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CHAPTER 1 
 
 

INTRODUCTION 

 

Value-at-Risk (VaR) is the most popular tool in risk management because it is 

easy to communicate and easy to comprehend. The importance of VaR is rapidly 

increasing because the international agreement in banking industry the, so-called, Basel 

Accord heavily uses VaR methodology. To manage market risk, the Basel Accord 

requires a financial institution to have capital in proportion to the total value of its risk-

adjusted asset which is basically measured by VaR in the internal models approach. This 

rule is accepted by the Group of Ten (G-10) countries1 and many other countries. So, 

banks in those countries evaluate their risk exposure using this VaR methodology. 

Jorion (2000) intuitively defined VaR as the summary of the worst loss over a 

target horizon with a given level of confidence. For example, the chief financial officer of 

a financial company  might say that the  VaR of the bank is $10 million at a 95 percent 

confidence level over one day horizon, which means that there is a 5% probability for a 

loss greater than $10 million to happen under normal market conditions. So, since VaR is 

a single number summarizing the amount of risk the company is exposed to, it is very 

easy to understand and communicate.  

                                                 
1 G-10 countries are Belgium, Canada, France, Germany, Italy, Japan, the Netherlands, Sweden, United 
Kingdom, and the United States, plus Luxembourg and Switzerland. 
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However, the VaR methodology requires distributional assumptions for the 

relevant risk factors. Moreover, the VaR estimate depends on not only the assets class 

constituting portfolio, but also the model used to estimate the volatility of those assets. In 

this regard, it is valuable to investigate which volatility model produce superior risk 

measurement for a given portfolio. 

In the past study, Sarma et al (2003) studied the model selection for VaR 

estimation in the S&P 500 and India’s NSE-50. Using a two-stage model selection 

procedure, they compared the performance of candidate volatility models such as equally 

weighted moving average(EQMA) model, exponentially weighted moving 

average(EWMA) model, the GARCH model, and the historical simulation(HS) model. 

They found that the EWMA model worked best among those models. Angelidis and 

Alexandros (2004) analyzed the application of several volatility models to forecast daily 

VaR both for single assets and portfolios. They considered models such as the GARCH 

model, the EWMA model, the exponential GARCH model, the threshold ARCH model, 

the extreme value theory (EVT), and the HS model. They found that the best model 

depended on portfolio.  

Some researchers warned of limitations of the VaR approach in risk management. 

Bedder (1995) examined eight VaR estimates for three hypothetical portfolios. He found 

that VaR is very effective measure in risk management, but since it depends on 

parameters, data, assumptions, and methodology, it might be dangerous in its application. 

Hendricks (1996) compared 12 different VaR evaluation approaches using simulated data 

from eight foreign exchange markets. He concluded that in almost all cases these 

approaches covered the risk that they were intended to cover. However, he also observed 
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that VaR estimates from different approaches were quite different, which also implies 

that VaR approach is overall good tool for risk management, but needs some cautions in 

application. 

The comparison of the univariate approach with the multivariate approach of VaR 

evaluation might also be a very interesting question. In evaluating the portfolio VaR, the 

multivariate model can have some advantages over the univariate model. According to 

Bauwens et al. (2004), one advantage of a multivariate model is that once we get the 

covariance matrix by the multivariate approach, we do not need to calculate again the 

covariance matrix even if the weights of each asset are changed; under the univariate 

model, we should evaluate the variance of portfolio again whenever the weights of each 

asset are changed. Another advantage is that a multivariate model may improve the 

evaluation performance in updating the variances and correlations by considering the 

individual characteristics of the portfolio’s components and estimating their linear 

comovement. According to the Longin and Solink (1995), the markets become more 

closely related during periods of high volatility. In this period, considering the individual 

correlation among stocks might increase the model accuracy. So, it is a good research 

question whether multivariate models perform better than univariate models.  

In the literature of the multivariate VaR approach, Manfredo and Leuthod (1999) 

investigated various VaR estimation techniques for the agricultural enterprise portfolio; 

the EQMA model, the EWMA model, the GARCH model, the implied volatility model, 

and the HS model as univariate model, and constant conditional correlation model as 

multivariate models. They found that the EWMA model and the HS model   provided 

reasonably good estimates. Brooks and Persand (2000) found that the multivariate 
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GARCH(1,1) model worked best to get a VaR estimate relative to other models like the 

HS model, the RiskMetrics approach, and the modified RiskMetrics approach using daily 

closing stock prices of five Southeast Asian countries. Engle (2002) compared VaR 

estimates from various methods such as the BEKK2 model, the Dynamic Conditional 

Correlation (DCC) model, and the orthogonal GARCH (O-GARCH) model, the 

multivariate EQMA model, and the multivariate EWMA model. He observed that the 

DCC model overall performed best to evaluate VaR under the various situations. 

Rombouts and Verbeek (2004) examined the usefulness of the multivariate semi-

parametric GARCH models for portfolio selection under a Value-at-Risk (VaR) 

constraint. They also examined several alternative multivariate GARCH models for daily 

returns on the S&P 500 and NASDAQ indexes.  

To tell a good model from a bad model, we need some criteria. One obvious 

property that a good model should have is predictability. That is, a good model should do 

a good job in predicting future risk exposure. Another criterion is whether the model uses 

all information available. If a prediction model does not use all information available, its 

prediction ability will be lowered, which means that the model is inferior. There are 

various statistical methods based on these ideas. We will review them in the later section. 

 

So, this thesis will address two questions: 

1. Which univariate models are appropriate to evaluate VaR of the Dow Jones 

Industrial Average (DJIA).  

2. Considering multivariate volatility models such as the DCC model and the O-

GARCH model, which incorporate conditional correlations among assets, as 
                                                 
2 BEKK came from Baba, Engle, Kraft and Kroner who were contributors to the model. 
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well as univariate models, which models are appropriate to evaluate VaR for a 

hypothetical portfolio. 

 

For the first question, we will focus on the univariate model. After that, we will 

turn our attention to the multivariate model for the second question. For these questions, 

we need some judging criteria, which will be introduced later. 

In the following sections, we will review the VaR concepts, which will be 

followed by a review of the various methods to evaluate VaR. After that, we will move to 

the model discerning criteria. The empirical result of the univariate models will be 

presented and discussed first. Then, the result of the multivariate models will follow, and 

the comparison of both models will be discussed. Then, we will draw some conclusions 

and implications. 

This thesis is different from the existing studies from two points: data and 

comparison. This thesis uses two sets of data: the DJIA and a hypothetical portfolio. Most 

past research used a portfolio consisting of two, three or, at most, five stocks. But, in this 

thesis we use a hypothetical portfolio consisting of 30 stocks to test the performances of 

the multivariate models. One other point is that it seems that little study has been done 

about the comparison of the multivariate VaR estimate methods with the univariate VaR 

estimate methods using the same portfolio in the VaR literature. So, the most distinctive 

point of this thesis is that comparison. This will allow us to determine the value of 

conditional correlation estimation in this VaR application. 

 



 6 

CHAPTER II 
 
 

Value-at-Risk 

 

Jorion (2000) formally defines VaR as the description of the quantile of the 

projected distribution of gains and losses over the target horizon. If c is the selected 

confidence level, VaR corresponds to the 1 – c lower-tail levels. Mathematically, it can 

be formulated like this: 

                                                             ∫
∞

−

=
VaR

dxxfc )(                                                       (1) 

where x is a random variable of the profit/loss of portfolio, f(x) is the distribution of x, 

and c is the selected confidence level. If the profit/loss distribution of portfolio is 

assumed to follow a normal distribution with zero mean, then we can get a VaR estimate 

in a very easy way as follows. 

 

2.1 Single Asset  

If the profit/loss distribution of an asset is assumed to follow a normal distribution 

with zero mean, then  

VaR  =  -zc×V0×σ                                                    (2) 

where zc is the critical value at confidence level c, V0 is the initial value of the portfolio, 

and σ is the estimated standard deviation of the portfolio’s return. For instance, assume  
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that the initial value of an asset is $1, the return of the asset follows a normal distribution 

with zero mean and standard deviation of σ. The tomorrow’s VaR estimate at 95% 

confidence level over one day horizon is 1.645σ in figure 1.  

 

 

Figure 2.1: VaR Estimate and Profit/Loss Distribution 
 

 

2.2 Portfolio 

In the portfolio theory, the return (pr ) of a portfolio is defined as follows: 

∑
=

=
n

i
iip rwr

1

                                                        (3) 

where n is the number of assets in the portfolio, ir is the return of ith asset for i = 1..n, 

and iw is the weight of ith asset in the portfolio for i = 1..n. The variance (2
pσ ) of the 

portfolio can be calculated as follows: 
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where iσ is the variance of ith asset, ji ,σ  is the covariance between ith asset and jth asset. 

In equation (4), the first term is called diversifiable risk or non-systematic risk which can 

be eliminated through diversification and the second term is called undiversifiable risk or 

systematic risk which can not be eliminated through diversification.  

