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CHAPTER ONE 

 

Background 
 

Landcover generally refers to the biophysical material on the earth’s surface such as 

forest and urban areas while landuse refers to the human use of the land at a particular point 

in time and examples of this will include wheat farms, and wild life parks. 

Deforestation, agriculture, expanding farmlands and urban centers are a few of the 

ways in which man is changing the world’s landscape (Foley et al., 2005). Although these 

activities vary from one place to the other, their impact on the earth’s surface is usually the 

same. Combined, these activities paint a picture of man’s contribution in degrading the 

environment. The quest to develop better means of using natural resources and at the same 

time understand their impact on the environmental has, over the years led to the development 

and improvement of maps and other methods of landscape analysis. Our ever increasing use 

of the earth’s resources have led to both short and long term effects on the environment, and 

for decades remote sensing has played a major role in the understanding of the consequences 

of man’s actions. Change detection (monitoring changes in pixel value between images of a 

given location acquired at different times) using remote sensing has been considered of great 

importance in the monitoring of the earth’s well being (Van Oort P.A.J., 2007). Change 

detection analyses are used to monitor the dynamic nature of biophysical and anthropogenic 

features on the earth’s surface. As earlier mentioned, it is important that such changes be 

monitored so that their contribution to global environmental change can be fully understood 

(Morawits et al., 2006).  



Change detection analysis is performed using multi-date imagery.  Single date 

imagery show the landuses and landcovers for a particular point in time but multi-date 

imagery show the landuse and the landcover of a particular place at different points in time, 

(t1, t2… tn). Land use (commercial, residential, transportation, utilities, cadastral, and land 

cover (agriculture, forest and urban etc) (Jensen, 2005) mapping have been especially 

improved over the years by the use of multi-date imagery, which have been used in cases of 

progressive or gradual environmental changes such as erosion or reforestation for which 

more than one image may be necessary (Le Hegarat-Mascle and Seltz, 2004). 

Of the many different change detection techniques that exist, two main categories can 

be identified. One category involves techniques which first detect change and then assign 

classes to the detected change (e.g., principal component analysis and image differencing). A 

second category of techniques first assigns classes and then detects the changes between the 

different classes. An example of this second category of techniques is the post classification 

method of change detection (Van Oort P.A.J, 2007). 

Change detection analysis takes into consideration image characteristics such as 

spatial (and look angle), radiometric, temporal and spectral resolutions. For  the most part, 

the type of land use or land cover to be studied and the level of detail needed in the study, 

determines the type of sensor to be used (Landsat 5 (5 band image), Landsat TM (7 band 

image), SPOT, or Landsat Enhanced Thematic mapper (ETM) etc) (Jensen, 2005). 

Visual change detection analysis (the act of comparing the difference between two or 

more image visually (without any band analysis)) is a basic form of change detection and 

cannot be grouped under any of the above category. It has been successfully used by the 

National Wetlands Inventory (Wilkie and Finn, 1996).Unfortunately, visual change detection 

is time consuming and tedious, thus making automated (software driven) change detection 
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analysis attractive. Our ability to monitor successional changes in the environment has been 

made more practical since the launch of earth resource sensing satellites.  

Change detection analysis, may be enhanced through anniversary date 

synchronization, (Lillesand and Kiefer 2000). Using anniversary date images ensures that the 

sun’s angle of incidence is the same on both days of image capture. However this approach 

does not ensure that the temperature and precipitation between the years will be the same, 

both of which affect the phenology of the region. Thus in some cases phenology 

synchronization should provide a better analytical approach than anniversary 

synchronization.  

In the case of post classification change detection analysis, it is necessary that both 

images have high classification accuracy. (Accuracy assessment determines how well the 

classified image corresponds with what actually exist on the earth surface.) Accurate spatial 

registration, similar acquisition sensors same spatial, spectral and radiometric resolutions, of 

the images are all necessary for an effective change detection analysis to be performed. In 

most cases, the above factors depend on the feature under study (Jensen, 2005). 

Climatological factors like lake levels, tidal stage (affected mostly by the moon), wind and 

soil moisture, might also be important in change detection analysis (Lillesand et al., 2004). 

Problem Statement 
Landuse and Landcover changes can either be natural for example a mud flow or 

human induced (increase in paved surfaces), and their impact on the environment can range 

from a short period after which the environment recovers, to recovery periods that are 

decades to centuries long. In a watershed changes in the landuse and landcover can be as 

glaring as the change from forest to farmland, or as trivial as the rotation of crops on a 
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particular piece of land. What ever their nature, change always has an effect on the 

environment.  

The Fort Cobb Reservoir watershed (FCRW) is one of the 14 USDA- 

Agricultural/Research services (ARS) bench mark watersheds in the nation wide 

Conservation Effects Assessment Program (CEAP) that was created in 2003 as a result of the 

2002 Farm Bills. The CEAP aims at assessing and quantifying the effects and the benefits of 

USDA conservation practices implemented in agricultural watersheds. Conservation 

practices in the FCRW were implemented as a result of the high loads of suspended 

sediments, low levels of dissolved oxygen, high levels of phosphorus and nitrogen, and the 

presence of nuisance algae in the reservoir. SWAT (Soil and Water Assessment Tool) will be 

used to assess the impact of conservation practices on selected environmental outcomes (e.g., 

water quality, wildlife habitat, etc,) (USDA-ARS. 2007). The SWAT is a model designed to 

assess the impact of landuse practices. However, these landuses change overtime thus making 

it important to monitor these changes. The output change detection analysis may serve as 

input for SWAT and, hence, support policy decision and conservation project 

implementation.    

Suspended solids and other non-point source pollutants result from agricultural 

chemical inputs like fertilizers and pesticides, whose application vary depending on the use 

of a particular piece of land. Change detection analysis determines the landuse type before 

and after the implementation of a conservation practice, and therefore should play an 

important role in the CEAP analysis. The goal of this project is to develop an output that can 

be used in the SWAT or USLE models to evaluate and better implement management 

practices. 
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Goal and Objectives 
The main goal of this project is to analyze changes in the landuse and landcover in 

the FCRW. A change analysis will be performed for a short term and a long term period. The 

short term change analysis will determine how much change took place in the watershed 

between 2001 and 2005, while the long term change period will determine the change in the 

landcover between 1992 and 2005. Therefore, the objectives of this study are as follows: 

• Develop a Geospatial database for the watershed. 

• Develop a landuse and landcover map for the year 2005 

• Evaluate the change in the landuse and landcover between 1992 and 2005, 

and between 2001 and 2005. 

 

Study Area 
  The Fort Cobb Reservoir Watershed (FCRW) is located in southwestern Oklahoma in 

the Caddo, Washita, and Custer Counties (Figure 1). The basin area is 314 square miles and 

the surface area of the Fort Cobb Reservoir is 4,100 acres. This watershed is dynamic in 

terms of the agricultural practices, crops grown and diversity of land management practices. 

The Fort Cobb Reservoir and six stream segments in its basin are listed on the Oklahoma 

303(d) list as being impaired by nutrients, pesticides, siltation, suspended solids, and 

unknown toxicity (Storm et al., 2006) . This watershed has been the site of recent research 

from different government and environmental agencies interested in its water quality, erosion 

rates and soil conditions. Recently, the U.S Environmental Protection Agency named the Fort 

Cobb Reservoir Watershed Implementation Project by the Oklahoma Conservation 

Commission as one of the six best in the nation. This project is designed to improve water 

quality in the Fort Cobb Reservoir using non-point source pollution controls (OCC, 2007). 

The objectives included protecting and reestablishing buffer zones and riparian areas, and to 
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demonstrate conservation practices necessary to reduce sediment, nutrient and pesticides 

loadings to improve water quality. Another agency actively involved in this watershed is the 

USDA ARS, which uses this watershed as a benchmark watershed studied as part of the 

Conservation Effects Assessment Program (CEAP). The CEAP as earlier mentioned is a 

program aimed at assessing the environmental benefits of the USDA implemented 

conservation programs in the watershed (USDA. ARS, 2007). The program was started in 

2003 as a result of a farm bill, and is ongoing in selected watersheds in the nation including 

the Fort Cobb watershed. 

  Other agencies involved in this watershed are Oklahoma Department of Water 

Quality (OKDEQ), the Oklahoma Conservation commission (OKCC), and the United States 

Geological Survey (USGS). Figure 1 shows the watershed, and its location in southwestern 

Oklahoma. 
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Figure 1. The Fort Cobb Reservoir Watershed in southwestern Oklahoma. 
 
 

 

 

 

 6



 

 

CHAPTER TWO 
 

Literature Review 
          Landuse and landcover change is concerned with the detection and 

quantification of alterations of the land surface and its biotic cover. The difference between 

landuse and landcover is that while landuse denotes the human employment of the land and is 

largely studied by social scientists. Landcover denotes the physical and biotic character of the 

land surface and is mostly studied by natural scientists (Meyer and Turner II, 1992). Landuse 

and landcover also have a time element tied into their definitions: For example, in an 

agricultural context, landuse refers to the surface conditions observed at a point in time 

(plowed, fallow, wheat etc.) Landcover of a particular piece of land would be an integration 

of the landuses of that piece of land. For example, freshly plowed land in September, 

emerging cover crop in October, complete green canopy in November, through April, 

senescing canopy in May and harvested crop in June would indicate an agricultural 

landcover.    

