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CHAPTER I 
 

 

REVIEW OF LITERATURE 

 

I.  History 

Phymatotrichum root rot (PRR), caused by Phymatotrichopsis omnivora (Duggar) 

Hennebert 1973 has caused significant losses to cotton and alfalfa for over a century in 

the southwestern United States.  The causal fungus was first described in 1888 and 1889 

by L.H. Pammel, an assistant to W. Trelease at the Shaw School of Botany at 

Washington University in St. Louis.  Mr. Pammel was sent to work on the disease in 

Texas and reported his findings in two Texas Agricultural Experiment Station Bulletins 

(Pammel 1888, 1889).  Mr. Pammel examined the roots of dead cotton plants and 

consistently observed strands of mycelium on the roots which led him to believe that this 

fungus may be responsible for the death of the plants.   

Phymatotrichum Root Rot 

P omnivora infects over 1,800 species of dicotyledonous plants (Blank 1953).  The initial 

symptoms of cotton root rot include occasional purpling and bronzing of the leaves 

(Streets and Bloss 1973) followed by a rapid wilting of the plant resulting in its death 

(Taubenhaus and Ezekiel 1930).  A distinguishing characteristic of the presence of PRR 

in the field is that plants die in a circle.  Cotton and alfalfa plants can exhibit foliar 
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symptoms 10-12 hours after inoculation with P. omnivora, compared to trees and shrubs 

which may require two years before the death of the plant occurs (Taubenhaus and 

Ezekiel 1930).  When hyphae of P. omnivora penetrate the root, there is direct injury to 

cells, resulting in the formation of a brown lesion around the infection site. 

 

II. Disease Triangle 

Environment 

P. omnivora is restricted to alkaline and calcareous soils (Percy 1983) in the southwestern 

United States and Mexico (Lyda 1978).  Soil pH is a critical requirement for the survival 

of the fungus.  A soil pH range of 7.2-8.0 is ideal for growth and survival of the fungus 

(Percy 1983).  The fungus can grow as hyphae in acidic soils (pH 4.7-6.5), but it does not 

produce sclerotia, the survival stage (Lyda 1978).  Optimal vegetative growth and 

sclerotia production of P. omnivora occur at soil temperatures near 28°C (Lyda 1978). 

Hosts  

The primary agronomic hosts of P. omnivora are cotton (Gossypium hirsutum L.) and 

alfalfa (Medicago sativa L.) (Streets and Bloss 1973).  Other important hosts include 

forest, fruit and nut trees, shrubs, herbaceous ornamentals, vegetable crops, grapes and 

berries (Streets and Bloss 1973).  In general, P. omnivora is not a problem for most 

monocotyledonous plants, such as sorghum (Sorghum bicolor (L.) Moench).  Resistance 

appears to manifest as a hypersensitive response, during which the fungus comes into 

contact with the roots and the attempted infection is confined to a localized lesion and 

there is no more proliferation of mycelial strands (Rush et al.1984).  Some scientists have 
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suggested that monocots are not immune, but because of their fibrous root systems, they 

can avoid significant damage by the fungus (Lyda 1978; Taubenhaus and Ezekiel 1930).   

Pathogen Life-Cycle 

The life-cycle of P omnivora consists of sclerotia which are the primary overwintering 

stage, vegetative mycelia, multihyphal strands, and spore mats (Lyda and Kenerley 1993; 

Streets and Bloss 1973).  First described by Neal et al. (1934), sclerotia stay dormant in 

the soil and germinate, forming vegetative mycelia which then produce multihyphal 

strands, when soil water potentials increase over -10 bars and soil temperatures rise above 

20°C.  These multihyphal strands grow outward through the soil until roots of a host 

plant are encountered (Lyda and Kenerly 1993).  If the plant is susceptible to the fungus, 

then the strands will penetrate the epidermis of the root and colonize host tissues (Riggs 

1993).  Once the fungus has extensively colonized the taproot it produces more mycelial 

strands that can continue to infect additional roots or form sclerotia.  In some cases, the 

multihyphal strands can grow towards the soil surface to produce spore mats.   

 

Growth Stages 

Conidia (spore mats) 

P omnivora will produce spore mats during prolonged periods of heavy rain and warm 

temperatures late in the summer (Streets and Bloss 1973).  The spore mats are composed 

of large-celled branching hyphae that produce conidiophores, which will then from 

conidia (Streets and Bloss 1973).  Spore mats occur most often in fields with dense 
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vegetation (Lyda 1978).  Significant efforts have been devoted to inducing the 

germination of conidia in vivo; however, these attempts were not successful (Woods et al. 

1967; Baniecki and Bloss 1969).  Taft et al. (1967) reported successful germination of 

conidia following sonication.  However, Lyda (1973) stated, “This is a rather drastic 

treatment and I would not expect such to occur in nature”.   

Mycelial strands 

In the early stages of hyphal development, a large central hypha becomes thickened and 

elongated (Rogers and Watkins 1938).  Smaller hyphae begin to form and wrap around 

the central hypha forming multihyphal strands (Lyda 1978).  As the strand matures the 

mycelium turns from white to buff and then to brown in color (Rogers and Watkins 

1938).  The external hyphae form distinctive acicular (needle-like) sterile hyphae that 

sometimes form the characteristic cruciform branching (Streets and Bloss 1973).   

Sclerotia 

Soilborne sclerotia permit survival of P. omnivora during unfavorable conditions such as 

winter and in the absence of a host (King and Loomis 1929) and have been reported to 

survive in the soil for up to 12 years (Streets and Bloss 1973).  Sclerotia are formed along 

the mycelial strands in the soil adjacent to infected roots (possibly at depths of 10 to 12 

feet) and, like the mycelial strands, are initially white and turn dark brown in color (Lyda 

1978).   



 

5  
 

Taxonomy 

When the fungus was first observed on cotton roots by Mr. Pammel, he sent samples to 

Harvard University where Dr. Farlow identified it as Ozonium auricomum (Pammel 

1888).  The fungus was renamed as a new species Ozonium omnivorum Shear (1907) 

based on the non-sporulating mycelium associated with diseased roots.  A conidial stage 

was discovered on dying alfalfa plants in Arizona (Thornber 1906) and Duggar (1916) 

named the fungus Phymatotrichum omnivorum (Shear) Duggar.  A basidial stage was 

reported in 1969 and the name was changed briefly to Sistotrema brinkmanni (Baniecki 

and Bloss 1969).  However, the basidiospores of the Sistotrema failed to produce the 

mycelium of P. omnivorum and a sclerotial stage could not be obtained from the 

basidiospore isolate.  As of today, Phymatotrichopsis omnivora (Duggar) Hennebert is 

the name associated with the cotton root rot fungus and it is solely asexual belonging to 

the phylum Ascomycota, class Pezizomycetes (Marek et al. 2009). 

 

III. Previous Molecular Investigations into P. omnivora 

One major characteristic of P. omnivora hyphae is the multinucleate cells.  There are 

typically 4 nuclei per cell in small hyphae with up to 20 in large celled hyphae (Neal et 

al. 1934).  Robert Hosford and George Gries (1966) investigated P. omnivora’s nuclei for 

evidence of a parasexual cycle, which was reported in other fungi (Pontecorvo 1956; 

Käfer 1961).  P. omnivora’s hyphae were found to contain 3 to 41 nuclei per cell with the 

number increasing with size of the hyphae (Hosford and Gries 1966).   Hyphal tip cells 
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contained two to eight nuclei per cell, while 6 to 49 nuclei per cell were found in spore 

mat hyphal cells and one to two nuclei per conidium.   

Lipid composition and DNA methylation differ between mycelium and sclerotia..  The 

lipid and glycogen composition of sclerotia was examined by Gunasekran and Weber 

(1974) who concluded that lipid composition in sclerotia is 21.7%, while free glycogen in 

sclerotia comprises 10.1% of the total dry weight and bound (insoluble) glycogen 

comprises up to 26.6% of the sclerotial dry weight (Ergle 1947).  The lipids present in P. 

omnivora sclerotia include mono, di-, and triglycerides and polar lipids are the 

predominant ones (Gunasekran and Weber 1974).    In mycelium the lipid composition 

was 48.6 mg/g dry weight compared to 52.5 mg/g dry weight for sclerotia (Gunasekran 

1974).  The DNA in sclerotia was found to be extensively methylated (Jupe et al. 1986).  

The level of methylation of sclerotial DNA versus vegetative hyphal DNA was 

determined by digestion with restriction endonucleases inhibited (HpaII) or not inhibited 

(MspI) by DNA methylation.  To investigate carbohydrate metabolism, P. omnivora was 

grown on different carbon sources and tested for the production of the extracellular 

enzyme amylase (Gunasekran 1980).  Amylase production was higher when the fungus 

was grown on a basal synthetic medium, which was supplied with soluble starch to 

induce expression.  The optimal temperature for mycelial growth was 20°C, but the 

optimal temperature for amylase production was 30°C.  

In 1992, Van Wayne Crouch Jr., a graduate student at Texas A&M University used 

pulsed-field gel electrophoresis (PFGE) to separate chromosomes of four isolates of P. 

omnivora (Crouch 1992).  Two of the isolates were from cotton, one from okra, and one 

from grape.  Crouch identified four chromosomes ranging in size from 1.8 Mb to 6 Mb.  
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Overall, the chromosome numbers and sizes did not vary among isolates.  More than four 

chromosomes likely were present, since some DNA, possibly chromosomes larger than 6 

Mb, appeared to not have migrated out of the wells of the PFGE gels. 

