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CHAPTER 1. 17,000 YEARS OF CLIMATE CHANGE: THE PHYTOLITH RECORD FROM HALL'S CAVE, TEXAS

Abstract

We used modern analog technique to develop phytolith-based transfer functions. We applied
these fransfer functions to phytolith assemblages in sediments from Hall's Cave, Texas to reconstruct
mean annual precipitation and temperature for the central Edwards Plateau from 17,550 BP to 730 BP
and tested these reconstructions for statistical significance. We also interpreted the phytolith
assemblage and applied phytolith indices of woody cover and of Cs versus Ca grasses to reconstruct
Edwards Plateau vegetation over the same period.

Reconstructed mean annual precipitation (RMAP) was less than 450 mm during the last glacial
period with the exception of a spike to over 1150 mm at 17,160 BP. As glacial conditions ended RMAP
progressively increased with oscillations between modern (800 mm) and higher values unfil reaching a
high of over 1200 mm at 9860 BP. Then RMAP gradually decreased 1o less than 825 mm at 6890 BP
followed by a gradual increase to over 1325 mm at 2560 BP. RMAP then dropped sharply to less than
625 mm at 1640 BP followed by an increase to above modern values by 730 BP. Reconstructed mean
annual tfemperature (RMAT) followed a similar trend. RMAT was much cooler than present with a
minimum of less than 10 °C during the last glacial period. RMAT also spiked at 17,160 BP approaching
16 °C before declining again. After glacial conditions ended RMAT generally increased reaching 17 °C
by 3620 BP. After 2560 BP RMAT declined sharply to near 12.5 °C at 1640 BP before increasing again
reaching 14 °C by 730 BP. RMAP proved to be statistically significant. We also have confidence in the
tfrend exhibited by RMAT but temperatures may be underestimated.

Vegetation on the Edwards Plateau near the end of the last glacial period was open woodland
or savanna with mixed Cs and Ca grasses changing to closed woodland by 16,740 BP and fransitioning
to forest by 14,940 BP with grasses nearly absent. Forest with little or no grass was the most common
vegetation for the next 12,000 years. Open woodland or savanna with mixed Cs and Ca grasses re-
appeared at 2560 BP transitioning to a mixed Cs and Ca grassland by 2230 BP and to Ca grassland by
730 BP.



Introduction

Several researchers have used sediments from Hall's Cave to reconstruct paleoenvironmental
conditions on the Edwards Plateau. Toomey et al. (1992) analyzed stable carbon isotope ratios from
the bones of extinct grazers found in the cave to determine the ratios of Csand Ca grasses on the
plateau from 16,040 to 15,720 BP. Toomey et al. (Toomey, 1993; Toomey et al., 1993) reconstructed
climatic conditions and vegetation from 20,000 to 1000 BP using the remains of fauna and analysis of
their habitat requirements. Cooke et al. (2003) used strontium ratios from sediments, seed coatings,
and tooth enamel found in the cave to reconstruct soil erosion for the past 21,000 years. Ellwood and
Gose (2006) measured magnetic susceptibility of Hall's Cave sediments for reconstruction of climatic
changes from the Last Glacial Maximum (LGM) until 500 BP

Previous studies have used modern phytolith assemblages to develop models for quantitative
reconstruction of environmental variables (Fredlund and Tieszen, 1997; Prebble et al., 2002; Lu et al.,
2006). Fredlund and Tieszen (1997) reconstructed mean July temperatures in the Great Plains of North
America since the Pleistocene-Holocene transition. Prebble and Shulmeister (2002) applied their
tfransfer functions to the reconstruction of soil pH and conductivity, mean annual precipitation, and
mean autumn temperature in New Zealand since the Last Glacial Maximum as well as for the Last
Interglacial. Lu et al. (2007) reconstructed mean annual precipitation and mean annual temperature
for the Loess Plateau in China over the past 136 ka.

Lu et al. (2006) created a modern data set from phytolith assemblages collected in seven
different vegetation types at 243 sites covering gradients in mean annual precipitation of 1915 mm and
mean annual temperature of over 27 °C. The variety of vegetation, large sample size, and wide
climatic gradients make this an ideal data set for development of transfer functions for application to
paleoenvironmental reconstructions.

Climatic reconstructions at Hall's Cave based on faunal analyses were only able to pick up
general frends (Toomey, 1993; Ellwood and Gose, 2006) and vegetation reconstructions based on
faunal analyses were problematic (Toomey, 1993). Similarly, Ellwood and Gose (2006) were only able 1o
pick out general climatic frends and exceptional climatic events using magnetic suscepftibility of Hall's
Cave sediments. None of the Hall's Cave reconstructions were based directly on the remains of plants.
Here we aftempt higher resolution reconstructions of climate and vegetation based on phytolith
assemblages from Hall's Cave using climatic fransfer functions developed from the data set published
by Lu et al. (Lu et al., 2006).