 “Environmental changes as a result of landcover or landuse change become global 

either by affecting a global fluid system (atmosphere, world climate or sea level) or by 

occurring in a localized or patchwork fashion in enough places to sum up to a globally 

significant total”(Meyer and Turner II 1992). 

Meyer and Turner (1992) defined land cover change as a change that takes place in 

two forms; conversion from one category of  land to another, and the modification of the 

conditions within a category. So while conversion will be the complete change of a forested 

area into a built up area, modification will be the conversion of the same forested land into 
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secondary forest. In further discussions, they state that conversion in the landcover is more 

documented and monitored than modification is, and because of this, important forms of 

landcover modifications are obscured.  

  Li et al. (2003) studied the landcover changes in the Tarim basin of China between 

1964 and 2000. Owing to its special landforms, this basin, considered one of the most 

representative regions of the arid and semi arid worlds, has been attracting more and more 

scientists as a result of changes taking place within it; such as expansion in its oases, soil 

salinization and dying poplar forests. To characterize the changes in this watershed they used 

Landsat ETM for the year 2000, and Corona Panchromatic images for the year 1964. Using 

the post classification change detection method, they noticed changes in the size of the land 

reclaimed from water and soil, the death of an old poplar forest around the Tarim River and 

also changes in the level of salinization. Payatos et al (2003), studied landuse and landcover 

changes in the Catalan Pre-Pyrenees using 1957 and 1996 orthophotographs, they noted that 

the expansion of forest areas was basically the main landcover change and that this was 

caused by the abandonment of traditional agricultural activities, and by the use of other 

materials and energy sources, instead of forest resources. 

Although natural environmental factors also account for changes in the environment, 

humans remain the main cause for most of the landuse and landcover changes. Hayes and 

Sader (2001) in their study of forest clearings and regrowth in tropical moist forest noticed 

that Guatemala’s Maya Biosphere Reserve had faced increasing rates of deforestation due to 

human migrations and the expansion of the cultivated frontier. Using, three dates of Landsat 

TM images, each two years apart, they radiometrically corrected and preprocessed the images 

removing clouds, water and wetlands. What followed next was their use of three (normalized 

vegetation index (NDVI) image differencing, Principal Component Analysis, and red, green 

and blue (RGB)-NDVI classification) different change detection techniques to analyze the 
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changes in this reserve. The RGB-NDVI method yielded the highest Kappa value (the Kappa 

index determines the degree of agreement between two images), and an accuracy rate of 85% 

and the least was the Principal Component Analysis method. 

Contrary to Hayes and Sader (2001), Lambin et al. (2001) state that neither 

population nor poverty alone is the major cause for landuse and landcover change. Rather, 

man’s responses to economic opportunities as mediated by institutional forces, and the 

opportunities created by local and national markets and policies are also to be blamed for the 

landuse and landcover change. By this they mean, the market forces of demand and supply 

coupled with marketing policies, trade zones, and other policies affect landuse and landcover 

changes as well as population growth. 

The importance of landuse and landcover change has led to a sea of literature that 

exists on change detection and on the different algorithms used in detecting change (e.g. 

Lillesand et. al. (2004), Wilkie and Finn (1996), and Jensen (2005). Berry (1998) used the 

Kauth-Thomas Greenness vegetation index to determine multi-temporal landcover dynamics 

in the Little Washita watershed. He used this algorithm because it was developed specifically 

for agricultural applications, containing more information than a two band NDVI ratio and 

also represents ground cover better. However change detection analysis can be described as 

work in progress because the methods used, depend on the nature of the project. It therefore 

becomes difficult to discuss all these techniques/algorithms in this literature review. Here, 

only the main ideas behind each method and not the different algorithms will be discussed. 

Change detection requires careful attention to environmental characteristics and 

remote sensor systems considerations. Sensor considerations include sensor characteristics 

such as temporal spatial, spectral, and radiometric resolution. Temporal resolution refers to 

the time it takes the satellite to revisit the same point on the earths surface. There are two 

aspects associated with temporal resolutions that are important to note: anniversary dates, and 

 9



the time of the day the images are acquired (for the Landsat Thematic Mapper it is 9:45 am). 

Failure to understand the impact of these aspects on the change detection result may lead to 

inaccurate results (Yuan and Elvidge, 1998). For example, the use of anniversary images will 

ensure similar solar illumination angle, and if the images are taken at the same time of the 

day, the sun earth distance too will be the same, and this further reduces the illumination 

differences between the two dates.  

Spatial resolution (the total area covered by a pixel in an image), varies from one 

sensor to another (For example the Landsat Thematic Mapper is 30x30m while that for a 

SPOT HRVS image is 20x20m) and is important in change detection analysis because it 

determines the amount of detail that can be extracted from an image. The smaller the spatial 

resolution, the greater the amount of detail that can be extracted from a particular image and 

the greater it is the less the detail. 

 Spectral resolution, which can also be called band width of the sensor, is the 

portion(s) of the electromagnetic spectrum recorded by the sensor and varies from one sensor 

to another. For example, the Landsat 7 ETM records reflectance’s in six optical bands and 

one thermal band while the SPOT 1, 2, and 3 HRV sensor collects data in three multi-spectral 

bands and one panchromatic band (Sabins, 1996).     

Radiometric resolution refers to the brightness values of images from different 

sensors which may range from 6 bit to 8 bit images. These bits signify the number of shades 

of gray the picture can be recorded in, and the higher the number of bits, the better the 

representation. The Landsat TM has an 8 bit radiometric resolution which yields 256 shades 

(0-255) (Lillesand et. al. 2004)  

Environmental conditions, on the other hand, will include vegetation phenology, 

those aspects of the vegetation that vary with the climate such as leaf shedding. Flowering 

and seed dispersal are important aspects of the vegetation that should be considered in change 
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detection analysis, especially if the study involves monitoring the changes in plant growth. 

Soil moisture level and content is another environmental aspect that should be considered 

when performing change detection analysis. The presence or absence of soil moisture in the 

ground affects the color of the plant leaves which in turns affects the stoma structure and thus 

the angle direction and amount of energy reflected. Atmospheric conditions, cloud cover, 

dust particles, and atmospheric moisture are also important environmental aspects to consider 

because they determine how visible the image will be and how useful it will be in change 

detection analysis. Also, effects of tidal stage and urban-suburban phenological cycles are 

factors worthy of consideration, because these factors affect the immediate (local) 

atmospheric conditions (Jensen 2005). 

Change detection methods, according to Chen (2007), can be separated into two main 

types; supervised and unsupervised methods.  The supervised methods involve the use of 

ground truth data (training data) to perform a supervised classification on an image and later, 

use of the same ground control points to identify those areas of change on the classified 

image. Three main forms of change detection techniques fall into this category: compound 

classification, supervised direct multi-data classification and post classification comparison 

(Chen, 2007). Contrary to the supervised forms of change detection, the unsupervised 

techniques include: univariate image differencing, change vector analysis, image ratioing, 

vegetation index differencing, the tasselled cap transformation, and Principal Component 

Analysis (PCA). These techniques do not involve the use of ground truth data (Chen, 2007). 

The main difference between the supervised and the unsupervised change detection methods 

is that while the supervised methods require a supervised classification to be performed 

before the change analysis is performed, the unsupervised change detection methods do not. 

In fact in the unsupervised methods of change analysis can be performed using the raw 

(unprocessed) bands of the landsat images. 
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 The post classification change detection method is a highly quantitative method and 

is widely used. In this technique, two individually geometrically rectified and classified 

images are compared on a pixel-by-pixel basis using a developed change detection matrix 

(Jensen, 2005). Because the outputs from two individual maps are used in performing post-

classification change detection, the overall accuracy of the change image depends on the 

accuracy of the independently classified maps (Lillesand et al., 2004). In other words, the 

total accuracy of the image is close to the product of the accuracies yielded by the individual 

images. The advantage of this kind of method is that most of the time, it does not require 

atmospheric correction. It provides from- and to change class information and also the 

already classified images can be used as base maps for other change detection analysis 

(Wilkie and Finn, 1996). In their study of the natural environmental change in the Danube 

delta based on SPOT and HRV images, Noaje and Turdeanu (2004) used the post 

classification change detection method and noticed that this method of change detection 

analysis minimized difficulties that arose because of the use of different sensors and the 

atmospheric conditions at the time of capture.  

The supervised direct multi-date classification determines the direct transition of 

pixels from one class of pixels to another by the use of a trained classifier. This method 

shows the time difference correlation between the two images used in the analysis. The 

disadvantage of this method is that the training pixels used must be the same points on the 

ground in the two different dates (Pons et al., 2002).  

The compound classification is similar to the supervised direct multi-date 

classification, but does not require the same ground truth data to be used to classify both 

images (Chen, 2007). Therefore, two different sets of ground truth data can be used, and the 

advantage lies in the fact that the more diverse and spread out the ground data are, the more 

represented the field is and therefore the better the results.  
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Unsupervised methods of change detection as the supervised methods are dependent 

on the spectral differences of the different images, but do not require the use of ground truth 

data. They usually require a lot of preprocessing, and detailed comparison of the two images 

(Chen 2007). 

