
ETIOLOGY AND MANAGEMENT 
 

OF SPINACH WHITE RUST 
 
 
 
 
   
 
 

   MARK ALAN TRENT 
 

   Bachelor of Science in Education 
   Southeastern Oklahoma State University 

   Durant, Oklahoma 
   1979 

 
   Master of Education 

   Southeastern Oklahoma State University 
   Durant, Oklahoma 

   1989 
 
 
 
 
 
 
 

   Submitted to the Faculty of the 
   Graduate College of the 

   Oklahoma State University 
   in partial fulfillment of 

   the requirements for 
   the Degree of 

   MASTER OF SCIENCE 
   December, 2004 



 ii 
 

 

ETOLOGY AND MANAGEMENT 
 

OF SPINACH WHITE RUST 
 
 
 
 
 
 
 
 

 
Thesis Approved: 

 
________________________________________________ 
                                    Thesis Advisor 

 
________________________________________________ 

 
 

________________________________________________ 
 
 

________________________________________________ 
Dean of the Graduate College 

 
 
 
 
 
 
 
 
 

Dr. John Damicone

Dr. Sharon von Broembsen

Dr. Lynn P. Brandenberger 

Dr. Gordon Emslie



 iii 
 

 

ACKNOWLEDGEMENTS 
 

 I wish to express my sincere appreciation to Dr. John P. Damicone, major advisor, 

for his guidance, patience, and motivation throughout my Masters program and in the 

preparation of this manuscript.  Grateful acknowledgement is also due to committee 

members Dr. Sharon von Broembsen and Dr. Lynn P. Brandenberger, whose guidance, 

assistance, and encouragement were also invaluable.  I would like to thank Dr. Mark 

Payton for his assistance with the statistical analyses. Appreciation is also express to Mr. 

Brian Olson for his technical assistance in preparation of this manuscript, and Dr. 

Michael Berg for his assistance with DNA analysis.   

 I am grateful to the USDA-CAR Program for finical support of this study and the 

faculty and staff of the Department of Entomology and Plant Pathology for their 

commitment to the education and success of all graduate students within the department. 

In particular I would like to thank Dr. Hassan Melouk, Dr. Bob Hunger, Dr. Nathan 

Walker, Dr. Jacqueline Fletcher, Dr. Carol Bender, and Dr. Rao Uppalapati, for the use 

and assistance with their laboratory equipment and Mr. Rocky Walker, Mr. Brian Heid, 

Mr. Doug Glasgow for their technical assistance with field and inoculation studies.  

 

 

 

 



 iv 
 

 

TABLE OF CONTENTS 

 

Chapter                                                                                                                           Page 

I.    INTRODUCTION...…………………………………………………………………..1 

 History of the Disease……………………………………………………………..2 
 Causal Organism ………………………………………………………………….3 

Symptoms ………………………………………………………………………...4                        
Epidemiology……………………………………………………………………...5 

 Disease Management……………………………………………………………...7 
 Literature Cited...………………………………………………………………...15 
 
II.   Evaluation of Fungicides and Timing of Spray Programs for  
      Control of Spinach White Rust...…………………………………………………….19 
 
 Abstract ………………………………………………………………………….19 
 Introduction………………………………………………………………………20  
 Materials and Methods…………………………………………………………...23 
 Results …………………………………………………………………………...27 
 Discussion ……………………………………………………………………….29 
 Literature Cited ………………………………………………………………….35 
 
III.  Biology of oospores of Albugo occidentalis…...……………………………………43 
 
 Abstract ………………………………………………………………………….43 
 Introduction………………………………………………………………………44  
 Materials and Methods…………………………………………………………...46 
 Results …………………………………………………………………………...50 
 Discussion ……………………………………………………………………….53 
 Literature Cited ………………………………………………………………….55 
 
 
 
 
 
 
 
 



 v 
 

 

TABLE OF CONTENTS CONTINUED 
 
 
 
IV.  Post Inoculation Activity of Maneb, Azoxystrobin, Pyraclostrobin 

 and Zoxamide against Cercospora Leaf Spot of Spinach…………………………...61 
 

 Abstract ………………………………………………………………………….61 
 Introduction………………………………………………………………………62  
 Materials and Methods…………………………………………………………...64 
 Results …………………………………………………………………………...68 
            Discussion ……………………………………………………………………….70 
 Literature Cited ………………………………………………………………….73 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 vi 
 

 

LIST OF TABLES 
 
 

CHAPTER II 
 
Table                                                                                                                               Page 
 

1. Evaluation of fungicides, spray program, and spray program 
      initiation date on incidence of spinach white rust. ……………………………….39 

 
2. Evaluation of fungicides, spray program, and spray program  
      initiation date on severity of spinach white rust, trials 1 & 2 ...…………………40 

 
3. Evaluation of spray programs, and spray program initiation  
      date using azoxystrobin alternated with fosetyl-aluminum on  
      incidence and severity of spinach white rust, trial 3…………………………….41 

 
4. Evaluation of fungicides, spray program, and initiation date  
      on incidence of Cladosporium leaf spot, trial 4…...……………………………..42 

 
 
 

CHAPTER III 
 
 

1. Measurements for Colpoda spp., length and width and vesicle diameter………...60   
 
     2.   Measurements for zoospores of A. occidentalis, length, width, 
           and cyst diameter…………………………………………………………………60  
 

3. Comparison of homologous sequences of various Oomycete species  
      from GeneBank ………………………………………………………..………....60 

   
     4.   Effects of additive, agitation, agitation temperature, and surface  
           sterilization on zoospore production from oospores of A. occidentalis…………..60 
 

 
 
 
 
 



 vii 
 

 

 
 

LIST OF TABLES CONTINUED 
 
 

CHAPTER IV 
 

     Table 
      
     1.   Effects of maneb and application timing on control of  
           Cercospora leaf spot…...……………………………………………………….…76 
 
     2.   Effects of pyraclostrobin and application timing on control of  
           Cercospora leaf spot ...…………………………………………………………....76 
 
     3.   Effects of azoxystrobin and application timing on control of  
           Cercospora leaf spot ...……………………………………………………………77  
 
     4.    Effects of zoxamide and application timing on control of  
           Cercospora leaf spot ...……………………………………………………………77 
 
     5.   Published sequences from the 5.8S ribosomal RNA gene and the 
            intergenic spacer regions ITS1 and ITS2 for various Cercospora species.….…..78 
 
     6.   Alignment of homologous sequences from the 5.8S ribosomal  
           RNA gene and the intergenic spacer regions ITS1 and ITS2 for various 
           Cercospora spp. from GeneBank……………………………………………..78 
 
 
 

 
 
 
 
 
 
 
 
 

 
 



 viii 
 

 

LIST OF FIGURES 
 
 

CHAPTER II 
 

      
     Figure                                                                                                                              

 
1. Number of fungicide applications for control of spinach white rust 
      made according to a calendar-based schedule and weather-based  

           advisory programs over trials 1, 2, and 3 during 2001 and 2002…………………38 
 

 
 

CHAPTER III 
 

1. Grey leaves in the lower rosette are a result of oospore  
      development in spinach plants infected with A. occidentalis.….…………….…..57 

 
2. Chlorotic lesions resulting from inoculation of spinach  
      plants with oospores from A. occidentalis………………………………………..57 

  
3. A. Four Colpoda spp. inside transparent vesicle.  B.  Colpoda spp.  
      escaping vesicle.  C.  Swimming Colpoda spp. with one  

           remaining trapped inside the remains of the vesicle…………………………….. 58 
 
4. A. Oospore of A. occidentalis.  B. Rupturing epispore.  C. Contents  

           being discharged.  D. Discharge complete………………………………………..58 
 

     5.   A. Swimming zoospores of A. occidentalis. B. Encysted  
           zoospore with flagella...………….……………………………………………….58 
 
     6.   Phylogenetic tree obtained by DNA distance-based analysis  
           of the combined ITS1, 5.8S subunit, and ITS2 region of the  
           genomic ribosomal RNA gene. The numbers at the branch points 
           indicate the percentage of bootstrap values (100 bootstraps) ……………………59 
 
 

         
 
 



 ix 
 

 

        LIST OF FIGURES CONTINUED 
 
 

CHAPTER IV 
 

      
     Figure 
 
1.  Symptoms of Cercospora leaf spot following artificial inoculation…….…………....79 
 
2.  Conidiophores of Cercospora spp………………………………….………………...79 

 
3.  Seven-day-old Cercospora spp. in pure culture on PCAL…………....………….......80 

 
 
 



 1 
 

CHAPTER I 

INTRODUCTION 

 
Texas, Oklahoma and Arkansas lead the nation in spinach (Spinacea oleraceae L) 

produced for the processing market with more than 16,000 acres planted each year [5, 18, 

32].  White rust, caused by Albugo occidentalis Wilson is an important disease in all U.S. 

spinach production areas east of the Rocky Mountains [14].  It is the major foliar disease 

of spinach in Oklahoma and is also considered a primary problem in the spinach 

production areas of Texas and Arkansas where it can occur in epidemic proportions [24, 

44].  White rust can cause substantial yield losses through a reduction in quality of both 

fresh and processed spinach.  White rust has not been reported in western production 

areas or outside the United States [14]. 

Spinach, native to Central Asia (most probably Iran), is a member of the 

Chenopodiaceae and is related to Swiss chard, sugar beet, table beet, lambs quarter, and 

saltbrush.  The earliest record of cultivation is from China in 647 A.D. [40].  The spinach 

plant produces a compact rosette of leaves, which may be smooth (flat leaf) or crinkled 

(savoy), and bolts (produces a seed stalk) in response to warm temperatures and long 

photoperiods.  It is dioecious, producing male and female flowers on different plants.  

However some plants may be monoecious with varying proportions of male and female 

flowers on the same plant.  Male plants bolt and flower earlier than female plants, and die 

soon after flowering.  When the plant forms a seed stalk it is considered unmarketable 

[40]. 

Spinach is typically a fall, winter, or spring crop.  Only in California is spinach 

produced year-round.  Most commercial spinach is direct seeded with production 
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strategies dictated by the market destination of the commodity.  Most fresh-market 

spinach is hand harvested while spinach for processing is mechanically harvested [14]. 

Federal standards have defined low tolerances for weeds, grass, insects, spray 

residues, disease, and other contaminants in processed spinach, along with strict 

regulation on chemicals used for pest control.  Therefore, crop management strategies 

aimed at maintaining an economically viable productivity of high-quality spinach while 

reducing sources of environmental contamination are needed [9, 35]. 

History of the disease: 

White rust first became known as a destructive disease of spinach in March 1937, 

when it was found in loads of spinach received at the market in New York, N.Y., from 

the Winter Garden region of Texas1.  One load had as much as 75% of the plants 

damaged by white rust [48].  In the 1937-1938 growing season, white rust was found in 

every field examined in the Winter Garden region where, in many fields, 100% of the 

plants were infected.  In a few cases, damage was so extensive that the entire fields were 

not harvested [49].  The first appearance of the disease in the Lower Rio Grande Valley 

and the Costal Bend area of Texas came in 1941[29]. 

The first report of spinach white rust in Oklahoma was near Muskogee in 1943.  

Though this is the first record of the disease in the state, a shipper reported having seen 

small amounts in previous years [13].  In 1943 and 1944 the disease was observed in 

Wagoner, Sequayah and Leflore counties of Oklahoma [3].  In addition, the disease was  

reported for the first time in the areas around Laredo, Dallas and Temple, Texas [7, 8]. 

 

 
                                                 
1 Dimmit, Maverick, Uvalde, Zavala, and Frio counties comprise the Winter Garden region of Texas. 
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White rust was first reported on spinach in Arkansas near Van Buren in the fall of 

1945 and near Alma in 1946 [6, 50].  Over a period of nine years white rust had spread to 

all the major spinach production areas in Texas, Oklahoma and Arkansas.  In 1970, white 

rust was considered to be the foremost spinach disease problem in South Texas [44].  

Today, white rust remains one of the most economically important diseases of spinach.  

With favorable environmental conditions, it can rapidly spread and cause dramatic 

decreases in the marketability of spinach. 

Causal Organism: 

Albugo occidentalis, a member of the Peronosporales, is an obligate fungal 

pathogen, with its economic host range confined to spinach [39].  It was first reported on 

Chenopodium capitatum (L.), a wild relative of spinach, in Colorado in 1901.  Reports of 

A. occidentalis infecting other members of the Chenopodiaceae, including Beta vulgaris 

(L.) (sugar beet, table beet, and swiss chard) have been refuted [37, 49]. 

Though the biology of A. occidentalis is not completely understood, it is thought 

to resemble that of Albugo candida (Pers.) Kunze, the more thoroughly studied white rust 

pathogen of crucifers [14].  A. occidentalis produces both sexual (oospores) and asexual 

(sporangia) reproductive structures.  While factors effecting disease development through 

sporangial-initiated infections have been well documented [18, 39, 42], no reports of 

oospore germination or oospore-derived infection have been reported [14]. 

The fungus obtains its nourishment by producing an intracellular haustorium that 

penetrates the host cells.  Hyphae are most abundant in the large intercellular spaces of 

the spongy parenchyma where they give rise to sprangiophores that produce large 

numbers of basipetally formed sporangia.  As sporangia are formed, they raise the 
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epidermis to form a sorus (pustule), the epidermis ruptures, releasing sporangia that are 

disseminated by air currents.  With favorable environmental conditions they germinate to 

reinitiate the disease [2, 37].  At the time of release, sporangia are dry, discoid and 

measure approximately 10 x 14 µm.  When hydrated the sporangia become spherical to 

ellipsoid and measure 10-19 x 20-22 µm. [37]. 

In germination, the sporangial wall swells, weakens and forms a papilla through 

which the cytoplasm of the sporangia is released into a thin-walled vesicle.  The 

cytoplasm oscillates for a short time and then differentiates into zoospores.  The 

zoospores are reniform, move by means of two flagella, and measure about 7 x 10 x 5 

µm. After swimming a short time, they encyst and germinate to produce a germ tube.  