Study Site

Hall's Cave is located in the central Edwards Plateau (Fig. 1) near the fown of Mountain Home
in Kerr County, Texas. Data for the years 1931 through 2010 (National Climatic Data Center, 2011) from
the nearest meteorological stations in Kerrville show mean annual temperature of 18 °C and mean
annual precipitation of 800 mm. Precipitation has a bimodal distribution with the first peak occurring in
the months of May and June followed by the second peak in September and October. Mean annual
precipitation follows a strong east fo west gradient across the plateau ranging from as much 863 mm
along the eastern edge to as little as 407 mm along the western edge. There is little variation in mean
annual tfemperature across the plateau. Vegetation ranges from typical eastern deciduous forest in
sheltered canyons on the eastern edge of the plateau to shrubland dominated by Prosopis glandulosa
in the west following the precipitation gradient across the plateau. Less disturbed vegetation in the
area of Hall's Cave is typically savanna or open woodland characterized by Quercus fusiformis, .
buckleyi, and Juniperus ashei, (Griffith et al., 2007) with both tall and short grasses including Panicum
virgatum, Sorghastrum nutans, Schizachyrium scoparium, and Bouteloua curtipendula (Riskind and
Diamond, 1988). Riparian areas contain more forest including species of Carya, Fraxinus, Juglans,
Platanus, Populus, Salix and Ulmus (Griffith et al., 2007).

The cave consists of one large room accessible by a sinkhole opening upslope. This opening
has facilitated sediment washing into the cave from a 3 ha area, accumulating to a depth of over 3 m
in places (Toomey, 1993). Work in the cave by several researchers has resulted in an excavation pit with
a well dated stratigraphy (Toomey, 1993; Toomey et al., 1993; Cooke et al., 2003; Ellwood and Gose,
2006). Hall's Cave is the only known Edwards Plateau cave with continuous stratigraphy from the

Pleistocene to the present (Toomey, 1993; Toomey et al., 1993).

Materials and Methods

Sampling and processing

After removing recent fill from the existing pit, we collected sediment samples at 5 cm intervals
down to a depth of 250 cm below the zero datum established by Toomey (1993) except where
collection was made impossible by the rocky nature of the sediment (200, 210, 220, and 225 cm). Ages
of these samples range from 730 to 17,550 BP (“*C years, calibrated) based on the chronological model
of Ellwood and Gose (2006). Sample depths, ages, and associated lithology are shown in Table 1.

Our procedure for phytolith extraction from sediments is based on methods reviewed by Lentfer

and Boyd (1998) and Zhao and Pearsall (1998) and consists of the following steps:
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Grind sample gently with pestle and mortar.

Sieve sediment sample through 125 um mesh to remove large particles. Repeat (1) and (2) unfil
approximately 1 g of sieved sample has been obtained.

Transfer sample to 50 mL centrifuge tube. Pipette 35 % HCI into tubes until reaction has stopped
to remove carbonates. Stir sample. Centrifuge at 2700 RPM for 3 minutes and decant. Fill
tubes with deionized water, centrifuge and decant. Continue until supernatant has a neutral
PH.

Pipette 10 % KOH into tubes in volume approximately double that of the sample to remove
organics. Stir sample. Centrifuge at 2700 RPM for 3 minutes and decant. Fill fubes with
deionized water, centrifuge and decant. Continue until supernatant has a neutral pH.

Fill beaker to 10 cm depth with 0.5 % NaPOs to deflocculate clays. Add sample and stir. Allow
to settle for 2 hours, then decant. Continue unfil supernatant is clear to remove clays.

Transfer sample to 15 mL centrifuge tube. Centrifuge at 2700 RPM for 3 minutes and decant.
Add low-viscosity sodium polytungstate with specific gravity 2.3 in volume approximately triple
that of the sample. Stir sample. Centrifuge at 1100 RPM for 10 minutes. Pipette supernatant fo
second 15 mL centrifuge tube to isolate biogenic silica. Fill sescond 15 mL centrifuge with
deionized water, centrifuge at 2700 RPM for 3 minutes then decant. Repeat centrifuge with
deionized water and decant 3 times to remove all sodium polytungstate from sample.

Pipette samples to aluminum weighing dish and oven dry.

After extraction we mounted phytoliths on slides in Canada balsam for counting and

classification. We divided phytoliths into 49 types (Table 2) after the classification used by Cordova et
al. (2011) with additions, and mapped these types onto the 21 types used by Lu et al. (2006) (Table 2)
for the purpose of transfer function development. We counted a minimum of 300 phytoliths per sample

(Appendix).

Quantitative Analysis

Zone detfermination

We performed a stratigraphically constrained hierarchical cluster analysis using the CONISS

algorithm (Grimm, 1987) with only known morphotypes with an abundance of at least five percent of
the total phytoliths in any sample (Birks and Berglund, 1979) to delineate zone boundaries. We applied

the broken stick method described by Bennett (1996) to determine the number of significant zones.

For both zone delineation and determination of the number of significant zones we used the



package rioja 1.0-0 Juggins, 2011) with R 2.13.2 (Team, 2011).

Transfer functions and statistical significance

Lu et al. (2006) developed transfer functions using weighted averaging partial least squares
(WA-PLS) (fer Braak and Juggins, 1993). We used modern analog technique (MAT) (Overpeck et al.,
1985) instead. According to Telford and Birks (2011), when the number of effective species in an
assemblage is low, reconstructions based on weighted averaging methods are unlikely to be
statistically significant and MAT-based reconstructions should be tested. Our assemblage had a low
number of effective taxonomic units, 3.3 as estimated by Hill's N2 diversity index (Hill, 1973). We applied
MAT with the squared chord dissimilarity metric to the training data set published by Lu et al. (2006) to
create transfer functions for reconstructing mean annual precipitation (RMAP) and mean annual
temperature (RMAT). We selected the best model by choosing the number of components that
minimized RMSEP as determined by leave-one-out cross-validation.