Image differencing is a popular method in performing a change detection analysis 

between two images. It entails the subtraction of the digital numbers (DN) of the cells in the 

second image from the DN values of the cells in the first image. The difference in the areas 

of no change will be near zero, while the difference in the areas with change will be high 

(Lillesand et al., 2004). In 8 bit images, the range of the value difference is usually between -

255 to +255 and because negative values are avoided, a constant of 255, is added to each 

difference image value for display purposes. The change image produced yields a brightness 

value (BV) distribution approximately Gaussian in shape, where the pixels of no BV change 

are distributed around the mean and pixels of change are found at the tail of the distribution 

(Civco et al., 2002). Image differencing does not have to be limited to the individual bands of 

an image, but can be extended to include the Normalized Difference Vegetation Index 

(NDVI) of the two images. Tardie and Congalton (2001), in their study of the progression of 

development into Essex County in Massachusetts, used the image differencing technique to 

determine change between a 1990 and a 2001 image. In their analysis, they performed image 

differencing on the first four raw bands of the images (blue, green, red, and near infrared) and 

based their threshold values are standard deviation from the mean, to determine changed 

from unchanged pixels. In this case there are no clear cut rules in picking the threshold for 

change versus no change pixels, but a common rule of thumb is to assume that pixels in the 

difference image that fall outside the limit where 95% of the values fall, are considered to 

have changed. For example in the figure 2, 5% of the observations in the change image will 

be considered to represent change (2.5% of pixels in each tail). 
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Figure 2. Creating a Threshold of change and No-change pixels 
 

 However, the problem with thresholding is that there are no clear guidelines on 

how to set limits for change against no change pixels (Congalton and Green, 1999). 

Image ratioing or band ratioing is very similar to image differencing and are all forms 

of algebraic image change detection. Image ratioing is simply dividing the DN values of the 

cells in image one by the DN values of the cells in image two. In this technique, the ratios 

computed range from 1/255 to 255, with no change pixels having a ratio value of 1 in the 

change image. Important to note is how the analyst determines the threshold boundaries 

between the change and the no change pixels displayed in the change image histogram. This 

change point is never known and analysts have developed different means of defining it. One 

standard deviation from the mean has been used in some cases, while in others empirical 

experiments have been used.  

 Sangavongse (1995) used this method in his study of the changes in the Chiang Mai 

area in northern Thailand. Using image data from two landsat 5 TM images, they performed 

image ratioing on a pixel by pixel basis dividing band 3 of the first image by the band 3 of 

the second image. Band 3 (visible red, 0.63-0.69 m) was used because of its ability to 

differentiate different soil boundaries and also because of its usefulness in differentiating 

many plant species. The change image was enhanced by the use of a false color composite 

(FCC), in which the different image bands were assigned to different filters (guns) in order to 
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identify specific features in the images. In this case, TM 3 of date one was assigned the red 

gun, and the TM 4 of date 2 was assigned the blue gun. 

Principal Component Analysis (PCA) is also used in change detection analysis and is 

performed based on the variance - covariance matrices or on correlation matrices with the 

result being in the computation of the eigen-value, and factor values used in producing a new 

uncorrelated PCA image dataset. In a PCA analysis, the before and after images with their N 

bands are combined in to a single 2 N-dimensional image from which an equal number of 

principal components are computed. Several of the uncorrelated principal components 

computed from the combined data set can be related to areas of change. The disadvantage in 

using this method is that it is often difficult to interpret. 

  Change Vector analysis (CVA) is similar to image differencing, but takes into 

consideration the distance and direction of the change. In this method two spectral variables, 

which may be data for two different bands or data from two different types of vegetation, are 

plotted for a particular pixel at time T1 and at time T2. For this pixel the direction and 

distance of change is determined by the vector connecting the two dates. If it appears that the 

pixel position on the feature space has changed between time T1 and time T2, then it means 

the land cover represented by the pixel has undergone some change in the time interval. The 

vector that determines this change is called the spectral change vector.  

The CVA method was used by Kuzera et al. (2005) in their study of vegetation 

regeneration and deforestation on Mt. St. Helens in Skamania County, Washington. Using 

Landsat TM images for the years 1988 and 1996, they used the Tasseled Cap Transformation 

(TCAP) inputs of brightness and greenness to monitor the deforestation and regeneration of 

the forest between these two periods. Placing brightness along the X-axis and greenness 

along the Y-axis the angle of the change vector from a pixel was measured at time 1, to 

corresponding to a pixel measured at time 2. A regeneration of the vegetation was 
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represented by angles measured between 90 to180 degrees which indicated an increase in 

greenness and a decrease in brightness. Angles measured between 270 and 360 degrees 

indicated a decrease in greenness and an increase in brightness representing areas of 

deforestation. Angles between 0 and 90 degrees and the angles between 180 and 270 

indicated either a decrease or and increase in both greenness and brightness. Furthermore, 

four categories were used to signify the amount of change ranging from low (8-25), medium 

(25-50), high (50-75), and lastly extreme (75-100). These values indicated the length of the 

change value in the measurement space, and values between 0 and 8 were considered as noise 

and classified to represent persistence. The change direction and its magnitude were cross 

tabulated and classified into 9 categories, consisting of four categories of regeneration and 

four for deforestation, plus the persistence category.    

 According to Jensen (2005), there are several other methods by which a change 

detection analysis can be performed. The binary change masks detection analysis technique 

that has the attributes of both the post classification change detection method and the image 

differencing method. A traditional classification is performed on the date 1 image, while 

image differencing is performed on any two bands on the two original images. This method 

has the advantage of reducing change detection errors such as the errors of commission 

(adding pixels that should be absent) and omission (exclusion of pixels that should have been 

added). It also provides detailed “from-to” data change class information and also very little 

effort is needed on the part of the analyst because he can focus on the very small areas that 

have changed between the two dates. Jensen, 2005 suggest that “This method of change 

detection is very effective”.  

The change detection method using an ancillary source as date 1 involves the use of a 

land cover data similar to the date 1 image in place of the image. For example the use of a 

digitized National Wetland Inventory map in place of remotely sensed image of the coastal 
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areas in a coastal change detection project. Other methods of change detection include the chi 

square transformation change detection method, the cross correlation method, the knowledge 

based systems method and the visual on screen change detection and digitization method.  

Although all these methods are used in performing a change detection analysis, they 

all have their advantages as well as their disadvantages. In reality, the unsupervised methods 

of change detection are preferred to the supervised methods because they do not require the 

use of ground truth data which, for the most part, is expensive and time consuming to collect. 

For this project, a hybrid form of image classification was used that involved the strong 

aspects of both the supervised and the unsupervised classification methods. This method 

ensured that the images were adequately classified with very high accuracies. As concerns 

change detection, the post classification change detection method was used because the other 

images to be used in the analysis had been classified. The simplicity involved in the use of 

this technique was an added advantage. 
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CHAPTER THREE 
 

Methodology 

Overview 
 In this chapter, the different stages followed and techniques used in developing a 

composite landuse image for 2005, and for performing a post classification change detection 

analysis will be addressed. The procedures followed can be divided in to three main stages 

(Figure. 3) image preprocessing, image classification and the development of the composite 

landuse image, and lastly the steps used to perform a post classification change detection 

analysis. The first stage of the methodology will involve image importing, sub-setting, and 

atmospheric correction. The second stage consists of hybrid image classification, accuracy 

assessment, and image composition. Stage three of the analysis will involve, image 

reclassification (ASSIGN), format transformation, cross tabulation, change analysis and 

accuracy assessment.  

 Both raster and vector formats were used in this project and are summarized in Table 

1. This table shows the different dates, paths and rows of the images that were used and also 

the dates of the ground truth data used for the supervised image classification. 
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Table1. Spatial Data types used and their sources.  

 
Data Type 

 

 
Source 

 
Vector layer files (transportation, water 
bodies, counties,  and cities) 
 

 
Oklahoma Centre for Geospatial Information 
(OCGI) website 
www.seic.okstate.edu

 
• Landsat TM image data and their path 

(p) row (r) 
-March 9,2005 p28 r36 

      -March 9,2005 p28 r35 
      -June 29, 2005 p28 r36 

-June 29, 2005 p28 r35 
-September 9, 2005 p28 r36 
-September 9, 2005 p28 r35 
-November 4, 2005 p28 r 36 
-November 4, 2005 p28 r 35 
 
• Ground truth data 
-March 24,2005 
-June 29,2005 
-August 01,2005 
-November 03,2005 
 
• Boundary shapefile of the Ft. Cobb 

Reservoir watershed.  
 

 
 
 
 
 
 
 
 
USDA-ARS Grazing Lands Research 
Laboratory El Reno, Oklahoma. 