Restriction fragment length polymorphism (RFLP) were used to estimate genetic 

variability among fungi.  For P. omnivora, genomic DNA from one isolate was cut with 

five restriction endonucleases and only one polymorphism was detected with homologous 

probes (Riggs 1993).  Riggs also used random amplification of polymorphic DNA 

(RAPD), another molecular technique, to analyze genetic diversity among a population of 

P. omnivora isolates obtained from the same field.  No diversity was detected using seven 

primers although there were distinct amplification patterns. 

 

IV. Characterizing Fungal Genomes 

Pulsed Field Gel Electrophoresis (PFGE) 

PFGE is similar to conventional gel electrophoresis, which can separate DNA fragments 

up to 20 kb in size using a continuous electrical field.  However, PFGE separates high 

molecular weight DNA fragments, from 30 kb to 10 Mb in size, using an alternating 

electrical current to move the larger DNA into specialized (large pore size) agarose gels 

(Shwartz and Cantor 1984).  The electrical pulses can be configured in alternating 

diagonal vectors, which allow larger DNA (up to 20 Mb) to migrate into the agarose, 

resulting in better separations.  The predominantly used PFGE technique is contour-

clamped homogeneous electric field (CHEF, manufactured by Biorad Laboratories, 

Richmond, CA), which, depending on the electrical power supply, permits the 
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autonomous operation of electrodes and automatically shifts the electrical field angles 

(Sambrook and Russell 2001).  The larger size limits of DNA separated by PFGE can be 

used to separate the chromosomes of some eukaryotes, including fungi.  However, such 

electrophoretic separations require long run times, varying from 24 hours up to 240 

hours.   

Fungal genomes studied using PFGE Viral and bacterial genomes are routinely 

analyzed using PFGE (O’Brien et al. 2006).  The genome size and chromosomal 

organization of numerous plant pathogenic fungi also have been characterized using 

PFGE.  PFGE-based visualization of chromosomes is sometimes referred to as molecular 

karyotyping.  The fungus Tilletia indica is an economically important pathogen, causing 

Karnal Bunt of wheat growing around the world, but little was known about its genetic 

characteristics.  Using PFGE, the molecular karyotypes of eight strains of T. indica were 

examined and found to have 11 chromosomes ranging in size from 1 to more than 3.3 

megabases (Tooley et al. 1994).  However, each isolate exhibited unique karyotypes, 

indicative of the inherent variability of genomic organization within this species and 

corresponding to the genetic diversity of the strains examined.  Magnaporthe grisea, 

which causes rice blast, possesses unique chromosomes called “mini-chromosomes”, 

ranging in size from 500 to 2,000 kb (Orbach et al. 1996).  These mini-chromosomes 

were highly diverse in size compared to other chromosomes and ranged in sizes from 

2,000 kb to more than 10,000 kb among the 38 strains tested.  Mini-chromosomes, also 

known as supernumerary, accessory, dispensable or B-chromosomes, have been 

characterized in numerous fungi (e.g. Nectria haematococca, Pyrenophora, 



 

9  
 

Metarrhizium, Macrophomina, Fusarium, and Leptosphaeria), are not needed for growth 

and occur in other eukaryotes such as animals and plants (Zolan 1995; Covert 1998).   

Another economically important fungus that has little known about its genetics is 

Sclerotinia sclerotiorum, which causes disease in a wide range of plants and possesses 

multinucleate hyphae (Purdy 1979).  Again, like T. indica, more genetic information is 

needed in order to further investigate this fungus for improving disease management.  Six 

strains of S. sclerotiorum virulent on sunflower were subjected to molecular karyotyping, 

which revealed at least 16 chromosomes ranging in size from 1.5 Mb to 4.0 Mb 

(Fraissiner-Tachet et al. 1995).  These high molecular weight chromosomes did not vary 

among the six field isolates in number or size.  In contrast, smaller chromosomes (<1.5 

Mb) were highly variable in size between isolates, and while they attempted to separate 

these mini-chromosomes, they were unsuccessful.  In the canola blackleg fungus, 

Leptosphaeria maculans, electrophoretic karyotypes of four unrelated Australian field 

isolates revealed that all four had a different karyotype pattern.  The size ranges of the 

twelve chromosomal DNA bands were between 0.9 Mb to > 2.2 Mb (Plummer and 

Howlett 1993).   
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Other Genome Characterization Methods used in Fungi 

Telomere Fingerprinting 

PFGE is useful in estimating chromosome numbers and size in various fungi; however, it 

is can be difficult to achieve sufficient resolution of the bands, which can lead to 

underestimates of chromosome numbers.   An alternative approach is telomere 

fingerprinting in which genomic DNA is cut with restriction enzymes and the separated 

fragments are hybridized with a telomere-specific probe.  Since each chromosome 

possesses two telomeres, the number of chromosomes can be counted and estimated 

(Zolan 1995).  A study involving the fungus Rosellinia necatrix employed telomere 

fingerprinting to better understand the genetic and cytological characteristics of its 

mating type and vegetative incompatibility (Aimi et al. 2002).  Thirty field and single 

ascospore strains of R. necatrix were collected and the extracted DNA was digested with 

Bal31 exonuclease and MboI and then hybridized with a telomere repeat probe (pTel46) 

from the fungus Coprinus cinereus.  The number of hybridizing bands from each isolate 

was counted and the estimated minimum chromosome number was 6-7.  Telomere-linked 

RFLPs were observed among all the strains, however, there was no variation in the 

telomere patterns of R. necatrix strains belonging to the same MCG (mycelial 

compatibility group).  This suggests that isolates must have similar chromosomal 

organization to anastamose with each other.  

Genetic diversity of the gray leaf spot pathogen Magnaporthe oryzae was investigated 

using telomere fingerprinting.  The telomere regions of M. oryzae were determined to be 

more variable than internal chromosomal loci (Farman and Leong 1995).  Other RFLPs 
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that might be useful in studying gray leaf spot populations were also examined using 22 

isolates of M. oryzae from different states (Farman and Kim 2005).  A plasmid clone 

containing an M. oryzae telomere sequence (Farman and Leong 1995) was used to probe 

PstI-digested DNA, which resulted in multiple hybridization signals.  Since the haploid 

number of chromosomes is 7, they observed 14 hybridized telomere signals from all 22 

isolates.  An extremely high level of polymorphism among the isolates was observed with 

no more than 3 isolates sharing the same fragment size.  The variability was compared to 

the internal repetitive DNA loci, which were shown to be genetically similar across the 

isolates.        

 

Other methods 

Fuelgen staining has been used to characterize P. omnivora’s nuclear morphology in 

fixed sections of mycelia, spore mats, and sclerotia (Hosford and Gries 1966).  The 

purple stain was used to monitor the appearance and movements of nuclei in stages of P. 

omnivora’s life cycle.  The observations of diploid, aneuploid, and polyploidy nuclei in 

anastomosing hyphae implied that P. omnivora could undergo a parasexual cycle during 

its development.   

Oomycetes such as Phytophthora infestans, have been studied using flow cytometry 

methods to better understand the cell cycle, and was found to be useful for identifying 

phenotypic and genetic changes among populations (Catal et al. 2010).  In this study, the 

researchers used laser flow cytometry, which is capable of measuring 20,000 nuclei 

stained with propidium iodide.  Isolated nuclei from P. infestans hyphae were delivered 
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through a laser flow cytometer.  The DNA content was measured by quantifying the 

intensity of fluorescence and compared to known chicken red blood cell nuclei controls.  

The outcomes of this analysis revealed high diversity in DNA content of nuclei among 

the P. infestans isolates yielding a single 2C peak which corresponds to the diplophase 

cycle.  Some isolates were found to be heterokaryons because they had multiple distinct 

populations of nuclei.  This technique was used in other fungi and oomycetes as well 

(Day et al. 2002).   

 

V. Quantitative Polymerase Chain Reaction (qPCR) for Quantifying Fungal 

Infection and Following Gene Expression of Fungi In Planta 

 

Biochemical methods for estimating fungal biomass in planta 

Ergosterol and chitin concentrations in biological samples has been used to measure total 

fungal biomass (Gardner et al. 1993; Zeppa et al. 2000).  Ergosterol is a component of the 

fungal cell membranes and is a good indicator of metabolically active fungal growth 

(Zeppa et al. 2000).  However, this method often lacks specificity because epiphytic 

fungal biomass on a plant surface does not necessarily correspond with meaningful data 

regarding infection (Bermingham et al. 1995).  Antibodies also have been used to 

determine fungal biomass (Dewey et al. 1997), but obtaining antibodies specific for fungi 

can be problematic (Ward et al. 1998).   
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Quantitative Polymerase Chain Reaction (qPCR) 

Quantitative PCR (also referred to as real-time PCR), uses a detection method based on a 

fluorescent dye (SYBR® Green I) that emits a signal once it is bound to double-stranded 

DNA (dsDNA).  One advantage to using this fluorescent dye is that the florescence 

emitted is proportional to the amount of dsDNA in a reaction (Schena et al. 2004).  In 

general, qPCR products are short amplicons that range from 100-150 base pairs (bp) and 

quantification of target dsDNAs can be measured directly using a fluorimetric PCR 

thermocycler. 

qPCR and plant pathogenic fungi 

Real-time PCR has been used to quantify the fungal biomass of M. grisea in rice plants 

and the amount of fungal biomass was found to increase with time in infected tissues.  

