highest R2 value.  The coefficients and constant for 

this model make up the following workload prediction equation:  Workload = 1.328 + 

.067(Resource Conflicts) + .049(Activities Weighted by Priority).  Figures 3 and 4 
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present line graphs allowing a visual comparison of workload predicted using this 

model equation with the actual workload ratings collected.  The results of this analysis 

suggest the model equation for Number of Activities Weighted by Priority and Number 

of Resource Conflicts is the most suitable for use to represent workload levels in design 

situations where actual subjective workload ratings cannot be assessed. 
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Figure 3.  Workload predictions compared with ratings from the TRACON observer 

Discussion 

 Results of this dissertation suggest that number of activities performed per 4-

minute time period is a good predictor of workload.  By itself this variable predicted 

almost 77% of workload ratings.  As derivation of this variable requires only a minimal 

task analysis, this is potentially good news for designers who lack in-depth knowledge 

about new task procedures or who lack the resources to perform in-depth cognitive 

analyses.  In this study, number of activities was a better workload predictor than the 
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domain specific operational variables such as frequencies of clearances by type, number 

of handoffs, average number of aircraft under control, and those related to 

communications.   
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Figure 4.  Workload predictions compared with ratings from the Center observer 

 The R2 value of number of activities increased when this variable was weighted 

either by priority or difficulty.  Priority is an indicator of the time criticality of an 

activity.  The finding that the priority weighting improved this model tends to 

corroborate workload theories that have identified time pressure as a major influence to 

resulting workload (Hendy, Liao, & Milgram, 1997).  As the relative priority rankings 

of activities is not likely to change across systems, the number of activities weighted by 

priority model will be insensitive to comparisons of systems that change the amount of 

workload contributed by activities without changing the number of activities that need 

to be performed.  This limitation would not exist for the number of activities weighted 
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by difficulty model should it be possible to estimate a different set of difficulty 

weightings for activities performed using the new technology. 

 The R2 value of activities weighted by priority was further improved when 

paired with the variable representing the number of resource conflicts that occurred 

during the 4-minute time period.  Based on the results of the regression analysis alone, 

the model using activities weighted by priority and number of resource conflicts is the 

preferred model to use to predict workload.  However, taken at face value these results 

only show a 2% increase in prediction associated with the cognitive component of the 

equation. 

 Gaining this extra prediction accuracy required the development of a cognitive 

architecture and the assignment of cognitive resource usage to tasks in a task network.  

The cost in budget and schedule needed to perform this cognitive modeling may not 

seem worth the extra 2% gain.  However, there are other important reasons to consider 

using cognitive modeling to predict the workload associated with new systems.   

One reason to include cognitive modeling is that a descriptive analysis of 

resource usage provides designers with a fairly comprehensive picture of factors that are 

likely to impact the workload of a new system.  The model using number of activities 

weighted by priority can be used to predict when a system is likely to foster a high level 

of workload, but it is unlikely by itself to say much about what elements may be 

causing the workload increase.  Descriptive statistics such as number of uses of the 

visual processing resource or number of uses of the communication channel can suggest 

to a designer where the problem areas are likely to occur should suboptimal workload 

levels be predicted.  
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A second reason is that the inclusion of the variable representing number of 

resource conflicts into the equation, with number of activities weighted by priority, 

brings the model a much needed consideration for occurrences that take place within the 

activities.  A workload model that uses number of activities weighted by priority, 

assuming the priorities of activities do not change between systems, will not distinguish 

between systems that require similar numbers of activities.  Even workload models that 

predict and record cognitive resource usage at the task level will not distinguish 

between two systems that simply shift the resource usage modality without changing the 

number of tasks being performed.  Measures such as resource usage conflicts provide 

information as to how the system and procedures integrate with human limitations and 

therefore increase the sensitivity of the model. 

One example of how inclusion of resource conflicts provides important 

information to the representation of workload can be found in the means through which 

clearances are delivered to pilots in the ATC domain.  Voice communications can cause 

additional workload through the occurrence of readback errors and step-ons whereby 

communications from one pilot may occlude part of a communication from another 

pilot.  In this mode of communication, the controller uses auditory and vocal resources 

to communicate.  The use of datalink to send clearances by computer using visually 

displayed messages at first suggests a means of alleviating errors and workload 

associated with voice communications.  However, traditional datalink clearances rely 

heavily on the controller’s visual resources to both select and send a message and to 

watch for the response to that message.  Considering the controller is already using her 

visual resources to scan the radar for potential conflicts etc., this type of datalink usage 
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may instead increase associated workload over the use of voice communications.  As 

the results of this analysis suggest a predictive value to resource usage conflicts, the 

author suggests that a cognitive architecture model, such as portrayed in the HAM, can 

be a valuable tool for systems designers concerned with the prediction of human 

workload. 