 
2003 National Agriculture Imagery Program 
(NAIP) images for the Caddo, Grady and 
Comanche Counties. 
 

 
Oklahoma Centre for Geospatial Information 
(OCGI) website 
www.seic.okstate.edu  

 
National Landcover Data (NLCD) for 1992 
and 2001 
 

 
Multi-Resolution Land Characteristics 
Consortium (MRLC) website 
 www.mrlc.gov  USGS website 
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Landsat data 
 Sixteen different Landsat Thematic Mapper (TM) images were provided by 

the USDA ARS Grazinglands Research Laboratory (GRL) at El Reno, Oklahoma, of which 

eight cloud- free images were chosen for the project (Table. 1). The (TM) is a sensor that 

records energy in the visible, reflective-infrared, middle infra-red, and thermal infrared 

regions of the electromagnetic spectrum (USGS, 2007), and has a spatial resolution of 

30x30m. All the images were geometrically corrected by the USGS, and were projected to 

UTM zone 14, GRS 1980, NAD 83. 1992 and 2001 National Landcover data (NLCD) were 

downloaded from the USGS website.  

 

Ancillary data 
GIS layers for roads and water bodies were downloaded along with other raster data 

sets like the National Agriculture Imagery Program (NAIP) image to support image 

classification, accuracy assessment and also to serve as a reference to the different landsat 

images. Boundary shape files were used to subset the Landsat images to the actual boundary 

of the watershed. This reduced the data sizes and increased computer storage space. It also 

reduced the run time of the different processes. Ground truth data for the image classification 

was provided by the Grazingland research laboratory (Table. 1), and consisted of 

photographs, coordinates of sampling location and notes concerning landcover at the 

sampling sites. 
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Software 
Three different type of softwares were used to complete this project; ArcGIS 9.2, 

(ESRI, 2007), Erdas Imagine 9.1 (Erdas 2007) and Idrisi Andes (Idrisi, 2007). ArcGIS was 

used for mapping out ground truth points, perform image overlay, add images and to add 

attributes to some images. These processes can be performed in Erdas imagine and Idrisi 

Andes but the ArcGIS software was used because it was easier to use for these analysis. The 

Erdas Imagine software was used for image classification, image subsetting and for other 

image analysis like the atmospheric rectification that require the use of models. 

Idrisi Andes was used only for change detection analysis. It was used particularly 

because it provided a more detailed change output (e.g. the Kappa statistics of agreement, the 

cross tabulation table) than the Erdas imagine.  

Figure 3 shows a summary of the different procedures used in achieving the goals of 

this project. 
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Figure 3. Stages in the Methodology. 
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The methods used in this project will be discussed in three different stages; image 

preprocessing, image classification and change detection analysis. 

Image Preprocessing 

This section of the methodology includes radiometric correction, image mosaicing, and 

image subsetting. All of the Landsat TM images provided by the Grazinglands Research 

Laboratory El Reno OK, were in Geo TIFF format, and were later converted and stored in an 

image format (.img) compatible with the softwares to be used. Image subsetting, was 

performed in two different stages. First, band six (thermal band) was removed from all the 

images because of its properties. Thermal bands receive heat emissions from objects on the 

earth i.e. they sense heat from earth objects, and not their spectral reflectance. Furthermore, 

the pixels sizes for band six are generally larger than the normal pixel sizes. The spatial 

resolution of all the other bands in a landsat TM image is 30 x 30m but for band six, it is 120 

x 120m. After the removal of band six from images, the next preprocessing step was the 

atmospheric correction of the images.  

Atmospheric constituents, both gaseous and particulate, affect the amount of solar 

radiant reaching the earth’s surface. Phenomena such as Rayliegh scattering add brightness to 

images whereas atmospheric absorption reduces the brightness of the Landsat images. 

Atmospheric correction adjusts the image for changes in the reflectance of ground features at 

different times or location (Lillesand et al., 2004). In applications like this, it is necessary to 

correct for a solar elevation and earth-sun distance difference. This process is only necessary 

for change detection image analysis, involving multi-temporal images as is the case with this 

study. The FCRW images were corrected for solar illumination angles by normalizing the 

pixel brightness values, assuming the sun was at the zenith on each date of image acquisition. 
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The normalization process used the model proposed by Chavez (1998) and developed into an 

algorithm by the GIS and Remote Sensing department of the University of Utah (Remote 

Sensing and GIS Laboratory, Utah State University, 2007) 

http://www.gis.usu.edu/docs/projects/swgap/ImageStandardization.htm, accessed 

10/12/2007) 

. The algorithm implemented in the spatial modeler in Erdas Imagine: 
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Where, 
 
ρBandN = Reflectance for Band N 
 
LbandN = Digital Number for Band N  
 
HbandN = Digital Number representing Dark Object for Band N 
 
D = Normalized Earth-Sun Distance 
 
EbandN = Solar Irradiance for Band N 
 
τ = Atmospheric Transmittance expressed as ))180/*)90((( πθ−COS  

  
  
   The outputs from this preprocessing stage were Landsat images with little or no cloud 

cover, or other atmospheric impurities that could adversely affect the classification of the 

images.  

 Image preprocessing continued with image mosiacing, which required two images of 

similar paths but different rows to be joined in order to extract the area of the images covered 

by the watershed. Landsat paths refer to the satellite’s north to south orbit system, while the 

row is an individual sensor frame. In this case, as a result of the watershed shape and the path 
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of the satellite, the complete shape of the watershed, could not be captured in a single satellite 

frame (row). This therefore necessitated a join of the landsat images that had portions of the 

watershed (path 28 row 35 and path 28 row 36) and then a subset of the join to the actually 

watershed boundary (Figure. 4).  

The watershed boundary file was then used to extract only the portion of the imagery 

needed for the project. The portion of the watershed extracted was slightly larger than the 

extent of the watershed boundary (figure 5), so as to include ground-truthed GPS points that 

were crucial in classifying the image and in assessing its accuracy. 
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Figure 4. The Fort Cobb Watershed Located between Two Landsat Images 
of Paths 35 and 36. 
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Figure 5. The Landsat image subsetted to contain the watershed boundary 
and showing outlying ground truth location. 
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The Creation of a Permanent Layer 
The last stage in the preprocessing stage was the creation of a permanent image layer. 

The reason for this was to avoid confusions in spectral signature during the image 

classification stage. For example, plowed fields have a similar spectral reflectance with bare 

surfaces like un-paved roads and in some cases, quarries and this becomes a potential cause 

for misclassification. It becomes advisable therefore, if possible to separate layers with 

similar signatures like roads in the FCRW that had similar signatures with plowed and 

recently tilled fields. 

Roads were extracted from every image, with the aim of reducing this spectral 

confusion with plowed fields but forest and water features were extracted because they did 

not change in total area or extent in the course of the year. The GIS layer for road was 

converted from vector to raster (cell) format at resolution of 30m x 30m, to make it 

compatible with the other raster layers. Before rasterization, the vector layer was reprojected 

to USGS 1983, NAD 83, UTM zone 14 to match the other layers in the project. The road 

layer was then saved as an image file.   

In order to indentify the water and forest features, an unsupervised classification 

(image classification that does not require the use of ground truth information or any prior 

knowledge of the classified area) was performed on the June image generating about 15 

classes. This image was used because June is the month of the year in which most vegetation 

is actively growing. The NAIP imagery and the alarm tool in Erdas Imagine were then used 

to identify those classes that represented either water bodies or forested areas in the 

watershed. After the classification, these landuse features water, roads, and forest were 

combined using the overlay “AND” operation to form one permanent feature layer using the 

Erdas Imagine overlay module. A recoding process in Arc GIS attributed to them (the layers) 

unique codes for identification and easy overlay with the other landuse types that were to be 
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coded. For example 1 = forest, 2 = water, and 3 = roads. This layer was used to mask out the 

roads, forest and water layers from all the selected landsat images. 

Image Classification 
Image classification can be defined as the technical grouping of the cells in an image 

into specific landuse and landcover types. Generally speaking, images can be classified using 

three different methods; unsupervised, supervised, and the hybrid (a combination of the 

supervised and unsupervised methods) methods of classification. The hybrid classification 

method is a technique that incorporates the positive aspects of the supervised and 

unsupervised methods, ignoring their short comings. The Hybrid classification though is time 

consuming and in some cases very expensive to perform. In the supervised classification of 

an image, the identity and location of the different landcover types are known by the analyst 

before the classification. This means that the analyst is guided in his classification by field 

information such as ground truthed data, or some other ancillary data such as aerial 

photographs. This method of classification, is limited by accessibility to ground sampling 

sites, accessible areas or areas with availability of ancillary data and may be potentially 

expensive is field work is required (Wilkie and Finn, 1996).  

In an unsupervised classification the analyst has no ground information and the 

generation of different landuse and landcover categories is dependent upon DN values of the 

cells categorized into a number of different classes specified by the analyst. Though limited 

in this aspect, it has the advantage of not being biased and of being less costly. A major 

disadvantage of this classification type is that inexperience can very well lead to the 

misclassification of landcovers with similar spectra signatures. (Wilkie and Finn, 1996; 

Lillesand et al 2004).  
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After creating and recoding, the permanent feature layers (roads, forest and water), 

Erdas Imagine was used to mask out the permanent features from all four Landsat images of 

the watershed. In this procedure, the first input image was the six band Landsat image, while 

the permanent layer served as the second input image with the possibilities of being recoded. 

