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CHAPTER 1

INTRODUCTION

Value-at-Risk (VaR) is the most popular tool irkrmmanagement because it is
easy to communicate and easy to comprehend. Thartamze of VaR is rapidly
increasing because the international agreemerdnkibg industry the, so-called, Basel
Accord heavily uses VaR methodology. To manage etaigk, the Basel Accord
requires a financial institution to have capitapnoportion to the total value of its risk-
adjusted asset which is basically measured by VidRe internal models approach. This
rule is accepted by the Group of Ten (G-10) coedtand many other countries. So,
banks in those countries evaluate their risk exggogsing this VaR methodology.

Jorion (2000) intuitively defined VaR as the sumynairthe worst loss over a
target horizon with a given level of confidencer Erample, the chief financial officer of
a financial company might say that the VaR oflihak is $10 million at a 95 percent
confidence level over one day horizon, which mehatsthere is a 5% probability for a
loss greater than $10 million to happen under nbmaaket conditions. So, since VaR is
a single number summarizing the amount of riskctirapany is exposed to, it is very

easy to understand and communicate.

1 G-10 countries are Belgium, Canada, France, Geynily, Japan, the Netherlands, Sweden, United
Kingdom, and the United States, plus Luxembourg&widzerland.



However, the VaR methodology requires distributl@ssumptions for the
relevant risk factors. Moreover, the VaR estimapeahds on not only the assets class
constituting portfolio, but also the model use@gstimate the volatility of those assets. In
this regard, it is valuable to investigate whichaitity model produce superior risk
measurement for a given portfolio.

In the past study, Sarma et al (2003) studied theéatselection for VaR
estimation in the S&P 500 and India’s NSE-50. Usartgvo-stage model selection
procedure, they compared the performance of catediddatility models such as equally
weighted moving average(EQMA) model, exponentialgighted moving
average(EWMA) model, the GARCH model, and the his&b simulation(HS) model.
They found that the EWMA model worked best amomggéhmodels. Angelidis and
Alexandros (2004) analyzed the application of saiveulatility models to forecast daily
VaR both for single assets and portfolios. Theysatered models such as the GARCH
model, the EWMA model, the exponential GARCH modtlet, threshold ARCH model,
the extreme value theory (EVT), and the HS modeéylfound that the best model
depended on portfolio.

Some researchers warned of limitations of the Viapt@ach in risk management.
Bedder (1995) examined eight VaR estimates forethggothetical portfolios. He found
that VaR is very effective measure in risk managsamnizut since it depends on
parameters, data, assumptions, and methodologygiitt be dangerous in its application.
Hendricks (1996) compared 12 different VaR evabratipproaches using simulated data
from eight foreign exchange markets. He concludied in almost all cases these

approaches covered the risk that they were intetmledver. However, he also observed



that VaR estimates from different approaches warte glifferent, which also implies
that VaR approach is overall good tool for risk mg@&ment, but needs some cautions in
application.

The comparison of the univariate approach withntludtivariate approach of VaR
evaluation might also be a very interesting questilo evaluating the portfolio VaR, the
multivariate model can have some advantages oeaurtlvariate model. According to
Bauwens et al. (2004), one advantage of a mulat@amodel is that once we get the
covariance matrix by the multivariate approach,deanot need to calculate again the
covariance matrix even if the weights of each assethanged; under the univariate
model, we should evaluate the variance of portfaain whenever the weights of each
asset are changed. Another advantage is that avaridte model may improve the
evaluation performance in updating the variancescanrelations by considering the
individual characteristics of the portfolio’s comamts and estimating their linear
comovement. According to the Longin and Solink @Q%e markets become more
closely related during periods of high volatility. this period, considering the individual
correlation among stocks might increase the mockiracy. So, it is a good research
guestion whether multivariate models perform betian univariate models.

In the literature of the multivariate VaR approaktanfredo and Leuthod (1999)
investigated various VaR estimation techniquesheragricultural enterprise portfolio;
the EQMA model, the EWMA model, the GARCH modek tmplied volatility model,
and the HS model as univariate model, and constardtitional correlation model as
multivariate models. They found that the EWMA modetl the HS model provided

reasonably good estimates. Brooks and Persand Y\ &0@id that the multivariate



GARCH(1,1) model worked best to get a VaR estimali@ive to other models like the
HS model, the RiskMetrics approach, and the matliReskMetrics approach using daily
closing stock prices of five Southeast Asian caestrEngle (2002) compared VaR
estimates from various methods such as the BEt#del, the Dynamic Conditional
Correlation (DCC) model, and the orthogonal GARCHGARCH) model, the
multivariate EQMA model, and the multivariate EWM#odel. He observed that the
DCC model overall performed best to evaluate VaBeuthe various situations.
Rombouts and Verbeek (2004) examined the usefubfdbe multivariate semi-
parametric GARCH models for portfolio selection and Value-at-Risk (VaR)
constraint. They also examined several alternatiutivariate GARCH models for daily
returns on the S&P 500 and NASDAQ indexes.

To tell a good model from a bad model, we need soniteria. One obvious
property that a good model should have is predidiabrhat is, a good model should do
a good job in predicting future risk exposure. Arestcriterion is whether the model uses
all information available. If a prediction modelefonot use all information available, its
prediction ability will be lowered, which means tliae model is inferior. There are

various statistical methods based on these ideaswvilreview them in the later section.

So, this thesis will address two questions:

1. Which univariate models are appropriate to eatalvaR of the Dow Jones
Industrial Average (DJIA).

2. Considering multivariate volatility models suatithe DCC model and the O-

GARCH model, which incorporate conditional correlas among assets, as

2 BEKK came from Baba, Engle, Kraft and Kroner wherevcontributors to the model.



well as univariate models, which models are appatg@to evaluate VaR for a

hypothetical portfolio.

For the first question, we will focus on the uniese model. After that, we will
turn our attention to the multivariate model foe tecond question. For these questions,
we need some judging criteria, which will be intuadd later.

In the following sections, we will review the VaRrecepts, which will be
followed by a review of the various methods to eatd VaR. After that, we will move to
the model discerning criteria. The empirical residitthe univariate models will be
presented and discussed first. Then, the restifteomultivariate models will follow, and
the comparison of both models will be discusse@nTkve will draw some conclusions
and implications.

This thesis is different from the existing studiesn two points: data and
comparison. This thesis uses two sets of dateD#& and a hypothetical portfolio. Most
past research used a portfolio consisting of tiweéd or, at most, five stocks. But, in this
thesis we use a hypothetical portfolio consistih§®stocks to test the performances of
the multivariate models. One other point is thaegms that little study has been done
about the comparison of the multivariate VaR estitnmaethods with the univariate VaR
estimate methodssing thesame portfolian the VaR literature. So, the most distinctive
point of this thesis is that comparison. This wllbw us to determine the value of

conditional correlation estimation in this VaR apation.



CHAPTERIII

Value-at-Risk

Jorion (2000) formally defines VaR as the desariptf the quantile of the
projected distribution of gains and losses oveltdéinget horizon. It is the selected
confidence level, VaR corresponds to thecllewer-tail levels. Mathematically, it can

be formulated like this:

c= ]2 f (x)dx (1)

~VaR
wherex is a random variable of the profit/loss of porithpf(x) is the distribution ok,

andc is the selected confidence level. If the profgdalistribution of portfolio is
assumed to follow a normal distribution with zerean, then we can get a VaR estimate

in a very easy way as follows.

2.1 Single Asset
If the profit/loss distribution of an asset is asgdl to follow a normal distribution
with zero mean, then
VaR = zXVpXo (2)
wherez is the critical value at confidence leveMg,is the initial value of the portfolio,

andois the estimated standard deviation of the pad®return. For instance, assume



that the initial value of an asset is $1, the retfrthe asset follows a normal distribution

with zero mean and standard deviatiorvof he tomorrow’s VaR estimate at 95%

confidence level over one day horizon is 1.64%figure 1.

5%

] : ] 1 ] ]
-4ag -30 -20 -1g 0 10 h) 3o 4ag
Profit/Loss of Portfolio

Figure2.1: VaR Estimate and Profit/L oss Distribution

2.2 Portfolio

In the portfolio theory, the returm () of a portfolio is defined as follows:

o= D W, (3)
wheren is the number of assets in the portfoligs the return ofth asset for = 1..n,

andw is the weight ofth asset in the portfolio for= 1..n. The variancea(,f) of the

portfolio can be calculated as follows:



n

Z(vvla) +ZZWWU (4)

i= i=1 j=1
iZ]

where g, is the variance ath assetg, ; is the covariance betweéh asset anfth asset.

In equation (4), the first term is called diveraifie risk or non-systematic risk which can
be eliminated through diversification and the selctarm is called undiversifiable risk or
systematic risk which can not be eliminated throdyersification.

