PREVALENCE AND DIVERSITY IN ORGANIC AND

 CONVENTIONAL BEEF AND WHEAT PRODUCTION SYSTEMS AND ACROSS A STATE WIDE PRECIPITATION GRADIENT IN OKLAHOMABy
KYLE RISSER
Bachelor of Science in Entomology
University of California at Riverside
Riverside, CA
2009
Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE
December, 2012

Dr. Carmen Greenwood
Thesis Adviser
Dr. Kris Giles

Dr. Justin Talley

Dr. Matt Bolek
$\frac{\text { Dr. Sheryl A. Tucker }}{\text { Dean of the Graduate College }}$

ACKNOWLEDGMENTS

I would first like to thank my family and friends for their continuing support over the last
$21 / 2$ years. I wouldn't be graduating today without my major advisor Dr. Carmen Greenwood. Without her expertise and continual assistance, this project would not have been possible. I would also like to thank my committee members Dr. Kris Giles, Dr. Justin Talley, and Dr. Matt Bolek. I am grateful to everyone that helped me in the field: Xandra Robideau, Mackenzie Jochim, John Baggerly, Colby Gregg, Alli Giguere, Sunny Evans, Stephen Zhang, Ramesh Gunaratna, and Sharon Andreason. I appreciate the land owners and managers allowing me to sample with laboriously maintained fields. I would also like to thank Dr. DeSilva, and his lab tech Xiaoping Guo, and the Adams lab at BYU for their assistance with the molecular identification of my EPN. Finally I would like to thank Dr. Niblack and the Department of Entomology and Plant Pathology for funding my project.

Acknowledgements reflect the views of the author and are not endorsed by committee members or Oklahoma State University

TABLE OF CONTENTS

Chapter Page
I. REVIEW OF LITERATURE 1
Biology and Life History 1
Bacteria-EPN Complex 5
Organic vs. Conventional Wheat and Beef Production in Oklahoma6
Effects of Organic vs. Conventional Wheat Production on EPN 9
Effects of Organic vs. Conventional Pastureland Management on EPN 11
Effects of a Precipitation Gradient on EPN Abundance and Diversity 13
II. COMPARISON OF EPN PREVALENCE AND DIVERSITY IN ORGANIC AND CONVENTIONAL BEEF AND WHEAT PRODUCTION SYSTEMS IN OKLAHOMA 15
Introduction 15
Methods and Materials 19
Results 23
Discussion 24
III. COMPARISON OF EPN PREVALENCE AND DIVERSITY ALONG A PRECIPITATION GRADIENT IN CONVENTIONAL CATTLE PASTURES ACROSS THE STATE OF OKLAHOMA 27
Introduction 27
Methods and Materials 31
Results 35
Discussion 37
IV. SUMMARY 42
REFERENCES 45
ACKNOWLEDGMENTS 50
APPENDICES 51

LIST OF TABLES

Table Page

1. 57Descriptions of the physical soil characteristics and annual precipitation levels at Organicvs Conventional wheat fields and organic vs. conventional pastures over 3 sampling dates(put the dates here)in Fairview, OK.
2. 57

Descriptions of the physical soil characteristics and annual precipitation levels at each of the conventional cattle pastures sampled for the state wide precipitation gradient survey across the state of Oklahoma.
3.

Samples from an exploratory sampling trip to Bessie, Oklahoma. All EPN species were confirmed using infection symptoms, GenBank match, and confidence information organic vs conventional comparison. All samples that were not successfully confirmed using molecular techniques were matched with samples that were using infection symptoms and location.
4.

All EPN species were confirmed using infection symptoms, GenBank match, and confidence information for the organic vs conventional comparison. All samples that were not successfully confirmed using molecular techniques were matched with samples that were using infection symptoms and location

Samples and Genbank matches from conventional cattle pastures along a state wide precipitation gradient. All EPN species were confirmed using infection symptoms, GenBank match, and confidence information organic vs conventional comparison. All samples that were not successfully confirmed using molecular techniques were matched with samples that were using infection symptoms and location. * Samples were identified using Geneious to align and edit sequences in Dr. Byron Adams lab at BYU from 5/21-5/24, Genbank match data was not recorded.

LIST OF FIGURES

Figure Page

1. 51EPN prevalence (based on bioassay infection rate), diversity ($\mathrm{Hb}=$ Heterorhabditisbacteriophora; $\mathrm{Sc}=$ Steinernema carpocapsae; $\mathrm{Sf}=$ S. feltiae, $\mathrm{Sg}=S$. glaseri, $\mathrm{Sr}=\mathrm{S}$.riobrave, $\mathrm{Sd}=S$. diapresi) of EPN , and soil moisture in organic vs. conventional wheatfields in Fairview, OK (data is compiled from 3 sampling dates). $\mathrm{DF}=3.06$, F -value $=$13.33, $\mathrm{p}=0.034$.
2.52
EPN prevalence (based on bioassay infection rate) and diversity ($\mathrm{Hb}=$ Heterorhabditis bacteriophora; $\mathrm{Sc}=$ Steinernema carpocapsae; $\mathrm{Sf}=$ S. feltiae, $\mathrm{Sg}=S$. glaseri, $\mathrm{Sr}=\mathrm{S}$. riobrave, $\mathrm{Sd}=S$. diapresi) of EPN in organic vs. conventional pastures in Fairview, OK (data is compiled from 3 sampling dates).
3.53
EPN Prevalence (based on bioassay infection rate) and diversity ($\mathrm{Hb}=$ Heterorhabditis bacteriophora; $\mathrm{Sc}=$ Steinernema carpocapsae; $\mathrm{Sf}=$ S. feltiae, $\mathrm{Sg}=\mathrm{S}$. glaseri, $\mathrm{Sr}=\mathrm{S}$. riobrave, $\mathrm{Sd}=S$. diapresi) of EPN in wheat vs. cattle pastures in Fairview, OK (data is compiled from 3 sampling dates).
2. .54
A map showing the precipitation gradient across the state of Oklahoma. The stars are our sampling locations and are labeled with the towns that the sampled cattle pastures were located in. These locations were chosen due to the distinctly different precipitation zones they are located in and their relatively even dispersal throughout the precipitation gradient across the state.

EPN prevalence (based on bioassay infection rate), diversity ($\mathrm{Hb}=$ Heterohhabditus bacteriophora, $\mathrm{Sc}=$ Steinernema feltiae, $\mathrm{St}=$ Steinernema texanum, and $\mathrm{Sf}=$ Steinernema feltiae), and average soil moisture (1 measurement/pasture/sampling date) across Oklahoma ecoregions in conventional cattle pasture systems.

CHAPTER I

REVIEW OF LITERATURE

Biology and Life history

Entomopathogenic nematodes (EPN) are soil dwelling, obligate parasites of insects. Much like other parasitoids and predators, EPN have chemoreceptors and are motile. Like many pathogens utilized as biological control agents, they are highly virulent, easily cultured in vitro, have a broad host range, are arthropod specific, and have a high reproductive potential (H. K. Kaya \& Gaugler, 1993). EPN are classified in two families: Heterorhabditidae and Steinernematidae. Each family is associated with a genus of gramnegative bacteria, Photorhabdus spp. and Xenorhabdus spp., respectively (H. K. Kaya \& Gaugler, 1993). The bacteria are symbiotic and essential for EPN to complete their life cycle. EPN are ideal biological control agents for background suppression of soildwelling insect pests (Gaugler et al., 1989). The Steinernematidae have two recognized genera and over forty species. The Heterorhabditidae contains only a single genus that currently has ten recognized species (Adams et al., 2006a). The global distribution of these families is almost ubiquitous. Both families have been found on every continent except Antarctica, with North America having at least 20 confirmed species (Adams et al., 2006a). Heterorhabditidae has been isolated primarily from sandy coastal soils, with
some being found in porous and more calcareous soils inland. Steinernematidae are widely distributed in turf, weedy, and forest habitats (Adams et al., 2006a).

The infective stage that actively moves through the soil is the Infective Juvenile (IJ) life stage. Once an IJ locates a host, it enters the hoemocoel of the insect using chemosensory cues. This can be accomplished through a natural opening such as the mouth, anus, spiracle, or, in some species, by entering directly through the cuticle. The IJ will then move into the hoemocoel by penetrating the midgut or the tracheal wall (H. K. Kaya \& Gaugler, 1993). Some Heterorhabditidae IJs have a dorsal tooth that assist in direct penetration of the cuticle (H. K. Kaya \& Gaugler, 1993). Once inside the insect host, the IJ regurgitates or defecates the symbiotic bacteria stored in its gut into the hoemocoel of its host. The bacteria then multiply rapidly, killing the host through septicemia within 48 hours. The EPN reproduce inside the insect cadaver for a few generations (2-3) until a new batch of IJ burst through the cuticle of the cadaver and begin to disperse back through the environment looking for a new host (H. K. Kaya \& Gaugler, 1993).

EPN and their hosts are unable to develop a highly adapted host-parasite relationship due to rapid death of the host after EPN infection. This rapid host death allows EPN to exploit a wide host range that spans nearly all insect orders (H. K. Kaya \& Gaugler, 1993). However, some host insects are not completely susceptible to EPN infection. Unrestrained Popillia japonica are capable of removing more than 60% of attacking nematodes from their cuticle by brushing with their legs or the abrasive raster on their abdomen (Gaugler et al., 1994).

Many biotic and abiotic factors affect EPN in the soil. Abiotic factors that can affect EPN persistence in the environment include temperature, soil moisture, soil type, soil pH , and UV exposure (Kung et al., 1990; Shang-Ping et al., 1990; Grewal et al., 2002; Karagoz et al., 2009). Common biotic factors that can impact native EPN in the environment include predators, parasites, and pathogens of EPN (Stuart et al., 2006).

While EPN can provide suppression of some agricultural pests in Oklahoma, they are susceptible to predation, antibiosis, and fungal parasitism in those same environments. EPN are preyed upon by many species of both mites and collembolans (C. Marie Greenwood et al., 2011). Predators thrive in environments that promote EPN persistence as well. Antibiosis can occur when plants release volatiles from their roots into the soil, adversely impacting the IJ's ability to host seek in the immediate area (Harry K. Kaya \& Koppenhöfer, 1996). This can cause a reduction of EPN persistence do to IJ lack of ability to successfully locate and infect a viable host. EPN can out-compete with most entomopathogenic fungi, with the exception of Bacillus thuringiensis. However, EPN can themselves be parasitized by nematophagous fungi. The most studied example of this is Hirsutella rhossiliensis, which has been shown to cause higher mortality in Steinernematid species than in Heterorhabditid species (Harry K. Kaya \& Koppenhöfer, 1996). The combination of these biotic factors can impose heavy trophic pressure on native EPN populations in wheat and pasture environments.

Climate can have a major influence over the prevalence and community composition of EPN. Steinernema weiseri and Steinernema feliae are cold adapted and are most virulent between $10-15^{\circ} \mathrm{C}$, whereas Heterorhabditus bacteriophora is warm-adapted and most virulent between $20-25^{\circ} \mathrm{C}$ (Karagoz et al., 2009). Each species of EPN have their own
thermal niche for infection, establishment, and reproduction that is independent and unaffected by their locality (Grewal et al., 1994). Soil type plays a vital role in EPN persistence, due to the necessity of proper soil porosity for the dispersion of IJs. Sandy loam is the soil that IJs are most effective at dispersing though, followed by sand, clay loam, and finally clay (Kung et al., 1990). These findings correlate with the porosity of the soils, with sandy loam being the most porous while still being able to maintain the moisture layer around particles essential for IJ dispersal. EPN persist well in a soil pH range of 4-8, and when approaching a pH of 10 , survival drops dramatically (Shang-Ping et al., 1990).

During periods of adverse conditions many EPN have the ability to molt to a long-lived, non-feeding, survival stage known as the Dauer Juvenile (DJ) (Dolan et al., 2002). Endotokia matricida is a process through which the adult female EPN is consumed by its offspring. During embryo development, when the external conditions are unfavorable, endotokia matricida can occur within EPN, resulting in death of the adult reproductive and direct development of DJs instead of IJs (Johnigk \& Ehlers, 1999).

The average LT_{90} (lethal time) of field collected strains of EPN vary from 6-16 weeks. H. bacteriophora has been shown to be capable of withstanding high temperatures up to $40^{\circ} \mathrm{C}$ for 2 hours, exposure to 302 nm ultra violet light (UV) for 5 minutes, 0% dissolved oxygen for 96 hours (hypoxia), and 25% glycerol (desiccation) for 72 hours. Results between populations isolated from different locations varied wildly. Overall longevity was most closely correlated with heat tolerance. These results show that patchy populations of EPN are highly fragmented suggesting a strong influence of metapopulation dynamics (Grewal et al., 2002).

EPN have a broad host range, are motile, have chemoreceptors for host seeking, are highly virulent and have high reproductive potential. These attributes make native EPN in agricultural systems valuable for low to no-cost addition background suppression of pests that have a soil dwelling life stage. However, the true pathogenicity of EPN is a result of the symbiotic bacteria stored in the IJs gut and released into the host's hoemocoel.

Bacteria EPN complex

Mutualistic and insecticidal relationships between nematodes and bacteria evolved on at least two separate occasions, leading to two lineages of Heterorhabditidae and Steinernematidae (Adams et al., 2006b). The bacteria are symbiotic and essential for EPN to complete their life cycle. Each EPN species has a specific association with only one bacterial species, although some bacteria may be associated with more than one EPN species (H. K. Kaya \& Gaugler, 1993). As the bacteria multiply, they release secondary metabolites that preserve the integrity of the cadaver's cuticle, repel or kill other bacteria and fungi to prevent breakdown of the cadaver, and turn the cadaver a different color specific to the bacterial species(H. K. Kaya \& Gaugler, 1993). Studies show that the symbiotic bacteria of EPN in the genera Xenorhabdus and Photorhabdus compounds that deters a wide range of predators and scavengers (Zhou et al., 2002). A particular compound has been identified for ant predators, called Ant Deterrent Factor (ADF). ADF protects nematodes from being consumed during reproduction within insect cadavers. The compound is produced by the symbiotic bacteria in culture and is found in the supernatants of the bacteria. It is filterable, heat stable, acid sensitive, and can pass through a $10-\mathrm{kDa}$-pore-size membrane. This leads researchers to believe that the compound is a small, extra cellular, non-proteinaceous compound (Zhou et al., 2002).

The success of the compound depends upon the ant species, the strain, and age of the bacteria being tested.

Co-infection by two different species of EPN has been documented, but is uncommon. In most cases of co-infection one species of bacteria out-competes the other, resulting in only one species of EPN successfully reproducing and emerging from the cadaver. In one particular study, the frequency of Steinernema feltiae was unaffected by the presence of Heterorhabditis marelatus, however H. marelatus frequency dropped severely with the presence of S. feltiae (Gruner et al., 2007). Two steinernematid species have been shown in a laboratory setting to be capable of parasitizing the same host. Members of one genus cannot feed on the symbiotic bacteria associated with a different genus, and commonly one species will be able to out compete the other (H. K. Kaya \& Gaugler, 1993). Pathogenic symbiotic bacteria of EPN are essential for success of EPN to provide background suppression of pest insects. Besides the pathogenicity of symbiotic bacteria, another essential trait for EPN success is the host seeking ability of the IJ life stage. Many abiotic and biotic factors influence the success of host seeking by IJs. Land management practices in agricultural settings impact both the abiotic and biotic conditions of the soil environment.

Organic vs. conventional wheat and beef production in the southern great plains

80% of Oklahoma's land is used for agriculture. Beef and wheat production systems are some of the most prevalent, producing over 3 billion dollars a year in combined gross income (Shideler et al., 2011). Oklahoma is the $2^{\text {nd }}$ largest beef cattle producing state in
the nation with over 56,000 cattle operations and $\$ 2.54$ billion in gross income a year. At the same time, Oklahoma is the $4{ }^{\text {th }}$ largest wheat producing state in the nation, with over $\$ 584$ million in cash receipts. (Shideler et al. 2009).

Oklahoma is unique in that many producers in the central "winter wheat belt" portion of the state use the early stages of wheat growth as a cattle forage (Horn, 2006). For most of the state, highest wheat yields are achieved by planting in the first two weeks in October.. If the goal is to utilize the wheat pasture only for cattle forage then planting can be done any time after August $20^{\text {th }}$ (Cuperus, 2000). Wheat has many pests that spend part of their life cycle in the soil, making them susceptible to EPN infection, including armyworm (Lepidoptera), wireworm (Coleoptera), and cutworms (Lepidoptera) (Cuperus, 2000)

Many species of EPN, including Steinernema masoodi, S. seemae, S. carpocapsae, S. glaseri, S. thermophilum, , S. weiseri, and Heterorhabditis bacteriophora have been tested in laboratory settings against multiple pest species of Lepidoptera, which include gram pod borer (Helicoverpa armigera), greater wax moth (Galleria mellonella), rice moth (Corcyra cephalonica), acorn moth (Cydia splendana), and Oriental leafworm moth (Spodoptera litura) (Ali et al., 2008; Karagoz et al., 2009; Seth et al., 2009). All of the EPN species tested successfully infected and reproduced within the Lepidopteran pests that they were tested against. S. masoodi, S. seemae, and S. carpocapsae were found to be the most pathogenic, killing the rice moth within 24 hrs . The Greater wax mothwere the most susceptible and best for rearing large quantities of IJs for the majority of EPN tested (Ali et al., 2008).

Introducing EPN into the wheat field environment can also have positive indirect effects for a producer, such as reducing the number of plant parasitic nematodes in the soil. This is mainly attributed to spatial and environmental displacement of plant parasitic nematodes by EPN (Jagdale et al., 2002). Considering this effect in addition to EPN direct effects, conservation or augmentation of naturally-occurring EPN could provide one component of a comprehensive IPM program designed to promote sustainable wheat production (Koppenhöfer et al., 2000).

Cattle have multiple pests with the potential to be susceptible to EPN control as well, including hornflies (Haematobia irritans), cattle grubs (Hypoderma), stable flies (Stomoxys calcitrans), black flies (Simuliidae), horse and deer flies (Tabanidae), sand flies (Psychodidae), house flies (Musca domestica), and hard ticks (Renn, 1998; de Carvalho et al., 2010).The most economically important pests in Oklahoma beef cattle systems include horn flies, stable flies, house flies and hard ticks; these will be the main focus of the following studies. EPN have been shown to successfully control prominent pests of several systems, including members of Coleoptera, Diptera, and Lepidoptera (Grewal et al., 2001). S. carpocapsae alone has been shown to infect more than 250 insect species in over 75 families in 11 different orders (Grewal et al., 2001). EPN have been shown to successfully infect ticks, even engorged females (de Carvalho et al., 2010). To reduce the complexity of so many confounding variables, however, the following studies will focus on wheat production systems not grazed by cattle and pastureland systems used specifically for beef production.

Effects of organic vs. conventional wheat production on EPN

EPN depend upon suitable biotic and abiotic soil conditions in order to infect insects and reproduce successfully. The conditions of the soil between organic and conventional agricultural practices may vary dramatically due to the wide range of land management strategies, which may include application of pesticides, herbicides, fertilizer, and mechanical disturbances, such as tillage and compaction. Common abiotic factors that influence EPN success include soil moisture level, soil type (pore size), temperature, and soil pH . Common biotic factors that can impact native EPN in the environment include predators, parasites, and pathogens of EPN (Stuart et al., 2006).

When comparing organic and conventional practices, the amount of tillage in the systems can be a major factor on the success of nematodes in the local food web, most likely due to the drying of the soil (Briar et al., 2007). It is common practice in conventional agricultural practices in Oklahoma to add anhydrous ammonia to soil in order to increase nitrate levels. This has been shown to inhibit microbiological and biochemical activity in the soil communities (Deng et al., 2005). In contrast, the addition of manure to otherwise clay heavy soils, which is the common practice in organic agriculture, has many benefits for the soil biologic communities (Obi et al., 1994). These benefits include a decrease in bulk density and an increase in structural aggregation and porosity, which allows for better movement and dispersal for the EPN through the environment. Clay soils have
very small pores between particles, making dispersal harder for EPN, whereas moist sandy soils, or soil with manure additions, have large pores between particles and are more ideal for EPN dispersal into the environment (H. K. Kaya \& Gaugler, 1993). The increase in nematode activity can also be attributed to the increase in food resources associated with the enrichment of the soil by readily degradable compounds (Mahran et al., 2009).

Soil food web indices based on nematode assemblages are a reliable method of predicting trophic composition of functional characteristics of soil mite assemblages.

Bacteriophagous and predatory nematodes, together with predatory mites, are more abundant in organic-no till treatments than in conventional- standard till treatments. Conventional-standard tillage treatments have high abundances of fungiphagous and plant-parasitic nematodes and algivorous mites (Sánchez-Moreno et al., 2009). With the promotion of predatory mites and nematodes, organic-no till treatments can increase the predation on EPN, while maintaining abiotic conditions that promote EPN success. conventional-standard tillage does not promote predators or competitors of EPN, thereby reducing those pressures on the local EPN community. However, conventional-standard tillage promotes abiotic factors that are not conducive to EPN persistence.

Many soil-borne insect pests are managed by the application of soil insecticides. Under current federal re-evaluation many soil insecticides will no longer be available for use in many crops. In order to achieve reduced synthetic inputs and sustainable agriculture, growers will need to manage soil organisms to promote nutrient cycling and to suppress pests, and biological and cultural pest management alternatives will be necessary. Naturally occurring EPN have the potential to be an effective force in controlling
agricultural soil-dwelling pest species. It will be especially important to understand how production systems and practices affect beneficial and pest organisms. This information can be used to devise ways to exploit soil properties and beneficial soil organisms, such as predators and pathogens of soil-dwelling insect pests, and to enhance agricultural sustainability (Millar \& Barbercheck, 2002).

Effect of organic vs. conventional pastureland management on EPN

It is common practice, in conventional pastureland management, to use pesticides as the main source of parasite control for cattle (Svensson et al., 2000). The practice of using Ivermectin as a prophylactic can have a large non-target effect on the local arthropod communities, killing off beetle grubs and fly larvae due to excretion of the pesticide in the feces (Römbke et al., 2010). Fresh manure is breeding substrate for horn flies, whereas older manure serves as breeding substrate for stable flies, both of which are major pests of cattle. The amount of pesticide excreted has been shown not to have a detrimental effect on local soil dwelling nematode populations (Yeates et al., 2007). The treatments may still affect abundance and diversity of EPN due to the lethal effects on their hosts and added stress on the local EPN. Stable habitats, light soils, and an abundance of hosts creates an environment for successful EPN persistence and insect suppression (Mrácek et al., 2005). Due to restrictions against the use of pesticides in organic practices, parasite control is mainly achieved through grazing management, nutritional supplements, and forage. The grazing is managed in such a way as to avoid pastures that were grazed by any herd animals the previous season, this greatly reduces
the number of parasites in the grazing environment encountered by cattle (Svensson et al., 2000).

Pesticides and fertilizers can have positive, neutral, or even negative effects on the local EPN populations and must be considered when looking at EPN for successful biological control of a pest (Shapiro-Ilan et al., 2006). Swine effluent (SE) is particularly acidic and high in salinity, which can have a detrimental effect on the soil nematode community. The sodium adsorption ratio of soils under SE treatment at the Goodwell field site increased following five cumulative, annual manure additions, a potential long-term problem for this production system (Turner et al., 2010). Thus, application of SE may be contributing to salinity stress on soil dwelling invertebrates, and a negative trend for microarthropod abundance in treated soils will most likely result if no action is taken to correct this. It is necessary to take land management practices into account when looking to conserve native EPN (Campos-Herrera et al., 2008).

EPN have been shown to successfully infect many Dipteran pests including: midges (Cecidomyiidae), fruit flies (Tephritidae), sand flies (Psychodidae), and house flies (Muscidae) (Secundino et al., 2002; Georgis et al., 2006; Corlay et al., 2007; Malan \& Manrakhan, 2009). Not all of these species are of great concern for cattle farmers; however it is easy to assume that if these can all be successfully controlled by EPN then the main pests of cattle, almost all of which are in the family Muscidae, may be as well. Conservation or augmentation of naturally-occurring EPN may serve as one component of a comprehensive IPM plan aimed at reducing populations of blood-feeding flies in livestock production.

EPN abundance and diversity across a geographical precipitation gradient

EPN require a water film over soil particles for successful active dispersion, making soil moisture levels and type important factors in the efficacy of EPN as pest control (H. K. Kaya \& Gaugler, 1993). Oklahoma exhibits a distinct precipitation gradient, with west to east rainfall levels ranging from 40 cm to 150 cm , respectively. Soil moisture has been shown to be one of the most important abiotic factors affecting EPN community composition. EPN are most effective at moderate soil moisture levels (-10 to -100 kPa) and become less successful at infecting hosts in high moisture content soils (>-1kPa) and lower moisture content soils (<-1000 kPa) (Koppenho"fer \& Fuzy 2007).

Oklahoma has a wide range of soil types as well. Clay soils have very small pores between particles, making dispersal harder for EPN; whereas moist sandy soils with large pores between particles are more ideal for EPN dispersal into the environment. (H. K. Kaya \& Gaugler, 1993). A state wide survey to sample native EPN diversity must take these factors into consideration.

Seasonal variation must be considered when looking to conserve naturally occurring EPN. Seasonal dynamics of EPN are characterized by an initial explosion of individuals, followed by a steady decrease, and an eventual stabilization (Puza \& Mrácek, 2005). EPN abundance has a strong negative correlation with host populations in the enviornment. Intraspecific and interspecific competition for limited resources (hosts) is a major component to EPN abundance in the field (Puza \& Mrácek, 2005). When host abundance
is low, there is feirce competition between EPN, infection of a host by too many EPN causes complete loss of the host, without complete utilization of the available resources by any of the EPN. When competition is high, EPN populations crash, allowing the host populations to increase with less trophic pressure.

Conservation of naturally occurring EPN, through the use of land use practices that are conducive to EPN proliferation is one way producers can enhance background pest suppression (Carmen M. Greenwood \& Rebek, 2009). With the high virulence, broad host range, and massive reproductive potential of EPN, this may be potent pest control option that producers cannot afford to overlook.

EPN communities can be heavily influenced by environmental factors, both biotic and abiotic. Land management practices and precipitation levels can influence environmental factors that are crucial for EPN success and persistence in the environment. The first objective of the following study is to analyze the impact of organic and conventional management regimes on the EPN communities in wheat and cattle pasture agricultural systems in Oklahoma. The second objective of this study is to analyze how a varying precipitation gradient across Oklahoma impacts the EPN communities in conventional cattle pastures across the state. This information will be helpful in understanding and implementing EPN conservation in agricultural systems across Oklahoma.

COMPARISON OF EPN PREVALENCE AND DIVERSITY IN ORGANIC AND CONVENTIONAL BEEF AND WHEAT PRODUCTION SYSTEMS IN OKLAHOMA

Introduction

Entomopathogenic Nematodes (EPN) are small soil-dwelling round worms that are obligate pathogens of arthropods. There are two families of EPN, the Steinernematidae and Heterorhabditidae; both of which have a bacterial symbiont (Xenorhabdus spp. and Photorhabdus spp. respectively) that are found only in the guts of these nematodes (Harry K. Kaya et al., 2006). EPN have one free living life stage called the infective juvenile (IJ) stage. IJs are motile and use chemosensory cues to track down potential hosts in the environment (Gaugler et al., 1989). Once an IJ finds a host, it must find an opening where is can pass into the hoemocoel of the host. This is commonly done by entering the digestive tract through the mouth or anus and then penetrates the midgut wall. IJs are also able to enter spiracles and enter the hoemocoel through the tracheal wall. In some instances, direct penetration of the cuticle is possible by the IJ. Once inside the hoemocoel the IJ regurgitates or defecates the symbiotic bacteria stored in its gut into the hoemocoel of its host. The bacteria begin to break down host tissues, killing the host
through septicemia (Campbell et al., 1995). While breaking down the host tissues, the bacteria release many other secondary compounds that act as preservatives, anti-bacterial agents, anti-fungal agents, and ant-deterrent factors (H. K. Kaya \& Gaugler, 1993; Zhou et al., 2002). These compounds keep the host cuticle intact and deter scavengers while the EPN complete their life cycle within the cadaver. Once reproduction is complete, a new generation of IJ burst through the cuticle wall of the cadaver and disperse into the environment in search of new hosts (Campos-Herrera et al., 2008).

Agricultural practices are a large draw of arthropods due to large scale, readily available, resources in the form of regular annual inputs of vegetation, water, and soil amendments. This study assessed different land management practices, organic and conventional production, of beef and wheat in Oklahoma. At least 80% of land in Oklahoma is utilized for agricultural production. Oklahoma is the $2^{\text {nd }}$ largest beef producing state in the nation, with over 56,000 cattle operations, and $\$ 2.54$ billion annually in gross income from beef. Oklahoma is also the $4^{\text {th }}$ largest wheat producing state in the nation, with over 110.2 million bushels produced annually, and $\$ 584$ million in sales. These two systems make up the majority of the agricultural practices in Oklahoma. EPN have the potential to increase the profit in these agricultural systems by providing valuable background pest suppression. There is only one certified organic beef and wheat producer in Oklahoma located in Fairview OK.

Beef and wheat production, whether organic or conventional, impacts the biotic and abiotic soil environment in many ways. EPN prevalence can be affected by these biotic and abiotic environmental factors. Soil ecosystems' have complex food webs containing predators, pathogens, parasites, and a wide range of host and non-host arthropods of

EPN. Omnivory is common in these ecosystems, many invertebrates in the soil ecosystem have documented records of nematophagy and exhibit attraction to the presence of EPN-infected cadavers (Greenwood et al., 2010). Due to these compounding factors, determining the impact of biotic factors on EPN communities is a difficult task (Stuart et al., 2006).

EPN are have biotic factors to contend with in an agricultural environment including predation, parasitism, and antibiosis. Many soil-dwelling microarthropod pradators, omnivors, and scavengers including mites and collembolans feed on EPN IJs while they are dispersing and host seeking in the soil (Greenwood et al., 2011). Entomophagous fungi, including Hirsutella rhossiliensis, can provide strong trophic pressure on EPN IJs in the soil (Harry K. Kaya \& Koppenhöfer, 1996). Particularly when considering the highly clumped dispersion pattern of EPN IJs in the environment does the true impact of entomophagous fungi become apparent. Antibiosis occurs when plants in the environment release volatiles from their roots into the soil environment, disrupting EPN IJ's ability to host seek near the roots of the plants releasing the volatiles (Harry K. Kaya \& Koppenhöfer, 1996). All of these biotic factors can impact native EPN ability to host seek and successfully infect and reproduce within a host.

Conventional agriculture can involve any and all legal compounds on the market to control pests affecting their crop or animals. This includes, but is not limited to: animal waste, nematicides, insecticides, general pesticides, sewage, and synthetic fertilizers. Swine effluent, synthetic fertilizers, and sewage create soil pH levels that are stressful on EPN. EPN persist well in a soil pH range of 4-8, when approaching a pH of 2 or 10 survival drops dramatically (Shang-Ping et al., 1990). Organic producers commonly
fertilize with compost and manure, creating a soil environment that is more porous, more capable of retaining moisture, and maintains a pH comfortably within the EPN preferred range (Karungi et al., 2006). Soil moisture is essential for the continual persistence of EPN in an environment, without an intermediate soil moisture (-10 to -100 kPa) IJs can no longer disperse and host seek successfully. Conventional practices in cattle pasture ecosystems consist of treating cattle with ingestible and systemic nematicides. These compounds are excreted in the feces of the cattle and create a high concentration in the soil underneath the dung pat. These excretions have been shown to inhibit the development of common EPN hosts in dung pats, including Musca domestica and certain beetle larvae. Thereby reducing the usable hosts and creating a less favorable environment for EPN (Madsen et al., 1990). Therefore, soil sampling in the pastureland portion of this study targeted the soil habitat directly beneath dung pats.

Organic and conventional management practices promote dissimilar soil environments due to differing fertilizers and pesticides allowed in the two management strategies. Wheat and beef production systems are the two largest agricultural systems in Oklahoma, yielding over three billion dollars in annual sales. The objective of this study is to compare the impacts of organic versus conventional management practices in cattle pasture and wheat agricultural systems in Oklahoma on the prevalence and diversity of native species of EPN in those systems. The results of this comparison will advance our understanding of native EPN conservation agricultural systems. Conservation of native EPN has the potential to be a cost effective strategy for background suppression of natural enemies of soil-dwelling insects, many of which are pests in these agricultural systems.

Methods and Materials

Wheat

2 wheat fields with different management practices were sampled. One certified organic field and one neighboring conventionally managed field. Each field was sampled on 3 different sampling dates $(9 / 3 / 11,10 / 17 / 11,11 / 18 / 11)$. On each sampling date, four 100 m transects were established at each field site. Transects were a minimum of 150 m apart and began 10 m from the edge (to avoid edge effects). One $50 \mathrm{~cm}^{3}$ soil core was taken every meter using a handheld soil core, for ten meters. At every 10m interval the soil samples were homogenized in a bucket. A $300 \mathrm{~cm}^{3}$ subsample was taken from the homogenized sample, placed in a 3.8L ziplock freezer bag and labeled with the collector's code, date, transect, and type of field. The samples were then transported back to the lab in coolers to help moderate the temperature in order to avoid soil sterilization on hot days. A total 40 bagged samples were taken at each field on each sampling date. A total of 240 samples were taken between September $3^{\text {rd }} 2011$ and October $17^{\text {th }} 2012$.