Also, the proportion of certain fungal RNAs increased over time compared to the total 

RNAs extracted from infected plant tissue (Qi and Yang 2002).  In particular, the 28S 

rDNA gene was found to be useful for tracking the amount of M. grisea DNA present in 

rice plant tissues and allowed for high-throughput screening useful in a diagnostic setting 

where multiple samples are often obtained.   

Infection of cereals by certain toxigenic Fusarium spp. is not tolerated in the food 

industry, so detecting toxic levels of the pathogen is very important.  Trichodiene 

synthetase (Tri5) is an essential enzyme in Fusarium spp. for the production 

trichothecene mycotoxins (Niesen and Vogel 1998).  In one study, thirty-two wheat 

samples infected with 20 species of Fusarium were assayed using qPCR to quantify the 
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presence of the Tri5 (Schnerr et al. 2001).  Using this assay, down to 0.05 ng of Tri5 

DNA could be detected in naturally contaminated samples.   

Fungal gene expression in planta can be quantified using qRT-PCR and can also be used 

to confirm microarray data.  Gene expression during nitrogen starvation M. grisea was 

followed using microarrays (Donofrio et al. 2006).  The in planta expression of seven 

genes-of-interest identified from the microarray data were evaluated using qRT-PCR and 

found to be expressed similarly to that seen during nitrogen starvation. 

 Expression of nitrogen metabolism genes in the ectomycorrizal fungus Tuber borchii 

during in vitro culture and in planta symbiosis has been examined using qRT-PCR 

(Guescini et al. 2003; 2007; 2009).  To normalize expression data between samples, the 

T. borchii 18S rDNA was used as an internal reference gene.  Using qRT-PCR, the 

expression levels of nitrate transporter, nitrate reductase, nitrite reductase and nitrogen 

regulatory element were determined to be 15-, 8-, 10- and 3-fold higher in 

ectomycorrhizal tissues than in control vegetative mycelia, respectively.    

 

VI. Accomplishments of Thesis Research: 

 First, several isolates of P. omnivora were analyzed using PFGE and telomere 

fingerprinting in order to attempt to characterize its genome and to determine if 

chromosomal variation occurs.  Second, the cytology of the multinucleate hyphae of P. 

omnivora was examined using the fluorescent DNA stain DAPI to visualize the number 

of nuclei in each cell of the different isolates.  Next, genes-of-interest in the P. omnivora 

genome sequence were identified and categorized according to Gene Ontology.  Genes 
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that were selected are involved in ‘housekeeping’ functions such as chromatin 

remodeling, fungal cell wall biosynthesis, glycogen storage, virulence and secondary 

metabolism.  Finally, expression of these genes-of-interest in vegetative mycelia, 

mycelia exposed to host and nonhost root exudates, and 4 and 8 week-old sclerotia was 

estimated using qRT-PCR. 
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CHAPTER II 
 

 

ATTEMPTS TO CHARACTERIZE THE GENOME SIZE AND ORGANIZATION OF 

PHYMATOTRICHOPSIS OMNIVORA 

 

INTRODUCTION 

Since the mid 1980s, electrophoretic karyotyping has revealed that most fungi have a 

vegetative chromosome number between 5 and 20, and the genomes are estimated 

between 10 to 40 MB (Beadle et al. 2003).   The technique Pulsed Field Gel 

Electrophoresis (PFGE) separates DNA molecules in an agarose gel by alternating 

electric currents. Because the chromosomes of most fungi are small, this method gives 

researchers improved resolution when visualizing the DNA.  Previous investigations have 

shown that electrophoretic karyotyping can be used to separate fungal chromosomes 

based on their size (Orbach et al. 1996; Tooley et al. 1994; Fraissiner-Tachet et al. 1995; 

Plummer and Howlett 1993).   To isolate intact chromosomes from fungal cells without 

shearing the DNA, intact protoplasts must be isolated from the hyphae, spores, or fruiting 

bodies , using cell wall degrading enzymes in an isotonic solution containing osmolytes.   
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Protoplasts are embedded in agarose and treated with a proteinase/detergent solution to 

lyse the cells and inactivate nucleases, thereby releasing intact chromosomal DNA.  This 

DNA is then separated using specialized electrophoresis designed to separate high 

molecular weight molecules.  Contour clamped homologous electric field (CHEF) 

electrophoresis is a type of PFGE.  CHEF uses electrodes placed in a hexagon pattern, 

and alternating electrical pulses to separate larger and small chromosomes.  It has been 

demonstrated that fungi can have high variability in chromosome number among 

different isolates within the same species (Zolan 1995).  Based on previously determined 

phylogeographic differences among isolates, varying numbers of chromosomes among 

these isolates was expected.  To determine if P. omnivora shows similar variation in 

chromosome number among isolates from Texas, Arizona and Oklahoma, protoplasts 

from each P. omnivora isolate were prepared, embedded in agarose and lysed.  DNA 

released from protoplasts was subjected to CHEF to separate and enumerate the 

chromosomes present.   In the first section of this chapter, the separation of 

chromosomes from several isolates of P. omnivora by CHEF ultimately failed due 

technical failures, which will be discussed.   

Previous research has shown P. omnivora possesses 3 to 41 nuclei per hyphal cell, 

depending on the size of the hyphae (Neal et al. 1943; Hosford and Gries 1966).  There is 

also evidence that this fungus possesses haploid, diploid, aneuploid, and polyploidy 

nuclei (Hosford and Gries 1966).  It has been hypothesized that P. omnivora has 

developed a parasexual cycle over the course of its evolution, which lead to its 

heterokaryotic nature (Pontecorvo 1956; Käfer 1961).  This means that hyphae from 

different individuals can fuse and exchange nuclei, which may undergo karyogamy 
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resulting in genetic recombination.  This phenomenon is not uncommon in fungi that do 

not appear to have a sexual stage identified.  In the second section of this chapter, the 

hyphal nuclei of P. omnivora were stained using the nucleic acid stain 4',6-diamidino-2-

phenylindole (DAPI).  Epifluorescence microscopy was used to confirm the 

mutlinucleate nature of this fungus, which may indicate these isolates are heterokaryotic.   

All eukaryotic chromosomes contain telomeres, which are specialized DNA-protein 

structures at the termini that stabilize chromosomes and are necessary for replication of 

DNA at the 5’ ends (Blackburn 1990). Previous investigations showed that counting the 

number of telomeres through telomere fingerprinting can be used to estimate the numbers 

of chromosomes for fungi (Blackburn 1990; Fierro and Martin 1999; Levis et al. 1997; 

Padmavathi et al. 2003; Zolan 1995).  Telomere fingerprinting is possible since a 

conserved telomere hexanucleotide repeat, TTAGGG, occurs across all filamentous fungi 

(Blackburn, 1990), and can be used as hybridization probe to detect telomeres in blotted 

restriction enzyme-digested genomic DNA.  In the third section of this chapter, two 

restriction enzymes were separately used to cut genomic DNA from different P. 

omnivora isolates, blotted to nylon membranes and hybridized against a labeled telomere 

probe (TTAGGG)4.  The number of bands hybridizing to the probe in each lane, divided 

by two, estimates the total number of chromosomes present.  Isolate OKAlf8 was used 

for all initial experiments.  Unfortunately, no well resolved telomere bands were 

identified using the telomere probe.  The possible reasons for this failure are discussed. 
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MATERIALS AND METHODS 

Fungal Isolates and Culture:  Pure cultures of P. omnivora (Table 1) were isolated from 

diseased cotton or alfalfa plants according to Marek et al. (2009).  Isolates were 

maintained by serial transfer on modified ATCC medium 1078 (M1078), containing per 

1,000 ml distilled water: 1 g NH4NO3; 0.75 g MgSO4; 0.4 g KH2PO4; 0.9 g K2HPO4; 0.1 

g CaCl2; 40 g glucose; 1 g yeast extract; 1 g peptone; 100 μl Vogel’s trace elements 

(Vogel 1964) and 18 g agar. 
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TABLE 1.  Isolates of Phymatotrichopsis omnivora used in this study.   

Strain Host Origin 

Location Date Collector 

OKAlf8 Alfalfa Belleville, OK 2003 S. Marek 

NFAlf4 Alfalfa Ardmore, OK 2004 S. Marek 

ATCC 
22316 

Cotton Arizona 1975 H.E. Bloss 

ATCC 
32448 

Peach Mexico 1973? H.E. Bloss 

Ranch1 Cotton Austwell, TX 2005 S. Marek 

Rick5 Cotton Austwell, TX 2005 S. Marek 

Trumbull4 Cotton Trumbull, TX 2005 S, Marek 

MaudLowe8 Cotton Austwell, TX 2005 S. Marek 

EC59 Cotton El Campo, TX 2005 S. Marek 
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Molecular Karyotyping of P. omnivora Using CHEF 

Protoplast isolation from mycelia:  A medium sized cork borer (No.8) was used to cut 

mycelial agar plugs from 7-10 day old M1078 cultures of P. omnivora.  Three plugs were 

used to inoculate each of six deep petri dish (100 × 25 mm) containing 25 ml M1078 

broth, carefully wrapped with parafilm and incubated at 28°C incubator for 7-8 days.   

Mycelial mats were harvested by vacuum filtration using sterilized filter paper 

(Fisherbrand 9.0 cm, Waltham, MA) on a Buchner funnel (9.0 cm diameter) with a 

perforated plate atop a 500 ml filtration flask, all inside a laminar flow hood.  The 

mycelial mats were washed three times with sterile water to remove residual broth.  After 

excess moisture was removed from mycelial mats by vacuum filtration, the mats were 

used either for protoplast formation or a tissue homogenizer (Fig. 1).   