To investigate the power of diversificatforve consider a strategy where weights

are equal to 1/n. Then

18,1 nag
a, :;Z;Uaz 2.2 50 ()

52 — lzaiz
Nz
6)
1 n n (
2.2,
Tnn-) &4
iz
, then portfolio variance can be expressed as
o =tg2. 071 (7)
n n

Here, when the number of assets in the portfolioaases, the first term, non-systematic

risk, will disappear, but the second term, systéanritk, will converge t€ . In general,
we can say that the risk of a well-diversified pard6 comes from only systematic risk or
covariance part in equation (7).

The variance of the portfolio can be expresseténmatrix form as

% You can see more detailed discussion on this ap@i 8 of Bodie et al (2002).



Jl ULn Wl
WZ
o2 =[w, w, ... w, | (8)
2
Jn,l Un Wn
or
g, = wWEw

wherew is the vector of the weights of the portfolio, ahids the covariance matrix. If
risk factors follow a normal distribution with zenoean, the VaR of the portfolio can be

calculated as
VaR, = 2xXVoX g, 9)

We note that the relation between the mean andt#melard deviation depends on
the length of the time horizon. Since the volatiftows with the square root of time and
the mean with time for independent identically distted processes, the mean will
dominate the volatility over long horizons. Ovepsgrorizons, such as a day, volatility
dominates. This provides a rationale for focusingolatility ignoring expected returns
or assuming that those are zero when we evalud®env@asures using daily data. In this
thesis, since we will use the daily returns of 8ks, we also assume that the expected
return of the daily return of each stock is zeroe Expected return of the portfolio can be
assumed zero because the expected return of ttfeljois the weighted average of the
expected returns of the stocks. This leads usstofgeus on the standard deviations of

the stocks and portfolio to evaluate VaR.



CHAPTER 3

VaR Evaluation Modds

There are two approaches to evaluate the VaR ortéopo sense. The first
approach is to create a univariate return seriethéoportfolio using the weight of each
asset, and then we can use univariate models whiche reviewed. The other approach
is to estimate a multivariate variance-covarianegrix, and then we can evaluate VaR
by using equation (7).

We will use five univariate models and two multiéée models to evaluate VaR.
Five univariate models are the EQMA model, the EWM#Adel, the GARCH model
with a normal distribution, the GARCH model witt-distribution, and the HS model

As multivariate models, we will use the O-GARCH mbdnd the DCC model
because these can be easily applied to a portfohgisting of many assets. In fact, most
frequently used and cited multivarite volatility deds are the Veémodel, the BEKK
model, the DCC model, and the O-GARCH model. Howeag indicated in Table 3.1,
the Vech model and the BEKK model are practicatlyavailable for a portfolio
consisting of many assets, which leads us to wsdhe DCC model and the O-GARCH

model.

* Here, we do not consider the Monte Carlo simutatieethod because we will use the linear portfdtio,
which case the result from the Monte Carlo simalaghould be the same as the result from variance-
covariance approach.

®Vech is the name of a mathematical operator.

10



Table 3.1: Number of Parameter Needed According to the Number of Assets

#. Assets Vech Model BEKK Model DCC Model O_I\(ABOACIECI:H
2
n n(n+1) +2( n(n+1)j _n(n+1) +2n? 3n+3 3n
2 2 2
30 432,915 2265 93 90

Note that in this table we assume that the lagdl#dRCH and GARCH parameters are 1

3.1 Univariate M odels
We will review five models: the EQMA model, the E®@ model, the GARCH
model with a normal distribution, the GARCH modethwa t-distribution, and the HS

model.

3.1.1 Equally Weighed Moving Average M odel
The simplest one is the equally weighted movingrage model, where today’s
volatility is calculated by the average of the ¥itity over the given time window. The

mathematical formula {s

m 2

> () (10)

1
gl ==
miz
whereo is the standard deviation,is the number of daily rate changes used to cateul
standard deviation; is daily return. In fact, this model gives equaight 1/m to each

volatility of the past. So, that is why this modetalled equally weighted moving

average model.

® By usingminstead ofn-1 in the denominator, we assume that the volagiiitimate in equation (5) is the
maximum likelihood estimator, not the unbiasednaator. See Hull (2003) chapter 17.

11



3.1.2 Exponentially Weighted Moving Average Model
It seems more reasonable to assume that todalgslig is more affected by the
more recent events. To incorporate this into tioeeh we should give more weight to
the more recent events and less weight to the kextnts. One of these weight schemes
is an exponential scheme. The model using thismeptial weight scheme is
ol == + Ao, (12)
where g, is the standard deviation for daym, is the daily shock for day1, andA is

the decay factdr In the iterative way, we can easily show that
o = L= A7)’ (12)
i=1

, which shows that the weights for thes decline at ratel as we move back through

time. This model is called exponentially weighteduwing average model. According to
the technical document of the RiskMetrics (1996)ses the EWMA model witd =
0.94 for updating daily volatility estimates. Inglthesis, we used = 0.94 because we

used daily data.

3.1.3 GARCH Modél
There is another weight scheme called generaliméoregressive
conditional heteroskedasticity (GARCH) model, whislproposed by Bollerslev (1986).

The GARCH p,q) process is then given by

"We note that since in this thesis the expectechroéthe price is assumed to be zero, the dailglsis
equal to the daily return, that is,-r,for day n. So, hereafter the daily shock meangl#iky return, and
vice versa.

8 Here, we assume that the volatilities before tjtr®) are so small that they can be ignored.

12



& |l//t—1 ~N (O,Ut),

g , p 113
0, =40, +zai£t—i +z,3iat—i
=l =

where p=0,9>0,a,>0,a, 20,5 =2 0 Whenp=0g=0, ¢ is simply white noise. It is
generally accepted that in most cases GARCH(1,Befns enough to model the
volatility of financial market. So, we will use GAR(1,1) model in this thesis, and
hereafter GARCH model means GARCH(1,1) model. Tkamng of GARCH model is
that today’s volatility(x) is updated by yesterday’s volatility) and yesterday’s
shockgr.1). We note that in fact the EWMA model is a pariacicase of the
GARCH(1,1) model wherep=0,a;=1- 4, anda, = A.

Another variation of the standard GARCH model isise the student t
distribution instead of normal distribution as tmnditional distribution which the daily
return follows. In fact, the conditional distriboi as well as the unconditional
distribution of the daily return is generally catesied to have fatter tails than a normal
distribution. So, if we use the student t distribatinstead of a normal distribution as the
conditional distribution the daily return follow,enare supposed to get more realistic

result.

3.1.4 Historical Simulation model
The historical simulation method uses historicabda build the distribution of
the risk factor, and then evaluate VaR from thatrttiution. In the case of the single

index, we get historical movements or series afrret (r,,t =1,..,n) of the index. Based

on those movements, we can get the simulated towtsvalue of the inde¥, ,, as:

13



V., = +)*V, (14)
wheret =1,..,n andV, is the today’s portfolio value. After that, we caonstruct the
distribution of thechangein the portfolio €V,,, -V, =(r, +) *V, -V, =r,t =1..,n).
And, then sort, (t =1,..,n )observations from the biggest loss to the biggast. This

arrangement can be considered as the distributitreaisk factor. If we want to get

95% VaR, the 5th quantile of that distribution isatywe want to get.

3.2 Multivariate Model.

In multivariate models, we might consider weigthames that are similar to
weight schemes in the univariate models like a mpaverage and GARCH. However,
we note that if we use the multivariate varianceac@ance matrix proposed by
RiskMetrics (2001), equally and exponential weighéehemes produce the same result
in both approaché@sthat is, the volatility from the univariate retuseries is always equal
to the volatility from the multivariate variancex@iance matrix because they use the
same methods in updating the volatility and theatciance. So, we will review just two

GARCH type models: the O-GARH model and the DCC ehod

3.2.1 Orthogonal GARCH Mode

According to Alexander (2001), the orthogonal noetlises principal component
analysis (PCA) approach to construct covarianceiceat’. In the orthogonal GARCH
model, the time-varying covariance matkxof the original system is approximated by

H; = AD A’ (15)

® Comparison between univariate approach and mtikieaapproach is in appendix A.
19 See the appendix B for details of PCA approach.

14



whereA is the matrix of rescaled factor weights dnds the time-varying diagonal
matrix of variances of the principal componentsdinal multivariate series. The
diagonal matridXD; of variances of principal components is estimatgdg a GARCH
model.

We note that basically PCA technique is a lineangformation from one space
measured on real-world basis into the other spassored on so-called principal
component basis. In the latter world, we can areafgal-world data in a different point
based on principal components, which are mutuatlyogional; hence we don'’t need to
pay attention to correlation between componentstt&ocorrelations in the real world
are transformed into the variances of the prinogoahponents. Hence, analyzing
dynamics of variances of principal components imi incorporate dynamics of

correlations of real-world data.