Pasture

2 cattle pastures with different management practices were sampled on the same dates the wheat fields were sampled (above). One pasture was managed using certified organic techniques and the other, a neighboring pasture, was conventionally managed using best management practices (BMP). Each pasture was sampled on 3 different sampling dates. During each sampling trip samples were taken from: under fresh dung pats (<2 weeks), under old dung pats (>2 weeks), and away from dung pats. Dung pats were selected randomly through visually canvassing the field. Dung pat age was determined judging
moisture content and breakdown of the pat due to environmental exposure. A professor with extensive experience working in cattle pasture taught collectors how to categorize dung pat age by sight and texture (determined by prodding the dung pat with a hand trowel).When the appropriate dung pat was located, a hand trowel, with the first 7.6 cm marked off, was used to take a $300 \mathrm{~cm}^{3}$ from the top 15.2 cm soil level. These samples were placed in a 3.8L ziplock freezer bag and labeled with the collector's code, date, dung pat condition, and type of field. The samples were then transported back to the lab in coolers to help moderate the temperature. A total of 18 bagged samples were taken at each pasture on each sampling date. A total of 108 samples were taken between September $3^{\text {rd }} 2011$ and October $17^{\text {th }}$ 2012. Neighboring farms that use conventional beef and wheat production practices were sampled in conjunction with the organic farm to provide paired landscape comparisons.

Bioassay

Each sample was baited with 6 Galleria mellonella and incubated at $25^{\circ} \mathrm{C}$ for 7 days, consistent with standard bioassay technique described by Lacey \& Kaya (1997). G. mellonella larvae are the standard insect and stage for bioassays for EPN due to their low LD-50 for all species of EPN species tested (Morris et al., 1990). After five days the bags were removed from the dark and dumped into trays in order to find all of the G. mellonella larvae. G. mellonella were recovered and their disposition determined. Disposition categories included alive, dead-uninfected, infected with EPN, infected with fungus, or missing. Prevalence was defined as the total number of infections divided by
the total number of G. mellonella larvae used in the bioassay. Infected insects (cadavers) were placed into a Petri dish with an appropriately sized filter paper lining the bottom. The filter paper was then moistened with a spray bottle to keep humidity high during EPN emergence, filter paper was kept moist while making sure no standing water was present. The cultures were then checked every day to check for IJ emergence. Once EPN began to emerge from a G. mellonella cadaver, the filter paper was removed from the dish (while keeping the G. mellonella on it), and the Petri dish was flipped over. The Filter paper was then placed back on top of the, now upside-down, Petri dish. The dish was then placed into a larger Petri dish which was filled with a thin layer of water ($\sim 10 \mathrm{ml}$). The EPN dispersed sufficiently into the water in the large Petri dish after 24-48 hours. Once the EPN had successfully dispersed, the contents of the large Petri dish were poured into 100 ml centrifuge tubes and frozen until the DNA extraction was performed. Before freezing, a sample of the IJs collected were measured with an Amscope MU300 camera, using Amscope ToupView software, to determine average IJ length of the species collected. During the entire time that the infected G. mellonella cadaver was in contact with filter paper, the paper was kept moist by lightly misting it with a spray bottle whenever it began to dry out.

DNA extraction and sequencing

Single EPN from each infected cadaver were lysed using EPN lysis buffer (unpublished Adams lab protocol). PCRs were then run using the resulting solution as the DNA template. PCR Primers designed to amplify ITS 18s-26s gene region were used. The resulting PCR product was cleaned with exonuclease and SAP and sent to the CORE facility on the OSU campus for sequencing. The CORE facility used "BigDye ${ }^{\text {TM" }}$ -
terminated reactions analyzed on an ABI Model 3730 DNA Analyzer to sequence the submitted samples. The resulting sequences were trimmed and cleaned by eye using BioEdit software. The cleaned sequences were identified using the BLASTn program and the NCBI database. Species identification was confirmed based on a low E-value and high Max ident.

$\underline{\text { Statistical Analysis }}$

Pasture

Prevalence was evaluated as total infections/total G. mellonella used to bait. Prevalence data based on infection symptoms G. mellonella were subjected to statistical analysis using analysis of variance (ANOVA) techniques (PROC MIXED, PC SAS Version 9.2, SAS Institute, 1996), using the RANDOM option in an LSMEANS statement. Experimental factors in the model included: date, management (Organic or Conventional), cow patty condition, and rep with management*cowpatty*rep considered to be random effects. A test for normality was conducted using PROC UNIVARITE procedure to perform a NORMALTEST. The class included were dates, management, cow patty condition, and rep with management considered to be the variance. P-values of 0.05 or less were considered significant.

Wheat

Prevalence was evaluated as total infections/total G. mellonella used to bait. Prevalence data based on infection symptoms G. mellonella were subjected to statistical analysis using analysis of variance (ANOVA) techniques (PROC MIXED, PC SAS Version 9.2, SAS Institute, 1996), using the RANDOM option in an LSMEANS statement.

Experimental factors in the model included: date, management (Organic or

Conventional), transect, subsample, rep, and response with management*transect and management*transect*subsample considered to be random effects. P-values of 0.05 or less were considered significant.

Results

A total of 6 different species of EPN were identified. The average prevalence of EPN in conventional wheat fields was 6.73%, the average prevalence of EPN in organic wheat fields was 2.06% (Fig. 1). The prevalence of S. feltiae in organic wheat was 1.27%. The prevalence S. glaseri in organic wheat was 0.32%. The prevalence of S. diapresi in organic wheat was 0.48%. The prevalence on S. feltiae in conventional wheat was 0.80%. and the prevalence of S. diapresi in conventional was 0.32%. No H. bacteriophora, S. riobrave, or S. carpocapsae was collected from any of the sampled wheat fields (Fig. 1). The average EPN prevalence in all wheat fields sampled was 1.59%. The average EPN collected in all cattle pastures sampled was 7.0% (Fig. 3). The average prevalence of S. diapresi in wheat fields sampled was 0.39%. The average prevalence of S. feltiae in wheat fields sampled was 1.04%. The average prevalence of S. glaseri in wheat fields sampled was 0.16%. The average prevalence of H. bacteriophora in cattle pastures sampled was 1.67%. The average prevalence of S. carpocapsae in cattle pastures sampled was 3.17%. The average prevalence of S. feltiae in cattle pastures sampled was 1.67% The average prevalence of S. riobrave in cattle pastures sampled was 0.17% The average prevalence of S. diapresi in cattle pastures sampled was 0.33% (Fig. 3). The average EPN prevalence in organic pasture was 7.33%. The average EPN prevalence in conventional
pasture was 6.67% (Fig. 2). The averageprevalence of S. feltiae in organic pasture was 1.33%.The average prevalence of S. diapresi in organic pasture was 0.67%. The prevalence of S. carpocapsae in organic pasture was 5.33%. No H. bacteriophora was collected from any organic pasture samples. The average prevalence of S. feltiae in conventional pasture was 2.0%. and the average prevalence of S. riobrave in conventional pasture was 0.33%. The average prevalence of S. carpocapsae in conventional pasture was 1.0%. The average prevalence of H. bacteriophora in conventional pasture was 3.33% (Fig. 2). All species were confirmed through molecular identification using the $18 \mathrm{~s}-28 \mathrm{~s}$ gene region of the genome, any samples that were not successfully identified this way were identified by comparing infection symptoms and location with confirmed samples. The soil in the organic wheat field sampled was Sandy Loam (12.5% clay, 55% sand, and 32.5% silt. The soil in the conventional wheat field sampled was Sandy Loam (10\% clay, 58.8% sand, and 31.3% silt). The soil in the organic cattle pasture was Sandy Loam (7.5\% clay, 64% sand, and 27.5% silt). The soil in the conventional cattle pasture was Loam (16.3% clay, 40% sand, 43.8% Silt) (Table 1).

Discussion

The average prevalence of EPN in organic wheat fields was significantly higher $(p=0.0343)$ than EPN prevalence in conventional wheat fields. This may be due to the type of soil amendments used in organic agriculture (e.g. compost and manure) which create a soil environment with higher porosity and better moisture retention (Karungi et al., 2006). Both of these traits are conducive to successful EPN persistence in an environment. Conventional methods of fertilizing wheat fields include swine affluent,
anhydrous ammonia, and the addition of sewage (Bulluck Iii et al., 2002). The previous amendmets utilized in conventional systems change soil pH to limits outside of normal EPN preference and do nothing to increase the soil's porosity or its ability to maintain higher moisture levels. The average prevalence of EPN in organic versus conventional cattle pastures was not significantly different $(\mathrm{DF}=30, \mathrm{~F}$ value $=0.06, \mathrm{p}=0.8074)$. However, the diversity of EPN varied between the organic and conventional pastures, most likely due to the nematicides fed to cattle reducing the available hosts for EPN in the local environment. These compounds move through the cattle's systems and are excreted in the dung. These excreted nematicides collect in a high concentration in the soil directly underneath a dung pat, causing selective pressure on the soil ecosystem. A high concentration of these compounds in the soil inhibits the development of arthropods that use the dung pat as a resource, reducing the amount of available hosts for EPN in the area (Römbke et al., 2010). With this pressure in place, H. bacteriophora anecdotally have the ability to compete with and displace the more prolific S. carpocapsae. When this selective pressure is removed, the S. carpocapsae seem to out-compete any H. bacteriophora in the area by producing more IJs at the end of a reproduction cycle. The overall prevalence of EPN in the pasture ecosystem is significantly higher than in the agricultural wheat ecosystem (p <.05). Possibly due to the lack of tilling that conventional agricultural crop fields receive, making cattle pastures more stable environments for EPN to persist in. When wheat fields are tilled annually, the populations of available hosts for EPN drop dramatically. In comparison, when cattle are not present on a pasture, high numbers of EPN hosts remain in the pasture making it readily available for EPN to utilize for reproduction year-round (Dennis et al., 1998). All
fields sampled had soil texture that is suitable for EPN persistence.Due to organic practices promoting higher EPN prevalence in agricultural crop fields with the benefits to the soil ecosystem (higher porosity and soil moisture retention) these production practices may contribute to promotion of background pest suppression by EPN in these systems. Cattle pastures are not tilled on a yearly basis, creating a more stable environment for EPN then a conventionally tilled agricultural crop field. With added stability comes added persistence of EPN, creating an environment that may allow for higher levels of background suppression then a less stable environment. Conventional nematicides and pesticides given to cattle may create a selective environment for EPN, in which H. bacteriophora can out compete, the normally more prolific, S. carpocapsae. Producers can conserve the naturally occurring EPN in their agricultural operations by incorporating production practices that promote a healthy soil environment. With successful background suppression, producers can reduce the amount of chemical pest control needed during a production season.

CHAPTER III

COMPARISON OF EPN PREVALENCE AND DIVERSITY ALONG A PRECIPITATION GRADIENT IN CONVENTIONAL CATTLE PASTURES ACROSS THE STATE OF OKLAHOMA

Introduction

Entomopathogenic Nematodes (EPN) are small, soil dwelling, roundworms that exist as obligate pathogens of arthropods. The only free living life stage of the two families, Heterorhabditidae and Steinernematidae, is the Infective Juvenile (IJ) life stage. The IJ uses chemical cues to guide itself through the soil in search of hosts (Gaugler et al., 1989). Once a favorable host is located the IJ enters the hoemocoel through the mouth, anus, or a wound (damaged area of the cuticle) (Kaya \& Gaugler, 1993). The IJ then proceeds to regurgitate or defecate symbiotic bacteria from their gut into the host's hoemocoel. Each family of EPN is associated with a specific genus of bacteria. The Heterorhabditidae release Photorhabdus spp. into their host, while the Steinernematidae release Xenorhabdus spp. (Adams et al., 2006). Most species of EPN have a unique species of symbiotic bacteria that is found nowhere else in the world, except the gut of that EPN (Kaya \& Gaugler, 1993). Once introduced to the hoemocoel of an insect, the bacteria begin to break down the tissue of the insect, killing the host through septicemia.

While breaking down the host tissue, the bacteria release preservatives, which include: anti-bacterial agents, anti-fungal agents, and ant repellant compounds known as "antdeterrent factors", so that the cadaver can persist in the environment long enough for the EPN to fully utilize all of the available resources (Zhou et al., 2002). The EPN reproduce for 2-3 generations within a host, feeding on a mixture of broken down host tissue and bacterial lawn (Kaya \& Gaugler, 1993). Once reproduction is completed, a new generation of IJ burst through the cuticle of the host cadaver and disperse back into the environment in search of their next host (Kaya \& Gaugler, 1993).

Naturally-occurring EPN provide valuable background suppression in a variety of systems. Susceptible insect hosts, span over 250 species from over 75 families across 11 different orders (Grewal et al., 2001). The existence of persistent populations of EPN within agricultural systems can provide valuable assistance to producers by cutting costs associated with insect pest management. Any insect that comes in contact with the soil at any point during its development is potentially susceptible to EPN infection. Classifying the environments in which EPN can successfully persist may be the first step in conserving natural populations of these valuable background suppression agents in agricultural systems.

EPN can provide valuable suppression of pests in agricultural settings; however they are still susceptible to trophic pressure from predators, pathogens, and antibiosis themselves. EPN are preyed upon by several common microarthropods including mites and
collembolans (Greenwood et al., 2011). Nematophagous fungi (e.g. Hirsutella rhossiliensis) thrive on EPN IJs in a moist soil environment (Kaya \& Koppenhöfer, 1996). Antibiosis occurs when plants release volatiles from their roots into the soil environment, thereby disrupting the host seeking ability of EPN IJs in the immediate vicinity (Kaya \& Koppenhöfer, 1996). The biotic factors listed, with the exception of antibiosis, thrive in similar environments as EPN. While promoting conservation of EPN in the soil environment, a land manager is also promoting predators and pathogens of the EPN, creating trophic pressure that the native EPN must survive.

Soil moisture is a crucial factor to the success of EPN in any environment due to the use of the moisture layer around soil particles for locomotion by the IJ life stage (Kaya \& Gaugler, 1993). Oklahoma has 14 different precipitation zones across the state, ranging from $38 \mathrm{~cm} /$ year in the western most portion of the panhandle, to $145 \mathrm{~cm} /$ year in the most south eastern area of the state. 4 locations across the state were selected to be sampled for EPN prevalence at precipitation zones $38 \mathrm{~cm}-45 \mathrm{~cm} /$ year (Goodwell), $61 \mathrm{~cm}-67 \mathrm{~cm} /$ year (Woodward), $91 \mathrm{~cm}-99 \mathrm{~cm} /$ year (Stillwater), and $107 \mathrm{~cm}-114 \mathrm{~cm} /$ year (Haskell) (Fig. 5).

Cattle pastures that are not over-grazed and managed in sustainable manner serve as ideal sampling locations due to the number of available hosts for EPN. These include a variety of Lepidopteran and Coleopteran larvae associated with the diverse vegetation of the pasture, and the multitude of insects associated with cattle, such as hornflies (Haematobia irritans), cattle grubs (Hypoderma), stable flies (Stomoxys calcitrans), black flies
(Simuliidae), horse and deer flies (Tabanidae), sand flies (Psychodidae), house flies (Musca domestica), and hard ticks (Renn, 1998; de Carvalho et al., 2010). The most economically important pests in Oklahoma beef cattle systems include horn flies, stable flies, house flies and ticks; these have all been shown to be successfully infected by EPN. Steinernema. carpocapsae alone has been shown to infect more than 250 insect species in over 75 families in 11 different orders(Grewal et al., 2001).

Grazing of livestock can have an impact on the soil environment through compaction, which decreases the pore spaces in the soil, thereby limiting the mobility of IJs. Soil porosity is a significant factor for EPN success in an environment due to their limited mobility when searching for hosts. Clay soils have very small pores between particles, making dispersal more difficult for EPN, whereas moist sandy soils, or soil with manure additions, have large pores between particles and are more ideal for EPN dispersal into the environment (Kaya \& Gaugler, 1993). Soil pH is also a significant factor in EPN success. EPN thrive in a soil pH range of $4-8$, however when the pH approaches 10 , survival drops dramatically (Shang-Ping et al., 1990). The conditions necessary for EPN success in an environment, with the exception of porosity due to intermittent compaction, are supported in a pasture land ecosystem.

Soil moisture levels are a major abiotic influence on the success of EPN in a soil environment. Conventionally managed cattle pastures are relatively stable agricultural environments with a continuous draw of soil-dwelling arthropods. These factors make
this system ideal for EPN sampling. Oklahoma has a precipitation gradient running from the western border $(38 \mathrm{~cm})$ to the eastern border of the state $(144 \mathrm{~cm})$. This wide variation in precipitation causes drastic differences in soil moisture levels. The objective of this experiment is to determine the impact of different average annual precipitation levels on the prevalence and diversity of native EPN in conventionally managed cattle pasture in Oklahoma.

Method and Materials

Soil Samples

4 sites were selected at Oklahoma state research stations in Goodwell, Woodward, Stillwater, and Haskell for their even distribution within the precipitation gradient across the state and their consistent land management systems (conventionally treated cattle pasture with similar stocking rates). All of the fields sampled contained with porosity and water retention ability that can promote EPN persistence. There was not a significant different between the soil types at the different locations and fields sampled. 2 cattle pastures were selected at each site for sampling. Each site was sampled on 4 different dates within 48 hours of a minimum of 2 cm of rainfall. Sampling trips were broken down into Eastern days, when Stillwater and Haskell were sampled, and Western days, when Goodwell and Woodward were sampled. This was necessary do to the long distances between the sites making it impossible to sample all in the same day. Stillwater and Haskell were sampled on $1 / 3 / 12,1 / 18 / 12,4 / 1 / 12$ (Haskell only), 4/13/12 (Stillwater
only), and 6/7/12. The dates that Haskell and Stillwater were sampled separately was a result of one site getting rain at a time. Goodwell and Woodward were sampled on $2 / 17 / 12,3 / 18 / 12,3 / 26 / 12,10 / 14 / 12$. Within each cattle pasture samples were taken from underneath fresh (<2 weeks old) dung pats, old (>2 weeks old) dung pats, and away from dung pats (at least 3 m in every direction from a dung pat). During each sampling date 20, $330 \mathrm{~cm}^{3}$ soil samples were collected from each condition (fresh, old, none) from each pasture at each location, making sure to collect soil from the at least the top 15 cm of soil (where most EPN IJ reside). Dung pat age was determined judging moisture content and breakdown of the pat due to environmental exposure. A professor with extensive experience working in cattle pasture taught collectors how to identify the necessary breakdown of dung pats to recognize the 2 week limit by sight and texture (determined by prodding the dung pat with a hand trowel). The soil was sealed in a labeled ziplocking bag and was immediately transported to the lab in coolers to maintain moderate temperatures to avoid sterilization of the soil. A total of 960 samples were taken between June $3^{\text {rd }} 2011$ and June $7^{\text {th }}$ 2012. OSU research stations graze cattle at rates sustainable to their respective soil types, making them an ideal location to sample.

EPN Bioassay

Once the samples are unpacked from their transport coolers in the laboratory they are baited with 6 Galleria mellonella larvae and stored at room temperature in the dark for 7 days, consistent with standard bioassay technique described by Lacey \& Kaya (1997). A

5 cm gap is left unzipped at the top of the bags to allow for gas exchange. G. mellonella larvae are the standard insect and stage for bioassays for EPN due to their low LD-50 for all species of EPN species tested (Morris et al., 1990). The larvae were collected after being in contact with the soil for 7 days. Disposition of each of the 6 G. mellonella larvae was determined. Disposition of the larvae was determined by examining the texture and color of the, normally white, larvae after exposure to the soil. Infected larvae will be soft, but retain their shape, and will be resistant to tearing, due to the preservatives released by the symbiotic bacteria. An infected larva will be a distinctive shade of tan, brown, grey, or red. Dead larvae are normally very soft, don't retain their shape, tear easily, and are very dark and sometimes mottled in color. Prevalence was defined as the total number of infections divided by the total number of G. mellonella larvae used in the bioassay. All infected cadavers were gently washed and placed in a clean 9 cm petri dish on a 9 cm piece of filter paper. The paper was moistened with $1-2 \mathrm{ml}$ of $\mathrm{DI}_{\mathrm{H}_{2} \mathrm{O}}$. The cadavers were checked for IJ emergence daily. Once the EPN began to emerge, the filter paper was removed and placed on the upside-down lid of a 9 cm petri dish, which was then placed into a 14.5 cm petri dish with a thin layer of water in it. During the next $24-72 \mathrm{hrs}$, the EPN dispersed across the filter paper and collected in the water of the 14.5 cm petri dish, the water was then collected. The EPN were preliminarily identified using symptoms of infection exhibited by the infected G.mellonella cadavers according to Field manual of techniques in invertebrate pathology (Lacey, 2008).

Molecular Identification

Single EPN from each infected cadaver were lysed using EPN lysis buffer (unpublished Adams lab protocol). PCRs were then run using the resulting solution as the DNA template. PCR Primers designed to amplify ITS 18 s -28s gene region were used. The resulting PCR product was cleaned with exonuclease and SAP and sent to the CORE facility on the OSU campus for sequencing. The CORE facility used "BigDye ${ }^{\text {TM }}$ "terminated reactions analyzed on an ABI Model 3730 DNA Analyzer to sequence the submitted samples. The resulting sequences were trimmed and cleaned by eye using BioEdit software. The cleaned sequences were identified using the BLASTn program and the NCBI database. Species identification was confirmed based on a low E-value and high Max ident. Statistical Analysis

Prevalence was evaluated as total infections/total G. mellonella used to bait. Prevalence data based on infection symptoms G. mellonella were subjected to statistical analysis using analysis of variance (ANOVA) techniques (PROC MIXED, PC SAS Version 9.2, SAS Institute, 1996). Percents were transformed with the arcsine square root function to correct for heterogeneity of variance. Analysis of variance methods were conducted assuming a split plot model with repeated measures. There were no interactions involving DATE, so the main effects of DATE are reported. The LOC by TRT interaction was significant enough to warrant the inspection of simple effects (effect of LOC given TRT and effect of TRT given LOC).

Results

A total of 6 species of EPN were identified. As the average rainfall per year at each site sampled increased, across a west to east gradient, the prevalence and diversity of EPN increased. Samples taken from under fresh dung pats in Goodwell had an average EPN prevalence of 0.833%, samples from underneath fresh dung pats in Woodward had an average EPN prevalence of 0.833%, samples taken from under fresh dung pats in Stillwater had an average EPN prevalence of 1.56%, samples from underneath fresh dung pats in Haskell had an average EPN prevalence of 1.35%. Samples taken from under old dung pats in Goodwell had an average EPN prevalence of 0.63\%, samples from underneath old dung pats in Woodward had an average EPN prevalence of 0.52%, samples taken from under old dung pats in Stillwater had an average EPN prevalence of 5.83%, samples from underneath old dung pats in Haskell had an average EPN prevalence of 1.97%. Samples taken away dung pats in Goodwell had an average EPN prevalence of 0.10%, samples taken away from dung pats in Woodward had an average EPN prevalence of 0.417%, samples taken away from dung pats in Stillwater had an average EPN prevalence of 1.56%, samples taken away from dung pats in Haskell had an average EPN prevalence of 3.23%. Stillwater had the highest EPN prevalence of any single dung pat type, with 5.83% underneath old dung pats. Goodwell had the lowest EPN prevalence of any single dung pat type, with 0.10% from samples taken away from dung pats. Steinernema feltiae was most prevalent in the Stillwater location underneath old dung pats, with a mean prevalence of 1.80%. Steinernema texanum was most
prevalent at the Haskell location in samples taken away from dung pats, with a mean prevalence of 0.90%. Steinernema carpocapsae was most prevalent at the Stillwater location underneath old dung pats, with a prevalence of 3.90%. Steinernema riobrave was most prevalent at the Stillwater location underneath old dung pats, with a mean prevalence of 0.10%. Steinernema glasseri was most prevalent at the Haskell location underneath old dung pats, with a mean prevalence of 0.20%. Heterorhabditus bacteriophora was most prevalent at the Haskell location in samples taken away from dung pats, with a mean prevalence of 0.20%. The average soil moisture for pastures in Goodwell was 8.42%. Woodward pastures had similar soil moisture with 8.30%. The average soil moisture for Stillwater pastures sampled was 18.23%. Haskell pastures had the highest average soil moisture recorded with 22.36% (Fig 2). All species were confirmed through molecular identification using the 18 s -28s gene region of the genome, any samples that were not successfully identified this way were identified by comparing infection symptoms and location with confirmed samples. All pastures sampled were a variation of Loam texture. Goodwell pastures contained Gruve clay loam, Woodward pastures contained Devol Fine Silty Loam, Stillwater pastures contained Norge Loam, and Haskell pastures contained Dennis silt loam (Table 1).. There was a significant difference in the average prevalence's along the precipitation gradient from west to east from samples taken away from dung pats $(\mathrm{DF}=8.52, \mathrm{~F}$ value $=5.42, \mathrm{p}=0.0465)$. At the Stillwater site there was a significantly higher prevalence of EPN found under old dung pats ($\mathrm{p}=.0083$) versus fresh and no dung pats.

Discussion

EPN prevalence increased from west to east across the state, as the precipitation level increased. It was hypothesized that there would be a steady increase in EPN prevalence as the sites moved up in average rainfall per year, due to the importance of soil moisture to the life cycle of EPN (Kaya \& Gaugler, 1993). The results show a much more abrupt change in prevalence of EPN, indicating a potential threshold of centimeters of rainfall per year needed for the EPN to be successful. The threshold of EPN across OK is supported by EPN being most effective at moderate soil moisture levels (-10 to -100 $\mathrm{kPa})$. They become less successful at infection in high moisture content soils (> -1 kPa) and lower moisture content soils (<-1000 kPa)(Koppenhöfer \& Fuzy, 2007). The south eastern most corner of Oklahoma, where the most rainfall occurs, creates average soil moisture limits below the upper limit of the preferred range for EPN. Stillwater had the highest prevalence of the two most common species of EPN, S. feltiae at 1.80% and S. carpocapsae at 3.90%, while Haskell had the highest prevalence of other two less common species found, S. texanum at 0.90% and H. bacteriophora at 0.20%. Stillwater had the highest abundance of the two other uncommon species, Steinernema riobrave at 0.10% and Steinernema glasseri at 0.20%; both of which were found only underneath old dung pats. This may be attributed a longer life cycle and less drought tolerance by these species, contributing to IJs only being present after an extended period of high soil moisture and available hosts, both of which are provided by the degrading dung pat. Once the threshold of precipitation is reached the prevalence increases and begins to allow less
drought tolerant species of EPN to thrive in the environment. This is not surprising, due to the similar overall prevalence of EPN at the Stillwater and Haskell sites, 2.98% and 2.20% respectively as well as the increase in rainfall when moving east toward Haskell. Due to the increase in diversity at the Haskell site, resulting from the increase in precipitation, S. feltiae and S. carpocapsae have competition from less drought tolerant species (S. texanum and H. bacteriophora) and thus persist at lower overall prevalence in the environment (Koppenhöfer \& Fuzy, 2007). All of the soil types encountered had textures that exibit enough soil porosity and water retention ability to maintain persistent EPN populations.

Once over the soil moisture threshold required by EPN, the increase in soil moisture does not appear to correlate with an increase in EPN prevalence. Further breakdown of the precipitation gradient would give a more accurate idea as to where the actual threshold lies in the precipitation gradient. Other variation in native EPN communities can arise due to varying environmental factors at the different locations. Plant community variation can influence the community composition of EPN hosts in a given environment, there by promoting different EPN species in the local EPN community (De Deyn et al., 2007). Along with variations in EPN host species, differing plant communities can promote different EPN predator and pathogen communities, causing different levels of trophic pressure on the EPN communities at different locations (E. Siemann, 1998). We had the ability to control for land management techniques within out sampling locations, but it was impossible to control for the other variations that are a result of different
precipitation levels in the different locations. With the data collected we can state that the threshold for successful EPN populations is between 61 cm and 99 cm of rainfall a year. Goodwell and Woodward had higher proportions of Steinernematid species, which agrees with the literature that has shown Steinernematid species to be more drought tolerant then Heterorhabditid species (Somvanshi et al., 2008). Samples from Stillwater and Haskell locations had similar EPN prevalence levels, but different levels of diversity. As the average annual rainfall increased the EPN diversity increased as well, resulting in twice as many EPN species found in Haskell (107cm-114cm/year) than in Stillwater ($91 \mathrm{~cm}-$ $99 \mathrm{~cm} /$ year). The results show that there may be an average rainfall per year tolerance level for EPN populations, above a certain level of average annual rainfall the prevalence of EPN did not increase. However, the diversity continued to increase as the average annual rainfall increased, potentially allowing the drought intolerant species a chance for greater success in those environments.

There were a few samples that we were not able to identify genetically due to contaminant nematodes invading the samples. These samples were grouped with samples that shared identical infection symptoms from the same locations that were successfully identified using the $18 \mathrm{~s}-28 \mathrm{~s}$ gene region.

All of the pastures sampled had soil types that promote EPN persistence. Soils with high percentages of clay promote poor EPN survival due to low porosity, although it does have high water retention. Loam promotes successful EPN persistence due to high
porosity and high water retention. Sand compliments clay due to its high porosity, but low water retention. A mixture of sand and clay has sufficient porosity, due to the pores created by the large grains making up sand, and sufficient water retention, due to the ability of clay to successfully retain moisture, creating a soil environment that allows for successful host seeking and persistence of EPN. The soil at all of the sites sampled had less than 40% clay, showing that the soil type at all locations was capable of promoting EPN persistence.

Old dung pats in Stillwater had a significantly higher prevalence of EPN in the soil underneath them than under the fresh dung pats or away from dung pats. This corresponds with the timing of the EPN life cycle. 2-3 reproduction cycles and a new generation of IJ take from 7-21 days to complete, depending on the species of EPN and the temperature during reproduction. Old dung pats were classified as >2 weeks old. The 2 weeks would allow time for EPN infection of hosts attracted to the input of resources and the successful reproduction and emergence of a new generation of IJs. This timing resulted in a higher prevalence under those conditions due to the recent emergence of IJs under old dung pats.

Overall EPN prevalence was higher in the two eastern sites sampled, showing that the threshold of precipitation level nessesary for successful EPN persistence in a conventionally managed cattle pasture lies between Woodward and Stillwater in Oklahoma. Once the average annual precipitation threshold is reached, there is no
significant increase in EPN prevalence as the average annual precipitation level increases, however the diversity of EPN as the average annual precipitation increases also increases. As the annual average precipitation increases above the nessesary levels for successful EPN persistence, more drought intolerant species are capable of successfully persisting at those locations.

Producers that have cattle operations in areas east of the EPN soil moisture threshold in OK may be able to gain successful background pest suppression from EPN in their pastures on a yearly basis. Taking this information into account and monitoring the success of EPN in pastures, may allow for an increase of the economic threshold level of pests of cattle that come into contact with the soil during their life cycles, due to background suppression provided by the persisting EPN. In eastern areas of the state pest control achieved through conservation of indigenous EPN can be invaluable when pest levels are teetering near the economic threshold, reducing the chance that a producer will have to take extra control measures at all, saving both time and money.

CHAPTER IV

SUMMARY

Little is known about native EPN in Oklahoma. Prevalence rates of EPN taxa indicate that EPN are present and diverse throughout the state. Their potential utility in the form of background pest suppression, and potential impact in the form of non-target effects, suggests that more research on native EPN is warranted. This study quantifies the effects of common land use practices in Oklahoma on EPN prevalence, and the effects of a naturally-existing precipitation gradient that runs from east to west across the state. Beef and wheat production constitute the primary agricultural products within Oklahoma. Only one producer in the state is certified in the organic production of both wheat and beef. This producer generously provided access to his fields and pastureland for the purposes of this research.

This study has shown that organic management techniques in agricultural wheat fields can promote EPN prevalence. Organic agriculture prohibits chemical fertilizers and pesticides, resulting in compost and manure being used as soil amendments and more available EPN hosts in the soil (Gruner et al., 2007). Compost and manure increase soil porosity, water retention ability, and organic matter; creating a more suitable and stable
environment for EPN (Jabbour \& Barbercheck, 2008). Organic practices were not shown to have a significant impact on EPN prevalence; however, they do result in different EPN diversity in those environments. Samples collected from cattle pastures had much higher average prevalence than samples collected from agricultural wheat fields. This makes sense due to the higher stability and more regular inputs of resources of the cattle pasture. Higher stability (e.g. no tillage) results in better persistence of EPN in the environment (Millar \& Barbercheck, 2002). With more regular inputs in the cattle pasture environment (e.g. cattle dung pats), and a greater diversity of vegetation, there are areas of the pasture that have very high concentrations of EPN hosts. Concentration of hosts promotes EPN success due to the small distances that IJs are capable of dispersing. Conventionally managed cattle are treated with pesticides, both topically and prophylactically. These additional additives into the environment result in less hosts available for EPN and concentrations of nematicides in the soil underneath cattle dung pats. These addition selective pressures allow more nematicide resistant but less fecund species (e.g H. bacteriophora) of EPN to compete with less nematicide resistant but more fecund species (e.g. S. carpocapsae) in a conventional environment (Grønvold et al., 2004; Römbke et al., 2010). Conservation of native EPN through organic beef and wheat production systems may contribute to background suppression of pest insects. Since EPN are generalists, though, potential exists for non-target effects. The net effect of EPN conservation in these systems requires more research.