This germ tube can enter a stoma and incite infection.  Rarely, the sporangia will 

germinate directly to produce a germ tube [38]. 

A. occidentalis also produces a sexual state that results in the formation of 

oospores.  Sexual organs, the male antheridia and the female oogonia, arise from 

swellings in the ends of hyphae.  The antherdia are elongated and measure about 20 x 50 

µm while the oogonia are spherical and measure about 70 µm [37].  Fertilization 

apparently follows zonation in the oogonium although many oospores are reported to 

develop parthenogenetically [38].  Oospores, which serve as resting spores, are spherical, 

brown, finely reticulate, and measure 44-62 µm [37].  There are no descriptions of 

oospore germination for A. occidentalis [14].   

Symptoms: 

Initially, small chlorotic lesions develop on the leaf surface.  As symptoms 

progress, small glassy white pustules are produced which frequently appear in concentric 
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rings, on the underside of the leaf and occasionally on the upper leaf surface.  The 

pustules are blister-like and may be oval, irregularly oval, or elongated in shape, ranging 

in size from 0.5-2 mm in diameter and up to 4 mm in length.  Lesions often coalesce and 

the pustules can cover the entire lower surface of the leaf.  Although the pustules are 

usually formed on the lower leaf surface, they are occasionally produced on the upper 

leaf surface, petioles, and on branches and fruit coats during advanced stages of the 

disease [14, 39]. 

Higher temperatures favor production of oospores over the production of 

sporangia [14].  Oospores are formed in leaves, petioles, main stems, side branches, and 

fruit coats, often in such numbers that infected tissues are nearly black [37]. 

White rust often becomes systemic in plants that have bolted to seed, but rarely in 

vegetative plants.  When systemic, sporangia and oospores are produced in all infected 

parts of the plant.  A slight twisting of the stem and leaves may occur, but there is little or 

no hypertrophy or hyperplasia as in white rust of the Cruciferae caused by A. candida 

[39, 48].  Frequently the infected areas of the leaves become necrotic and when infection 

is severe, whole leaves are killed.  Severely affected fields may appear brownish due to 

dead leaves [39].   

Epidemiology: 

Primary infections are found on lower leaves in direct contact with, or close 

proximity to the soil surface.  Oospores that formed on previous spinach crops are 

considered to be the primary inoculum [44, 14], as no known alternate host for the 

pathogen has been found in Texas, Oklahoma, or Arkansas.  Continuous cropping has led 

to the deposit of large numbers of oospores in commercial fields [44].  Although the 
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survival ability of oospores of A. occidentalis in the soil is not known, oospores of A. 

candida have been shown to remain viable in laboratory storage for up to 17 years [36].   

  Sporangia are responsible for the polycyclic nature of the disease and 

environmental factors affecting sporangial germination and infection are important for 

increase of the disease.  Raabe and Pound [39] found that several environmental factors 

affect germination of sporangia of A. occidentalis.  Free moisture is required for 

sporangial germination, but temperature is also an important variable [39, 42].  In 

germination studies, Raabe and Pound [39] found that temperature requirements for 

germination range from 2 to 24ºC with 12 to16ºC being optimal for percent as well as 

rate of germination.  When sporangia were chilled at 12ºC for 1.5 hours germination 

percentages were about the same at all temperatures [37]. 

In plant inoculation studies Sullivan [42] showed that infection occurred and 

disease developed at a temperature range of 12 to 22 ºC and wetness (RH ≥ 95%) periods 

as brief as 3 hours.  A maximum of 90% disease severity was reached within the 

optimum temperature range of 12 to 18ºC with an 84-hour wetness period.  However, 

75% disease severity was reached after a 12-hour wetness period at 12 to 18ºC.  At less 

than optimum temperatures, longer wetness periods up to 84-hours were necessary to 

achieve infection.  Disease severity decreased when the temperature was above or below 

optimum range and wetness periods were less than12 hours [42]. 

 Raabe and Pound [39] showed that sporangial germination varied with pustule 

development.  In germination tests, sporangia collected from pustules in very early 

development, failed to germinate.  Sporangia collected from young, unopened pustules 

and pustules that had just opened showed 3.2% and 16% germination, respectively.  A 
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sample of sporangia that had fallen from the leaf within a period of 24 hours had 24.6%, 

germination and in inoculation studies, produced more infections than sporangia 

collected from pustules at any other stage of development.  Sporangia that had fallen 

from the leaf over a period of one week failed to germinate.  The researchers concluded 

that either maturity or moisture content of the sporangia was responsible for the increase 

in germination with age of the pustule [37, 39].   

In an attempt to separate the effect of sporangial maturation from the effect of 

moisture content of the sporangia, Raab and Pound selected leaves with a large number 

of pustules just beginning to open.  Leaves were allowed to dry on the laboratory bench, 

and at timed intervals, were reweighed and the sporangia collected.  As a control, 

sporangia were collected from leaves that were intact on the same plants and from 

pustules in the same apparent stage of development.  The researchers concluded that with 

an increase in water loss from the leaves, there was an increase in the germination 

percentage up to a certain point, after which the germination dropped considerably and in 

some experiments stopped [37].  Evaluating the germination of sporangia from wilted 

leaves, Raab and Pound demonstrated that the loss of water from the leaves affects 

germination.  Sporangia collected from plants that had not been watered and were wilted 

germinated much better than sporangia collected from turgid plants [39]. 

 

Disease Management:    

 Because A. occidentalis is an obligate parasite, in-vitro studies are difficult, and 

little is known about its sexual cycle or the biology of the oospores which are assumed to 

be the cause of primary infections.  Without an understanding of oospore germination, 
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viability, and survival, the principles of integrated management cannot be fully utilized.  

Biological control methods aimed at reducing oospore survival in soil cannot be 

developed, primary inoculum levels cannot be assessed, and effective crop rotation 

intervals cannot be defined.  Therefore, chemical control, alone or in combination with 

host plant resistance has been the foundation of white rust management [12, 15, 18]. 

Resistance: 

  A cooperative effort between the U.S. Department of Agriculture and Texas 

A&M University to develop spinach cultivars with resistance to white rust was initiated 

in 1960.  The partially resistant cultivars Wintergarden, Jewel, and Crystal were released 

in 1975 as a result of this breeding program.  A significant reduction in white rust 

severity occurred on these cultivars compared to susceptible cultivars.  In 1972, a 

breeding program was initiated at the University of Arkansas [11].  Using a field 

selection process to further develop field, or horizontal resistance to white rust, several 

breeding lines were developed. The cultivars, Fall Green, Ozarka, Greenvalley, 

Wintergreen, and F 380 have been released which have varying levels of horizontal 

resistance.  Fall Green and F 380 have the highest levels of white rust resistance among 

commercial cultivars [10, 30, 31]. 

Several genes that influence a range of physiological processes in the plant 

control horizontal resistance.  Therefore, horizontal resistance is durable and effective 

against all races of an individual pathogen.  However, horizontal resistance does not 

provide complete protection from infection, but rather slows the rate of disease increase.   

Therefore, resistant cultivars can become severely diseased under favorable 

environmental conditions and high inoculum pressure [14].  In addition, effective levels 
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of resistance are lacking for long-standing cultivars useful for production in the 

overwinter and spring production seasons.  Many resistant cultivars are open-pollinated 

and do not yield as well as hybrids [16, 42].   

 

Chemical Control: 

  Protective fungicides such as the ethylene bisdithiocarbamates (EDBCs), maneb, 

zineb, and mancozeb were registered for use on spinach in 1955.  These fungicides 

provided good control of white rust when applied on a 7-day schedule [34].  However, 

the Environmental Protection Agency (EPA) issued a Rebuttal Presumption Against 

Registration (RPAR) for EDBCs in 1977 [34].  A residue tolerance of 10 ppm was issued 

in the U. S. in 1982.  In 1980, Canadian markets restricted residues of EDBCs allowed on 

imported spinach exceeding 0.1 ppm.  Canada consumed about 50% of the fresh market 

spinach and a significant proportion of the processing spinach produced in the Winter 

Garden region of Texas [34].  Thus, EDBCs were eliminated from many spinach disease 

control programs.  In 1992 the EPA revoked the registration of the EDBCs on spinach 

and other some vegetable crops in the U.S. 

Copper compounds (copper sulfate and copper hydroxide); metalaxyl; a pre-mix 

of metalaxyl and copper sulfate; and fosetyl-aluminum became the only fungicides 

registered for control of white rust [42].  Copper compounds are phytotoxic, and injury 

caused by them may be as damaging as foliar disease.  In Texas, soil applications of 

metalaxyl are effective when used in-furrow, as a seed treatment, and in combination 

with foliar applications of metalaxyl and copper sulfate [17, 19].  In Oklahoma, soil 

applications of metalaxyl and foliar applications of metalaxyl and copper sulfate have 
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been ineffective [20, 22].  However, soil applications of metalaxyl followed by foliar 

applications of metalaxyl and copper sulfate in alternation with copper hydroxide 

significantly reduced disease incidence and severity [20, 22, 23].  Metalaxyl and 

metalaxyl with copper sulfate are expensive treatments.  Fosetyl-aluminum has shown to 

reduce disease incidence and severity with minimum phytotoxic effects [20, 27].   

The fungicides azoxystrobin and pyraclostrobin are synthetic analogs of a 

naturally occurring compound, called strobilurin, produced by Strobilurus tenacellus, an 

inconspicuous woodland basiciomycete [4, 51].  Azoxystrobin was recently approved for 

use on spinach and has been shown to provide a high level of white rust control. Over six 

trials, weekly applications of azoxystrobin resulted in an average of only 0.2% disease 

severity with no with phytotoxic effects [21, 22, 25-28].  Pyraclostrobin, an experimental 

fungicide not yet registered for use on spinach, has been evaluated for spinach white rust 

control.  In field trials under moderate to severe disease pressure, pyraclostrobin provided 

almost complete disease control [22, 23].   

Advisory System: 

 Calendar-based fungicide programs are normally initiated at the first true leaf 

stage and continue on 7-day intervals until just before harvest.  Spring-planted spinach 

may require up to six applications, while in fall-planted, over-wintered spinach in the 

Winter Garden region of Texas, up to thirteen applications may be necessary [18, 42].  

Because weekly spray programs can lead to a considerable increase in the costs of 

spinach production, weather-based spray advisories have been developed that permit the 

timing of fungicide sprays to coincide with weather conditions favorable for infection.  
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Applications are not made during unfavorable periods thus reducing cost and potential 

environmental impacts of fungicide programs. 

 Dainello [18] demonstrated that a reduction of 25 to 39% in the number of 

fungicide applications compared to a calendar schedule could be achieved without 

impacting white rust control by timing the applications to follow 12 continuous hours of 

leaf wetness.  Sullivan [43] developed a similar weather-based advisory program based 

on the observed disease response to temperature (T) and wetness duration, the period of 

relative humidity ≥ 95%, (W).  Beginning when the first true leaves were fully expanded, 

wetness durations were weighted for temperature (T*W), accumulated over time, and 

sprays were applied when T*W values ranged from 3 to 36 hrs.  Advisory programs 

using effective T*W thresholds of 3, 6, and 12 hr resulted in a reduction in the number 

applications by 1.4, 2.7, and 3, respectively, compared to 6 sprays per season for the 7-

day program, while providing similar disease control [43].   

 Determining the most appropriate time to initiate a fungicide program may 

provide further improvement in the efficiency of fungicide usage for white rust.  Raabe 

[37] found young leaves to be very resistant to localized infection.  However, when plants 

became systemically infected, even the youngest leaves showed symptoms.  Thus, the 

resistance of young leaves appears not to be against fungal growth, but rather to 

penetration of the leaf by the fungus.  This might be attributed to the stomata remaining 

closed until the leaves are fully developed [37].  Because white rust has often been 

observed to develop to severe levels late in the season, it may be possible to omit one or 

more fungicide applications early in the season without sacrificing disease control.   
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Advisory systems are limited in that infection can take place within the first 12 

hours of favorable conditions and fungicide applications may be delayed by the weather 

conditions that triggered the advisory system.  Therefore, systemic fungicides that have 

postinfection activity and can provide disease control when applied to plants that have 

already been infected are valuable to an advisory-based, disease control program.  The 

postinfection activity of azoxystrobin and pyraclostrobin against spinach white rust has 

been documented [42].   For azoxystrobin, no disease developed when the fungicide was 

applied within one day after inoculation and continued to show postinfection up to three 

days after inoculation.  Pyraclostrobin showed postinfection activity at least four days 

after inoculation and provided complete disease control up to three days after inoculation.   

While white rust is considered the most economically important foliar disease of 

spinach in Oklahoma, the crop can be attacked by a number of foliar diseases that can 

reduce quality and marketability  [5].  Other major foliar diseases include blue mold 

(Peronospora effusa), Cercospora leaf spot (Cercospora beticola), anthracnose 

(Colletotrichum spinacicola and C. spinaciae) and Cladosporium leaf spot 

(Cladosporium macrocarpum).  Symptoms of Cladosporium leaf spot have been 

observed on vegetative spinach under very wet conditions and can be very damaging to 

foliage of mature plants grown for seed production [14]. Cercospora leaf spot is one of 

the most serious and widely distributed foliar diseased of sugar beet worldwide [41] and 

is considered an economically important disease of spinach [14].  Favorable 

environmental conditions for infection of Cercospora leaf spot of sugar beet have been 

determined [46, 47].  Temperatures between 24 and 29º C with relative humidity >90% 

are optimum for infection.  Infection increased sharply when inoculated plants were 
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exposed to these conditions for 48 hours or more.  In Texas, Cercospora leaf spot affects 

approximately 50% of the spinach acreage and a 5% infestation can eliminate the first 

spinach cutting in fall and early winter fresh market fields [33].  The leaf spot disease 

causes lesions (3 to 5 mm in size) on older spinach leaves.  During periods of warm 

temperatures and high humidity or leaf wetness, tan necrotic spots on lower leaves will 

turn gray and lower the quality of leaves or make them unmarketable.   