Using the method developed by Telford and Birks (2011), we then tested the statistical
significance of both our MAT-based reconstructions and reconstructions using the WA-PLS models of Lu
et al. (2006). For each significance test we generated 10000 transfer functions trained on random
data.

As an additional measure of confidence in the model predictions, we used the Receiver
Operating Characteristic (ROC) analysis described by Wahl (2004) to determine analog versus non-
analog cutoff values for the squared chord distance metric.

We used R 2.13.2 (Team, 2011) with the package rioja 1.0-0 (Juggins, 2011) to generate transfer
functions, package palaeoSig 1.0 (Telford, 2011) for significance tests, and package analogue

(Simpson and Oksanen, 2011) for ROC analysis.

Phytolith indices

As an index of woody cover, lw, we examined the woody phytolith morphotype percentage of
the sum of woody and grass morphotypes. This is essentially the phytolith woodland-grassland index
(PWGI) defined by Cordova et al. (2011) converted to percentages. Table 1 shows the use of
morphotypes in this index. In terms of percentages, Cordova et al. (2011) observed that across the
Great Plains PWGI values below 33 % are typical of open grassland, values between 33 and 67 % are
indicative of savanna or open woodland, values between 67 and 80 % are representative of closed
woodland, and values over 80 % indicate closed canopy forest.

We also analyzed the Cs grass short cell morphotype percentage of the sum of Cs and Ca grass



short cell morphotypes, Ic, as proposed by Twiss (1987). Barboni et al. (1999) used data from the Great
Plains published by Fredlund and Tieszen (1994) to calculate lc. They showed that values over 70 %
where typical of cool northern Cs grasslands while values less than 30 % represented warmer southern

C4 grasslands.

Results

Figure 2 summarizes phytolith morphotype abundances as counted while Figure 3 shows
abundances for the classification used in reconstructions. Cluster analysis resulted in four significant
zones which are shown in Figures 2 through 7.

The best MAT model for mean annual precipitation was the 6-analog weighted mean transfer
function with RMSEP,, = 150.0 mm, R?., = 0.8899 and significance of p = 0.0049. For mean annuall
temperature the best model was the 14-analog weighted mean transfer function with RMSEPq, = 2.294
°C, R?%0 = 0.8579, and significance of p = 0.1027.

Figures 4 and 5 show results of MAT-based RMAP and RMAT respectively. Reconstructions for
mean annual precipitation and mean annual femperature based on the WA-PLS models of Lu et al.
(2006) had significance of p = 0.1547 and p = 0.4606 respectively. We only refer to the MAT-based
reconstructions in the following results and discussion.

ROC analysis resulted in optimal dissimilarity cutoff values of 0.1580 for mean annuall
precipitation and 0.1560 for mean annual temperature. Figure 6 summarizes dissimilarity values.

Figures 7 and 8 summarize the changes in abundance of woody and grass phytolith
morphotypes as well as the changes in abundances of morphotypes associated with Cs versus C,4

photosynthesis.

Zone 4 (17,550 — 16,040 BP. 250 - 215 cm )

The phytolith assemblage in zone 4 was dominated by unclassified morphotypes which
accounted for over 55 % of total phytoliths and made up the largest category in every sample. Round
blocky, epidermal polygonal, and scalloped faceted were the most abundant classified morphotypes.

RMAP was 689 + 300 mm for zone 4 with minimum of 434 mm at 17,650 BP. RMAP rose to a
maximum of 1162 mm at 17,160 BP, followed by a decrease to near the minimum level at 16,960 BP.
RMAP then rose to modern levels at 16,740 BP and began a gradual decline. RMAT was 12.3 + 2.1 °C
with minimum of 9.8 °C at 17,5650 BP rising to a maximum of 14.6 °C at 17,160 BP. RMAT then decreased
followed by a rising frend continuing into zone 3.

RMAP had mean dissimilarity of 0.48 with mean sample dissimilarity minimum of 0.39 at 17,550



BP and mean dissimilarity maximum of 0.59 at 16,040 BP. RMAT mean dissimilarity was 0.72 with mean
sample dissimilarity minimum of 0.43 at 17,650 BP and mean dissimilarity maximum at 16,040 BP of 0.66.
There were no dissimilarities less than 0.1580.

lwwas 57 + 20 % with minimum at 17360 BP of 35 %. Maximum values of 78 and 80 % occurred at
16,740 and 16,040 BP respectively. Ic was 63 + 14 % with minimum of 47 % at 17,550 BP and maximum of
88 % at 16,740 BP

Zone 3 (15,510 - 8170 BP, 205 - 105 cm )

Unclassified morphotypes dominated the phytolith assemblage in zone 3 comprising 49 % of
total phytoliths. Unclassified morphotypes made up the largest category for all but two samples. The
epidermal polygonal morphotype was most abundant in samples 14,940 BP and 10,280 BP with 53 and
39 % respectively. The most abundant classified morphotypes were epidermal polygonal, scalloped
faceted, and round blocky.