Three mycelial mats were transferred into a 250 ml Erlenmeyer flask containing 60 ml 

Glucanex enzyme solution (Sigma-Aldrich, St. Louis, MO; 20 mg/ml; 0.2µm-filter-

sterilized) in KC buffer (0.64M KCl, 0.2M CaCl2, 26mM MES, pH 8.0).  Two flasks 

containing 3 mats each were used per preparation.  The flasks were covered with sterile 

foam plugs and aluminum foil and placed in a 28°C incubator shaking at 80 rpm 

overnight. The enzyme/protoplast solution was filtered through sterile Miracloth (EMD 

Chemicals, San Diego, CA) and the filtrate collected in a 50 ml falcon centrifuge tube.  A 

few drops of this protoplast solution were placed on a microscope slide, cover slipped 

and protoplast formation evaluated using a microscope.  Fourteen ml of the protoplast 

solution was overlaid with 10 ml STC buffer (1M sorbitol, 50mM Tris-Cl, pH 8.0, 50mM 
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CaCl2), in 30 ml Corex centrifuge tubes and centrifuged for 5 minutes at 5000 x g.  After 

centrifugation, the supernatant was removed and discarded and a pellet containing the 

protoplasts had precipitated on the bottom of the tubes.  An additional 14 ml protoplast 

solution and 10 ml STC buffer was added to the previously pelleted protoplasts by 

resuspending in the same tubes and the process was repeated.  The protoplasts from each 

of the original flasks were collected and pooled in one Corex tube each generally after 

four centrifugation runs.  After the final round of centrifugation, the pellet in one tube 

was completely resuspended in 1 ml STC buffer and transferred to the other Corex tube 

and mixed with the other pellet.  The concentration of protoplasts was determined using a 

hemocytometer.  The pooled protoplast suspension was centrifuged for 5 minutes at 

5000×g and the supernatant removed.  The final pellet was resuspended in 300 μl GMB 

buffer (0.9M sorbitol, 125mM EDTA pH 7.5; Carolyn Young, personal communication).  

Protoplast plug preparation for CHEF:  About 700 μl of 50°C 1% low-melting point 

agarose (Biorad, Hercules, CA) was mixed with 300 μl protoplast suspension, resulting in 

6×105 to 6×108/ml protoplasts (depending on prep used; Table 5) embedded in 0.7% low 

melting point agarose and this mixture was pipetted into CHEF plug molds (Biorad).  The 

molds were placed 4oC for 20 minutes. The solidified protoplast-agarose plugs were then 

transferred to a 50 ml falcon tube containing 10 ml of SE buffer (2% SDS, 0.25M EDTA 

pH 8.0).  The plugs were incubated in a 55°C water bath and then  transferred to 10 ml of 

10× ET buffer (0.5M EDTA, 10mM Tris pH 8.0) containing 1% sodium lauroyl 

sarcosine and 20 μl proteinase K (20mg/ml stock solution).  The plugs were incubated for 

24 hours in a 50°C water bath and then washed three times (1 hour between washes) with 

1× ET buffer.  The plugs were stored in 10 ml 10X ET buffer at 4°C for up to 6 months.   



 

23  
 

 

FIG. 1. Flow chart describing protoplast preparation procedures from Phymatotrichopsis 

omnivora mycelia.  
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Mycelial homogenization for CHEF gels:  The following procedure was modified from 

Crouch (1992).  Mycelial mats of P. omnivora were ground in 10 ml STE buffer solution 

(25mM Tris-HCl pH 7.5, 1M sorbitol, 25mM EDTA) using a tissue homogenizer 

(Kontes, Tissue Grinder 15 ml, Vineland, NJ ) and then filtered through a sterile 20 µm 

nylon mesh screen.  The flow through mycelial fragment filtrates were transferred to a 50 

ml falcon centrifuge tube and centrifuged for 10 minutes at 5000 x g at room temperature.  

The supernatant was discarded and the pellet was resuspended in 10 ml STE buffer.  This 

‘washing’ step was repeated twice more.   The final pellet was resuspended in 500 μl 

STC buffer.  An equal amount of 1.5% low melting point agarose (Biorad) was added to 

the pellet.  The solution was pipette into plug molds (Biorad) and maintained at 4°C to 

solidify.  The plugs were equilibrated in 10 ml of 0.5M EDTA, pH 8.0 for 1 hour, then 

transferred to a solution containing 10 ml of 1mg/ml proteinase K, 1% sodium lauroyl 

sarcosine and 0.45M EDTA, pH 8.0 and incubated at 50°C for 20 hours. After proteinase 

K treatment, plugs were washed several times with 0.5M EDTA, pH 8.0, then stored in 

10 ml 0.5M EDTA, pH 8.0 at 4°C for up to 6 months. 

PFGE gel preparation:  Molten 0.7% agarose (Certified Megabase Agarose, Biorad) in 

TBE buffer was poured into a CHEF gel casting mold (Biorad) and allowed to solidify.  

Once the gel solidified and the well comb removed, protoplast-gel plugs were placed into 

the wells using a scalpel (fine point) and overlaid with molten (50°C) 0.7% agarose-TBE 

(Certified Megabase Agarose) poured over the wells to seal them.  The gel was then 

removed from the casting stand and placed in the electrophoresis chamber.  Two liters of 

0.5X TBE buffer (chilled to 4°C) was added into the chamber and PFGE run using the 

Biorad CHEF mapper system.  In each PFGE run, in addition to the P. omnivora 
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protoplast plugs, two lanes were loaded with plugs containing DNA size markers from 

Schizosaccharomyce pombe (3 chromosomes, 3.5 - 5.7 Mb) and Saccharomyces 

cerevisiae (~14 chromosomes, 0.225-2.2 Mb).  In addition to being size standards, these 

acted as positive DNA loading controls and confirmed electrophoresis settings caused the 

migration and separation of DNA bands of the appropriate size range.  Numerous PFGE 

run parameters were assessed (Table 2).   
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TABLE 2. CHEF parameters used in experiments with protoplast and mycelial 

preparations from Phymatotrichopsis omnivora.  

Experiment Voltage Pulse time 
Total run 

time 
Angle Buffer 

Agarose 
% 

1a 40V 90 min 178 h 120° 
0.5X 

TBE 
0.7% 

2b 60V 3-15  min 168 h 120° 
0.5X 

TBE 
0.7% 

3c 40V 30-60 min 120 h 106° 
0.5X 

TBE 
0.7% 

4d 50V 
1200-6000 

s 
240 h 106° 

0.5X 

TBE 
0.7% 

a adapted from Orbach et al. (1996) 

b adapted from Tooley et al. (1994) 

c from this study 

d adapted from Young (2005)  
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Nuclear Staining of P. omnivora Hyphae:  Superfrost microscope slides (Fisherbrand, 

Waltham, MA) were sterilized in 95% ethanol in a coplin jar.  The slides were then 

dipped in M1078 media, placed onto a 1.8% water agar petri plate and allowed to air-dry 

slightly in the laminar flow hood.  An M1078 agar plug colonized by P. omnivora 

mycelium was placed next to the slide so the fungus would grow towards the slide.  The 

water agar plates with the inoculated slides were incubated at 28°C for 7 days.  After the 

mycelium covered most of the slide, the slide was lifted off the plate and transferred into 

a coplin jar containing formalin-acetic acid-alcohol (FAA) fixative (10:5:50:35, 37% 

formalin: glacial acetic acid: 95% ethanol: distilled water) and maintained overnight at 

4°C.  The slides were then dehydrated through a methanol series (20 min in each, 50%, 

70%, and 100% methanol), air-dried 20 minutes in a laminar flow hood to bond hyphae 

to the microscope slide and then re-hydrated through the reverse order of the previous 

methanol series ending in water.  The slides were then placed in a coplin jar containing 1 

µg/ml DAPI for 1 hour and then rinsed in sterile distilled water for 1 hour.  The slides 

were examined using Nikon Eclipse E800 epifluorescent microscope (Melville, NY) 

using the UV-2E/C DAPI filter and Nomarski differential interference contrast (DIC) to 

image the nuclei and hyphal cells, respectively.  Separate monochrome DAPI and DIC 

images of each field were captured using a QImaging Retiga 2000R charge-coupled 

device (CCD) camera (Quantitative Imaging Corp., Surrey, BC, Canada).  Monochrome 

images (grayscale) were artificially colored (DAPI = light blue and DIC = white) and 

combined as layers using QCapture Pro version 5.1.1.14, the camera’s image capture 

program. 
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Genomic DNA Extraction from Phymatotrichopsis omnivora Isolates:   Lyophilized 

mycelial mats from isolates OKAlf8, NFAlf4, Rick5, EC59, Maudlowe8, ATCC 22316, 

ATCC 32448, Ranch1, and Trumbull4 were ground in liquid nitrogen using a mortar and 

pestle and genomic DNA (gDNA) isolated according to the protocol of Möller et al. 

(1992) modified to increase the volumes of reagents to a maxi-prep scale (50 ml) instead 

of the mini-prep scale (1 ml) reported in the article.  Isolated gDNA was analyzed 

spectrophotometrically (NanoDrop, Wilmington, DE) and separated by electrophoresis 

on a 0.5× TBE gel. Aliquots were stored at -80°C until used.  The concentrations of DNA 

in preparations from each isolate before restriction digests are shown in Tables 3 and 4. 
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TABLE 3.  Concentrations and qualities of gDNA isolated from different isolates of P. 

omnivora. 