 It is important that work continue to be done to validate models such as the ones 

discussed here.  For example, the reliability of the workload analysis results in this 

dissertation could be improved by either using a larger number of participants or 

developing the model to represent more of the factors that may impact workload.   

Additional participant resources would allow for the use of a third level of scenario and 

also increase the number of workload ratings.  Either of these improvements would 

allow for less bounded workload ratings.  The validity of model output to predict the 

impact of future technologies on workload could be further explored through the use of 

scenarios that include models of alternate operational concepts (data link, automated 

traffic advisories etc.) and subjective workload ratings by SMEs who have had 

experience with these types of prototype systems.      

Valid workload prediction models provide potential benefits to the design of 

systems that are compatible with human capabilities.  Regardless of model validity it is 

not the purpose of modeling to replace the use of higher fidelity analysis such as 

human-in-the-loop evaluations.  Rather the value of modeling comes from narrowing 

the focus of the subsequent analysis.  The approach allows analysts to make changes to 

a proposed system, as it is represented in a model, and collect data in a relatively quick 

and efficient manner.  Models that can predict workload are valuable because they offer 
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insight as to where human-system limitations lie.  Perhaps more importantly, however, 

is that models such as these provide needed guidance early in the design life cycle prior 

to the development of costly physical prototypes for use with human-in-the-loop 

evaluations.   



  

47 

References 

Aldrich, T. B., & Szabo, S. M.  (1986).  A methodology for predicting crew workload in 

new weapon systems.  In Proceedings of the Human Factors Society 30th 

Annual Meeting.  Santa Monica:  The Human Factors Society. 

Atkinson, R. C., & Shiffrin, R. M. (1968).  Human memory:  A proposed system and its 

control processes.  In K. W. Spence & J. T. Spence (Eds.), The Psychology of 

Learning and Motivation (Vol. 2, pp. 89-195).  Orlando, FL: Academic Press. 

Cardosi, K. M. (1993).  Time required for transmission of time-critical air traffic control 

messages in an en route environment.  The International Journal of Aviation 

Psychology, 3 (4), 303-313. 

Hancock, P. A., Williams, G., Manning, C. M., & Miyake, S.  (1995).  Influence of task 

demand characteristics on workload and performance.  The International Journal 

of Aviation Psychology, 5 (1), 63-86. 

Haraldsdottir, A., Schoemig, E. G., Warren, A. W., Kwok-On, T., & Crutchfield, J. M. 

(2004).  Analysis of arrival management performance with continuous descent 

trajectories using the Regional Traffic Model.  Proceedings of the 23rd Digital 

Avionics Systems Conference, Salt Lake City, UT. 

Hart, S. G., & Staveland, L. E. (1988).  Development of a NASA TLX (task load 

index):  Results of empirical and theoretical research.  In P.S. Hancock & N. 

Meshkati (Eds.), Human Mental Workload (pp. 139-183).  Amsterdam:  

Elsevier. 

Hendy, K. C., Liao, J., & Milgram, P.  (1997).  Combining time and intensity effects in 

assessing operator information-processing load.  Human Factors, 39 (1), 30-47. 



  

48 

Human Technology, Inc. (1991). Cognitive task analysis of en route air traffic control: 

Model extension and validation (Report No. OPM-87-9041). McLean, VA: 

Author. 

Jex, H. R. (1988).  Measuring mental workload:  Problems, progress, and promises.  In 

P. Hancock and N. Meshkati’s (Eds.) Human Mental Workload, (pp. 5-39).  

New York:  Elsevier Science Publishers. 

Kopardekar, P. & Magyarits, S. (2003).  Measurement and prediction of dynamic 

density.  In Proceedings of the 5th USA/Europe Air Traffic Management 

Research and Development Seminar, Budapest, Hungary. 

Lysaght, R. J., Hill, S. G., Dick, A. O., Plamondon, B. D., Linton, P. M., Wierwille, W. 

W., Zaklad, A. L., Bittner, A. C., Jr., & Wherry, R. J., Jr. (1989).  Operator 

Workload:  Comprehensive Review and Evaluation of Workload 

Methodologies.  Report No. 2075-3, US Army Research Institute for the 

Behavioral and Social Sciences, Willow Grove. 