 To investigate the power of diversification3, we consider a strategy where weights 

are equal to 1/n. Then 

∑∑∑
≠
= ==

+=
n

ji
i

ji

n

j

n

i
ip nnn 1

,
1

2
1

22 111 σσσ                                         (5) 

We define the average variance (2σ ) and average covariance (C ) of the assets as 

∑∑

∑

≠
= =

=

−
=

=
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ji
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n

j
ji
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i
i

nn
C
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1 1
,

1
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1

1

σ
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                                                   (6) 

, then portfolio variance can be expressed as  

C
n

n

np

11 22 −+= σσ .                                                     (7) 

Here, when the number of assets in the portfolio increases, the first term, non-systematic 

risk, will disappear, but the second term, systematic risk, will converge toC . In general, 

we can say that the risk of a well-diversified portfolio comes from only systematic risk or 

covariance part in equation (7). 

The variance of the portfolio can be expressed in the matrix form as  

                                                 
3 You can see more detailed discussion on this in Chapter 8 of Bodie et al (2002). 
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or 

=2
pσ  w �ΣΣΣΣ w 

where w is the vector of the weights of the portfolio, and ΣΣΣΣ  is the covariance matrix. If 

risk factors follow a normal distribution with zero mean, the VaR of the portfolio can be 

calculated as  

VaRp  =  -z×V0× pσ                                                        (9) 

 We note that the relation between the mean and the standard deviation depends on 

the length of the time horizon. Since the volatility grows with the square root of time and 

the mean with time for independent identically distributed processes, the mean will 

dominate the volatility over long horizons. Over short horizons, such as a day, volatility 

dominates. This provides a rationale for focusing on volatility ignoring expected returns 

or assuming that those are zero when we evaluate VaR measures using daily data. In this 

thesis, since we will use the daily returns of 30 stocks, we also assume that the expected 

return of the daily return of each stock is zero. The expected return of the portfolio can be 

assumed zero because the expected return of the portfolio is the weighted average of the 

expected returns of the stocks. This leads us to just focus on the standard deviations of 

the stocks and portfolio to evaluate VaR.
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CHAPTER 3 
 
 

VaR Evaluation Models 

 

There are two approaches to evaluate the VaR in a portfolio sense. The first 

approach is to create a univariate return series for the portfolio using the weight of each 

asset, and then we can use univariate models which will be reviewed. The other approach 

is to estimate a multivariate variance-covariance matrix, and then we can evaluate VaR 

by using equation (7).  

 We will use five univariate models and two multivariate models to evaluate VaR. 

Five univariate models are the EQMA model, the EWMA model, the GARCH model 

with a normal distribution, the GARCH model with a t-distribution, and the HS model4.  

As multivariate models, we will use the O-GARCH model and the DCC model 

because these can be easily applied to a portfolio consisting of many assets. In fact, most 

frequently used and cited multivarite volatility models are the Vech5 model, the BEKK 

model, the DCC model, and the O-GARCH model. However, as indicated in Table 3.1, 

the Vech model and the BEKK model are practically not available for a portfolio 

consisting of many assets, which leads us to use just the DCC model and the O-GARCH 

model. 

                                                 
4 Here, we do not consider the Monte Carlo simulation method because we will use the linear portfolio, in 
which case the result from the Monte Carlo simulation should be the same as the result from variance-
covariance approach. 
5 Vech is the name of a mathematical operator. 
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Table 3.1: Number of Parameter Needed According to the Number of Assets 

#. Assets Vech Model BEKK Model DCC Model 
O-GARCH 

Model 

n  
2

2

)1(
2

2

)1(







 +++ nnnn
 22

2

)1(
n

nn ++
 33 +n  n3  

30 432,915 2265 93 90 

Note that in this table we assume that the lags of all ARCH and GARCH parameters are 1 

 

3.1 Univariate Models 

 We will review five models: the EQMA model, the EQMA model, the GARCH 

model with a normal distribution, the GARCH model with a t-distribution, and the HS 

model. 

 

3.1.1 Equally Weighed Moving Average Model 

 The simplest one is the equally weighted moving average model, where today’s 

volatility is calculated by the average of the volatility over the given time window. The 

mathematical formula is6  

 ( )
2

1

2 1
∑

=
−=

m

i
itt r

m
σ                                                               (10) 

where σ is the standard deviation, n is the number of daily rate changes used to calculate 

standard deviation, r t is daily return. In fact, this model gives equal weight 1/m to each 

volatility of the past. So, that is why this model is called equally weighted moving 

average model.  

                                                 
6 By using m instead of m-1 in the denominator, we assume that the volatility estimate in equation (5) is the 
maximum likelihood estimator, not the unbiased estimator. See Hull (2003) chapter 17. 
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3.1.2 Exponentially Weighted Moving Average Model 

 It seems more reasonable to assume that today’s volatility is more affected by the 

more recent events.  To incorporate this into the model, we should give more weight to 

the more recent events and less weight to the latter events. One of these weight schemes 

is an exponential scheme.  The model using this exponential weight scheme is 

2
1

2
1

2 )1( −− +−= ttt r λσλσ                                                                  (11) 

where tσ  is the standard deviation for day n, 1−tr  is the daily shock for day n-1, and λ  is 

the decay factor7. In the iterative way, we can easily show that8   

∑
=

−
−−=

m

i
it

t
t r

1

212 )()1( λλσ                                                                (12) 

, which shows that the weights for thetr ’s decline at rate λ  as we move back through 

time. This model is called exponentially weighted moving average model. According to 

the technical document of the RiskMetrics (1996), it uses the EWMA model with λ  = 

0.94 for updating daily volatility estimates. In this thesis, we used λ  = 0.94 because we 

used daily data. 

 

3.1.3 GARCH Model 

 There is another weight scheme called generalized autoregressive 

conditional heteroskedasticity (GARCH) model, which is proposed by Bollerslev (1986). 

The GARCH (p,q) process is then given by  

                                                 
7 We note that since in this thesis the expected mean of the price is assumed to be zero, the daily shock is 
equal to the daily return, that is, εn = rn for day n. So, hereafter the daily shock means the daily return, and 
vice versa. 
8 Here, we assume that the volatilities before time (t-m) are so small that they can be ignored. 
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σβεαασ

σψε
                                               (13)                                                                                                                                                                                         

where 0,0,0,0,0 0 ≥≥>>≥ iiqp βαα . When p=q=0, εt is simply white noise. It is 

generally accepted that in most cases GARCH(1,1) model is enough to model the 

volatility of financial market. So, we will use GARCH(1,1) model in this thesis, and 

hereafter GARCH model means GARCH(1,1) model. The meaning of GARCH model is 

that today’s volatility(σt) is updated by yesterday’s volatility(σt-1) and yesterday’s 

shock(εt-1). We note that in fact the EWMA model is a particular case of the 

GARCH(1,1) model where α0 =0, α1 = 1 - λ , and α2 = λ .  

Another variation of the standard GARCH model is to use the student t 

distribution instead of normal distribution as the conditional distribution which the daily 

return follows. In fact, the conditional distribution as well as the unconditional 

distribution of the daily return is generally considered to have fatter tails than a normal 

distribution. So, if we use the student t distribution instead of a normal distribution as the 

conditional distribution the daily return follow, we are supposed to get more realistic 

result. 

 

3.1.4 Historical Simulation model 

The historical simulation method uses historical data to build the distribution of 

the risk factor, and then evaluate VaR from that distribution. In the case of the single 

index, we get historical movements or series of returns ( ntrt ,..,1, = ) of the index. Based 

on those movements, we can get the simulated tomorrow’s value of the index 1+nV  as: 
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ntn VrV *)1(1 +=+                                                          (14) 

where nt ,..,1=  and nV is the today’s portfolio value. After that, we can construct the 

distribution of the change in the portfolio ( ntrVVrVV tnntnn ,..,1,*)1(1 ==−+=−= + ).  

And, then sort ),..,1( ntrt =  observations from the biggest loss to the biggest gain. This 

arrangement can be considered as the distribution of the risk factor. If we want to get 

95% VaR, the 5th quantile of that distribution is what we want to get. 

 

3.2 Multivariate Model.  

 In multivariate models, we might consider weight schemes that are similar to 

weight schemes in the univariate models like a moving average and GARCH. However, 

we note that if we use the multivariate variance-covariance matrix proposed by 

RiskMetrics (2001), equally and exponential weighted schemes produce the same result 

in both approaches9, that is, the volatility from the univariate return series is always equal 

to the volatility from the multivariate variance-covariance matrix because they use the 

same methods in updating the volatility and the covariance. So, we will review just two 

GARCH type models: the O-GARH model and the DCC model. 

 

3.2.1 Orthogonal GARCH Model 

 According to Alexander (2001), the orthogonal method uses principal component 

analysis (PCA) approach to construct covariance matrices10. In the orthogonal GARCH 

model, the time-varying covariance matrix H t of the original system is approximated by  

H t  = ADt A'                                                                          (15) 
                                                 
9 Comparison between univariate approach and multivariate approach is in appendix A. 
10 See the appendix B for details of PCA approach. 
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where A is the matrix of rescaled factor weights and Dt is the time-varying diagonal 

matrix of variances of the principal components of original multivariate series. The 

diagonal matrix Dt of variances of principal components is estimated using a GARCH 

model. 