Prevalence of EPN was determined in consistently managed pastureland located at each of four Oklahoma State University Research stations that spanned the gradient from east to west. As the average annual precipitation increases from West to East across

Oklahoma, a threshold is crossed (between 63 cm and 99 cm of average annual precipitation) allowing successful EPN persistence in the eastern parts of the state. This agrees with the literature, showing that EPN persist most successfully in intermediate soil moisture (Koppenhöfer \& Fuzy, 2007). If the soil moisture is too low, the EPN cannot disperse and can potentially desiccate. If the soil moisture is too high EPN cannot host seek successfully and can be washed away in run off. Conservation of EPN for background suppression of pests can be most successfully implemented at or above 99 cm of average annual precipitation in Oklahoma.

Further studies should be conducted to elucidate native EPN prevalence in the scenarios described above, and additional scenarios in Oklahoma. The effects of native EPN on both soil-dwelling pest species of insects, and non-target arthropods should be further evaluated as well.

REFERENCES

Adams, B. J., Fodor, A., Koppenhöfer, H. S., Stackebrandt, E., Patricia Stock, S. \& Klein, M. G. (2006a) Biodiversity and systematics of nematode-bacterium entomopathogens. Biological Control, 37, 32-49.

Adams, B. J., Fodor, A., Koppenhöfer, H. S., Stackebrandt, E., Patricia Stock, S. \& Klein, M. G. (2006b) Reprint of "Biodiversity and systematics of nematode-bacterium entomopathogens" [Biol. Control 37 (2006) 32-49]. Biological Control, 38, 4-21.

Ali, S. S., Pervez, R., Hussain, M. A. \& Ahmad, R. (2008) Susceptibility of three lepidopteran pests to five entomopathogenic nematodes and in vivo mass production of these nematodes. Archives of Phytopathology \& Plant Protection, 41, 300-304.

Briar, S., Grewal, P. S., Somasekhar, N., Stinner, D. \& Miller, S. A. (2007) Soil nematode community, organic matter, microbial biomass and nitrogen dynamics in field plots transitioning from conventional to organic management. Applied Soil Ecology, 37, 256-266.

Bulluck Iii, L. R., Brosius, M., Evanylo, G. K. \& Ristaino, J. B. (2002) Organic and synthetic fertility amendments influence soil microbial, physical and chemical properties on organic and conventional farms. Applied Soil Ecology, 19, 147-160.

Campbell, J. F., Lewis, E., Yoder, F. \& Gaugler, R. (1995) Entomopathogenic Nematode (Heterorhabditidae and Steinernematidae) Seasonal Population Dynamics and Impact on Insect Populations in Turfgrass. Biological Control, 5, 598-606.

Campos-Herrera, R., Gómez-Ros, J. M., Escuer, M., Cuadra, L., Barrios, L. \& Gutiérrez, C. (2008) Diversity, occurrence, and life characteristics of natural entomopathogenic nematode populations from La Rioja (Northern Spain) under different agricultural management and their relationships with soil factors. Soil Biology and Biochemistry, 40, 1474-1484.

Corlay, F., Boivin, G. \& Bélair, G. (2007) Efficiency of natural enemies against the swede midge Contarinia nasturtii (Diptera: Cecidomyiidae), a new invasive species in North America.
Biological Control, 43, 195-201.

Cuperus, G., et. al. (2000) Wheat Production and Pest Management in Oklahoma. In (ed. by O. S. University), Stillwater.
de Carvalho, L. B., Furlong, J., de Azevedo Prata, M. C., dos Reis, é. S., Simões, de Paula Batista, E., et al. (2010) Evaluation in vitro of the infection times of engorged females of Rhipicephalus (Boophilus) microplus by the entomopathogenic nematode Steinernema glaseri CCA strain. Avaliação in vitro dos tempos de infecção de fêmeas ingurgitadas de Rhipicephalus (Boophilus) microplus pelo nematoide entomopatogênico Steinernema glaseri estirpe CCA., 40, 939-943.

De Deyn, G. B., Van Ruijven, J., Raaijmakers, C. E., De Ruiter, P. C. \& Van Der Putten, W. H. (2007) Above- and belowground insect herbivores differentially affect soil nematode communities in species-rich plant communities. Oikos, 116, 923-930.

Dennis, P., Young, M. R. \& Gordon, I. J. (1998) Distribution and abundance of small insects and arachnids in relation to structural heterogeneity of grazed, indigenous grasslands. Ecological Entomology, 23, 253-264.

Dolan, K. M., Jones, J. T. \& Burnell, A. (2002) Detection of changes occurring during recovery from the dauer stage in Heterorhabditis bacteriophora. Parasitology, 125, 71-81.

Gaugler, R., Campbell, J. F. \& McGuire, T. R. (1989) Selection for host-finding in Steinernema feltiae. Journal of Invertebrate Pathology, 54, 363-372.

Gaugler, R., Wang, Y. I. \& Campbell, J. F. (1994) Aggressive and evasive behaviors in Popillia japonica (Coleoptera: Scarabaeidae) larvae: Defenses against entomopathogenic nematode attack. Journal of Invertebrate Pathology, 64, 193-199.

Georgis, R., Koppenhöfer, A. M., Lacey, L. A., Bélair, G., Duncan, L. W., Grewal, P. S., et al. (2006) Successes and failures in the use of parasitic nematodes for pest control. Biological Control, 38, 103-123.

Greenwood, C. M., Barbercheck, M. E. \& Brownie, C. (2011) Short term response of soil microinvertebrates to application of entomopathogenic nematode-infected insects in two tillage systems. Pedobiologia, 54, 177-186.

Greenwood, C. M. \& Rebek, E. J. (2009) Detection, conservation, and augmentation of naturallyoccuring beneficial nematodes for natural pest suppression., 11.

Grewal, P., Selvan, S. \& Gaugler, R. (1994) Thermal adaptation of entomopathogenic nematodes: Niche breadth for infection, establishment, and reproduction. Journal of Thermal Biology, 19, 245-253.

Grewal, P., Nardo, E. A. \& Aguillera, M. M. (2001) Entomopathogenic nematodes: potential for exploration and use in South America. Neotropical Entomology, 30, 191-205

Grewal, P., Wang, X. \& Taylor, R. A. J. (2002) Dauer juvenile longevity and stress tolerance in natural populations of entomopathogenic nematodes: is there a relationship? International Journal for Parasitology, 32, 717-725.

Grønvold, J., Svendsen, T. S., Kraglund, H.-O., Bresciani, J. \& Monrad, J. (2004) Effect of the antiparasitic drugs fenbendazole and ivermectin on the soil nematode Pristionchus maupasi. Veterinary Parasitology, 124, 91-99.

Gruner, D. S., Ram, K. \& Strong, D. R. (2007) Soil mediates the interaction of coexisting entomopathogenic nematodes with an insect host. Journal of Invertebrate Pathology, 94, 12-19.

Horn, G. W. (2006) Growing Cattle on Winter Wheat Pasture: Management and Herd Health Considerations. Veterinary Clinics of North America: Food Animal Practice, 22, 335-356.

Jabbour, R. \& Barbercheck, M. E. (2008) Soil and habitat complexity effects on movement of the entomopathogenic nematode Steinernema carpocapsae in maize. Biological Control, 47, 235-243.

Jagdale, G. B., Somasekhar, N., Grewal, P. S. \& Klein, M. G. (2002) Suppression of plantparasitic nematodes by application of live and dead infective juveniles of an entomopathogenic nematode, Steinernema carpocapsae, on boxwood (Buxus spp.). Biological Control, 24, 42-49.

Johnigk, S.-A. \& Ehlers, R.-U. (1999) Endotokia matricida in hermaphrodites of Heterorhabditis spp. and the effect of the food supply. Nematology, 1, 717-726.

Karagoz, M., Gulcu, B., Hazir, S. \& Kaya, H. K. (2009) Laboratory evaluation of Turkish entomopathogenic nematodes for suppression of the chestnut pests, Curculio elephas (Coleoptera: Curculionidae) and Cydia splendana (Lepidoptera: Tortricidae). Biocontrol Science \& Technology, 19, 755-768.

Karungi, J., Ekbom, B. \& Kyamanywa, S. (2006) Effects of organic versus conventional fertilizers on insect pests, natural enemies and yield of Phaseolus vulgaris. Agriculture, Ecosystems \& Environment, 115, 51-55.

Kaya, H. K. \& Gaugler, R. (1993) ENTOMOPATHOGENIC NEMATODES. Annual Review of Entomology, 38, 181-206.

Kaya, H. K. \& Koppenhöfer, A. M. (1996) Effects of Microbial and Other Antagonistic Organism and Competition on Entomopathogenic Nematodes. Biocontrol Science and Technology, 6, 357372.

Koppenhöfer, A. M., Brown, I. M., Gaugler, R., Grewal, P. S., Kaya, H. K. \& Klein, M. G. (2000) Synergism of Entomopathogenic Nematodes and Imidacloprid against White Grubs: Greenhouse and Field Evaluation. Biological Control, 19, 245-251.

Kung, S.-P., Gaugler, R. \& Kaya, H. K. (1990) Soil type and entomopathogenic nematode persistence. Journal of Invertebrate Pathology, 55, 401-406.

Lacey. (2008) Field Manual of Techniques in Invertebrate Pathology: Application and Evaluation of Pathogens for Control of Insects and other Invertebrate Pests. Springer.

Madsen, M., Nielsen, B. O., Holter, P., Pedersen, O. C., Jespersen, J. B., Jensen, K. M. V., et al. (1990) Treating Cattle with Ivermectin: Effects on the Fauna and Decompsition of Dung Pats. Journal of Applied Ecology, 27, 1-15.

Mahran, A., Tenuta, M., Lumactud, R. A. \& Daayf, F. (2009) Response of a soil nematode community to liquid hog manure and its acidification. Applied Soil Ecology, 43, 75-82.

Malan, A. P. \& Manrakhan, A. (2009) Susceptibility of the Mediterranean fruit fly (Ceratitis capitata) and the Natal fruit fly (Ceratitis rosa) to entomopathogenic nematodes. Journal of Invertebrate Pathology, 100, 47-49.

Millar, L. C. \& Barbercheck, M. E. (2002) Effects of tillage practices on entomopathogenic nematodes in a corn agroecosystem. Biological Control, 25, 1-11.

Morris, O. N., Converse, V. \& Harding, J. (1990) Virulence of Entomopathogenic NematodeBacteria Complexes for Larvae of Noctuids, a Geometrid, and a Pyralid. The Canadian Entomologist, 122, 309-319.

Mrácek, Z., Becvár, S., Kindlmann, P. \& Jersáková, J. (2005) Habitat preference for entomopathogenic nematodes, their insect hosts and new faunistic records for the Czech Republic. Biological Control, 34, 27-37.

Puza, V. \& Mrácek, Z. (2005) Seasonal dynamics of entomopathogenic nematodes of the genera Steinernema and Heterorhabditis as a response to abiotic factors and abundance of insect hosts. Journal of Invertebrate Pathology, 89, 116-122.

Renn. (1998) The efficacy of entomopathogenic nematodes for controlling housefly infestations of intensive pig units. Medical \& Veterinary Entomology, 12, 46-51.

Römbke, J., Coors, A., Fernández, Á. A., Förster, B., Fernández, C., Jensen, J., et al. (2010) Effects of the parasiticide ivermectin on the structure and function of dung and soil invertebrate communities in the field (Madrid, Spain). Applied Soil Ecology, 45, 284-292.

Sánchez-Moreno, S., Nicola, N. L., Ferris, H. \& Zalom, F. G. (2009) Effects of agricultural management on nematode-mite assemblages: Soil food web indices as predictors of mite community composition. Applied Soil Ecology, 41, 107-117.

Secundino, N. F. C., Araújo, M. S. S., Oliveira, G. H. B., Massara, C. L., Carvalho, O. S., Lanfredi, R. M., et al. (2002) Preliminary description of a new entomoparasitic nematode infecting Lutzomyia longipalpis sand fly, the vector of visceral leishmaniasis in the New World. Journal of Invertebrate Pathology, 80, 35-40.

Seth, R. K., Barik, T. K. \& Chauhan, S. (2009) Interaction of entomopathogenic nematodes, Steinernema glaseri (Rhabditida: Steinernematidae), cultured in irradiated hosts, with 'F1 sterility': Towards management of a tropical pest, Spodoptera litura (Fabr.) (Lepidoptera: Noctuidae). Biocontrol Science \& Technology, 19, 139-155.

Shang-Ping, K., Randy, G. \& Kaya, H. K. (1990) Influence of Soil pH and Oxygen on Persistence of Steinernema spp. The Journal of Nematology, 22, 440-445.

Shapiro-Ilan, D. I., Gouge, D. H., Piggott, S. J. \& Fife, J. P. (2006) Application technology and environmental considerations for use of entomopathogenic nematodes in biological control. Biological Control, 38, 124-133.
E. Siemann, D. T., J. Haarstad, and M. Ritchie. (1998) Experimental Tests of the Dependence of Arthropod Diversity on Plant Diversity. The American Naturalist, 152, 738-750.

Somvanshi, V. S., Koltai, H. \& Glazer, I. (2008) Expression of different desiccation-tolerance related genes in various species of entomopathogenic nematodes. Molecular and Biochemical Parasitology, 158, 65-71.

Stuart, R. J., Barbercheck, M. E., Grewal, P. S., Taylor, R. A. J. \& Hoy, C. W. (2006) Population biology of entomopathogenic nematodes: Concepts, issues, and models. Biological Control, 38, 80-102.

Svensson, C., Hessle, A. \& Höglund, J. (2000) Parasite control methods in organic and conventional dairy herds in Sweden. Livestock Production Science, 66, 57-69.

Turner, J. C., Hattey, J. A., Warren, J. G. \& Penn, C. J. (2010) Electrical Conductivity and Sodium Adsorption Ratio Changes Following Annual Applications of Animal Manure Amendments. Communications in Soil Science and Plant Analysis, 41, 1043-1060.

Yeates, G. W., Skipp, R. A., Chen, L. Y., Waghorn, T. S. \& Potter, J. F. (2007) Temporal and spatial aspects of the influence on soil nematodes of depositing artificial pats of sheep faeces containing a range of parasite management agents. Applied Soil Ecology, 37, 106-117.

Zhou, X., Kaya, H. K., Heungens, K. \& Goodrich-Blair, H. (2002) Response of Ants to a Deterrent Factor(s) Produced by the Symbiotic Bacteria of Entomopathogenic Nematodes. Appl. Environ. Microbiol., 68, 6202-620.

APPPENDICES

Figure 1.

EPN prevalence (based on bioassay infection rate), diversity ($\mathrm{Hb}=$ Heterorhabditis bacteriophora; $\mathrm{Sc}=$ Steinernema carpocapsae; $\mathrm{Sf}=$ S. feltiae, $\mathrm{Sg}=$ S. glaseri, $\mathrm{Sr}=\mathrm{S}$. riobrave, $\mathrm{Sd}=S$. diapresi) of EPN , and soil moisture in organic vs. conventional wheat fields in Fairview, OK (data is compiled from 3 sampling dates). $\mathrm{DF}=3.06, \mathrm{~F}$-value $=$ 13.33, $\mathrm{p}=0.034$.

Figure 2.

EPN prevalence (based on bioassay infection rate) and diversity ($\mathrm{Hb}=$ Heterorhabditis bacteriophora; Sc = Steinernema carpocapsae; $\mathrm{Sf}=$ S. feltiae, $\mathrm{Sg}=\mathrm{S}$. glaseri, $\mathrm{Sr}=\mathrm{S}$. riobrave, $\mathrm{Sd}=S$. diapresi) of EPN in organic vs. conventional pastures in Fairview, OK (data is compiled from 3 sampling dates).

Figure 3.

EPN Prevalence (based on bioassay infection rate) and diversity ($\mathrm{Hb}=$ Heterorhabditis bacteriophora; $\mathrm{Sc}=$ Steinernema carpocapsae; $\mathrm{Sf}=$ S. feltiae, $\mathrm{Sg}=$ S. glaseri, $\mathrm{Sr}=\mathrm{S}$. riobrave, $\mathrm{Sd}=S$. diapresi) of EPN in wheat vs. cattle pastures in Fairview, OK (data is compiled from 3 sampling dates).

Figure 4.

A map showing the precipitation gradient across the state of Oklahoma. The stars are our sampling locations and are labeled with the towns that the sampled cattle pastures were located in. These locations were chosen due to the distinctly different precipitation zones they are located in and their relatively even dispersal throughout the precipitation gradient across the state.

Figure 5.a.

EPN prevalence (based on bioassay infection rate), diversity ($\mathrm{Hb}=$ Heterohhabditus bacteriophora, $\mathrm{Sc}=$ Steinernema feltiae, $\mathrm{Sr}=$ Steinernema riobrave, $\mathrm{Sg}=$ Steinernema glasseri, $\mathrm{St}=$ Steinernema texanum, and $\mathrm{Sf}=$ Steinernema feltiae), and average soil moisture (1 measurement/pasture/sampling date) across Oklahoma ecoregions in conventional cattle pasture systems. a. Samples taken from beneath fresh (<2 weeks) dung pats b. Samples taken from beneath old (> 2 weeks) dung pats c. Samples taken away from any dung pats.

Table 1.

Field type	Land management	\% Soil Moisture	Avg annual Precip	Soil classification	\% Clay	$\%$ Sand	\% Silt
Wheat	Organic	12.15	$68-76$	Sandy Loam	12.5	55.0	32.5
Wheat	Conventional	13.90	$68-76$	Sandy Loam	10.0	58.8	31.3
Pasture	Organic	10.86	$68-76$	Sandy Loam	7.5	65.0	27.5
Pasture	Conventional	17.04	$68-76$	Loam	16.3	40.0	43.8

Descriptions of the physical soil characteristics and annual precipitation levels at Organic vs Conventional wheat fields and organic vs. conventional pastures over 3 sampling dates (put the dates here)in Fairview, OK.

Table 2

Location	\% Soil Moisture	Avg annual Precip $(\mathrm{cm} / \mathrm{yr})$	Soil classification	Particle Size
Goodwell	8.42	$38-45$	Gruver Clay Loam	$35-45 \%$ silicate clay

Woodward	8.30	$61-68$	Devol Fine Silty Loam	Loamy w/ >2\% gravel
Stillwater	18.23	$91-99$	Norge Loam	Fine granular w/ many fine roots
Haskell	22.36	$106-114$	Dennis Silt Loam	$5-25 \%$ sand, $37-60 \%$ clay

Descriptions of the physical soil characteristics and annual precipitation levels at each of the conventional cattle pastures sampled for the state wide precipitation gradient survey across the state of Oklahoma.

Table 3.

EPN Species	Location	Date	Cadaver Symptoms	GenBank Match Seq \#	Total score	E- Value	Max ident
H. bacteriophora	Bessie	$5 / 30$	Dark Brown/Red	$\underline{\text { HM140691.1 }}$	996	0.0	86%
H. bacteriophora	Bessie	$5 / 30$	Dark Brown/Red	$\underline{\text { FJ346826.1 }}$	783	0.0	80%
H. bacteriophora	Bessie	$5 / 30$	Dark Brown/Red	$\underline{\text { FJ346826.1 }}$	1557	0.0	99%
H. bacteriophora	Bessie	$5 / 30$	Dark Brown/Red	$\underline{\text { FJ346826.1 }}$	1288	0.0	94%
S. carpocapsae	Bessie	$5 / 30$	Light Brown/Tan	$\underline{\text { GQ421605.1 }}$	1590	0.0	100%
H. bacteriophora	Bessie	$5 / 30$	Dark Brown/Red	$\underline{\text { FJ346826.1 }}$	1436	0.0	99%
H. bacteriophora	Bessie	$5 / 30$	Dark Brown/Red	$\underline{\text { FJ346826.1 }}$	1067	0.0	88%
H. bacteriophora	Bessie	$5 / 30$	Dark Brown/Red	$\underline{\text { FJ346826.1 }}$	1103	0.0	94%
H. bacteriophora	Bessie	$5 / 30$	Dark Brown/Red	$\underline{\text { FJ346826.1 }}$	1523	0.0	99%
H. bacteriophora	Bessie	$5 / 30$	Dark Brown/Red	$\underline{\text { HM140691.1 }}$	1067	0.0	93%
H. bacteriophora	Bessie	$5 / 30$	Dark Brown/Red	$\underline{\text { HQ225866.1 }}$	771	0.0	90%
S. glaseri	Bessie	$5 / 30$	Dark Brown/Black	$\underline{\text { AF122015.1 }}$	646	$1 \mathrm{e}-179$	79%
H. bacteriophora	Bessie	$5 / 30$	Dark Brown/Red	$\underline{\text { FJ346826.1 }}$	1593	0.0	100%
H. bacteriophora	Bessie	$5 / 30$	Dark Brown/Red	FJ346826.1	1590	0.0	99%
S. carpocapsae	Bessie	$5 / 30$	Light Brown/Tan	$\underline{\text { GQ421605.1 }}$	1438	0.0	99%
H. bacteriophora	Bessie	$5 / 30$	Dark Brown/Red	$\underline{\text { JX403718.1 }}$	1299	0.0	100%
H. bacteriophora	Bessie	$5 / 30$	Dark Brown/Red	$\underline{\text { JX403718.1 }}$	1297	0.0	100%

Samples from a exploratory sampling trip to Bessie, Oklahoma. All EPN species were confirmed using infection symptoms, GenBank match, and confidence information organic vs conventional comparison. All samples that were not successfully confirmed using molecular techniques were matched with samples that were using infection symptoms and location.

Table 4.

EPN Species	Location	Date	Cadaver Symptoms	GenBank Match Seq \#	Total score	E- Value	Max ident
S. diaprepesi	Fairview	$9 / 3$	Dark brown/Brown	$\underline{\text { GU173996.1 }}$	1267	0.0	99%
S. riobrave	Fairview	$10 / 17$	Dark Brown/Black	$\underline{\underline{\text { DQ8356613.1 }}}$	1180	0.0	97%
H. bacteriophora	Fairview	$10 / 17$	Dark Brown/Red	$\underline{\text { JX164230.1 }}$	1303	0.0	100%
S. diaprepesi	Fairview	$10 / 17$	Dark brown/Brown	$\underline{\text { GU173996.1 }}$	1267	0.0	99%
S. riobrave	Fairview	$10 / 17$	Dark Brown/Black	$\underline{\text { DQ835613.1 }}$	1355	0.0	98%
S. diaprepesi	Fairview	$11 / 18$	Light Brown/Tan	$\underline{\text { GU173996.1 }}$	1555	0.0	99%
S. glaseri	Fairview	$11 / 18$	Dark Brown/Black	$\underline{\text { AF122015.1 }}$	901	0.0	88%
S. diaprepesi	Fairview	$11 / 18$	Light Brown/Tan	$\underline{\text { GU173996.1 }}$	1429	0.0	97%
S. glaseri	Fairview	$11 / 18$	Dark Brown/Black	$\underline{\text { AF122015.1 }}$	926	0.0	87%
S. diaprepesi	Fairview	$11 / 18$	Light Brown/Tan	$\underline{\text { GU173996.1 }}$	1570	0.0	99%
S. diaprepesi	Fairview	$11 / 18$	Light Brown/Tan	$\underline{\text { GU173995.1 }}$	1418	0.0	99%
S. diaprepesi	Fairview	$11 / 18$	Dark brown/Brown	$\underline{\text { GU173995.1 }}$	830	0.0	98%

All EPN species were confirmed using infection symptoms, GenBank match, and confidence information for the organic vs conventional comparison. All samples that were not successfully confirmed using molecular techniques were matched with samples that were using infection symptoms and location.

Table 5.

EPN Species	Location	Date	Cadaver Symptoms	GenBank Match Seq \#	Total score	EValue	Max ident
S. feltiae	Stillwater	1/18	Dark Brown/Black	*	*	*	*
S. texanum	Haskell	1/18	Light Brown/Tan	*	*	*	*
S. feltiae	Stillwater	4/13	Dark Brown/Black	*	*	*	*
S. feltiae	Stillwater	4/13	Dark Brown/Black	*	*	*	*
S. feltiae	Stillwater	4/13	Dark Brown/Black	*	*	*	*
S. feltiae	Stillwater	4/13	Dark Brown/Black	*	*	*	*
S. feltiae	Stillwater	4/13	Dark Brown/Black	*	*	*	*
S. feltiae	Stillwater	4/13	Dark Brown/Black	*	*	*	*
S. texanum	Stillwater	4/13	Light Brown/Tan	*	*	*	*
S. riobrave	Stillwater	6/3	Light Brown/Tan	DQ835613.1	1404	0.0	96\%
S. glaseri	Haskell	6/7	Dark Brown/Black	GU173998.1	1117	0.0	95\%
S. glaseri	Haskell	6/7	Dark Brown/Black	GU173998.1	1018	0.0	95\%

S. glaseri	Haskell	$6 / 7$	Dark Brown/Black	AF122015.1	1231	0.0	96%
S. feltiae	Stillwater	$6 / 7$	Dark Brown/Black	JN886631.1	1150	0.0	99%
S. feltiae	Stillwater	$6 / 7$	Dark Brown/Black	JN886631.1	906	0.0	92%
S. feltiae	Stillwater	$6 / 7$	Dark Brown/Black	JF728857.1	1294	0.0	99%
S. feltiae	Stillwater	$6 / 7$	Dark Brown/Black	JF728857.1	1079	0.0	93%

Table 5. Samples and Genbank matches from conventional cattle pastures along a state wide precipitation gradient. All EPN species were confirmed using infection symptoms, GenBank match, and confidence information organic vs conventional comparison. All samples that were not successfully confirmed using molecular techniques were matched with samples that were using infection symptoms and location. * Samples were identified using Geneious to align and edit sequences in Dr. Byron Adams lab at BYU from 5/215/24, Genbank match data was not recorded.

EPN lifecycle

Documented naturally occurring EPN infections

Target pests for entomopathogenic nematodes (from: Lacey, L.A. and H.K. Kaya, eds. 2007. Field Manual of Techniques in Invertebrate Pathology)

Pest insect	Common name	life-stage 2	Commodity	Nematode sp. ${ }^{3}$
COLEOPTERA				
Curculionidae	Billbugs	L	turf berries, citrus, forest seedlings, hops, mint, ornamentals, sweet	Sc, Hb
	Root Weevils	L	potato, sugar beets $, \mathrm{Sk}, \mathrm{Hb}, \mathrm{Hi}$, 	

Chrysomelidae	Flea beetles	L	mint, potato, sweet potato, sugar beets	Sc
Scarabeidae	Rootworms	L	corn, peanuts, vegetables	Sc, Sr
	White grubs	L	berries, field crops, ornamentals, turf	$\mathrm{Hb}, \mathrm{Sg}, \mathrm{Hm}$
DIPTERA				
Agromyzidae	Leaf miners	L	ornamentals, vegetables	Sc
Ephydridae	Shore flies	L	ornamentals, vegetables	Sf
Sciaridae	Fungus gnats	L	ornamentals, vegetables, mushrooms	Sf
Tipulidae	Crane flies	L	turf, ornamentals	Sc, Hm
Muscidae	Filfth flies	A	animal rearing facilities	Sf, Hb
LEPIDOPTERA				
Noctuidae	Cutworms	L/P	corn, cotton, peanuts, turf, vegetables	Sc
	Armyworms	L	corn, cotton, peanuts, turf, vegetables	Sc
Pterophoridae	Plume moths	L	artichoke	Sc
Pyralidae	Webworms	L	cranberries, ornamentals, turf	Sc
Sessiidae	Crown borers	L	berries	Sc
	Stem borers	L	cucurbits, ornamentals, shrubs, fruit trees	Sc
Cossiidae	Carpenter worms	L	ornamentals, shrubs	Sc
	Leopard moth	L	apple, pear	Sc
Carposinidae	Peach borer moth	L	apple	Sc
ORTHOPTERA				
Gryllotalpidae	Mole crickets	N,A	turf, vegetables	$\mathrm{Sc}, \mathrm{Ss}, \mathrm{Sr}$
BLATTODEA				
Blattellidae	German cockroach	N,A	apartments, structures	Sc
SIPHONAPTERA				
Pulicidae	cat fleas	L/P	pet/vet	Sc
NEMATODA				
Plant-parsitic nematodes	same	L/P	turf	Sc

${ }^{2}$ L= larva; $P=$ pupa; $N=$ nymph; $A=$ adult
${ }^{3} \mathrm{Sc}=$ Steinernema carpocapsae; $\mathrm{Sf}=\mathrm{S}$. feltiae; $\mathrm{Sk}=\mathrm{S}$. kraussei; $\mathrm{Sr}=\mathrm{S}$. riobrave; $\mathrm{Ss}=\mathrm{S}$. scapterisci; $\mathrm{Hb}=$ Heterorhabditis bacteriophora; $\mathrm{Hi}=\mathrm{H}$. indica; $\mathrm{Hm}=\mathrm{H}$. megidis

Characteristics of common EPN and infected host cadavers, taken from Lacey and Kaya (2007).