3.2.2 Dynamic Conditional Correlation model
Engle (2002) proposed a new class of multivai@RCH models named
dynamic conditional correlation model. The DCC maamlved from the constant
conditional correlation (CCC) model by Bollersleéd®00). The CCC model estimates
conditional covariance matrkt, as:
H, = D,RD, where D, =diag{,/h } (16)
whereR is a constant correlation matrik,, is the conditional covariance of univariate

time series of assein the portfolio at time.
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The DCC model assumes the correlation matrixmetvarying, that isR, instead

of constantR and uses the GARCH scheme to incorporate thatwamgng property of

the correlation into the model as follows:
H, = D,RD, where D, =diag{,/h }

R =diag{Q} " Qdiag{Q}™ (17)

Qt = (l_ zam - Zﬁn)a + Zam (‘gt—mgt’—m) + Zﬁn Rt—l

m=1
whereH; is a time-varying covariance matrig,, is the ARCH coefficientg, is the
GARCH coefficient, M is the order of ARCH parametsris the order of GARCH

parameterQ is the unconditional covariance of the standadiiasiduals, and,_,, is
the standardized residual from univariate timeesgranddiag{ X }mean a diagonal

matrix of matrixX. According to Engle (2002),d > 08, = 0, and

M N
@-> a,-> B,)=0,thenR will be positive semi-definite. If any one of thesn

m=1 n=1
positive, thenR, will be positive definite.

Engle and Sheppard (2001) stated that the DCC nvaakebdesigned to allow for
two stage estimation. In the first stage, univar@ARCH models are estimated for each
residual series. Then, in the second stage, rdsidu@nsformed by their standard
deviation estimated during the first stage, areluseestimate the parameters of the

dynamic correlation.
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CHAPTER 4

Backtesting

We can get the various VaR estimates dependinge@mbdel we used to
measure volatility. So, we need some criteria wdkewhich is better. According to
Campbell (2005), a good model should have two pitagsebased on the result of rolling

backtesting; unconditional coverage property amependence property.

4.1 Rolling Backtesting Procedure

First, we will describe rolling backtesting. Thdldaving example will best
explain the procedure of rolling backtesting. Suggppae have 1500 observations of past
returns of a portfolio and we use 1000 observattorestimate tomorrow’s VaR estimate.
Using observations from the first to the 1000th,geétomorrow’s VaR estimate of
$1,000 and the tomorrow’s realized observatiorher001st observation is $1,010, then
we say that an exceptibris realized or there is an exceptidhthe 1001st observation is
less than the VaR estimate, we say that there exoeption. Next, using observations
from the second to the 1001st, we can do the sam@arison whether the VaR estimate
is exceeded by the 1002nd observations or nexsdaglized loss of the portfolio.

Continuing this comparison from the 500th to th@9th observation with 1500th

1 Some authors use a term, “exceedance” insteaexeEptions” because the realized loss exceeds the
expected loss or the VaR estimate.
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observation, each comparison is regarded as orkeséiog. Then we have A total of
500 backtestings. The procedure is described urdi@. With this binomial sequence
(exception or no-exception), we can do the uncamtid coverage property and

independence property.

1~1500 ohs

S
r

1~ 1000 obs VaR= $1000 => 1001cbs < § 1000 7
2~ 1001 obs

WaR= $1020 == 1002obs < $1020 7

500 ~ 1499 obs

VaR= $1005
15000bs < $1005 7

Figure4.1: The Procedure of the Rolling Backtesting

4.2 Proportion of Failures Test

Unconditional coverage property means that the reurabrealized VaR
exceptions of rolling backtesting with past datastrhe equal to the expected number of
VaR exceptions indicated by the VaR model withatistical tolerance. For example, 1-
day 99% VaR with 500 backtesting trials expectgdeptions (= (1 - 99%) x 500). If the
realized exception is out of the range in whichhbare statistically equ] then we can
conclude that the model is inappropriate.

Kupiec (1995) proposed the proportion of failurég) test as the unconditional
coverage, which we will use in this thesis. ThedtRtistic for testing the null hypothesis
that the realized ratig) of the exceptions of VaR over the past data isaktp the
probabilityp* of the exceptions of VaR is the following:

PF=-2Ln[(1-p)""(p")"1+ 2Ln[(1'§)”_x (E)X] (18)

2 The null hypothesis of the statistical test is the number of exceptions is 10.
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where X is the realized number of exceptions insdraple, n is the total number of
backtesting trials. Under the null hypothegis; p*, the PF test has a chi-square
distribution with 1 degree of freedom.

If the null hypothesis is rejected because thézexratio is greater than the
expected ratio, we can say that the model undaeratts VaR. On the other hand, the
null hypothesis is rejected because the realiziedl isaless than the expected ratio, we
can say that the model overestimates VaR. Onelgessiason of underestimation is that
the distribution of the return series of finan@aket usually has a fatter tail than the

normal distribution and the model fails to incorgiarthat fat fail fully.

4.3 RunsTest

Independence property means that the exceptiotine dfacktesting should occur
in arandomway. If the occurrence of the exceptions is netrdbuted randomly across
time, we can find some patterns, which a good msklelld incorporate with its
prediction schemes. In this thesis we will userthres test to test a randomness of the
exception&’.

Runs can be defined as a sequence within a sanesich one of the alternatives
occurs on consecutive trials. Using the example adin toss, if a series look like this:
“HHTHHTTTHT”, then “HH”, “T","HH",”TTT”,” H”, and "T” are runs. The null
hypothesis of a runs test is whether the distrdvuaf a series of binary events in a
population is random. In order to calculate thé s¢atistics, one must determine the

number (A,ny) of times each of the two alternatives appeathérnseries and the

3 You can find more details about the runs testhiasgin (2003).
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number(r) of runs in the series. The basic idea ins test is that the number of runs
should be within the appropriate range for theeseto be random. In the above example,
the number (1) of heads is 5 and the numbes)(af tails is 5, and the number(r) of runs
is 6. If the number of runs is too small, sayh&rt it might be difficult to say that the
series is random because the series should beMHFHHH T TTTT or“TTTTTHH

H H H”. The normal distribution can be employediwaét large sample size to
approximate the exact distribution of the runs &ssthe following:

- [ﬂ +1]-5

L= n, +n, (19)

2n,n, (2nn, —n —ny)
(n, + n2)2(n1 +n,-1)

wherer is the number of rumy is the number representing alternative 1 whichkmn
defined as non-exception occurrence of backtestialg in this thesis, and, is the
number representing alternative 2 which can benddfas exception occurrence of
backtesting trials in this thesis. In the examieee (n=5, n.=5, r=2), z-score is -
3.0187, which obviously results in rejecting thdl hypothesis or non-randomness.
Possible reasons of the rejection of null hypathage clustering of exceptions
and increase of the number of exceptions. As eimeptre clustered, the number of runs
will decrease, and as the number of exceptiongasasn; will decrease and, will
increase in equation (19), which results in higtteance of the rejection of null
hypothesis. For example, whapis 3532,n;is 51, and is 99, z-statistics is -1.8235(p-
value=.0684). When, is 3531,n;is 52, and is 100, z-statistics is -2.3418(p-
value=.0192). However, whemis 3531, is 52, and is 99, z-statistics is -2.9286(p-

value=.0034).
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CHAPTER S

Data

We will use the DJIA index to address which unigtgiVaR model performs best.
The DJIA data came from the Yahoo finance web3ite time horizon of data is from
10/31/1986 to 12/31/2004 and the total number ofda of the DJIA closing price is

4584. We used the daily logarithmic return such as
R =100x[log(R) ~log(R_,)] (20)
where B, is the closing price on day t.

For the multivariate analysis, a hypothetical puitfis considered to compare the
performance of a univariate model with that of dtmariate model. We used 30 stocks
of the DJIA components at 12/31/26b4nd gave the same weight 1/30 to each stock to
construct the portfolio. We got data from CentarResearch in Security Prices (CRSP).
The time horizon of data is from 10/31/1986 to 12/304 and the number of

observations is 4583 We use the daily logarithmic return for each ktas follows:

Ri,t =100><[|Og(Pi’t) _log(Pi,t—l)] (21)

4 The roster of DJIA has changed over time. So,0m& & snap-shot at 12/31/2004. The same company is
identified by the same PERMNO which is given by GRfatabase. See data description guide for the
CRSP US stock database and the CRSP US indicdsadataHere is the list of the companies: Alcoa Inc,
AIG, American Express Inc, Boeing Co, Citigroup,I@aterpillar Inc, Du Pont E | De Nem, Walt Disney-
Disney C, General Electric Co, General Motors, H@egot Inc, Honeywell Intl Inc, Hewlett Packard Co,
IBM, Intel Cp, Johnson And Johns Dc, JP Morgan @Hhag, Coca Cola, Mcdonalds Cp, 3M Company,
Altria Group Inc, Merck Co Inc, Microsoft Cp, Pfizec, Procter Gamble Co, SBC Communications,
United Tech, Verizon Commun, Wal Mart Stores, Exkéwbil Cp.