Manning, C. A., Mills, S. H., Fox, C., Pfleiderer, E., & Mogilka, H. J. (2002).  Using 

Air Traffic Control Taskload Measures and Communication Events to Predict 

Subjective Workload (DOT/FAA/AM-02/4).  Washington, DC:  Office of 

Aerospace Medicine. 

Meshkati, N. (1988).  Toward development of a cohesive model of workload.  In P. 

Hancock and N. Meshkati’s (Eds.) Human Mental Workload, (pp. 305-314).  

New York:  Elsevier Science Publishers. 



  

49 

Morrow, D. & Rodvold, M. (1998).  Communication issues in air traffic control.  In M. 

W. Smolensky & E. S. Stein (Eds.) Human Factors in Air Traffic Control (pp. 

421-456).  San Deigo, CA:  Academic Press. 

Norman, D. A. (1968).  Toward a theory of memory and attention.  Psychological 

Review, 75, 522-536. 

North, R. A., & Riley, V. A.  (1989).  W/Index:  A predictive model of operator 

workload.  In G. McMillan, D. Beevis, E. Salas, M. Strub, R. Sutton, and L. Van 

Breda’s (Eds.), Applications of Human Performance Models to System Design 

(pp. 81-89).  New York:  Plenum Press. 

Parks, D. L., & Boucek, G. P. (1989).  Workload prediction, diagnosis, and continuing 

challenges.  In G. McMillan, D. Beevis, E. Salas, M. Strub, R. Sutton, and L. 

Van Breda’s (Eds.) Applications of Human Performance Models to System 

Design (pp. 47-63).  New York:  Plenum Press. 

Porterfield, D. H. (1997).  Evaluating controller communication time as a measure of 

workload.  The International Journal of Aviation Psychology, 7 (2), 171-182. 

Raby, M. & Wickens, C. D.  (1994).  Strategic workload management and decision 

biases in aviation.  The International Journal of Aviation Psychology, 3 (3), 211-

240. 

Reid, G. B. & Nygren, T. E. (1988).  The subjective workload assessment technique:  A 

scaling procedure for measuring mental workload.  In P. A. Hancock & N. 

Meshkati (Eds.), Human Mental Workload (pp. 185-218).  Amsterdam:  

Elsevier. 



  

50 

Rodgers, M.D. & Drechsler, G.K. (1995). Conversion of the TRACON operations 

concept database into a formal sentence outline job task taxonomy 

(DOT/FAA/AM-95/16). Oklahoma City, OK: Human Factors Research 

Laboratory, Civil Aeromedical Institute, Federal Aviation Administration. 

Rodgers, M. D., Mogford, R. H., & Mogford, L. S.  (1998).  The Relationship of Sector 

Characteristics to Operational Errors (DOT/FAA/AM-98-14).  Washington DC:  

FAA Office of Aviation Medicine. 

Sarno, K. J., & Wickens, C. D. (1995).  Role of multiple resources in predicting time-

sharing efficiency:  Evaluation of three workload models in a multiple-task 

setting.  The International Journal of Aviation Psychology, 5 (1), 107-130. 

Schmidt, D. K.  (1978).  A queuing analysis of the air traffic controller’s work load.  

IEEE Transactions on Systems, Man, and Cybernetics 8 (6), 492-498. 

Stein, E. S. (1985).  Air Traffic Controller Workload:  An Examination of Workload 

Probe (DOT/FAA/CT-TN84/24).  Atlantic City Airport, NJ:  Federal Aviation 

Administration Technical Center. 

Treisman, A. M. (1970).  Contextual cues in selective listening.  Quarterly Journal of 

Experimental Psychology, 12, 242-248. 

Tulga, M. K., & Sheridan, T. B.  (1980).  Dynamic decisions and work load in multitask 

supervisory control.  IEEE Transactions on Systems, Man, and Cybernetics, 10 

(5), 217-232. 

Xie, B., & Salvendy, G.  (2000).  Review and reappraisal of modelling and predicting 

mental workload in single- and multi-task environments.  Work & Stress, 14 (1), 

74-99. 



  

51 

Appendix A 

 
Air Traffic Controller Parameter Description Value Units 

activityLimit Represents the maximum 
number of Activities for 
which a controller can work 
on tasks simultaneously. 

7 none 

advisoryScTime This is the duration of time 
for which the controller 
HAM uses the Spatial 
Cognition resource when a 
Task indicates the use of the 
Spatial Cognition resource. 