In this recoding process, the features in the permanent layer (roads, water and forest) were 

recoded to zero while the background of the image was recoded from zero to one. This 

recoding ensured that in the output was a six band image with all the roads forest and water 

areas absent. This image was then classified using the unsupervised form of image 

classification generating 15 different classes and an output signature file.  

The classification process was completed by using ground truthed points to develop 

areas of interest (AOI) to extract spectral signatures from the Landsat images for the different 

landuses. Spectral signatures were extracted for different landuses using the ground truth data 

provided for the different months. The spectral signatures developed using the AOIs were 

added to the output signature file produced from the unsupervised classification procedure. 

Fine tuned, the signature files were then used to perform a supervised classification on the 

masked six band images. The out put was a classified image of the watershed with no roads, 

forest, or water. At this point, the road, water and forest layers that were separated out earlier 

were added to each of the four individually classified images of the watershed, to complete 

the classification process. This process of combining the two layers was done using the 

overlay “AND” method in Arc GIS. 

With all the 4 Landsat images classified, the next task was the creation of a composite 

image, which would be compared with the 1992 and 2001 NLCD in the change detection 

analysis. The different classified images will be combined one at a time beginning with the 

March image and then progressing to the last image in the series, the November image. This 

will provide the analyst with greater control in determining how the cell landuse and 
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landcover codes change from one image to another as the classified images are sequentially 

combined. 

The Composite Image for 2005 
 
 The process of adding images is simpified when the images have the same landcover 

codes. For this project, the landcover codes were standardized (Table 2). 

 

Table2. Standardized landcover codes used in this study 
 

Codes Lulc Types 
0 Unclassified 
2 Summer Crop 
3 Winter Wheat 
5 Native Range (NR)/Grass 
6 Forest 
7 Water 
8 Roads 
9 Plowed 

 
 

With a standardized landcover coding system in place, the analysis progressed to the 

development of permanent (static) layers for the classification. Static layers are defined as 

those landcover types that do not change in the course of the year, and to the already created 

permanent layer was added the native range/ grass (NRM/ Grass) layer and the winter wheat 

layer.  

It should be noted that the NR/Grass and the winter wheat layers are made permanent 

only at this stage of the classification because it was only after classifying the images that a 

distinction could be made of the different landuses in the watershed. The winter wheat 

landuse was made permanent just for the months of March and November. The explanation 

for this is, winter wheat does not grow throughout the year, and the fields that grow winter 

wheat during the month of March are either plowed or planted with summer crops in June 
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and replanted with winter wheat in November. In this region, upland winter wheat is seldom 

followed up by a summer crop. However, in irrigated areas, winter wheat may be followed by 

peanuts, corn, cotton, etc. Thus, winter wheat is only static for the months of March and 

November during which they are actively growing. The reason for making this layer static is 

to adequately map all the winter wheat fields in the months of March and November, and to 

also understand/follow up their change into other landcovers.  To achieve this permanent 

layer, the winter wheat landcover from the March classified image was masked out and 

added to the November image. The goal was to be able to show accurately the winter wheat 

growing fields in both months although only half of the winter wheat shown in the month of 

March is shown in the November image. Therefore, fields classified as plowed or bare in 

November but classified as winter wheat in the March image were also reclassified as winter 

wheat fields. This procedure was adopted because most of the wheat is just beginning to 

grow in November and fields are likely to be wrongly classified as bare. Winter wheat from 

the month of March represents planted wheat from the previous fall and is fully grown and 

well represented in the classified image. 

 The native range (NR)/grass landuse category was also made a static layer, and 

eliminated the problem of confusing native range /grass with plowed or bare fields in the 

month of November when they both look the same on a Landsat image. Agricultural statistics 

and additional ground truthing revealed that alfalfa makes up a very insignificant portion of 

the FCRW. So, following the advice of scientists at the Grazinglands research Laboratory, 

alfalfa was combined to the NR/Grass class.  The March image was then used to construct 

the NR/Grass mask to reduce the risk of miss-classification. NR/grass was easily masked out 

of the March image which had only three main landuses; winter wheat, plowed/bare and 

NR/Grass. NR/Grass was recoded as 1 and the other landuses as zero. This new NR/Grass 

layer was merged into the June image replacing, the NR/grass pixels in the image. The 
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Alfalfa pixels in the June image were then reclassified as NR/Grass, forming the final 

NR/Grass permanent layer. This layer was further masked out of the June image and used in 

replacing every NR/Grass and/or Alfalfa category in the other images (including the March 

image).The steps in the creation of this permanent layer can be summarized as follows; 

i) NR is recoded (masked) from the classified March image layer. 

ii) NR _mask (recode) is used to replace the NR in the June classified image. 

iii) Alfalfa is reclassified to NR/grass in the June image, forming the final static 

NR/Grass layer. 

iv) New and permanent NR/Grass layer is added to all the other images including the 

March image. The permanent Native Range/Grass layer is shown in Figure 6. 
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Figure 6. Static Native Range/Grass layer, used in creating the 2005 
Composite Image. 

 

 

The next step in the analysis was to develop a model to represent the different 

landuses in the watershed for the year 2005. The process started with computing the landuses 
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of the March and June images in an Excel file to produce desired landuse outputs. The output 

at this stage was to be added to the classified images of the subsequent months, one at a time. 

To combine the March and June images a few rules were required to guide the 

process. These rules were based on visual comparison of the raw images for these months, 

and also on the information obtained from the Oklahoma crop calendar (Oklahoma crop 

calendar, 2007). They were; 

i) Combining any two images should not affect in any way the previously created 

layers (Roads, Water, Forest and NRM/Grass). Recall that winter wheat is not 

constant through out the year, so, its pixels were subject to change as the 

computation progressed. 

ii) Plowed fields in the month of March were to be classified as summer crops in the 

month of June, especially those pixels that showed up as red (vegetated) in the 

Landsat image.   

 The next task was to decide on how to maintain the static layers in both images, such 

that their pixel total remains unchanged. To do this the landcover codes in Table 2 were used. 

The images were added together using the different image codes, and the output was 

determined with the use of the crop calendar.  
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Table 3. Rule set used to combine the March (0309.img) and June (0629.img) 
images, while preserving the static landuse category. 

 
Combinations Output March 09.img June 29.img 

1 6 6 6 
2 7 7 7 
3 8 8 8 
4 5 5 5 
5 6 0 6 
6 7 0 7 
7 8 0 8 
8 5 0 5 
9 6 6 3 

10 6 6 2 
11 7 7 3 
12 7 7 2 
13 8 8 3 
14 8 8 2 
15 5 5 3 
16 5 5 2 

                          17 2 9 3 
                          18 2 9 2 
                          19 2 3 2 
                          20 3 3 3 
                          21 9 9 9 
                          22  9 3 9 
                          23 6 3 6 
                          24 3 0 3 
                          25 2 0 2 
                          26 9 0 9 

 
 
 

 
   In the combination column, the first 16 combinations are meant to keep the 

permanent layer permanent and will stay constant in all the subsequent image 

combinations The output column in Table 3 represents the landuse and landcover codes 

of the resulting image after combining the landuse from the March and the June images. 

In other words, the output column shows the result of the different pixel combinations 

from both images. Columns 0309 and 0629 show the different landuse codes in the 

March and June images which if combined will give the desired code in the output 
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column. For example, row 26 has the value 9 (plowed) for the June column, 0 

(unclassified) for March column and 9 (plowed) for the output column. This means that if 

any pixel is classified with the code 0 (unclassified) in the March image and in the June 

image the same pixel is classified with the code of 9 (plowed); let the output image 

classify that pixel as a plowed pixel (9). 

 The above combination was then uploaded as a text file into the composite image 

model, in Erdas Imagine (figure 7). 

 

Input 1 Input 2 

output 

Figure 7. Schematic showing the implementation of the composite image 
model 

(The “All Criteria” performs a logical AND operation of the columns). 
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Input one and two show the two classified images of March and June, used to 

produce the output image which will subsequently be added to the September image. The 

circle in the middle is the criteria model, which is where the criteria created as an excel 

file (Table 3) is uploaded as text and used in combining the classified images.  

  In this criteria model, the option to use the “all” criteria was chosen as opposed to the 

“any” criteria option. The “any” criteria performs a logical “OR” operation of the 

columns meaning, just one of the conditions have to be met for the combination to be 

valid. It therefore does not meet the goal of maintaining a permanent layer. The “all” 

criteria on the other hand, ensures that the output image meets all the condition specified 

in the criteria table (Table 3). The output after combining the March and the June image 

was named 0309_0629_composite (Figure 8). This image will be combined with the 

classified image for September. 
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Figure 8. Composite Image for March and June. 
 