 We note that basically PCA technique is a linear transformation from one space 

measured on real-world basis into the other space measured on so-called principal 

component basis. In the latter world, we can analyze real-world data in a different point 

based on principal components, which are mutually orthogonal; hence we don’t need to 

pay attention to correlation between components. So, the correlations in the real world 

are transformed into the variances of the principal components. Hence, analyzing 

dynamics of variances of principal components implicitly incorporate dynamics of 

correlations of real-world data. 

 

3.2.2 Dynamic Conditional Correlation model 

 Engle (2002) proposed a new class of multivariate GARCH models named 

dynamic conditional correlation model. The DCC model evolved from the constant 

conditional correlation (CCC) model by Bollerslev (1990). The CCC model estimates 

conditional covariance matrixtH  as: 

ttt RDDH =  where  }{ ,tit hdiagD =                                  (16) 

where R is a constant correlation matrix, tih ,  is the conditional covariance of univariate 

time series of asset i in the portfolio at time t. 
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 The DCC model assumes the correlation matrix is time-varying, that is, tR instead 

of constant R  and uses the GARCH scheme to incorporate that time-varying property of 

the correlation into the model as follows: 

 tttt DRDH =  where  }{ ,tit hdiagD =   

    11 }{}{ −−= tttt QdiagQQdiagR                                                                 (17)        
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where H t is a time-varying covariance matrix, mα  is the ARCH coefficient, nβ  is the 

GARCH coefficient, M is the order of ARCH parameter, N is the order of GARCH 

parameter, Q is the unconditional covariance of the standardized residuals, and mt−ε  is 

the standardized residual from univariate time series, and }{ Xdiag  mean a diagonal 

matrix of matrix X. According to Engle (2002), if 0≥mα , 0≥nβ , and 
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m
m βα , then tR  will be positive semi-definite. If any one of them is 

positive, then tR  will be positive definite.  

Engle and Sheppard (2001) stated that the DCC model was designed to allow for 

two stage estimation. In the first stage, univariate GARCH models are estimated for each 

residual series. Then, in the second stage, residuals, transformed by their standard 

deviation estimated during the first stage, are used to estimate the parameters of the 

dynamic correlation.
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CHAPTER 4 
 
 

Backtesting 

 

We can get the various VaR estimates depending on the model we used to 

measure volatility. So, we need some criteria to decide which is better. According to 

Campbell (2005), a good model should have two properties based on the result of rolling 

backtesting; unconditional coverage property and independence property.  

 

4.1 Rolling Backtesting Procedure 

First, we will describe rolling backtesting. The following example will best 

explain the procedure of rolling backtesting. Suppose we have 1500 observations of past 

returns of a portfolio and we use 1000 observations to estimate tomorrow’s VaR estimate. 

Using observations from the first to the 1000th, we got tomorrow’s VaR estimate of 

$1,000 and the tomorrow’s realized observation or the 1001st observation is $1,010, then 

we say that an exception11 is realized or there is an exception; if the 1001st observation is 

less than the VaR estimate, we say that there is no exception. Next, using observations 

from the second to the 1001st, we can do the same comparison whether the VaR estimate 

is exceeded by the 1002nd observations or next day’s realized loss of the portfolio. 

Continuing this comparison from the 500th to the 1499th observation with 1500th

                                                 
11 Some authors use a term, “exceedance” instead of “exceptions” because the realized loss exceeds the 
expected loss or the VaR estimate. 
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observation, each comparison is regarded as one backtesting. Then we have A total of 

500 backtestings. The procedure is described in figure 2. With this binomial sequence 

(exception or no-exception), we can do the unconditional coverage property and 

independence property. 

 

Figure 4.1: The Procedure of the Rolling Backtesting 
 

4.2 Proportion of Failures Test 

Unconditional coverage property means that the number of realized VaR 

exceptions of rolling backtesting with past data must be equal to the expected number of 

VaR exceptions indicated by the VaR model within statistical tolerance. For example, 1-

day 99% VaR with 500 backtesting trials expects 5 exceptions (= (1 - 99%) × 500). If the 

realized exception is out of the range in which both are statistically equal12, then we can 

conclude that the model is inappropriate.  

Kupiec (1995) proposed the proportion of failures (PF) test as the unconditional 

coverage, which we will use in this thesis. The LR statistic for testing the null hypothesis 

that the realized ratio (p) of the exceptions of VaR over the past data is equal to the 

probability p* of the exceptions of VaR is the following: 

2−=PF Ln ])()1[(2])()1[( ** xxnxxn

n

x

n

x
Lnpp −− −+−                                 (18) 

                                                 
12 The null hypothesis of the statistical test is that the number of exceptions is 10. 
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where x is the realized number of exceptions in the sample, n is the total number of 

backtesting trials. Under the null hypothesis, p = p*, the PF test has a chi-square 

distribution with 1 degree of freedom.  

 If the null hypothesis is rejected because the realized ratio is greater than the 

expected ratio, we can say that the model underestimates VaR. On the other hand, the 

null hypothesis is rejected because the realized ratio is less than the expected ratio, we 

can say that the model overestimates VaR. One possible reason of underestimation is that 

the distribution of the return series of financial asset usually has a fatter tail than the 

normal distribution and the model fails to incorporate that fat fail fully. 

 

4.3 Runs Test 

Independence property means that the exceptions of the backtesting should occur 

in a random way. If the occurrence of the exceptions is not distributed randomly across 

time, we can find some patterns, which a good model should incorporate with its 

prediction schemes. In this thesis we will use the runs test to test a randomness of the 

exceptions13. 

Runs can be defined as a sequence within a series in which one of the alternatives 

occurs on consecutive trials. Using the example of a coin toss, if a series look like this: 

“ H H T H H T T T H T”, then “HH”, “T”,”HH”,”TTT”,” H”, and ”T” are runs. The null 

hypothesis of a runs test is whether the distribution of a series of binary events in a 

population is random. In order to calculate the test statistics, one must determine the 

number (n1,n2) of times each of the two alternatives appears in the series and the 

                                                 
13 You can find more details about the runs test in Sheskin (2003). 
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number(r) of runs in the series. The basic idea of a runs test is that the number of runs 

should be within the appropriate range for the series to be random. In the above example, 

the number (n1) of heads is 5 and the number (n2) of tails is 5, and the number(r) of runs 

is 6. If the number of runs is too small, say, 2, then it might be difficult to say that the 

series is random because the series should be “H H H H H T T T T T” or “T T T T T H H 

H H H”. The normal distribution can be employed with a large sample size to 

approximate the exact distribution of the runs test as the following: 
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where r is the number of run, n1 is the number representing alternative 1 which can be 

defined as non-exception occurrence of backtesting trials in this thesis, and n2 is the 

number representing alternative 2 which can be defined as exception occurrence of 

backtesting trials in this thesis. In the example above (n1=5, n2 =5, r=2), z-score is -

3.0187, which obviously results in rejecting the null hypothesis or non-randomness.  

 Possible reasons of the rejection of null hypothesis are clustering of exceptions 

and increase of the number of exceptions. As exceptions are clustered, the number of runs 

will decrease, and as the number of exceptions increases, n1 will decrease and n2 will 

increase in equation (19), which results in higher chance of the rejection of null 

hypothesis. For example, when n1 is 3532, n1 is 51, and r is 99, z-statistics is -1.8235(p-

value=.0684). When n1 is 3531, n1 is 52, and r is 100, z-statistics is -2.3418(p-

value=.0192). However, when n1 is 3531, n1 is 52, and r is 99, z-statistics is -2.9286(p-

value=.0034).
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CHAPTER 5 
 
 

Data 

 

We will use the DJIA index to address which univariate VaR model performs best. 

The DJIA data came from the Yahoo finance website. The time horizon of data is from 

10/31/1986 to 12/31/2004 and the total number of sample of the DJIA closing price is 

4584. We used the daily logarithmic return such as 

)]log()[log(100 1−−×= ttt PPR                                           (20) 

where  tP  is the closing price on day t.  

For the multivariate analysis, a hypothetical portfolio is considered to compare the 

performance of a univariate model with that of a multivariate model. We used 30 stocks 

of the DJIA components at 12/31/200414 and gave the same weight 1/30 to each stock to 

construct the portfolio.  We got data from Center for Research in Security Prices (CRSP). 

The time horizon of data is from 10/31/1986 to 12/312004 and the number of 

observations is 458315. We use the daily logarithmic return for each stock as follows: 

)]log()[log(100 1,,, −−×= tititi PPR                                       (21) 

                                                 
14 The roster of DJIA has changed over time. So, we took a snap-shot at 12/31/2004. The same company is 
identified by the same PERMNO which is given by CRSP database. See data description guide for the 
CRSP US stock database and the CRSP US indices database. Here is the list of the companies: Alcoa Inc, 
AIG, American Express Inc, Boeing Co, Citigroup Inc, Caterpillar Inc, Du Pont E I De Nem, Walt Disney-
Disney C, General Electric Co, General Motors, Home Depot Inc, Honeywell Intl Inc, Hewlett Packard Co, 
IBM, Intel Cp, Johnson And Johns Dc, JP Morgan Chase Co, Coca Cola, Mcdonalds Cp, 3M Company, 
Altria Group Inc, Merck Co Inc, Microsoft Cp, Pfizer Inc, Procter Gamble Co, SBC Communications, 
United Tech, Verizon Commun, Wal Mart Stores, Exxon Mobil Cp.  
15 The 5-24-1994 data for Altria Group was not available. So, all the data for that day were removed. 
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where tiP,  is the adjusted price for factors like stock split and spin-offs, and includes 

dividend because we want to focus on the price movements which are not caused by 

corporate events such as stock split and spin-offs. Table 5.1 shows the descriptive 

statistics. The histograms and plots are in figure 5.1.  