RMAP was 944 + 142 mm for zone 3. The decline that began in zone 4 continued until reaching
a minimum of §74 mm at 14,940 BP. This decline was followed by a steep rise to near maximum values
with 1132 mm at 14,000 BP. RMAP then dropped sharply to 967 mm at 13,670 BP followed by another
increase to near maximum values at 13,330 BP with 1165 mm. RMAP then began a general decline
reaching modern values at 11,870 BP. RMAP reached near maximum values again with 1180 mm at
11,090 BP, then decreased to modern values by 10,280 BP followed by an increase to a maximum of
1220 mm at 9860 BP. RMAP then began a general decreasing frend continuing throughout the zone.
RMAT was 14.9 + 1.5 °C continuing the increasing trend began in zone 4 before decreasing to a
minimum of 11.9 °C at 14,640 BP. After reaching minimum, RMAT generally increased throughout the
zone with maximum of 16.9 °C occurring at 11,090 BP

RMAP had mean dissimilarity of 0.61 with mean sample dissimilarity minimum of 0.47 at 15,510 BP
and mean sample dissimilarity maximum of 0.66 at 14,000 BP. RMAT mean dissimilarity was 0.70 with
mean sample dissimilarity of 0.52 at 15,510 BP and mean sample dissimilarity maximum at 14,000 BP of
0.78. There were no dissimilarities less than 0.1580.

lwwas 87 + 10 % with minimum of 57 % at 15,510 BP and maximum at 12,620 BP of 98 %. Ic was 44
+ 33 % with minimum of 0 % and maximum of 100 %. Eight of the twenty samples from this zone did not
have any morphotypes diagnostic of Cs and/or Ca grass sub-families, so we were unable to calculate

lc.



Zone 2 (7750 - 2900 BP, 100 -40 cm )

Unclassified morphotypes dominated the phytolith assemblage comprising 63 % of the total
and were the largest category for every sample in zone 2. The most abundant classified morphotypes
were round blocky and scalloped faceted.

RMAP was 1018 + 121 mm for zone 2. The decline in RMAP that began in zone 3 continued,
reaching a minimum of 824 mm at 6890 BP. RMAP then began a general increasing tfrend which
continued throughout the zone with the maximum value of 1176 mm occurring at 4400 BP. RMAT was
15.9 + 0.7 °C with minimum of 15.0 °C at 6890 BP and maximum at 3620 BP of 17.2 °C and displayed a
generally increasing trend throughout zone 2.

RMAP had mean dissimilarity of 0.52 with mean sample dissimilarity minimum of 0.39 at 3250 BP
and mean sample dissimilarity maximum of 0.61 at 6890 BP. RMAT mean dissimilarity was 0.60 with
mean sample dissimilarity minimum of 0.42 at 3250 BP and mean sample dissimilarity maximum of 0.69
at 6890 BP. There were no dissimilarities less than 0.1580.

lwwas 78 + 7 % with minimum of 63 % at 3250 BP and maximum of 87 % at 3620 BP. lc was 27 + 25
% with minimum of 0 % and maximum of 67 % at 2900 BP. Five of the thirfeen samples in this zone did

not have any morphotypes diagnostic of Cs grass sub-families, so we were unable to calculate lc.

Zone 1 (2560 -/730BP.35-0cm)

Unclassified morphotypes were the largest category the phytolith assemblage in the zone 1
with 15 % of total phytoliths. The most abundant classified morphotypes were round blocky, other long
cells, other short cells, square, and short saddles.

RMAP was 912 + 251 mm for zone 1 with maximum of 1332 mm at 2560 BP. RMAP generally
decreased reaching a minimum of 620 mm at 1640 BP followed by a gradual increase to 970 mm at
730 BP. RMAT was 14.8 + 1.7 °C with maximum at 2560 BP of 17.1 °C declining to a minimum of 12.7 °C at
1640 BP followed by a rising trend through 730 BP

RMAP had mean dissimilarity of 0.26 with mean sample dissimilarity minimum of 0.20 at 730 BP
and mean sample dissimilarity maximum of 0.31 at 1380 BP. RMAT mean dissimilarity was 0.29 with
mean sample dissimilarity minimum of 0.25 at 730 BP and mean sample dissimilarity maximum at 1380
BP of 0.34. One dissimilarity value was less than 0.1580, k1 = 0.1284 at 730 BP

lwwas 25 + 10 % with minimum of 16 % at 730 BP and maximum of 45 % at 2560 BP. Ic was 25 + 10
% with minimum of 13 % at 730 BP and maximum of 44 % at 2230 BP

10



Discussion

Reconstructed Climate

Conditions were still generally cold and dry after the Last Glacial Maximum (LGM). RMAP was
less than 450 mm and RMAT under 10 °C at the beginning of our record at 17,550 BP. A prominent spike
in both RMAP and RMAT occurred at 17,160 BP as RMAT rose to over 1150 mm and RMAT reached 14.6
°C. These conditions were much wetter than at present but still much cooler than today. This spike
may represent the Heinrich H1 event and was followed by a return to dry and colder conditions. At
16,740 BP there was an increase in RMAP to modern values of about 800 mm accompanied by an
increase in RMAT to around 13.6 °C. RMAP remained fairly stable for the next 2000 years before another
sharp increase to conditions wetter than today with 1133 mm at 14,000 indicating the end of glacial
conditions. RMAT also remained relatively stable but with a more gradually increasing trend. Our
findings are in general agreement with those from Hall's Cave of Toomey et al. (Toomey, 1993; Toomey
et al.,, 1993) and those of Musgrove et al. (2001) who documented the increase in stalagmite growth
rates, associated with increased precipitation, in caves along the eastern edge of the Edwards Plateau
during this period. They closely match the results of Ellwood and Gose (2006) who attributed a spike in
magnetic susceptibility in Hall's Cave sediments at 17,160 BP to the H1 event and another at about
14,000 BP to the end of glacial conditions.