 
 
 Similar to the process used in combining the March and the June image, rules were 

also set to guide the addition of the classified September image to the composite image 

for March and June.  The combinations were also based on observations from the 
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Oklahoma crop calendar and also from a visual comparison of the March, June and 

September images. 

i) Pixels that were classified as plowed fields in the 0309_0629_composite, but are 

classified as cotton or peanuts in the September image were classified as summer 

crops in the composite output image.  

ii) Winter wheat pixels in the 0309_0629_composite, that are classified as plowed in 

the 0901 image were reclassified as plowed, and the main reason for this is 

because at this time of the year, many fields are being plowed in preparation for 

the cultivation of winter wheat. 

The rule set (Table 4) of this stage of the process looks very similar to that of the 

previous stage. Note that the first 16 combinations did not change. 
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Table 4. Rule set used to combine the the march (0309.img), June (0629.img) and 
September (0901.img) images while preserving the  static landuse categories 

 
Combinations Output 0309_0629 img 0901.img 

1 6 6 6 
2 7 7 7 
3 8 8 8 
4 5 5 5 
5 6 0 6 
6 7 0 7 
7 8 0 8 
8 5 0 5 
9 6 6 3 

10 6 6 2 
11 7 7 3 
12 7 7 2 
13 8 8 3 
14 8 8 2 
15 5 5 3 
16 5 5 2 

                          17 9 9 9 
                          18 2 9 2 
                          19 2 2 2 
                          20 9 3 9 
                          21 2 2 9 
                          22 2 3 2 

 
 
 
 

The same model used previously was used here but input image one was the output of the 

March and June composite, and image two was the classified September image. The 

resulting output image was named 0309_0629_0901composite (Figure 9 and as in the 

previous model, the “all” criteria condition was still used. 
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Figure 9. Composite Image for March, June and September. 
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The last stage in the analysis involved the adding of the classified November image 

to the output of the previous stage. The combination rule set for the two images is shown 

in Table 5. 

 

Table 5. Rule set used to combine the march (0309.img), June (0629.img), 
September (0901.img) and November (1104.img) images, while preserving the static 
landuse category. 

 
Combinations Output 0309_0629_0901 1104_Image 

1 6 6 6 
2 7 7 7 
3 8 8 8 
4 5 5 5 
5 6 0 6 
6 7 0 7 
7 8 0 8 
8 5 0 5 
9 6 6 3 

10 6 6 2 
11 7 7 3 
12 7 7 2 
13 8 8 3 
14 8 8 2 
15 5 5 3 
16 5 5 2 

                          17 3 9 3 
                          18 3 2 3 
                          19 2 2 9 
                          20  3 9 9 
 
 
 

 
 

After completing the last computation, the final output (figure10) below, shows the 

landcover types within the FCRW for the year 2005.  
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Figure 10. Final Composite Image. 
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Accuracy Assessment of the Composite Image 
 

The accuracy of any classified image is of utmost importance especially if that image is 

to be used for further analysis since it serves as the certificate of authenticity for any 

image. Accuracy assessment is particularly important in post classification change 

detection analysis where the accuracy of the final change image depends on the accuracy 

of the independently classified images (Yuan et al, 2005). In determining the accuracy of 

this image, the accuracy assessment module in Erdas Imagine was used. One hundred and 

twenty random points were selected by the Erdas Imagine Software software and using 

the NAIP image, the different landuse codes of those points on the composite image were 

determined. This is to say that with the NAIP image as a back drop, the landuses of the 

randomly selected point could be determined without looking at the classified image. The 

output matrix showed an accuracy of 92%, which was more than enough to permit its use 

for further analysis. Usually any accuracy above 80% qualified the image for further 

analysis. 

Change Detection 
 The first step in this section involves preprocessing the 1992 and 2001 datasets 

NLCD for the change detection analysis. The change detection analysis was done using 

the Idrisi Andes software. This software was used because of its simplicity of use and this 

particular version was used because it was the most recent version and the only one 

available. 

 Preprocessing of the NLCD entailed a reclassification of the landuse codes in the two 

NLCDs, and also sub-setting them to the boundary of the watershed. In the 

reclassification process (ASSIGN) Arc Map was used to match the USGS codes to those 

of the 2005 composite landuse map. Specific landuse types like deciduous forest, 
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evergreen forest and shrubs were all combined to match the more generalized group 

“Forest” in the 2005 composite image. Other specific landuse types like, winter wheat, 

summer crops in the 2005 composite image, were combined together to match the more 

generalized group in the NLCD called cultivated groups. In effect a standard form of 

code was established for all three images ( Table 6 ). 

Table 6. Landuse and landcover  types and codes 

CODES LULC 

2 Cultivated Crops 

5 Native Range/Grass 

6 Forest 

7 Roads/Bare 

8 Water 

 

 The 1992 NLCD layer was further preprocessed by recoding in Arc GIS, and this 

time it was due to the absent of a road layer in the grid. The rasterized road layer earlier 

used in the preprocessing stage was added on to it.   

 After reclassifying and sub-setting the 1992 and 2001 images, all the images were 

exported into Idrisi Andes where they were compared to each other by use of the 

CROSSTAB (Cross- Classification) model. This form of change detection is perhaps the 

most common approach (Jensen 2005), and has been used successfully by many 

researchers to detect and quantify change between two different dates. This approach 

provides “from-to” change information and the kind of change that has occurred can be 

easily calculated and mapped (Garcia-Aguirre et al., 2005,  Yuan et al., 2005, Alphan et 

al., 2005).  
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 Another advantage of the post classification change detection techniques is that it 

permits separately classified data to be compared, minimizing the problem of normalizing 

for atmospheric and sensor differences between the two dates (Liang-xu Li et al., 2003). 

This was the case with this project because no atmospheric correction or sensor 

normalization had to be done for the already classified 1992 and 2001 NLCDs.  

 CROSSTAB compares the number of pixels in a particular landuse between two 

dates. In a CROSSTAB table the numbers in the off diagonal signify the pixels (change 

pixel) that a particular landuse has either gained or lost between the two dates while the 

numbers on the diagonal signify the no change pixels.  

Another way of identifying change (overall change) is by using the Kappa index of 

agreement (KIA) which ranges from -1 to 1. If no change has taken place between the 

two images, Kappa equals one (K=1). If all change can be accounted for by chance, then 

K equals zero (K=0). Lastly if there is no agreement between images, Kappa will equal -1 

(K=-1) (Congalton and Green, 1999).The general formula used in calculating the Kappa 

Index of Agreement is:  
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Where: 

Po = observed accuracy 

Pc = chance Agreement, and n.i, ni. and n are row, column and grand total numbers 

of pixels in the classification table.  

 The Kappa Index of agreement can also be used to determine the change per 

landcover category .In this case, the Kappa index expresses the degree to which a 

particular landcover type has changed between two dates. Per category the Kappa index 

is calculated using the following equation. Assuming that date 1 represents the rows, and 

date 2 the column of the matrix, date 1 is used as the reference map to which we compare 

the date 2 image. 

 

Where,  

Pii = nii / n = the proportion of the entire image in which category i agrees for both dates  

Pi. = ni. / n = the proportion of the entire image in category i on Date 1  

And  

P.i = n.i / n = the proportion of the entire image in category i on Date 2  

 

 These images, 2005 composite image, and the two NLCDs (were uploaded into the 

Idrisi Andes CROSSTAB module and the change out puts were in two main formats; 
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images and tables. The images showed the changes from one landuse to another, and the 

tables (cross classification table) showed the actual number of pixels that changed 

between the two dates and the overall Kappa index.  The Cramer’s index is another 

output index from the cross classification table. This index is not very different from the 

Kappa index of agreement (Yuan et al, 2005), but it shows the degree of association or 

dependency between the two images. This index, ranges from zero to one, with one 

signifying absolute agreement and zero no agreement between the two images. 
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CHAPTER FOUR 
 
 

Analysis and Results 
      This chapter will present the results of the analysis performed on the images and will 

also examine the outputs in terms of changes in the watershed. The short term and long term 

changes in the watershed will be examined and the dominant landcover between the different 

time periods will be determined  

Short Term Change Detection (2001 and 2005). 
 

Using the CROSSTAB module in IDRISI, the 2001 NLCD landcover map was 

uploaded as the “before” image, while the 2005 composite image was used as the after 

image. The output was a change image and a cross tabulation matrix showing the 

“change” and “no change” pixels (Figure 11). This is a generalized image because the 

individual landuses cannot be distinguished one from another. 
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Figure 11. Change image for 2001 and 2005 
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  To distinguish the different landuses in the image, a “from” and “to” change table and the 

area calculating tool in Idrisi Andes were used to create, a more detailed and explicit change 

image, (Figure. 12) that was better than figure 11. 

Figure 12. Updated change Image 2001 and 2005 images 
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 In the above short term change image, the different landuses can clearly be 

distinguished one from the other. The legend shows two classes (new and old) of each 

landuse type aimed at facilitating the interpretation of the spatial distribution of the “change” 

and the “no change” areas. For most of the landuses, the distribution is uneven, with no 

particular area of concentration.  

  

Table 7.  The Short-term cross-classification table. 