Here, we want to note several facts. First, both means of the DJIA daily returns 

and the hypothetical portfolio are so small relative to standard deviation that our 

assumption to ignore the mean of daily returns seems reasonable. Secondly, Ljung-Box Q 

test statistics show that there are autocorrelations also in both cases. ARCH LM test 

statistics show that there are ARCH effects in both cases. Thirdly, Jarque-Bera test 

statistics show that the unconditional distribution of daily returns is far from normal in 

both cases. We can also confirm that by the histograms in figure 5.1. Finally, we would 

like to pay attention to the tail property of both portfolios. The left tail and the right tail of 

both portfolios are fatter than those of a normal distribution as indicated in the QQ-plot of 

figure 5.2. Also, we can observe that the left tails of both are more deviated from the 

normal distribution than the right tail. In Table 5.2 and figure 5.2, though the biggest and 

the smallest return of the DJIA are respectively greater and less than those of the 

hypothetical portfolio, overall the hypothetical portfolio has a fatter tail than the DJIA. 
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Table 5.1: Descriptive Statistics of DJIA Daily Returns 

Variables DJIA Hypothetical Portfolio 

Observations 4583 4582 

Mean 0.0381 0.0558 

Maximum 9.6662 8.1318 

Minimum -25.632 -23.522 

Std. Dev. 1.1283 1.1841 

Skewness -2.76534 -1.9532 

Kurtosis 66.1222 41.6577 

Jarque-Bera 
766,697.4 a 
(<.0001) b 

288,222.9 
(0.0000) 

Q(12) 233.5851  
(<.0001) 

378.9437  
(<.0001) 

ARCH-LM 186.6556  
(<.0001) 

276.921 
(<.0001) 

                       a Bold means that the number is statistically significant. 
                       b The number in parenthesis is p-value. 

 
Figure 5.1: Histograms and Plots of DJIA and Portfolio 
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Table 5.2:  Returns Sorted from the Biggest to the Smallest 

Percentile DJIA Hypothetical Portfolio 

Biggest 9.6662 8.1318 

99% 2.8854 3.0996 

98% 2.2521 2.4435 

97% 1.9949 2.1032 

95% 1.6469 1.7536 

….. …… …….. 

5% -1.6275 -1.705 

3% -2.0137 -2.0808 

2% -2.3061 -2.354 

1% -2.8905 -2.9701 

Smallest -25.632 -23.522 

 
 

 
Figure 5.2: QQ-Plot of the DJIA and the Hypothetical Portfolio
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CHAPTER 6 
 
 

Empirical Result 

 

We examine the univariate return series of the DJIA index and the hypothetical 

portfolio of 30 stocks using univariate models. Then, we examine the multivariate return 

series of 30 stocks using multivariate models.  For each examination, we investigate the 

left tail of the distribution of a portfolio value which is relevant to the holder of a long 

position. We also investigate the right tail which is relevant to the holder of a short 

position. 

 

6.1 Univariate Approach 

 We will consider two univariate return series; one is from the DJIA for the first 

research question and the other is from the hypothetical portfolio consisting of 30 stocks 

for the second question. 

 

6.1.1 Dow Jones Industrial Average 

 We backtested the appropriateness of 99% 1-day VaR calculated from each 

univariate model in the section 3.1. We used 1000 observations to calculate the VaR 

estimate at each backtesting trial, so the total number of backtesting trials is 3583 [=
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4583(the total number of observations) – 1000(observations to get one VaR backtesting 

trial)].  

The VaR estimate for each model is in figure 6.1 and figure 6.2 for each tail when 

we invested $100 for each trial. In figure 6.1, the results using three models (the EWMA 

model, the GARCH model with a normal distribution, and the GARCH model with a t-

distribution) seem very similar to each other. Overall, the VaR estimate using EQMA is 

the smallest. In figure 6.3 and 6.4, you can compare the VaR estimate with the realized 

loss. Though realized losses are smaller than VaR estimates in most cases, there are some 

cases that realized losses are greater than VaR estimates, which cases are thought of as 

exceptions. 

 The result of the PF test and runs test are presented in Table 6.1. In the left tail, all 

models except the EQMA model were not rejected with the PF test at a 99% confidence 

level16. All models except the EWMA model and the GARCH model with a normal 

distribution were not rejected with the runs test at a 99% confidence level. As a result, 

two models, the GARCH model with a t-distribution and the HS model were not rejected 

with both tests. Among these, the HS model show the nearest number of exceptions to the 

expected number of exceptions 36 which is 1% of the number of backtesting trials 3582. 

In the right tail, all models except the EQMA model were not rejected with the PF 

test at a 99% confidence level. All models were not rejected with the runs test at a 99% 

confidence level. So, all models except the EQMA model were not rejected with the PF 

test and the runs test.  

                                                 
16 Strictly speaking, we should say that the null hypothesis of the PF test (or the runs test) related to a model 
was rejected or not rejected with the PF test (or the runs test). But, in this thesis, if we have no problem in 
communication, for convenience, we would like to say that a model was rejected or not rejected with the 
PF test (or the runs test) to mean the same thing. 
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As a result, in both right and left tails the GARCH model with a t-distribution and 

the HS model were not rejected with both the PF test and the runs test. Other three 

models were rejected or inappropriate to evaluate VaR of the DJIA index portfolio with 

respect to either the PF test or the runs test.  

 

Figure 6.1: VaR Estimates for DJIA When $100 was Invested (Left Tail) 
 
 

 
Figure 6.2: VaR Estimates for DJIA When $100 was Invested (Right Tail) 
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Figure 6.3: VaR estimates for DJIA with Realized Loss (Left Tail) 
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Figure 6.4: VaR estimates for DJIA with Realized Loss (Right Tail) 
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Table 6.1: Result of the PF test and Runs test of Univariate Models for DJIA 
PF Test Runs Test 

Tail Model Name Exceptions 
F-statistics p-value No Exceptions Exceptions Runs z- statistics p-value 

Equally weighted(EQMA) 59 12.664
 a

 0.0004 3524 59 115 -1.3243 0.1854 

Exponentially weighted(EWMA) 52 6.4695 0.0110 3531 52 99 -2.9286 0.0034 

GARCH (Normal Dist.) 52 6.4695 0.0110 3531 52 99 -2.9286 0.0034 

GARCH (t Dist.)*
 b

 47 3.2032 0.0735 3536 47 91 -2.1192 0.0341 

Left 

Historical Simulation* 38 0.13018 0.7183 3545 38 75 -1.3574 0.1747 

Equally weighted(EQMA) 58 11.671 0.0006 3525 58 113 -1.3813 0.1672 

Exponentially weighted(EWMA)* 44 1.7544 0.1853 3539 44 89 0.4021 0.6876 

GARCH (Normal Dist.) * 40 0.47242 0.4919 3543 40 81 0.2993 0.7647 

GARCH (t Dist.) * 41 0.72003 0.3961 3542 41 83 0.3256 0.7447 

Right 

Historical Simulation* 44 1.7544 0.18533 3539 44 85 -2.3681 0.0179 

              a Bold means we reject the null hypothesis in each test or model does not work well in each test at a 99% confidence level. 
b Asterisk means model work well in both tests at the same time at a 99% confidence level. 
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We note that as indicated in the data analysis of the DJIA, the distribution of the 

DJIA returns has a fatter tail than a normal distribution. And, the left tail shows more 

deviation from the normal distribution than the right tail (i.e. negative skewness), which 

means that the left tail have more extreme events or stronger volatility clustering than the 

right tail. In the left tail, the EWMA model and the GARCH model with a normal 

distribution might fail to incorporate volatility clustering completely and exceptions were 

more likely to be clustered, so that the null hypotheses of the runs tests of those models 

were rejected. However, in the left tail the models such as the GARCH model with a t-

distribution and the HS model, which are more like to incorporate extreme events or 

volatility clustering, were not rejected with the runs test as well as the PF test.  

In the right tail which has less extreme events or weaker volatility clustering than 

the left tail, not only the GARCH model with a t-distribution and the HS model, but also 

the EWMA model and the GARCH model with a normal distribution were not rejected 

with the runs test, which means that these models can handle appropriately extreme 

events or volatility clustering in the right tail. 

 

6.1.2 Hypothetical Portfolio 

 

We will compare the univariate models with the multivariate models using the 

same portfolio because we want to know whether the multivariate models are more 

appropriate to evaluate VaR than the univariate models or conditional covariance 

estimation improves risk measurement. For the univariate models, we created the single 
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portfolio returns using 30 stocks giving 1/30 weight to each stock as mentioned in the 

data section. So, here, we will analyze the univariate hypothetical portfolio first. 

We backtested the appropriateness of 99% 1-day VaR calculated from each 

univariate model in the section 3.1. We used 1000 observations to evaluate VaR at each 

backtesting trial, so the total number of backtesting trials is 3582 [= 4582(the total 

number of observations) – 1000(observations to get one VaR backtesting trial)]. 