Name µg/μl 260/280 

OKAlf8 0.851 2.01 

Maudlowe8 5.411 1.03 

Trumbull4 0.100 2.01 

EC59 3.409 2.02 

Ranch1 0.885 2.01 

ATCC 22316 0.677 2.15 

ATCC 32448 2.871 2.04 

NFAlf4 1.028 1.91 

Rick 5 1.332 2.00 
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TABLE 4. Concentrations of DNA from P. omnivora isolates used for each restriction 

digest prior to dividing in 5 µg aliquots and telomere fingerprinting. 

Enzyme OKAlf8 NFAlf4 Rick5 ATCC 32448 

BglII 177ng/μl 134.7ng/μl 172.8ng/μl 94.6ng/μl 

EcoRI 254ng/μl 162.7ng/μl 51ng/μl 103.8ng/μl 
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Preparation of Labeled Hybridization Probes:  Three DNA probes were generated by 

PCR from OKAlf8 gDNA.  Two gene-specific probes, glycogen synthase 1 (GLYS, 576 

bp) and RNA polymerase II, subunit 2 (RPB2, 1113 bp), were amplified with the 

respective primer pairs, GLYS1-BAC-FOR 5’-GGCAAAAGAGGCATTTACCA-3’ and 

GLYS1-BAC-REV 5’-CGCAAACATTCGTCTCTTCA-3’ and PoRPB2-Forward 5’-

TCTTGAGTGTAGGTGCCGTTGAGT-3’ and PoRPB2-Reverse 5’-

CAAATCAGGCACGATTCCTTCGCA-3’, which were designed based on P. omnivora 

genome sequences at the University of Oklahoma 

(http://www.genome.ou.edu/fungi.html) using GoTaq Green Master Mix (Promega, 

Madison, WI) with the following PCR program:  an initial denaturation at 95°C for 5 

minutes; followed by 35 cycles of 94°C for 30 seconds, 55°C for 30 seconds , and 72°C 

for 1 minute, and a final extension at 72°C for 10 minutes.  The telomere fingerprinting 

probe (variable bp lengths) was amplified using the complementary telomeric repeat 

primers (CCCTAA)4 and (TTAGGG)4, the same polymerase as gene-specific probes and 

the PCR program from Ijdo et al. (1991).  The resulting PCR products were cleaned and 

labeled using the AlkPhos Direct Labeling and Detection System (GE Healthcare, 

Piscataway, NJ) according to manufacturer’s instructions.  Labeled probes were stored in 

50% (v/v) glycerol at -20°C.  To asses probe detection limits, 5 μl drops of OKAlf8 

gDNA in a log10 serial dilution (10-1,10-2, 10-3, 10-4, 10-5) were spotted onto a positively 

charged nylon membrane (Millipore, Billerica, MA), UV-cross linked, and hybridized 

with labeled GLYS, RPB2, and telomere probes according to manufacturer’s instructions 

(GE Healthcare), then membranes were treated with hybridization buffer for 1 hour at 

http://www.genome.ou.edu/fungi.html�
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55°C, hybridized with labeled probes (10 ng/μl) for 24 hours at 55°C in hybridization 

buffer, then washed with hybridization buffer for 10 minutes at 55°C twice. 

 

Southern Blot Hybridization: Five µg gDNA from each isolate of P. omnivora were 

digested with the restriction enzymes BglII or EcoRI overnight at 37°C.  The digested 

DNA was separated by electrophoresis in a 1% agarose gel (TAE buffer), and stained 

with 0.5 μg/ml ethidium bromide to confirm separation.  DNA was then transferred to a 

positively charged nylon membrane by overnight capillary transfer (Fig 2) according to 

the protocol by Brown (1993).  After overnight transfer, the gel was stained with 0.5 

μg/ml ethidium bromide to visualize DNA transfer to the membrane.  The membrane was 

pre-hybridized at 55°C for one hour and labeled probe was added according to 

manufacturer’s instructions (AlkPhos Direct, GE Healthcare).  The membrane with 

labeled probe was allowed to hybridize overnight before post hybridization washes were 

performed.  Two washes were done with hybridization buffer at 55°C for 10 minutes.  
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FIG. 2. Capillary transfer of DNA from agarose gel to nylon membrane (from Brown 
1993)  
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Labeled Probe Signal Detection using CDP-Star:  Detection of alkaline phosphatase 

(AP)-labeled probe was performed using the chemiluminescent AP substrate CDP-Star 

(Tropix, Inc. Bedford, MA) according to the AlkPhos Direct Labeling and Detection 

System manufacturer’s protocol (GE Healthcare).  After incubating hybridized blots with 

CDP-Star blots were exposed to chemiluminescence grade autoradiography film CL-

Xposure Film (Thermo Scientific, Waltham, MA) inside a photography cassette for an 

initial exposure time of 20 minutes.  The exposure time was prolonged up to 1 hour 

depending on signal strength. 

 

RESULTS and DISCUSSION 

 

Molecular Karyotyping Attempts using CHEF of P. omnivora Protoplasts 

Initial attempts were unsuccessful (data not shown) because the CHEF Mapper power 

supply needed repairs.  The initial CHEF gel analyses after the power supply was 

repaired were not successful even though the protoplasts numbers seemed promising (1.0 

x 105-2.1 x105 protoplasts/ml and optimal concentration is 6.0 x 108/ml).   To increase the 

amount of protoplasts released from the P. omnivora mycelial mats, cell was degrading 

enzymes (Glucanex) concentrations were increased to 20 mg/ml from 10 mg/ml.  Table 5 

shows the estimated protoplast numbers released after this improvement. 
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TABLE 5. Protoplast concentrations released from mycelial mats of P. omnivora isolates 

after increasing protoplasting enzyme concentration to 20 mg/ml.  Protoplast 

concentrations were estimated using a hemacytometer. 

Strain 
Concentration 

(protoplasts/ml) 

OKAlf8 6.4 X105 

NFAlf4 2.7 X 106 

Rick5 2.6 X 106 

Maudlowe8 1.2 X 106 

ATCC 22316 5.8 X 108 
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FIG. 3. CHEF analysis carried out after the power supply was repair.  Lanes 1 and 2 are 

chromosome standards from S. pombe and S. cerevisiae, respectively.  Lysed protoplast 

from P. omnivora isolates were loaded as follows:  lane 3 OKALF8, lane 4 NFAlf4, lane 

5 Rick5, lane 6 EC59, lane 7 Maudlowe8, lane 8 Trumbull4, lane 9 ATCC 33316 and 

lane 10 ATCC 32448.  The gel was run according to Experiment 1 in Table 2 and post-

stained with 0.5 μg/ml ethidium bromide.   
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These improved protoplast preparations were loaded in plugs onto a CHEF gel but 

electrophoresis resulted in poorly separated chromosome standards and no detectable 

DNA from protoplasts (Fig 3).  Protoplasts (and DNA) were not sufficiently concentrated 

in the plugs and the CHEF power supply program was incorrect. 

In another attempt to separate chromosomes of P. omnivora, CHEF plugs were again 

prepared from the P. omnivora protoplast preparations (Table 5) and a CHEF program 

previously used to separate the chromosomes of Tilletia indica (Tooley et al. 1994) was 

used (Table 2, Experiment 2).  Three chromosomes were expected and the 5.7Mb and the 

4.6 Mb chromosomes likely remained unresolved as one band, but distinguishable from 

the 3.5Mb chromosome.  This resulted in only two chromosomes from the S. pombe 

standard being resolved (Fig 4, lane 1).  Eleven chromosomes were well-resolved from 

the S. cerevisiae standard (Fig 4, lane 2) and ranged from 2.2 Mb to 450 kb.  Fifteen 

chromosomes were expected from S. cerevisiae and the smaller chromosomes probably 

migrated off the gel.  The wells at the top of each lane in Fig 4 look like significant DNA 

failed to move out of the wells.  No chromosomes were migrated out of the protoplast 

plugs from the five P. omnivora isolates suggesting that CHEF program did not persist 

long enough to move large chromosomes (>5.7 Mb) out of the protoplast-plugs or the 

protoplasts were insufficiently lysed (Fig 4, lanes 3-5) or were not sufficiently 

concentrated, as indicated by the diffuse staining of the wells (Fig 4, lanes 6 and 7).  
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FIG 4.  CHEF analysis of lysed protoplasts from P. omnivora isolates.  Lanes 1 and 2 are 

the standards from S. pombe and S. cerevisiae, respectively; lane 3 is OKAlf8, lane 4, 

NFAlf4; lane 5, Rick5; lane 6, EC59; lane 7, ATCC 22316.  The gel was run according 

the Experiment 2 conditions in Table 2 and post-stained with 0.5 μg/ml ethidium 

bromide. 
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Molecular Karyotyping of P. omnivora Mycelial Homogenates 

After many unsuccessful attempts to separate chromosomes from P. omnivora 

protoplasts, mycelial homogenates were employed for 2 reasons; a) DNA in fragmented 

hyphal cells should be durable and b) success using mycelial homogenates of P. 

omnivora for PFGE had been reported previously (Crouch 1992).  In the first attempt, 

standard plugs from S. pombe and S. cerevisiae and six mycelial homogenate plugs from 

isolates (OKAlf8, NFAlf4, Rick5, EC59, ATCC 22316, and Trumbull4) were loaded and 

analyzed by CHEF.   The DNA failed to migrate from the wells (Fig 5).  Another attempt 

was made using standard plugs from S. pombe and S. cerevisiae and mycelial 

homogenate plugs from four isolates of P. omnivora (OKAlf 8, NFAlf4, Rick5, and 

ATCC 22316).  This time we chose a different set of conditions with longer pulse times. 