Nematode species	ij length $(\mu \mathrm{m})$	host cadaver color
S. carpocapsae	$558(468-650)$	Beige
S. riobrave	$622(561-701)$	Beige
S. feltiae	$849(736-950)$	Tan/walnut brown
	$1130(864-$	
S. glaseri	$1448)$	Grayish- dark brown
S. kraussei	$951(797-1102)$	Tan/walnut brown
H. bacteriophora	$588(512-670)$	Brick red to dark purple
H. indica	$528(479-573)$	Dark red
H. megidis	$768(736-800)$	Orange brown
H. zealandica	$685(570-740)$	Pale mint green

SAS code used for statistical analysis.
Pasture

```
data pasture;
input dates management cowpatty rep response;
run;
proc mixed;class dates management cowpatty rep;
model response = management cowpatty management*cowpatty dates
dates*management dates*cowpatty dates*management*cowpatty;
random management*cowpatty*rep;
lsmeans management cowpatty/diff;
lsmeans management*cowpatty/diff slice = (management cowpatty);
lsmeans dates dates*management/diff slice = (dates management);
lsmeans dates*cowpatty/diff slice = (dates cowpatty);
lsmeans dates*management*cowpatty/diff slice = (dates management
cowpatty) ;
run;
TITLE 'TEST FOR NORMALITY';
PROC UNIVARIATE DATA=pasture NORMALTEST;
CLASS dates management cowpatty rep;
VAR management;
RUN;
Wheat
```

data wheat;

```
input date management transect subsample rep response;
d=date;
run;
proc mixed;class date management transect subsample;
model response = management date subsample
date*management/ddfm=satterth;
random management*transect management*transect*subsample;
REPEATED/SUBJECT=management*transect*subsample TYPE=UN;
run;
proc mixed;class date management transect subsample;
model response = management date subsample
date*management/ddfm=satterth;
random management*transect management*transect*subsample;
```

```
REPEATED/SUBJECT=management*transect*subsample TYPE=cs;
run;
proc mixed;class date management transect subsample;
model response = management date subsample
date*management/ddfm=satterth;
random management*transect management*transect*subsample;
REPEATED/SUBJECT=management*transect*subsample TYPE=sp(sph);
run;
*pick one;
proc mixed;class date management transect subsample;
model response = management d d*d d*d*d subsample
date*management/htype= 1 ddfm=satterth;
random management*transect management*transect*subsample;
REPEATED/SUBJECT=management*transect*subsample TYPE=UN;
lsmeans management date*management/diff slice = (date management);
run;
```


Precipitation gradient

Wheat SAS Output

The SAS System 11:50 Friday, January

13, 20121
The Mixed Procedure

Model Information

Dimensions

Covariance Parameters	3
Columns in X	12
Columns in Z	8
Subjects	1
Max Obs Per Subject	31
Number of Observations	
Oer of Observations Read	

Pasture SAS Output

The SAS System
13:59 Monday, October 31, 20112
The Mixed Procedure

Model Information

Data set
Dependent Variable
Covariance Structure
Estimation Method
Residual Variance Method Fixed Effects SE Method Degrees of Freedom Method

WORK. PASTURE
response
Variance Components
REML
Profile
Model-Based
Containment

Class Level Information
Class Levels Values
dates 3 17-Oct 18 -Nov 3-Sep
management 2 C O
cowpatty 3 A F O
rep $\quad 6 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6$

Dimensions

Covariance Parameters	2
Columns in X	48
Columns in Z	36
Subjects	1
Max Obs Per Subject	101

Number of Observations

Number of Observations Read	101
Number of Observations Used	101
Number of Observations Not Used	0

Iteration History

management*cowpatty		0	0	0.6991	0.2269	30	3.08	
0.0044								
dates	17-Oct			0.4722	0.1464	53	3.22	
0.0022								
dates	18-Nov			0.5278	0.1464	53	3.60	
0.0007								
dates	3-Sep			0.3100	0.1637	53	1.89	
0.0638								
dates*management	17-Oct	C		0.7222	0.2071	53	3.49	
0.0010								
dates*management		17-Oct	0		0.2222	0.2071	53	1.07
0.2881								
dates*management	18-Nov	C		0.05556	0.2071	53	0.27	
0.7896								

31, 20114
The SAS System 13:59 Monday, October

The Mixed Procedure

Least Squares Means

Effect $\operatorname{Pr}>\|t\|$	dates	management	cowpatty	Estimate	Standard Error	DF	t Value
$\begin{aligned} & \text { dates*management } \\ & <.0001 \end{aligned}$	18-Nov	0		1.0000	0.2071	53	4.83
$\begin{aligned} & \text { dates*management } \\ & 0.0448 \end{aligned}$	3-Sep	C		0.4663	0.2269	53	2.06
$\begin{aligned} & \text { dates*management } \\ & 0.5179 \end{aligned}$	3-Sep	0		0.1537	0.2361	53	0.65
$\begin{aligned} & \text { dates*cowpatty } \\ & 0.7438 \end{aligned}$	17-Oct		A	0.08333	0.2537	53	0.33
$\begin{aligned} & \text { dates*cowpatty } \\ & 0.0007 \end{aligned}$	17-Oct		F	0.9167	0.2537	53	3.61
dates*cowpatty	17-Oct		0	0.4167	0.2537	53	1.64
$\begin{aligned} & 0.1064 \\ & \quad \text { dates*cowpatty } \end{aligned}$	18-Nov		A	0.5833	0.2537	53	2.30
$\begin{aligned} & 0.0254 \\ & \quad \text { dates*cowpatty } \end{aligned}$	18-Nov		F	0.1667	0.2537	53	0.66
$\begin{aligned} & 0.5140 \\ & \text { dates*cowpatty } \end{aligned}$	18-Nov		0	0.8333	0.2537	53	3.29
$\begin{aligned} & 0.0018 \\ & \text { dates* cowpatty } \end{aligned}$	3-Sep		A	0.001107	0.2779	53	0.00
$\begin{aligned} & 0.9968 \\ & \text { dates* cowpatty } \end{aligned}$	3-Sep		F	0.5964	0.2779	53	2.15
$\begin{aligned} & 0.0364 \\ & \text { dates* cowpatty } \end{aligned}$	3-Sep		0	0.3325	0.2947	53	1.13
$\begin{aligned} & 0.2643 \\ & \text { dates*manage*cowpatt } \end{aligned}$	17-Oct	C	A	0.1667	0.3587	53	0.46
$\begin{aligned} & 0.6441 \\ & \text { dates*manage*cowpatt } \end{aligned}$	17-Oct	C	F	1.3333	0.3587	53	3.72
```0.0005 dates*manage*cowpatt 0.0687```	17-Oct	C	0	0.6667	0.3587	53	1.86
$\begin{aligned} & \text { dates*manage*cowpatt } \\ & 1.0000 \end{aligned}$	17-Oct	0	A	$1.11 \mathrm{E}-16$	0.3587	53	0.00
dates*manage*cowpatt $0.1692$	17-Oct	0	F	0.5000	0.3587	53	1.39
$\begin{aligned} & \text { dates*manage*cowpatt } \\ & 0.6441 \end{aligned}$	17-Oct	0	0	0.1667	0.3587	53	0.46
$\begin{aligned} & \text { dates*manage*cowpatt } \\ & 0.6441 \end{aligned}$	18-Nov	C	A	0.1667	0.3587	53	0.46
$\begin{aligned} & \text { dates*manage*cowpatt } \\ & 1.0000 \end{aligned}$	18-Nov	C	F	-305E-18	0.3587	53	-0.00
dates*manage*cowpatt	18-Nov	C	0	-833E-18	0.3587	53	-0.00
dates*manage*cowpatt	18-Nov	0	A	1.0000	0.3587	53	2.79


dates*manage*cowpatt	18-Nov	0	F	0.3333	0.3587	53	0.93
0.3570							
dates*manage*cowpatt	18-Nov	0	0	1.6667	0.3587	53	4.65
<. 0001							
dates*manage*cowpatt	3-Sep	C	A	0.002215	0.3929	53	0.01
0.9955							
dates*manage*cowpatt	3-Sep	C	F	0.9956	0.3929	53	2.53
0.0143							
dates*manage*cowpatt	3-Sep	C	0	0.4011	0.3929	53	1.02
0.3120							
dates*manage*cowpatt	3-Sep	0	A	-777E-18	0.3929	53	-0.00
1.0000							
dates*manage*cowpatt	3-Sep	0	F	0.1972	0.3929	53	0.50
0.6178							
dates*manage*cowpatt	3-Sep	0	0	0.2638	0.4393	53	0.60
0.5507							

Differences of Least Squares Means

Standard   Effect   Estimate Error	dates	management	cowpatty	_dates	_management		
management		C			0		-
0.043950 .1787							
cowpatty			A			F	-
0.33730 .2173							
cowpatty			A			0	-
0.30490 .2197							
cowpatty			F			0	
0.032420 .2197							
management*cowpatty		C	A		C	F	-
0.66450 .3072							
management* cowpatty		C	A		C	0	-
0.24410 .3072							
management* cowpatty		C	A		0	A	-
0.22150 .3072							
management*cowpatty		C	A		0	F	-
0.23170 .3072							
management*cowpatty		C	A		0	0	-
0.58720 .3141							
management*cowpatty		C	F		C	0	
0.42040 .3072							
management*cowpatty		C	F		0	A	
$0.4430 \quad 0.3072$							
management*cowpatty		C	F		O	F	
$0.4328 \quad 0.3072$							
management* cowpatty		C	F		0	0	
0.077240 .3141							
management*cowpatty		C	0		0	A	
0.022590 .3072							
management* cowpatty		C	0		0	F	
0.01240 0.3072							
management*cowpatty		C	0		0	0	-
$0.3431 \quad 0.3141$							
management* cowpatty		0	A		0	F	-
0.010190 .3072							
management*cowpatty		0	A		0	0	-
$0.3657 \quad 0.3141$							
management*cowpatty		0	F		0	O	-
0.35550 .3141							
dates	17-Oct			$18-\mathrm{Nov}$			-
0.055560 .2054							
dates	17-Oct			3-Sep			
0.16220 .2180							
dates	$18-\mathrm{Nov}$			3-Sep			
$0.2178 \quad 0.2180$							
dates*management	17-Oct	C		17-Oct	0		
0.50000 .2929							


dates*management	17-Oct	C		18-Nov	C	
$0.6667 \quad 0.2904$						
dates*management	17-Oct	C		18-Nov	0	
0.27780 .2929						
dates*management	17-Oct	C		3-Sep	C	
$0.2559 \quad 0.3048$						
dates*management	17-Oct	C		3-Sep	0	
0.56850 .3141						
dates*management	17-Oct	0		18-Nov	C	
$0.1667 \quad 0.2929$						
dates*management	17-Oct	0		18-Nov	0	
0.77780 .2904						
dates*management	17-Oct	0		3-Sep	C	
0.24410 .3072						
dates*management	17-Oct	0		3-Sep	0	
0.068530 .3118						
dates*management	18-Nov	C		18-Nov	0	
0.94440 .2929						
dates*management	18-Nov	C		3-Sep	C	
$0.4107 \quad 0.3048$						
dates*management	18-Nov	C		3-Sep	0	
0.098140 .3141						
dates*management 18-Nov O 3-Sep C						
$0.5337 \quad 0.3072$						
dates*management	18-Nov	0		3-Sep	0	
0.8463 0.3118						
dates*management	3-Sep	C		3-Sep	0	
$0.3126 \quad 0.3274$						
dates*cowpatty	17-Oct		A	17-Oct		F
$0.8333 \quad 0.3587$						
dates*cowpatty	17-Oct		A	17-Oct		0
$0.3333 \quad 0.3587$						
dates*cowpatty	17-Oct		A	18-Nov		A
$0.5000 \quad 0.3557$dates*cowpatty						
	17-Oct		A	18-Nov		F
$0.08333 \quad 0.3587$						
dates*cowpatty	17-Oct		A	18-Nov		0
$0.7500 \quad 0.3587$						
dates*cowpatty	17-Oct		A	3-Sep		A
0.082230 .3733						
dates*cowpatty	17-Oct		A	3-Sep		F
$0.5131 \quad 0.3762$						
dates*cowpatty	17-Oct		A	3-Sep		0
0.24910 .3888						
dates*cowpatty	17-Oct		F	17-Oct		0
$0.5000 \quad 0.3587$						
dates*cowpatty	17-Oct		F	18-Nov		A
$0.3333 \quad 0.3587$						
dates*cowpatty	17-Oct		F	18-Nov		F
$0.7500 \quad 0.3557$						
dates*cowpatty	17-Oct		F	18-Nov		0
$0.08333 \quad 0.3587$						
dates*cowpatty	17-Oct		F	3-Sep		A
0.91560 .3762dates*cowpatty						
	17-Oct		F	3-Sep		F
0.32030 .3733dates*cowpatty						
	17-Oct		F	3-Sep		0
$0.5842 \quad 0.3888$						
dates*cowpatty	17-Oct		0	18-Nov		A
$0.1667 \quad 0.3587$dates*cowpatty						
	17-Oct		0	18-Nov		F
$0.2500 \quad 0.3587$						
dates*cowpatty	17-Oct		0	18-Nov		0
$0.4167 \quad 0.3557$						
dates*cowpatty	17-Oct		0	3-Sep		A
0.41560 .3762						
dates*cowpatty	17-Oct		0	3-Sep		F
$0.1797 \quad 0.3762$						
dates*cowpatty	17-Oct		0	3-Sep		0
0.084190 .3860						


dates*cowpatty	18-Nov		A	18-Nov		F
$0.4167 \quad 0.3587$						
dates*cowpatty	18-Nov		A	18-Nov		0
$0.2500 \quad 0.3587$						
dates*cowpatty	18-Nov		A	3-Sep		A
0.58220 .3733						
dates*cowpatty	18-Nov		A	3-Sep		F
0.013070 .3762						
dates*cowpatty	18-Nov		A	3-Sep		0
0.25090 .3888						
dates*cowpatty	18-Nov		F	18-Nov		0
$0.6667 \quad 0.3587$						
dates*cowpatty	18-Nov		F	3-Sep		A
0.16560 .3762						
dates*cowpatty	18-Nov		F	3-Sep		F
0.42970 .3733						
dates*cowpatty	18-Nov		F	3-Sep		0
$0.1658 \quad 0.3888$						
dates*cowpatty	18-Nov		0	3-Sep		A
0.83220 .3762						
dates*cowpatty	18-Nov		0	3-Sep		F
$0.2369 \quad 0.3762$						
dates*cowpatty	18-Nov		0	3-Sep		0
0.50090 .3860						
dates*cowpatty	3-Sep		A	3-Sep		F
0.59530 .3929						
dates*cowpatty	3-Sep		A	3-Sep		0
0.33140 .4050						
dates*cowpatty	3-Sep		F	3-Sep		0
$0.2639 \quad 0.4050$						
dates*manage*cowpatt	17-Oct	C	A	17-Oct	C	F
$1.1667 \quad 0.5073$						
dates*manage*cowpatt	17-Oct	C	A	17-Oct	C	0
0.50000 .5073						
dates*manage*cowpatt	17-Oct	C	A	17-Oct	0	A
$0.1667 \quad 0.5073$						
dates*manage*cowpatt	17-Oct	C	A	17-Oct	0	F
0.3333 0.5073						
dates*manage*cowpatt	17-Oct	C	A	17-Oct	0	0
9.99E-16 0.5073						
dates*manage*cowpatt	17-Oct	C	A	18-Nov	C	A
$4.44 \mathrm{E}-160.5030$						
dates*manage*cowpatt	17-Oct	C	A	18-Nov	C	F
$0.1667 \quad 0.5073$						
dates*manage*cowpatt	17-Oct	C	A	18-Nov	C	0
$0.1667 \quad 0.5073$						
dates*manage*cowpatt	17-Oct	C	A	18-Nov	0	A
0.83330 .5073						
dates*manage*cowpatt	17-Oct	C	A	18-Nov	0	F
$0.1667 \quad 0.5073$						
dates*manage*cowpatt	17-Oct	C	A	18-Nov	0	0
1.50000 .5073						
dates*manage*cowpatt	17-Oct	C	A	3-Sep	C	A
0.16450 .5280						
dates*manage*cowpatt	17-Oct	C	A	3-Sep	C	F
0.82890 .5321						
dates*manage*cowpatt	17-Oct	C	A	3-Sep	C	0
$0.2344 \quad 0.5321$						
dates*manage*cowpatt	17-Oct	C	A	3-Sep	0	A
$0.1667 \quad 0.5321$						
dates*manage*cowpatt	17-Oct	C	A	3-Sep	0	F
$0.03057 \quad 0.5321$						
dates*manage*cowpatt	17-Oct	C	A	3-Sep	0	0
0.097170 .5672						
dates*manage*cowpatt	17-Oct	C	F	17-Oct	C	0
$0.6667 \quad 0.5073$						
dates*manage*cowpatt	17-Oct	C	F	17-Oct	0	A
1.33330 .5073						
dates*manage*cowpatt	17-Oct	C	F	17-Oct	0	F
0.8333 0.5073						


dates*manage*cowpatt	17-Oct	C	F	17-Oct	0	0
$1.1667 \quad 0.5073$						
dates*manage*cowpatt	17-Oct	C	F	18-Nov	C	A
$1.1667 \quad 0.5073$						
dates*manage*cowpatt	17-Oct	C	F	18-Nov	C	F
1.33330 .5030						
dates*manage*cowpatt	17-Oct	C	F	18-Nov	C	0
1.33330 .5073						
dates*manage*cowpatt	17-Oct	C	F	18-Nov	0	A
0.3333 0.5073						
dates*manage*cowpatt	17-Oct	C	F	18-Nov	0	F
1.00000 .5073						
dates*manage*cowpatt	17-Oct	C	F	18-Nov	0	0
0.3333 0.5073						
dates*manage*cowpatt	17-Oct	C	F	3-Sep	C	A
1.33110 .5321						
dates*manage*cowpatt	17-Oct	C	F	3-Sep	C	F
$0.3378 \quad 0.5280$						
dates*manage*cowpatt	17-Oct	C	F	3-Sep	C	0
0.93220 .5321						
dates*manage*cowpatt	17-Oct	C	F	3-Sep	0	A
1.3333 0.5321						
dates*manage*cowpatt	17-Oct	C	F	3-Sep	0	F
1.13610 .5321						
dates*manage*cowpatt	17-Oct	C	F	3-Sep	0	0
1.06950 .5672						
dates*manage*cowpatt	17-Oct	C	0	17-Oct	0	A
$0.6667 \quad 0.5073$						
dates*manage*cowpatt	17-Oct	C	0	17-Oct	0	F
$0.1667 \quad 0.5073$						
dates*manage*cowpatt	17-Oct	C	0	17-Oct	0	0
$0.5000 \quad 0.5073$						
dates*manage*cowpatt	17-Oct	C	0	18-Nov	C	A
$0.5000 \quad 0.5073$						
dates*manage*cowpatt	17-Oct	C	0	18-Nov	C	F
$0.6667 \quad 0.5073$						
dates*manage*cowpatt	17-Oct	C	0	18-Nov	C	0
$0.6667 \quad 0.5030$						
dates*manage*cowpatt	17-Oct	C	0	18-Nov	0	A
0.33330 .5073						
dates*manage*cowpatt	17-Oct	C	0	18-Nov	0	F
0.33330 .5073						
dates*manage*cowpatt	17-Oct	C	0	18-Nov	0	0
1.00000 .5073						
dates*manage*cowpatt	17-Oct	C	0	3-Sep	C	A
0.66450 .5321						
dates*manage*cowpatt	17-Oct	C	0	3-Sep	C	F
0.32890 .5321						
dates*manage*cowpatt	17-Oct	C	0	3-Sep	C	0
0.26560 .5280						
dates*manage*cowpatt	17-Oct	C	0	3-Sep	0	A
$0.6667 \quad 0.5321$						
dates*manage*cowpatt	17-Oct	C	0	3-Sep	0	F
0.46940 .5321						
dates*manage*cowpatt	17-Oct	C	0	3-Sep	0	0
$0.4028 \quad 0.5672$						
dates*manage*cowpatt	17-Oct	0	A	17-Oct	0	F
$0.5000 \quad 0.5073$						
dates*manage*cowpatt	17-Oct	0	A	17-Oct	0	0
$0.1667 \quad 0.5073$						
dates*manage*cowpatt	17-Oct	0	A	18-Nov	C	A
$0.1667 \quad 0.5073$						
dates*manage*cowpatt	17-Oct	0	A	18-Nov	C	F
$4.72 \mathrm{E}-160.5073$						
dates*manage*cowpatt	17-Oct	0	A	18-Nov	C	0
9.99E-16 0.5073						
dates*manage*cowpatt	17-Oct	0	A	18-Nov	0	A
1.00000 .5030						
dates*manage*cowpatt	17-Oct	0	A	18-Nov	0	F
0.3333 0.5073						


dates*manage*cowpatt	17-Oct	0	A	18-Nov	0	0
$1.6667 \quad 0.5073$						
dates*manage*cowpatt	17-Oct	0	A	3-Sep	C	A
0.002210 .5321						
dates*manage*cowpatt	17-Oct	0	A	3-Sep	C	F
0.99560 .5321						
dates*manage*cowpatt	17-Oct	0	A	3-Sep	C	0
0.40110 .5321						
dates*manage*cowpatt	17-Oct	0	A	3-Sep	0	A
$8.88 \mathrm{E}-16 \quad 0.5280$						
dates*manage*cowpatt	17-Oct	0	A	3-Sep	0	F
0.19720 .5321						
dates*manage*cowpatt	17-Oct	0	A	3-Sep	0	0
0.2638 0.5672						
dates*manage*cowpatt	17-Oct	0	F	17-Oct	0	0
0.33330 .5073						
dates*manage*cowpatt	17-Oct	0	F	18-Nov	C	A
0.33330 .5073						
dates*manage*cowpatt	17-Oct	0	F	18-Nov	C	F
$0.5000 \quad 0.5073$						
dates*manage*cowpatt	17-Oct	0	F	18-Nov	C	0
0.50000 .5073						
dates*manage*cowpatt	17-Oct	0	F	18-Nov	0	A
$0.5000 \quad 0.5073$						
dates*manage*cowpatt	17-Oct	0	F	18-Nov	0	F
$0.1667 \quad 0.5030$						
dates*manage*cowpatt	17-Oct	0	F	18-Nov	0	0
$1.1667 \quad 0.5073$						
dates*manage*cowpatt	17-Oct	0	F	3-Sep	C	A
0.49780 .5321						
dates*manage*cowpatt	17-Oct	0	F	3-Sep	C	F
0.49560 .5321						
dates*manage*cowpatt	17-Oct	0	F	3-Sep	C	0
0.098890 .5321						
dates*manage*cowpatt	17-Oct	0	F	3-Sep	0	A
$0.5000 \quad 0.5321$						
dates*manage*cowpatt	17-Oct	0	F	3-Sep	0	F
$0.3028 \quad 0.5280$						
dates*manage*cowpatt	17-Oct	0	F	3-Sep	0	0
0.23620 .5672						
dates*manage*cowpatt	17-Oct	0	0	18-Nov	C	A
$666 \mathrm{E}-18$ 0.5073						
dates*manage*cowpatt	17-Oct	0	0	18-Nov	C	F
$0.1667 \quad 0.5073$						
dates*manage*cowpatt	17-Oct	0	0	18-Nov	C	0
$0.1667 \quad 0.5073$						
dates*manage*cowpatt	17-Oct	0	0	18-Nov	0	A
0.83330 .5073						
dates*manage*cowpatt	17-Oct	0	0	18-Nov	0	F
$0.1667 \quad 0.5073$						
dates*manage*cowpatt	17-Oct	0	0	18-Nov	0	0
$1.5000 \quad 0.5030$						
dates*manage*cowpatt	17-Oct	0	0	3-Sep	C	A
0.16450 .5321						
dates*manage*cowpatt	17-Oct	0	0	3-Sep	C	F
0.82890 .5321						
dates*manage*cowpatt	17-Oct	0	0	3-Sep	C	0
$0.2344 \quad 0.5321$						
dates*manage*cowpatt	17-Oct	0	0	3-Sep	0	A
$0.1667 \quad 0.5321$						
dates*manage*cowpatt	17-Oct	0	0	3-Sep	0	F
$0.03057 \quad 0.5321$						
dates*manage*cowpatt	17-Oct	0	0	3-Sep	0	0
0.097170 .5633						
dates*manage*cowpatt	18-Nov	C	A	18-Nov	C	F
$0.1667 \quad 0.5073$						
dates*manage*cowpatt	18-Nov	C	A	18-Nov	C	0
$0.1667 \quad 0.5073$						
dates*manage*cowpatt	18-Nov	C	A	18-Nov	0	A
0.83330 .5073						


nag	18-Nov	c
$0.1667 \quad 0.5073$		
dates*manage*cowpatt	18-Nov	C
1.50000 .5073		
dates*manage*cowpatt	18-Nov	C
$0.1645 \quad 0.5280$		
dates*manage*cowpatt	18-Nov	C
0.82890 .5321		
dates*manage*cowpatt	18-Nov	C
$0.2344 \quad 0.5321$		
dates*manage*cowpatt	18-Nov	C
$0.1667 \quad 0.5321$		
dates*manage*cowpatt	18-Nov	C
$0.03057 \quad 0.5321$		
dates*manage*cowpatt	18-Nov	C
$0.09717 \quad 0.5672$		
dates*manage*cowpatt	18-Nov	C
5.27E-16 0.5073		
dates*manage*cowpatt	18-Nov	C
1.00000 .5073		
dates*manage*cowpatt	18-Nov	C
0.33330 .5073		
dates*manage*cowpatt	18-Nov	C
1.66670 .5073		
dates*manage*cowpatt	18-Nov	C
$0.00221 \quad 0.5321$		
dates*manage*cowpatt	18-Nov	C
0.99560 .5280		
dates*manage*cowpatt	18-Nov	C
0.40110 .5321		
dates*manage*cowpatt	18-Nov	C
5.27E-16 0.5321		
dates*manage*cowpatt	18-Nov	C
0.19720 .5321		
dates*manage*cowpatt	18-Nov	C
0.2638 0.5672		
dates*manage*cowpatt	18-Nov	C
1.00000 .5073		
dates*manage*cowpatt	18-Nov	C
0.33330 .5073		
dates*manage*cowpatt	18-Nov	C
$1.6667 \quad 0.5073$		
dates*manage*cowpatt	18-Nov	C
$0.00221 \quad 0.5321$		
dates*manage*cowpatt	18-Nov	C
0.99560 .5321		
dates*manage*cowpatt	18-Nov	C
$0.4011 \quad 0.5280$		
dates*manage*cowpatt	18-Nov	C
00.5321		
dates*manage*cowpatt	18-Nov	C
0.19720 .5321		
dates*manage*cowpatt	18-Nov	C
0.26380 .5672		
dates*manage*cowpatt	18-Nov	0
$0.6667 \quad 0.5073$		
dates*manage*cowpatt	18-Nov	0
$0.6667 \quad 0.5073$		
dates*manage*cowpatt	18-Nov	0
0.99780 .5321		
dates*manage*cowpatt	18-Nov	0
0.0044290 .5321		
dates*manage*cowpatt	18-Nov	0
0.59890 .5321		
dates*manage*cowpatt	18-Nov	0
1.00000 .5280		
dates*manage*cowpatt	18-Nov	0
0.80280 .5321		
dates*manage*cowpatt	18-Nov	0
0.73620 .5672		


A	18-Nov	0	F	-
A	18-Nov	0	$\bigcirc$	-
A	3-Sep	c	A	
A	3-Sep	C	F	-
A	3-Sep	C	$\bigcirc$	-
A	3-Sep	$\bigcirc$	A	
A	3-Sep	$\bigcirc$	F	-
A	3-Sep	$\bigcirc$	$\bigcirc$	-
F	18-Nov	c	$\bigcirc$	
F	18-Nov	$\bigcirc$	A	-
F	18-Nov	0	F	-
F	18-Nov	0	$\bigcirc$	-
F	3-Sep	C	A	-
F	3-Sep	C	F	-
F	3-Sep	C	$\bigcirc$	-
F	3-Sep	0	A	
F	3-Sep	0	F	-
F	3-Sep	0	$\bigcirc$	-
$\bigcirc$	18-Nov	0	A	-
0	18-Nov	0	F	-
0	18-Nov	0	$\bigcirc$	-
$\bigcirc$	3-Sep	C	A	-
0	3-Sep	C	F	-
$\bigcirc$	3-Sep	c	$\bigcirc$	-
0	3-Sep	0	A	
$\bigcirc$	3-Sep	0	F	-
$\bigcirc$	3-Sep	0	0	-
A	18-Nov	0	F	
A	18-Nov	0	$\bigcirc$	-
A	3-Sep	C	A	
A	3-Sep	C	F	
A	3-Sep	C	$\bigcirc$	
A	3-Sep	0	A	
A	3-Sep	0	F	
A	3-Sep	0	0	



management*cowpatty		C	A		C	F
$30-2.16$						
management*cowpatty		C	A		C	0
$30-0.79$						
management*cowpatty		C	A		0	A
$30-0.72$						
management*cowpatty		C	A		0	F
$30-0.75$						
management*cowpatty		C	A		0	0
$30-1.87$						
management*cowpatty		C	F		C	0
$30 \quad 1.37$						
management*cowpatty		C	F		0	A
301.44						
management*cowpatty		C	F		0	F
301.41						
management*cowpatty		C	F		0	0
$30 \quad 0.25$						
management*cowpatty		C	0		0	A
$30 \quad 0.07$						
management*cowpatty		C	0		0	F
$30 \quad 0.04$						
management*cowpatty		C	0		0	0
$30-1.09$						
management*cowpatty		0	A		0	F
$30-0.03$						
management*cowpatty		0	A		0	0
$30-1.16$						
management*cowpatty		0	F		0	0
$30-1.13$						
dates	17-Oct			18-Nov		
$53-0.27$						
dates	17-Oct			3-Sep		
$53 \quad 0.74$						
dates	18-Nov			3-Sep		
531.00						
dates*management	17-Oct	C		17-Oct	0	
531.71						
dates*management	17-Oct	C		18-Nov	C	
53 2.30						
dates*management	17-Oct	C		18-Nov	0	
$53-0.95$						
dates*management	17-Oct	C		3-Sep	C	
530.84						
dates*management	17-Oct	C		3-Sep	0	
531.81						
dates*management	17-Oct	0		18-Nov	C	
$53 \quad 0.57$						
dates*management	17-Oct	0		18-Nov	0	
$53-2.68$						
dates*management	17-Oct	0		3-Sep	C	
$53-0.79$						
dates*management	17-Oct	0		3-Sep	0	
530.22						
dates*management	18-Nov	C		18-Nov	0	
$53-3.22$						
dates*management	18-Nov	C		3-Sep	C	
$53-1.35$						