The VaR estimates for each model are in figure 6.5 and 6.6 for each tail when we 

invested $100 for each trial. In those figures, the result using three models (the EWMA 

model, the GARCH model with a normal distribution, and the GARCH model with a t-

distribution) seem very similar to each other. Overall, the VaR estimates using the 

EQMA model are the smallest. In figure 6.7 and 6.8, you can compare VaR estimates 

with realized losses. Though realized losses are less than VaR estimates in most cases, 

there are some cases that realized losses are greater than VaR estimates, which cases are 

thought of as exceptions. 

The result of the PF test and the runs test are in Table 6.2. In the left tail, all 

models except the EQMA model were not rejected with the PF test at a 99% confidence 

level. However, only EWMA model was not rejected with the runs test at a 99% 

confidence level. As a result, in left tail the only EWMA model was not rejected with 

both tests.  

In the right tail, only HS model was not rejected with the PF test at a 99% 

confidence level. However, all models were not rejected with the runs test at a 99% 

confidence level. So, in the right tail only HS model was not rejected with both tests.  
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In sum, all models were rejected with the PF test or with the runs test in the left or 

right tail, which means no model is appropriate to evaluate VaR of the univariate 

hypothetical portfolio of 30 stocks for both tails. 

 
Figure 6.5: VaR Estimates for Univariate Hypothetical Portfolio when $100 was  

Invested (Left Tail) 
  

 

Figure 6.6: VaR Estimates Univariate Hypothetical Portfolio when $100 was  

Invested (Right Tail) 
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 Figure 6.7: VaR Estimates for Univariate Hypothetical Portfolio with Realized Loss (Left Tail) 
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Figure 6.8: VaR Estimates for Univariate Hypothetical Portfolio with Realized Loss (Right Tail) 
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Table 6.2: Result of the PF test and Runs test of Univariate Models for the Hypothetical Portfolio 
PF Test Runs Test 

Tail Model Name Exceptions F-statistics p-value No Exceptions Exceptions Runs z- statistics p-value 

Equally weighted(EQMA) 60 13.7060
 a

 0.0002 3522 60 113 -3.3056 0.0009 

Exponentially weighted(EWMA)*
 b

 50
 
 5.0484

 
 0.0246 3532 50 97 -1.8935 0.0583 

GARCH (Normal Dist.) 49 4.3938 0.0361 3533 49 91 -4.4555 0.0000 

GARCH (t Dist.) 45 2.1978 0.1382 3537 45 83 -4.9904 0.0000 

Left 

Historical Simulation 39 0.2772 0.5986 3543 39 73 -4.4117 0.0000 

Equally weighted(EQMA) 64 18.1530 0.0000 3518 64 123 -2.0135 0.0441 

Exponentially weighted(EWMA) 60 13.7060 0.0002 3522 60 115 -2.2869 0.0222 

GARCH (Normal Dist.) 56 9.8017 0.0017 3526 56 111 -0.4084 0.6830 

GARCH (t Dist.) 58 11.6840 0.0006 3524 58 115 -0.3275 0.7433 

Right 

Historical Simulation* 43 1.3662 0.2425 3539 43 85 -1.0398 0.2985 

a Bold means we can reject the null hypothesis in each test at a 99% confidence interval. 
         b Asterisk means model work well in both tests at the same time at a 99% confidence level. 
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We note that the results of the hypothetical portfolio are different from the DJIA 

in two aspects; one is that the EWMA model and two GARCH models are rejected with 

the PF test in the right tail, which may be caused by the fact that in the right tail the 

distribution of the hypothetical portfolio return has a fatter tails than that of the DJIA 

return as indicated at the data analysis section. The fatter tail makes it difficult for models 

to adequately estimate VaR with respect to both the PF test.  

The other is that in the left tail the GARCH model with a t-distribution and the HS 

model were rejected with the runs test though these models were not rejected with the PF 

test. We note that in the DJIA case the number of runs is 91(GARCH model with t-

distribution) and 75(HS model), but in the hypothetical portfolio that number dropped to 

83(GARCH model with t-distribution) and 73(HS model), which means that exceptions 

are more clustered in the hypothetical portfolio, which resulted in the rejection of 

randomness null hypothesis. 

 

6.2 Multivariate Approach 

The correlation between returns of assets in a portfolio is an essential 

characteristic of multivariate models. So, first we will discuss the correlation estimation 

of multivariate models. Then, we will discuss the empirical result of multivariate 

approach in calculating the VaR estimate. 

 

6.2.1 Correlation Estimation of Multivariate Models 

Figure 6.9 shows average correlation using various models; the first panel is 

calculated by the DCC model, the second panel by O-GARCH model, and the others are 
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calculated over sliding windows of 126(6 month), 500(2 years), and 1000(4 years). As 

the time window increases in the panel 3 to 5 of figure 6.9, the graph of the estimated 

correlation is less erratic and correlations are more centered to the overall mean. The 

overall level of correlation using the DCC model based on the past 1000 observations is 

analogous to the correlation using sliding windows of 1000 observations, but the graph 

using the DCC model is more erratic than that of the graph using sliding windows of 

1000 observations. Overall, the correlation estimated by the DCC model seems 

reasonable.  

Figure 6.10 and 6.11 show portfolio standard deviation and the average 

volatilities of 30 stocks and average correlation among 30 stocks which are calculated 

using the DCC model and the O-GARCH model over the entire horizon of data 

respectively, where for the comparison purpose we multiplied 6 to the average correlation. 

First, we note that the Longin and Solnik’s (1995) observation that the correlation rises in 

periods of high volatility seems to hold over the entire period. Second, the average 

volatility of stocks represents a diversifiable risk or non-systematic risk of the portfolio 

and the average correlation represents an undiversifiable or systematic risk of the 

portfolio17. In this regard, in figure 6.10 and 6.11 we can also observe how the standard 

deviation of the portfolio estimated by the DCC model and the O-GARCH model 

incorporate the non-systematic risk and systematic risk. In figure 6.10 and figure 6.11, we 

also note that systematic risk (=portfolio standard deviation – average volatility) is a 

more dominant component in portfolio variance than variances of each stock, non-

                                                 
17 Rigorously speaking, systematic risk of a portfolio is the average covariance of stocks. However, since 
correlation is the most integral component of covariance, we can say that correlation represents systematic 
risk. 
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systematic risk because the portfolio consists of 30 stocks, so this is a relatively well-

diversified portfolio.  

 
Figure 6.9: Correlations using Various Models  
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 Figure 6.10: Portfolio Standard Deviation and Scaled Average Correlations  

and Volatility Using the DCC Model  

 

 Figure 6.11: Portfolio Standard Deviation and Scaled Average Correlations  

and Volatility Using the O-GARCH Model  
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6.2.2 Multivariate Approach 

In this sub-section, we will analyze the multivariate approach of evaluating the 

VaR estimate of the portfolio consisting of 30 stocks, the result of which is in Table 6.3. 

The comparison of this result with the result from the univariate hypothetical portfolio 

consisting of the same 30 stocks will let us address the second research question. 

We backtested the appropriateness of 99% 1-day VaR calculated from 

multivariate model in the section 3.2. We used 1000 observations to evaluate VaR at each 

backtesting trial, so the total number of backtesting trials is 3582 [= 4582(the total 

number of observations) – 1000(observations for getting one VaR backtesting)]. 

The result of the PF test and the runs test are in Table 6.3. In the left tail, both the 

DCC model and the O-GARCH model were not rejected with the PF test at a 99% 

confidence level. But, both were rejected with the runs test at a 99% confidence level. As 

a result, both multivariate models were rejected with the PF test or with the runs test. 

In the right tail, both the DCC model and the O-GARCH model were not rejected 

with the PF test at a 99% confidence level. Both also were not rejected with the runs test 

at a 99% confidence level. So, both models were not rejected with both tests time in the 

right tail. 

In sum, two multivariate models were rejected with the PF test or with the runs 

test in the left or right tail, which means that both models are inappropriate to evaluate 

VaR of the hypothetical portfolio for both tails though both models are appropriate to 

evaluate VaR of the hypothetical portfolio just for right tail. One possible reason of this 

result is that those models failed to incorporate volatility clustering in the left tail as in the 

univariate hypothetical portfolio case.
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Table 6.3: Result of the PF test and Runs test of Multivariate Models for the Hypothetical Portfolio 
 

PF Test Runs Test 

Tail Model Name Exceptions 

F-statistics p-value No Exceptions Exceptions Runs z- statistics p-value 

DCC 49 4.3938 0.0361 3533 49 93 -3.2108 0.0013
 a

 
Left 

O-GARCH 48 3.7806 0.0519 3534 48 89 -4.5819 0.0000 

DCC*
 b

 49 4.3938 0.0361 3533 49 95 -1.9662 0.0493 

Right 

O-GARCH* 47 3.2096 0.0732 3535 47 93 -0.8215 0.4114 

a Bold means we can reject the null hypothesis in each test at a 99% confidence interval. 
b Asterisk means model work well in both tests at the same time at a 99% confidence level. 
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6.3 Univariate vs. Multivariate 

Table 6.4 represents the results of the PF test and the runs test of univariate and 

multivariate models for the hypothetical portfolio, which are reproduced from Table 6.2 

and Table 6.3.  