Unfortunately, all chromosomes from standards and P. omnivora, failed to resolve in the 

gel (Fig 6).  Smeared bands in each lane also could indicate DNA degradation occurred.  

The S. pombe and S. cerevisiae standards in (Fig 6) show chromosomes migrated out of 

the wells, but resolved poorly.  For S. pombe, the expected three chromosomes were 

resolved, but the S. cerevisiae chromosomes remained clustered.  For the first time, DNA 

migrated out of a P. omnivora well, isolate OKAlf8 (lane 3, Fig 6).  However, no distinct 

chromosomal bands were apparent, as in the standards.  The size and smearing of the 

band in lane 3 indicates it may correspond with sheared euchromatin released from the 

homogenized mycelial cells and that some DNA degradation may have occurred.  For 

isolates NFAlf4, Rick 5, and ATCC 22316 (lanes 4-6, Fig 6), no bands were present in 
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the gel.  Significant ethidium bromide-staining of the wells above each lane indicated 

DNA may failed to migrate out of the wells, possibly due to insufficient cell lysis 

required to release chromosomal DNA. 
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Fig 5. CHEF gel using mycelium plugs. Lane 1, S. pombe; lane 2, S. cerevisiae,   

Mycelium plugs from P. omnivora isolates are as follows: lane 3 is OKAlf8; lane 4, 

NFAlf4; lane 5, Rick5, lane 6, EC59; lane 7, ATCC 22316; lane 8, Trumbull4.  The gel 

was run according the Experiment 3 conditions in Table 2 and post-stained with 0.5 

μg/ml ethidium bromide. 
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FIG 6. CHEF gel from prepared mycelium plugs.  Lane 1, S. pombe; lane 2, S. cerevisiae; 

lane 3, OKAlf 8; lane 4, NFAlf4; lane 5, Rick 5; lane 6, EC 59.  The gel was run 

according the Experiment 4 conditions in Table 2 and post-stained with 0.5 μg/ml 

ethidium bromide. 
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Staining of Nuclear DNA in P. omnivora Hyphal Cells 

 To determine the number of nuclei present in each P. omnivora hyphal cell isolates, 

EC59, NFAlf4, Ranch1, and Rick5, each isolate was grown on agar coated microscope 

slides, fixed, stained with DAPI, and examined with an epifluoresence microscope. 

Visualization of the nuclei as fluorescent blue circles within the hyphal cells indicated 

DAPI staining was successful (Fig 7 A-D).  Thin (young) hyphal cells were expected to 

possess fewer nuclei than thicker (older) hyphal cells.  As expected the number of nuclei 

per cell observed was relative to the size of the hyphae, except in the case of hyphal cells 

undergoing branching.  In thinner hyphae, 2 to 5 nuclei were observed in each hyphal cell 

of isolate NFAlf4 and Rick5 (Fig 7B and 7D).  In the thicker hyphae of Ranch1 5 to 6 

nuclei per cell were observed (Fig 7C).  However, in the branching hyphal cells of EC59 

(Fig 7A) 24 nuclei per cell were observed.  This large number of nuclei in EC59 may be 

due to the timing of fixation, which captured branching-induced nuclear division before 

intercalary septation could take place.  Also, distended or lobed nuclei were observed in 

some cells (Fig 7A and 7C), which appeared similar to the aneuploid or diploid nuclei 

reported in P. omnivora (Hosford and Gries 1966).  This may be a fixation artifact or due 

to the asynchronous mitosis of individual nuclei fixed during the M phase of cell cycle 

(telophase). 
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FIG 7 
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 FIG 7 
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(cont.) 

FIG. 7.  DAPI-stained nuclei in the hyphal cells of P. omnivora isolates, with septa 

indicated by arrows and nuclei by “N”. Hyphal cells of isolates EC59 (A), NFAlf4 (B), 

Ranch1 (C) and Rick5 (D) all display nuclei and septa. All images were captured at a 

total magnification of 400×.  Scale bars are 20 microns in length. 
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Southern Hybridization and Telomere Fingerprinting Probes   

The detection limits of labeled GLYS, RPB2 and telomere probes were determined by 

hybridizing the probes to dot blots of serially dilutions OKAlf8 gDNA when using a 20 

minute film exposure time (Fig 8).  The RPB2 and telomere probes detected ≥ 0.01 ng 

gDNA, while the GLYS probe detected ≥ 0.1 ng gDNA (10-2 dilution).  The RPB2 and 

telomere probes were more sensitive than the GLYS probe.  This was likely due to the 

proportionally larger amount of AP crosslinked to the RPB2 (1.1 kb) and telomeric 

(variable lengths, 100 bp – 3 kb) probes compared to the GLYS probe (576 bp)    

When the hybridized Southern blots of digested OKAlf8 gDNA were exposed for 1 hour, 

no specific probe hybridization was observed (data not shown).  In another attempt, 

gDNA from the isolates, Rick5, NFAlf4 and ATCC 32448, in addition to OKAlf 8, was 

digested, electrophoretically separated, blotted and hybridized to the probes (Table 4), but 

again no specific bands were observed.  A few more repeated attempts also failed.  Based 

on the probes’ detection limits determined using gDNA dot blots, no specific bands may 

have been detected on Southern blots due to insufficient gDNA being transferred to the 

membrane or due to the relatively diluted state of the gDNA fragments carrying probes’ 

target after digestion, separation and blotting.   

 



 

48  
 

 

FIG. 8.  Dot blots of serial dilutions of OKAlf8 gDNA hybridized with labeled probes to 

determine detection limits.  GLYS (A), RPB2 (B), and telomere (C) probes detection 

limits shown.  Films were exposed for 20 minutes. 
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FURTHER DISCUSSION AND CONCLUSIONS 

 

Numerous experiments were performed to characterize the genome of P. omnivora and its 

genome organization using CHEF to separate the chromosomes of different isolates from 

various regions of the southwestern US.  One of the challenges was to generate a 

sufficient number of protoplasts from P. omnivora mycelia.  At first, 10 mg/ml 

protoplasting enzyme was used to digest the cell walls of mycelial mats but insufficient 

numbers of protoplasts were released.  Increasing the concentration of enzyme to 20 

mg/ml gave more sufficient numbers of protoplasts, though the amounts varied from each 

isolate (Table 5).  According to the CHEF Mapper manual (Biorad), between 107 to 108 

protoplasts/ml should be loaded per well, since 6.0×108 protoplasts/ml were necessary 

from S. cerevisiae.  Using the increased protoplasting enzyme concentrations, 6 x 106 to 6 

x 108 protoplasts/ml were achieved from all the isolates (Table 5).  It was reported that 

3.3 x 109 protoplasts/ml is sufficient for Magnaporthe grisea (Orbach et al. 1996).  One 

reason for the variation in concentrations of protoplasts could be the drastic differences in 

the weights of the mycelial mats harvested from each isolate (data not shown).  Other 

reasons could be the fragile nature of protoplasts, which are easily damaged by transfers 

between solutions and mixing with molten agarose, resulting in further reduction in 

protoplast numbers.  Additionally, protoplast numbers may not necessarily equate with 

nuclear numbers, since some proportions of protoplasts lacked nuclei.  Since the 

chromosomal standards were successfully separated, the CHEF parameters chosen for 

this study were adequate to separate P. omnivora chromosomes based on previously 
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reported sizes (Hosford and Gries 1966; Crouch 1992; Joshi et al. 2008).  During 

optimization of the methods employed for producing protoplasts, we increased the 

amount of intact and viable protoplasts released from mycelia.  However, unless 

protoplast concentrations similar to the CHEF standards are achieved, CHEF gels of P. 

omnivora chromosomes will not be possible.   

As an alternative approach to analyze the genome of this fungus, we investigated the 

multinucleate nature of P. omnivora.  Hyphae from several isolates were grown and fixed 

on a microscope slides and stained with DAPI.  Nuclear counts proportional to hyphal 

diameter agree with previous findings (Hosford and Gries 1966).  It is reasonable to 

conclude the possibility that the number of nuclei per cell increases as the hyphae get 

thicker because mitotic replication of nuclei continues as hyphal cells grow and age.  This 

experiment showed that the number of nuclei increases with fungal age and that DAPI 

stains P. omnivora nuclei.    

In our final attempt to characterize the genome of P. omnivora, we used telomere 

fingerprinting.  Telomere fingerprinting was also unsuccessful even though the telomeric 

repeat probe quality and detection limit appeared to be sufficient.  Also, complete transfer 

of the DNA to the nylon membrane was confirmed when the gel was post-stained with 

ethidium bromide and no DNA could be detected.  Another possibility is that the 

restriction digests proceeded too long, resulting in nonspecific DNA degradation.  

Sufficiently high concentrations of DNA could be isolated from P. omnivora.  It is not 

known how many copies of the telomere repeat sequence is present in P. omnivora’s 

chromosomes.  If very low numbers of tandem telomeric repeats are present, then this 

may have been insufficient target sequence for detection.  
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Few reports are available on the molecular biology of P. omnivora and to our knowledge, 

most of the methods attempted in this chapter have never been used to characterize P. 

omnivora’s genome organization and chromosomes.  This chapter has laid some 

groundwork and described protocols that could be further modified and optimized.   This 

fungus warrants more attention because of the devastating losses it causes to cotton and 

alfalfa growers.
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CHAPTER III 

 

 

SELECTED GENE EXPRESSION PATTERNS IN P. OMNIVORA 

 

INTRODUCTION 

Reverse transcription polymerase chain reaction (RT-PCR) is an effective molecular tool 

to determine specific gene expression levels in response to external stimuli.  