dates*management	18-Nov	C		3-Sep	0	
$53-0.31$						
dates*management	18-Nov	0		3-Sep	C	
531.74						
dates*management	18-Nov	0		3-Sep	0	
53 2.71						
dates*management	3-Sep	C		3-Sep	0	
530.95						
dates*cowpatty	17-Oct		A	17-Oct		F
$53-2.32$						
dates*cowpatty	17-Oct		A	17-Oct		0


dates*cowpatty	17-Oct	A	18-Nov	A
$53-1.41$				
dates*cowpatty	17-Oct	A	18-Nov	F
$53-0.23$				
dates*cowpatty	17-Oct	A	18-Nov	0
$53-2.09$				
dates*cowpatty	17-Oct	A	3-Sep	A
530.22				
dates*cowpatty	17-Oct	A	3-Sep	F
$53-1.36$				
dates*cowpatty	17-Oct	A	3-Sep	0
$53-0.64$				
dates*cowpatty	17-Oct	F	17-Oct	0
531.39				
dates*cowpatty	17-Oct	F	18-Nov	A
530.93				
dates*cowpatty	17-Oct	F	18-Nov	F
532.11				
dates*cowpatty	17-Oct	F	18-Nov	0
530.23				
dates*cowpatty	17-Oct	F	3-Sep	A
532.43				
dates*cowpatty	17-Oct	F	3-Sep	F
530.86				
dates*cowpatty	17-Oct	F	3-Sep	0
531.50				
dates*cowpatty	17-Oct	0	18-Nov	A
$53-0.46$				
dates*cowpatty	17-Oct	0	18-Nov	F
530.70				
dates*cowpatty	17-Oct	0	18-Nov	0
53 -1.17				
dates*cowpatty	17-Oct	0	3-Sep	A
531.10				
dates*cowpatty	17-Oct	0	3-Sep	F
$53-0.48$				
dates*cowpatty	17-Oct	0	3-Sep	0
530.22				
dates*cowpatty	18-Nov	A	18-Nov	F
531.16				
dates*cowpatty	18-Nov	A	18-Nov	0
$53-0.70$				
dates*cowpatty	$18-\mathrm{Nov}$	A	3-Sep	A
531.56				
dates*cowpatty	18-Nov	A	3-Sep	F
$53-0.03$				
dates*cowpatty	18-Nov	A	3-Sep	0
530.65				
dates*cowpatty	18-Nov	F	18-Nov	0
$53-1.86$				
dates*cowpatty	$18-\mathrm{Nov}$	F	3-Sep	A
530.44				
dates*cowpatty	18-Nov	F	3-Sep	F
$53-1.15$				
dates*cowpatty	$18-\mathrm{Nov}$	F	3-Sep	0
$53-0.43$				
dates*cowpatty	$18-\mathrm{Nov}$	0	3-Sep	A
532.21				
dates*cowpatty	18-Nov	0	3-Sep	F
530.63				
dates*cowpatty	18-Nov	0	3-Sep	0
531.30				
dates*cowpatty	3-Sep	A	3-Sep	F
$53-1.51$				
dates*cowpatty	3-Sep	A	3-Sep	0
$53-0.82$				
dates*cowpatty	3-Sep	F	3-Sep	0
530.65				
dates*manage*cowpatt	17-Oct	A	17-Oct	F
53 -2.30				


*	17-Oct	C
$53-0.99$		
dates*manage*cowpatt	17-Oct	C
530.33		
dates*manage*cowpatt	17-Oct	C
$53-0.66$		
dates*manage*cowpatt	17-Oct	C
$53 \quad 0.00$		
dates*manage*cowpatt	17-Oct	C
$53 \quad 0.00$		
dates*manage*cowpatt	17-Oct	C
$53 \quad 0.33$		
dates*manage*cowpatt	17-Oct	C
530.33		
dates*manage*cowpatt	17-Oct	C
$53-1.64$		
dates*manage*cowpatt	17-Oct	C
$53-0.33$		
dates*manage*cowpatt	17-Oct	C
$53-2.96$		
dates*manage*cowpatt	17-Oct	C
530.31		
dates*manage*cowpatt	17-Oct	C
$53-1.56$		
dates*manage*cowpatt	17-Oct	C
$53-0.44$		
dates*manage*cowpatt	17-Oct	C
$53 \quad 0.31$		
dates*manage*cowpatt	17-Oct	C
$53-0.06$		
dates*manage*cowpatt	17-Oct	C
$53-0.17$		
dates*manage*cowpatt	17-Oct	C
531.31		
dates*manage* cowpatt	17-Oct	C
53 2.63		
dates*manage*cowpatt	17-Oct	C
531.64		
dates*manage*cowpatt	17-Oct	C
53 2.30		
dates*manage*cowpatt	17-Oct	C
53 2.30		
dates*manage*cowpatt	17-Oct	C
$53 \quad 2.65$		
dates*manage*cowpatt	17-Oct	C
53 2.63		
dates*manage*cowpatt	17-0ct	C
$53 \quad 0.66$		
dates*manage*cowpatt	17-Oct	C
531.97		
dates*manage*cowpatt	17-Oct	C
$53-0.66$		
dates*manage*cowpatt	17-Oct	C
$53 \quad 2.50$		
dates*manage*cowpatt	17-Oct	C
$53 \quad 0.64$		
dates*manage*cowpatt	17-Oct	C
531.75		
dates*manage*cowpatt	17-Oct	C
53 2.51		
dates*manage*cowpatt	17-Oct	C
$53 \quad 2.14$		
dates*manage*cowpatt	17-Oct	C
531.89		
dates*manage*cowpatt	17-Oct	C
531.31		
dates*manage*cowpatt	17-Oct	C
53 0.33		
dates*manage*cowpatt	17-Oct	C
530.99		

A A A A A A

17-Oct C 0

17-Oct 0 A

17-Oct 0 F

17-Oct 0 0

18-Nov C

dates*manage*cowpatt	17-Oct	C	0	18-Nov	C	A
530.99						
dates*manage*cowpatt	17-Oct	C	0	18-Nov	C	F
531.31						
dates*manage*cowpatt	17-Oct	C	0	18-Nov	C	0
531.33						
dates*manage*cowpatt	17-Oct	C	0	18-Nov	0	A
$53-0.66$						
dates*manage*cowpatt	17-Oct	C	0	18-Nov	0	F
530.66						
dates*manage*cowpatt	17-Oct	C	0	18-Nov	0	0
$53-1.97$						
dates*manage*cowpatt	17-Oct	C	0	3-Sep	C	A
531.25						
dates*manage*cowpatt	17-Oct	C	0	3-Sep	C	F
$53-0.62$						
dates*manage*cowpatt	17-Oct	C	0	3-Sep	C	0
530.50						
dates*manage*cowpatt	17-Oct	C	0	3-Sep	0	A
531.25						
dates*manage*cowpatt	17-Oct	C	0	3-Sep	0	F
530.88						
dates*manage*cowpatt	17-Oct	C	0	3-Sep	0	0
530.71						
dates*manage*cowpatt	17-Oct	0	A	17-Oct	0	F
$53-0.99$						
dates*manage*cowpatt	17-Oct	0	A	17-Oct	0	0
$53-0.33$						
dates*manage*cowpatt	17-Oct	0	A	18-Nov	C	A
$53-0.33$						
dates*manage*cowpatt	17-Oct	0	A	18-Nov	C	F
530.00						
dates*manage*cowpatt	17-Oct	0	A	18-Nov	C	0
530.00						
dates*manage* cowpatt	17-Oct	0	A	18-Nov	0	A
$53-1.99$						
dates*manage*cowpatt	17-Oct	0	A	18-Nov	0	F
$53-0.66$						
dates*manage* cowpatt	17-Oct	0	A	18-Nov	0	0
$53-3.29$						
dates*manage*cowpatt	17-Oct	0	A	3-Sep	C	A
$53-0.00$						
dates*manage*cowpatt	17-Oct	0	A	3-Sep	C	F
$53-1.87$						
dates*manage*cowpatt	17-Oct	0	A	3-Sep	C	0
$53-0.75$						
dates*manage*cowpatt	17-Oct	0	A	3-Sep	0	A
530.00						
dates*manage*cowpatt	17-Oct	0	A	3-Sep	0	F
$53-0.37$						
dates*manage*cowpatt	17-Oct	0	A	3-Sep	0	0
$53-0.47$						
dates*manage*cowpatt	17-Oct	0	F	17-Oct	0	0
530.66						
dates*manage*cowpatt	17-Oct	0	F	18-Nov	C	A
530.66						
dates*manage*cowpatt	17-Oct	0	F	18-Nov	C	F
530.99						
dates*manage*cowpatt	17-Oct	0	F	18-Nov	C	0
530.99						
dates*manage*cowpatt	17-Oct	0	F	18-Nov	0	A
$53-0.99$						
dates*manage*cowpatt	17-Oct	0	F	18-Nov	0	F
530.33						
dates*manage*cowpatt	17-Oct	0	F	18-Nov	0	0
$53-2.30$						
dates*manage*cowpatt	17-Oct	0	F	3-Sep	C	A
530.94						
dates*manage*cowpatt	17-Oct	0	F	3-Sep	C	F
$53-0.93$						


dates*manage*cowpatt	17-Oct	0	F	3-Sep	C	0
530.19						
dates*manage*cowpatt	17-Oct	0	F	3-Sep	0	A
530.94						
dates*manage*cowpatt	17-Oct	0	F	3-Sep	0	F
530.57						
dates*manage*cowpatt	17-Oct	0	F	3-Sep	0	0
530.42						
dates*manage*cowpatt	17-Oct	0	0	18-Nov	C	A
$53-0.00$						
dates*manage*cowpatt	17-Oct	0	0	18-Nov	C	F
530.33						
dates*manage*cowpatt	17-Oct	0	0	18-Nov	C	0
530.33						
dates*manage*cowpatt	17-Oct	0	0	18-Nov	0	A
$53-1.64$						
dates*manage*cowpatt	17-Oct	0	0	18-Nov	0	F
$53-0.33$						
dates*manage*cowpatt	17-Oct	0	0	18-Nov	0	0
$53-2.98$						
dates*manage*cowpatt	17-Oct	0	0	3-Sep	C	A
530.31						
dates*manage*cowpatt	17-Oct	0	0	3-Sep	C	F
$53-1.56$						
dates*manage*cowpatt	17-Oct	0	0	3-Sep	C	0
$53-0.44$						
dates*manage*cowpatt	17-Oct	0	0	3-Sep	0	A
530.31						
dates*manage*cowpatt	17-Oct	0	0	3-Sep	0	F
$53-0.06$						
dates*manage*cowpatt	17-Oct	0	0	3-Sep	0	0
$53-0.17$						
dates*manage*cowpatt	18-Nov	C	A	18-Nov	C	F
530.33						
dates*manage* cowpatt	$18-\mathrm{Nov}$	C	A	18-Nov	C	0
530.33						
dates*manage*cowpatt	$18-\mathrm{Nov}$	C	A	18-Nov	0	A
$53-1.64$						
dates*manage* cowpatt	18-Nov	C	A	18-Nov	0	F
$53-0.33$						
dates*manage*cowpatt	18-Nov	C	A	18-Nov	0	0
53 -2.96						
dates*manage* cowpatt	18-Nov	C	A	3-Sep	C	A
530.31						
dates*manage*cowpatt	$18-\mathrm{Nov}$	C	A	3-Sep	C	F
$53-1.56$						
dates*manage*cowpatt	$18-\mathrm{Nov}$	C	A	3-Sep	C	0
$53-0.44$						
dates*manage*cowpatt	18-Nov	C	A	3-Sep	0	A
530.31						
dates*manage*cowpatt	$18-\mathrm{Nov}$	C	A	3-Sep	0	F
$53-0.06$						
dates*manage*cowpatt	$18-\mathrm{Nov}$	C	A	3-Sep	0	0
$53-0.17$						
dates*manage*cowpatt	18-Nov	C	F	18-Nov	C	0
530.00						
dates*manage*cowpatt	18-Nov	C	F	18-Nov	0	A
$53-1.97$						
dates*manage*cowpatt	18-Nov	C	F	18-Nov	0	F
$53-0.66$						
dates*manage*cowpatt	18-Nov	C	F	18-Nov	0	0
$53-3.29$						
dates*manage*cowpatt	$18-\mathrm{Nov}$	C	F	3-Sep	C	A
$53-0.00$						
dates*manage*cowpatt	$18-\mathrm{Nov}$	C	F	3-Sep	C	F
$53-1.89$						
dates*manage*cowpatt	$18-\mathrm{Nov}$	C	F	3-Sep	C	0
$53-0.75$						
dates*manage*cowpatt	$18-\mathrm{Nov}$	C	F	3-Sep	0	A
530.00						


dates*manage*cowpatt	18-Nov	C	F	3-Sep	0	F
$53-0.37$						
dates*manage*cowpatt	18-Nov	C	F	3-Sep	0	0
$53-0.47$						
dates*manage*cowpatt	18-Nov	C	0	18-Nov	0	A
$53-1.97$						
dates*manage*cowpatt	18-Nov	C	0	18-Nov	0	F
$53-0.66$						
dates*manage*cowpatt	18-Nov	C	0	18-Nov	0	0
$53-3.29$						
dates*manage*cowpatt	18-Nov	C	0	3-Sep	C	A
$53-0.00$						
dates*manage*cowpatt	18-Nov	C	0	3-Sep	C	F
$53-1.87$						
dates*manage*cowpatt	18-Nov	C	0	3-Sep	C	0
$53-0.76$						
dates*manage*cowpatt	18-Nov	C	0	3-Sep	0	A
530.00						
dates*manage*cowpatt	18-Nov	C	0	3-Sep	0	F
$53-0.37$						
dates*manage*cowpatt	18-Nov	C	0	3-Sep	0	0
$53-0.47$						
dates*manage*cowpatt	18-Nov	0	A	18-Nov	0	F
531.31						
dates*manage*cowpatt	18-Nov	0	A	18-Nov	0	0
$53-1.31$						
dates*manage*cowpatt	18-Nov	0	A	3-Sep	C	A
531.88						
dates*manage*cowpatt	18-Nov	0	A	3-Sep	C	F
530.01						
dates*manage*cowpatt	18-Nov	0	A	3-Sep	C	0
531.13						
dates*manage*cowpatt	18-Nov	0	A	3-Sep	0	A
531.89						
dates*manage*cowpatt	18-Nov	0	A	3-Sep	0	F
531.51						
dates*manage*cowpatt	18-Nov	0	A	3-Sep	0	0
531.30						
dates*manage*cowpatt	18-Nov	0	F	18-Nov	0	0
$53-2.63$						
dates*manage*cowpatt	18-Nov	0	F	3-Sep	C	A
53 0.62						
dates*manage*cowpatt	18-Nov	0	F	3-Sep	C	F
$53-1.24$						
dates*manage*cowpatt	18-Nov	0	F	3-Sep	C	0
$53-0.13$						
dates*manage*cowpatt	18-Nov	0	F	3-Sep	0	A
$53 \quad 0.63$						
dates*manage*cowpatt	18-Nov	0	F	3-Sep	0	F
$53 \quad 0.26$						
dates*manage*cowpatt	18-Nov	0	F	3-Sep	0	0
530.12						
dates*manage*cowpatt	18-Nov	0	0	3-Sep	C	A
53 3.13						
dates*manage*cowpatt	18-Nov	0	0	3-Sep	C	F
531.26						
dates*manage*cowpatt	18-Nov	0	0	3-Sep	C	0
53 2.38						
dates*manage*cowpatt	18-Nov	0	0	3-Sep	0	A
53 3.13						
dates*manage*cowpatt	18-Nov	0	0	3-Sep	0	F
$53 \quad 2.76$						
dates*manage*cowpatt	18-Nov	0	0	3-Sep	0	0
532.49						
dates*manage*cowpatt	3-Sep	C	A	3-Sep	C	F
$53-1.79$						
dates*manage*cowpatt	3-Sep	C	A	3-Sep	C	0
$53-0.72$						
dates*manage*cowpatt	3-Sep	C	A	3-Sep	0	A
530.00						


dates*manage*cowpatt	3-Sep	C		A		3-Sep	0		F				
$53-0.35$													
dates*manage* cowpatt	3-Sep	C		A		3-Sep	0		0				
$53-0.44$													
dates*manage*cowpatt	3-Sep	C		F		3-Sep	C		0				
531.07 1-sep													
dates*manage*cowpatt	3-Sep	C		F		3-Sep	0		A				
531.79 le													
dates*manage*cowpatt	3-Sep	C		F				3-Sep	0		F		
531.44													
dates*manage*cowpatt	3-Sep	C		F		3-Sep	0		0				
531.24													
dates*manage*cowpatt	3-Sep	C		0		3-Sep	0		A				
530.72													
dates*manage*cowpatt	3-Sep	C		0		3-Sep	0		F				
$53 \quad 0.37$													
dates*manage*cowpatt	3-Sep	C		0		3-Sep	0		0				
530.23 ( 0													
dates*manage*cowpatt	3-Sep	0		A		3-Sep	0		F				
$53-0.35$													
dates*manage*cowpatt	3-Sep	0		A		3-Sep	0		0				
$53-0.45$													
dates*manage*cowpatt	3-Sep	0		F		3-Sep	0		0				
$53-0.11$													
			Differences of Least Squares Means										
Effect	dates		management		cowpatty	y _dates		_management		_cowpatty			
$\operatorname{Pr}>\|t\|$													
management			C					0					
0.8074													
cowpatty					A					F			
0.1310													
cowpatty					A					0			
0.1754													
cowpatty					F					0			
0.8837													
management*cowpatty			C		A			C		F			
0.0387													
management*cowpatty			C		A			C		0			
0.4332													
management*cowpatty			C		A			0		A			
0.4766													
management*cowpatty			C		A			0		F			
0.4567													
management*cowpatty			C		A			0		0			
0.0714													
management*cowpatty			C		F			C		0			
0.1814													
management*cowpatty			C		F			0		A			
0.1597													
management*cowpatty			C		F			0		F			
0.1692 (													
management*cowpatty			C		F			0		0			
0.8074													
management*cowpatty			C		0			0		A			
0.9419													
management*cowpatty			C		0			0		F			
0.9681													
management*cowpatty			C		0			0		0			
0.2834													
management*cowpatty			0		A			0		F			
0.9738													
management*cowpatty			0		A			0		0			
0.2535													
management*cowpatty			0		F			0		0			
0.2667													
dates	17					18							
0.7878													


dates	17-Oct			3-Sep		
0.4601						
dates	18-Nov			3-Sep		
0.3224						
dates*management	17-Oct	C		17-Oct	0	
0.0937						
dates*management	17-Oct	C		18-Nov	C	
0.0257						
dates*management	17-Oct	C		$18-\mathrm{Nov}$	0	
0.3472						
dates*management	17-Oct	C		3-Sep	C	
0.4049						
dates*management	17-Oct	C		3-Sep	0	
0.0759						
dates*management	17-Oct	0		18-Nov	C	
0.5717						
dates*management	17-Oct	0		18-Nov	0	
0.0098						
dates*management	17-Oct	0		3-Sep	C	
0.4304						
dates*management	17-Oct	0		3-Sep	0	
0.8269						
dates*management	18-Nov	C		18-Nov	0	
0.0022						
dates*management	18-Nov	C		3-Sep	C	
0.1835						
dates*management	18-Nov	C		3-Sep	0	
0.7559						
dates*management	18-Nov	0		3-Sep	C	
0.0881						
dates*management	18-Nov	0		3-Sep	0	
0.0089						
dates*management	3-Sep	C		3-Sep	0	
0.3441						
dates*cowpatty	17-Oct		A	17-Oct		F
0.0240						
dates*cowpatty	17-Oct		A	17-Oct		0
0.3570						
dates*cowpatty	17-Oct		A	18-Nov		A
0.1656						
dates*cowpatty	17-Oct		A	18-Nov		F
0.8172						
dates*cowpatty	17-Oct		A	18-Nov		0
0.0414						
dates*cowpatty	17-Oct		A	3-Sep		A
0.8265						
dates*cowpatty	17-Oct		A	3-Sep		F
0.1784						
dates*cowpatty	17-Oct		A	3-Sep		0
0.5244						
dates*cowpatty	17-Oct		F	17-Oct		0
0.1692						
dates*cowpatty	17-Oct		F	18-Nov		A
0.3570						
dates*cowpatty	17-Oct		F	18-Nov		F
0.0397						
dates*cowpatty	17-Oct		F	18-Nov		0
0.8172						
dates*cowpatty	17-Oct		F	3-Sep		A
0.0184						
dates*cowpatty	17-Oct		F	3-Sep		F
0.3948						
dates*cowpatty	17-Oct		F	3-Sep		0
0.1389						
dates*cowpatty	17-Oct		0	18-Nov		A
0.6441						
dates*cowpatty	17-Oct		0	18-Nov		F
0.4889						
dates*cowpatty	17-Oct		0	18-Nov		0
0.2467						


dates*cowpatty	17-Oct		0	3-Sep		A
0.2743						
dates*cowpatty	17-Oct		0	3-Sep		F
0.6348						
dates*cowpatty	17-Oct		0	3-Sep		0
0.8282						
dates*cowpatty	18-Nov		A	18-Nov		F
0.2506						
dates*cowpatty	18-Nov		A	18-Nov		0
0.4889						
dates*cowpatty	18-Nov		A	3-Sep		A
0.1248						
dates*cowpatty	18-Nov		A	3-Sep		F
0.9724						
dates*cowpatty	18-Nov		A	3-Sep		0
0.5216						
dates*cowpatty	18-Nov		F	18-Nov		0
0.0687						
dates*cowpatty	18-Nov		F	3-Sep		A
0.6617						
dates*cowpatty	18-Nov		F	3-Sep		F
0.2549						
dates*cowpatty	18-Nov		F	3-Sep		0
0.6715						
dates*cowpatty	18-Nov		0	3-Sep		A
0.0313						
dates*cowpatty	18-Nov		0	3-Sep		F
0.5316						
dates*cowpatty	18-Nov		0	3-Sep		0
0.2001						
dates*cowpatty	3-Sep		A	3-Sep		F
0.1357						
dates*cowpatty	3-Sep		A	3-Sep		0
0.4169						
dates*cowpatty	3-Sep		F	3-Sep		0
0.5175						
dates*manage*cowpatt	17-Oct	C	A	17-Oct	C	F
0.0254						
dates*manage* cowpatt	17-Oct	C	A	17-Oct	C	0
0.3288						
dates*manage*cowpatt	17-Oct	C	A	17-Oct	0	A
0.7438						
dates*manage*cowpatt	17-Oct	C	A	17-Oct	0	F
0.5140						
dates*manage*cowpatt	17-Oct	C	A	17-Oct	0	0
1.0000						
dates*manage*cowpatt	17-Oct	C	A	18-Nov	C	A
1.0000						
dates*manage*cowpatt	17-Oct	C	A	18-Nov	C	F
0.7438						
dates*manage*cowpatt	17-Oct	C	A	18-Nov	C	0
0.7438						
dates*manage*cowpatt	17-Oct	C	A	18-Nov	0	A
0.1064						
dates*manage*cowpatt	17-Oct	C	A	18-Nov	0	F
0.7438						
dates*manage*cowpatt	17-Oct	C	A	18-Nov	0	0
0.0046						
dates*manage* cowpatt	17-Oct	C	A	3-Sep	C	A
0.7567 ( 0 d						
dates*manage* cowpatt	17-Oct	C	A	3-Sep	C	F
0.1252						
dates*manage* cowpatt	17-Oct	C	A	3-Sep	C	0
dates*manage* cowpatt	17-Oct	C	A	3-Sep	0	A
0.7553 ( 0						
dates*manage*cowpatt	17-Oct	C	A	3-Sep	0	F
0.9544						
dates*manage*cowpatt	17-Oct	C	A	3-Sep	0	0
0.8646						



F	17-Oct	c	0
F	17-Oct	0	A
F	17-Oct	$\bigcirc$	F
F	17-Oct	0	$\bigcirc$
F	18-Nov	C	A
F	18-Nov	C	F
F	18-Nov	C	$\bigcirc$
F	18-Nov	0	A
F	18-Nov	0	F
F	18-Nov	-	0
F	3-Sep	c	A
F	3-Sep	c	F
F	3-Sep	c	$\bigcirc$
F	3-Sep	0	A
F	3-Sep	0	F
F	3-Sep	0	0
$\bigcirc$	17-Oct	0	A
$\bigcirc$	17-Oct	-	F
$\bigcirc$	17-Oct	0	$\bigcirc$
$\bigcirc$	18-Nov	c	A
$\bigcirc$	18-Nov	c	F
$\bigcirc$	18-Nov	c	$\bigcirc$
$\bigcirc$	18-Nov	$\bigcirc$	A
$\bigcirc$	18-Nov	0	F
$\bigcirc$	18-Nov	0	0
$\bigcirc$	3-Sep	C	A
$\bigcirc$	3-Sep	C	F
$\bigcirc$	3-Sep	C	0
$\bigcirc$	3-Sep	0	A
$\bigcirc$	3-Sep	0	F
$\bigcirc$	3-Sep	0	$\bigcirc$
A	17-Oct	0	F
A	17-Oct	0	$\bigcirc$
A	18-Nov	c	A
A	18-Nov	C	F



A	18-Nov	C	0
A	18-Nov	0	A
A	18-Nov	0	F
A	18-Nov	0	0
A	3-Sep	C	A
A	3-Sep	C	F
A	3-Sep	C	0
A	3-Sep	0	A
A	3-Sep	0	F
A	3-Sep	0	0
F	17-Oct	0	0
F	18-Nov	C	A
F	18-Nov	C	F
F	18-Nov	C	0
F	18-Nov	0	A
F	18-Nov	0	F
F	18-Nov	0	0
F	3-Sep	C	A
F	3-Sep	C	F
F	3-Sep	C	0
F	3-Sep	0	A
F	3-Sep	0	F
F	3-Sep	0	0
0	18-Nov	C	A
0	18-Nov	C	F
0	18-Nov	C	0
0	18-Nov	0	A
0	18-Nov	0	F
0	18-Nov	0	0
0	3-Sep	C	A
0	3-Sep	C	F
0	3-Sep	C	0
0	3-Sep	0	A
0	3-Sep	0	F
0	3-Sep	0	0


0.7438		
0.7438	18-No	
0.7438	18-No	
0.1064		
0.7438		
0.0046		
da		
$252$		
$\begin{gathered} \text { da } \\ 513 \end{gathered}$		
$\begin{gathered} \text { da } \\ 553 \end{gathered}$		
$\begin{aligned} & \text { dates*manage*cowpa } \\ & 646 \end{aligned}$		
${ }_{1.0000}^{\text {dates*manage*cowpatt }}$		
dates*manage*cowpatt		
${ }^{\text {dates*manage*cowpa }}$		
$\begin{aligned} & \text { dat } \\ & 0.0018 \end{aligned}$	18	
$967$	18	
$648$	18	
${ }_{0.4543}^{\text {dà }}$	18-No	
dates*manage*cowpatt 1.0000	18-No	
${ }_{0.7123}^{\text {dates*manage*cowpatt }}$	18	
	18	
$\begin{aligned} & \text { date } \\ & 0.0539 \end{aligned}$	18	
$0.5140$		
$\begin{aligned} & \text { dat } \\ & .0018 \end{aligned}$	18	
$\begin{aligned} & \text { dat } \\ & 967 \end{aligned}$	18	
$\begin{aligned} & \text { dates } \\ & 0.0668 \end{aligned}$	$18-\mathrm{No}$	
dates*manage*cowpatt $0.4508$	18-No	
$\begin{aligned} & \text { dat } \\ & 1.0000 \end{aligned}$	18-No	
7123		
dates*manage*cowpatt $0.6437$	18-	
$\begin{aligned} & \text { dates*manage*cowpatt } \\ & 1945 \end{aligned}$	18	
0.1945		
0.0663		
date	18-No	
dates 2654	18-No	

A

A A A A A A A A A

18-Nov	C	F
18-Nov	C	0
18-Nov	0	A
18-Nov	0	F
18-Nov	0	0
3-Sep	C	A
3-Sep	C	F
3-Sep	C	0
3-Sep	0	A
3-Sep	0	F
3-Sep	0	0
18-Nov	C	0
18-Nov	0	A
18-Nov	0	F
18-Nov	0	0
3-Sep	C	A
3-Sep	C	F
3-Sep	C	0
3-Sep	0	A
3-Sep	0	F
3-Sep	0	0
18-Nov	0	A
18-Nov	0	F
18-Nov	0	0
3-Sep	C	A
3-Sep	C	F
3-Sep	C	0
3-Sep	0	A
3-Sep	0	F
3-Sep	0	0
18-Nov	0	F
18-Nov	0	0
3-Sep	C	A
3-Sep	C	F
3-Sep	C	0


dates*manage*cowpatt	18-Nov	0	A	3-Sep	0	A
0.0637						
dates*manage*cowpatt	18-Nov	0	A	3-Sep	0	F
0.1373						
dates*manage* cowpatt	18-Nov	0	A	3-Sep	0	0
0.1999						
dates*manage*cowpatt	18-Nov	0	F	18-Nov	0	0
0.0112						
dates*manage*cowpatt	18-Nov	0	F	3-Sep	C	A
0.5364						
dates*manage*cowpatt	18-Nov	0	F	3-Sep	C	F
0.2187						
dates*manage* cowpatt	18-Nov	0	F	3-Sep	C	0
0.8991						
dates*manage*cowpatt	18-Nov	0	F	3-Sep	0	A
0.5337						
dates*manage*cowpatt	18-Nov	0	F	3-Sep	0	F
0.7976						
dates*manage*cowpatt	18-Nov	0	F	3-Sep	0	0
0.9029						
dates*manage*cowpatt	18-Nov	0	0	3-Sep	C	A
0.0029						
dates*manage*cowpatt	18-Nov	0	0	3-Sep	C	F
0.2127						
dates*manage*cowpatt	18-Nov	0	0	3-Sep	C	0
0.0210						
dates*manage*cowpatt	18-Nov	0	0	3-Sep	0	A
0.0028						
dates*manage*cowpatt	18-Nov	0	0	3-Sep	0	F
0.0079						
dates*manage*cowpatt	18-Nov	0	0	3-Sep	0	0
0.0159						
dates*manage*cowpatt	3-Sep	C	A	3-Sep	C	F
0.0796						
dates*manage* cowpatt	3-Sep	C	A	3-Sep	C	0
0.4760						
dates*manage* cowpatt	3-Sep	C	A	3-Sep	0	A
0.9968						
dates*manage* cowpatt	3-Sep	C	A	3-Sep	0	F
0.7270						
dates*manage*cowpatt	3-Sep	C	A	3-Sep	0	0
0.6589						
dates*manage*cowpatt	3-Sep	C	F	3-Sep	C	0
0.2896						
dates*manage*cowpatt	3-Sep	C	F	3-Sep	0	A
0.0789						
dates*manage*cowpatt	3-Sep	C	F	3-Sep	0	F
0.1567						
dates*manage*cowpatt	3-Sep	C	F	3-Sep	0	0
0.2199						
dates*manage*cowpatt	3-Sep	C	0	3-Sep	0	A
0.4736						
dates*manage*cowpatt	3-Sep	C	0	3-Sep	0	F
0.7152						
dates*manage* cowpatt	3-Sep	C	0	3-Sep	0	$\bigcirc$
0.8167						
dates*manage*cowpatt	3-Sep	0	A	3-Sep	0	F
0.7241						
dates*manage* cowpatt	3-Sep	0	A	3-Sep	0	$\bigcirc$
0.6562						
dates*manage*cowpatt	3-Sep	0	F	3-Sep	0	0
0.9104						

Tests of Effect Slices

Effect dates
Pr $>\mathrm{F}$
management cowpatty
Num Den F Value

management*cowpatty		C		2	30	2.39
0.1086						
management*cowpatty		0		2	30	0.87
0.4307						
management*cowpatty			A	1	30	0.52
0.4766						
management*cowpatty			F	1	30	1.98
0.1692						
management*cowpatty			0	1	30	1.19
0.2834						
dates*management	17-Oct			1	53	2.91
0.0937						
dates*management	18-Nov			1	53	10.40
0.0022						
dates*management	3-Sep			1	53	0.91
0.3441						
dates*management		C		2	53	2.68
0.0781						
dates*management		0		2	53	4.96
0.0106						
dates*cowpatty	17-Oct			2	53	2.73
0.0741						
dates*cowpatty	18-Nov			2	53	1.76
0.1815						
dates*cowpatty	3-Sep			2	53	1.15
0.3238						
dates*cowpatty			A	2	53	1.50
0.2324						
dates*cowpatty			F	2	53	2.24
0.1168						
dates*cowpatty			0	2	53	1.05
0.3569						
dates*manage*cowpatt	17-Oct			5	53	1.85
0.1191						
dates*manage*cowpatt	18-Nov			5	53	3.49
0.0084						
dates*manage*cowpatt	3-Sep			5	53	0.89
0.4975						
dates*manage*cowpatt		C		8	53	1.75
0.1090						
dates*manage* cowpatt		0		8	53	2.28
0.0356						
dates*manage*cowpatt			A	5	53	1.17
0.3385						
dates*manage*cowpatt			F	5	53	1.93
0.1043						
dates*manage*cowpatt			0	5	53	2.80
0.0256						

## Precipitation gradient contrasts

Contrasts

	Num	Den		
Label	DF	DF	F Value	
EAST V. WEST TRT $=F$	1	8.52	0.05	0.8210