 

 Unclassified Cultivated 

Crops 

NRM/Grass Forest Water Roads/Bare Total 

Unclassified 595714 602 57 0 0 16 596389 

Cultivated 

Crops 

1752 357341 39846 1510 746 10682 411877 

NRM/Grass 925 141586 216911 7385 1563 14335 382705 

Forest 29 3445 15900 19819 1177 1464 41834 

Water 4 293 664 299 17778 161 19199 

Roads/Bare 69 11355 7028 608 241 16965 36266 

Total 598493 514622 280406 29621 21505 43623 1488270

 
 
 
 

2
0
0
5 

2001

 

 

The analysis of the cross tabulation table (Table 7) focuses on the comparison of the 

elements on the diagonal, which represent no change pixel between the two dates. The 

columns represent the 2001 image while the rows represent the 2005 image. For example, 

of the 514622 pixels that were classified as cultivated crops in 2001, about 39846 of them 
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were transferred to the NR/Grass class in the 2005 date. To characterize the change 

between these years, consider the Kappa Index of Agreement (KIA) was calculated as 

0.74.  A KIA this high signifies that although change has taken place between both dates, 

74.4 percent of the 2001 pixels did not change to other landuses in 2005. Also from the 

table, it is possible to determine the number of pixels transferred from one landuse to 

another between the dates.  

 The Cramer’s index from the cross-classification table was also calculated as 0.70. 

This therefore supports the Kappa index signifying that there are great similarities 

between both images. 

  Another statistical output of CROSSTAB module is the kappa index for each 

individual landuse type for both years. In the output, the 2005 layer was used as the 

reference year for which to compare the 2001 layer, and the 2001 year layer was also 

used as reference to compare the 2005 layer. Comparing the Kappa for the different 

individual landuses makes it possible to analyses how much change has taken place 

between the two dates for the individual landuses. 

Table 8. The Kappa Index of Agreement on a per class basis  
(2001 and 2005). 

 
Landcover type 2005 as Reference image 2001 as Reference image 

Cultivated Crops 0.79 0.57 

Native range/ Grass 0.46 0.69 

Forest 0.46 0.65 

Water 0.92 0.82 

Roads/ Bare 0.45 0.37 

 

 54



Table 8 shows the pattern of change between 2001 and 2005 in the watershed. By 

way of example, observing at the native range grass landuse, the Kappa figures can be 

interpreted as thus: of the pixels that were Native range/ Grass in 2001, most of them 

remained so in 2005 (Kappa= 0.69). However, when 2005 was used as the reference 

image (or the first image), much more land was native range/grass than in 2001 (Kappa = 

0.46). This means that most of the pixels mapped as native range/grass in 2001 were also 

native range/grass in 2005, but more land has been added in to the 2005 native 

range/grass category at the expense of cultivated crop land and road/bare areas. 

 For the cultivated crop category it is observed using the 2001 image as reference that, 

very few of pixels remained as cultivated crops in 2005 (Kappa = 0.57). On the other 

hand, using 2005 as the reference image, a Kappa index of 0.79 signifies that of the 

pixels that stayed cropland in 2001 going to 2005, more have been lost to other landcover 

types like native range /grass.  

 The Forest landcover category experienced an increase between 2001 and 2005. The 

kappa statistics between the images using 2001 as the reference image is 0.65, signifying 

that more than three quarters of the total forest pixels in 2001 remained so in 2005. Using 

2005 as the reference image, the Kappa index is 0.46, showing very little coherence with 

the 2001 image as a result of an increase in the total area covered by forest in the 2005 

image. 

 The same can not be said for the water and road/bare classes which reduced in total 

area between both dates. These facts can be further supported when the total area covered 

by these landcovers in 2001 and in 2005 are considered. The change image can further 

show how the landuses succeeded each other over this time period and by what area. 

Figures 13, 14, and 15 show the total area covered by the different landcovers for the two 

dates.  
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Figure 13. Landcover area chart for 2001 and 2005. 
 

 Figure 13 shows the total area in acres covered by the different landcover types in the 

watershed between 2001 and 2005. Cultivated crops in both 2001 and 2005 clearly cover 

the greatest acreage in the watershed in both years, followed by Native Range and Grass.  

Figures 14 and 15 below show the different landuse areas as a percentage of the total 

watershed area. The difference between the two years can be clearly seen. 
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Figure 14. Landcover area as a percentage of the watershed area in 2001. 
(Data from the 2001 NLCD was used to generate graph) 
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Figure 15. Landcover area as a percentage of the watershed area in 2005. 
(Data from the 2005 composite landcover was used to generate the graph) 
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 Figures 14, 15 and Table 8 support the results of the Kappa statistics. They show that 

while the native range/grass and forest landcovers, increased from 32% in 2001 to 43% in 

2005, cultivated crops dropped from 58% in 2001 to 46% in 2005 as well as the roads / 

bare landcover that also decreased from 5% in 2001 to 4% in 2005. The water category 

changed little between the two years. The different landcovers and the actual area (in 

acres) that they lost to or gained from other landcovers can be calculated. Figure 16 

shows exactly which landcover contributed most to the increase in other landcovers like 

forest and Native range/ grass. 
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Figure 16. “From and To” change between the 2001 and 2005 images. 
 

  Figure 16 shows how the watershed changed from one landcover in 2001 to another 

in 2005, showing the amount of acreage that was transformed. From the Figure, 2 to 2 

will signify the total amount of acreage that was cultivated crops in 2001 and stayed so in 

2005. 5 to 2 will show the total acreage that was converted from NR/grass in 2001 to 

cultivated crops in 2005. It can be noticed that just about 9.000 acres were changed from 

NR/grass in 2001 to cultivated crop areas in 2005. On the other hand looking at the total 

acreage that was changed from cultivated crops in 2001 to NR/grass in 2005 i.e. 2 to 5, 
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the acreage is about 30.000, about two times more than the change from NR/grass in 

2001 to cultivated crops in 2005. These figures tell how much acreage was lost from one 

landcover type to another between the two years. The same statistics can be generated for 

the other landuses, but the main aim of all this is that this gives an idea of the landuses 

that have been seriously affected during this time period. It should be noted that although 

cultivated crop landcover lost much acreage to native range and grass, it still has the 

highest amount of acreage in the watershed. 

 The spatial distribution of this change can be analyzed when the change detection 

image in Figure 17 is analyzed. This image (Figure 17) does not show the actual change 

from one class to another but rather, the change from the no change areas.  

 

Long Term change Detection (1992 and 2005) 
 

It is hypothesized that more changes occurred between 1992 and 2005 than 2001 and 

2005 because of the longer time period under consideration. This analysis followed the 

same procedure as described above the CROSSTAB module in IDRISI was used and 

similar outputs to the short term analysis were developed. The change image is shown in 

figure 17. 
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Figure 17. Change Image for 1992 and 2005. 
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Little can be deduced from the above image which shows just the change areas 

(brown) from the no change areas. From Figure 17 is evident that the change areas are 

well distributed throughout the watershed, but detailed information on the landcovers that 

changed is absent.  Similar to the short term change analysis, further processing of figure 

17, with the help of the from and to change table produced by the Idrisi Andes software, 

led to the creation of a more detailed change image (Figure 18) between 1992 and 2005.  
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Figure 18.  Updated change Image for 1992 and 2005. 
 
 
 

Observation of figure 18 shows that there is no particular pattern in the spatial 

distribution of cultivated crops, water and forest in the watershed.  The “new_Forest” 

landuse class is localized around streams and water bodies which is similar to the forest 
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pixels that did not change between the two dates. Native range and grass have increased 

about 30 % of their total acreage located in the Northwest portion of the watershed. This 

portion of the watershed according to the Oklahoma Mesonet is the driest part of the 

watershed with temperatures up to about 26o C and wind speed of about 55mph 

(Oklahoma Mesonet, 2007). A few new water ponds (man made ponds) exist in the 

watershed and this must have been as a result of the droughts that this watershed 

experienced between 1992 and 2005. 

 

Table 9.  The long-term Cross-classification table 

                            

 Unclassified Cultivated 

Crops 

NRM/Grass Forest Water Roads/Bare Total 

Unclassified 595710 503 163 4 0 9 596389 

Cultivated 

Crops 

1752 347717 59404 1299 795 910 411877 

NRM/Grass 925 183071 189520 6121 1940 1128 382705 

Forest 29 7993 14672 16943 2169 28 41834 

Water 4 363 688 246 17895 3 19199 

Roads/Bare 0 0 0 0 0 36266 36266 

Total 598420 539647 264447 24613 22799 38344 1488270

1992

20
05

 

 

The cross-classification table (Table 9), like the previous one, emphasizes the elements in 

diagonals which show the no-change pixels between the rows (2005) and the columns 
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(1992) while the off diagonals show the pixels that have changed. The rows show how 

much of a particular landuse in 1992 transformed into other categories in 2005, whereas 

the columns indicate composition and contribution of the 1992 class that created the 

categorical changes in 2005. Looking at the row and column totals, the change in a 

particular landcover can be easily determined. Cultivated crops for example, had a total 

of about 539647 pixels in 1992, but that number dropped to 411,877 pixels in 2005. The 

amount of change that has taken place between these data can also be determined from 

the value of the Kappa Index of Agreement. The Kappa value of this analysis was 0.72, 

signifying that about 72% of the land cover between these dates did not change. In other 

words there was a 28% decreased in the landuse from 1992 to 2005. The Cramer’s V 

value for these images was 0.78 showing that there was a great amount of association 

between the two images. 