  It is known that most fungal pathogens need periods of free moisture to 

germinate, infect, and cause disease. Therefore, the white rust advisory may be effective 

in predicting outbreaks of foliar diseases other than white rust.  By quantifying the 

postinfection activity and efficacy of various fungicides against the range of foliar 

diseases of spinach, producers can make better decisions when choosing fungicides.   

 Advisory systems have been shown to accurately predict the increase of white 

rust due to favorable conditions for sporangial germination and infection.  However, the 

type and source of primary inoculum for disease onset is still unclear.  It has been 

speculated that the primary inoculum for the spinach white rust disease are the oospores 

from previous spinach crops that survive in the soil to re-initiate the disease in the next 

cropping season [14, 44].  Oospores are known to be the primary inoculum for diseases 

caused by other members of the Peronosporales.  In downy mildew of grape caused by 

Plasmopara viticola, the oospores survive in dead leaf lesions and shoots [1].  The 

oospores germinate during rainy periods in the spring and produce sporangia and 

zoospores that are disseminated by wind or water to wet leaves, which they infect 

through the stomata.  Oospores of Albugo candida the causal agent for white rust of 

Cruciferae, have been shown to germinate after washing on a rotary shaker or allowing 
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water to slowly drip onto a filter where oospores have been distributed [45].  This 

suggests that germination in nature is influenced by the leaching action from melting 

snow or rain showers. Determining the conditions for germination of A. occidentalis 

oospores could be beneficial in better predicating the onset of spinach white rust.   

Three chapters of this thesis are written in journal manuscript format.  Chapter II, 

entitled “Evaluation of Fungicides and Timing the Initiation of Spray Programs for  

Control of Spinach White Rust” describes the effects of various fungicides and spray 

program initiation dates for control spinach white rust and Cladosporium leaf spot.  

Chapter III, entitled “Biology of Oospores of Albugo occidentalis” describes the role of 

oospores in the initiation of the spinach white rust disease.  Chapter IV, entitled “Post 

Inoculation Activity of Fungicides Against Cercospora Leaf Spot of Spinach” describes 

studies under controlled conditions where the activity of these fungicides was evaluated 

at various periods after inoculation.   
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CHAPTER II 
 

Evaluation of Fungicides and Timing the Initiation of Spray Programs for 
Control of Spinach White Rust 

 

ABSTRACT 

The effects of various initiation dates for a weather-based advisory program and a 

7-day calendar program using different fungicides were evaluated for control of spinach 

white rust caused by Albugo occidentalis in four field trials.  The advisory program 

accumulated periods of temperature and wetness ((RH ≥ 90%)T*W hours) favorable for 

white rust development. The calendar program and the accumulation of T*W hours were 

initiated at the first true leaf stage (early), 7 days after the first true leaf stage (middle), 

and 14 days after the first true leaf stage (late).  The fungicides zoxamide, pyraclostrobin, 

azoxystrobin, and azoxystrobin alternated with zoxamide were used in trials 1, 2, and 4; 

and azoxystrobin alternated with fosetyl-aluminum was used in trial 3. In trials 1-3 levels 

of white rust were severe in the untreated controls.  Disease incidence (percentage of 

leaves with symptoms) averaged over 60% and disease severity (percentage of leaf area 

with symptoms) was over 20%.  All fungicides reduced white rust levels in trials 1, 2, 

and 3 compared to the untreated control. Across spray programs and initiation dates, 

pyraclostrobin had significantly lower levels of white rust with 5.1% disease incidence 

and 0.4% disease severity compared to 18.9% disease incidence and 2.6% disease 

severity averaged over the three other fungicides in trials 1 and 2.  Across spray programs 

and initiation dates, azoxystrobin alternated with fosetyl-aluminum provided a high level 

of disease control with 10.6% disease incidence and 0.6% disease severity in trial 3.  

Within early, middle, and late initiation dates, the number of sprays was reduced by 2-3 
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per season for the advisory program compared to the calendar program.  In trials 1 and 2, 

the early and middle calendar programs had lower disease incidence and severity 

compared to the late calendar program, and all of the advisory initiation dates which had 

similar levels of white rust.  However, the late initiation dates had higher levels of 

disease.  In trial 3 there were no differences in disease incidence between initiation dates 

of the spray programs, but disease severity was higher for the late than for the early 

initiation date.  Overall, disease incidence and severity were higher for the advisory 

program compared to the calendar program in all 3 trials.  While statistically significant, 

differences in disease severity were small and may not be economically important.  White 

rust was not observed in trial 4.  However, Cladosporium leaf spot developed and the 

efficacy of spray programs, initiation dates, and fungicides were evaluated.  Disease 

incidence for the untreated control was severe (62%) while disease severity was low 

(2%).  All fungicides, except zoxamide alone, reduced the incidence of Cladosporium 

leaf spot to 17-23%.  There were no differences in the incidence Cladosporium leaf spot 

among early, middle, or late initiation dates.  However, the calendar programs provided 

significantly lower levels of disease incidence compared to the advisory programs.  

Results indicated that delaying fungicide applications through 7 days after the first true 

leaf stage consistently provided disease control similar to a full-season program. 

    

INTRODUCTION 

White rust, caused by Albugo occidentalis Wilson, is an economically important 

foliar disease in all spinach production areas of the United States east of the Rocky 

Mountains [6].  Symptoms begin as small chlorotic lesions on the upper leaf surface.  
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Sporangia develop as small, glassy, white pustules (sori) in the chlorotic areas on the 

underside of the leaves and occasionally on the upper leaf surface.  Lesions often 

coalesce, and the pustules can cover the entire leaf surface.  Dark oospores may be 

produced as the lesions mature, giving the leaf a grainy appearance prior to necrosis [6, 

23, 24].  

Many factors are involved in determining economic thresholds for disease levels 

in spinach produced for the processing market.  In general, processors follow federal 

guidelines developed by the United States Department of Agriculture that establish three 

grades for processing spinach; U.S Grade A or U.S. Fancy, U.S. Grade B or U.S. Extra 

Standard, and Substandard [2].  Grades are based on requirements for product 

characteristics with respect to quality factors such as flavor and odor, color, stem 

material, damage, and harmless extraneous material [2].  Processors in the Arkansas 

River Valley region report that older necrotic lesions and pustules that develop on the 

upper and lower leaf surface have a more adverse affect on quality than younger, 

chlorotic lesions that develop on only one side of the leaf surface.  While damage is the 

main concern in quality reduction due to white rust, other factors such as insect feeding, 

mechanical damage, and foliar diseases other than white rust can also cause damage to 

the product.   Producers must minimize the effect of these factors in order to produce a 

product that will satisfy the quality demands of the market 

Depending on market processing demands, U.S. Grade A quality spinach may be 

valued at $140.00 per ton, with a 40% reduction for U.S. Grade B, and substandard 

grades may be rejected.  Losses due to a reduction in the quality and marketability of 

fresh and processing spinach can be 30 to 100% [3, 8].  
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Management of spinach white rust has included integrated practices, such as crop 

rotation, the use of partially resistant cultivars, and the use of fungicides [3].  Partially 

resistant cultivars can provide acceptable levels of disease control when disease incidence 

is low [7].  However, this resistance can be overcome under favorable environmental 

conditions [6, 7].  Resistance is lacking in long-standing spinach cultivars useful for the 

overwinter and spring production seasons.  As a result, fungicides are an important 

component of spinach white rust management. 

Historically, chemical control of white rust was based on preventive programs 

with the EDBCs maneb and zineb.  However, their registration was revoked in 1992 [4, 

8, 21].  Currently, only copper-based fungicides, metalaxyl, fosetyl-Al, and azoxystrobin 

are registered for use on spinach.  Azoxystrobin is the primary fungicide used by growers 

in Oklahoma for control of spinach white rust.  The current cost of $49.72 per hectare per 

application [27] and concerns about the development of resistance to the strobulurin 

fungicides have increased the need for judicious application timings.  Azoxystrobin has 

been shown to provide almost complete control of spinach white rust with an average of 

0.2% disease severity over six trials with no phytotoxic effects [9, 13, 14, 16-18].  In 

artificial inoculations, Sullivan [25] demonstrated complete white rust control when 

azoxystrobin was applied one day after inoculation and continued post-infection activity 

when applied up to three days after inoculation.  Efforts to delay the development of 

resistance to strobilurin fungicides have lead to label restrictions that require no more 

than two sequential applications of azoxystrobin before alternating to a non-strobilurin 

fungicide and no more than 6 applications per crop per year.  
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Dainello [8] demonstrated that a reduction in fungicide applications compared to 

a calendar schedule could be achieved without impacting white rust control by spraying 

immediately following 12 continuous hours of leaf wetness.  Sullivan [26] developed a 

similar weather-based advisory program based on the observed disease response to 

temperature (T) and wetness duration (relative humidity ≥ 95%, (W)).  Beginning when 

the first true leaves were fully expanded, wetness durations were weighted for 

temperature (T*W), accumulated over time, and sprays were applied when T*W values 

ranged from 3 to 36 hrs.  T*W programs of 3, 6, and 12 hr reduced the number of sprays 

by 1.4, 2.7, and 3 sprays per season, respectively, while providing disease control that 

was similar to the 7-day calendar schedule.  

 Determining the most appropriate time to initiate a weather-based spray advisory 

program may provide further improvement in the efficiency of fungicide programs for 

white rust.  Raabe [23] found young leaves to be very resistant to infection.  However, 

when plants became systemically infected, even the youngest leaves showed symptoms.  

Thus, the resistance of young leaves appears not to be against fungal growth, but rather to 

penetration of the leaf by the fungus.  This might be attributed to the stomata remaining 

closed until the leaves are fully developed [23].  Because white rust has often been 

observed to develop to severe levels late in the season, it may be possible to omit one or 

more fungicide applications early in the season without sacrificing disease control.  The 

objectives of this study were to determine the optimum time to initiate fungicide 

programs for control of spinach white rust and to evaluate the efficacy of various 

fungicides within a calendar-based and a weather-based spray program.   
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MATERIALS AND METHODS 

 The effects of fungicides, spray programs, and timing the initiation of the spray 

program for the control of spinach white rust were evaluated in four field trials.  The 

trials were carried out in the spring and fall of 2001, and spring of 2002 at the Plant 

Pathology Research Farm, Oklahoma State University, in Stillwater (trials 1 and 2), the 

Vegetable Research Station, Oklahoma State University, in Bixby (trial 3), and in a 

commercial field near Hydro OK (trial 4).  The susceptible cultivar “Melody” was used 

in trials 1, 2, and 3 and the partially resistant cultivar “Fall Green” was used in trial 4.  

Planting dates for trials 1-4 were 08 Mar 2001, 13 Sept 2001, 15 Mar 2002 and 28 Feb 

2001, respectively.  For all trials, granular fertilizer (23-0-0 kg/ha N-P-K) was broadcast 

and incorporated prior to direct seeding.  Metolachlor (Dual 8E) at 2.24 kg/ha was 

broadcast immediately after planting.  Additional fertilizer at 23-0-0 kg/ha N-P-K was 

broadcast three weeks after emergence.  The fields received sprinkler irrigation as 

necessary to prevent moisture stress.   

 In trials 1, 2, and 4 the fungicides zoxamide (Zoxium 80W Dow Agrosciences) at 

0.34 kg a.i./ha, pyraclostrobin (Cabrio 20WG, BASF Corp.) at 0.17 kg a.i./ha, 

azoxystrobin (Quadris 2.08F, Syngenta Crop Protection) at 0.17 kg a.i./ha were applied 

as foliar sprays.  In addition, azoxystrobin at 0.17 kg a.i./ha was alternated with zoxamide 

at 0.34 kg a.i./ha as a resistance management strategy.  In trial 3, azoxystrobin at 0.17 kg 

a.i./ha was alternated with fosetyl-aluminum (Aliette 80WG, Bayer CropScience) 2.69 kg 

a.i./ha.  Two sequential applications of azoxystrobin were made before alternating with 

one application of fosetyl-aluminum in order to meet resistance management guidelines 

specified on the azoxystrobin label.  Sprays were broadcast to all four rows of a plot with 
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a wheelbarrow sprayer equipped with three 8003vk flat-fan nozzles spaced 46 cm apart.  

The sprayer was calibrated to deliver from 402 to 430 l / ha at 290 kPa.   

Fungicides were applied either according to a 7-day calendar program or a 

weather-based advisory program.  The advisory program accumulated hourly periods of 

favorable weather for infection, herein called T*W hours, that consisted of wetness (W; 

RH≥90%) while temperature (T) was from 6 to 26º C according to the methods of 

Sullivan et al [26].  Hours of RH≥90% were used to insure that all periods of favorable 

wetness were included because the RH sensors (HMP-35B, Vaisala) are less accurate 

above 95% RH compared to lower RH values.  Each hour of W was weighted by a factor 

that accounted for the effect of temperature.  At optimum temperatures of 12 to 18º C, 

each hour of W was counted as one T*W hour.  At sub-optimal temperatures of 10 to 11º 

C and 19 to 21º C, each hour of W was multiplied by 0.75; while at 6 to 9º C and 22 to 

26º C, each hour of W was multiplied by 0.50.  Wetness periods at 26º C and >26º C 

were not included because little or no disease develops at these temperatures. A spray 

threshold of 12 T*W hours was used in all trials.   

  Early, middle, and late initiation dates for each the advisory program and the 

calendar program was compared with an unsprayed control.  For the calendar program, 

the first application was made when the first true leaves were fully expanded (first-true-

leaf-stage (early calendar)), one week after the first-true-leaf-stage (middle calendar), and 

two weeks after the first-true-leaf stage (late calendar).  For the advisory program, T*W 

durations were accumulated beginning at the first-true-leaf-stage (early advisory) one 

week after the first-true-leaf-stage (middle advisory) and two weeks after the first-true-

leaf stage (late advisory).  When 12 T*W hours accumulated, a fungicide application was 
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made within two days. A fungicide application was assumed to provide a 7-day 

protection period. Therefore, T*W hours were reset to zero following an application and 

were again accumulated 7 days after the previous spray.  The first applications for the 

early calendar program were made on 8 Mar 01, 13 Sept 01, 11 Apr 02, and 6 Mar 01 for 

trials 1 to 4, respectively.  All spray programs were maintained until 7 days before 

anticipated harvest. 