```
EAST V. WEST TRT=N 1 8.52 2.31 0.1644
EAST V. WEST TRT=O 1 8.52 5.42 0.0465
```

Organic vs. Conventional wheat field and cattle pasture comparisons in Fairview, OK.

Date	O or C	Field Type	T	sample \#	D	L	E	Sf/g	Sc	Hb	TI
17-Oct	0	Wheat	A	1	0	4	2	0	0	0	0
17-Oct	0	Wheat	A	2	0	6	0	0	0	0	0
17-Oct	0	Wheat	A	3	0	6	0	0	0	0	0
17-Oct	0	Wheat	A	4	0	6	0	0	0	0	0
17-Oct	0	Wheat	A	5	0	6	0	0	0	0	0
17-Oct	0	Wheat	A	6	0	6	0	0	0	0	0
17-Oct	0	Wheat	A	7	0	5	0	0	0	0	0
17-Oct	0	Wheat	A	8	0	6	0	0	0	0	0
17-Oct	0	Wheat	A	9	0	5	0	0	0	0	0
17-Oct	0	Wheat	A	10	1	5	0	0	0	0	0
17-Oct	0	Wheat	B	1	0	6	0	0	0	0	0
17-Oct	0	Wheat	B	2	0	6	0	0	0	0	0
17-Oct	0	Wheat	B	3	0	6	0	0	0	0	0
17-Oct	0	Wheat	B	4	0	5	0	0	0	0	1
17-Oct	0	Wheat	B	5	0	6	0	0	0	0	0
17-Oct	0	Wheat	B	6	1	5	0	0	0	0	0
17-Oct	0	Wheat	B	7	0	6	0	0	0	0	0
17-Oct	0	Wheat	B	8	0	6	0	0	0	0	0
17-Oct	0	Wheat	B	9	0	6	0	0	0	0	0
17-Oct	0	Wheat	B	10	0	6	0	0	0	0	0
17-Oct	0	Wheat	C	1	0	6	0	0	0	0	0
17-Oct	0	Wheat	C	2	0	6	0	0	0	0	0
17-Oct	0	Wheat	C	3	0	6	0	0	0	0	0
17-Oct	0	Wheat	C	4	0	6	0	0	0	0	0
17-Oct	0	Wheat	C	5	0	6	0	0	0	0	0
17-Oct	0	Wheat	C	6	0	6	0	0	0	0	0
17-Oct	0	Wheat	C	7	0	6	0	0	0	0	0
17-Oct	0	Wheat	C	8	0	6	0	0	0	0	0
17-Oct	0	Wheat	C	9	0	6	0	0	0	0	0
17-Oct	0	Wheat	C	10	0	5	0	0	0	0	1
17-Oct	0	Wheat	D	1	0	6	0	0	0	0	0
17-Oct	0	Wheat	D	2	0	6	0	0	0	0	0
17-Oct	0	Wheat	D	3	0	6	0	0	0	0	0
17-Oct	0	Wheat	D	4	0	6	0	0	0	0	0


17-Oct	0	Wheat	D	5	0	6	0	0	0	0	0
17-Oct	0	Wheat	D	6	1	5	0	0	0	0	0
17-Oct	0	Wheat	D	7	0	6	0	0	0	0	0
17-Oct	0	Wheat	D	8	0	5	1	0	0	0	0
17-Oct	0	Wheat	D	9	0	5	1	0	0	0	0
17-Oct	0	Wheat	D	10	0	6	0	0	0	0	0
17-Oct	C	Wheat	A	1	0	6	0	0	0	0	0
17-Oct	C	Wheat	A	2	0	6	0	0	0	0	0
17-Oct	C	Wheat	A	3	0	6	0	0	0	0	0
17-Oct	C	Wheat	A	4	0	6	0	0	0	0	0
17-Oct	C	Wheat	A	5	0	5	0	0	0	0	0
17-Oct	C	Wheat	A	6	0	6	0	0	0	0	0
17-Oct	C	Wheat	A	7	0	6	0	0	0	0	0
17-Oct	C	Wheat	A	8	0	5	0	0	0	0	1
17-Oct	C	Wheat	A	9	1	5	0	0	0	0	0
17-Oct	C	Wheat	A	10	0	6	0	0	0	0	0
17-Oct	C	Wheat	B	1	0	6	0	0	0	0	0
17-Oct	C	Wheat	B	2	0	6	0	0	0	0	0
17-Oct	C	Wheat	B	3	0	5	0	0	0	0	1
17-Oct	C	Wheat	B	4	0	6	0	0	0	0	0
17-Oct	C	Wheat	B	5	0	6	0	0	0	0	0
17-Oct	C	Wheat	B	6	0	6	0	0	0	0	0
17-Oct	C	Wheat	B	7	2	4	0	0	0	0	0
17-Oct	C	Wheat	B	8	0	6	0	0	0	0	0
17-Oct	C	Wheat	B	9	0	6	0	0	0	0	0
17-Oct	C	Wheat	B	10	0	6	0	0	0	0	0
17-Oct	C	Wheat	C	1	0	6	0	0	0	0	0
17-Oct	C	Wheat	C	2	0	6	0	0	0	0	0
17-Oct	C	Wheat	C	3	0	6	0	0	0	0	0
17-Oct	C	Wheat	C	4	0	6	0	0	0	0	0
17-Oct	C	Wheat	C	5	0	6	0	0	0	0	0
17-Oct	C	Wheat	C	6	0	6	0	0	0	0	0
17-Oct	C	Wheat	C	7	0	6	0	0	0	0	0
17-Oct	C	Wheat	C	8	0	6	0	0	0	0	0
17-Oct	C	Wheat	C	9	0	5	1	0	0	0	0
17-Oct	C	Wheat	C	10	0	6	0	0	0	0	0
17-Oct	C	Wheat	D	1	0	6	0	0	0	0	0
17-Oct	C	Wheat	D	2	0	6	0	0	0	0	0
17-Oct	C	Wheat	D	3	0	6	0	0	0	0	0
17-Oct	C	Wheat	D	4	0	6	0	0	0	0	0
17-Oct	C	Wheat	D	5	0	5	0	0	0	0	1


17-Oct	C	Wheat	D	6	0	6	0	0	0	0	0
17-Oct	C	Wheat	D	7	1	5	0	0	0	0	0
17-Oct	C	Wheat	D	8	0	6	0	0	0	0	0
17-Oct	C	Wheat	D	9	0	6	0	0	0	0	0
17-Oct	C	Wheat	D	10						0	
17-Oct	0	Cow	F	1						0	
17-Oct	0	Cow	F	2	0	4	1	0	0	0	1
17-Oct	0	Cow	F	3	0	5	0	0	0	0	1
17-Oct	0	Cow	F	4						0	
17-Oct	0	Cow	F	5	0	5	0	0	1	0	1
17-Oct	0	Cow	F	6	0	5	0	0	0	0	0
17-Oct	0	Cow	0	1	0	6	0	0	0	0	0
17-Oct	0	Cow	0	2	0	5	0	0	0	0	1
17-Oct	0	Cow	0	3	0	6	0	0	0	0	0
17-Oct	0	Cow	0	4	0	6	0	0	0	0	0
17-Oct	0	Cow	0	5	1	4	1	0	0	0	0
17-Oct	0	Cow	0	6	0	5	1	0	0	0	0
17-Oct	0	Cow	A	1	0	6	0	0	0	0	0
17-Oct	0	Cow	A	2	0	6	0	0	0	0	0
17-Oct	0	Cow	A	3						0	
17-Oct	0	Cow	A	4	0	6	0	0	0	0	0
17-Oct	0	Cow	A	5	0	6	0	0	0	0	0
17-Oct	0	Cow	A	6	0	6	0	0	0	0	0
17-Oct	C	Cow	F	1	0	4	0	0	0	1	1
17-Oct	C	Cow	F	2	0	3	0	0	0	3	3
17-Oct	C	Cow	F	3	0	6	0	0	0	0	0
17-Oct	C	Cow	F	4	1	5	0	0	0	0	0
17-Oct	C	Cow	F	5	0	2	0	0	0	4	4
17-Oct	C	Cow	F	6	1	5	0	0	0	0	0
17-Oct	C	Cow	0	1	0	6	0	0	0	0	0
17-Oct	C	Cow	0	2	0	5	0	1	0	0	1
17-Oct	C	Cow	0	3	0	5	0	0	0	1	1
17-Oct	C	Cow	0	4							
17-Oct	C	Cow	0	5	1	3	0	0	0	1	1
17-Oct	C	Cow	0	6	0	3	2	0	0	0	1
17-Oct	C	Cow	A	1	0	6	0	0	0	0	0
17-Oct	C	Cow	A	2	0	6	0	0	0	0	0
17-Oct	C	Cow	A	3	1	5	0	0	0	0	0
17-Oct	C	Cow	A	4	0	6	0	0	0	0	0
17-Oct	C	Cow	A	5	1	5	0	0	0	0	0
17-Oct	C	Cow	A	6	0	5	0	0	0	1	1


18-Nov	C	Wheat	A	1	0	4	0	0	0	0	0
18-Nov	C	Wheat	A	2	1	4	0	0	0	0	0
18-Nov	C	Wheat	A	3	1	5	0	0	0	0	0
18-Nov	C	Wheat	A	4	1	5	0	0	0	0	0
18-Nov	C	Wheat	A	5	0	5	0	0	1	0	1
18-Nov	C	Wheat	A	6	2	2	0	0	0	0	0
18-Nov	C	Wheat	A	7	1	4	0	0	0	0	0
18-Nov	C	Wheat	A	8	0	5	0	0	0	0	0
18-Nov	C	Wheat	A	9	0	4	0	0	0	0	0
18-Nov	C	Wheat	A	10	0	6	0	0	0	0	0
18-Nov	C	Wheat	B	1	1	5	0	0	0	0	0
18-Nov	C	Wheat	B	2	1	5	0	0	0	0	0
18-Nov	C	Wheat	B	3	3	2	0	0	0	0	0
18-Nov	C	Wheat	B	4	2	4	0	0	0	0	0
18-Nov	C	Wheat	B	5	0	0	0	0	0	0	0
18-Nov	C	Wheat	B	6	0	5	0	1	0	0	1
18-Nov	C	Wheat	B	7	4	2	0	0	0	0	0
18-Nov	C	Wheat	B	8	0	5	0	1	0	0	1
18-Nov	C	Wheat	B	9	1	4	1	0	0	0	0
18-Nov	C	Wheat	B	10	1	5	0	0	0	0	0
18-Nov	C	Wheat	C	1	0	5	0	0	0	0	0
18-Nov	C	Wheat	C	2	0	5	0	0	0	0	0
18-Nov	C	Wheat	C	3	1	5	0	0	0	0	0
18-Nov	C	Wheat	C	4	0	6	0	0	0	0	0
18-Nov	C	Wheat	C	5	2	2	0	0	0	0	0
18-Nov	C	Wheat	C	6	0	6	0	0	0	0	0
18-Nov	C	Wheat	C	7	0	6	0	0	0	0	0
18-Nov	C	Wheat	C	8	0	5	0	1	0	0	1
18-Nov	C	Wheat	C	9	1	5	0	0	0	0	0
18-Nov	C	Wheat	C	10	2	2	1	0	0	0	0
18-Nov	C	Wheat	D	1	2	3	0	1	0	0	1
18-Nov	C	Wheat	D	2	0	6	0	0	0	0	0
18-Nov	C	Wheat	D	3	1	5	0	0	0	0	0
18-Nov	C	Wheat	D	4	0	6	0	0	0	0	0
18-Nov	C	Wheat	D	5	2	4	0	0	0	0	0
18-Nov	C	Wheat	D	6	1	4	0	0	1	0	1
18-Nov	C	Wheat	D	7	0	6	0	0	0	0	0
18-Nov	C	Wheat	D	8	1	5	0	0	0	0	0
18-Nov	C	Wheat	D	9	1	5	0	0	0	0	0
18-Nov	C	Wheat	D	10	2	5	0	0	0	0	0
18-Nov	0	Wheat	A	1	4	1	0	0	0	0	0


18-Nov	0	Wheat	A	2	4	1	0	0	0	0	0
18-Nov	0	Wheat	A	3	3	2	0	1	0	0	1
18-Nov	0	Wheat	A	4	5	1	0	0	0	0	0
18-Nov	0	Wheat	A	5	1	5	0	0	0	0	0
18-Nov	0	Wheat	A	6	1	3	2	0	0	0	0
18-Nov	0	Wheat	A	7	3	1	1	0	1	0	1
18-Nov	0	Wheat	A	8	5	1	0	0	0	0	0
18-Nov	0	Wheat	A	9	5	1	0	0	0	0	0
18-Nov	0	Wheat	A	10	1	5	0	0	0	0	0
18-Nov	0	Wheat	B	1	2	1	0	0	0	0	0
18-Nov	0	Wheat	B	2	1	0	3	0	1	0	1
18-Nov	0	Wheat	B	3	0	0	1	0	0	0	0
18-Nov	0	Wheat	B	4	2	1	0	0	0	0	0
18-Nov	0	Wheat	B	5	3	1	0	0	0	0	0
18-Nov	0	Wheat	B	6	4	0	0	0	1	0	1
18-Nov	0	Wheat	B	7	6	0	0	0	0	0	0
18-Nov	0	Wheat	B	8	5	1	0	0	0	0	0
18-Nov	0	Wheat	B	9	3	0	0	2	0	0	2
18-Nov	0	Wheat	B	10	1	4	0	0	0	0	0
18-Nov	0	Wheat	C	1	2	3	0	0	0	0	0
18-Nov	0	Wheat	C	2	1	0	0	0	0	0	0
18-Nov	0	Wheat	C	3	0	0	1	2	0	0	2
18-Nov	0	Wheat	C	4	2	1	0	0	0	0	0
18-Nov	0	Wheat	C	5	0	5	1	0	0	0	0
18-Nov	0	Wheat	C	6	1	3	0	0	0	0	0
18-Nov	0	Wheat	C	7	2	1	1	0	0	0	0
18-Nov	0	Wheat	C	8	1	2	1	0	0	0	0
18-Nov	0	Wheat	C	9	3	2	0	0	0	0	0
18-Nov	0	Wheat	C	10	1	4	0	0	0	0	0
18-Nov	0	Wheat	D	1	1	2	0	0	0	0	0
18-Nov	0	Wheat	D	2	2	4	0	0	0	0	0
18-Nov	0	Wheat	D	3	0	6	0	0	0	0	0
18-Nov	0	Wheat	D	4	0	4	1	1	0	0	1
18-Nov	0	Wheat	D	5	1	4	0	0	0	0	0
18-Nov	0	Wheat	D	6	1	2	1	0	0	0	0
18-Nov	0	Wheat	D	7	0	2	1	0	0	0	0
18-Nov	0	Wheat	D	8	0	0	0	0	0	0	0
18-Nov	0	Wheat	D	9	0	2	0	2	0	0	2
18-Nov	0	Wheat	D	10	0	1	0	0	0	0	0
18-Nov	C	Cow	A	1	0	0	0	1	0	0	1
18-Nov	C	Cow	A	2	1	5	0	0	0	0	0


18-Nov	C	Cow	A	3	1	3	2	0	0	0	0
18-Nov	C	Cow	A	4	0	0	0	0	0	0	0
18-Nov	C	Cow	A	5	0	6	0	0	0	0	0
18-Nov	C	Cow	A	6	4	2	0	0	0	0	0
18-Nov	C	Cow	0	1	0	6	0	0	0	0	0
18-Nov	C	Cow	0	2	0	6	0	0	0	0	0
18-Nov	C	Cow	0	3	2	4	0	0	0	0	0
18-Nov	C	Cow	0	4	2	4	0	0	0	0	0
18-Nov	C	Cow	0	5	0	5	1	0	0	0	0
18-Nov	C	Cow	0	6	1	4	1	0	0	0	0
18-Nov	C	Cow	F	1	1	5	0	0	0	0	0
18-Nov	C	Cow	F	2	0	0	0	0	0	0	0
18-Nov	C	Cow	F	3	1	5	0	0	0	0	0
18-Nov	C	Cow	F	4	2	4	0	0	0	0	0
18-Nov	C	Cow	F	5	0	6	0	0	0	0	0
18-Nov	C	Cow	F	6	0	6	0	0	0	0	0
18-Nov	0	Cow	A	1	0	5	0	0	1	0	1
18-Nov	0	Cow	A	2	0	6	0	0	0	0	0
18-Nov	0	Cow	A	3	0	2	0	0	4	0	4
18-Nov	0	Cow	A	4	0	0	0	0	0	0	0
18-Nov	0	Cow	A	5	0	5	0	0	0	0	0
18-Nov	0	Cow	A	6	0	4	1	1	0	0	1
18-Nov	0	Cow	0	1	0	3	0	0	3	0	3
18-Nov	0	Cow	0	2	2	4	0	0	0	0	0
18-Nov	0	Cow	0	3	1	5	0	0	0	0	0
18-Nov	0	Cow	0	4	2	3	1	0	0	0	0
18-Nov	0	Cow	0	5	2	1	0	0	3	0	3
18-Nov	0	Cow	0	6	0	2	0	0	4	0	4
18-Nov	0	Cow	F	1	6	0	0	0	0	0	0
18-Nov	0	Cow	F	2	3	3	0	0	0	0	0
18-Nov	0	Cow	F	3	0	6	0	1	0	0	1
18-Nov	0	Cow	F	4	0	5	0	1	0	0	1
18-Nov	0	Cow	F	5	0	5	0	0	0	0	0
18-Nov	0	Cow	F	6	1	5	0	0	0	0	0
3-Sep	0	Wheat	A	1	0	6	0	0	0	0	0
3-Sep	0	Wheat	A	2	0	6	0	0	0	0	0
3-Sep	0	Wheat	A	3	0	6	0	0	0	0	0
3-Sep	0	Wheat	A	4	0	6	0	0	0	0	0
3-Sep	0	Wheat	A	5	0	6	0	0	0	0	0
3-Sep	0	Wheat	A	6	0	6	0	0	0	0	0
3-Sep	0	Wheat	A	7	0	6	0	0	0	0	0


3-Sep	0	Wheat	B	1	1	5	0	0	0	0	0
3-Sep	0	Wheat	B	2	0	6	0	0	0	0	0
3-Sep	0	Wheat	B	3	0	6	0	0	0	0	0
3-Sep	0	Wheat	B	4	0	6	0	0	0	0	0
3-Sep	0	Wheat	B	5	0	5	1	0	0	0	0
3-Sep	0	Wheat	B	6	0	6	0	0	0	0	0
3-Sep	0	Wheat	C	1	0	6	0	0	0	0	0
3-Sep	0	Wheat	C	2	0	5	0	1	0	0	1
3-Sep	0	Wheat	C	3	0	6	0	0	0	0	0
3-Sep	0	Wheat	C	4	0	6	0	0	0	0	0
3-Sep	0	Wheat	C	5	0	6	0	0	0	0	0
3-Sep	0	Wheat	C	6	1	5	0	0	0	0	0
3-Sep	0	Wheat	D	1	0	6	0	0	0	0	0
3-Sep	0	Wheat	D	2	0	6	0	0	0	0	0
3-Sep	0	Wheat	D	3	0	6	0	0	0	0	0
3-Sep	0	Wheat	D	4	0	6	0	0	0	0	0
3-Sep	0	Wheat	D	5	1	4	1	1	0	0	1
3-Sep	0	Wheat	D	6	0	6	0	0	0	0	0
3-Sep	C	Wheat	A	1	0	6	0	0	0	0	0
3-Sep	C	Wheat	A	2	0	6	0	0	0	0	0
3-Sep	C	Wheat	A	3	0	6	0	0	0	0	0
3-Sep	C	Wheat	A	4	0	6	0	0	0	0	0
3-Sep	C	Wheat	A	5	0	6	0	0	0	0	0
3-Sep	C	Wheat	A	6	0	5	0	0	0	0	0
3-Sep	C	Wheat	B	1	0	6	0	0	0	0	0
3-Sep	C	Wheat	B	2	1	5	0	0	0	0	0
3-Sep	C	Wheat	B	3	0	6	0	0	0	0	0
3-Sep	C	Wheat	B	4	0	6	0	0	0	0	0
3-Sep	C	Wheat	B	5	0	6	0	0	0	0	0
3-Sep	C	Wheat	B	6	0	6	0	0	0	0	0
3-Sep	C	Wheat	C	1	0	5	1	0	0	0	0
3-Sep	C	Wheat	C	2	0	6	0	0	0	0	0
3-Sep	C	Wheat	C	3	1	5	0	0	0	0	0
3-Sep	C	Wheat	C	4	0	6	0	0	0	0	0
3-Sep	C	Wheat	C	5	0	5	0	1	0	0	1
3-Sep	C	Wheat	C	6	0	6	0	0	0	0	0
3-Sep	C	Wheat	D	1	0	6	0	0	0	0	0
3-Sep	C	Wheat	D	2	0	6	0	0	0	0	0
3-Sep	C	Wheat	D	3	0	6	0	0	0	0	0
3-Sep	C	Wheat	D	4	0	5	1	0	0	0	0
3-Sep	C	Wheat	D	5	0	6	0	0	0	0	0


3-Sep	C	Wheat	D	6	0	6	0	0	0	0	0
3-Sep	O	Cow	A	1	0	4	2	0	0	0	0
3-Sep	O	Cow	A	2	0	6	0	0	0	0	0
3-Sep	O	Cow	A	3	0	6	0	0	0	0	0
3-Sep	O	Cow	A	4	0	4	2	0	0	0	0
3-Sep	O	Cow	A	5	0	6	0	0	0	0	0
3-Sep	O	Cow	F	1	0	4	1	1	0	0	1
3-Sep	O	Cow	F	2	0	6	0	0	0	0	0
3-Sep	O	Cow	F	3	0	6	0	0	0	0	0
3-Sep	O	Cow	F	4	0	6	0	0	0	0	0
3-Sep	O	Cow	F	5	0	6	0	0	0	0	0
3-Sep	O	Cow	O	1	1	2	2	1	0	0	1
3-Sep	O	Cow	0	2	1	3	2	0	0	0	0
3-Sep	O	Cow	O	3	0	6	0	0	0	0	0
3-Sep	O	Cow	0	4	0	5	1	0	0	0	0
3-Sep	C	Cow	A	1	0	6	0	0	0	0	0
3-Sep	C	Cow	A	2	0	5	1	0	0	0	0
3-Sep	C	Cow	A	3	0	6	0	0	0	0	0
3-Sep	C	Cow	A	4	1	5	0	0	0	0	0
3-Sep	C	Cow	A	5	0	6	0	0	0	0	0
3-Sep	C	Cow	F	1	0	4	0	2	0	0	2
3-Sep	C	Cow	F	2	1	0	2	3	0	0	3
3-Sep	C	Cow	F	3	2	4	0	0	0	0	0
3-Sep	C	Cow	F	4	2	4	0	0	0	0	0
3-Sep	C	Cow	F	5	0	5	1	0	0	0	0
3-Sep	C	Cow	0	1	4	0	0	0	2	0	2
3-Sep	C	Cow	O	2	0	4	2	0	0	0	0
3-Sep	C	Cow	0	3	1	4	1	0	0	0	0
3-Sep	C	Cow	O	4	0	6	0	0	0	0	0
3-Sep	C	Cow	0	5	0	6	0	0	0	0	0

State wide precipitation gradient results.

Date	Location	Field	trt	sample \#	TI	NI
1	Woodward	A	F	1	0	6
1	Woodward	A	F	2	0	6
1	Woodward	A	F	3	0	6
1	Woodward	A	F	4	0	6


1	Woodward	A	F	5	0	6
1	Woodward	A	F	6	0	6
1	Woodward	A	F	7	1	5
1	Woodward	A	F	8	0	6
1	Woodward	A	F	9	0	6
1	Woodward	A	F	10	0	6
1	Woodward	A	F	11	0	6
1	Woodward	A	F	12	0	6
1	Woodward	A	F	13	0	6
1	Woodward	A	F	14	0	6
1	Woodward	A	F	15	0	6
1	Woodward	A	F	16	0	6
1	Woodward	A	F	17	0	6
1	Woodward	A	F	18	0	6
1	Woodward	A	F	19	0	6
1	Woodward	A	F	20	0	6
1	Woodward	A	0	1	0	6
1	Woodward	A	0	2	0	6
1	Woodward	A	0	3	0	6
1	Woodward	A	0	4	0	6
1	Woodward	A	0	5	0	6
1	Woodward	A	0	6	0	6
1	Woodward	A	0	7	0	6
1	Woodward	A	0	8	0	6
1	Woodward	A	0	9	0	6
1	Woodward	A	0	10	0	6
1	Woodward	A	0	11	0	6
1	Woodward	A	0	12	0	6
1	Woodward	A	0	13	0	6
1	Woodward	A	0	14	0	6
1	Woodward	A	0	15	0	6
1	Woodward	A	0	16	0	6
1	Woodward	A	0	17	0	6
1	Woodward	A	0	18	0	6
1	Woodward	A	0	19	0	6
1	Woodward	A	0	20	0	6
1	Woodward	A	N	1	0	6
1	Woodward	A	N	2	0	6
1	Woodward	A	N	3	0	6
1	Woodward	A	N	4	0	6
1	Woodward	A	N	5	0	6


1	Woodward	A	N	6	0	6
1	Woodward	A	N	7	0	6
1	Woodward	A	N	8	0	6
1	Woodward	A	N	9	0	6
1	Woodward	A	N	10	0	6
1	Woodward	A	N	11	0	6
1	Woodward	A	N	12	0	6
1	Woodward	A	N	13	0	6
1	Woodward	A	N	14	0	6
1	Woodward	A	N	15	0	6
1	Woodward	A	N	16	0	6
1	Woodward	A	N	17	0	6
1	Woodward	A	N	18	0	6
1	Woodward	A	N	19	0	6
1	Woodward	A	N	20	0	6
1	Woodward	B	F	1	0	6
1	Woodward	B	F	2	0	6
1	Woodward	B	F	3	0	6
1	Woodward	B	F	4	0	6
1	Woodward	B	F	5	0	6
1	Woodward	B	F	6	0	6
1	Woodward	B	F	7	0	6
1	Woodward	B	F	8	0	6
1	Woodward	B	F	9	0	6
1	Woodward	B	F	10	0	6
1	Woodward	B	F	11	0	6
1	Woodward	B	F	12	0	6
1	Woodward	B	F	13	0	6
1	Woodward	B	F	14	0	6
1	Woodward	B	F	15	0	6
1	Woodward	B	F	16	0	6
1	Woodward	B	F	17	0	6
1	Woodward	B	F	18	0	6
1	Woodward	B	F	19	0	6
1	Woodward	B	F	20	0	6
1	Woodward	B	0	1	0	6
1	Woodward	B	0	2	0	6
1	Woodward	B	0	3	0	6
1	Woodward	B	0	4	0	6
1	Woodward	B	0	5	0	6
1	Woodward	B	O	6	0	6


1	Woodward	B	0	7	0	6
1	Woodward	B	0	8	0	6
1	Woodward	B	0	9	0	6
1	Woodward	B	0	10	0	6
1	Woodward	B	0	11	0	6
1	Woodward	B	0	12	0	6
1	Woodward	B	0	13	0	6
1	Woodward	B	0	14	0	6
1	Woodward	B	0	15	0	6
1	Woodward	B	0	16	0	6
1	Woodward	B	0	17	0	6
1	Woodward	B	0	18	0	6
1	Woodward	B	0	19	0	6
1	Woodward	B	0	20	0	6
1	Woodward	B	N	1	0	6
1	Woodward	B	N	2	0	6
1	Woodward	B	N	3	0	6
1	Woodward	B	N	4	0	6
1	Woodward	B	N	5	0	6
1	Woodward	B	N	6	0	6
1	Woodward	B	N	7	0	6
1	Woodward	B	N	8	0	6
1	Woodward	B	N	9	0	6
1	Woodward	B	N	10	0	6
1	Woodward	B	N	11	0	6
1	Woodward	B	N	12	0	6
1	Woodward	B	N	13	0	6
1	Woodward	B	N	14	0	6
1	Woodward	B	N	15	0	6
1	Woodward	B	N	16	0	6
1	Woodward	B	N	17	0	6
1	Woodward	B	N	18	0	6
1	Woodward	B	N	19	0	6
1	Woodward	B	N	20	0	6
1	Goodwell	A	F	1	0	6
1	Goodwell	A	F	2	0	6
1	Goodwell	A	F	3	0	6
1	Goodwell	A	F	4	1	5
1	Goodwell	A	F	5	0	6
1	Goodwell	A	F	6	0	6
1	Goodwell	A	F	7	0	6


1	Goodwell	A	F	8	0	6
1	Goodwell	A	F	9	0	6
1	Goodwell	A	F	10	0	6
1	Goodwell	A	F	11	0	6
1	Goodwell	A	F	12	0	6
1	Goodwell	A	F	13	0	6
1	Goodwell	A	F	14	0	6
1	Goodwell	A	F	15	0	6
1	Goodwell	A	F	16	0	6
1	Goodwell	A	F	17	0	6
1	Goodwell	A	F	18	0	6
1	Goodwell	A	F	19	0	6
1	Goodwell	A	F	20	0	6
1	Goodwell	A	0	1	0	6
1	Goodwell	A	0	2	0	6
1	Goodwell	A	0	3	0	6
1	Goodwell	A	0	4	0	6
1	Goodwell	A	0	5	0	6
1	Goodwell	A	0	6	0	6
1	Goodwell	A	0	7	1	5
1	Goodwell	A	0	8	0	6
1	Goodwell	A	0	9	0	6
1	Goodwell	A	0	10	0	6
1	Goodwell	A	0	11	0	6
1	Goodwell	A	0	12	0	6
1	Goodwell	A	0	13	0	6
1	Goodwell	A	0	14	0	6
1	Goodwell	A	0	15	0	6
1	Goodwell	A	0	16	0	6
1	Goodwell	A	0	17	0	6
1	Goodwell	A	0	18	0	6
1	Goodwell	A	0	19	0	6
1	Goodwell	A	0	20	0	6
1	Goodwell	A	N	1	0	6
1	Goodwell	A	N	2	0	6
1	Goodwell	A	N	3	0	6
1	Goodwell	A	N	4	0	6
1	Goodwell	A	N	5	0	6
1	Goodwell	A	N	6	0	6
1	Goodwell	A	N	7	0	6
1	Goodwell	A	N	8	0	6


1	Goodwell	A	N	9	0	6
1	Goodwell	A	N	10	0	6
1	Goodwell	A	N	11	0	6
1	Goodwell	A	N	12	0	6
1	Goodwell	A	N	13	0	6
1	Goodwell	A	N	14	0	6
1	Goodwell	A	N	15	0	6
1	Goodwell	A	N	16	0	6
1	Goodwell	A	N	17	0	6
1	Goodwell	A	N	18	0	6
1	Goodwell	A	N	19	0	6
1	Goodwell	A	N	20	0	6
1	Goodwell	B	F	1	0	6
1	Goodwell	B	F	2	0	6
1	Goodwell	B	F	3	0	6
1	Goodwell	B	F	4	0	6
1	Goodwell	B	F	5	0	6
1	Goodwell	B	F	6	0	6
1	Goodwell	B	F	7	0	6
1	Goodwell	B	F	8	0	6
1	Goodwell	B	F	9	0	6
1	Goodwell	B	F	10	0	6
1	Goodwell	B	F	11	0	6
1	Goodwell	B	F	12	0	6
1	Goodwell	B	F	13	0	6
1	Goodwell	B	F	14	0	6
1	Goodwell	B	F	15	0	6
1	Goodwell	B	F	16	0	6
1	Goodwell	B	F	17	0	6
1	Goodwell	B	F	18	0	6
1	Goodwell	B	F	19	0	6
1	Goodwell	B	F	20	1	5
1	Goodwell	B	0	1	1	5
1	Goodwell	B	0	2	0	6
1	Goodwell	B	0	3	0	6
1	Goodwell	B	0	4	0	6
1	Goodwell	B	0	5	0	6
1	Goodwell	B	0	6	0	6
1	Goodwell	B	0	7	0	6
1	Goodwell	B	0	8	0	6
1	Goodwell	B	0	9	0	6


1	Goodwell	B	0	10	0	6
1	Goodwell	B	0	11	0	6
1	Goodwell	B	0	12	0	6
1	Goodwell	B	0	13	0	6
1	Goodwell	B	0	14	0	6
1	Goodwell	B	0	15	0	6
1	Goodwell	B	0	16	0	6
1	Goodwell	B	0	17	0	6
1	Goodwell	B	0	18	0	6
1	Goodwell	B	0	19	0	6
1	Goodwell	B	0	20	0	6
1	Goodwell	B	N	1	0	6
1	Goodwell	B	N	2	0	6
1	Goodwell	B	N	3	0	6
1	Goodwell	B	N	4	0	6
1	Goodwell	B	N	5	0	6
1	Goodwell	B	N	6	0	6
1	Goodwell	B	N	7	0	6
1	Goodwell	B	N	8	0	6
1	Goodwell	B	N	9	0	6
1	Goodwell	B	N	10	0	6
1	Goodwell	B	N	11	0	6
1	Goodwell	B	N	12	0	6
1	Goodwell	B	N	13	0	6
1	Goodwell	B	N	14	0	6
1	Goodwell	B	N	15	0	6
1	Goodwell	B	N	16	0	6
1	Goodwell	B	N	17	0	6
1	Goodwell	B	N	18	0	6
1	Goodwell	B	N	19	0	6
1	Goodwell	B	N	20	0	6
1	Stillwater	A	0	1	0	6
1	Stillwater	A	0	2	1	5
1	Stillwater	A	0	3	0	6
1	Stillwater	A	0	4	2	4
1	Stillwater	A	0	5	0	6
1	Stillwater	A	0	6	0	6
1	Stillwater	A	0	7	0	6
1	Stillwater	A	0	8	0	6
1	Stillwater	A	0	9	0	6
1	Stillwater	A	0	10	0	6


1	Stillwater	A	0	11	6	0
1	Stillwater	A	0	12	0	6
1	Stillwater	A	0	13	0	6
1	Stillwater	A	0	14	0	6
1	Stillwater	A	0	15	0	6
1	Stillwater	A	0	16	0	6
1	Stillwater	A	0	17	0	6
1	Stillwater	A	0	18	0	6
1	Stillwater	A	0	19	0	6
1	Stillwater	A	0	20	0	6
1	Stillwater	A	F	1	0	6
1	Stillwater	A	F	2	0	6
1	Stillwater	A	F	3	0	6
1	Stillwater	A	F	4	0	6
1	Stillwater	A	F	5	0	6
1	Stillwater	A	F	6	0	6
1	Stillwater	A	F	7	0	6
1	Stillwater	A	F	8	0	6
1	Stillwater	A	F	9	0	6
1	Stillwater	A	F	10	0	6
1	Stillwater	A	F	11	0	6
1	Stillwater	A	F	12	0	6
1	Stillwater	A	F	13	0	6
1	Stillwater	A	F	14	0	6
1	Stillwater	A	F	15	0	6
1	Stillwater	A	F	16	0	6
1	Stillwater	A	F	17	0	6
1	Stillwater	A	F	18	0	6
1	Stillwater	A	F	19	0	6
1	Stillwater	A	F	20	0	6
1	Stillwater	A	N	1	0	6
1	Stillwater	A	N	2	0	6
1	Stillwater	A	N	3	0	6
1	Stillwater	A	N	4	0	6
1	Stillwater	A	N	5	0	6
1	Stillwater	A	N	6	0	6
1	Stillwater	A	N	7	0	6
1	Stillwater	A	N	8	0	6
1	Stillwater	A	N	9	0	6
1	Stillwater	A	N	10	0	6
1	Stillwater	A	N	11	0	6


1	Stillwater	A	N	12	0	6
1	Stillwater	A	N	13	0	6
1	Stillwater	A	N	14	0	6
1	Stillwater	A	N	15	0	6
1	Stillwater	A	N	16	0	6
1	Stillwater	A	N	17	0	6
1	Stillwater	A	N	18	0	6
1	Stillwater	A	N	19	0	6
1	Stillwater	A	N	20	0	6
1	Stillwater	B	0	1	0	6
1	Stillwater	B	0	2	0	6
1	Stillwater	B	0	3	0	6
1	Stillwater	B	0	4	0	6
1	Stillwater	B	0	5	0	6
1	Stillwater	B	0	6	0	6
1	Stillwater	B	0	7	0	6
1	Stillwater	B	0	8	0	6
1	Stillwater	B	0	9	0	6
1	Stillwater	B	0	10	0	6
1	Stillwater	B	0	11	0	6
1	Stillwater	B	0	12	0	6
1	Stillwater	B	0	13	0	6
1	Stillwater	B	0	14	0	6
1	Stillwater	B	0	15	0	6
1	Stillwater	B	0	16	0	6
1	Stillwater	B	0	17	0	6
1	Stillwater	B	0	18	0	6
1	Stillwater	B	0	19	0	6
1	Stillwater	B	0	20	0	6
1	Stillwater	B	F	1	0	6
1	Stillwater	B	F	2	0	6
1	Stillwater	B	F	3	0	6
1	Stillwater	B	F	4	0	6
1	Stillwater	B	F	5	0	6
1	Stillwater	B	F	6	0	6
1	Stillwater	B	F	7	0	6
1	Stillwater	B	F	8	0	6
1	Stillwater	B	F	9	0	6
1	Stillwater	B	F	10	0	6
1	Stillwater	B	F	11	0	6
1	Stillwater	B	F	12	0	6


1	Stillwater	B	F	13	0	6
1	Stillwater	B	F	14	0	6
1	Stillwater	B	F	15	0	6
1	Stillwater	B	F	16	0	6
1	Stillwater	B	F	17	0	6
1	Stillwater	B	F	18	0	6
1	Stillwater	B	F	19	0	6
1	Stillwater	B	F	20	0	6
1	Stillwater	B	N	1	0	6
1	Stillwater	B	N	2	0	6
1	Stillwater	B	N	3	0	6
1	Stillwater	B	N	4	0	6
1	Stillwater	B	N	5	0	6
1	Stillwater	B	N	6	0	6
1	Stillwater	B	N	7	0	6
1	Stillwater	B	N	8	0	6
1	Stillwater	B	N	9	0	6
1	Stillwater	B	N	10	0	6
1	Stillwater	B	N	11	0	6
1	Stillwater	B	N	12	0	6
1	Stillwater	B	N	13	0	6
1	Stillwater	B	N	14	0	6
1	Stillwater	B	N	15	0	6
1	Stillwater	B	N	16	0	6
1	Stillwater	B	N	17	0	6
1	Stillwater	B	N	18	0	6
1	Stillwater	B	N	19	0	6
1	Stillwater	B	N	20	0	6
1	Haskell	A	0	1	0	6
1	Haskell	A	0	2	0	6
1	Haskell	A	0	3	0	6
1	Haskell	A	0	4	0	6
1	Haskell	A	0	5	0	6
1	Haskell	A	0	6	0	6
1	Haskell	A	0	7	0	6
1	Haskell	A	0	8	0	6
1	Haskell	A	0	9	0	6
1	Haskell	A	0	10	0	6
1	Haskell	A	0	11	0	6
1	Haskell	A	0	12	0	6
1	Haskell	A	0	13	0	6