15 The 5-24-1994 data for Altria Group was not aMa#aSo, all the data for that day were removed.
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where P, is the adjusted price for factors like stock saltitl spin-offs, and includes

dividend because we want to focus on the price mewves which are not caused by
corporate events such as stock split and spin-défsle 5.1 shows the descriptive
statistics. The histograms and plots are in figufe

Here, we want to note several facts. First, botamseof the DJIA daily returns
and the hypothetical portfolio are so small relativ standard deviation that our
assumption to ignore the mean of daily returns seemsonable. Secondly, Ljung-Box Q
test statistics show that there are autocorrelgtaso in both cases. ARCH LM test
statistics show that there are ARCH effects in lwaibes. Thirdly, Jarque-Bera test
statistics show that the unconditional distributadrdaily returns is far from normal in
both cases. We can also confirm that by the hiarogrin figure 5.1. Finally, we would
like to pay attention to the tail property of baibrtfolios. The left tail and the right tail of
both portfolios are fatter than those of a normstribution as indicated in the QQ-plot of
figure 5.2. Also, we can observe that the lefstail both are more deviated from the
normal distribution than the right tail. In Tabl%nd figure 5.2, though the biggest and
the smallest return of the DJIA are respectivebatgr and less than those of the

hypothetical portfolio, overall the hypotheticalrgiolio has a fatter tail than the DJIA.
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Table5.1: Descriptive Statistics of DJIA Daily Returns

Variables DJIA Hypothetical Portfolio
Observations 4583 4582
Mean 0.0381 0.0558
Maximum 9.6662 8.1318
Minimum -25.632 -23.522
Std. Dev. 1.1283 1.1841
Skewness -2.76534 -1.9532
Kurtosis 66.1222 41.6577
TSR S
Qu2) (<000D) (<0001)
wonm e e
Bold means that the number is statistically sigaift.
®The number in parenthesis is p-value.
Hestogramn of DALA - Histogram of Poetflio
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Figure5.1: Histograms and Plots of DJIA and Portfolio
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Guantiles of Input Sample

Table5.2: Returns Sorted from the Biggest to the Smallest

10 - 10

Percentile DJIA Hypothetical Portfolio

Biggest 9.6662 8.1318
99% 2.8854 3.0996
98% 2.2521 2.4435
97% 1.9949 2.1032
95% 1.6469 1.7536
5% -1.6275 -1.705
3% -2.0137 -2.0808
2% -2.3061 -2.354
1% -2.8905 -2.9701

Smallest -25.632 -23.522

DIIA Hypothetical Portfolio

Q0 Plot of Sample Data versus Standard Normal QQ Plat of Sample Data versus Standard Mormal

+
st

Figure5.2: QQ-Plot of the DJIA and the Hypothetical Portfolio
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CHAPTER 6

Empirical Result

We examine the univariate return series of the Dddex and the hypothetical
portfolio of 30 stocks using univariate models. ijwe examine the multivariate return
series of 30 stocks using multivariate models. damh examination, we investigate the
left tail of the distribution of a portfolio valughich is relevant to the holder of a long
position. We also investigate the right tail whishrelevant to the holder of a short

position.

6.1 Univariate Approach
We will consider two univariate return series; @ané&om the DJIA for the first
research question and the other is from the hypo#igortfolio consisting of 30 stocks

for the second question.

6.1.1 Dow Jones|Industrial Average
We backtested the appropriateness of 99% 1-daycddidrlated from each
univariate model in the section 3.1. We used 10¥&orations to calculate the VaR

estimate at each backtesting trial, so the totalber of backtesting trials is 3583 [=
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4583(the total number of observations) — 1000(olzgEms to get one VaR backtesting
trial)].

The VaR estimate for each model is in figure 6.d Bgure 6.2 for each tail when
we invested $100 for each trial. In figure 6.1, thsults using three models (the EWMA
model, the GARCH model with a normal distributiamd the GARCH model with a t-
distribution) seem very similar to each other. @llethe VaR estimate using EQMA is
the smallest. In figure 6.3 and 6.4, you can complae VaR estimate with the realized
loss. Though realized losses are smaller than \&iRates in most cases, there are some
cases that realized losses are greater than VaRagss$, which cases are thought of as
exceptions.

The result of the PF test and runs test are ptegem Table 6.1. In the left tail, all
models except the EQMA model were not rejected wiehPF test at a 99% confidence
level*. All models except the EWMA model and the GARCHdwlowith a normal
distribution were not rejected with the runs teésd 89% confidence level. As a result,
two models, the GARCH model with a t-distributiamdethe HS model were not rejected
with both tests. Among these, the HS model shown#daest number of exceptions to the
expected number of exceptions 36 which is 1% ohtlmaber of backtesting trials 3582.

In the right tail, all models except the EQMA moudare not rejected with the PF
test at a 99% confidence level. All models wereregcted with the runs test at a 99%
confidence level. So, all models except the EQMAlaiavere not rejected with the PF

test and the runs test.

18 Strictly speaking, we should say that the nulldtiesis of the PF test (or the runs test) relaiedrmodel
was rejected or not rejected with the PF testi{ertins test). But, in this thesis, if we have rabfem in
communication, for convenience, we would like tg #@at a model was rejected or not rejected with th
PF test (or the runs test) to mean the same thing.
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As a result, in both right and left tails the GAR@Gtbdel with a t-distribution and
the HS model were not rejected with both the PEaed the runs test. Other three
models were rejected or inappropriate to evalua® 9f the DJIA index portfolio with

respect to either the PF test or the runs test.
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Figure6.2: VaR Estimatesfor DJIA When $100 was I nvested (Right Tail)
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Table 6.1: Result of the PF test and Runstest of Univariate Modelsfor DJIA

PF Test Runs Test
. . F-statistics p-value No Exceptions  Exceptions Runs z- statistics p-value
Tall Model Name Exceptions
Equally weighted(EQMA) 59 12.664 a 0.0004 3524 59 115 -1.3243 0.1854
Exponentially weighted(EWMA) 52 6.4695 0.0110 3531 52 99 -2.9286 0.0034
Left )
GARCH (Normal Dist.) 52 6.4695 0.0110 3531 52 99 -2.9286 0.0034
GARCH (t Dist.)* b 47 3.2032 0.0735 3536 47 91 -2.1192 0.0341
Historical Simulation* 38 0.13018 0.7183 3545 38 75 -1.3574 0.1747
Equally weighted(EQMA) 58 11.671 0.0006 3525 58 113 -1.3813 0.1672
Exponentially weighted(EWMA)* 44 1.7544 0.1853 3539 44 89 0.4021 0.6876
Right GARCH (Normal Dist.) * 40 0.47242 0.4919 3543 40 81 0.2993 0.7647
GARCH (t Dist.) * 41 0.72003 0.3961 3542 41 83 632 0.7447
Historical Simulation* 44 1.7544 0.18533 3539 44 85 -2.3681 0.0179

®Bold means we reject the null hypothesis in eashdr model does not work well in each test 2% @onfidence level.
P Asterisk means model work well in both tests atsame time at a 99% confidence level.



We note that as indicated in the data analysie@fXJIA, the distribution of the
DJIA returns has a fatter tail than a normal disttion. And, the left tail shows more
deviation from the normal distribution than thehtigail (i.e. negative skewness), which
means that the left tail have more extreme evanssronger volatility clustering than the
right tail. In the left tail, the EWMA model andglfGARCH model with a normal
distribution might fail to incorporate volatilityustering completely and exceptions were
more likely to be clustered, so that the null hyyeses of the runs tests of those models
were rejected. However, in the left tail the modrlsh as the GARCH model with a t-
distribution and the HS model, which are more tilkéncorporate extreme events or
volatility clustering, were not rejected with thens test as well as the PF test.

In the right tail which has less extreme evente@aker volatility clustering than
the left tail, not only the GARCH model with a tstlibution and the HS model, but also
the EWMA model and the GARCH model with a normaitidbution were not rejected
with the runs test, which means that these moageishandle appropriately extreme

events or volatility clustering in the right tail.

6.1.2 Hypothetical Portfolio

We will compare the univariate models with the nvaltiate models using the

same portfolio because we want to know whethenthkivariate models are more

appropriate to evaluate VaR than the univariateetsodr conditional covariance

estimation improves risk measurement. For the ur@tamodels, we created the single
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portfolio returns using 30 stocks giving 1/30 weigheach stock as mentioned in the
data section. So, here, we will analyze the unatarhypothetical portfolio first.