T*W hours were monitored continuously via the OKLAHOMA MESONET, a 

network of automated, computer-linked weather stations. A station was within 0.5 km of 

test sites for trials 1, 2, and 3; and within 5 km of the test site for trial 4.  Readings of T 

and RH were taken every 5 minutes, and the data were processed with a Microsoft Excel 

spreadsheet that calculated the number of T*W hours for a 24-hour period beginning at 

1200 CST.   

Treatments in each trial were arranged as a randomized complete-block design 

with four replicates.  Plots consisted of four 6.7-m-long rows spaced 38 cm apart. Plots 

were evaluated for disease incidence, the percentage of leaves with symptoms, and 

disease severity, the percentage of leaf area with symptoms, at the end of the cropping 

season on 24 May 2001, 19 Nov 2001, 21 May 2001, and Apr 16 2001 for trials 1, 2, 3, 

and 4 respectively.  Six, 0.31-m row segments were harvested arbitrarily from the middle 

two rows of each plot.  The harvested leaves were bulked, mixed, and 30 leaves were 

blindly sampled.  The percentage of leaf area covered with white rust was visually 

estimated on each sampled leaf. 

  Analysis of the incidence and severity data was performed on the mean of the 30 

subsamples per plot.  The effects of spray programs, fungicide treatments, and initiation 
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dates on disease incidence and severity were evaluated by analyses of variance using the 

SAS Mixed procedure (version 8.2 SAS Institute, Cary NC).  All treatments were 

significantly different from the untreated control.  Because the mixed procedure in SAS 

compares the least squared means of all treatments, the non-treated control was dropped 

from the analysis so comparisons of fungicides, spray programs and initiation dates were 

not influenced by the high levels of disease found in the control.  The main effects of 

fungicide, initiation date, spray program, and their interactions were tested for trials 1, 2, 

and 4.  The main effects of spray program and initiation date, and the interaction of spray 

program x initiation date were tested for trial 3.  Means were separated by comparing 

differences in least squared means.  Unless otherwise indicated, only significant (P≤0.05) 

differences between means are described below. 

 

RESULTS 

 Weather conditions that favored development of white rust were recorded during 

each trial. Rainfall from planting to harvest totaled 12 cm in trial 1, 11 cm in trial 2, 23 

cm in trial 3, and 3 cm in trial 4.  Trials 1 and 2 received two supplemental 2.5 cm 

irrigations and trial 3 received three supplemental 1 cm irrigations.  T*W hours totaled 

119 in trial 1, 140 in trial 2, 135.2 in trial 3, and 125.5 in trial 4.  

 White rust levels in the non-treated control plots were moderate to severe in trials 

1, 2, and 3.  Disease incidence for the control in trial 1, was 75% and disease severity was 

11%.  Disease levels in trials 2 and 3 were greater than for trial 1.  For trials 2 and 3, over 

70% of the leaves had symptoms and disease severity averaged over 25%.  No white rust 

developed in trial 4; however, Cladosporium leaf spot caused by Cladosporium spp. 
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developed and effects of initiation date, spray programs, and fungicides were evaluated 

for that disease.  

For each initiation date, the advisory program resulted in significantly fewer 

fungicide applications per trial compared to the 7-day program in trials 1, 2, and 3 (Fig. 

1).  Compared to the early calendar program, fungicide applications were reduced by 

17.7%, 33.3%, 50%, 61.2%, and 72.2% for mid calendar, late calendar, early advisory, 

mid advisory, and late advisory, respectively.  

 For trials 1 and 2, the main effects of fungicide, spray program, and initiation date 

were significant (P < 0.01) for disease incidence and severity of white rust.  In trial 3 

when only one fungicide treatment was used only the effects of spray program were 

significant (P < 0.01) for disease incidence and for disease severity.  There were no 

significant interactions between the effects in trials 1, 2, or 3.   

Control of white rust varied depending on fungicide in trial 1 and 2.  Averaged 

over the spray programs and initiation dates, pyraclostrobin had the lowest disease 

incidence (Table 1) and severity (Table 2).  Disease incidence and severity did not differ 

among the fungicides zoxamide, azoxystrobin, and azoxystrobin alternated with 

zoxamide.   

 Control of white rust also varied among the calendar and advisory programs, and 

between spray program initiation dates in trials 1 and 2.  Within the calendar program, 

early and middle initiation dates provided lower disease incidence (Table 1) and severity 

(Table 2) compared to the late initiation date. Levels of white rust did not differ among 

initiation dates within the advisory program.  In trial 3, there were no differences in 

disease incidence among initiation dates of spray programs (Table 3).  However, the early 
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and middle initiation dates had lower levels of disease severity control compared to the 

late initiation date. 

 Averaged over fungicides and initiation dates, levels of white rust for the advisory 

and calendar programs were reduced compared to the control.  For the calendar program 

in trials 1 and 2, disease incidence was reduced by 70.6% and disease severity was 

reduced by 20.5%.  The advisory program resulted in a reduction of disease incidence of 

55.6% and disease severity was reduced by 19.6%.  While both programs significantly 

reduced disease levels, the calendar program generally had significantly less disease 

incidence and severity compared to the advisory programs.  However, disease severity for 

the early and middle advisory programs did not differ from the early and middle calendar 

programs.   Results for the effects of spray programs in trial 3 (Table 3) were similar to 

those in trials 1 and 2 except that disease levels were higher for each initiation date of the 

advisory program compared to respective calendar programs.   

In trial 4, incidence of Cladosporium leaf spot was 62% while disease severity 

was only 2% in the non-treated control plots.  Because disease severity was minimal, 

only data on disease incidence is presented.  Because the fungicide zoxamide did not 

differ from the control, and the analysis compares all treatments, the affect of the lack of 

efficacy for zoxamide was eliminated by leaving it out of the analysis.  The main effects 

of fungicide and initiation dates were not significant and there were no significant 

interactions between the main effects.  For the spray programs, the calendar treatments 

reduced disease incidence by 25% compared to the advisory treatments (Table 4). 
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DISCUSSION 

Weather-based advisory programs, based on the development of white rust in 

response to temperature and duration of wetness under controlled conditions [27], have 

been shown to improve the efficiency of fungicide programs for control of white rust 

[26]. The efficiency of a fungicide program is defined as the maintenance of disease 

levels equivalent to a seven-day program with a reduced number of fungicide 

applications.  Using the first true leaf stage as a standard initiation date, delaying the 

initiation date by 1 week resulted in a reduced number of applications for both the 

advisory program and the 7-day calendar program, without an increase in disease severity 

in 2 of 3 trials where white rust developed. Greenhouse studies have shown [23] young 

spinach leaves to display a resistance reaction to white rust.  This may explain why a one-

week delay in fungicide applications did not increase disease levels in this study.  

Delaying the initiation date by two weeks resulted in a further reduction in the number of 

fungicide applications.  However, disease levels increased significantly for 2 of the 3 

trials where white rust developed.   

Disease levels were reduced by both the calendar and advisory spray programs 

compared to the control. However, disease levels for the advisory programs were 

significantly greater compared to the calendar programs when averaged across fungicides 

and initiation dates.  Therefore, across all fungicides and initiation dates the advisory 

program cannot be considered as efficient as the 7-day calendar programs. While disease 

incidence within the advisory programs was always greater for all initiation dates 

compared to the calendar programs, there were no differences in disease severity for early 

and middle advisory programs compared to early and middle calendar programs in trials 
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1 and 2.  In trial 3 disease severity was significantly greater for the early and middle 

advisory programs compared to the early and middle calendar programs but the 

difference was only 0.5% and 0.6%, respectively.  Disease severity may be a better 

indicator of crop damage than disease incidence as severity is a measurement of the 

amount leaf area affected while incidence only indicates the percentage of leaves with 

symptoms. Using only disease severity as an evaluation for efficiency of fungicide 

programs, early and middle advisory program may be considered more efficient than the 

early and middle 7-day calendar program.   

Azoxystrobin is the primary fungicide in use by growers in Oklahoma for control 

of white rust.  The mode of action for azoxystrobin involves the inhibition of 

mitochondrial respiration.  This mode of action has already been overcome by resistance 

in the powdery mildew fungus, the gummy stem blight fungus, and the downy mildew 

fungus in cucurbits. 

Sullivan [25] demonstrated that azoxystrobin has post-infection activity against 

spinach white rust and superior efficacy compared to the protectant EDBC fungicides 

when used in an advisory program [26].  Pyraclostrobin, an experimental fungicide not 

registered for use on spinach was the most effective fungicide used in this study.  

Concerns about the development of resistance to fungicides that are single-site inhibitors 

of fungal metabolism like the strobilurin fungicides have led to label restrictions for 

azoxystrobin.  For spinach, the label for azoxystrobin permits a maximum of two 

consecutive applications before switching to a fungicide with a different mode of action.  

Zoxamide is a new fungicide being developed for foliar use on potatoes, grapes, and 

vegetables to control Oomycete fungi [30].  The fungitoxic mechanism of zoxamide 
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involves inhibition of nuclear division as the result of covalent binding to β-tubulin and 

disruption of the microtubule cytoskeleton [30].  Although, the mode of action for 

zoxamide is different from the strobulurin fungicides, it is not unlike the mode of action 

for the benximidaxoles which have had resistance problems [31].  In this study, zoxamide 

alone and zoxamide alternated with azoxystrobin were similar in efficacy to azoxystrobin 

alone.  Therefore zoxamide could be used in alternation with azoxystrobin for white rust 

control.  Fosetyl-Al is a unique fungicide that enhances plant responses normally 

associated with disease resistance [22].  It is systemic in both basipetal and acropetal 

direction [5] and may also have a direct fungicidal mode of action [19, 20].  In previous 

field trials, efficacy of fosetyl-Al was similar to that for the EDBCs [9-12], but 

significantly lower when compared to azoxystrobin, pyraclostrobin, or zoxamide [15].  

Fosetyl-Al is currently registered for use in spinach and provided good disease control 

when used in alternation with azoxystrobin in trial 3. Therefore fosetyl-Al may be used in 

a control program for spinach white rust with azoxystrobin to satisfy resistance 

management requirements.  

 The foliar disease Cladosporium leaf spot was the only disease encountered in 

trial 4.  White rust did not develop despite the 125.5 T*W hours that accumulated during 

the trial, which was similar to the average of 131.3 T*W hours for the other three trials.  

The advisory programs recommended 3, 1, and 1 sprays in trial 4 for early, middle, and 

late initiation dates, respectively.  Other weather conditions during trial 4 may have 

resulted in the lack of white rust infection as rainfall totaled only 3 cm through out the 

trial.  It has been speculated that the primary inoculum for spinach white rust consists of 

oospores that have developed from previous spinach crops and survive in the soil to re-
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initiate the disease in the next cropping season [6, 28].  Oospores are known to be the 

primary inoculum for diseases caused by other members of the Peronosporales.  In 

downy mildew of grape caused by Plasmopara viticola, the oospores survive in dead leaf 

lesions and shoots [1].  The oospores germinate during rainy periods in the spring and 

produce sporangia and/or its zoospores that are disseminated by wind or water to wet 

leaves, which they infect through the stomata.  Oospores of Albugo candida, the causal 

agent for white rust of Brassica spp. are known to germinate following washing on a 

rotary shaker or allowing water to slowly drip onto a filter where oospores have been 

distributed [29].  This suggests that germination in nature is influenced by the leaching 

action from water.  Therefore, it is possible that conditions that favor primary infection 

did not occur during trial 4.  It is also possible that oospores were not present in the field.  

The time when favorable environmental conditions for sporangial germination and 

infection occurred may have also had an effect on white rust development.  In trial 4, 98 

of the 125.5 T*W hours occurred after 31 Mar, late in the season and within 17 days of 

harvest.  

The fungicides azoxystrobin, pyraclostrobin, or azoxystrobin alternated with 

zoxamide provided good control of Cladosporium leaf spot.  The efficacy of the 

fungicide zoxamide is apparently limited to the control of Oomycete fungi, and therefore 

zoxamide alone was not effective against Cladosporium leaf spot under any spray 

program or initiation date. The advisory programs had only limited efficacy while all 

calendar programs provided good disease control. The late calendar program was the 

most efficient.  Because Cladosporium leaf spot is known to develop late in the spring 
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season, temperature requirements for disease development may be higher than that for 

spinach white rust.   

The cost of spinach production in Oklahoma, including azoxystrobin has been 

estimated to be $1161/ha. With each application of azoxystrobin costing over $60/ha, 

delaying the initiation of a calendar-based fungicide program by one week can 

significantly reduce the cost of spinach production without sacrificing disease control.    

Sullivan [26] demonstrated that the advisory program could reduce the number of 

fungicide applications without sacrificing disease control.  In this study the advisory 

programs significantly reduced the number of fungicide applications per season 

compared to the calendar programs.  However, there was generally a small but significant 

overall increase in disease levels.  The middle advisory program was shown to be more 

efficient than the early advisory program by providing an equitant level of disease control 

with fewer sprays per season.  Also, the middle advisory program was more efficient than 

the early and middle calendar programs at reducing disease severity in trials 1 and 2 with 

only a slight increase in trial 3.  However, an increase in disease incidence was observed.  

Since the registration of azoxystrobin for use on spinach in 1999, no fields in Oklahoma 

have been rejected for harvest due to white rust.  It has not been possible to determine the 

actual level of white rust that is acceptable by processors. Therefore, it is unclear whether 

the increased disease incidence level for the early and middle advisory programs would 

have led to a reduction in grade or the rejection of the crop.   