1.42 sec 

altitudeMonitoringCorrectionTime Indicates the time the HAM 
Controller waits before 
restarting to monitor for 
altitude violations, for a 
given aircraft after an 
altitude correction has been 
issued for the aircraft.  

60 sec 

altitudeMonitoringLowerBound  Altitude that an aircraft can 
go lower than its 
commanded altitude before 
monitoring will give the 
HAM Controller an altitude 
violation Event. 

60.96 meters 

altitudeMonitoringUpperBound  Altitude that an aircraft can 
go higher than its 
commanded altitude before 
monitoring will give the 
HAM Controller an altitude 
violation Event  

60.96 meters 

auditoryProcessorTime This is the duration of time 
for which the controller 
HAM uses the Auditory 
Processor when a Task 
indicates the use of the 
Auditory Processor.  The 
controller HAM's auditory 
processor resource 
represents what is referred to 
in the domain of Cognitive 
Psychology as the verbal 

0.117 sec 
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Air Traffic Controller Parameter Description Value Units 

cognition resource.  

cognitiveCycleTime  Indicates the increment of 
time before which the 
tolerance processor checks 
the HAM Controller 
memory for the presence of 
memory codes.  Also 
influences how often 
ongoing Activities are 
reprioritized and how 
quickly new Activities can 
be initiated. 

0.117 sec 

enrouteMinimumSpeed This represents the minimum 
speed that a controller is 
realistically likely to direct 
an aircraft to fly to, in the en 
route environment.  

128.61 meters

/sec 

etaStaTolerance The tolerance (in seconds) of 
the difference between the 
ETA and the STA.  If the 
difference is less than this 
tolerance, the controller will 
not do anything special as 
far as trying to get an aircraft 
to meet its STA.  

5 sec 

lateOnBaseTurnDelay The amount of time that the 
Controller HAM will wait 
before it turns an aircraft 
onto base during the error 
condition of "late on base 
turn". 

20 sec 

lateOnBaseTurnPercentage This represents the 
percentage of time that 
controllers are late in turning 
an aircraft onto the base.  

0 % 

maxTraconSpeed This represents the fastest 
speed that aircraft can 
legally fly in the TRACON. 

128.61 meters

/sec 



  

53 

Air Traffic Controller Parameter Description Value Units 

maxTromboneController The furthest beyond the 
nominal trombone that the 
HAM Controller will allow 
an aircraft to go before 
turning it onto base. 

5556 meters 

minTraconSpeed This represents the minimum 
speed that a controller is 
realistically likely to direct 
an aircraft to fly to, in the 
TRACON environment.  

87.455 meters

/sec 

minTromboneController The furthest before the 
nominal trombone that the 
HAM Controller will allow 
turning an aircraft to base. 

-5556 meters 

motorProcessorTime This is the duration of time 
for which the controller 
HAM uses the Motor 
Processor when a Task 
indicates the use of the 
Motor Processor.  More 
specifically, this refers to the 
manual motor processor and 
not the vocal motor 
processor.  

1 sec 

msgLenChangeFrequencyMean  Average amount of time that 
a change frequency 
communication will take. 

9.46 sec 

msgLenClearanceMean  Average amount of time that 
a clearance communication 
will take. 

9.46 sec 

msgLenConfirmMean  Least amount of time the 
communication from the 
controller to the Pilot will 
take when the controller is 
responding to a Pilot check 
in. 

9.46 sec 

msgLenILSMean Average amount of time the 
communication from the 
controller to the Pilot will 
take when the controller is 
directing the Pilot to 
intercept ILS. 

9.46 sec 
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Air Traffic Controller Parameter Description Value Units 

responseSelectionProcessorTime This is the duration of time 
for which the controller 
HAM uses the Response 
Selection Processor when a 
Task indicates the use of the 
Response Selection 
Processor.   

0 sec 

spatialCognitionProcessorTime This is the duration of time 
for which the controller 
HAM uses the Spatial 
Cognition resource when a 
Task indicates the use of the 
Spatial Cognition resource.   

1.42 sec 

speedMonitoringCorrectionTime Indicates the time the HAM 
Controller waits before 
restarting to monitor for 
speed violations, for a given 
aircraft after a speed 
correction has been issued 
for the aircraft.  

30 sec 

speedMonitoringLowerBound  Speed an aircraft can travel 
less than that issued by a 
controller before monitoring 
will send a speed violation 
Event to the Controller 
HAM. 