We backtested the appropriateness of 99% 1-daycésdrlated from each
univariate model in the section 3.1. We used 108eovations to evaluate VaR at each
backtesting trial, so the total number of backiegtrials is 3582 [= 4582(the total
number of observations) — 1000(observations tamgetVaR backtesting trial)].

The VaR estimates for each model are in figurea®db 6.6 for each tail when we
invested $100 for each trial. In those figures,rémult using three models (the EWMA
model, the GARCH model with a normal distributiamd the GARCH model with a t-
distribution) seem very similar to each other. @llethe VaR estimates using the
EQMA model are the smallest. In figure 6.7 and §d& can compare VaR estimates
with realized losses. Though realized losses a®tlean VaR estimates in most cases,
there are some cases that realized losses aremtieat VaR estimates, which cases are
thought of as exceptions.

The result of the PF test and the runs test afalnte 6.2. In the left tail, all
models except the EQMA model were not rejected wiehPF test at a 99% confidence
level. However, only EWMA model was not rejectedhathe runs test at a 99%
confidence level. As a result, in left tail the pEHWMA model was not rejected with
both tests.

In the right tail, only HS model was not rejectelmihe PF test at a 99%
confidence level. However, all models were notatgéd with the runs test at a 99%

confidence level. So, in the right tail only HS nebd/as not rejected with both tests.
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In sum, all models were rejected with the PF testith the runs test in the left or
right tail, which means no model is appropriatevaluate VaR of the univariate

hypothetical portfolio of 30 stocks for both tails.

Hypothetical Portfolio
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Figure 6.5: VaR Estimatesfor Univariate Hypothetical Portfolio when $100 was
Invested (L eft Tail)
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Invested (Right Tail)

33



ve

“aR estimate

Hypothetical Portfolio

o,

S i |
B
* o g
¥ 3 I
t B £
Z ¥
2z 3F L ¥
¥ }S s 2
» w b ¥
H z 7
£ H i 4
EQMA : .
—— BV IA, i
7L . GARCH(ND_rmaI) & & : 5
GARCHIt-dist.) : A
- Realized Loss {:,
A 1 1 1 1 1 1 1
a =1un] 1000 1500 2000 2500 2000 2500

Figure6.7: VaR Estimatesfor Univariate Hypothetical Portfolio with Realized L oss (L eft Tail)

Backtesting Trial




Hypothetical Portfolio

L R T L

A T

- s(m J&u,...mt..m.r.m...uw..... Fe

EWL S B L

—+—— ECQMA
—— EWMA

CGARCH{Mormal)

e

GARCH(t-dist )

HS
~4r - Realized Loss

Dor b oo

BIELIISE HEA

35

Backtesting Trial

Figure 6.8: VaR Estimatesfor Univariate Hypothetical Portfolio with Realized L oss (Right Tail)



Table 6.2: Result of the PF test and Runstest of Univariate M odelsfor the Hypothetical Portfolio

oc

PF Test Runs Test
Tail Model Name Exceptions F-statistics p-value No Exception&xceptions Runs z- statistics p-value
Equally weighted(EQMA) 60 13.7060 a 0.0002 3522 60 113 -3.3056 0.0009
Exponentially Weighted(EWMA)p 50 5.0484 0.0246 3532 50 97 -1.8935 0.0583
Left GARCH (Normal Dist.) 49 4.3938 0.0361 3533 49 91 -4.4555 0.0000
GARCH (t Dist.) 45 2.1978 0.1382 3537 45 83 -4.9904 0.0000
Historical Simulation 39 0.2772 0.5986 3543 39 73 -4.4117 0.0000
Equally weighted(EQMA) 64 18.1530 0.0000 3518 64 123 -2.0135 0.0441
Exponentially weighted(EWMA) 60 13.7060 0.0002 3522 60 115 -2.2869 0.0222
Right GARCH (Normal Dist.) 56 9.8017 0.0017 3526 56 111 -0.4084 0.6830
GARCH (t Dist.) 58 11.6840 0.0006 3524 58 115 -0.3275 0.7433
Historical Simulation* 43 1.3662 0.2425 3539 43 85 -1.0398 0.2985

#Bold means we can reject the null hypothesis ahéast at a 99% confidence interval.
® Asterisk means model work well in both tests atshme time at a 99% confidence level.



We note that the results of the hypothetical ptidfare different from the DJIA
in two aspects; one is that the EWMA model and @R CH models are rejected with
the PF test in the right tail, which may be causgthe fact that in the right tail the
distribution of the hypothetical portfolio retura$a fatter tails than that of the DJIA
return as indicated at the data analysis sectiba.fatter tail makes it difficult for models
to adequately estimate VaR with respect to botlPtheest.

The other is that in the left tail the GARCH moudath a t-distribution and the HS
model were rejected with the runs test though theséels were not rejected with the PF
test. We note that in the DJIA case the numbeuw$ is 91(GARCH model with t-
distribution) and 75(HS model), but in the hypotbatportfolio that number dropped to
83(GARCH model with t-distribution) and 73(HS modelhich means that exceptions
are more clustered in the hypothetical portfolibjei resulted in the rejection of

randomness null hypothesis.

6.2 Multivariate Approach

The correlation between returns of assets in d@iaris an essential
characteristic of multivariate models. So, firstwidl discuss the correlation estimation
of multivariate models. Then, we will discuss timepgrical result of multivariate

approach in calculating the VaR estimate.

6.2.1 Correlation Estimation of Multivariate Modéds

Figure 6.9 shows average correlation using vanoadels; the first panel is

calculated by the DCC model, the second panel B¥ARCH model, and the others are
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calculated over sliding windows of 126(6 month)p&Dyears), and 1000(4 years). As
the time window increases in the panel 3 to 5aure 6.9, the graph of the estimated
correlation is less erratic and correlations areencentered to the overall mean. The
overall level of correlation using the DCC modetséa on the past 1000 observations is
analogous to the correlation using sliding wind@i#4000 observations, but the graph
using the DCC model is more erratic than that efghaph using sliding windows of
1000 observations. Overall, the correlation estadty the DCC model seems
reasonable.

Figure 6.10 and 6.11 show portfolio standard deseénd the average
volatilities of 30 stocks and average correlatioroag 30 stocks which are calculated
using the DCC model and the O-GARCH model overettt@e horizon of data
respectively, where for the comparison purpose wkiphied 6 to the average correlation.
First, we note that the Longin and Solnik’s (196b¥ervation that the correlation rises in
periods of high volatility seems to hold over timtiee period. Second, the average
volatility of stocks represents a diversifiablekrag non-systematic risk of the portfolio
and the average correlation represents an undiadylsi or systematic risk of the
portfolio®’. In this regard, in figure 6.10 and 6.11 we cawalbserve how the standard
deviation of the portfolio estimated by the DCC raband the O-GARCH model
incorporate the non-systematic risk and systennestc In figure 6.10 and figure 6.11, we
also note that systematic risk (=portfolio standaesdliation — average volatility) is a

more dominant component in portfolio variance thhanances of each stock, non-

7 Rigorously speaking, systematic risk of a portfasi the average covariance of stocks. Howeveggsin
correlation is the most integral component of c@rare, we can say that correlation represents regsie
risk.
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systematic risk because the portfolio consists0o$t8cks, so this is a relatively well-

diversified portfolio.

OCC Model
0 | | | | | | | |
C-GARCH Model
0ar -
0 | | | | | | | |

— Sliding Window using 125 Obs.

5
T
2
=
o 0 ! ! ! ! ! ! ! !
— Sliding Window using 500 Obs.
05t
|:| | | | | | | |
— Sliding Window using 1000 Obs
05t .

|:| | | | | | | | |
0 FO0 1000 1800 2000 2500 3000 3A00 4000 4400
Obsereations

Figure6.9: Correlationsusing Various Models

39



------- Correlation
— - — Maolatility

D

L]

" "'-Il.llé

NP

!

™y

1

S - vt yad
Ay \J.\,\,.‘\LIJ\\I‘II\_‘..II i | '\-Iwmd'.z"""v,h AL .A'..""\"L".., et Mg

35F

UoIjEau0;) ' BaUeLe,

1000 1500 2000 2500 3000 3500

500

Backtesting Trial

Figure 6.10: Portfolio Standard Deviation and Scaled Average Correlations

and Volatility Using the DCC Modedl

T T T ....n.-.h i lmn
- i .......W....
R -
S— = |N.,.-.r_.
- T
o
=,
0
-
e rreenns o oL L
£
Kl
........ A
.......... =
i
)
4
L n
<
=
E - 0
= =0 PRNPEY
E=l TS P
mE X — T el "
= o i
2ES ¢
r == H
S F 0 d
[ -
oo 5
' w
'
i T
Vo =
o BT s - F K
e .|
|||-.|-d...MWuI.-|J_._. - .u.P
|||||||||||||||| s ol e -
it
..... T T #
.............. H‘HNN!“..M.H..H....”..M.H <.