The use of the advisory program can result in a 60% reduction in the number of 

fungicide application and the use of partially resistant cultivars has shown to delay the 

development of white rust.  In addition, acceptable tolerances for white rust 
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contamination in spinach for the processing market are not defined.  Further studies to 

determine the value of partially resistant cultivars in a weather-based advisory program 

and the establishment an economic threshold for disease levels in spinach are needed.  
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Figure 1.  Number of fungicide applications for control of spinach white rust made 
according to a calendar-based schedule and weather-based advisory programs over trials 
1, 2, and 3 during 2001 and 2002 
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Table 1.  Effects of fungicides, spray program, and spray program initiation date on incidence of spinach white rust1, trials 1 & 2 

 Calendar 4      Advisory5   Fungicide 
Fungicide Early Middle Late  Early Middle Late  mean6 

Zoxamide   13.3       9.2    21.7      15.4      33.7      30.0  20.5 b2 
Pyraclostrobin     0.4       0.4      1.7        8.3        5.4      14.5  5.1 a 
Azoxystrobin     1.2     10.8    17.1      17.5      26.2      30.8 17.3 b 
Azoxystrobin alt./w zoxamide     1.0       4.6    26.7      24.1      29.2      18.7 18.9 b 

Initiation date mean7     6.2 a3       6.2 a    16.8 b      16.3 b      23.6 b      23.5 b 

Spray program mean8                      9.8 a  22.2 b  
         
1Percentage of leaves with symptoms. Values are the mean of 30 leaves per plot and 4 replicate plots per treatment for each of 2 trials. 
2Least squared means within a column followed by the same letter are not significantly different (P≤0.05) as determined by  least significant difference      
  (LSD) test.       
3Least squared means within a row followed by the same letter are not significantly different (P≤0.05)     
4Calendar spray programs were 7-day schedules beginning when the first true leaves were fully expanded (early-calendar), one week after the first true  leaves 
  were fully expanded (middle-calendar), and two weeks after  the first true leaves were fully expanded (late-calendar).  
5Applications made according to the weather-based advisory spray programs were made as soon as indicated  by the advisory program beginning when the first 
  true leaves were fully expanded (early advisory), one week after  the first true leaves were fully expanded (middle-advisory), and two weeks  after the first true 
  leaves were fully expanded (late-advisory).       
6Values are the mean of fungicides across spray program and initiation dates.      
7Values are the mean of initiation dates across fungicides.        
8Values are the mean of spray programs across initiation dates and fungicides.      
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 Table 2.  Effects of fungicides, spray program, and spray program initiation date on severity of spinach white rust1, trials 1 & 2. 

  Calendar 4       Advisory5   Fungicide 

Fungicide Early Middle Late  Early Middle Late  mean6 

Zoxamide 1.58 1.24 3.86  1.22 3.93 7.59   3.24 b2 
Pyraclostrobin 0.01 0.04 0.23  0.98 0.14 1.16 0.43 a 
Azoxystrobin 0.05 1.18 2.54  2.49 3.53 2.98 2.13 b 
Azoxystrobin alt./w zoxamide 1.07        0.4 4.53  3.67 2.62 3.32 2.60 b 

Initiation date mean7     0.68 a3     0.75 a    2.79 b       2.09 ab      2.26 ab    3.76 b   

Spray program mean8  1.39 a      2.80 b      
         
1Percentage of leaf area with symptoms. Values are the mean of 30 leaves per plot and 4 replicate plots per treatment over 2 trials. 
2Least squared means within a column followed by the same letter are not significantly different (P≤0.05) as determined by least significant difference 
  (LSD) test.         
3Least squared means within a row followed by the same letter are not significantly different (P≤0.05) as determined by least significant difference (LSD) test. 
4Calendar spray programs were 7-day schedules beginning when the first true leaves were fully expanded (early-calendar), one week after the first true leaves     
  were fully expanded (middle-calendar), and two weeks after the first true leaves were fully expanded (late-calendar). 
5Applications made according to the weather-based advisory spray programs were made as soon as indicated by the advisory program beginning when the first  
  true leaves were fully expanded (early advisory), one week after the first true leaves were fully expanded (middle-advisory), and two weeks after the first true 
  leaves were fully expanded (late-advisory). 
6Values are the mean of fungicides across spray program and initiation dates.    
7Values are the mean of initiation dates across fungicides.   
8Values are the mean of spray programs across initiation dates and fungicides.   
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Table 3. Effects of spray programs and spray program initiation date using azoxystrobin alternated with fosetyl-aluminumon on 
incidence1 and severity2 of spinach white rust, trial 3.            

 Early  Middle   Late  Spray program means3  
Spray Program Incidence Severity  Incidence Severity  Incidence Severity  Incidence Severity  

Calendar6      3.2 0.1   4.2 0.1      2.0 0.2    3.1 a 0.1 a 
Advisory7    12.5 0.5      13.3 0.6     28.3 1.9  18.1 b 1.0 b 

Initiation date mean incidence8 7.9 a5  8.8 a  15.2 a     

Initiation date mean severity 8 0.3 a5    0.4 ab    1.0 b     
             
1Percentage of leaves with symptoms. Values are the mean of 30 leaves per plot and 4 replicate plots per treatment. 
2Percentage of leaf area with symptoms. Values are the mean of 30 leaves per plot and 4 replicate plots per treatment.  
3Values are the mean of spray programs across initiation dates and fungicides.           

 4Least squared means within a column followed by the same letter are not significantly different (P≤0.05) as determined by  least significant difference  
  (LSD) test.  
5Least squared means within a row followed by the same letter are not significantly different (P≤0.05) as determined by least significant difference (LSD) test.  

 6Calendar spray programs were 7-day schedules beginning when the first true leaves were fully expanded (early-calendar), one week after the first true leaves were 
  fully expanded (middle-calendar), and two weeks after the first true leaves were fully expanded (late-calendar).  
7Applications made according to the weather-based advisory spray programs were made as soon as indicated by the advisory program beginning when the first true 
  leaves were fully expanded (early advisory), one week after the first true leaves were fully expanded (middle-advisory), and two weeks after the first true leaves 
  were fully expanded (late-advisory). 
8Values are the mean of spray program initiation dates across spray programs.          
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Table 4.  Evaluation of fungicides, spray program, and spray program initiation date on incidence of Cladosporium leaf spot1, 
 trial 4 

Calendar 4     Advisory5   Fungicide 
Fungicide Early Middle Late   Early  Middle Late  mean6 
Pyraclostrobin 5 1.2 3.3  28.3 42.5 36.7  19.5 a2 

Azoxystrobin 8.9 3.3 11.7  22.5 23.4 32.5 17.0 a 
Azoxystrobin alt./w zoxamide 9.2 16.8 9.2  43.3 34.2 27.5 23.3 a 
Spray program initiation mean7   7.6 a3     7.1 a   8.1 a      31.4 b    33.4 b    32.2 b   

Spray program mean8 7.6a3   32.3b   
         
1Percentage of leaves with symptoms. Values are the mean of 30 leaves per plot and 4 replicate plots per treatment. 
2Least squared means within a column followed by the same letter are not significantly different (P≤0.05) as determined by least significant difference 
 (LSD) test. 
3Least squared means within a row followed by the same letter are not significantly different (P≤0.05) as determined by least significant difference  
  (LSD) test. 
4Calendar spray programs were 7-day schedules beginning when the first true leaves were fully expanded (early-calendar), one week after the first true            
  leaves were fully expanded (middle-calendar), and two weeks after the first true leaves were fully expanded (late-calendar). 
5Applications made according to the weather-based advisory spray programs were made as soon as indicated by the advisory program beginning when the     
  first true leaves were fully expanded (early advisory), one week after the first true leaves were fully expanded (middle-advisory), and two weeks after the  
  first true leaves were fully expanded (late-advisory). 
6Values are the means for fungicides across spray program and initiation dates.     
7Values are the mean of spray program initiation dates across fungicides.  
8Values are the mean of spray programs across spray program initiation dates and fungicides. 
        
    
         

 



 43 
 

CHAPTER III 
 
 

Biology of Oospores of Albugo occidentalis 
 
 

ABSTRACT 

 The primary inoculum that initiates the white rust disease of spinach is uncertain.  

There are no known alternate hosts in many spinach-producing areas and there have been 

no descriptions of germination of the oospores of Albugo occidentalis.  Oospores were 

extracted from leaves and agitated in water on a rotary shaker at 23º C.  After 7 days 

agitation, oospore suspensions were spray-inoculated onto spinach plants and incubated 

under 100% humidity at 12º C for 72-hours.  After 10 days further incubation in the 

greenhouse 44% of leaves and 10% of the leaf area had symptoms of white rust.  

Therefore, the effects of agitation temperature (17, 23, or 29º C), additive (soil, root and 

leaf extracts), chilling in still culture (9, 13 and 17ºC) after agitation and agitation on 

germination were evaluated.  Although no germination was visually observed, some 

oospore suspensions produced copious amounts of zoospores (up to 2 x 105/ml).  

Zoospores were separated from the oospore culture by sieving through a 20 µm sieve, 

adjusted to 1 x 105/ml, inoculated to spinach plants and incubated as described above.  In 

one inoculation trial, 12.2% of the inoculated leaves were infected with 2.4% of the leaf 

area became symptomatic.  Symptoms did not develop on control plants inoculated with 

water.  In the other trial, only 2 of the 62 leaves inoculated became diseased.  DNA was 

isolated from separate suspensions of oospores and zoospores and amplified in a 

seminested polymerase chain reaction (PCR) using primers DC6 and ITS4 in the first 

round followed by a second round of PCR with primers ITS6 and ITS4.  Automated 
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sequencing of the two amplification products revealed an identical sequence confirming 

that the isolated zoospore and oospores were A. occidentalis.  Results of this study 

indicate that oospores produced by A. occidentalis are a source of primary inoculum that 

can initiate the spinach white rust.   

  

INTRODUCTION 

White rust (Albugo occidentalis Wilson) is the most economically important foliar 

disease of spinach in Oklahoma,Texas, and Arkansas [2, 4, 13].   Primary infections are 

found on lower leaves in direct contact with, or close proximity to the soil surface.  

Oospores that formed on previous spinach crops are considered to be the primary 

inoculum, as Chenopodium capitatum (L.), the only known alternate host for the 

pathogen is not found in Texas, Oklahoma, or Arkansas.  Intensive cropping of spinach 

has led to the deposit of large numbers of oospores in commercial fields [10, 13].  

Sporangia, released from pustules on diseased plants are responsible for the polycyclic 

phase of the disease.  Environmental factors affecting sporangial germination and 

infection have been described and are important for secondary increase of the disease [3, 

11, 12].  No studies have reported on the germinability of the oospores of A. occidentalis 

[2].   

Though the biology of A. occidentalis is not completely understood, it is thought 

to resemble that of Albugo candida (Pers.) Kunze, the more thoroughly studied white rust 

pathogen of the Brassica spp. [2].  In 1866, de Bary [5] reported germination of A. 

candida oospores by the development of a sessile vesicle.  In this method, the epispore 

ruptures and the protoplasm moves out of the endospore as a sessile vesicle in which 
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zoospores are formed.  The zoospores then escape by rupturing the vesicle membrane [5]. 

In 1959, Vanterpool [14] confirmed this germination mechanism and described a second 

mode of germination by means of a discharge tube and terminal vesicle.  Vanterpool also 

observed zoospores swimming inside intact oospores of A. candida.  Germination was 

described as inconsistent and irregular, with a maximum rate of only 4%.  In 1975, 

Verma and Petrie [15] improved germination rates of A. candida by agitating a 

suspension of extracted oospores in water on a rotary shaker for 3 to 4 days followed by a 

day in still culture at 13ºC.  This method provided better germination at a maximum rate 

of 67%.  Verma and Petrie confirmed the earlier report of germination by sessile and 

terminal vesicles. and described a third mode of germination by a germ tube.  Vanterpool 

and Verma both found germination by a sessile vesicle to be the most common type of 

germination.  Confirming Verma and Petries’ agitation method of germination of A. 

candida oospores, Liu and Rimmer [7] determined that chilling at 13 ºC after agititation 

to be of primary importance for increased germination and showed that a mixture of β-

glucuronidase and aryl sulfatase enhanced the germination of immature oospores. 

A. occidentalis is a close relative of A. candida, and both cause white rust diseases 

that affect cool season crops.  While oospores of many species in the Peronosporales are 

notoriously difficult to germinate [14], the objectives of this study were to induce oospore 

germination of A. occidentalis, to demonstrate their pathogenicity, and examine factors 

which may influence their germination rate. 
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MATERIALS AND METHODS 

Oospore production.  Spinach seedlings were grown in a greenhouse at 20 to 

30ºC in plastic pots (10-cm diameter) containing a soiless-growing medium (65% peat 

moss, 20% vermiculite, 10% perlite, and 5% hort sand) for 40 to 60 days.  Plants were 

watered as needed and nutrients were supplied by applying soluble fertilizer (0.2, 0.08, 

and 0.03 g/L N/P/K, respectively) weekly.   

An isolate of A. occidentalis was obtained from diseased plants collected in field 

plots at the Oklahoma State University Vegetable Research Station in Bixby.  The isolate 

was maintained on plants in the greenhouse as previously described.  A sporangial 

suspension was prepared by agitating leaves with mature pustules in distilled water.  The 

suspension was sieved through a 177 µm sieve and adjusted to 1x105 sporangia/ml with a 

hemacytometer.  The suspension was sprayed to run-off onto the upper and lower leaf 

surface of the plants using a hand-held spray bottle.  Inoculated plants were incubated in 

a dew chamber (Model I-60DL, Percival, Boone, IA) at 13º C for 48 hours at 100% 

humidity.  Plants were removed from the dew chamber and further incubated in a 

greenhouse that maintained a minimum temperature 30º C until 80% of oospores were 

dark brown to black, about 25 days after inoculation  (Fig. 1). 