In the left tail, the EQMA model was rejected with both the PF test and the runs 

test at a 99% confidence level. The other models except the EWMA model and the 

EQMA model were not rejected with the PF test, but were rejected with the runs test at a 

99% confidence level. Only EWMA model was not rejected with both the PF test and the 

runs test in the left tail.  

In the right tail, the EQMA model, the EWMA model, and the GARCH models 

were rejected with the PF test at a 99% confidence level though these models were not 

rejected with the runs test at a 99% confidence level. The HS model and two multivariate 

models were not rejected with both tests at a 99% confidence level. Overall, in the right 

tail the HS model and two multivariate models were not rejected with both tests at a 99% 

confidence level.  

If we consider both left and right tail at the same time, all models could be 

rejected with the PF test or with the runs test. The EWMA model could be rejected with 

the PF test in the right tail though that model was not rejected with both tests in the left 

tail. On the other hand, the HS model and two multivariate models were not rejected with 

both tests in the right tail, but could be rejected with the runs test in the left tail. So, we 

could reject all models considered in this thesis with the PF test or with the runs test in 

the left or right tail, which means that no univariate and multivariate models are 

appropriate to evaluate VaR of the hypothetical portfolio for both tails.



 

 44 
 

 
 
 
 

Table 6.4: Result of the PF test and Runs test of Univariate and Multivariate Models for the Hypothetical Portfolio 
 

* Results are reproduced from Table 6.2 and Table 6.3 
PF Test Runs Test 

Tail Model Name Exceptions 
F-statistics p-value z- statistics p-value 

Equally weighted(EQMA) 60 13.7060
 a

 0.0002 -3.3056 0.0009 

Exponentially weighted(EWMA)*
 b

 50 5.0484 0.0246 -1.8935 0.0583 

GARCH (Normal Dist.) 49 4.3938 0.0361 -4.4555 0.0000 

GARCH (t Dist.) 45 2.1978 0.1382 -4.9904 0.0000 

Univariate model 

Historical Simulation 39 0.2772 0.5986 -4.4117 0.0000 

DCC 49 4.3938 0.0361 -3.2108 0.0013
 
 

Left 

Multivariate model 
O-GARCH 48 3.7806 0.0519 -4.5819 0.0000 

Equally weighted(EQMA) 64 18.1530 0.0000 -2.0135 0.0441 

Exponentially weighted(EWMA) 60 13.7060 0.0002 -2.2869 0.0222 

GARCH (Normal Dist.) 56 9.8017 0.0017 -0.4084 0.6830 

GARCH (t Dist.) 58 11.6840 0.0006 -0.3275 0.7433 

Univariate model 

Historical Simulation* 43 1.3662 0.2425 -1.0398 0.2985 

DCC*
 
 49 4.3938 0.0361 -1.9662 0.0493 

Right 

Multivariate model 
O-GARCH* 47 3.2096 0.0732 -0.8215 0.4114 

a Bold means we can reject the null hypothesis in each test at a 99% confidence interval. 
b Asterisk means model was not rejected with both tests at the same time at a 99% confidence level. 
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We note that two multivariate models were not rejected in both tails if we consider 

only PF test, which means that the way the DCC model and the O-GARCH model 

incorporate the conditional correlation movements of the individual stocks as well as the 

conditional variance can improve at least the unconditional property of models compared 

with the way of parametric univariate models such as the EWMA model and the 

univariate GARCH models. Since the international standard, Basel Accord, in the 

banking industry considers only unconditional coverage property in its risk management 

regulatory mandates, two multivariate models could be useful in that application. 

In addition, we would like to discuss the pattern of exceptions of the PF test result 

using the DCC model, the O-GARCH model, and the GARCH model with a normal 

distribution. Figure 6.12 compares binomial sequences of exceptions occurring in rolling 

backtesting of the VaR estimates using the GARCH model with a normal distribution and 

the DCC model. Figure 6.13 shows the same thing in the case of the O-GARCH model 

instead of the DCC model. In the stem diagrams of figure 6.12 and 6.13, ‘1’ means that 

exception occurs at that point. In both figures, the average correlation is calculated using 

the DCC model. The circle means that exception occurs at that point in that tail and that 

model, but exception does not occur in the same tail in the other model. 

In figure 6.12, the overall patterns of exceptions resulting from the DCC model 

look interesting; more exceptions occur when correlation increases. However, in the case 

of GARCH model with a normal distribution, more exceptions occur when correlation 

decreases. The VaR estimate using the DCC model is above the VaR estimate using the 

GARCH model when correlation decreases. On the other hand, when correlation 

increases, the situation is reversed; the VaR estimate using the GARCH model is above 
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the VaR estimate using the DCC model, which means that the change of the VaR 

estimation using the DCC model is smaller than the change of the VaR estimation using 

the GARCH model when correlation changes. In Table 6.5, the VaR estimate using the 

DCC model has the least standard deviation among three models. The reason is that as 

you can see in the specification of the DCC model in equation (17), the DCC model uses 

the GARCH specification in modeling the conditional correlation, which results in the 

long memory of correlation or slow response to the change of correlation. 

 

Table 6.5: Mean and Standard Deviation of the VaR estimates 

Variables GARCH(Normal) DCC model O-GARCH model 

Mean 2.4081 2.4361 2.4403 

Standard Deviation 0.8890 0.6257 0.8723 

 

 

As a result, we note that the performance improvement of DCC models relative to 

univariate models occurs in the period when correlation decreases, which is the opposite 

observation we expect; in fact, we expected that the performance improvement would 

occur when correlation increased. 

 Comparing the O-GARCH model with the univariate GARCH model, our 

calculation result indicates that the VaR estimates using the O-GARCH model seem more 

sensitive to market catastrophic event or market risk because only the seventeenth 

(backtesting trial 3031 in figure 6.13) out of the biggest thirty VaR estimates using the 
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univariate GARCH model is greater than the VaR estimates using the O-GARCH model 

on the same day. However, in figure 6.13 the occurrence pattern of exception resulting 

from the O-GARCH model is not much different from the occurrence pattern of 

exception resulting from the GARCH model in catastrophic events (around backtesting 

trials 2000 through 3000) 

 Compared with the DCC model with respect to correlation, the O-GARCH model 

seems to have shorter memory than the DCC model. The early backtesting horizon of the 

VaR estimate using O-GARCH model in figure 6.13 seems to remember the past big 

correlation caused by the Black Monday stock crash, which you can check in figure 6.10. 

So, in that horizon the VaR estimate using the O-GARCH model is greater than the VaR 

estimate using the univariate GARCH model. However, after that period, the O-GARCH 

model looks more apt to respond to the change of correlation, even more than the 

univariate GARCH model.  

As a result, all univariate models and multivariate models were rejected with the 

PF test or with the runs test in the left or right tail. However, if we consider only the PF 

test, which is more important than the runs test with respect to real application, the 

multivariate models, the DCC models and the O-GARCH model, were not rejected in 

both tails. We note that the performance improvement of DCC models relative to 

univariate models with respect to the PF test occurred when correlation decreased. The 

performance improvement of O-GARCH model also occurred when correlation 

decreased, but overall VaR estimates using O-GARCH model were greater than the VaR 

estimate using the univariate GARCH model when correlation increased.
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Figure 6.12: Exception Occurrence of DCC and GARCH (Normal)  
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Figure 6.13: Exception Occurrence of O-GARCH and GARCH (Normal)  
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CHAPTER 7 
 
 

Conclusion 

 

This thesis sought to determine the best among various models in estimating VaR. 

Models were evaluated in terms of both accurate probabilities of extreme events and lack 

of correlation among exceptions. For accurate probabilities of extreme events, we used 

the proportion of failures (PF) test proposed by Kuiec (1995), and for lack of correlation 

among exceptions we used the runs test. 

We compared five univariate models using the DJIA index and the hypothetical 

portfolio of 30 stocks; the five models are the equally weighted moving average (EQMA) 

model, the exponentially weighted moving average (EWMA) model, the GARCH model 

with a normal distribution, the GARCH model with a t-distribution, and the historical 

simulation (HS) model. 

In DJIA index portfolio, two models (the GARCH model with t-distribution, the 

HS model) were not rejected in both right and left tails with the PF test and the runs test. 

Other models were rejected, which means that rejected models are inappropriate to 

evaluate VaR of the DJIA index portfolio. This result makes sense if we consider the fact 

that the two models are more robust to the fat-tail characteristic of financial time series 

than the other models. However, in the case of the hypothetical portfolio which has fatter 

tails than the DJIA index portfolio, all models were rejected with the PF test or with the 
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runs test in the left or right tail, which means that no univariate models are appropriate to 

evaluate VaR of the hypothetical portfolio.  

The difference of results between the DJIA index portfolio and the hypothetical 

portfolio came from the fact that in the right tail the distribution of the hypothetical 

portfolio returns has a fatter tail or stronger volatility clustering than that of the DJIA 

returns. These properties make it difficult for models to adequately estimate the VaR 

number with respect to both the PF test and the runs test. 