L ampnee T t
S e g

TIEEET oo~ ]
o rrrrrrrsfrrrrrrs sl SIS e " H
....... B g
E— oS CEsmNENEEEEaIT-
R e e
| e T e
IIIIII ey EE L .
el _
lllll TR e — —
rviet -]
= L
T 2
aaaaaaaa SRR
1 1 I =
=T Lo m Lo ™
) ™

Lol jE[al0s | BIUBLEA,

1000 1500 2000 2500 3000 3500

500

Backtesting Trial

Figure 6.11: Portfolio Standard Deviation and Scaled Average Correlations

and Volatility Using the O-GARCH Model

40



6.2.2 Multivariate Approach

In this sub-section, we will analyze the multivégiapproach of evaluating the
VaR estimate of the portfolio consisting of 30 &mahe result of which is in Table 6.3.
The comparison of this result with the result fribra univariate hypothetical portfolio
consisting of the same 30 stocks will let us adglthe second research question.

We backtested the appropriateness of 99% 1-daycésdrlated from
multivariate model in the section 3.2. We used 160€ervations to evaluate VaR at each
backtesting trial, so the total number of backtegtrials is 3582 [= 4582(the total
number of observations) — 1000(observations fairgebne VaR backtesting)].

The result of the PF test and the runs test afalte 6.3. In the left tail, both the
DCC model and the O-GARCH model were not rejectdéd the PF test at a 99%
confidence level. But, both were rejected with rtines test at a 99% confidence level. As
a result, both multivariate models were rejectetthwhe PF test or with the runs test.

In the right tail, both the DCC model and the O-GARmodel were not rejected
with the PF test at a 99% confidence level. Bosio alere not rejected with the runs test
at a 99% confidence level. So, both models wereajetted with both tests time in the
right tail.

In sum, two multivariate models were rejected witd PF test or with the runs
test in the left or right tail, which means thatlbmodels are inappropriate to evaluate
VaR of the hypothetical portfolio for both tailsoiiigh both models are appropriate to
evaluate VaR of the hypothetical portfolio just fayht tail. One possible reason of this
result is that those models failed to incorporatkatility clustering in the left tail as in the

univariate hypothetical portfolio case.
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Table 6.3: Result of the PF test and Runstest of Multivariate Models for the Hypothetical Portfolio

PF Test Runs Test
Tail Model Name Exceptions
F-statistics p-value No Exceptiong&xceptions Runs z- statistics p-value
DCC 49 4.3938 0.0361 3533 49 93 -3.2108 0.0013 a
Left
O-GARCH 48 3.7806 0.0519 3534 48 89 -4.5819 0.0000

DCC* b 49 4.3938 0.0361 3533 49 95 -1.9662 0.0493

Right
O-GARCH* 47 3.2096 0.0732 3535 47 93 -0.8215 0.4114

@ Bold means we can reject the null hypothesis aheast at a 99% confidence interval.
b Asterisk means model work well in both tests atshme time at a 99% confidence level.



6.3 Univariate vs. Multivariate

Table 6.4 represents the results of the PF testhendins test of univariate and
multivariate models for the hypothetical portfoliehich are reproduced from Table 6.2
and Table 6.3.

In the left tail, the EQMA model was rejected witbth the PF test and the runs
test at a 99% confidence level. The other modetegixthe EWMA model and the
EQMA model were not rejected with the PF test,eite rejected with the runs test at a
99% confidence level. Only EWMA model was not rggelcwith both the PF test and the
runs test in the left tail.

In the right tail, the EQMA model, the EWMA modahd the GARCH models
were rejected with the PF test at a 99% confidéeel though these models were not
rejected with the runs test at a 99% confidencelléfhhe HS model and two multivariate
models were not rejected with both tests at a 98fidence level. Overall, in the right
tail the HS model and two multivariate models weoérejected with both tests at a 99%
confidence level.

If we consider both left and right tail at the satinee, all models could be
rejected with the PF test or with the runs tese ERNVMA model could be rejected with
the PF test in the right tail though that model wasrejected with both tests in the left
tail. On the other hand, the HS model and two maittate models were not rejected with
both tests in the right tail, but could be rejectgth the runs test in the left tail. So, we
could reject all models considered in this theditb the PF test or with the runs test in
the left or right tail, which means that no unie&e and multivariate models are

appropriate to evaluate VaR of the hypotheticatfptio for both tails.

43



144

Table 6.4: Result of the PF test and Runstest of Univariate and Multivariate Models for the Hypothetical Portfolio

* Results are reproduced from Table 6.2 and Talide 6

PF Test Runs Test
Tail Model Name Exceptions
F-statistics p-value z- statistics p-value
Equally weighted(EQMA) 60 13.7060 & 0.0002 -3.3056 0.0009
Exponentially Weighted(EWMA)’p 50 5.0484 0.0246 -1.8935 0.0583
Univariate model GARCH (Normal Dist.) 49 4.3938 0.0361 -4.4555 0.0000
Left GARCH (t Dist.) 45 2.1978 0.1382 -4.9904 0.0000
Historical Simulation 39 0.2772 0.5986 -4.4117 0.0000
DCC 49 4.3938 0.0361 -3.2108 0.0013
Multivariate model
O-GARCH 48 3.7806 0.0519 -4.5819 0.0000
Equally weighted(EQMA) 64 18.1530 0.0000 -2.0135 0.0441
Exponentially weighted(EWMA) 60 13.7060 0.0002 -2.2869 0.0222
Univariate model GARCH (Normal Dist.) 56 9.8017 0.0017 -0.4084 0.6830
Right GARCH (t Dist.) 58 11.6840 0.0006 -0.3275 0.7433
Historical Simulation* 43 1.3662 0.2425 -1.0398 983
DCC* 49 4.3938 0.0361 -1.9662 0.0493
Multivariate model
O-GARCH* a7 3.2096 0.0732 -0.8215 0.4114

@Bold means we can reject the null hypothesis ahéast at a 99% confidence interval.
P Asterisk means model was not rejected with bagtstat the same time at a 99% confidence level.



We note that two multivariate models were not rigdaen both tails if we consider
only PF test, which means that the way the DCC naaié the O-GARCH model
incorporate the conditional correlation movemeritthe individual stocks as well as the
conditional variance can improve at least the udatamnal property of models compared
with the way of parametric univariate models suslihe EWMA model and the
univariate GARCH models. Since the internationahdtard, Basel Accord, in the
banking industry considers only unconditional cager property in its risk management
regulatory mandates, two multivariate models cdddiseful in that application.

In addition, we would like to discuss the pattefexceptions of the PF test result
using the DCC model, the O-GARCH model, and the GARmodel with a normal
distribution. Figure 6.12 compares binomial seqesmaf exceptions occurring in rolling
backtesting of the VaR estimates using the GARCHehwith a normal distribution and
the DCC model. Figure 6.13 shows the same thinencase of the O-GARCH model
instead of the DCC model. In the stem diagramsgufré 6.12 and 6.13, ‘1’ means that
exception occurs at that point. In both figureg éiverage correlation is calculated using
the DCC model. The circle means that exception rgcatithat point in that tail and that
model, but exception does not occur in the sanhéntéhe other model.

In figure 6.12, the overall patterns of exceptioesulting from the DCC model
look interesting; more exceptions occur when catieh increases. However, in the case
of GARCH model with a normal distribution, more eptions occur when correlation
decreases. The VaR estimate using the DCC modadidge the VaR estimate using the
GARCH model when correlation decreases. On therottend, when correlation

increases, the situation is reversed; the VaR astimsing the GARCH model is above
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the VaR estimate using the DCC model, which me#&as the change of the VaR
estimation using the DCC model is smaller thandh&nge of the VaR estimation using
the GARCH model when correlation changes. In T&e the VaR estimate using the
DCC model has the least standard deviation amoreg timodels. The reason is that as
you can see in the specification of the DCC modeaquation (17), the DCC model uses
the GARCH specification in modeling the conditiomalrrelation, which results in the

long memory of correlation or slow response todhange of correlation.

Table 6.5: Mean and Standard Deviation of the VaR estimates

Variables GARCH(Normal) DCC model O-GARCH model
Mean 2.4081 2.4361 2.4403
Standard Deviation 0.8890 0.6257 0.8723

As a result, we note that the performance improveraEDCC models relative to
univariate models occurs in the period when cotieiadecreases, which is the opposite
observation we expect; in fact, we expected thatpgarformance improvement would
occur when correlation increased.