For the next 6000 years, from 14,000 BP until about 8000 BP, RMAP was generally higher than
today and gradually increasing with several oscillations between modern values and about 1150 mm.
The peaks in RMAP of 1133 mm at 14,000 BP and 1165 mm at 13,330 BP may have been caused by the
Balling-Allerad interstadial. By 7750 BP RMAP had fallen back to approximately modern levels. A
steady increase in RMAP occurred from 6890 BP to 2560 BP when it reached the maximum level of the
past 17,000 years of over 1300 mm. RMAT steadily increased reaching almost 17 °C at 11,090 BP and
then stabilizing for the next 8500 years with values between 15 °C and 17 °C through 1930 BP.

Except for a peak in RMAP at 13,330 BP, our results differ from the moisture reconstructed at
Hall's Cave by Toomey et al. Toomey, 1993; Toomey et al., 1993) who found a trend of decreasing
effective moisture throughout this period, although our reconstructed temperatures are in general
agreement., Through 8000 BP, both our RMAP and RMAT contradict the findings of Ellwood and Gose
(2006) who found a decreasing trend in magnetic susceptibility associated with cooler and dryer
conditions to 10,500 BP then an increasing frend in magnetic susceptibility associated with warmer and
dryer conditions with an upward spike at 8200 BP which they attributed to the 8.2 ka event. The much
less prominent decrease in our RMAP and RMAT at 8170 BP may also be attributable to the 8.2 ka event

but opposite in direction. After 8000 BP our findings are in general agreement with those of Ellwood

11



and Gose (2006). Our RMAP values from 14,000 BP through 1930 BP, which were generally higher than
mean annual precipitation of today, are also in general disagreement with those of Musgrove et al.
(2001) who found decreases in speleothem growth rate associated with decreased precipitation
throughout this period. However, the trends in July temperature deviations reconstructed by Nordt et
al. (2007) from stable carbon isotope ratios in buried soils from the central Great Plains and in global
mean annual temperature deviations reconstructed by Vinther et al. (2009) from stable oxygen isotope
ratios in Greenland ice cores support our results.

The Younger Dryas is apparent in the reconstructed July temperature deviations of Nordt et al.
(2007) and is probably represented at the beginning of the reconstructed mean annual tfemperature
deviations of Vinther et al. (2009). The decline in our RMAP from 13,330 BP to 11,480 BP may be
associated with the Younger Dryas but RMAP only decreased to modern levels and the decline in
RMAT is less obvious. Likewise, both isotope reconstructions (Nordt et al., 2007; Vinther et al., 2009) were
able to discern a period of femperatures higher than those of today, the Holocene Climatic Optimum.
While our highest reconstructed temperatures occurred during this same period, 7750 BP to 2560 BP,
values were still lower than today and were not discernible as a significant event. Ellwood and Gose
(2006) reported a less prominent feature at 4300 BP which they attributed to the 4400 BP climate shift
reported by Chang and Patterson (2005). The pattern in our RMAP at the same time is very similar but
also is not a prominent feature.

The maximum RMAP at 2560 BP was followed by a sharp decline with RMAP reaching 620 mm,
somewhat dryer than today, at 1640 BP and was mirrored by a drop in RMAT fo less than 12.7 °C. RMAP
then stabilized near modern values before again becoming wetter than today with around 970 mm at
730 BP while RMAT began a warming frend reaching about 14.3 °C at 730 BP, still much cooler than
today at the end of our record.

Our RMAP results are opposite to the effective moisture reconstruction of Toomey et al.
(Toomey, 1993; Toomey et al., 1993) who reported that 2560 BP to 1640 BP was the latter part of the
driest period in the Holocene followed by moister conditions until around 920 BP when moisture
decreased to modern values. The findings of Musgrove et al. (2001) who reported very low stalagmite
growth rates through the present are also inconsistent with our findings. Our results are similar to those
of Elwood and Gose (2006) who reported generally increasing magnetic susceptibility peaking at 2000
BP followed by a drop that they attributed to either colder or very dry conditions. The general trends
from the reconstructions of Nordt et al. (2007) and Vinther et al. (2009) during this period are consistent
with our results.