1	Haskell	A	0	14	1	5
1	Haskell	A	0	15	0	6
1	Haskell	A	0	16	0	6
1	Haskell	A	0	17	0	6
1	Haskell	A	0	18	0	6
1	Haskell	A	0	19	0	6
1	Haskell	A	0	20	0	6
1	Haskell	A	F	1	0	6
1	Haskell	A	F	2	2	4
1	Haskell	A	F	3	0	6
1	Haskell	A	F	4	0	6
1	Haskell	A	F	5	0	6
1	Haskell	A	F	6	0	6
1	Haskell	A	F	7	0	6
1	Haskell	A	F	8	0	6
1	Haskell	A	F	9	0	6
1	Haskell	A	F	10	0	6
1	Haskell	A	F	11	0	6
1	Haskell	A	F	12	0	6
1	Haskell	A	F	13	0	6
1	Haskell	A	F	14	0	6
1	Haskell	A	F	15	0	6
1	Haskell	A	F	16	0	6
1	Haskell	A	F	17	0	6
1	Haskell	A	F	18	0	6
1	Haskell	A	F	19	0	6
1	Haskell	A	F	20	0	6
1	Haskell	A	N	1	1	5
1	Haskell	A	N	2	0	6
1	Haskell	A	N	3	0	6
1	Haskell	A	N	4	5	1
1	Haskell	A	N	5	0	6
1	Haskell	A	N	6	3	3
1	Haskell	A	N	7	0	6
1	Haskell	A	N	8	0	6
1	Haskell	A	N	9	0	6
1	Haskell	A	N	10	1	5
1	Haskell	A	N	11	0	6
1	Haskell	A	N	12	0	6
1	Haskell	A	N	13	0	6
1	Haskell	A	N	14	0	6


1	Haskell	A	N	15	1	5
1	Haskell	A	N	16	0	6
1	Haskell	A	N	17	0	6
1	Haskell	A	N	18	0	6
1	Haskell	A	N	19	0	6
1	Haskell	A	N	20	0	6
1	Haskell	B	0	1	0	6
1	Haskell	B	0	2	0	6
1	Haskell	B	0	3	0	6
1	Haskell	B	0	4	0	6
1	Haskell	B	0	5	0	6
1	Haskell	B	0	6	0	6
1	Haskell	B	0	7	0	6
1	Haskell	B	0	8	0	6
1	Haskell	B	0	9	0	6
1	Haskell	B	0	10	0	6
1	Haskell	B	0	11	0	6
1	Haskell	B	0	12	0	6
1	Haskell	B	0	13	0	6
1	Haskell	B	0	14	0	6
1	Haskell	B	0	15	0	6
1	Haskell	B	0	16	0	6
1	Haskell	B	0	17	0	6
1	Haskell	B	0	18	0	6
1	Haskell	B	0	19	0	6
1	Haskell	B	0	20	0	6
1	Haskell	B	F	1	0	6
1	Haskell	B	F	2	0	6
1	Haskell	B	F	3	0	6
1	Haskell	B	F	4	0	6
1	Haskell	B	F	5	0	6
1	Haskell	B	F	6	0	6
1	Haskell	B	F	7	0	6
1	Haskell	B	F	8	0	6
1	Haskell	B	F	9	0	6
1	Haskell	B	F	10	0	6
1	Haskell	B	F	11	0	6
1	Haskell	B	F	12	0	6
1	Haskell	B	F	13	0	6
1	Haskell	B	F	14	0	6
1	Haskell	B	F	15	0	6


1	Haskell	B	F	16	0	6
1	Haskell	B	F	17	0	6
1	Haskell	B	F	18	0	6
1	Haskell	B	F	19	0	6
1	Haskell	B	F	20	0	6
1	Haskell	B	N	1	0	6
1	Haskell	B	N	2	0	6
1	Haskell	B	N	3	0	6
1	Haskell	B	N	4	0	6
1	Haskell	B	N	5	0	6
1	Haskell	B	N	6	0	6
1	Haskell	B	N	7	0	6
1	Haskell	B	N	8	0	6
1	Haskell	B	N	9	0	6
1	Haskell	B	N	10	0	6
1	Haskell	B	N	11	0	6
1	Haskell	B	N	12	0	6
1	Haskell	B	N	13	0	6
1	Haskell	B	N	14	0	6
1	Haskell	B	N	15	0	6
1	Haskell	B	N	16	0	6
1	Haskell	B	N	17	0	6
1	Haskell	B	N	18	0	6
1	Haskell	B	N	19	0	6
1	Haskell	B	N	20	0	6
2	Stillwater	A	0	1	0	6
2	Stillwater	A	0	2	1	5
2	Stillwater	A	0	3	0	6
2	Stillwater	A	0	4	2	4
2	Stillwater	A	0	5	0	6
2	Stillwater	A	0	6	0	6
2	Stillwater	A	0	7	0	6
2	Stillwater	A	0	8	0	6
2	Stillwater	A	0	9	0	6
2	Stillwater	A	0	10	0	6
2	Stillwater	A	0	11	6	0
2	Stillwater	A	0	12	0	6
2	Stillwater	A	0	13	0	6
2	Stillwater	A	0	14	0	6
2	Stillwater	A	0	15	0	6
2	Stillwater	A	0	16	0	6


2	Stillwater	A	0	17	0	6
2	Stillwater	A	0	18	0	6
2	Stillwater	A	0	19	0	6
2	Stillwater	A	0	20	0	6
2	Stillwater	A	F	1	0	6
2	Stillwater	A	F	2	0	6
2	Stillwater	A	F	3	0	6
2	Stillwater	A	F	4	0	6
2	Stillwater	A	F	5	0	6
2	Stillwater	A	F	6	0	6
2	Stillwater	A	F	7	0	6
2	Stillwater	A	F	8	0	6
2	Stillwater	A	F	9	0	6
2	Stillwater	A	F	10	0	6
2	Stillwater	A	F	11	0	6
2	Stillwater	A	F	12	0	6
2	Stillwater	A	F	13	0	6
2	Stillwater	A	F	14	0	6
2	Stillwater	A	F	15	0	6
2	Stillwater	A	F	16	0	6
2	Stillwater	A	F	17	0	6
2	Stillwater	A	F	18	0	6
2	Stillwater	A	F	19	0	6
2	Stillwater	A	F	20	0	6
2	Stillwater	A	N	1	0	6
2	Stillwater	A	N	2	0	6
2	Stillwater	A	N	3	6	0
2	Stillwater	A	N	4	0	6
2	Stillwater	A	N	5	0	6
2	Stillwater	A	N	6	0	6
2	Stillwater	A	N	7	0	6
2	Stillwater	A	N	8	0	6
2	Stillwater	A	N	9	0	6
2	Stillwater	A	N	10	0	6
2	Stillwater	A	N	11	0	6
2	Stillwater	A	N	12	0	6
2	Stillwater	A	N	13	0	6
2	Stillwater	A	N	14	0	6
2	Stillwater	A	N	15	0	6
2	Stillwater	A	N	16	0	6
2	Stillwater	A	N	17	0	6


2	Stillwater	A	N	18	0	6
2	Stillwater	A	N	19	0	6
2	Stillwater	A	N	20	0	6
2	Stillwater	B	0	1	0	6
2	Stillwater	B	0	2	0	6
2	Stillwater	B	0	3	0	6
2	Stillwater	B	0	4	0	6
2	Stillwater	B	0	5	0	6
2	Stillwater	B	0	6	0	6
2	Stillwater	B	0	7	0	6
2	Stillwater	B	0	8	0	6
2	Stillwater	B	0	9	0	6
2	Stillwater	B	0	10	0	6
2	Stillwater	B	0	11	0	6
2	Stillwater	B	0	12	0	6
2	Stillwater	B	0	13	0	6
2	Stillwater	B	0	14	0	6
2	Stillwater	B	0	15	0	6
2	Stillwater	B	0	16	0	6
2	Stillwater	B	0	17	0	6
2	Stillwater	B	0	18	0	6
2	Stillwater	B	0	19	0	6
2	Stillwater	B	0	20	0	6
2	Stillwater	B	F	1	0	6
2	Stillwater	B	F	2	0	6
2	Stillwater	B	F	3	0	6
2	Stillwater	B	F	4	0	6
2	Stillwater	B	F	5	0	6
2	Stillwater	B	F	6	0	6
2	Stillwater	B	F	7	0	6
2	Stillwater	B	F	8	0	6
2	Stillwater	B	F	9	0	6
2	Stillwater	B	F	10	0	6
2	Stillwater	B	F	11	0	6
2	Stillwater	B	F	12	0	6
2	Stillwater	B	F	13	0	6
2	Stillwater	B	F	14	0	6
2	Stillwater	B	F	15	0	6
2	Stillwater	B	F	16	0	6
2	Stillwater	B	F	17	0	6
2	Stillwater	B	F	18	0	6


2	Stillwater	B	F	19	0	6
2	Stillwater	B	F	20	0	6
2	Stillwater	B	N	1	0	6
2	Stillwater	B	N	2	0	6
2	Stillwater	B	N	3	0	6
2	Stillwater	B	N	4	0	6
2	Stillwater	B	N	5	0	6
2	Stillwater	B	N	6	0	6
2	Stillwater	B	N	7	0	6
2	Stillwater	B	N	8	0	6
2	Stillwater	B	N	9	0	6
2	Stillwater	B	N	10	0	6
2	Stillwater	B	N	11	0	6
2	Stillwater	B	N	12	0	6
2	Stillwater	B	N	13	0	6
2	Stillwater	B	N	14	0	6
2	Stillwater	B	N	15	0	6
2	Stillwater	B	N	16	0	6
2	Stillwater	B	N	17	0	6
2	Stillwater	B	N	18	0	6
2	Stillwater	B	N	19	0	6
2	Stillwater	B	N	20	0	6
2	Haskell	A	0	1	0	6
2	Haskell	A	0	2	0	6
2	Haskell	A	0	3	0	6
2	Haskell	A	0	4	0	6
2	Haskell	A	0	5	0	6
2	Haskell	A	0	6	0	6
2	Haskell	A	0	7	0	6
2	Haskell	A	0	8	0	6
2	Haskell	A	0	9	0	6
2	Haskell	A	0	10	0	6
2	Haskell	A	0	11	0	6
2	Haskell	A	0	12	0	6
2	Haskell	A	0	13	0	6
2	Haskell	A	0	14	1	5
2	Haskell	A	0	15	0	6
2	Haskell	A	0	16	0	6
2	Haskell	A	0	17	0	6
2	Haskell	A	0	18	0	6
2	Haskell	A	0	19	0	6


2	Haskell	A	0	20	0	6
2	Haskell	A	F	1	0	6
2	Haskell	A	F	2	2	4
2	Haskell	A	F	3	0	6
2	Haskell	A	F	4	0	6
2	Haskell	A	F	5	0	6
2	Haskell	A	F	6	0	6
2	Haskell	A	F	7	0	6
2	Haskell	A	F	8	0	6
2	Haskell	A	F	9	0	6
2	Haskell	A	F	10	0	6
2	Haskell	A	F	11	0	6
2	Haskell	A	F	12	0	6
2	Haskell	A	F	13	0	6
2	Haskell	A	F	14	0	6
2	Haskell	A	F	15	0	6
2	Haskell	A	F	16	0	6
2	Haskell	A	F	17	0	6
2	Haskell	A	F	18	0	6
2	Haskell	A	F	19	0	6
2	Haskell	A	F	20	0	6
2	Haskell	A	N	1	1	5
2	Haskell	A	N	2	0	6
2	Haskell	A	N	3	0	6
2	Haskell	A	N	4	5	1
2	Haskell	A	N	5	0	6
2	Haskell	A	N	6	3	3
2	Haskell	A	N	7	0	6
2	Haskell	A	N	8	0	6
2	Haskell	A	N	9	0	6
2	Haskell	A	N	10	1	5
2	Haskell	A	N	11	0	6
2	Haskell	A	N	12	0	6
2	Haskell	A	N	13	0	6
2	Haskell	A	N	14	0	6
2	Haskell	A	N	15	1	5
2	Haskell	A	N	16	0	6
2	Haskell	A	N	17	0	6
2	Haskell	A	N	18	0	6
2	Haskell	A	N	19	0	6
2	Haskell	A	N	20	0	6


2	Haskell	B	0	1	0	6
2	Haskell	B	0	2	0	6
2	Haskell	B	0	3	0	6
2	Haskell	B	0	4	0	6
2	Haskell	B	0	5	0	6
2	Haskell	B	0	6	0	6
2	Haskell	B	0	7	0	6
2	Haskell	B	0	8	0	6
2	Haskell	B	0	9	0	6
2	Haskell	B	0	10	0	6
2	Haskell	B	0	11	0	6
2	Haskell	B	0	12	0	6
2	Haskell	B	0	13	0	6
2	Haskell	B	0	14	0	6
2	Haskell	B	0	15	0	6
2	Haskell	B	0	16	0	6
2	Haskell	B	0	17	0	6
2	Haskell	B	0	18	0	6
2	Haskell	B	0	19	0	6
2	Haskell	B	0	20	0	6
2	Haskell	B	F	1	0	6
2	Haskell	B	F	2	0	6
2	Haskell	B	F	3	0	6
2	Haskell	B	F	4	0	6
2	Haskell	B	F	5	0	6
2	Haskell	B	F	6	0	6
2	Haskell	B	F	7	0	6
2	Haskell	B	F	8	0	6
2	Haskell	B	F	9	0	6
2	Haskell	B	F	10	0	6
2	Haskell	B	F	11	0	6
2	Haskell	B	F	12	0	6
2	Haskell	B	F	13	0	6
2	Haskell	B	F	14	0	6
2	Haskell	B	F	15	0	6
2	Haskell	B	F	16	0	6
2	Haskell	B	F	17	0	6
2	Haskell	B	F	18	0	6
2	Haskell	B	F	19	0	6
2	Haskell	B	F	20	0	6
2	Haskell	B	N	1	0	6


2	Haskell	B	N	2	0	6
2	Haskell	B	N	3	0	6
2	Haskell	B	N	4	0	6
2	Haskell	B	N	5	0	6
2	Haskell	B	N	6	0	6
2	Haskell	B	N	7	0	6
2	Haskell	B	N	8	0	6
2	Haskell	B	N	9	0	6
2	Haskell	B	N	10	0	6
2	Haskell	B	N	11	0	6
2	Haskell	B	N	12	0	6
2	Haskell	B	N	13	0	6
2	Haskell	B	N	14	0	6
2	Haskell	B	N	15	0	6
2	Haskell	B	N	16	0	6
2	Haskell	B	N	17	0	6
2	Haskell	B	N	18	0	6
2	Haskell	B	N	19	0	6
2	Haskell	B	N	20	0	6
2	Woodward	A	F	1	0	6
2	Woodward	A	F	2	0	6
2	Woodward	A	F	3	0	6
2	Woodward	A	F	4	0	6
2	Woodward	A	F	5	0	6
2	Woodward	A	F	6	0	6
2	Woodward	A	F	7	0	6
2	Woodward	A	F	8	0	6
2	Woodward	A	F	9	0	6
2	Woodward	A	F	10	0	6
2	Woodward	A	F	11	0	6
2	Woodward	A	F	12	0	6
2	Woodward	A	F	13	0	6
2	Woodward	A	F	14	0	6
2	Woodward	A	F	15	0	6
2	Woodward	A	F	16	0	6
2	Woodward	A	F	17	0	6
2	Woodward	A	F	18	0	6
2	Woodward	A	F	19	0	6
2	Woodward	A	F	20	0	6
2	Woodward	A	0	1	0	6
2	Woodward	A	0	2	0	6


2	Woodward	A	0	3	0	6
2	Woodward	A	0	4	0	6
2	Woodward	A	0	5	0	6
2	Woodward	A	0	6	0	6
2	Woodward	A	0	7	0	6
2	Woodward	A	0	8	0	6
2	Woodward	A	0	9	0	6
2	Woodward	A	0	10	0	6
2	Woodward	A	0	11	0	6
2	Woodward	A	0	12	0	6
2	Woodward	A	0	13	0	6
2	Woodward	A	0	14	0	6
2	Woodward	A	0	15	0	6
2	Woodward	A	0	16	0	6
2	Woodward	A	0	17	0	6
2	Woodward	A	0	18	0	6
2	Woodward	A	0	19	0	6
2	Woodward	A	0	20	0	6
2	Woodward	A	N	1	0	6
2	Woodward	A	N	2	0	6
2	Woodward	A	N	3	0	6
2	Woodward	A	N	4	0	6
2	Woodward	A	N	5	0	6
2	Woodward	A	N	6	0	6
2	Woodward	A	N	7	0	6
2	Woodward	A	N	8	0	6
2	Woodward	A	N	9	0	6
2	Woodward	A	N	10	0	6
2	Woodward	A	N	11	0	6
2	Woodward	A	N	12	0	6
2	Woodward	A	N	13	0	6
2	Woodward	A	N	14	0	6
2	Woodward	A	N	15	0	6
2	Woodward	A	N	16	0	6
2	Woodward	A	N	17	0	6
2	Woodward	A	N	18	0	6
2	Woodward	A	N	19	0	6
2	Woodward	A	N	20	0	6
2	Woodward	B	F	1	0	6
2	Woodward	B	F	2	0	6
2	Woodward	B	F	3	0	6


2	Woodward	B	F	4	0	6
2	Woodward	B	F	5	0	6
2	Woodward	B	F	6	0	6
2	Woodward	B	F	7	0	6
2	Woodward	B	F	8	0	6
2	Woodward	B	F	9	1	5
2	Woodward	B	F	10	0	6
2	Woodward	B	F	11	0	6
2	Woodward	B	F	12	0	6
2	Woodward	B	F	13	0	6
2	Woodward	B	F	14	0	6
2	Woodward	B	F	15	0	6
2	Woodward	B	F	16	0	6
2	Woodward	B	F	17	0	6
2	Woodward	B	F	18	0	6
2	Woodward	B	F	19	0	6
2	Woodward	B	F	20	0	6
2	Woodward	B	0	1	0	6
2	Woodward	B	0	2	0	6
2	Woodward	B	0	3	0	6
2	Woodward	B	0	4	0	6
2	Woodward	B	0	5	0	6
2	Woodward	B	0	6	0	6
2	Woodward	B	0	7	0	6
2	Woodward	B	0	8	0	6
2	Woodward	B	0	9	0	6
2	Woodward	B	0	10	0	6
2	Woodward	B	0	11	0	6
2	Woodward	B	0	12	0	6
2	Woodward	B	0	13	0	6
2	Woodward	B	0	14	0	6
2	Woodward	B	0	15	0	6
2	Woodward	B	0	16	0	6
2	Woodward	B	0	17	0	6
2	Woodward	B	0	18	0	6
2	Woodward	B	0	19	0	6
2	Woodward	B	0	20	0	6
2	Woodward	B	N	1	0	6
2	Woodward	B	N	2	0	6
2	Woodward	B	N	3	0	6
2	Woodward	B	N	4	0	6


2	Woodward	B	N	5	0	6
2	Woodward	B	N	6	0	6
2	Woodward	B	N	7	0	6
2	Woodward	B	N	8	0	6
2	Woodward	B	N	9	0	6
2	Woodward	B	N	10	0	6
2	Woodward	B	N	11	0	6
2	Woodward	B	N	12	0	6
2	Woodward	B	N	13	0	6
2	Woodward	B	N	14	0	6
2	Woodward	B	N	15	0	6
2	Woodward	B	N	16	0	6
2	Woodward	B	N	17	0	6
2	Woodward	B	N	18	0	6
2	Woodward	B	N	19	0	6
2	Woodward	B	N	20	0	6
2	Goodwell	A	F	1	0	6
2	Goodwell	A	F	2	0	6
2	Goodwell	A	F	3	1	5
2	Goodwell	A	F	4	0	6
2	Goodwell	A	F	5	0	6
2	Goodwell	A	F	6	0	6
2	Goodwell	A	F	7	0	6
2	Goodwell	A	F	8	1	5
2	Goodwell	A	F	9	0	6
2	Goodwell	A	F	10	0	6
2	Goodwell	A	F	11	0	6
2	Goodwell	A	F	12	0	6
2	Goodwell	A	F	13	0	6
2	Goodwell	A	F	14	0	6
2	Goodwell	A	F	15	0	6
2	Goodwell	A	F	16	0	6
2	Goodwell	A	F	17	0	6
2	Goodwell	A	F	18	0	6
2	Goodwell	A	F	19	0	6
2	Goodwell	A	F	20	0	6
2	Goodwell	A	0	1	0	6
2	Goodwell	A	0	2	0	6
2	Goodwell	A	0	3	0	6
2	Goodwell	A	0	4	0	6
2	Goodwell	A	0	5	0	6


2	Goodwell	A	0	6	0	6
2	Goodwell	A	0	7	0	6
2	Goodwell	A	0	8	0	6
2	Goodwell	A	0	9	1	5
2	Goodwell	A	0	10	0	6
2	Goodwell	A	0	11	0	6
2	Goodwell	A	0	12	0	6
2	Goodwell	A	0	13	0	6
2	Goodwell	A	0	14	0	6
2	Goodwell	A	0	15	0	6
2	Goodwell	A	0	16	0	6
2	Goodwell	A	0	17	0	6
2	Goodwell	A	0	18	0	6
2	Goodwell	A	0	19	0	6
2	Goodwell	A	0	20	0	6
2	Goodwell	A	N	1	0	6
2	Goodwell	A	N	2	0	6
2	Goodwell	A	N	3	0	6
2	Goodwell	A	N	4	0	6
2	Goodwell	A	N	5	0	6
2	Goodwell	A	N	6	0	6
2	Goodwell	A	N	7	0	6
2	Goodwell	A	N	8	0	6
2	Goodwell	A	N	9	0	6
2	Goodwell	A	N	10	0	6
2	Goodwell	A	N	11	0	6
2	Goodwell	A	N	12	0	6
2	Goodwell	A	N	13	0	6
2	Goodwell	A	N	14	0	6
2	Goodwell	A	N	15	0	6
2	Goodwell	A	N	16	0	6
2	Goodwell	A	N	17	0	6
2	Goodwell	A	N	18	0	6
2	Goodwell	A	N	19	0	6
2	Goodwell	A	N	20	0	6
2	Goodwell	B	F	1	0	6
2	Goodwell	B	F	2	0	6
2	Goodwell	B	F	3	0	6
2	Goodwell	B	F	4	0	6
2	Goodwell	B	F	5	0	6
2	Goodwell	B	F	6	0	6


2	Goodwell	B	F	7	0	6
2	Goodwell	B	F	8	0	6
2	Goodwell	B	F	9	0	6
2	Goodwell	B	F	10	0	6
2	Goodwell	B	F	11	0	6
2	Goodwell	B	F	12	0	6
2	Goodwell	B	F	13	0	6
2	Goodwell	B	F	14	0	6
2	Goodwell	B	F	15	0	6
2	Goodwell	B	F	16	0	6
2	Goodwell	B	F	17	0	6
2	Goodwell	B	F	18	1	5
2	Goodwell	B	F	19	0	6
2	Goodwell	B	F	20	0	6
2	Goodwell	B	0	1	0	6
2	Goodwell	B	0	2	0	6
2	Goodwell	B	0	3	0	6
2	Goodwell	B	0	4	0	6
2	Goodwell	B	0	5	0	6
2	Goodwell	B	0	6	0	6
2	Goodwell	B	0	7	0	6
2	Goodwell	B	0	8	0	6
2	Goodwell	B	0	9	0	6
2	Goodwell	B	0	10	0	6
2	Goodwell	B	0	11	0	6
2	Goodwell	B	0	12	1	5
2	Goodwell	B	0	13	0	6
2	Goodwell	B	0	14	0	6
2	Goodwell	B	0	15	0	6
2	Goodwell	B	0	16	0	6
2	Goodwell	B	0	17	0	6
2	Goodwell	B	0	18	0	6
2	Goodwell	B	0	19	0	6
2	Goodwell	B	0	20	0	6
2	Goodwell	B	N	1	0	6
2	Goodwell	B	N	2	0	6
2	Goodwell	B	N	3	0	6
2	Goodwell	B	N	4	0	6
2	Goodwell	B	N	5	0	6
2	Goodwell	B	N	6	0	6
2	Goodwell	B	N	7	0	6


2	Goodwell	B	N	8	0	6
2	Goodwell	B	N	9	0	6
2	Goodwell	B	N	10	0	6
2	Goodwell	B	N	11	0	6
2	Goodwell	B	N	12	0	6
2	Goodwell	B	N	13	0	6
2	Goodwell	B	N	14	0	6
2	Goodwell	B	N	15	0	6
2	Goodwell	B	N	16	0	6
2	Goodwell	B	N	17	0	6
2	Goodwell	B	N	18	0	6
2	Goodwell	B	N	19	0	6
2	Goodwell	B	N	20	0	6
3	Stillwater	A	0	1	0	6
3	Stillwater	A	0	2	0	6
3	Stillwater	A	0	3	0	6
3	Stillwater	A	0	4	0	6
3	Stillwater	A	0	5	0	6
3	Stillwater	A	0	6	0	6
3	Stillwater	A	0	7	0	6
3	Stillwater	A	0	8	0	6
3	Stillwater	A	0	9	0	6
3	Stillwater	A	0	10	3	3
3	Stillwater	A	0	11	0	6
3	Stillwater	A	0	12	0	6
3	Stillwater	A	0	13	6	0
3	Stillwater	A	0	14	0	6
3	Stillwater	A	0	15	0	6
3	Stillwater	A	0	16	0	6
3	Stillwater	A	0	17	0	6
3	Stillwater	A	0	18	0	6
3	Stillwater	A	0	19	0	6
3	Stillwater	A	0	20	0	6
3	Stillwater	A	F	1	0	6
3	Stillwater	A	F	2	0	6
3	Stillwater	A	F	3	2	4
3	Stillwater	A	F	4	0	6
3	Stillwater	A	F	5	0	6
3	Stillwater	A	F	6	0	6
3	Stillwater	A	F	7	5	1
3	Stillwater	A	F	8	0	6


3	Stillwater	A	F	9	0	6
3	Stillwater	A	F	10	0	6
3	Stillwater	A	F	11	0	6
3	Stillwater	A	F	12	0	6
3	Stillwater	A	F	13	0	6
3	Stillwater	A	F	14	2	4
3	Stillwater	A	F	15	0	6
3	Stillwater	A	F	16	2	4
3	Stillwater	A	F	17	0	6
3	Stillwater	A	F	18	0	6
3	Stillwater	A	F	19	0	6
3	Stillwater	A	F	20	0	6
3	Stillwater	A	N	1	0	6
3	Stillwater	A	N	2	0	6
3	Stillwater	A	N	3	0	6
3	Stillwater	A	N	4	0	6
3	Stillwater	A	N	5	0	6
3	Stillwater	A	N	6	0	6
3	Stillwater	A	N	7	0	6
3	Stillwater	A	N	8	0	6
3	Stillwater	A	N	9	0	6
3	Stillwater	A	N	10	0	6
3	Stillwater	A	N	11	0	6
3	Stillwater	A	N	12	0	6
3	Stillwater	A	N	13	0	6
3	Stillwater	A	N	14	0	6
3	Stillwater	A	N	15	6	0
3	Stillwater	A	N	16	0	6
3	Stillwater	A	N	17	0	6
3	Stillwater	A	N	18	0	6
3	Stillwater	A	N	19	0	6
3	Stillwater	A	N	20	0	6
3	Stillwater	B	0	1	0	6
3	Stillwater	B	0	2	0	6
3	Stillwater	B	0	3	0	6
3	Stillwater	B	0	4	0	6
3	Stillwater	B	0	5	0	6
3	Stillwater	B	0	6	0	6
3	Stillwater	B	0	7	0	6
3	Stillwater	B	0	8	0	6
3	Stillwater	B	0	9	0	6


3	Stillwater	B	0	10	0	6
3	Stillwater	B	0	11	0	6
3	Stillwater	B	0	12	0	6
3	Stillwater	B	0	13	6	0
3	Stillwater	B	0	14	0	6
3	Stillwater	B	0	15	0	6
3	Stillwater	B	0	16	0	6
3	Stillwater	B	0	17	0	6
3	Stillwater	B	0	18	0	6
3	Stillwater	B	0	19	0	6
3	Stillwater	B	0	20	0	6
3	Stillwater	B	F	1	0	6
3	Stillwater	B	F	2	0	6
3	Stillwater	B	F	3	0	6
3	Stillwater	B	F	4	0	6
3	Stillwater	B	F	5	0	6
3	Stillwater	B	F	6	0	6
3	Stillwater	B	F	7	0	6
3	Stillwater	B	F	8	0	6
3	Stillwater	B	F	9	0	6
3	Stillwater	B	F	10	0	6
3	Stillwater	B	F	11	0	6
3	Stillwater	B	F	12	0	6
3	Stillwater	B	F	13	0	6
3	Stillwater	B	F	14	0	6
3	Stillwater	B	F	15	0	6
3	Stillwater	B	F	16	0	6
3	Stillwater	B	F	17	0	6
3	Stillwater	B	F	18	0	6
3	Stillwater	B	F	19	0	6
3	Stillwater	B	F	20	0	6
3	Stillwater	B	N	1	0	6
3	Stillwater	B	N	2	0	6
3	Stillwater	B	N	3	0	6
3	Stillwater	B	N	4	0	6
3	Stillwater	B	N	5	0	6
3	Stillwater	B	N	6	0	6
3	Stillwater	B	N	7	0	6
3	Stillwater	B	N	8	0	6
3	Stillwater	B	N	9	0	6
3	Stillwater	B	N	10	0	6


3	Stillwater	B	N	11	0	6
3	Stillwater	B	N	12	0	6
3	Stillwater	B	N	13	0	6
3	Stillwater	B	N	14	0	6
3	Stillwater	B	N	15	0	6
3	Stillwater	B	N	16	0	6
3	Stillwater	B	N	17	0	6
3	Stillwater	B	N	18	0	6
3	Stillwater	B	N	19	0	6
3	Stillwater	B	N	20	0	6
3	Haskell	A	0	1	0	6
3	Haskell	A	0	2	0	6
3	Haskell	A	0	3	0	6
3	Haskell	A	0	4	0	6
3	Haskell	A	0	5	0	6
3	Haskell	A	0	6	0	6
3	Haskell	A	0	7	0	6
3	Haskell	A	0	8	0	6
3	Haskell	A	0	9	0	6
3	Haskell	A	0	10	0	6
3	Haskell	A	0	11	0	6
3	Haskell	A	0	12	1	5
3	Haskell	A	0	13	0	6
3	Haskell	A	0	14	0	6
3	Haskell	A	0	15	0	6
3	Haskell	A	0	16	0	6
3	Haskell	A	0	17	0	6
3	Haskell	A	0	18	0	6
3	Haskell	A	0	19	0	6
3	Haskell	A	0	20	0	6
3	Haskell	A	F	1	0	6
3	Haskell	A	F	2	0	6
3	Haskell	A	F	3	0	6
3	Haskell	A	F	4	0	6
3	Haskell	A	F	5	0	6
3	Haskell	A	F	6	0	6
3	Haskell	A	F	7	0	6
3	Haskell	A	F	8	0	6
3	Haskell	A	F	9	0	6
3	Haskell	A	F	10	0	6
3	Haskell	A	F	11	1	5


3	Haskell	A	F	12	0	6
3	Haskell	A	F	13	0	6
3	Haskell	A	F	14	0	6
3	Haskell	A	F	15	0	6
3	Haskell	A	F	16	2	4
3	Haskell	A	F	17	0	6
3	Haskell	A	F	18	0	6
3	Haskell	A	F	19	0	6
3	Haskell	A	F	20	0	6
3	Haskell	A	N	1	0	6
3	Haskell	A	N	2	0	6
3	Haskell	A	N	3	0	6
3	Haskell	A	N	4	0	6
3	Haskell	A	N	5	0	6
3	Haskell	A	N	6	0	6
3	Haskell	A	N	7	0	6
3	Haskell	A	N	8	0	6
3	Haskell	A	N	9	0	6
3	Haskell	A	N	10	0	6
3	Haskell	A	N	11	0	6
3	Haskell	A	N	12	0	6
3	Haskell	A	N	13	0	6
3	Haskell	A	N	14	0	6
3	Haskell	A	N	15	0	6
3	Haskell	A	N	16	0	6
3	Haskell	A	N	17	0	6
3	Haskell	A	N	18	0	6
3	Haskell	A	N	19	0	6
3	Haskell	A	N	20	0	6
3	Haskell	B	0	1	0	6
3	Haskell	B	0	2	0	6
3	Haskell	B	0	3	0	6
3	Haskell	B	0	4	0	6
3	Haskell	B	0	5	0	6
3	Haskell	B	0	6	0	6
3	Haskell	B	0	7	0	6
3	Haskell	B	0	8	5	1
3	Haskell	B	0	9	0	6
3	Haskell	B	0	10	1	5
3	Haskell	B	0	11	0	6
3	Haskell	B	0	12	1	5


3	Haskell	B	0	13	0	6
3	Haskell	B	0	14	0	6
3	Haskell	B	0	15	0	6
3	Haskell	B	0	16	0	6
3	Haskell	B	0	17	0	6
3	Haskell	B	0	18	0	6
3	Haskell	B	0	19	0	6
3	Haskell	B	0	20	0	6
3	Haskell	B	F	1	0	6
3	Haskell	B	F	2	0	6
3	Haskell	B	F	3	1	5
3	Haskell	B	F	4	0	6
3	Haskell	B	F	5	0	6
3	Haskell	B	F	6	0	6
3	Haskell	B	F	7	0	6
3	Haskell	B	F	8	0	6
3	Haskell	B	F	9	0	6
3	Haskell	B	F	10	0	6
3	Haskell	B	F	11	0	6
3	Haskell	B	F	12	0	6
3	Haskell	B	F	13	0	6
3	Haskell	B	F	14	0	6
3	Haskell	B	F	15	0	6
3	Haskell	B	F	16	0	6
3	Haskell	B	F	17	0	6
3	Haskell	B	F	18	0	6
3	Haskell	B	F	19	0	6
3	Haskell	B	F	20	1	5
3	Haskell	B	N	1	0	6
3	Haskell	B	N	2	0	6
3	Haskell	B	N	3	0	6
3	Haskell	B	N	4	0	6
3	Haskell	B	N	5	0	6
3	Haskell	B	N	6	0	6
3	Haskell	B	N	7	0	6
3	Haskell	B	N	8	0	6
3	Haskell	B	N	9	0	6
3	Haskell	B	N	10	0	6
3	Haskell	B	N	11	2	4
3	Haskell	B	N	12	0	6
3	Haskell	B	N	13	0	6


3	Haskell	B	N	14	0	6
3	Haskell	B	N	15	0	6
3	Haskell	B	N	16	0	6
3	Haskell	B	N	17	0	6
3	Haskell	B	N	18	0	6
3	Haskell	B	N	19	1	5
3	Haskell	B	N	20	2	4
3	Woodward	A	F	1	0	6
3	Woodward	A	F	2	0	6
3	Woodward	A	F	3	0	6
3	Woodward	A	F	4	0	6
3	Woodward	A	F	5	0	6
3	Woodward	A	F	6	0	6
3	Woodward	A	F	7	0	6
3	Woodward	A	F	8	0	6
3	Woodward	A	F	9	0	6
3	Woodward	A	F	10	0	6
3	Woodward	A	F	11	0	6
3	Woodward	A	F	12	0	6
3	Woodward	A	F	13	0	6
3	Woodward	A	F	14	0	6
3	Woodward	A	F	15	1	5
3	Woodward	A	F	16	0	6
3	Woodward	A	F	17	0	6
3	Woodward	A	F	18	0	6
3	Woodward	A	F	19	0	6
3	Woodward	A	F	20	0	6
3	Woodward	A	0	1	0	6
3	Woodward	A	0	2	0	6
3	Woodward	A	0	3	0	6
3	Woodward	A	0	4	0	6