Comparing the O-GARCH model with the univariate RB2H model, our
calculation result indicates that the VaR estimatasg the O-GARCH model seem more
sensitive to market catastrophic event or marlsitlvbecause only the seventeenth

(backtesting trial 3031 in figure 6.13) out of thiggest thirty VaR estimates using the
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univariate GARCH model is greater than the VaRnestes using the O-GARCH model
on the same day. However, in figure 6.13 the oetwe pattern of exception resulting
from the O-GARCH model is not much different fronetoccurrence pattern of
exception resulting from the GARCH model in catagshic events (around backtesting
trials 2000 through 3000)

Compared with the DCC model with respect to catreh, the O-GARCH model
seems to have shorter memory than the DCC matiel early backtesting horizon of the
VaR estimate using O-GARCH model in figure 6.13ns&¢0 remember the past big
correlation caused by the Black Monday stock cragtich you can check in figure 6.10.
So, in that horizon the VaR estimate using the ORGA model is greater than the VaR
estimate using the univariate GARCH model. Howeaéer that period, the O-GARCH
model looks more apt to respond to the change méletion, even more than the
univariate GARCH model.

As a result, all univariate models and multivariaiedels were rejected with the
PF test or with the runs test in the left or righit. However, if we consider only the PF
test, which is more important than the runs tesi waspect to real application, the
multivariate models, the DCC models and the O-GARf®btlel, were not rejected in
both tails. We note that the performance improvamé&®dCC models relative to
univariate models with respect to the PF test aeclwhen correlation decreased. The
performance improvement of O-GARCH model also o@mlivhen correlation
decreased, but overall VaR estimates using O-GAR®Hel were greater than the VaR

estimate using the univariate GARCH model wheneatation increased.
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CHAPTER 7

Conclusion

This thesis sought to determine the best amonguwsrinodels in estimating VaR.
Models were evaluated in terms of both accuratbairiities of extreme events and lack
of correlation among exceptions. For accurate frititias of extreme events, we used
the proportion of failures (PF) test proposed bye€y1995), and for lack of correlation
among exceptions we used the runs test.

We compared five univariate models using the Ddidex and the hypothetical
portfolio of 30 stocks; the five models are the atyjuweighted moving average (EQMA)
model, the exponentially weighted moving averagé&/kA) model, the GARCH model
with a normal distribution, the GARCH model with-distribution, and the historical
simulation (HS) model.

In DJIA index portfolio, two models (the GARCH madaweth t-distribution, the
HS model) were not rejected in both right and feits with the PF test and the runs test.
Other models were rejected, which means that egjettodels are inappropriate to
evaluate VaR of the DJIA index portfolio. This riisnakes sense if we consider the fact
that the two models are more robust to the fatetaélracteristic of financial time series
than the other models. However, in the case ohyip@thetical portfolio which has fatter

tails than the DJIA index portfolio, all models weaejected with the PF test or with the
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runs test in the left or right tail, which meanattho univariate models are appropriate to
evaluate VaR of the hypothetical portfolio.

The difference of results between the DJIA indertfpbo and the hypothetical
portfolio came from the fact that in the right tdie distribution of the hypothetical
portfolio returns has a fatter tail or strongeratiity clustering than that of the DJIA
returns. These properties make it difficult for ratsdto adequately estimate the VaR
number with respect to both the PF test and ths test.

Here, we note two facts regarding the VaR estimatio the same portfolio, the
VaR estimate using one model differs from the Vatheate using another model, which
implies the model dependency of the VaR estimaiiothe DJIA index portfolio case,
two model were not rejected with the PF test aedttims test, but in the hypothetical
portfolio case, all models were rejected, which nsethat no model did a uniformly good
job regardless of portfolio. It also turned outtttiee result depends on the length of
periods of backtestir§ These observations confirm the research resylBedder
(1995) and Hendricks (1996) that VaR estimates fdifferent parameters, data,
assumptions, and methodology were quite different.

We compared the results using the univariate modéieh evaluated VaR based
on the univariate return series of the portfoli®6fstocks, with the results using the
multivariate models, which evaluated VaR basechemtultivariate return series of the
same portfolio. In each tail all univariate modafsl multivariate models could be
rejected with the PF test or with the runs teshaleft or right tail, which means that no
univariate models or multivariate models are appate to evaluate VaR of the

hypothetical.

18 See appendix D.
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However, we note that though the DCC model andd#@ARCH model were
rejected with the runs test, which might be causestrong volatility clustering in the
left tail of the distribution of returns of the hythietical portfolio, if we consider only the
PF test, which is more important than the runsuatst respect to real applications like
the Basel Accord, the multivariate models, the D@&@lels and the O-GARCH model,
were not rejected in both tails, which means thatway the DCC model and the O-
GARCH model incorporate the conditional correlatibavements of the individual
stocks as well as the conditional variance can avpiat least the unconditional property
of models compared with the way of parametric umata models such as the EWMA
model and the univariate GARCH models.

However, improvement of DCC models relative to aniate models occurred
when average correlation between assets in théopordecreases. Though that
improvement of O-GARCH model also occurred wherrage correlation between
assets in the portfolio decreased, overall VaRmeg#s using O-GARCH model were
greater than VaR estimates using the univariate GlARhodel when average correlation
between assets in the portfolio increased.

As a concluding remark, VaR is a very convenient to manage a company’s
risk because it is easy to understand and commenidawever, the VaR estimate turns
out to depend on the models used, its assumptimhtha portfolio of the company, etc.
So, we can say that VaR is a good starting pomti$& management, not a final and

perfect tool in risk management.
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APPENDIX A

Univariate Approach vs. Multivariate Approach Using the EWMA model

We compare the univariate approach with the muia approach using the
exponential model; the equally weighted model ¢abews a similar procedure. For

simplicity, we just consider the two-asset case.dAfeextend this idea for general N-

asset case.

Let r,” be a portfolio return at time t, thef® = w,r," +w,r.>
wherer is the return of asset Y, is weight of asset Ir” is the return of asset 2, and
W, is weight of asset 2.

Then, by the definition in the exponentially weigthtschem®,

(0,) = @A=-A)D A7 (rP)? (A.1.1)
i=1
= Q=) AT (il +wpr?)? (A.1.2)
t=1
= Q=AW +wW,r?)? + AWy +Worl)? + o+ AT (Wt +wor2 ) %)
(A.1.3)
= Q= AIA(wir)? + (Wor?)? + 2w w,rr ) + (Al.4

AL(Wry )2+ (Worf)? + 2w W, It} +... .+
Am_l{( W:I.rt:l;m)2 + (Wzrtgm)2 + 2W1W2rtj;mrt%m}]

= Q= DHA (wir)® + A (wry)® + o+ AT (W) %) + (A.1.5)
{22(W,r,2)2 + A (WorS)? + o+ AT (2 )+

19 According to RiskMetrics (1996), = 0.94 in the case of daily data.
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{22 2w w12 + A2w WL+ AT 2w wrt r ]

m't-m

= (1_/1)2 /]i_l(ertl—i )2 + (1_A)z/1i_1(wzrt%i )2 + (1_/])z/v_12W1W2rt1—i rtgi
i=1 i=1 i=1

(A.1.6)

= (Wl W,

Q-NIA @-NXAR |
t=1 t=1 ( 1] (A.1.7)

A-DY A2 - )Y A 22 [\
t't t
t=1 t=1

At (A.1.6), the first term is the volatility fornhé asset 1, the second term is the
volatility from asset 2, and the last term is tlodatility form both or covariance. This
explains that the volatility of the portfolio cae decomposed into volatilities of each
asset, and covariance. Covariance matrix in (A.is.@xactly the same as multivariate
covariance matrix by RiskMetrics (2001), which me#mat the volatility from the
univariate model (A.1.1) is equal to the volatilitgm the multivariate model (A.1.7).

In sum, if we follow the methodology by RiskMetricsget a covariance matrix,
the volatility of a portfolio from the univariategfolio returns will be equal to that from

the multivariate approach.
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APPENDIX B

Principal Component Analysis

Principal component analysis (PCA) ), which is iackof linear transformation, is
a very popular method in dealing with multivariaggiables. In the main text, we
introduced the orthogonal GARCH (O-GARCH) modelaf multivariate model is also
based on PCA. In this appendix, we would like tplaix PCA in detail to help reader
understand the O-GARCH model.
Let X be the standard normalized return vector serid¢iseobriginal return vector
seriesY. By the spectral theory of linear algebra, thera orthogonal matri¥/ such that
X'XW=WA (A2-1)
whereW is a matrix of eigenvectors X, A is the associated diagonal matrix of
eigenvalues.
Then, the principal components matiof Y can be defined as
P = XW (A2-2)
One excellent property of the principal componenédrix is that each column vector of
that matrix is orthogonal with the others, whiclm ¢ee proved by
P'P = (XW)'(XW) =W'X'XW=W'W A= A (A2-3)
Note that sinc&V is orthogonal\W'W = | andA is diagonal.
From (A2-2),

X = PW (A2-4)
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OK;i = Wi1p1 + WigP2 + «.vevvnn. + VPR
wherex; is theith column vector oK, p; is theith column vector oP, andw; isijth
elements ofV*, which can be re-expressed with respect to Y kswing:

Yi =i+ QaPr+ QigP2 + oevnnnnnn + GPn (A2-5)
wherey; is theith column vector o¥, g; = w; x standard deviation gf, andy; is mean
adjustment. Taking variances of (A2-5) gives

H = ADA' (A2-6)
whereH is the covariance matrix of, A = (g;) is the matrix of denormalized factor
weights, and = diag(Varf,),..., Var(,)). Note thaD is a diagonal matrix because the
principal components are uncorrelated. Accordinglexander (2001)H will always be

positive semi-definite.
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APPENDIX C

GARCH Modd Fitting Results Using Various Computer Softwar e Packages

In this thesis, we used univariate GARCH modeltaliofact, even the
multivariate model is based on the result of a anate GARCH model. So, the accuracy
of GARCH model fitting is very critical in this tes.