Oospore extraction and pathogenicity test.  Leaves containing oospores were 

dried on the laboratory bench and stored at room temperature for at least 2 weeks.  To 

determine whether the sporangia were no longer viable, the desiccated leaves were mixed 

and a sample of 10 leaves was blindly drawn.  The sampled leaves were agitated in water 

to dislodge the sporangia the suspension was sieved through a 20 µm sieve which 

retained the oospores.  The sporangial suspension was then subjected to a temperature of 
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12ºC for up to 20 hours.  Sporangial germinationas evidenced by the presence of 

zoospores was not observed.  Leaf pieces were ground to a fine powder in a household 

blender and screened through a 75 µm sieve.  The material remaining on the sieve was 

again ground in the blender and sieved. The grinding and sieving process was repeated 3 

times, resulting in a greenish-brown powder consisting of about 50% oospores and 50% 

leaf debris.  Oospores were further separated from the leaf tissues by stirring 10 g of the 

oospore-containing powder in 300 ml distilled water on a stir-plate for 5 minutes, 

allowing the suspension to stand until the oospores had settled, then decanting off the 

supernatant. This process was repeated 3 times.  The suspension was then sonicated twice 

for 5 minutes, and decanted after each sonication.  After washing the suspension 3 times 

in sterile distilled water by centrifugation at 600 g for 5 minutes, it was practically free of 

plant material.  The suspension was adjusted to 100 oospores/25 µl with sterile distilled 

water. Ten aliquots of 30 ml in 125 ml Erlenmeyer flasks were incubated on a rotary 

shaker at 200 rpm for 7 days at 23º C.  Two plants at the eight-true-leaf stage were 

inoculated with the oospore suspension and two plants eight-true-leaf stage were 

inoculated with sterile distilled water and incubated as described above.  The experiment 

was repeated once. The true leaves from each plant were evaluated for disease incidence, 

the percentage of leaves with symptoms, and severity, and the percentage of leaf area 

with symptoms 16 to 21 days after inoculation. 

Oospore germination and zoospore pathogenicity test.  Oospores were 

extracted from leaves as described above.  Leaf extract, root extract, and soil extract were 

added to agitation water.  Treatments consisting of surface sterilization, agitation 

temperature (17, 23, 28ºC), chilling in still culture (9, 13 and 17ºC) after agitation and 
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soaking in still culture with no agitation were applied in an attempt to induce germination 

and increase germination rate.  Leaf and root extracts were prepared by macerating 5 g of 

the respective parts of spinach plant material with a mortar and pestle in 50 ml of distilled 

water.  The suspension was centrifuged for 5 minutes at 3200 g, the supernatant was 

decanted and filter sterilized using a 0.45µm syringe filter.  For the soil extract, 100 g of 

soil, was taken from a field previously cropped to spinach, mixed with 100 ml of distilled 

water and allowed to stand for 3 hours.  The supernatant was decanted, centrifuged and 

filtered-sterilized as described above.  Extracts were added at 1.5 ml/28.5 ml oospore 

suspension to make a 5% solution.  For surface sterilization, extracted oospores were 

suspended in a 1% sodium hypoclorite solution for 2 minutes, the solution was removed 

by filtration through #1 Whatman filter paper, and oospores were rinsed twice for 2 

minutes in sterile distilled water as described above.  Oospores were resuspended in 

sterile distilled water and the various extract solutions.  

Oospore suspensions were incubated on a rotary shaker as described above at 17, 

23, and 28º C; and at 23º C with no agitation.  After 72, 96, and 120 hours of agitation 

three aliquots of 3ml from each treatment were incubated in still culture at 9, 13, and 17º 

C for up to 48 hours in 35 mm plastic petri dishes.  Agitation suspensions were checked 

for signs of germination (zoospore production or formation of vesicles) twice daily for 7 

days and the still culture suspensions were examined for germination twice daily for 2 

days following chilling in still culture.  The experiment was conducted in a completely 

randomized design with 3 replicates.  A replicate consisted of one, 125 ml flask while on 

the rotary shaker and one, 35 ml petri dish while in still culture. The experiment was 

repeated once.  
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Suspensions that produced zoospores were combined and sieved through a 20 µm 

sieve, to separate the zoospores from the oospores.  The filtrate containing only 

zoospores was adjusted to 1 x 105/ml with sterile distilled water and inoculated onto three 

plants as described above and three plants that were inoculated with water served as 

controls. Following inoculation, plants were incubated at 13 and 21º C in the dew 

chamber at 100% humidity for 48 hours. The plants were then placed in the greenhouse 

for a 14 day incubation period.  All leaves from each plant were evaluated for disease 

incidence and severity as described above. The experiment was repeated once.  

Isolation of Oospores and Zoospores for DNA Analysis.  Oospore suspensions 

from the oospore germination trial that produced zoospores were combined, separated 

from the oospores as described above, and pelleted by centrifugation at 6750 g for 5 

minutes.  Microscopic examination of the zoospore pellet revealed a few oospores that 

were manually removed using a dental pick.  DNA from oospores and zoospores was 

extracted using the  protocol of Murray and Thompson [8] with slight modifications.  

Spores from 1.5 ml of each of the spore suspensions were pelleted by centrifugation and 

the supernatant was discarded.  The spores were resuspended in 300 µl CTAB buffer (2% 

(w/v) cetyl-trimethyl-ammonium bromide (CTAB), 1.4 M NaCl, 100 mM Tris-HCl, pH 

8.0, 20 mM EDTA), ground in a microcentrifuge tube with a micropestle (Brinkman, 

Westbury, NY), and incubated for 10 min at 65°C.  A chloroform extraction was 

performed after the suspension had cooled to room temperature.  The aqueous upper 

phase was transferred to a new microcentrifuge tube and the DNA was precipitated and 

washed with absolute ethanol and 70% ethanol, respectively.  
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DNA was amplified using the universal primers ITS4 and ITS6 in combination 

with DC6 in a seminested polymerace chain reaction (PCR) using primers DC6 and ITS4 

in the first round followed by a second round of PCR with primers ITS6 and ITS4 [1]. In 

combination with ITS4, DC6 selectively amplifies the internal transcribed spacer (ITS) 

regions of members of the Peronosporales [1].  PCRs consisted of 1 cycle of 94°C for 2 

min, 30 cycles of 94°C for 30 s, 55°C for 30 s, 72°C for 90 s, and a final cycle of 72°C 

for 5 min.  

After gel electrophoresis on agarose, amplification products were purified with a 

QIAqick gel extraction kit (Qiagen Inc., Valencia, CA) and their concentrations were 

estimated by comparison with calf thymus DNA (BD Bioscience Clontech, Palo Alto, 

CA).  Direct sequencing of PCR products was performed by the OSU Recombinant 

DNA/Protein Resource Facility, using dye-terminated thermal cycle sequencing and an 

Applied Biosystems/PerkinElmer 373 sequencer (Perkin Elmer Inc., Wellesley, MA). 

Sequence analysis.  The resulting sequence was compared with published 

sequences of other oomycetes (Table1) using the ClustalW software program.  A 

phylogenetic tree was compiled with PHYLIP programs [6].  A distance matrix was 

calculated with DNADIST and used to construct a tree by neighbor joining as 

implemented in NEIGHBOR.  The phylogenetic tree was displayed using TreeView [9].  

The alignment was bootstrapped 100 times using SEQBOOT, and bootstrap values were 

added to the branch points of the distance tree.  
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RESULTS 

 Oospore pathogenicity.  In both trials, white rust developed in inoculated plants, 

but not in non-inoculated plants.  In the first trial, disease incidence averaged 50% and 

disease severity 5% over two plants with 8 leaves each (Fig.2).  In the second trial, 

disease incidence was 37.5% and disease severity was 15.7%.  Disease did not develop in 

the non-inoculated control plants.  No vesicles or oospore germination was observed 

during periodic examinations prior to inoculation.  However, after 72 hours of agitation 

numerous biflagellate zoospores measuring 3.6 x 6.9µm and 4.3µm (Table 2) when 

encysted (Fig.5) were observed in 3 of the 10 incubation flasks in the first trial and 1 of 

the 10 flasks in the second trial.   

 Oospore germination and zoospore pathogenicity.  Oospore cultures produced 

small vesicles with a mean diameter of 27.6µm (Table 1), after 36 hours agitation.  The 

vesicles contained protoplasm, which cleaved into 2 or 4 (usually 4) hyaline organisms 

that were reniform in shape and measured 14 x 25µm (Table 1). After 60 to 90 minutes, 

the vesicles ruptured and the mobile reniforms were released (Fig 3).  These organisms 

occurred in greatest numbers in the leaf and root extract cultures, but were observed in all 

treatments except for the 17° C agitation treatment and all surface sterilization treatments.  

DNA sequencing revealed these organisms to be a common free living protozoan, a 

ciliate of the genus Colpoda.  

       Occasionally, oospores were observed releasing their protoplasmic contents 

(Fig.4).  The protoplasmic material, some of which was contained inside one or more 

small vesicle-like membranes that were of the same size and morphology as the 
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protozoan vesicles, would oscillate for up to 45 minutes and become still.  No zoospores 

were observed forming within these vesicles.  No other vesicles were observed at any 

temperature under any treatments.   

 Zoospores, identical to those observed in the oospore pathogenicity trials were 

produced in some incubation treatments after 72 hours of agitation.  The 17 ° C agitation 

temperature did not produce zoospores (Table 4).  Zoospores were produced for some of 

the treatments at the 23 and 29 ° C, but production was inconsistent.  Attempts to 

increase the number of flasks that produced zoospore with additives of leaf extract, root 

extract, and soil extract to the agitation water were not successful.  Oospores soaked in 

water with no agitation also produced zoospores, however the incubation time required 

for zoospore production increased to 120 hours.  Chilling in still culture at various 

temperatures after various periods of agitation did not lead to better zoospore production.   

  White rust developed in the zoospore pathogenicity trial when the plants were 

inoculated with suspensions that contained zoospores and incubated under 100% 

humidity at 13° C for 48 hours.  In one trial disease incidence was 12.2% and disease 

severity was 2.4%, while in the second trial only 2 of the 62 inoculated leaves became 

diseased.  Disease did not develop when the inoculated plants were incubated at the 21° 

C temperature under the conditions described above or on the control plants sprayed with 

water and exposed to the same conditions. 

  Sequence analysis.   DNA was extracted from each of the separated suspensions 

of oospores and zoospores and subjected to PCR amplification of a region comprising 

partial ITS1, 5.8S rRNA gene, and partial ITS2.  Automated sequencing of the two 

amplification products revealed an identical sequence confirming that the isolated 
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zoospores and oospores were of the same organism.  The aforementioned sequence of the 

causal agent of spinach white rust, A. occidentalis, was submitted to GenBank (accession 

number AJ553900).  

Homologous DNA sequences from other oomycetes were aligned with that of A. 

occidentalis and a phylogenetic distance tree was generated (Fig. 6) to place the organism 

based on molecular data.  A. occidentalis falls into the same group as A. candida which is 

supported by a bootstrap value of 98%.  

 

DISCUSSION 

 The mode of germination for A. occidentalis oospores could not be determined in 

this study.  Vanterpool, [14] observed zoospores swimming inside the intact oospores of 

A. candida, and speculated that the oospores may have the ability to germinate by the 

complete maturation of the zoospores within the oospore, followed by direct escape 

through the ruptured epispore.  In this study, the observation of the discharge of the 

oospore contents through a ruptured epispore may have indicated a premature release of 

contents before the zoospores matured.  All observations of this discharge were made 

while observing the oospores under a cover slip.  It is possible that heat from the 

microscope light may have caused the premature discharge.  The discharge of the 

contents of the oospore was completed within 6 seconds, leaving the opening in the 

epispore as the only evidence of the release.  Some of the oospore contents were 

contained inside membranes the same size and shape as the cyst of the Colpoda 

organisms.  It could be speculated that these organisms had parasitized the oospores.   
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However, it is known that the Colpoda are free-living organisms able to survive and 

reproduce on the nutrients available in rain or dew droplets. 

 Because the origin of the zoospores could not be determined through microscopic 

observation, DNA analysis was preformed to verify their identity.  To my knowledge 

there are no published descriptions of the genetic sequence of A. occidentalis.  Therefore, 

the ITS regions of the oospores were compared with that of the zoospores in question.  

This comparison confirmed that the oospores isolated from spinach leaves and the 

zoospores produced by agitating the oospores in water were the same organism.   The 

sequence was then compared with that of other Oomycetes to determine the molecular 

relationship of the oospores used in this study to related Oomycetes and therefore, A. 

occidentalis.  The phylogenetic analysis confirmed the traditional taxonomy using 

morphology by placing A. occidentalis into a group homologous with A. candida. 

Oospores agitated in water on the rotary shaker for 72 hours produced zoospores.  

Zoospores were also produced from non-agitated oospores. However, the amount of time 

for zoospore production was increased to 120 hours.  The washing action of the rotary 

shaker may simulate the leaching action of water in soil.  In the field, suspected primary 

infections of white rust have been observed to occur after heavy rains or in low areas of 

the field.   

The production of biflagellate zoospores with the ability to cause white rust 

symptoms when inoculated to spinach plants and the molecular evidence associating the 

zoospore with the oospores of A. occidentalis strengthens the case for oospores serving as 

primary inoculum for the white rust disease of spinach.   
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Many factors influencing the germination of these oospores are still unknown.  

More detailed studies of zoospore production should be made to determine the mode of 

action for germination and to define optimum conditions for germination of oospores of 

A. occidentalis.  Efforts to control this disease through a reduction or elimination of 

soilborne oospores might be productive.  However, methods to determine the viability of 

oospores in soil will be needed to evaluate the effectiveness of control strategies.  
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Figure 1.  Grey leaves in the lower rosette are a result of oospore development in spinach 
plants infected with A. occidentalis.   
 
 
 

 
 
Figure 2.  Chlorotic lesions resulting from inoculation of spinach plants with oospores 
from A. occidentalis. 
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Figure 3.  A. Four Colpoda spp. inside transparent vesicle.  B.  Colpoda spp. escaping 
vesicle.  C.  Swimming Colpoda spp. with one remaining trapped inside the remains of 
the vesicle. Bars = 10 µm. 
 
 
 
 
 

 
 
Figure 4.  A. Oospore of A. occidentalis.  B. Rupturing epispore.  C. Contents being 
discharged.  D. Discharge complete. Bars = 10 µm. 
 