 Change between two images can also be determined by calculating the KIA between 

the different landuses. Table 10 shows the KIA for the individual landuses for the two 

dates. 

 

Table 10. The Kappa Index of Agreement on a per class basis. 
(1992 and 2005) 

 
Landcover type 2005 as Referent image 1992 as Referent image 

Cultivated Crops 0.75 0.50 

Native range/ Grass 0.38 0.61 

Forest 0.39 0.67 

Water 0.93 0.78 

Roads/ Bare 1.0 0.94 
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Interpreting Table 10 requires that both dates be considered at the same time. For 

example, using the 1992 image as the reference image, cultivated crops have a kappa 

index of 0.50 meaning that only 50% of the total number of pixels that were cultivated 

crops in 1992 were cultivated crops in 2005. Using the 2005 image as the reference 

image, the Kappa index of agreement is 0.75, signifying that of the total number of pixels 

that did not change between 1992 and 2005, a great portion was converted into different 

landuses. The situation is different for the Native range/grass landuse type which had a 

KIA of 61.8 using 1992 as the reference image and 0.38 when 2005 is used as the 

reference image. Therefore, 61.8% of the native range/grass pixels that existed in 1992 

did not change in 2005, and when the 2005 image was used as the reference image, it was 

realized that the number of pixels or the area covered by this landuse type instead 

increased to 38%.  Of all the landuse types, the road/bare category appears not to have 

undergone any change between the two dates, irrespective of what image was used as the 

reference. The reason for this is that the same road layer that was made permanent for the 

2005 original image was added to the 1992 NLCD image that did not have a road layer. 

So, as discussed in the methodology, the road layer from the 2005 image was added to it, 

and thus the similarity. The statistics presented in Table 10 can be corroborated with the 

Figures 19 and 20. 

 

 65



Percentage Area of the different Landcovers in 1992

60%

30%

3%

3% 4%

Cultivated crops
NRM/Grass
Forest
Water
Roads

 

Figure 19. Landcover area as a percentage of the watershed area in 1992. 
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Figure 20. Landcover area as a percentage of the watershed area in 2005. 

 
 The above Figures show how the total area covered by cultivated crops has dropped 

between 1992 and 2005. Also clearly noticeable is the increase of the total area covered 

by the native range and grass category. 
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 The amount of change from one year to another, and the amount of pixels that one 

landuse yields to another from one year to another can also be determined. This statistics 

is derived from the change image which will later be examined to analyze the spatial 

distribution of change in the watershed. 
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Figure 21. “From and to” change between the 1992 and 2005 images. 
 

 From figure 21, the noticeable changes are landuse types; 2 to 2, 5 to 2, 2 to 5, and 5 

to 5. Although native range/ grass (5) had some areas classified as cultivated crops(2) 

between 1992 and 2005, the total area converted from cultivated crops to native range/ 

grass is about twice the size of the area from native range and grass to cultivated crops. 

This chart is important because it provides information that can help explain the reasons 

for such change in the watershed. 
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CHAPTER FIVE 
 

In this chapter, conclusions will be made based on the results and discussions of 

chapter Four.  Here attempts will be made to explain the findings of chapter four.  This 

chapter discusses some of the limitations to this study and also provides some 

recommendations for future research.  

Discussions and Conclusion  
 

 A major concern in change detection analysis is the accuracy assessment, which 

determines how accurately changes between the two dates have been documented. A major 

concern in change detection analysis is that both position and attribute errors can propagate 

through the multiple dates (Yuan et al, 2005). This is especially true when more than two 

dates are used in the analysis at the same time. The simplest method to detect the accuracy of 

a change image is to multiply the individual classification map accuracies to estimate the 

expected accuracy of the change map (Yuan et al 2005). 

 In this project, only two images were compared at the same time, and so, the problem 

of propagating both the positional and attribute errors though the map was not encountered. 

The accuracy of the change image in these analyses could not be determined because of all 

the images used, only the accuracy; of composite image for the 2005 was known (92%). Both 

the NLCD for 1992 and that for 2001 do not yet have a completed accuracy assessment, and 

so the accuracy of the final change image could not be determined.  

Inspite of the fact the accuracies of the of these images could not be determined, the 

goal of the study was not to compare image accuracies, but to determine how much the 
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landcover in this watershed has changed over the specified time periods and also to provide 

reason for the changes. 

Change Trends 
The major change in the landcover between the two dates in the short and long term 

analysis, was the drastic increase of native range/ grass cover type from 32% to 43% in 

the short term change image (2001 and 2005), and from 30% to 43% in the long term 

change image between 1992 and 2005. This increase in the area covered by grassland, 

accompanied by an almost proportional drop in the cultivated area can be attributed to the 

Conservation Reserve Program (CRP) that was started in 1985. In their evaluation of 

CRP tracts in Texas County, (Oklahoma Panhandle), Rao and Raghavan (2002) noted 

that the most important period in the CRP program was between 1990 and 2000, during 

which thousands of acres of land were under fallow having been removed from active 

cultivation. Looking at the percentage area covered by native range/grass for all three 

years (1992 (30%), 2001 (32%), 2005 (43%)), it will be deduced that there was only a 

two percent increase in the total area covered by native range and grass between 1992 

and 2001, and an increase to 43% between 1992 and 2005. This will also mean that there 

was a 41% increase in the total area of this landuse type between 2001 and 2005. 

Although the Fort Cobb watershed covers just a portion of the Caddo County and 

significantly smaller portions of Custer and Washita counties, the trends in the CRP 

enrollments and retirement between 1992 and 2005 in these counties can shed some light 

on the NR/grass changes between these periods. These trends are shown in Figure 22. 
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CRP Trends in Caddo, Custer and Washita 
Counties
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Figure 22. CRP Trends in Caddo Custer and Washita Counties between 
1992 and 2005. 

 
Figure 22 indicates that between 1992 and 2000 CRP enrolment was almost static for 

all three counties until 1997 when a significant drop in total enrolled acres is noticed. At this 

point in time, the total area of the watershed covered in agriculture should be increasing, at 

the detriment of the NR/grass cover type. But the increase in total enrolments between 2000 

and 2001 is what accounts for the difference (2%) in area covered by NR/grass between 1992 

and 2001.It is therefore safe to conclude that the difference in the acreage covered by 

NR/grass between 1992 and 2005 (13%), can be accounted for by the increase in enrolment 

between 2001 and 2005. 

It is possible that the CRP is responsible for the rapid decrease in cultivated lands and 

a proportional increase in the native range and grass landuse. Furthermore in the two change 

images, native range and grass also lost some areas to the cultivated crops category. An 

explanation for this can be that lands which were already CRP designated lands by 1992, 

were being returned to crop cultivation by 2001 and 2005.   
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 The changes noticed in the change images are the same. Some landuses have changed 

drastically in their area covered (cultivated crops and native range and grass) while others 

have had almost no change at all (roads). Change detection analysis has enabled this to be 

detected, and also the CROSSTAB module makes it possible for the actual amount of change 

to be documented. The advantages of the Hybrid image classification method cannot be over 

stated. The Hybrid image classification method made it possible for landuses and landcovers 

to be identified and then classified precisely between different dates. It minimized the risks of 

misclassification between the very similar monthly landsat images.  

 The Erdas Imagine software played the greatest role in the success of this project, but 

the difficulty involved in its use in post classification change detection cannot be neglected. 

This software became more complicated to use as the project advanced into its last stages. 

Idrisi Andes on the other hand provided a better and friendlier user interface to perform the 

change detection analysis using its in built cross tabulation module. The multiple statistical 

data produced by the Idrisi Andes software made it possible for the results to presented in 

different ways, and all still relevant to the changes in the watershed during this time period.

 The analysis and findings of this study show that a composite landcover image can be 

easily and accurately computed by unifying the code names of the different images and by 

simply adding the different images one at a time. This process, as demonstrated, makes it 

possible to monitor the individual pixels as they change from one season to another. This 

project goes further to show the importance of post classification change detection methods, 

especially in situations where age-old images are to be used. 

 The purpose and objectives of this project have all been achieved; a personal 

geodatabase was created of all the vector and raster data used in this project, a composite 

landcover map for the 2005 was created and used in a change detection analysis performed 
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for a the short and long term periods. Although these objectives were met, there were 

nevertheless several limitations in the execution of this project. 

 

Limitations to the study and Recommendations for Future 
Research 

 The most important factor in continuing research for this project is the use of better 

data set. The need for better and accurate NLCD maps can not be over emphasized. Using 

images like the 1992 and 2001 images with no known accuracy makes it impossible to 

determine the quality of the change result, and the importance of the results. Better ground 

truth data, with field pictures can also improve future research in this field. For example if 

consistent ground truth data were to be provided for every month for which there was an 

image, the classification, especially the supervised classification would be better than it was. 

Also if more advanced and more rigorous classification methods could be used such as the 

fuzzy classification and neural networks methods, the classification outputs could be better 

than they currently are. It would be beneficial to users if the national landcover data were 

updated and their accuracies determined. 
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