There are several software packages that offer GARGdeling function such
as SAS, EVIEWS, and Matlab. Software packagesGikéJSS do not offer GARCH
modeling function directly, but it is possible teate codes for it. In fact, it is also
possible to create codes for GARCH model in M&flalbis very important to
understand software packages used in the reseacalige different software packages
might produce different estimated GARCH models wlith same data set. So, here we
compared those using simulated data sets.

The model simulating data sets of returns is GARCH in (8). The
coefficients for GARCH(1,1) model generating eaakadset is in Table C.1. The number
of observations is 1000. Data set 1 is designdtht® more ARCH effect, but less
GARCH effect. However, Data set 3 will have lessG¥Reffect, but more GARCH
effect. Data set 2 is in the middle of those twtadsets. Table C.2 contains the

descriptive statistics of each data. Figure C.sholots of each data set.

2 |n this thesis, we usually take advantage of tlalah GARCH codes written by Kevin K. Sheppar who
is co-author of the DCC model article becauseithislatively fast, and easy to modify.
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Table C.1: The Coefficient Used to Simulate Data Set

Data Set Constant ARCH coefficient GARCH coeffitien
Data Set 1 0.07 0.35 0.60
Data Set 2 0.07 0.15 0.80
Data Set 3 0.07 .02 0.96

Table C.2: Descriptive Statistics for Simulated Data Set

Variables Data Set1  Data Set 2 Data Set 3
Observations 1000 1000 1000
Mean 0.0102 0.0076 0.0035
Std. Dev. 1.2526 1.2513 1.8714
Skewness -0.3064 0.1134 0.0202
Kurtosis 20.8009 6.5543 3.1651

Jarque-Bera 13218.68"  528.5309 1.2038
) (0.00009  (0.0000) (0.5478)

12 1640.4263 817.8450 35.3884
Q(12) (0.0000)  (0.0000)  (0.0004)

481.2426  253.1163  29.4383
ARCH LM (0.0000)  (0.0000)  (0.0034)

Asterisks means that number is statistically sigant.
'Numbers in parenthesis is t-statistics.
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Figure C.1: Plotsof Simulated Data Set
We note that data set 3 looks more likely to bemadithan data set 1 in Table
C.2. We can also see stronger ARCH effect in #iia det 1 than data set 3. In figure C.1,
data set 1 shows relatively low volatility, but higeaks. Data set 3 shows relatively high
volatility, but low peaks.
Table C.3 shows the result of GARCH model fittiiggach data set from

various software packagesWith respect to coefficients and VaR figures, trauftware

% The tolerance of convergence in all cases isose¢10.001.
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package worked reasonably well except EVIEWS. EVEWbrked badly especially

with data set 3. It produced negative coefficieaitie$?, which are far from the true

value.
Table C.3: GARCH Modd Fitted Result
Matlab
Data Embedded Programmed
Set Variables Original GARCH GARCH GAUSS SAS EVIEW
a
Constant 0.0700 0.0704 ) 0.0698 0.0704 0.0705 0.0693
(4.3597) (4.4435) (4.5171) (4.3700) (4.3158)
ARCH Coefficient 0.3500 0.3266 0.3255 0.3158 0.3250 0.3223
1 (7.3518) (6.6872) (6.7963) (7.3500) (7.2953)
GARCH Coefficient 0.6000 0.6124 0.6140 0.6165 0.6128 06177
(13.1747) (12.8650) (6.7963) (13.2000) (13.2245)
Log Likelihood -1245.2 -1245 -1244.7933 -1245.1498 -1244.105
C
VaR $12,622.19 $12,731.05 $12,724.67 $12,735.22  $12,732.62 $127849
Constant 0.0700 0.0329 0.0337 0.0340 0.0347 0.0334
(2.2359) (2.3913) (2.4684) (2.3300) (2.3061)
ARCH Cosfiicient 0.1500 0.1069 0.1011 0.0986 0.1019 0.0994
2 (5.0925) (4.6983) (4.6855 ) (5.0000) (4.9445)
GARCH Coefficient 0.8000 0.8690 0.8736 (0.8741) 0.8716 0.8758
(32.0237) (32.3864) 32.6323 (32.1600) (32.9230)
Log Likelihood -1495.6 -1495.2 -1495.2026 -1495.4698 -1494.695
VaR $18,838.72 $18,709.01 $18,900.38 $18,834.25 $18,871.31 $18)964
Constant 0.0700 0.0479 0.0532 0.0478 0.0483 6.730109
(1.1371) (1.6927) (1.5653 ) (0.2522) (15.5311)
ARCH Cosfficient 0.0200 0.0230 0.0221 0.0226 0.0229 -0.012882
3 (2.2753) (2.7619) (2.8556) (0.0231) (-1.112199)
GARCH Coefficient 0.9600 0.9633 0.9630 0.9634 0.9632 -0.913815
(49.4405) (72.7501) (73.6365) (<.0001) (-8.94576)
Log Likelihood -2033.8 -2033.7 -2033.7361 -2033.7596 -2044.326
VaR $41,012.21 $40,607.76 $40,902.55 $40,433.34 $40,532.25 $43855

®bold means that number is statistically significan

® the numbers in parenthesis is t-statistics.
“VaR is 99% 1-day Value-at-Risk figure when $1,000, is invested

22| contacted to the technical support team of E\éieampany. They said current version (5.1) of E\éiew
did not have the ability to restrict directly caefénts values to be positive. However, other apphes
such as setting starting value to something masamable might be possible to achieve that.
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APPENDIX D

The Length of Periods of Backtesting

The result of the proportion of failures (PF) tdspends on the length of periods

of backtesting. Using the hypothetical portfolio3ff stocks and 1000 observations for

backtesting, we tested how the result of the PiRnesld be changed when periods of

backtesting is changed from 8/15/2000 ~ 12/31/20090 observations) to 11/3/1986 ~

12/312004 (4582 observations), so the number dtbating trials changes from 100 to

3582: five models are the EQMA model, the EWMA motiee GARCH model with a

normal distribution, the GARCH model with a t-dibtrtion, and the HS model. The

result is in figure D.1. There is a non-rejecti@nt that represents the region within the

null hypothesis of the PF test are not rejected.
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FigureD.1: Theresult of the PF test (Left Tail, Univariate)
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In figure D.1, the result using GARCH model witmarmal distribution looks
very interesting. When the number of backtestimgdtris less than about 2200, the PF
test using that model failed to reject the null biyyesis because the number of exception
from that model is in the non-rejection bands. Thehen the number of backtesting
trials is around between 2200 and 3100, the testajact the null hypothesis because the
number of exceptions using that model is out ofriba-rejection bands. However, the
model works well after 3100. We can analyze otlases in the same way.

Apparently, we get some knowledge about the medkdction from figure D.1
though the results of the PF test vary dependinthemumber of the backtesting trials.
The GARCH model with a t-distribution show supeitipiover the most models in the
most cases, which is consistent with our knowledhee scheme like exponentially
weighted model and GARCH model that gives more tisign the current events also
does a better job than the scheme that give the sanghts to the whole time horizon.

In these regards, we can compare the overall mpegbrmance among the
GARCH models in figure D.2 and D.3 with respecthe PF test. In figure D.2, if we
assume a normal distribution, orthogonal GARCH nhed®ks slightly better than the
univariate GARCH model. DCC model works better ame ranges, but worse in other
ranges. However, we can observe that GARCH mod@l tadistribution apparently work
better job after 2000 of the backtesting trialsfigure D.3, orthogonal GARCH model
works better regardless of the assumption aboudigtebution. However, DCC model,
again, works better in some ranges, but worse heratanges. As a result, multivariate

models work reasonably well in the many cases digss of the assumption about the
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distribution. But, in some cases, we can obseraeithnot true. So, we can not say that

multivariate models are always superior over thgarmate models.
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Figure D.2: Theresult of Backtesting Trialsamong GARCH models (L eft Tail)
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