55.144 meters

/sec 

speedMonitoringTime Indicates the time the HAM 
Controller waits before 
restarting to monitor for 
speed violations, for a given 
aircraft after a speed 
clearance has been issued for 
the aircraft.  

30 sec 

speedMonitoringUpperBound  Speed an aircraft can travel 
greater than that issued by a 
controller before monitoring 
will send a speed violation 
Event to the Controller 
HAM. 

27.572 meters

/sec 

traconSpeedIncrement Represents the speed 
increment in which 
controllers issue speed 
clearances to a Pilot in the 

5.144 meters

/sec 
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Air Traffic Controller Parameter Description Value Units 

TRACON. 

TromboneStepController Distance increment the 
controller checks between 
the min and max trombone 
for options to meet the STA. 

1609.34 meters 

useIMC Denotes whether the HAM 
Controller uses IMC control 
procedures or VMC control 
procedures. 

True True/ 

False 

visualDetectionTime Represents the mean time 
that it takes a controller to 
detect a visual event on the 
radar screen. 

7 sec 

visualPerceptualWorkload  Indicates resource 
interference ratio used in 
some workload prediction 
calculations. 

1 ratio 

visualProcessorTime This is the duration of time 
for which the controller 
HAM uses the Visual 
Processor resource when a 
Task indicates the use of the 
Visual Processor resource.   

0.66 sec 
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Pilot Performance 

Parameter 

Description Value Unit 

confirmWaitAdditional A constant amount of time added to the 
time that a Pilot would wait after the 
communications channel is free before 
talking. 

0 sec 

confirmWaitRange Upper bound of uniform distribution 
starting at 0, from which a time 
representing how long a Pilot waits after 
the comminication channel is free before 
talking is selected. 

0 sec 

lnavDelay  Amount of time between when an 
evNewHeading command is received by 
the Pilot from the Controller HAM and 
an evSetLateralControlModeLNAV 
event is sent from the Pilot to the 
aircraft. 

5 sec 

msgLenLowerBound  Shortest length of a Pilot 
communication. 

0 sec 

msgLenMean  Average length of a Pilot 
communication. 

0 sec 

msgLenUpperBound  Longest length of a Pilot 
communication. 

0 sec 

msgLenVar  Variance assocated with the length of a 
Pilot communication. 

0 none 

PilotSlowingMean Percentage of time that no early pilot 
slowing occurs. 

100% % 

PilotSlowingVar Variance of distribution of percentage of 
time that no early pilot slowing occurs. 

0 none 

reactionTimeLowerBound  Shortest reaction time for the Pilot. 0 sec 

reactionTimeMean  Average reaction time for the Pilot. 0 sec 

reactionTimeUpperBound  Longest reaction time for the Pilot. 0 sec 

reactionTimeVar  Variance assocated with the reaction 
time of the Pilot. 

1 none 

readbackErrorPercentage Represents the percentage chance of a 
controller clearance being read back 
incorrectly by a pilot. 

0.80% % 

timeTillCheckin  Amount of time that it takes until the 
Pilot checks in with a new sector. 

1.67 sec 
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Appendix B 

ATWIT Instructions 

 The purpose of this research is to obtain an accurate evaluation of controller 

workload.  By workload, I mean all the physical and mental effort that you must exert to 

do your job.  This includes maintaining the "picture," planning, coordinating, decision-

making, communicating, and whatever else is required to maintain a safe and 

expeditious traffic flow.   

 In the next 2 hours you will watch two approximately 40 minute air traffic 

scenarios.  At 4-minute increments during the scenarios I will ask you to provide your 

estimate of how hard a specialist controlling the traffic scenario would be working at 

that moment.  Although a computerized model is actually controlling the scenarios, try 

to evaluate them as if an experienced controller was controlling the traffic observed 

instead.   

 Please provide your workload estimate using a scale from 1 to 10.  I will review 

what these rating numbers mean in terms of workload.  At the low end of the scale (1 or 

2), workload is low – a controller can accomplish everything easily.  As the numbers 

increase, workload is getting higher.  The numbers 3, 4, and 5 represent increasing 

levels of moderate workload where the chance of error is still low but steadily 

increasing.  The numbers 6, 7, and 8 reflect relatively high workload where there is 

some chance of making errors.  At the high end of the scale are the numbers 9 and 10, 

which represent a very high workload, where it is likely that a controller will have to 

leave some tasks unfinished.  Please provide your workload estimate as quickly as 

possible. 