 
 
 
 

 
 
Figure 5. (A) Swimming zoospores of A. occidentalis. (B) Encysted zoospore with 
flagella (arrows). Bars = 2 µm. 
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Figure 6.  Phylogenetic tree obtained by DNA distance-based analysis of the combined 
ITS1, 5.8S subunit, and ITS2 region of the genomic ribosomal RNA gene. The numbers 
at the branch points indicate the percentage of bootstrap values (100 bootstraps).  
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Table 1. Size of Colpoda spp., observed in oospore suspensions. 
 Number Mean (µm) Std. Deviation Range (µm)1 
Reniform length 50 25.1 3.0 16.3 
Reniform width  50 14.0 3.5 13.8 
Cyst diameter 50 27.6 1.7 6.25 

1The difference between the smallest and the largest. 
 
 
 
Table 2. Size of zoospores and cyst of A. occidentalis, observed in oospore suspensions.  
 Number Mean (µm) Std. Deviation Range (µm)1 
Length 50 6.8 0.86 3.5 
Width  50 3.6 0.40 1.0 
Cyst 50 4.3 0.42 1.5 

1The difference between the smallest and the largest. 
 
 
 
Table 3.  Comparison of homologous sequences of various Oomycete species from 
GeneBank 

Species GeneBank Accession Reference 
Albugo candida AF271231 Cooke et al., 2000 
Phytophthora cactorum AF266772 Cooke et al. 2000 
Phytophthora infestans AF266779 Cooke et al. 2000 
Phytophthora megasperma AF266794 Cooke et al. 2000 
Pythium irregulare AF271226 Cooke et al. 2000 
Pythium ultimum AF271225 Cooke et al. 2000 

 

 
Table 4. Effects of additive, agitation, agitation temperature, and surface sterilization on 
zoospore production from oospores of A. occidentalis1.  
   Agitation temperature     No agitation 
Additive   Surface sterilized1 17o C 23o C 29o C   23o C 
Root extract   Yes 02  1 2  2 
Root extract  No 0  0 1  1 
Leaf extract Yes 0  2 2  1 
Leaf extract  No 0  1 0  3 
Soil extract  Yes 0  1 0  1 
Soil extract  No 0  2 2  0 
No additive  Yes 0  1 2  2 
No additive    No 0  2 1   1 

1Treatments that were surface sterilized were suspended in a 1% sodium hypochlorite solution for two            
  minutes then rinsed with sterile distilled water prior to addition of the additive. 
2Values are the number out of six of flasks that produced zoospores over 2 trials with 3 replications. 



CHAPTER IV 

 

Post Inoculation Activity of Fungicides against Cercospora Leaf Spot of Spinach 

 

ABSTRACT 

 
 The protectant and post-inoculation activity of maneb, azoxystrobin, 

pyraclostrobin, and zoxamide against Cercospora leaf spot of spinach was determined in 

a greenhouse study.  Fungicide applications were made one day before, immediately 

before, and one to five days after inoculation.  Disease incidence (the percentage of 

leaves with symptoms) and severity (the percentage of leaf area with symptoms), 

estimated 14 days after inoculation, were 100% and 6.2% respectively, for the control.  

For maneb, azoxystrobin, and pyraclostrobin, little or no disease occurred on plants 

sprayed one day before or immediately before inoculation.  Zoxamide had a low level of 

efficacy at any application timing. When plants were treated with zoxamide one day 

before inoculation through one day after inoculation, disease incidence averaged 71.9% 

and disease severity averaged 2.4%, however, these levels were significantly lower than 

the control. When treated with zoxamide three days after inoculation, disease levels did 

not differ from the control.  No disease developed when pyraclostrobin was applied 

within two days of inoculation.  Incidence and severity for pyraclostrobin at three days 

after inoculation were 59.4 and 1.1%, respectively, and were significantly lower than the 

control at four days after inoculation.  At five days after inoculation with pyraclostrobin, 

disease levels were not different from the control.  Azoxystrobin also showed post-

inoculation activity.  Incidence and severity were 3% and 0.09%, respectively, one day 

after inoculation.  However, disease levels increased to 84.4% disease incidence and to 
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3.49% severity when treated two days after inoculation but remained significantly lower 

than the control when treated up to four days after inoculation.  Maneb showed no post-

inoculation activity.  Disease levels did not differ from the control when plants were 

treated one day after inoculation.  These results indicate that applications of azoxystrobin 

up to one day after inoculation and of pyraclostrobin up to two days after inoculation 

should be effective to control of Cercospora leaf spot of spinach.  Fulfillment of Koch’s 

postulates revealed that the Cercospora spp. isolated from the diseased plants in this 

study was the primary cause of the leaf spot observed.  DNA analysis verified that the 

Cercospora isolate from this study was in the Cercospora group comprising C. beticola, 

C. apii, and C. nicotianae. 

 

INTROCUCION 

 Spinach (Spinacia oleraceae L.) is an economically important leafy vegetable 

crop throughout the United States [4].  Approximately 18,000 ha are grown annually with 

a crop value of approximately $185 million for fresh and processed markets [13].  Major 

production states include California, Texas, Oklahoma, Arkansas, Maryland, Virginia, 

New Jersey, and Colorado [15].   

 Major constraints to spinach production include insect pests, weeds, and disease 

that reduce yield and quality.  Spinach white rust, caused by Albugo occidentalis Wilson 

and downy mildew, caused by Peronospora effusa (Grev.) Tul. are considered the most 

economically important foliar diseases of spinach in the U.S. [4].  However, at least five 

different fungal foliar diseases are responsible for reducing quality and marketability of 

spinach.  Therefore an integrated disease management approach, including the use of 
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disease-resistant cultivars, crop rotation, and fungicides, is often necessary to produce a 

high-quality product.   

Cercospora leaf spot caused Cercospora beticola is one of the most serious and 

widely distributed foliar diseases of sugar beet worldwide [16] and is considered an 

economically important disease of spinach [4].  Favorable environmental conditions for 

infection of Cercospora leaf spot of sugar beet have been determined [21, 22].  

Temperatures between 24 and 29º C with relative humidity >90% are optimum for 

infection.  Infection increased sharply when inoculated plants were exposed to these 

conditions for 48 hours or more.  In Texas, Cercospora leaf spot affects approximately 

50% of the spinach acreage and a 5% infestation can render the first spinach cutting of 

fresh market fields in the fall and early winter unmarketable [11].  The disease causes 

lesions (3 to 5 mm in size) on older spinach leaves (Fig. 1).  During periods of warm 

temperatures and high humidity or leaf wetness, tan necrotic spots on lower leaves turn 

gray and lower quality or render the leaves unmarketable.  Under 200x magnification, 

dark conidiophores with hyaline conidia can often be observed in lesions that are useful 

diagnostic characteristics (Fig. 2).   

The fungicides maneb and zineb (ethylene bisdithiocarbamates (EDBC)) were 

used in preventive spray programs to control spinach white rust until their registration for 

use on spinach was revoked in 1991 [1, 5, 12].  Until the registration of azoxystrobin in 

the U.S. in 2001, only copper-based fungicides, metalaxyl (or mefenoxam), and fosetyl-

Al were registered for use on spinach.  Phytotoxicity problems with the copper-based 

fungicides and fosetyl-Al; the high cost of metalaxyl and label restrictions that limit its 

efficacy; have limited the use of these fungicides by growers [18].   
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The fungicide azoxystrobin has systemic activity against several Ascomycete, 

Basidiomycete, and Oomycete pathogens on various crops [26].  Azoxystrobin has been 

shown to have post-inoculation activity against spinach white rust [17].  Pyraclostrobin is 

another strobulurin fungicide registered for control of numerous fungal diseases on a 

variety of fruit, nut, and vegetable crops.  Sullivan demonstrated complete control of 

spinach white rust with pyraclostrobin when used up to three days after inoculation, and 

continued post-inoculation activity up to four days after inoculation.  Pyraclostrobin is 

not currently registered for use on spinach. 

The primary objectives of this study were: to determine the post-inoculation 

activity of zoxamide, to confirm the post-inoculation activity of azoxystrobin, 

pyraclostrobin and maneb, and to determine the activity of pyraclostrobin beyond four 

days after inoculation against spinach white rust.  However, the white rust incidence was 

< 1% in the non-treated control plants. The inoculum of A. occidentalis used in this study 

was apparently contaminated with spores of Cercospora spp. and Cercospora leaf spot 

developed to severe levels in the non-treated control plants. Therefore the post-

inoculation activity of the fungicides was evaluated for this disease.  Quantification of the 

efficacy and post-inoculation activity of these fungicides against Cercospora leaf spot 

should be beneficial in the development of management programs for foliar diseases of 

spinach.  

 

MATERIALS AND METHODS 

 
“Melody” spinach plants were grown in a greenhouse at 20-30º C in plastic pots 

containing a soilless growing medium (65% peat moss, 20% vermiculite, 10% perlite, 
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and 5% hort sand) for 40 to 60 days.  Plants were watered as needed and nutrients were 

supplied by applying liquid fertilizer (0.2, 0.8 and 0.03 g/L N/P/K, respectively) weekly.   

 Spinach leaves with symptoms of Cercospora leaf spot and white rust, were 

collected from field plots and stored frozen at -20° C for 10 days.  Spore and sporangial 

suspension was prepared by agitating infected leaves in distilled water.  The suspension 

was sieved through a 177 µm sieve and adjusted to 1x105 sporangia of A. occidentalis/ml 

with a hemacytometer.  The suspension was sprayed to runoff onto the upper and lower 

leaf surface of plants using a hand-held spray bottle and incubated for 24 hours at 100% 

humidity in a dew chamber (Model I-60DL, Boone IA) at 13ºC.  

The fungicides maneb (Maneb 75DF, Cerexagri, inc.) (2.4 kg/ha), azoxystrobin 

(Quadris 2.08F, Syngenta Crop Protection) (0.83 Kg/ha), pyraclostrobin (Cabrio 20WG, 

BASF Corp) (0.42 kg/ha), and zoxamide (Zoxium 80W, Dow Agrosciences) (0.42 

kg/ha), were added to 0.3 l of water at a rate equivalent to 935 l per ha.  Individual plants 

were sprayed to runoff with maneb (2.4 g a.i./l), azoxystrobin (0.92 g a.i./l), 

pyraclostrobin (0.45 g a.i./l) and zoxamide (0.45 g a.i./l) using a hand-held spray bottle.  

The fungicides were applied to plants one day before inoculation; immediately before 

inoculation; and daily from one to five days after inoculation.  For a control individual 

plants were sprayed to runoff with sterile distilled water one day prior to inoculation. 

Fungicide treatments were arranged in a completely randomized design with two plants 

for each combination of fungicide and application timing, and the experiment was 

repeated.   

Fungicide applications made before inoculation were intended to determine the 

protectant activity of the fungicides.  To determine the post inoculation activity of the 
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fungicides, applications were made each day from one to five days after inoculation. 

After a 24-hour incubation period in the dew chamber, the plants were returned to the 

greenhouse.  Fourteen days after inoculation, disease incidence (the percentage of leaves 

with symptoms) and disease severity (the percentage of leaf area with symptoms) was 

determined.  Fully expanded leaves were removed from each plant, mixed and eight 

leaves were blindly drawn.  The percentage of leaf area with symptoms was visually 

estimated on each sampled leaf.   

Isolation, culture, and artificial inoculation.  The fungus was isolated from 

symptomatic leaves by the following procedure.  The leaves were rinsed with water and 

pieces of approximately 5 mm2 that contained lesions were excised.  The pieces were 

sterilized using a 0.8% sodium hypochlorite solution for 60 s and rinsed with sterile 

distilled water. The leaf pieces were placed on potato-carrot agar containing 0.03% lactic 

acid (PCAL).  The plates were incubated for 3 days at room temperature.  Agar plugs 

taken from the growing edge of the colonies were transferred to new PCAL plates and 

incubated for 4 days at room temperature.  Pure colonies were smeared over PCAL and 

V8 agar plates and incubated for 7 days at room temperature.  The cultures on V8 agar 

produced more conidia than the PCAL cultures; therefore the V8 cultures were used for 

inoculation.  Plates were flooded with 15 ml of sterile distilled water spores were 

suspended by gently rubbing the agar surface and stirring with a 1 cm flat-bristled artists’ 

paintbrush.  The resulting suspension was sieved through a 177 micron sieve and adjusted 

to 5 x 103 conidia/ml.  Six, “Melody” spinach plants, produced in the greenhouse as 

described above, were sprayed to runoff with the spore suspension and six plants were 

sprayed with sterile distilled water using a hand held spray bottle.  Three inoculated and 
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three control plants were incubated at 15º C at 100% humidity  for 48 hours and three 

inoculated and three control plants were incubated at 100% humidity at 24º C for 48 

hours.  Plants were further incubated in the greenhouse at 21 to 27º C.  After 14 days in 

the greenhouse, disease incidence and severity were evaluated as described above.  

Isolations were made from lesions that formed on the leaves as described above.   

 Statistical analysis.  Analysis of the disease incidence and severity data from the 

post-inoculation activity study and the artificial inoculations was performed on the mean 

values of 8 leaves per plant.  Comparisons of the fungicide application timings in the 

post-inoculation activity study were performed on the incidence and severity data using 

the SAS Mixed procedure (version 8.2 SAS Institute, Cary NC).  The effects of fungicide 

and application timing, and fungicide x application timing interaction were tested.  For 

the artificial inoculations, a T-test was preformed on the severity data and the effect of 

incubation temperature was determined.  Only significant (P≤0.05) differences between 

treatment means are described in the results. 

DNA isolation, amplification, and sequencing.  Fungal material from a pure 

culture isolated from diseased plants in the post-inoculation activity study was removed 

from the agar plates by scraping the surface with a razor blade.  DNA was isolated using 

the DNeasy Plant Mini Kit following the protocol of the manufacturer (Qiagen Inc., 

Valencia, CA).  