Here, we note two facts regarding the VaR estimation. In the same portfolio, the 

VaR estimate using one model differs from the VaR estimate using another model, which 

implies the model dependency of the VaR estimation; in the DJIA index portfolio case, 

two model were not rejected with the PF test and the runs test, but in the hypothetical 

portfolio case, all models were rejected, which means that no model did a uniformly good 

job regardless of portfolio. It also turned out that the result depends on the length of 

periods of backtesting18. These observations confirm the research results by Bedder 

(1995) and Hendricks (1996) that VaR estimates from different parameters, data, 

assumptions, and methodology were quite different.  

We compared the results using the univariate models, which evaluated VaR based 

on the univariate return series of the portfolio of 30 stocks, with the results using the 

multivariate models, which evaluated VaR based on the multivariate return series of the 

same portfolio. In each tail all univariate models and multivariate models could be 

rejected with the PF test or with the runs test in the left or right tail, which means that no 

univariate models or  multivariate models are appropriate to evaluate VaR of the 

hypothetical. 
                                                 
18 See appendix D. 
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However, we note that though the DCC model and the O-GARCH model were 

rejected with the runs test, which might be caused by strong volatility clustering in the 

left tail of the distribution of returns of the hypothetical portfolio, if we consider only the 

PF test, which is more important than the runs test with respect to real applications like 

the Basel Accord, the multivariate models, the DCC models and the O-GARCH model, 

were not rejected in both tails, which means that the way the DCC model and the O-

GARCH model incorporate the conditional correlation movements of the individual 

stocks as well as the conditional variance can improve at least the unconditional property 

of models compared with the way of parametric univariate models such as the EWMA 

model and the univariate GARCH models.  

However, improvement of DCC models relative to univariate models occurred 

when average correlation between assets in the portfolio decreases. Though that 

improvement of O-GARCH model also occurred when average correlation between 

assets in the portfolio decreased, overall VaR estimates using O-GARCH model were 

greater than VaR estimates using the univariate GARCH model when average correlation 

between assets in the portfolio increased. 

As a concluding remark, VaR is a very convenient tool to manage a company’s 

risk because it is easy to understand and communicate. However, the VaR estimate turns 

out to depend on the models used, its assumptions and the portfolio of the company, etc. 

So, we can say that VaR is a good starting point for risk management, not a final and 

perfect tool in risk management. 

 



 

 53 
 

REFERENCES 

 

[1] Alexander, C. 2001 “Market Models,” John Wiley & Sons, Ltd. 

 

[2] Angelidis, T. and Benos, A. 2004 “Value-at-Risk for Greek Stocks,” Department of 

Banking and Financial Management, University of Piraeus, Greece. 

http://gloriamundi.org/picsresources/taab_1.pdf 

 

[3] Bauwens, L., Laurent, S., and Rombouts, J.V.K. 2004 “Multivariate GARCH Model: 

A Survey,” Journal of Applied Econometrics (forthcoming). 

 

[4] Bedder, T. 1995 “VAR: Seductive but Dangerous,” Financial Analysts Journal 51, 

12-24. 

 

[5] Bodie, Z., Kane, A., Marcus, A.J. 2002 “Investments, 5th Edition,” McGraw-Hill, Inc. 

 

[6] Bollerslev, T. 1986 “Generalized Autoregressive Conditional Heteroskedasticity,” 

Journal of Econometrics 31, 307-327. 

 

[7] Brooks, C., and Persand, G. 2003 “The Effect of Asymmetries on Stock Index Return 

Value-at-Risk estimates,” The Journal of Risk Finance 4(2),29-42. 

 

[8] Campbell , Sean D. 2005 "A Review of Backtesting and Backtesting Procedures," 

Finance and Economics Discussion Series 2005-21, Board of Governors of the 

Federal Reserve System (U.S.).



 

 54 
 

[9] Engle, R.F. 2002 “Dynamic Conditional Correlation - A Simple Class of Multivariate 

GARCH Models,” Journal of Business and Economic Statistics 20(3), 339-350. 

 

[10] Engle, R. F. and Kevin S. 2001 “Theoretical and Empirical Properties of Dynamic 

Conditional Correlation Multivariate GARCH,” NBER Working Papers 8554, 

National Bureau of Economic Research, Inc. 

 

[11] Fleming, J., Chris, K., and Ostdiek, B. 2001 “The Economic Value of Volatility 

Timing,” Journal of Finance 56, 329-352. 

 

[12] Giot, P. and Laurent, S. 2003 “Value-at-Risk for Long and Short Trading Positions,” 

Journal of Applied Econometrics 18, 641-664. 

 

[13] Hendricks, D. 1996 “Evaluation of Value-at-Risk Models Using Historical Data,” 

FRBNY Economic Policy Review 2(1), 39-69. 

 

[14] Hull, J.C. 2002 “Options, Futures, and other Derivative Securities, 5th Edition,” 

Prentice-Hall, Englewood Cliffs. 

 

[15] Jorion, P. 2000 “Value atRisk: The New Benchmark for Managing Financil Risk,” 

McGraw-Hill, New York. 

 

[16] J.P. Morgan 1996 “RiskMetricsTM - Technical Document,” J.P. Morgan, New York. 

 

[17] Kupiec, P.H. 1995 “Techniques for Verifying the Accuracy of Risk Measurement 

Models,” The Journal of Derivatives 3, 73-84. 

 

[18] Longin, F., and Solnik, B.1995, “Is the Correlation in International Equity Returns 

Constant: 1960-1990?” Journal of International Money and Finance 14, 3-26. 

 



 

 55 
 

[19] Manfredo, M.R. and Leuthold, R.M. 1999, "Measuring Market Risk of the Cattle 

Feeding Margin: An Application of Value-at-Risk Analysis," American Agricultural 

Economics Association Meetings, Nashville, TN. 

 

[20] RiskMetrics 2001 “Return to RiskMetrics: The Evolution of a Standard,” 

RiskMetrics Group, Inc. 

 

[21] Rombouts, J. and Verbeek, M. 2004  “Evaluating Portfolio Value-At-Risk Using 

Semi-Parametric GARCH Models,” ERIM Report Series Reference No. ERS-2004-

107-F&A. 

 

[22] Sarma, M., Thomas, S. and Shah, A. 2003, "Selection of Value-at-Risk Models," 

Journal of Forecasting 22, 337-358. 

 

[23] Sheskin, David J. 2003 “Handbook of Parametric and Nonparametric Statistical 

Procedures,” Chapman & Hall/CRC. 



 

 56 
 

APPENDIX A 

Univariate Approach vs. Multivariate Approach Using the EWMA model 

 

We compare the univariate approach with the multivariate approach using the 

exponential model; the equally weighted model case follows a similar procedure. For 

simplicity, we just consider the two-asset case. We can extend this idea for general N-

asset case. 

Let p
tr  be a portfolio return at time t, then 2

2
1

1 tt
p

t rwrwr +=   

where 1
tr  is the return of asset 1, 1w  is weight of asset 1, 2tr  is the return of asset 2, and 

2w is weight of asset 2.  

Then, by the definition in the exponentially weighted scheme19, 
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19 According to RiskMetrics (1996), λ = 0.94 in the case of daily data. 
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At (A.1.6), the first term is the volatility form the asset 1, the second term is the 

volatility from asset 2, and the last term is the volatility form both or covariance. This 

explains that the volatility of the portfolio can be decomposed into volatilities of each 

asset, and covariance. Covariance matrix in (A.1.7) is exactly the same as multivariate 

covariance matrix by RiskMetrics (2001), which means that the volatility from the 

univariate model (A.1.1) is equal to the volatility from the multivariate model (A.1.7). 

In sum, if we follow the methodology by RiskMetrics to get a covariance matrix, 

the volatility of a portfolio from the univariate portfolio returns will be equal to that from 

the multivariate approach. 



 

 58 
 

APPENDIX B 

Principal Component Analysis 

 

Principal component analysis (PCA) ), which is a kind of linear transformation, is 

a very popular method in dealing with multivariate variables. In the main text, we 

introduced the orthogonal GARCH (O-GARCH) model. That multivariate model is also 

based on PCA. In this appendix, we would like to explain PCA in detail to help reader 

understand the O-GARCH model. 

Let X be the standard normalized return vector series of the original return vector 

series Y. By the spectral theory of linear algebra, there is a orthogonal matrix W such that  

X'XW=WΛ                                                       (A2-1) 

where W is a matrix of eigenvectors of X'X , Λ is the associated diagonal matrix of 

eigenvalues. 

Then, the principal components matrix P of Y can be defined as   

P = XW                                                            (A2-2) 

One excellent property of the principal components matrix is that each column vector of 

that matrix is orthogonal with the others, which can be proved by  

P'P = (XW)'(XW) =W'X'XW=W'W Λ= Λ                      (A2-3) 

Note that since W is orthogonal, W'W = I and Λ is diagonal. 