Overall, our reconstructions for mean annual precipitation and mean annual temperature are
in good agreement with high resolution reconstructions based on magnetic susceptibility, stable

carbon isotopes, and stable oxygen isotopes. This is somewhat surprising given that only one of our



samples had even one true analog in the training data set as defined by ROC analysis and that two of
the three most abundant morphotypes, round blocky and epidermal polygonal, were not used in the
tfransfer functions. The more muted pattern in RMAT as compared 1o RMAP is to be expected due 1o
the much lower statistical significance and higher dissimilarities in the reconstruction for mean annual
temperature. These factors along with the general trend agreement between our RMAT and the high
resolution reconstructions as well as the low magnitude of predicted temperatures when compared to
other reconstructions leads us to suspect that RMAT values are underestimated. In contrast with the
isotopic reconstructions, our reconstructions did not allow for the definitive discernment of either the
Younger Dryas or the Holocene Climatic Optimum. Ellwood and Gose (2006) were also unable to pick
out these events with much certainty. In our case, data do not seem to be a limitation in discerning
these events. The mean time associated with our 5 cm sample intervals was 350 years which should be
a fine enough resolution to detect signals from even short duration events such as the Younger Dryas. |t
is possible that the central Edwards Plateau experienced mild responses to these events, but more likely
that our models are in need of additional refinement.

The disagreements between our results and those of Toomey et al. (Toomey, 1993; Toomey et
al., 1993) and Musgrove et al. (2001) could be explained by a lack of detailed resolution in these
reconstructions based on faunal remains and speleothem growth rates respectively. Toomey (1993)
reported that changes in temperature were not great enough after 14,500 BP to be detected by faunal
analysis. Musgrove et al. (2001) based their reconstructions on interpolations between dated points on
speleothems with wide time ranges and very few of those dates were within the Holocene. Important

changes that occurred between dated points could easily have gone undetected.

Reconstructed Vegetation

Vegetation at 17,550 BP was probably mixed grass savanna or open woodland fransitioning to
closed woodland and then forest by 14,940 BP. Grass abundance decreased drastically during this
period to near absence, while the epidermal polygonal morphotype simultaneously increased to its
maximum abundance. This forest with a near absences of grasses was representative of the
vegetation through 8170 BP. The only notable change was an opening up to closed woodland at
13,670 BP. While the abundance of the epidermal polygonal morphotype dropped dramatically at
7750 BP, grass abundance remained very low as forest and woodland continued to be the norm
through 2900 BP. The climatic index, Ic, was unable to provide any information for most of this period
due to the paucity of grass phytoliths.

These results are quite different from those of Toomey et al. (Toomey, 1993; Toomey et al., 1993)

who concluded that woodland and forest were not an important part of the Edwards Plateau
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vegetation during the past 25,000 years. Fredlund (1998) reconstructed past vegetation based on
phytolith assemblages from the Wilson-Leonard site on the northeastern edge of the Edwards Plateau.
He recorded values of his woodland-grassland ratio indicating woodland vegetation becoming more
open from 13,000 BP until 2000 BP when a trend toward more closed woodland began. These results
are in general agreement with ours. Gehlbach (1991) used fossil vertebrate assemblages from
locations straddling the eastern edge of the Edwards Plateau to reconstruct past vegetation with
results very similar to our own. He concluded that coniferous and deciduous forest was the typical
vegetation on the Edwards Plateau before 16,000 BP, when deciduous forest took over with herbs and
grasses gradually expanding until around 2000 BP.

Our vegetation reconstruction showed a transition to open woodland occurring at 2560 BP
accompanied by a marked increase in grass abundance. By 2230 BP more open grassland
vegetation had taken hold with grass composition transitioning from mixed to C4 dominance. At this
point, forests on the Edwards Plateau had probably retreated to their present distribution along riparian
zones where they remained through 730 BP. These results are in good agreement with those of
Gehlback (1991) who concluded that open woodland or savanna took over the western part of the
Edwards Plateau around 2000 BP. This transition differs from the shift to a more closed woodland at
2000 BP noted by Fredlund (1998).

Overall, our vegetation reconstruction is in good agreement with the findings of Gehlbach
(1991). Our results are in general agreement with those of Fredlund (1998) with the exception of
change to a more closed woodland he noted at 2000 BP. This could be an actual difference between
vegetation at Hall's Cave and the Wilson-Leonard site at this time. However, Fredlund was uncertain of
the age of that fransition and he was unable to perform any more recent reconstructions due to
missing soil above that point in the profile so we don't know what the trend might have been after that
point. The general disagreement between our results and those of Toomey et al. (Toomey, 1993;
Toomey et al., 1993) could be an issue of range. The majority of phytoliths in Hall's Cave sediments
probably washed in from the 3 ha catchment area upslope from the cave, a very local area. Toomey
(1993) thought the microfaunal remains in the cave were brought there by raptors and that the faunal
assemblage could then originate from an area as large as the hunting range of raptors, a much larger
area than the catchment area of the cave. The faunal assemblage could then be biased fowards
species who preferred open habitats where raptors hunt, lending itself to an interpretation of more

open vegetation.

Issues and Limitations

Lack of tfaxonomic resolution is one of the problems inherent to reconstructions based on
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phytolith assemblages. In this study unclassified morphotypes made up the majority of the distribution.
Any information contained in these forms remains unavailable to us. This lack of taxonomic resolution is
also an issue with classified types. Two of the three most abundant morphotypes provide an illustration
of this problem. Blinnikov (2005) found the round blocky morphotype in Abies, Artemisia, and Picea
and the epidermal polygonal morphotype in Abies, Artemisia, other Asteraceae, and several
deciduous frees, as well as other shrubs and forbs. An assemblage dominated by these forms could be
interpreted as a sagebrush steppe, sub-alpine forest, or a field of sunflowers.