The sequence of the 5.8S ribosomal RNA gene and the intergenic spacer regions 

ITS1 and ITS2 was amplified by polymerase chain reaction (PCR) using the primers 

ITS6 [3] and ITS4 [23].  PCR was performed applying 1 cycle of 94°C for 2 min, 30 

cycles of 94°C for 30 s, 50°C for 30 s, 72°C for 60 s, and a final cycle of 72°C for 2 min.   
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After agarose gel electrophoresis, amplification products were purified using 

QIAqick gel extraction kit (Qiagen Inc., Valencia, CA) and their concentrations were 

estimated by comparison with calf thymus DNA (BD Bioscience Clontech, Palo Alto, 

CA).  Direct sequencing of PCR products was performed by the OSU Recombinant 

DNA/Protein Resource Facility, using dye-terminated thermal cycle sequencing and an 

Applied Biosystems/PerkinElmer 373 sequencer (Perkin Elmer Inc., Wellesley, MA).   

To determine the relationship of the pathogen used in this study to other Cercospora 

species the resulting sequence was aligned with  published sequences of the Cercospora 

species (Table.5) using ClustalW [20] and a distance matrix was calculated with 

DNADIST [7].  

RESULTS 

For the post-inoculation study, heterogeneity of variances between combinations 

of fungicide and application timing was severe, in the ANOVA.  The effect of timing of 

fungicide applications was significant for disease incidence and disease severity (<0.001).  

Therefore, only the effect of application timing for each fungicide was considered.  For 

the artificial inoculations the effect of incubation temperature was not significant.  

Cercospora leaf spot developed to severe levels in both trials.  Disease incidence 

was 100% and disease severity was 6.25% for the control.  Maneb significantly reduced 

disease incidence and severity at both one-day prior to and at inoculation (Table 1).  

Preventive treatments of pyraclostrobin (Table 2) and azoxystrobin (Table 3), applied 

either one-day prior to or immediately before inoculation, resulted in complete disease 

control.  Zoxamide had limited activity when applied preventively however, disease 

incidence and severity was significantly reduced compared to the control (Table 4). 
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 Pyraclostrobin resulted in the longest period of post-inoculation activity of the 

four fungicides evaluated.  Disease did not develop when pyraclostrobin was applied up 

to 2 days after inoculation (Table 2).  Disease incidence and severity increased to 

intermediate levels at 3 days and 4 days after inoculation, and not differ from the control 

by five-days after inoculation.  

Azoxystrobin provided a briefer period of post-inoculation activity compared to 

pyraclostrobin.  Disease levels were low when applications of azoxystrobin were made 

one-day after inoculation (Table 3).  Disease incidence and severity sharply increased to 

intermediate levels between two and four-days after inoculation.  Disease levels for 

applications of azoxystrobin made five days after inoculation did not differ from the 

control.   

Zoxamide had post-inoculation activity up to two days after inoculation, but the 

degree of disease control was low (Table 4).  Disease incidence at two days after 

inoculation did not differ from the control and disease severity was high at 3.7%.  

Disease levels for fungicide treatments made 3 to 5 days after inoculation were not 

different from the control.  For maneb all post-inoculation treatments were similar to the 

control (Table 1).  Incidence and severity of white rust were low and inconsistent, (<1%) 

throughout both trials.   

 Isolation and artificial inoculations.  The fungus was isolated consistently from 

the diseased plants that were artificially inoculated.  The colonies produced a bright pink-

red pigment in the culture that diffused into the agar (Fig. 3).  Disease developed to 

severe levels at both the 15º C and 24º C incubation temperatures (100% disease 

incidence and 35.5% disease severity averaged over the two incubation temperatures).  
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There were no significant differences in disease incidence and severity between the 15 

and 24º C incubation temperatures.  Disease did not develop on the non-inoculated 

controls.  The fungus was re-isolated from the leaf lesions that developed following 

inoculation.  The isolates appeared identical to the isolates from the post-inoculation 

activity study.   

 Sequencing of amplified DNA from the Cercospora isolate, which had been 

isolated from symptomatic spinach plants in the post-inoculation study, resulted in a 510 

bp band from the intergenic spacer regions ITS1 and ITS2 of the 5.8S ribosomal RNA 

gene.  The alignment with homologous sequences of various Cercospora species from 

GeneBank revealed that the sequence of the isolate is identical to those of  C. apii, C. 

beticola, and C. nicotianae (Table 6).   

 

DISCUSSION 

 The genetic homology of the fungus isolated from the symptomatic plants to other 

Cercospora isolates, including C. apii, C. beticola, and C. nicotianae is consistent with 

the analysis of Goodwin et al., 2001 [10], who also found that several isolates of various 

Cercospora species did not differ in their DNA sequence of the aforementioned region.  

Thus, by DNA analysis based on the 5.8S rRNA gene, ITS1, and ITS2 it is apparent that 

the Cercospora isolate from the post-inoculation study is in the Cercospora group 

comprising the species mentioned above.  To my knowledge, C. apii and C. nicotianae 

have not been reported to be pathogenic on spinach.   

The consistent association of Cercospora sp. with leaf spot in the post-inoculation 

study, and the ability of the fungus to cause the disease in artificially-inoculated spinach 
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plants, and the recovery of Cercospora sp. from the diseased tissue of the artificially 

inoculated plants fulfills Koch’s postulates and indicates that the fungus is the primary 

cause of the leaf spot disease in the post-inoculation study.   

 Pyraclostrobin and azoxystrobin provided post-inoculation activity when applied 

within four days following inoculation.  However, the use of pyraclostrobin provided a 

greater level of disease control compared to azoxystrobin.  The efficacy of the fungicide 

zoxamide may be limited to the control of Oomycete fungi and therefore provided only 

limited disease control when used either preventively or post-inoculation against 

Cercospora leaf spot.  Maneb preformed as would be expected of a protectant fungicide 

providing good pre-inoculation protection and little post-inoculation activity. 

 Results on the post-inoculation activity of the fungicides against Cercospora leaf 

spot in this study are similar to those reported for these fungicides against spinach white 

rust [17].  Sullivan reported complete control of spinach white rust when azoxystrobin 

and pyraclostrobin were used up to one and three days after inoculation, respectively.  

Post-inoculation activity continued against white rust for up to three days after 

inoculation for azoxystrobin and at least four days after inoculation for pyraclostrobin.  

For maneb applied one day after inoculation, Sullivan reported white rust severity to be 

only 20% compared to 83% for the control.  This may not be due to post-inoculation 

activity, but to the 12-hour wet and 12-hour dry cycle used in the study.  It is possible that 

after the first 12-hour favorable period ungerminated sporangia survived the 12-hour 

unfavorable period to infect during the next 12-hour favorable period.  In this study a 

single 24-hour favorable temperature and wetness period was used, and maneb showed 

no post-inoculation activity against Cercospora leaf spot.  
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Numerous foliar diseases are economically important to spinach production.  

Spinach white rust is the major foliar disease of spinach in Oklahoma [6] and downy 

mildew (or blue mold) is probably the most widespread and potentially destructive 

disease of spinach worldwide [4].  Other fungal foliar diseases of economic importance 

include Anthracnose, caused by Colletotrichum dematium (Pers.) Grove f.sp. spinaciae  

(Ellis & Halst.) Arx (= C.spinaciae Ellis & Halst.), Cladosporium macrocarpum G, 

Preuss, Alternaria sp., Stemphyllium sp., and Cercospora beticola Sacc. [4].  

Azoxystrobin, pyraclostrobin, and zoxamide have been shown to be effective against 

spinach white rust (Chapter 2).  Results of this and an earlier study (Chapter 2) indicate 

that zoxamide has only limited efficacy against Cercospora and Cladosporium leaf spots 

while azoxystrobin and pyraclostrobin provided good control of these pathogens.  

Zoxamide is active against Oomycete fungi, and is registered for foliar use on potatoes 

and grapes to control late blight and downy mildew, and has good activity against 

spinach downy mildew.   

A weather-based spray advisory program has been developed to predict outbreaks 

of spinach white rust [19].  This model uses a 12-hour threshold of favorable temperature 

and wetness periods to schedule a fungicide application.  It is known that most fungal 

pathogens need periods of free moisture to germinate and cause infection. Therefore the 

white rust advisory may be effective in predicting outbreaks of foliar diseases other than 

white rust.  In the artificial inoculations in this study, Cercospora leaf spot developed to 

severe levels at both the 15º C and 24º C incubation temperatures.  While 15º C is within 

the optimum range for spinach white rust development, 24º C is well above that 

optimum.  Therefore, the advisory program may not be effective on Cercospora leaf spot 
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when temperatures a warm.  Because white rust can develop during a 12-hour period of 

favorable temperature and wetness, and because it may not be possible for a grower to 

respond immediately to a spray advisory the post-inoculation activity of the fungicides 

may be important in achieving optimum disease control. 
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Table 1.  Effects of application timing on control of Cercospora leaf spot with maneb. 
Fungicide (Rate) Timing1 Disease incidence (%)2  Disease severity (%)3      
Maneb (2.4 g/L) -1 9.4 a 0.13 a 
  0 0.0 b 0.00 a 
  1 96.9 cd   5.49 bc 
  2              81.3 c 3.13 b 
  3            100.0 d   5.22 bc 
  4              87.5 cd 3.78 b 
   5 90.6 cd    4.75 bc 
No treatment              100.0 d  6.25 c 
 
1 Maneb was sprayed to runoff one day before (-1), immediately before (0), and            
  one to four (1-4) days after inoculation with conidia of Cercospora spp. 
2 The percentage of leaves with symptoms. 
3 The percentage of leaf area with symptoms. 
4 Least square means in a column followed by the same letter are not significantly           
  different (P≤0.05) as determined by Fishers least significant difference (LSD) test. 
 
 
 
 
 
Table 2.  Effects of application timing on control of Cercospora leaf spot with 
pyraclostrobin. 
Fungicide (Rate) Timing1 Disease incidence (%)2   Disease severity (%)3 
Pyraclostrobin (0.46 g/L) -1 0.0 a 0.00 a 
  0 0.0 a 0.00 a 
  1 0.0 a 0.00 a 
  2 0.0 a 0.00 a 
  3              59.4 b    1.13 ab 
  4              68.7 b 2.13 b 
  5              93.8 c 5.16 c 
No treatment              100.0 c   6.25 c 
 

1 Pyraclostrobin was sprayed to runoff one day before (-1), immediately      
  before (0), and one to four (1-4) days after inoculation with conidia of    
  Cercospora spp. 
2 The percentage of leaves with symptoms. 
3 The percentage of leaf area with symptoms. 
4Least square means in a column followed by the same letter are not significantly     
 different (P≤0.05) as determined by Fishers least significant difference (LSD) test. 
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Table 3.  Effects of application timing on control of Cercospora leaf spot with 
azoxystrobin. 
Fungicide (Rate) Timing1 Disease incidence (%)2  Disease severity (%)3 
Azoxystrobin (0.92 g/L) -1     0.0 a 0.00 a 
  0     0.0 a 0.00 a 
  1     3.0 b 0.09 b 
  2                84.4 c 3.49 c 
  3   81.3 c 2.75 c 
  4   81.3 c 4.16 c 
  5     93.8 cd 6.03 d 
Control                100.0 d  6.25 d 
 
1 Azoxystrobin was sprayed to runoff one day before (-1), immediately before (0),                    

and one to four (1-4) days after inoculation with conidia of Cercospora spp. 
2 The percentage of leaves with symptoms. 
3 The percentage of leaf area with symptoms. 
4 Least square means in a column followed by the same letter are not significantly      
  different (P≤0.05) as determined by Fishers least significant difference (LSD) test. 
 
 
 
 
 
Table 4.  Effects of application timing on control of Cercospora leaf spot with zoxamide. 
Fungicide (Rate) Timing1 Disease incidence (%)2  Disease severity (%)3 
Zoxamide (0.46 g/L -1   65.6 a 2.41 a 
 0     75.0 ab 2.56 a 
 1     75.0 ab 2.22 a 
 2     90.7 bc   3.65 ab 
 3     90.7 bc 5.75 c 
 4   93.8 c 5.81 c 
 5 100.0 c   5.06 bc 
Control   100.0 c  6.25 c 
 
1 Zoxamide was sprayed to runoff one day before (-1), immediately before (0),             
  and one to four (1-4) days after inoculation with conidia of Cercospora spp. 
2 The percentage of leaves with symptoms. 
3 The percentage of leaf area with symptoms 
4 Least square means in a column followed by the same letter are not significantly   
  different (P≤0.05) as determined by Fishers least significant difference (LSD) test. 
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Table 5.  Published sequences from the 5.8S ribosomal RNA gene and  
the intergenic spacer regions ITS1 and ITS2for various Cercospora species. 
 

Cercospora species Isolate GenBank no. 
Cercospora isolate from spinach - - 
C. beticola CB4 AY266165 
C. nicotianae  CN17 AY266159 
C. canescens  CCA19 AY266164 
C. hayi  CH5 AY266163 
C. kikuchii  CK35 AY266161 
C. sojina  CS13 AY266158 
C. asparagi  - AF297229 
C. violae  STE-U 2222 AF362069 
C. caricis  CG666 AF284388 
C. apii  CA1 AY266168 

 
 
 
 
Table 6.  Alignment of homologous sequences from the 5.8S ribosomal  
RNA gene and the intergenic spacer regions ITS1 and ITS2 for various 
 Cercospora species from GeneBank 
 

Cercospora species 
Genetic distance to 

spinach isolate* 
C. apii  0 
C. beticola 0 
C. nicotianae  0 
C. kikuchii  0.0023 
C. asparagi  0.0023 
C. canescens  0.007 
C. hayi  0.007 
C. sojina  0.007 
C. violae  0.0359 
C. caricis  0.0513 

 
* Based on DNA analysis of the 5.8S rRNA gene and the ITS1 and ITS2 region using  
   DNADIST 
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Figure 1.  Symptoms of Cercospora leaf spot following artificial inoculation. 
 
 
 
 
 
                       
 

                       
 
                      Figure 2.  Conidiophores of Cercospora spp. (200 x magnification) 
 
 



 80 
 

 
 

 
                      Figure 3. Seven-day-old Cercospora spp. in pure culture on PC
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