Complementary DNA (cDNA) is reverse transcribed from total RNA and used as a 

template for PCR amplification of short DNA sequences using gene specific primers.  

The PCR product is viewed using agarose gel electrophoresis.  This technique does not 

necessarily amplify PCR products to a discernable level making it a limited tool for 

accurately measuring changes in gene expression.  Real time quantitative RT-PCR (qRT-

PCR) was developed to quantitatively measure mRNA levels (reverse transcribed to 

cDNAs) and requires a specialized fluorometric thermocycler that constantly measures 

amplicon generation in each reaction.  The simplest and most popular chemistry for qRT-

PCR is the SYBR® Green (Molecular Probes®), which allows detection of PCR products 

via the generation of a fluorescent green signal.



 

53  
 

SYBR® Green produces a strong fluorescent signal upon binding double-stranded DNA 

(Schena et al. 2004).  As PCR products accumulate, green fluorescence increases and can 

be measured in ‘real time’ using a thermocycler that contains optics to constantly 

measure fluorescence intensity in each reaction.  Data acquisition software in a linked 

computer is then used to analyze data.  Since PCR product amplification is detected in 

real time, this method almost eliminates the need to run gels in order to visualize PCR 

products.  However, as SYBR® Green-based qRT-PCR cannot distinguish multiple, 

nonspecific or spurious PCR products from a single, specific PCR product, confirmatory 

electrophoresis gels sometimes must be run.  Inclusion of proper negative and positive 

controls in separate, simultaneous qRT-PCR reactions can reduce misinterpretation of 

data (Vandesompele et al. 2002). 

 

There are few reports of molecular research investigating P. omnivora.  Because it is a 

devastating pathogen of alfalfa and cotton (Streets and Bloss 1973), such molecular 

approaches to investigate its interactions with its hosts should provide novel insights into 

its biology and, ultimately, its management.  In this study, we examine selected genes’ 

expression in P. omnivora using qRT-PCR methods.  Characterization of gene responses 

to environmental and developmental cues will provide the foundation for developing 

effective management strategies against P. omnivora.   We chose a set of 26 genes 

representing the following six functional categories:  housekeeping, cell wall biogenesis, 

survival glycogen biosynthesis, stress response, virulence and secondary metabolism.  

The goal of this study was to profile significant changes in gene expression of P. 

omnivora during the three life stages, vegetative mycelium, 4 week and 8 week-old 
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sclerotia, and, in response to either Sorghum bicolor (non-host) root exudates or 

Medicago truncatula (host) root exudates.  We expected that for each life stage, 

individual or groups of genes will be expressed differentially and the outcomes of this 

analysis provide more insights as to how this fungus functions.  It was also expected that 

treatment with host root exudates will induce or repress specific genes’ expression that 

will not be detected following treatment with non-host root exudates.  Such genetic bases 

for a host-specific response will help us define host-pathogen interactions.  Thus, it is 

expected that the identity of and differentiation of genes that can serve as markers for 

certain life-cycle stages or are related to P. omnivora pathogenicity will be achieved.   

Identification of crucial genes that control development or pathogenicity can be used in 

the future as targets for biotechnological approaches to controlling disease (e.g. in 

transgenic crops).   

 

MATERIALS AND METHODS 

Fungal Isolates and Cultures: 

Sclerotia, vegetative mycelia and mycelia challenged with host and non-host root 

exudates:  P. omnivora strain OKAlf8 was used for all experiments in this chapter.  Dr. 

Tim Samuels cultured and harvested sclerotia and root exudate-induced mycelia.  

Sclerotia were wet sieved from soil cultures of P. omnivora, were grown in magenta 

boxes containing sorghum grains and black clay soil (from the Texas A&M Research and 

Extension Center, Dallas, TX) for 4 and 8 weeks (Dunlap 1941; Lyda and Kenerley 

1993).  Sclerotia were harvested by sequentially sieving the soil through a series of mesh 

screens numbers 10, 18, 30 and then 35.  Sclerotia recovered from the surface of the 
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number 10 screen (4 to 32 g) were transferred to a 50 ml FalconTM tube containing 

RNALaterTM solution and stored at -80°C.    

P. omnivora vegetative mycelium was cultured by inoculating 500-ml Erlenmeyer flasks 

containing 100 ml M1078 liquid media (recipe in previous chapter) with a 1 cm2 agar 

plug of mycelium from a M1078 agar plate.  Stationary cultures were incubated for 7-10 

days in a 28°C incubator.  Mycelial mats were collected by vacuum filtration using a 

porcelain Büchner filter and Fisherbrand P8 filter paper (9.0 cm diameter, Fisher 

Scientific, Pittsburgh, PA) until slightly dry, weighed and transferred to 50 ml FalconTM 

tubes.  Mycelia were immediately flash-frozen in liquid nitrogen and stored at -80oC.  

Root exudates from non-host Sorghum bicolor and host M. truncatula were prepared 

from seedlings as follows: Root exudates from non-host Sorghum bicolor and host M. 

truncatula were prepared from seedlings as follows:  10 g of each seeds were surface-

sterilized by suspending in 1% AgNO3 and 0.1% Tween-20 solution, mixed in a 

sonicating water bath for 30 seconds and rinsed 3 times each in sterile ddH2O for 5 

minutes.  Seeds were then covered with sterile distilled water in a sterile glass beaker 

(500 ml), covered with parafilm and incubated at room temperature for 2-4 days (M. 

truncatula for 2 days and S. bicolor for 4 days).  One hundred ml sterile ddH2O were 

added to germinated seedlings, slowly shaken for 2 hours and the seeds removed by 

filtration through a Fisherbrand P8 filter.  The filtrate was then sterilized by filtration 

through a 0.2 µm filter and was used as “root exudate”.  Root exudates were prepared and 

pooled from each plant species and stored 4°C until used for subsequent experiments, 

usually within 2 days. 
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 To induce P. omnivora with root exudates, three 1 cm2 mycelial plugs from 8-day-old 

cultures were used to inoculate each of six magenta boxes containing 100 ml of M1078 

liquid media and then incubated for 7 days at 28°C.  After 7 days, the liquid media was 

aseptically removed and replaced, in three magenta boxes each, with either 100 ml root 

exudate from either S. bicolor or M. truncatula and incubated at 28°C for 7 days.  

Induced mycelial mats were harvested by vacuum filtration as for vegetative mycelial 

mats.  Mycelia were collected from the filter paper, weighed, stored in RNALaterTM, 

flash frozen in liquid nitrogen and stored at -80oC.   

 

Isolation of total RNA from P. omnivora mycelia and sclerotia:  Dr. Tim Samuels isolated 

total RNA from root exudate-induced mycelia and sclerotia.  Total RNA was isolated 

from all samples using the PureYieldTM Midiprep System (Promega, Madison, WI) 

according to the manufacturer’s instructions with certain modifications.  Specifically, 0.2 

g mycelia or sclerotia stored at -80°C in RNALaterTM were ground to a powder in liquid 

nitrogen with a mortar and pestle and transferred to a 15 ml FalconTM tube containing 2 

ml RNA lysis buffer and 40 μl beta-mercaptoethanol (BME).   The mixture was vortexed 

vigorously to disrupt clumps of mycelium.  If clumps of mycelia still persisted, another 2 

ml of RNA lysis buffer and 40 μl BME was added to the tube and clumps disrupted by 

vortexing.  The lysate mixture was incubated at room temperature for 10 minutes and the 

manufacturer’s protocol for recovering RNA from cleared lysates was followed.  The 

final RNA concentrations were determined spectrophotometrically using a NanoDrop 

1000 (Thermo Fisher NanoDrop, Wilmington, DE) and the RNA was divided into 5 μg 
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aliquots that were stored in a -80°C freezer.  Total RNA was isolated from three separate 

treatments. 

 

Preparation of cDNA from total RNA:  Tim Samuels prepared cDNA from the total RNA 

of sclerotia and root-exudate-treated mycelia using the SMART PCR cDNA Synthesis 

Kit (Clontech, Mountain View, CA) according to the manufacturer’s instructions.  

cDNAs were prepared from total RNA from vegetative mycelia using the SuperScript 

IIITM First-Strand Synthesis System kit (Invitrogen, Carlsbad, CA) using the 

manufacturer’s instructions.  Briefly, oligo dT primers were annealed to template in 10 µl 

reactions containing, 5 µg template RNA, 1 μl 50µM oligo dT primer; (n = 20), 1 μl 

10mM dNTP mix, and DEPC-treated ddH20 to 10 μl were incubated at 65°C for 5 min 

and then cooled on ice for 1 minute.  For cDNA synthesis, 10 μl of the cDNA synthesis 

mix (10× RT buffer, 25mM MgCl2, 0.1 M DTT, RNaseOUT, and SuperScript III RT) 

was added to each annealing reaction and cDNA extension reactions carried out in a 

thermal cycler with the program, 50°C for 50 minutes and then 85°C for 5 minutes.  One 

μl of 40 U/µl RNase H was added to each tube and incubated at 37°C for 20 minutes.  All 

cDNA was stored frozen at −20°C or −80oC. 