Taxonomic resolution is better within Poaceae but this is still an issue. Barboni et al. (1999) found
that their reconstruction using the Twiss (1969) classification and lc was subject to this problem of poor
taxonomic resolution. Ic relates the proportions of phytoliths from Cs and Ca grasses. Use of this index
was complicated at their study site when they found that Cs Phragmites from Arundinoideae
produced the short saddle morphotype associated with the Cs Chloridoideae. They also discovered
that Ca Sporobolus from Chloridoideae produced the rondels and rectangle morphotypes associated
with the Cs Pooideae. Fredlund and Tieszen (1994) suggested that analyses focused on assemblages
rather than morphotypes can help alleviate this problem and showed that modern phytolith
assemblages can discriminate between modern vegetation types even though most Poaceae sub-
families produce most morphotypes. However, this issue can still complicate paleoreconstructions. In
this study, it is quite possible that a morphotype attributed to xeric adapted Ca4 vegetation assemblages
today was produced by Ca vegetation which was dominant during extremely dry periods but by Cs
vegetation that was dominant during very wet periods. Climatic predictions based on transfer
functions trained on modern vegetation and phytolith assemblages could then be artificially deflated
or inflated at points in the past due to morphotype production changes through time.

Another of the problems associated with phytolith based reconstructions is the lack of use of a
standard classification. In this study we had to map many of the counted morphotypes onto the other
or unclassified group in the classification of Lu et al. (2006) in order to use the fransfer functions we
developed from their fraining data set, including the round blocky and epidermal polygonal
morphotypes. These two types were two of the most abundant types in the Hall's Cave phytolith
assemblage yet they did not contribute anything to our RMAP and RMAT due to incompatible
classification schemes. Lack of use of a standard classification also comes into play in model
validation. Ideally we would have tested our transfer functions with modern phytolith assemblages and
climatic data. However, we were unable to find any other published data set with a classification
compatible with our tfransfer functions.

It is possible that human disturbance could have altered the phytolith assemblage. Toomey
(1993) reported evidence of human presence in Hall's Cave for the past 8000 years. The most frequent

evidence of human activity was the presence of hearths which we might expect to bias the
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assemblage toward a higher proportion of woody morphotypes as wood was brought into the cave for
fire. However, there was no increase in woody types associated with the the time of human activity.
Toomey (1993) believed the hearths were probably ony used for a few days and did not find evidence
of continuous occupation. It is likely that human activity was too infrequent to have a noficeable

impact on the phytolith assemblage.

Conclusions

We have demonstrated the potential of paleocenvironmental reconstructions based on phytolith
assemblages to improve the resolution of climafte and vegetation records. However, much
improvement in phytolith taxonomy and classification is needed before phytolith based reconstructions
can move beyond a complementary role in quantitative paleoenvironmental reconstructions.

Our reconstruction has added to the knowledge of past precipitation, tfemperature, and
vegetation on the Edwards Plateau from the last glacial period to the present. In particular, we were
able to create a statistically significant reconstruction of past mean annual precipitation. To our
knowledge this is the first phytolith based study that attempts to determine the statistical significance of
a palaeoenvironmental reconstruction. We believe this is a step forward for paleoecology and agree
with Telford and Birks (2011) that paleoecology should strive to hold itself to the same quantitative
standards as other areas of ecology.

Disagreements between our results and those of some previous climatic and vegetation
reconstructions for the Edwards Plateau, particularly the fact that our results show higher mean annual
precipitation and more forested vegetation, indicate the need for additional research. Agreements
with other high resolution paleocenvironmental reconstructions include clear signals probably
associated with the Heinrich H1 event and the Bglling-Allergd interstadial. While sill in general
agreement with these reconstructions based on magnetic susceptibility and stable isotope analysis,
our results were unable to clearly discern some high magnitude climatic events evident in those
reconstructions such as the Younger Dryas and Holocene Climatic Optimum indicating the necessity

for further model refinement.
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Table 1: Sample depths, ages, and associated lithology. Ages are in calibrated '“C years after Ellwood
and Gose (2006). Lithology is from Toomey (1993) and Ellwood and Gose (2006).
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Depth (cm) Age (BP) Lithology

0 730

5 920

10 1140

15 1380 black clayey silt

20 1640

25 1930

3 e 2 e
35 2560

40 2900

45 3250

50 3620

55 4000

60 4400

65 4800

70 5200 dark brown clayey silt
75 5620

80 6040

85 6460

90 6890

95 7320

100 7750

105 810 e
110 8600

15 9030

120 9450

125 9860 red-brown clayey silt
130 10280

135 10690
M0 000
145 11480

150 11870

165 12250

160 12620

165 12980

170 13330 red-tan silty clay

175 13670

180 14000

185 14330

190 14640

195 14940

205 15510

215 16040

230 16740

235 16960 yellow-brown sandy clay
240 17160
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Depth (cm) Age (BP) Lithology