From (A2-2),  

             X = PW-1                                                           (A2-4)
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                          or  xi = wi1p1 + wi2p2 + ………… + winpn    

where xi is the ith column vector of X, pi is the ith column vector of P, and wij is ij th 

elements of W-1, which can be re-expressed with respect to Y as following: 

yi = µi + qi1p1 + qi2p2 + ………… + qinpn                                         (A2-5) 

where yi is the ith column vector of Y, qij = wij × standard deviation of yi, and µi is mean 

adjustment. Taking variances of (A2-5) gives  

H = ADA'                                                                 (A2-6) 

where H is the covariance matrix of Y, A = (qij) is the matrix of denormalized factor 

weights, and D = diag(Var(p1),…, Var(pn)). Note that D is a diagonal matrix because the 

principal components are uncorrelated. According to Alexander (2001), H will always be 

positive semi-definite.
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APPENDIX C 

GARCH Model Fitting Results Using Various Computer Software Packages  

 

In this thesis, we used univariate GARCH model a lot. In fact, even the 

multivariate model is based on the result of a univariate GARCH model. So, the accuracy 

of GARCH model fitting is very critical in this thesis. 

There are several software packages that offer GARCH modeling function such 

as SAS, EVIEWS, and Matlab. Software packages like GAUSS do not offer GARCH 

modeling function directly, but it is possible to create codes for it. In fact, it is also 

possible to create codes for GARCH model in Matlab20. It is very important to 

understand software packages used in the research because different software packages 

might produce different estimated GARCH models with the same data set. So, here we 

compared those using simulated data sets. 

 The model simulating data sets of returns is GARCH(1,1) in (8). The 

coefficients for GARCH(1,1) model generating each data set is in Table C.1. The number 

of observations is 1000. Data set 1 is designed to have more ARCH effect, but less 

GARCH effect. However, Data set 3 will have less ARCH effect, but more GARCH 

effect. Data set 2 is in the middle of those two data sets. Table C.2 contains the 

descriptive statistics of each data. Figure C.1 shows plots of each data set. 

                                                 
20 In this thesis, we usually take advantage of the Matlab GARCH codes written by Kevin K. Sheppar who 
is co-author of the DCC model article because this is relatively fast, and easy to modify.  
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Table C.1: The Coefficient Used to Simulate Data Set 
 

Data Set Constant ARCH coefficient GARCH coefficient 

Data Set 1 0.07 0.35 0.60 

Data Set 2 0.07 0.15 0.80 

Data Set 3 0.07 .02 0.96 

  

Table C.2: Descriptive Statistics for Simulated Data Set 
 

Variables Data Set 1 Data Set 2 Data Set 3 

Observations 1000 1000 1000 

Mean 0.0102 0.0076 0.0035 

Std. Dev. 1.2526 1.2513 1.8714 

Skewness -0.3064 0.1134 0.0202 

Kurtosis 20.8009 6.5543 3.1651 

Jarque-Bera 
13218.68 *a 
(0.0000) b 

528.5309* 
(0.0000) 

1.2038 
(0.5478) 

Q(12) 
1640.4263* 

(0.0000) 
817.8450* 
(0.0000) 

35.3884* 
(0.0004) 

ARCH LM 
481.2426* 
(0.0000) 

253.1163* 
(0.0000) 

29.4383* 
(0.0034) 

                            a Asterisks means that number is statistically significant. 
                            b Numbers in parenthesis is t-statistics. 
. 
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Figure C.1: Plots of Simulated Data Set 
 

We note that data set 3 looks more likely to be normal than data set 1 in Table 

C.2.  We can also see stronger ARCH effect in the data set 1 than data set 3. In figure C.1, 

data set 1 shows relatively low volatility, but high peaks. Data set 3 shows relatively high 

volatility, but low peaks.  

Table C.3 shows the result of GARCH model fitting of each data set from 

various software packages21. With respect to coefficients and VaR figures, most software 

                                                 
21 The tolerance of convergence in all cases is set to be 0.001. 
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package worked reasonably well except EVIEWS. EVIEWS worked badly especially 

with data set 3. It produced negative coefficient values22, which are far from the true 

value.  

Table C.3: GARCH Model Fitted Result 

Matlab 
Data 
Set Variables Original 

Embedded 
GARCH 

Programmed 
GARCH GAUSS SAS EVIEW 

0.0704
 a

 0.0698  0.0704  0.0705  0.0693  Constant  0.0700 
(4.3597)

 b
  (4.4435)  (4.5171)  (4.3700)  (4.3158)  

0.3266  0.3255  0.3158  0.3250  0.3223  ARCH Coefficient 0.3500 
(7.3518)  (6.6872)  (6.7963)  (7.3500)  (7.2953)  

0.6124  0.6140  0.6165  0.6128  0.6177  GARCH Coefficient 0.6000 
(13.1747)  (12.8650)  (6.7963)  (13.2000)  (13.2245 ) 

Log Likelihood  -1245.2 -1245 -1244.7933 -1245.1498 -1244.105 

1 

VaR 
c
 $12,622.19 $12,731.05 $12,724.67 $12,735.22 $12,732.62 $12,749.76 

0.0329  0.0337  0.0340  0.0347  0.0334  Constant  0.0700 
(2.2359)  (2.3913)  (2.4684)  (2.3300)  (2.3061)  

0.1069  0.1011  0.0986  0.1019  0.0994  ARCH Coefficient 0.1500 
(5.0925)  (4.6983)  (4.6855 ) (5.0000)  (4.9445 ) 

0.8690  0.8736  (0.8741)  0.8716  0.8758  GARCH Coefficient 0.8000 
(32.0237)  (32.3864)  32.6323  (32.1600)  (32.9230)  

Log Likelihood  -1495.6 -1495.2 -1495.2026 -1495.4698 -1494.695 

2 

VaR $18,838.72 $18,709.01 $18,900.38 $18,834.25 $18,871.31 $18,964.03 

0.0479  0.0532  0.0478  0.0483  6.730109 Constant  0.0700 
(1.1371)  (1.6927)  (1.5653 ) (0.2522)  (15.5311) 

0.0230  0.0221  0.0226  0.0229  -0.012882 
ARCH Coefficient 0.0200 

(2.2753)  (2.7619)  (2.8556)  (0.0231)  (-1.112199) 

0.9633  0.9630  0.9634  0.9632  -0.913815 GARCH Coefficient 0.9600 
(49.4405)  (72.7501)  (73.6365 )  (<.0001) (-8.94576) 

3 

Log Likelihood  -2033.8 -2033.7 -2033.7361 -2033.7596 -2044.326 
 VaR $41,012.21 $40,607.76 $40,902.55 $40,433.34 $40,532.25 $43,155.78 

a bold means that number is statistically significant. 
b the numbers in parenthesis is t-statistics. 
c VaR is 99% 1-day Value-at-Risk figure when $1,000,000 is invested 

                                                 
22 I contacted to the technical support team of EViews company. They said current version (5.1) of EViews 
did not have the ability to restrict directly coefficients values to be positive. However, other approaches 
such as setting starting value to something more reasonable might be possible to achieve that. 
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APPENDIX D 

The Length of Periods of Backtesting 
 
 

The result of the proportion of failures (PF) test depends on the length of periods 

of backtesting. Using the hypothetical portfolio of 30 stocks and 1000 observations for 

backtesting, we tested how the result of the PF test would be changed when periods of 

backtesting is changed from 8/15/2000 ~ 12/31/2004 (1100 observations) to 11/3/1986 ~ 

12/312004 (4582 observations), so the number of backtesting trials changes from 100 to 

3582: five models are the EQMA model, the EWMA model, the GARCH model with a 

normal distribution, the GARCH model with a t-distribution, and the HS model. The 

result is in figure D.1. There is a non-rejection band that represents the region within the 

null hypothesis of the PF test are not rejected.  

 

Figure D.1: The result of the PF test (Left Tail, Univariate) 
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 In figure D.1, the result using GARCH model with a normal distribution looks 

very interesting. When the number of backtesting trials is less than about 2200, the PF 

test using that model failed to reject the null hypothesis because the number of exception 

from that model is in the non-rejection bands. Then, when the number of backtesting 

trials is around between 2200 and 3100, the test can reject the null hypothesis because the 

number of exceptions using that model is out of the non-rejection bands. However, the 

model works well after 3100. We can analyze other cases in the same way. 

 Apparently, we get some knowledge about the model selection from figure D.1 

though the results of the PF test vary depending on the number of the backtesting trials. 

The GARCH model with a t-distribution show superiority over the most models in the 

most cases, which is consistent with our knowledge. The scheme like exponentially 

weighted model and GARCH model that gives more weights on the current events also 

does a better job than the scheme that give the same weights to the whole time horizon.  

In these regards, we can compare the overall model performance among the 

GARCH models in figure D.2 and D.3 with respect to the PF test. In figure D.2, if we 

assume a normal distribution, orthogonal GARCH model works slightly better than the 

univariate GARCH model. DCC model works better in some ranges, but worse in other 

ranges. However, we can observe that GARCH model with t-distribution apparently work 

better job after 2000 of the backtesting trials. In figure D.3, orthogonal GARCH model 

works better regardless of the assumption about the distribution. However, DCC model, 

again, works better in some ranges, but worse in other ranges. As a result, multivariate 

models work reasonably well in the many cases regardless of the assumption about the 



 

 66 
 

distribution. But, in some cases, we can observe that is not true. So, we can not say that 

multivariate models are always superior over the univariate models. 

 
Figure D.2: The result of Backtesting Trials among GARCH models (Left Tail) 

 
 

 
Figure D.3: The result of Backtesting Trials among GARCH models (Right Tail) 
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