3	Woodward	A	0	5	0	6
3	Woodward	A	0	6	0	6
3	Woodward	A	0	7	0	6
3	Woodward	A	0	8	0	6
3	Woodward	A	0	9	0	6
3	Woodward	A	0	10	0	6
3	Woodward	A	0	11	0	6
3	Woodward	A	0	12	0	6
3	Woodward	A	0	13	0	6
3	Woodward	A	0	14	0	6


3	Woodward	A	0	15	0	6
3	Woodward	A	0	16	0	6
3	Woodward	A	0	17	0	6
3	Woodward	A	0	18	0	6
3	Woodward	A	0	19	0	6
3	Woodward	A	0	20	0	6
3	Woodward	A	N	1	0	6
3	Woodward	A	N	2	0	6
3	Woodward	A	N	3	1	5
3	Woodward	A	N	4	0	6
3	Woodward	A	N	5	0	6
3	Woodward	A	N	6	0	6
3	Woodward	A	N	7	0	6
3	Woodward	A	N	8	0	6
3	Woodward	A	N	9	0	6
3	Woodward	A	N	10	0	6
3	Woodward	A	N	11	0	6
3	Woodward	A	N	12	0	6
3	Woodward	A	N	13	0	6
3	Woodward	A	N	14	0	6
3	Woodward	A	N	15	0	6
3	Woodward	A	N	16	0	6
3	Woodward	A	N	17	0	6
3	Woodward	A	N	18	0	6
3	Woodward	A	N	19	0	6
3	Woodward	A	N	20	0	6
3	Woodward	B	F	1	0	6
3	Woodward	B	F	2	0	6
3	Woodward	B	F	3	0	6
3	Woodward	B	F	4	0	6
3	Woodward	B	F	5	1	5
3	Woodward	B	F	6	0	6
3	Woodward	B	F	7	0	6
3	Woodward	B	F	8	1	5
3	Woodward	B	F	9	0	6
3	Woodward	B	F	10	1	5
3	Woodward	B	F	11	0	6
3	Woodward	B	F	12	0	6
3	Woodward	B	F	13	0	6
3	Woodward	B	F	14	0	6
3	Woodward	B	F	15	0	6


3	Woodward	B	F	16	0	6
3	Woodward	B	F	17	0	6
3	Woodward	B	F	18	1	5
3	Woodward	B	F	19	0	6
3	Woodward	B	F	20	0	6
3	Woodward	B	0	1	0	6
3	Woodward	B	0	2	0	6
3	Woodward	B	0	3	0	6
3	Woodward	B	0	4	0	6
3	Woodward	B	0	5	0	6
3	Woodward	B	0	6	0	6
3	Woodward	B	0	7	1	5
3	Woodward	B	0	8	0	6
3	Woodward	B	0	9	0	6
3	Woodward	B	0	10	0	6
3	Woodward	B	0	11	0	6
3	Woodward	B	0	12	0	6
3	Woodward	B	0	13	0	6
3	Woodward	B	0	14	0	6
3	Woodward	B	0	15	0	6
3	Woodward	B	0	16	0	6
3	Woodward	B	0	17	1	5
3	Woodward	B	0	18	0	6
3	Woodward	B	0	19	0	6
3	Woodward	B	0	20	0	6
3	Woodward	B	N	1	0	6
3	Woodward	B	N	2	0	6
3	Woodward	B	N	3	0	6
3	Woodward	B	N	4	1	5
3	Woodward	B	N	5	0	6
3	Woodward	B	N	6	0	6
3	Woodward	B	N	7	0	6
3	Woodward	B	N	8	0	6
3	Woodward	B	N	9	0	6
3	Woodward	B	N	10	0	6
3	Woodward	B	N	11	0	6
3	Woodward	B	N	12	0	6
3	Woodward	B	N	13	0	6
3	Woodward	B	N	14	0	6
3	Woodward	B	N	15	0	6
3	Woodward	B	N	16	0	6


3	Woodward	B	N	17	0	6
3	Woodward	B	N	18	0	6
3	Woodward	B	N	19	0	6
3	Woodward	B	N	20	1	5
3	Goodwell	A	F	1	0	6
3	Goodwell	A	F	2	0	6
3	Goodwell	A	F	3	0	6
3	Goodwell	A	F	4	0	6
3	Goodwell	A	F	5	0	6
3	Goodwell	A	F	6	0	6
3	Goodwell	A	F	7	0	6
3	Goodwell	A	F	8	0	6
3	Goodwell	A	F	9	0	6
3	Goodwell	A	F	10	0	6
3	Goodwell	A	F	11	0	6
3	Goodwell	A	F	12	0	6
3	Goodwell	A	F	13	0	6
3	Goodwell	A	F	14	0	6
3	Goodwell	A	F	15	0	6
3	Goodwell	A	F	16	0	6
3	Goodwell	A	F	17	0	6
3	Goodwell	A	F	18	0	6
3	Goodwell	A	F	19	0	6
3	Goodwell	A	F	20	0	6
3	Goodwell	A	0	1	0	6
3	Goodwell	A	0	2	0	6
3	Goodwell	A	0	3	0	6
3	Goodwell	A	0	4	0	6
3	Goodwell	A	0	5	0	6
3	Goodwell	A	0	6	0	6
3	Goodwell	A	0	7	0	6
3	Goodwell	A	0	8	0	6
3	Goodwell	A	0	9	0	6
3	Goodwell	A	0	10	0	6
3	Goodwell	A	0	11	0	6
3	Goodwell	A	0	12	0	6
3	Goodwell	A	0	13	0	6
3	Goodwell	A	0	14	0	6
3	Goodwell	A	0	15	0	6
3	Goodwell	A	0	16	0	6
3	Goodwell	A	0	17	0	6


3	Goodwell	A	0	18	0	6
3	Goodwell	A	0	19	0	6
3	Goodwell	A	0	20	0	6
3	Goodwell	A	N	1	1	5
3	Goodwell	A	N	2	0	6
3	Goodwell	A	N	3	0	6
3	Goodwell	A	N	4	0	6
3	Goodwell	A	N	5	0	6
3	Goodwell	A	N	6	0	6
3	Goodwell	A	N	7	0	6
3	Goodwell	A	N	8	0	6
3	Goodwell	A	N	9	0	6
3	Goodwell	A	N	10	0	6
3	Goodwell	A	N	11	0	6
3	Goodwell	A	N	12	0	6
3	Goodwell	A	N	13	0	6
3	Goodwell	A	N	14	0	6
3	Goodwell	A	N	15	0	6
3	Goodwell	A	N	16	0	6
3	Goodwell	A	N	17	0	6
3	Goodwell	A	N	18	0	6
3	Goodwell	A	N	19	0	6
3	Goodwell	A	N	20	0	6
3	Goodwell	B	F	1	0	6
3	Goodwell	B	F	2	0	6
3	Goodwell	B	F	3	0	6
3	Goodwell	B	F	4	0	6
3	Goodwell	B	F	5	0	6
3	Goodwell	B	F	6	0	6
3	Goodwell	B	F	7	0	6
3	Goodwell	B	F	8	0	6
3	Goodwell	B	F	9	0	6
3	Goodwell	B	F	10	0	6
3	Goodwell	B	F	11	0	6
3	Goodwell	B	F	12	0	6
3	Goodwell	B	F	13	0	6
3	Goodwell	B	F	14	0	6
3	Goodwell	B	F	15	0	6
3	Goodwell	B	F	16	0	6
3	Goodwell	B	F	17	0	6
3	Goodwell	B	F	18	0	6


3	Goodwell	B	F	19	0	6
3	Goodwell	B	F	20	0	6
3	Goodwell	B	0	1	0	6
3	Goodwell	B	0	2	0	6
3	Goodwell	B	0	3	0	6
3	Goodwell	B	0	4	0	6
3	Goodwell	B	0	5	0	6
3	Goodwell	B	0	6	0	6
3	Goodwell	B	0	7	0	6
3	Goodwell	B	0	8	0	6
3	Goodwell	B	0	9	0	6
3	Goodwell	B	0	10	0	6
3	Goodwell	B	0	11	0	6
3	Goodwell	B	0	12	0	6
3	Goodwell	B	0	13	0	6
3	Goodwell	B	0	14	0	6
3	Goodwell	B	0	15	0	6
3	Goodwell	B	0	16	0	6
3	Goodwell	B	0	17	0	6
3	Goodwell	B	0	18	0	6
3	Goodwell	B	0	19	0	6
3	Goodwell	B	0	20	0	6
3	Goodwell	B	N	1	0	6
3	Goodwell	B	N	2	0	6
3	Goodwell	B	N	3	0	6
3	Goodwell	B	N	4	0	6
3	Goodwell	B	N	5	0	6
3	Goodwell	B	N	6	0	6
3	Goodwell	B	N	7	0	6
3	Goodwell	B	N	8	0	6
3	Goodwell	B	N	9	0	6
3	Goodwell	B	N	10	0	6
3	Goodwell	B	N	11	0	6
3	Goodwell	B	N	12	0	6
3	Goodwell	B	N	13	0	6
3	Goodwell	B	N	14	0	6
3	Goodwell	B	N	15	0	6
3	Goodwell	B	N	16	0	6
3	Goodwell	B	N	17	0	6
3	Goodwell	B	N	18	0	6
3	Goodwell	B	N	19	0	6


3	Goodwell	B	N	20	0	6
4	Woodward	A	F	1	0	6
4	Woodward	A	F	2	0	6
4	Woodward	A	F	3	0	6
4	Woodward	A	F	4	0	6
4	Woodward	A	F	5	0	6
4	Woodward	A	F	6	0	6
4	Woodward	A	F	7	0	6
4	Woodward	A	F	8	0	6
4	Woodward	A	F	9	0	6
4	Woodward	A	F	10	0	6
4	Woodward	A	F	11	0	6
4	Woodward	A	F	12	0	6
4	Woodward	A	F	13	0	6
4	Woodward	A	F	14	0	6
4	Woodward	A	F	15	0	6
4	Woodward	A	F	16	0	6
4	Woodward	A	F	17	0	6
4	Woodward	A	F	18	0	6
4	Woodward	A	F	19	0	6
4	Woodward	A	F	20	0	6
4	Woodward	A	0	1	0	6
4	Woodward	A	0	2	0	6
4	Woodward	A	0	3	0	6
4	Woodward	A	0	4	0	6
4	Woodward	A	0	5	0	6
4	Woodward	A	0	6	0	6
4	Woodward	A	0	7	0	6
4	Woodward	A	0	8	0	6
4	Woodward	A	0	9	1	5
4	Woodward	A	0	10	0	6
4	Woodward	A	0	11	1	5
4	Woodward	A	0	12	0	6
4	Woodward	A	0	13	0	6
4	Woodward	A	0	14	0	6
4	Woodward	A	0	15	0	6
4	Woodward	A	0	16	0	6
4	Woodward	A	0	17	0	6
4	Woodward	A	0	18	1	5
4	Woodward	A	0	19	0	6
4	Woodward	A	0	20	0	6


4	Woodward	A	N	1	0	6
4	Woodward	A	N	2	0	6
4	Woodward	A	N	3	0	6
4	Woodward	A	N	4	0	6
4	Woodward	A	N	5	0	6
4	Woodward	A	N	6	0	6
4	Woodward	A	N	7	0	6
4	Woodward	A	N	8	0	6
4	Woodward	A	N	9	0	6
4	Woodward	A	N	10	0	6
4	Woodward	A	N	11	0	6
4	Woodward	A	N	12	0	6
4	Woodward	A	N	13	0	6
4	Woodward	A	N	14	0	6
4	Woodward	A	N	15	0	6
4	Woodward	A	N	16	0	6
4	Woodward	A	N	17	0	6
4	Woodward	A	N	18	0	6
4	Woodward	A	N	19	0	6
4	Woodward	A	N	20	0	6
4	Woodward	B	F	1	0	6
4	Woodward	B	F	2	0	6
4	Woodward	B	F	3	0	6
4	Woodward	B	F	4	0	6
4	Woodward	B	F	5	0	6
4	Woodward	B	F	6	0	6
4	Woodward	B	F	7	0	6
4	Woodward	B	F	8	0	6
4	Woodward	B	F	9	0	6
4	Woodward	B	F	10	0	6
4	Woodward	B	F	11	0	6
4	Woodward	B	F	12	0	6
4	Woodward	B	F	13	0	6
4	Woodward	B	F	14	0	6
4	Woodward	B	F	15	0	6
4	Woodward	B	F	16	0	6
4	Woodward	B	F	17	0	6
4	Woodward	B	F	18	0	6
4	Woodward	B	F	19	1	5
4	Woodward	B	F	20	0	6
4	Woodward	B	0	1	0	6


4	Woodward	B	0	2	0	6
4	Woodward	B	0	3	0	6
4	Woodward	B	0	4	0	6
4	Woodward	B	0	5	0	6
4	Woodward	B	0	6	0	6
4	Woodward	B	0	7	0	6
4	Woodward	B	0	8	0	6
4	Woodward	B	0	9	0	6
4	Woodward	B	0	10	0	6
4	Woodward	B	0	11	0	6
4	Woodward	B	0	12	0	6
4	Woodward	B	0	13	0	6
4	Woodward	B	0	14	0	6
4	Woodward	B	0	15	0	6
4	Woodward	B	0	16	0	6
4	Woodward	B	0	17	0	6
4	Woodward	B	0	18	0	6
4	Woodward	B	0	19	0	6
4	Woodward	B	0	20	0	6
4	Woodward	B	N	1	0	6
4	Woodward	B	N	2	0	6
4	Woodward	B	N	3	0	6
4	Woodward	B	N	4	0	6
4	Woodward	B	N	5	0	6
4	Woodward	B	N	6	0	6
4	Woodward	B	N	7	0	6
4	Woodward	B	N	8	0	6
4	Woodward	B	N	9	0	6
4	Woodward	B	N	10	0	6
4	Woodward	B	N	11	0	6
4	Woodward	B	N	12	0	6
4	Woodward	B	N	13	0	6
4	Woodward	B	N	14	0	6
4	Woodward	B	N	15	0	6
4	Woodward	B	N	16	0	6
4	Woodward	B	N	17	0	6
4	Woodward	B	N	18	0	6
4	Woodward	B	N	19	0	6
4	Woodward	B	N	20	0	6
4	Goodwell	A	F	1	1	5
4	Goodwell	A	F	2	0	6


4	Goodwell	A	F	3	0	6
4	Goodwell	A	F	4	0	6
4	Goodwell	A	F	5	0	6
4	Goodwell	A	F	6	0	6
4	Goodwell	A	F	7	0	6
4	Goodwell	A	F	8	0	6
4	Goodwell	A	F	9	0	6
4	Goodwell	A	F	10	0	6
4	Goodwell	A	F	11	0	6
4	Goodwell	A	F	12	0	6
4	Goodwell	A	F	13	0	6
4	Goodwell	A	F	14	0	6
4	Goodwell	A	F	15	0	6
4	Goodwell	A	F	16	0	6
4	Goodwell	A	F	17	1	5
4	Goodwell	A	F	18	0	6
4	Goodwell	A	F	19	0	6
4	Goodwell	A	F	20	0	6
4	Goodwell	A	0	1	0	6
4	Goodwell	A	0	2	0	6
4	Goodwell	A	0	3	0	6
4	Goodwell	A	0	4	0	6
4	Goodwell	A	0	5	0	6
4	Goodwell	A	0	6	0	6
4	Goodwell	A	0	7	0	6
4	Goodwell	A	0	8	0	6
4	Goodwell	A	0	9	0	6
4	Goodwell	A	0	10	0	6
4	Goodwell	A	0	11	0	6
4	Goodwell	A	0	12	0	6
4	Goodwell	A	0	13	0	6
4	Goodwell	A	0	14	0	6
4	Goodwell	A	0	15	0	6
4	Goodwell	A	0	16	0	6
4	Goodwell	A	0	17	0	6
4	Goodwell	A	0	18	0	6
4	Goodwell	A	0	19	0	6
4	Goodwell	A	0	20	0	6
4	Goodwell	A	N	1	0	6
4	Goodwell	A	N	2	0	6
4	Goodwell	A	N	3	0	6


4	Goodwell	A	N	4	0	6
4	Goodwell	A	N	5	0	6
4	Goodwell	A	N	6	0	6
4	Goodwell	A	N	7	0	6
4	Goodwell	A	N	8	0	6
4	Goodwell	A	N	9	0	6
4	Goodwell	A	N	10	0	6
4	Goodwell	A	N	11	0	6
4	Goodwell	A	N	12	0	6
4	Goodwell	A	N	13	0	6
4	Goodwell	A	N	14	0	6
4	Goodwell	A	N	15	0	6
4	Goodwell	A	N	16	0	6
4	Goodwell	A	N	17	0	6
4	Goodwell	A	N	18	0	6
4	Goodwell	A	N	19	0	6
4	Goodwell	A	N	20	0	6
4	Goodwell	B	F	1	0	6
4	Goodwell	B	F	2	0	6
4	Goodwell	B	F	3	0	6
4	Goodwell	B	F	4	0	6
4	Goodwell	B	F	5	0	6
4	Goodwell	B	F	6	0	6
4	Goodwell	B	F	7	0	6
4	Goodwell	B	F	8	0	6
4	Goodwell	B	F	9	0	6
4	Goodwell	B	F	10	0	6
4	Goodwell	B	F	11	0	6
4	Goodwell	B	F	12	0	6
4	Goodwell	B	F	13	0	6
4	Goodwell	B	F	14	1	5
4	Goodwell	B	F	15	0	6
4	Goodwell	B	F	16	0	6
4	Goodwell	B	F	17	0	6
4	Goodwell	B	F	18	0	6
4	Goodwell	B	F	19	0	6
4	Goodwell	B	F	20	0	6
4	Goodwell	B	0	1	0	6
4	Goodwell	B	0	2	0	6
4	Goodwell	B	0	3	0	6
4	Goodwell	B	0	4	0	6


4	Goodwell	B	0	5	0	6
4	Goodwell	B	0	6	1	5
4	Goodwell	B	0	7	0	6
4	Goodwell	B	0	8	0	6
4	Goodwell	B	0	9	0	6
4	Goodwell	B	0	10	0	6
4	Goodwell	B	0	11	0	6
4	Goodwell	B	0	12	0	6
4	Goodwell	B	0	13	0	6
4	Goodwell	B	0	14	0	6
4	Goodwell	B	0	15	0	6
4	Goodwell	B	0	16	1	5
4	Goodwell	B	0	17	0	6
4	Goodwell	B	0	18	0	6
4	Goodwell	B	0	19	0	6
4	Goodwell	B	0	20	0	6
4	Goodwell	B	N	1	0	6
4	Goodwell	B	N	2	0	6
4	Goodwell	B	N	3	0	6
4	Goodwell	B	N	4	0	6
4	Goodwell	B	N	5	0	6
4	Goodwell	B	N	6	0	6
4	Goodwell	B	N	7	0	6
4	Goodwell	B	N	8	0	6
4	Goodwell	B	N	9	0	6
4	Goodwell	B	N	10	0	6
4	Goodwell	B	N	11	0	6
4	Goodwell	B	N	12	0	6
4	Goodwell	B	N	13	0	6
4	Goodwell	B	N	14	0	6
4	Goodwell	B	N	15	0	6
4	Goodwell	B	N	16	0	6
4	Goodwell	B	N	17	0	6
4	Goodwell	B	N	18	0	6
4	Goodwell	B	N	19	0	6
4	Goodwell	B	N	20	0	6
4	Stillwater	A	0	1	0	6
4	Stillwater	A	0	2	0	6
4	Stillwater	A	0	3	0	6
4	Stillwater	A	0	4	6	0
4	Stillwater	A	0	5	0	6


4	Stillwater	A	0	6	1	5
4	Stillwater	A	0	7	0	6
4	Stillwater	A	0	8	0	6
4	Stillwater	A	0	9	4	2
4	Stillwater	A	0	10	0	6
4	Stillwater	A	0	11	2	4
4	Stillwater	A	0	12	0	6
4	Stillwater	A	0	13	0	6
4	Stillwater	A	0	14	5	1
4	Stillwater	A	0	15	0	6
4	Stillwater	A	0	16	0	6
4	Stillwater	A	0	17	0	6
4	Stillwater	A	0	18	1	5
4	Stillwater	A	0	19	0	6
4	Stillwater	A	0	20	1	5
4	Stillwater	A	F	1	0	6
4	Stillwater	A	F	2	0	6
4	Stillwater	A	F	3	0	6
4	Stillwater	A	F	4	0	6
4	Stillwater	A	F	5	0	6
4	Stillwater	A	F	6	0	6
4	Stillwater	A	F	7	0	6
4	Stillwater	A	F	8	0	6
4	Stillwater	A	F	9	0	6
4	Stillwater	A	F	10	0	6
4	Stillwater	A	F	11	0	6
4	Stillwater	A	F	12	0	6
4	Stillwater	A	F	13	0	6
4	Stillwater	A	F	14	0	6
4	Stillwater	A	F	15	0	6
4	Stillwater	A	F	16	0	6
4	Stillwater	A	F	17	0	6
4	Stillwater	A	F	18	0	6
4	Stillwater	A	F	19	1	5
4	Stillwater	A	F	20	0	6
4	Stillwater	A	N	1	0	6
4	Stillwater	A	N	2	1	5
4	Stillwater	A	N	3	0	6
4	Stillwater	A	N	4	0	6
4	Stillwater	A	N	5	0	6
4	Stillwater	A	N	6	0	6


4	Stillwater	A	N	7	0	6
4	Stillwater	A	N	8	0	6
4	Stillwater	A	N	9	0	6
4	Stillwater	A	N	10	0	6
4	Stillwater	A	N	11	0	6
4	Stillwater	A	N	12	0	6
4	Stillwater	A	N	13	1	5
4	Stillwater	A	N	14	0	6
4	Stillwater	A	N	15	0	6
4	Stillwater	A	N	16	0	6
4	Stillwater	A	N	17	0	6
4	Stillwater	A	N	18	0	6
4	Stillwater	A	N	19	0	6
4	Stillwater	A	N	20	0	6
4	Stillwater	B	0	1	0	6
4	Stillwater	B	0	2	0	6
4	Stillwater	B	0	3	0	6
4	Stillwater	B	0	4	0	6
4	Stillwater	B	0	5	0	6
4	Stillwater	B	0	6	0	6
4	Stillwater	B	0	7	0	6
4	Stillwater	B	0	8	0	6
4	Stillwater	B	0	9	0	6
4	Stillwater	B	0	10	0	6
4	Stillwater	B	0	11	0	6
4	Stillwater	B	0	12	0	6
4	Stillwater	B	0	13	0	6
4	Stillwater	B	0	14	0	6
4	Stillwater	B	0	15	1	5
4	Stillwater	B	0	16	0	6
4	Stillwater	B	0	17	0	6
4	Stillwater	B	0	18	0	6
4	Stillwater	B	0	19	0	6
4	Stillwater	B	0	20	0	6
4	Stillwater	B	F	1	0	6
4	Stillwater	B	F	2	0	6
4	Stillwater	B	F	3	0	6
4	Stillwater	B	F	4	0	6
4	Stillwater	B	F	5	0	6
4	Stillwater	B	F	6	0	6
4	Stillwater	B	F	7	0	6


4	Stillwater	B	F	8	0	6
4	Stillwater	B	F	9	0	6
4	Stillwater	B	F	10	0	6
4	Stillwater	B	F	11	0	6
4	Stillwater	B	F	12	0	6
4	Stillwater	B	F	13	0	6
4	Stillwater	B	F	14	0	6
4	Stillwater	B	F	15	0	6
4	Stillwater	B	F	16	0	6
4	Stillwater	B	F	17	0	6
4	Stillwater	B	F	18	0	6
4	Stillwater	B	F	19	0	6
4	Stillwater	B	F	20	0	6
4	Stillwater	B	N	1	0	6
4	Stillwater	B	N	2	0	6
4	Stillwater	B	N	3	0	6
4	Stillwater	B	N	4	0	6
4	Stillwater	B	N	5	1	5
4	Stillwater	B	N	6	0	6
4	Stillwater	B	N	7	0	6
4	Stillwater	B	N	8	0	6
4	Stillwater	B	N	9	0	6
4	Stillwater	B	N	10	0	6
4	Stillwater	B	N	11	0	6
4	Stillwater	B	N	12	0	6
4	Stillwater	B	N	13	0	6
4	Stillwater	B	N	14	0	6
4	Stillwater	B	N	15	0	6
4	Stillwater	B	N	16	0	6
4	Stillwater	B	N	17	0	6
4	Stillwater	B	N	18	0	6
4	Stillwater	B	N	19	0	6
4	Stillwater	B	N	20	0	6
4	Haskell	A	0	1	0	6
4	Haskell	A	0	2	0	6
4	Haskell	A	0	3	0	6
4	Haskell	A	0	4	0	6
4	Haskell	A	0	5	1	5
4	Haskell	A	0	6	0	6
4	Haskell	A	0	7	0	6
4	Haskell	A	0	8	0	6


4	Haskell	A	0	9	0	6
4	Haskell	A	0	10	0	6
4	Haskell	A	0	11	0	6
4	Haskell	A	0	12	0	6
4	Haskell	A	0	13	0	6
4	Haskell	A	0	14	0	6
4	Haskell	A	0	15	0	6
4	Haskell	A	0	16	0	6
4	Haskell	A	0	17	0	6
4	Haskell	A	0	18	0	6
4	Haskell	A	0	19	0	6
4	Haskell	A	0	20	0	6
4	Haskell	A	F	1	0	6
4	Haskell	A	F	2	0	6
4	Haskell	A	F	3	0	6
4	Haskell	A	F	4	0	6
4	Haskell	A	F	5	0	6
4	Haskell	A	F	6	0	6
4	Haskell	A	F	7	1	5
4	Haskell	A	F	8	0	6
4	Haskell	A	F	9	1	5
4	Haskell	A	F	10	0	6
4	Haskell	A	F	11	0	6
4	Haskell	A	F	12	0	6
4	Haskell	A	F	13	0	6
4	Haskell	A	F	14	0	6
4	Haskell	A	F	15	0	6
4	Haskell	A	F	16	0	6
4	Haskell	A	F	17	0	6
4	Haskell	A	F	18	0	6
4	Haskell	A	F	19	0	6
4	Haskell	A	F	20	0	6
4	Haskell	A	N	1	0	6
4	Haskell	A	N	2	0	6
4	Haskell	A	N	3	4	2
4	Haskell	A	N	4	0	6
4	Haskell	A	N	5	0	6
4	Haskell	A	N	6	0	6
4	Haskell	A	N	7	0	6
4	Haskell	A	N	8	0	6
4	Haskell	A	N	9	0	6


4	Haskell	A	N	10	0	6
4	Haskell	A	N	11	0	6
4	Haskell	A	N	12	0	6
4	Haskell	A	N	13	0	6
4	Haskell	A	N	14	0	6
4	Haskell	A	N	15	0	6
4	Haskell	A	N	16	0	6
4	Haskell	A	N	17	0	6
4	Haskell	A	N	18	0	6
4	Haskell	A	N	19	0	6
4	Haskell	A	N	20	0	6
4	Haskell	B	0	1	0	6
4	Haskell	B	0	2	0	6
4	Haskell	B	0	3	0	6
4	Haskell	B	0	4	0	6
4	Haskell	B	0	5	2	4
4	Haskell	B	0	6	0	6
4	Haskell	B	0	7	0	6
4	Haskell	B	0	8	0	6
4	Haskell	B	0	9	0	6
4	Haskell	B	0	10	0	6
4	Haskell	B	0	11	0	6
4	Haskell	B	0	12	0	6
4	Haskell	B	0	13	0	6
4	Haskell	B	0	14	0	6
4	Haskell	B	0	15	0	6
4	Haskell	B	0	16	0	6
4	Haskell	B	0	17	0	6
4	Haskell	B	0	18	0	6
4	Haskell	B	0	19	6	0
4	Haskell	B	0	20	0	6
4	Haskell	B	F	1	0	6
4	Haskell	B	F	2	0	6
4	Haskell	B	F	3	0	6
4	Haskell	B	F	4	0	6
4	Haskell	B	F	5	0	6
4	Haskell	B	F	6	0	6
4	Haskell	B	F	7	0	6
4	Haskell	B	F	8	0	6
4	Haskell	B	F	9	0	6
4	Haskell	B	F	10	0	6


4	Haskell	B	F	11	0	6
4	Haskell	B	F	12	0	6
4	Haskell	B	F	13	0	6
4	Haskell	B	F	14	0	6
4	Haskell	B	F	15	0	6
4	Haskell	B	F	16	0	6
4	Haskell	B	F	17	0	6
4	Haskell	B	F	18	1	5
4	Haskell	B	F	19	0	6
4	Haskell	B	F	20	0	6
4	Haskell	B	N	1	0	6
4	Haskell	B	N	2	0	6
4	Haskell	B	N	3	0	6
4	Haskell	B	N	4	0	6
4	Haskell	B	N	5	0	6
4	Haskell	B	N	6	0	6
4	Haskell	B	N	7	0	6
4	Haskell	B	N	8	0	6
4	Haskell	B	N	9	0	6
4	Haskell	B	N	10	0	6
4	Haskell	B	N	11	0	6
4	Haskell	B	N	12	0	6
4	Haskell	B	N	13	0	6
4	Haskell	B	N	14	0	6
4	Haskell	B	N	15	0	6
4	Haskell	B	N	16	0	6
4	Haskell	B	N	17	0	6
4	Haskell	B	N	18	0	6
4	Haskell	B	N	19	0	6
4	Haskell	B	N	20	0	6

VITA
Kyle Joseph Risser
Candidate for the Degree of
Master of Science
Thesis: COMPARISON OF ENTOMOPATHOGENIC NEMATODES (EPN) PREVALENCE AND DIVERSITY IN ORGANIC AND CONVENTIONAL BEEF AND WHEAT SYSTEMS AND ACROSS A STATE WIDE PRECIPITATION GRADIENT IN OKLAHOMA

Major Field: Entomology
Biographical:

## Education:

Completed the requirements for the Master of Science in Entomology at Oklahoma State University, Stillwater, Oklahoma in December, 2012.

Completed the requirements for the Bachelor of Science in Entomology at University of California Riverside, Riverside, California in 2009.

Experience:
Senior Laboratory assistant for the Dhanukar Laboratory during its start up at UCR. Ordered and installed all necessary equipment. 07/09-08/10

Emesinae (Reduviidae) systematics under Dr. Weirauch at UCR. Re-arranged phylogony of the tribe through for-tarsi comparison using electon microscopy and genetic phylogeny. 01/07-01/08

Triatominae infection rate with $T$. cruzi in southern California, under Dr. Weirauch, was determined through dissecting out hind guts of field collected specimens and preforming PCR on positive samples to confirm species of trypanosome as T. cruzi. 01/07-01/08

Professional Memberships:
ESA: Entomological Society of America
ESA: Ecological Society of America

Institution: Oklahoma State University Location: Stillwater, Oklahoma
Title of Study: COMPARISON OF ENTOMOPATHOGENIC NEMATODE (EPN) PREVALENCE AND DIVERSITY IN ORGANIC AND CONVENTIONAL BEEF AND WHEAT PRODUCTION SYSTEMS AND ACROSS A STATE WIDE PRECIPITATION GRADIENT IN OKLAHOMA

Pages in Study: 148
Candidate for the Degree of Master of Science
Major Field: Entomology
Findings and Conclusions:
Entomopathogenic nematodes in the families Steinernematidae and Heterorhabditidae are obligate parasites of arthropods, exist naturally in soils worldwide, and have been used to suppress soil-dwelling insect pests. Little is known about EPN diversity within Oklahoma. Ranging from east to west, Oklahoma is home to 11 different ecoregions, 9 precipitation zones and 7 soil orders. This study aimed to characterize EPN communities throughout these diverse habitats. An additional objective of this study was to compare EPN communities in organic versus conventional beef and wheat production systems within the same ecoregion. A combination of bioassay technique and molecular identification was used to identify EPN species. Soil samples were subjected to bioassay using G. mellonella to ascertain infection rates by EPN. EPN were identified, initially by infected $G$. mellonella symptoms. Based on these symptoms, appropriate primers were chosen to amplify regions of the ITS gene. These regions were then sequenced to confirm identification. The Heterorhabditis species identified was Heterorhabditis bacteriophora. The Steinernema species of EPN identified included: Steinernema feltiae, S. texanum, S. glaseri. S. carpocapsae, and S. reiobrave. Within the organic and conventional fields, overall infection rates were $2.06 \%$ in organic wheat, $6.73 \%$ in conventional wheat, $7.33 \%$ in organic pasture, and $6.67 \%$ in conventional pasture. This study showed a higher incidence of EPN in organic wheat fields than conventional wheat fields; pastures than agricultural fields; and a positive correlation with the increase in soil moisture as you move eastward across the state.