245 17360
280 17550
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Table 2: Phytolith morphotypes as counted with references, their mapping onto the classification of Lu
et al. (2006), use and classification in the calculation of lw, and use and classification in calculation of

lc.
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Counted

References

lw

Lu et al. (2006)
Keeled Fredlund and Tieszen (1994, 1997) Rondel grass  Cs
Conical Fredlund and Tieszen (1994, 1997) Rondel grass  Cs
Pyramidall Fredlund and Tieszen (1994, 1997) Rondel grass  Cs
Round and trapezoidal Twiss et al. (1969), Brown (1984), Cordova et al. (2011) Rondel grass  Cs
Long wavy frapezoidal Fredlund and Tieszen (1994, 1997) Wavy-trapezoid grass  Cs
Stipa-type Fredlund and Tieszen (1994, 1997) Other grass Cs
Long straight tfrapezoidal Twiss et al. (1969), Brown (1984), Cordova et al. (2011) Wavy-narrow-trapezoid grass  Cs
Panicoid bilobates Fredlund and Tieszen (1994, 1997), Lu and Liu (2003), Piperno (2006) Panicoid (dumbbell and cross) grass  Cy
Polylobates Twiss et al. (1969), Piperno (2006) Other grass  Cy
Crosses Piperno (2006), Cordova et al. (2011) Panicoid (dumbbell and cross) grass  Cy
Two-side horned panicoid Piperno (2006) Other grass Cy
Short saddles Fredlund and Tieszen (1994, 1997), Piperno (2006) Short saddle grass Cy
Ellipsoid saddles(Spartina-type) Lu and Liu (2003) Other grass Cy
Aristida-type bilobates Piperno (2006) Other grass  Cy
Plateau saddles (Phragmites-type) Piperno and Pearsall (1998) Other grass
Long saddles Kondo et al. (1994), Piperno (2006) Long saddle grass
Bamb and oryz types Piperno (2006) Other grass  Cs
Other bilobates Other grass
Flat towers Lu and Liu (2003) Other grass
Horned fowers and spools Lu and Liu (2003) Other Qrass
Other short cells Other grass
Smooth Twiss et al. (1969), Kondo et al. (1994), Lu et al. (2006) Smooth-elongate Qrass
Sinuous Twiss et al. (1969), Kondo et al. (1994), Lu et al. (2006) Sinuate-elongate grass
Serrated Pearsall and Dinan (1992) Sinuate-elongate Qrass
Echinate Twiss et al. (1969), Madella et al. (2005) Sinuate-elongate Qrass
Dendritic Blinnikov et al. (2002) Sinuate-elongate Qrass
Long point Kondo et al. (1994), Lu et al. (2006) Long-point Qrass
Short pointy Kondo et al. (1994), Lu et al. (2006) Short-point Qrass
Fan-bamboo Lu et al. (2006) Fan-bamb Qrass
Fan-reed Lu et al. (2006) Fan-reed grass
Fan Lu et al. (2006) Fan Qrass
Square Kondo et al. (1994), Lu et al. (2006) Square Qrass
Rectangular Kondo et al. (1994), Lu et al. (2006) Rectangle Qrass
Board elongate Lu et al. (2006) Board-elongate grass
Other long cells Other grass
Cyperaceae-type papillae Ollendorf (1992), Madella et al. (2005) Other
Asteraceae platelets Bozarth (1992) Other
Celtis type Bozarth (1992), Fredlund (1998) Broad-leaf-type woody
Round blocky Blinnikov et al. (2002; 2005) Other woody
Scalloped faceted Runge (1999) Broad-leaf-type woody
Conifer type Klein and Geis (1978), Bozarth (1992), Blinnikov (2005) Gymnosperm types woody
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Counted References Lu et al. (2006) lw lc
Round stellate Runge (1999) Palmaceae phytolith

Pteridophytes Lu et al. (2006) Pteridophyte types

Platanus type Bozarth (1992) Broad-leaf-type woody
Gobbet - irregular Lu et al. (2006) Gobbett (nubby-irregular)

Epidermal polygonal Blinnikov (2005) Other

Maclura type Cordova et al. (2011) Broad-leaf-type woody

Globular
Globular stellate
Unclassified

Madella (2005)
Madella (2005)

Other
Other
Other
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5 United States

Figure 1: Location of Hall's Cave and the Edwards Plateau.
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Figure 2: Phytolith morphotypes counted with at least five percent abundance in at least one sample. Morphotype abbreviations are: epipoly = Epidermal
polygonal, scallfacet = Scalloped faceted, roundblock = Round blocky, otherlong = Other long cells, square = Square, othershort = Other short cells, fan =
Fan, shortsaddle = Short saddles, rectangle = Rectangular, celtis = Celtis type, broadlong = Board elongate, flatower = Flat fowers, longpoint = Long point.
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Figure 3: Phytolith morphotypes used in transfer functions with non-zero percentage in at least one sample. Morphotype abbreviations are: Gymno =
Gymnosperm types, Broad = Broad-leaf-type, Dumbb = Panicoid ( Dumbbell and cross ), LongS = Long saddle, ShortS = Short saddle, WavyT = Wavy-
tfrapezoid, WavyN = Wavy-narrow-trapezoid, Ronde = Rondel, FanBa = Fan-bamb, Fan = Fan, Square = Square, Recta = Rectangle, Board = Board-elongate,
Sinua = Sinuate-elongate, Smoot = Smooth-elongate, LongP = Long-point, ShortP = Short point, Gobbet = Gobbett ( nubby-irregular shape ).
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Appendix. Supplemental electronic data

Morphotype abundances for the phytolith assemblage data are available in the file
hallscaveassemblage.csv available with the online version of this document. Morphotypes are
abbreviated. They are listed in the same order, and correspond to the names in the Count column of
Table 2.
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