 

PCR:  cDNAs from each P. omnivora treatment were used as templates for PCR.  PCR 

primers amplifying 65-146 bp of the selected 26 predicted protein-coding genes and the 

ribosomal RNA internal transcribed spacer 1 (rRNA-ITS1) (Tables 8 and 9) were 

designed using PrimerQuestSM web software 

(www.idtdna.com/Scitools/Applications/Primerquest/).  All primers amplified the 

http://www.idtdna.com/Scitools/Applications/Primerquest/�
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predicted amplicons from P. omnivora genomic DNA and optimal melting temperatures 

determined by gradient PCR prior to qRT-PCR analyses (data not shown).  Twenty-five 

μl qPCR reactions contained 12.5 μl 2× SYBR GreenTM Master Mix  (either from SA 

Biosciences, Frederick, MD or Fermentas, Glen Burnie, MD), 100 nM each primers, 10 

ng cDNA and 10.5 μl ddH2O.  All reactions were performed in 96-well PCR plates sealed 

with real time PCR sealing film (MidSci, St. Louis, MO) and carried out using an ABI 

7500 Fast Real-Time PCR System (Applied Biosystems, Foster City, CA).  The PCR 

program was as follows: 95ºC for 10 min, followed by 90 cycles of 94ºC for 30 sec, 60ºC 

for 30 sec, and 72ºC for 33 sec.  The relative fluorescence intensity of each well was 

individually measured after the 72ºC extension step.  The instrument’s SYBR green 

(FAM) filter was used to measure PCR product amplification and the ROX filter was 

used to measure the passive reference dye to normalize reaction volumes (variation due 

to pipetting error).  

All PCR reactions were carried out in triplicate with ‘no DNA’ negative control and 

genomic DNA positive control reactions included for each primer pair.  Threshold cycle 

(Ct) values were obtained using the Absolute Quantitation program in the software 

associated with the ABI7500 system (Applied Biosystems, Foster City, CA).  Several 

modified versions of the comparative Ct method detailed below were employed.  

 

Analyses:  For all qRT-PCR reactions using cDNA derived from vegetative mycelia, Ct 

values for respective induced genes (ig) and internal standard (ITS1) were each 

normalized using the equation 90 − Ct, since a Ct of 90 would imply no expression, and 

these values were averaged (�̅� = 90 − Ct).  To calculate the dCt value,  the average 
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values describing the levels of induced gene (ig) expression relative to the average values 

describing the levels of ITS1 expression, we employed the equation dCt = �̅�ig / �̅�ITS1.  The 

standard errors among were calculated using Statistics Analysis Software (SAS Institute, 

Cary, NC).  The dCt values for each gene were plotted using Microsoft Excel 2007.    

For all qRT-PCR reactions using cDNA derived from sclerotia, Ct values for each ig was 

subtracted from each Ct value for ITS1 to obtain dCt values for 4 week-old (4wks) and 8 

week-old (8wks) sclerotia. To generate the comparative relative quantification of dCt4wks 

and dCt8wks values for each ig, the ddCt values were calculated using the equation ddCt = 

dCt8wks − dCt4wks in all possible combinations for each ig.  Finally, to determine relative 

comparative transcript level of each ig in 4 week-old versus 8 week-old sclerotia, each 

ddCt value was used to generate a range of transcript levels for each gene using the 

recommended formula 2–ddCt (Livak, and Schmittgen 2001).  This method typically used 

to compare expression of an endogenous control gene to a target gene over time sample 

(ABI manual).  In this case the 2–ddCt value compares changes in relative expression of 

each ig in developing sclerotia after 4 and 8 weeks.  The range of final 2–ddCt values for 

each ig were presented as box plots (http://www.bloggpro.com/box-plot-for-excel-2007/) 

to holistically represent the variation of the data collected (Bamunusinghe et al. 2009)     

All qRT-PCR reactions using cDNAs derived from root exudate-treated mycelia were 

analyzed identically to gene expression data from the sclerotia.  The dCtsb and dCtmt 

values were obtained for samples treated with S. bicolor (sb) and M. truncatula (mt) root 

exudates, respectively, and ddCt values for each ig calculated using the equation ddCt = 

dCtmt – dCtsb.  The range of final 2–dd CT values for each ig was presented as box plots as 

for sclerotia.

http://www.bloggpro.com/box-plot-for-excel-2007/�
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TABLE 6.  Characterization of the selected candidate genes’ ontology 

Gene 
(abbreviations) 

Contig 
no.a Functional Classificationb Significancec 

Gene ontology termsd 

COGEME 
AmiGO 

Term 
Accession 
number 

Translation 
elongation factor-1α 

(TEF1) 
100253 Housekeeping: translation Good promoter? 

Translation (initiation, 
elongation and 

termination) 

Translational 
elongation 

GO:0006414 

Orotidine 5’-
phosphate 

decarboxylase (PYRG) 
86363 Housekeeping: RNA Selectable marker 

Pyrimidine base and 
ribonucleotide 

metabolism 

Orotidine 5’-
phosphate 

decarboxylase activity 
GO:0004590 

Histone H3/5 (HIS3) 107903 Housekeeping: DNA Nuclear 
organization of 
chromosome 

structure 

Chromatin 
assembly/disassembly 

GO:0006333 

Chitin synthase-3 
(CHS3) 

52183 Cell wall: biosynthesis Membrane 
Biogenesis of cell wall 

(cell envelope) 
Cell wall chitin 

biosynthetic process 
GO:0006038 

Endochitinase-1 
(CHT1) 

182472 Cell wall: plasticity Membrane 
Biogenesis of cell wall 

(cell envelope) 
Chitinase activity GO:0004568 

Hydrophobin-1 
(HYP1) 

147188 Cell wall: aerial hyphae Structural cell wall protein 
Cytoplasmic 
degradation 

Hyphal growth GO:0030448 

SOFT (SO) 98521 Cell wall: fusion and repair Heterokaryosis 
Intracellular 

communication 
Biological process GO:0008150 

Glycogen synthase-1 
(GS1) 

99297 
Survival: glycogen 

biosynthesis 
Sclerotial energy storage 
or turgor maintenance 

Oligosaccharide / 
polysaccharide 

biosynthesis 

Glycogen (starch) 
synthase activity 

GO:0004373 

Glycogen synthase-2 
(GS2) 

170361 
Survival: glycogen 

biosynthesis 
Sclerotial energy storage 
or turgor maintenance 

Oligosaccharide / 
polysaccharide 

biosynthesis 

Glycogen (starch) 
synthase activity 

GO:0004373 
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Gene 
(abbreviations) 

Contig 
no.a Functional Classificationb Significancec 

Gene ontology termsd 

COGEME 
AmiGO 

Term 
Accession 
number 

Glycogen synthase 
kinase (GSK) 

37785 Survival: inhibits GS 
Sclerotial energy storage 
or turgor maintenance 

Regulation of C-
compound and 
carbohydrate 

utilization 

Negative regulation of 
biosynthetic process 

GO:0045719 

MAP Kinase (HOG1) 92509 Stress: osmotic Adaptation to salt 
Osmosensing, key 

kinases 
Response to osmotic 

stress 
GO:0006970 

Copper oxidase 
(CuOX) 

170488 Stress: oxidative Laccase 
Biosynthesis of 

melanins 
Laccase activity GO:0008471 

Superoxide dismutase 
(SODA) 

142263 Stress: oxidative Fe-Mn SOD, detox  
Defense against 
oxidative stress 

Superoxide dismutase 
activity 

GO:0004784 

Catalase (CATA) 112126 Stress: oxidative Detox H2O2 
Defense against 
oxidative stress 

Response to oxidative 
stress 

GO:0006979 

Glutathione 
peroxidase (GSHP) 

195073 Stress: oxidative Detox peroxides 
Defense against 
oxidative stress 

Response to oxidative 
stress 

GO:0006979 

Cutinase 1 (CUT1) 71968 Virulence: penetration Host cuticle degradation 
Degradation of 

exogenous ester 
compounds 

Pathogenesis GO:0009405 

NADPH oxidase 1 
(NOXA) 

53840 Virulence: ROS production 
Symbiosis-pathogenesis 

switch 
Disease, virulence 

and defense 
Superoxide anion 

generation 
GO:0042554 

noxA regulator 
(NOXR) 

102292 Virulence: ROS production 
Symbiosis-pathogenesis 

switch 
Disease, virulence 

and defense 
Superoxide anion 

generation 
GO:0042554 

Mitogen-activated 
protein kinase 

(MAPK2, Pmk1, Fus3) 
17630 Virulence: signalling Signal transduction 

Signal transduction, 
key kinases 

Pathogenesis GO:0009405 
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Gene 
(abbreviations) 

Contig 
no.a Functional Classificationb Significancec 

Gene ontology termsd 

COGEME 
AmiGO 

Term 
Accession 
number 

Pectin lyase (PL) 36239 Virulence: host cell wall Colonization 
Degradation of 

exogenous 
polysaccharides 

cell wall modification 
during 

multidimensional cell 
growth  

GO:0042547 

β-glycosidase (BGL3) 72017 Virulence: host cell wall Colonization 
Degradation of 

exogenous 
polysaccharides 

carbohydrate 
metabolic process  

GO:0005975 

Ceratoplatanin-3 
(CPT3) 

85987 Virulence: phytotoxin  Snod1 protein 
Virulence, disease 

factors 
Pathogenesis GO:0009405 

Multidrug Efflux 
(MFS1) 

75442 Secondary metabolism Xenobiotic pump Drug transporters Transporter activity GO:0005215 

Multidrug Efflux 2 
(MFS2) 

125665 Secondary metabolism Trichothecene efflux Drug transporters Transporter activity GO:0005215 

Zinc finger 
trasnscription factor 

(SIRZ, CnjB) 
5192 Secondary metabolism Transcription factor 

Transcriptional 
control 

Regulation of 
transcription, DNA-

dependent 
GO:0006355 

SAM-dependent 
methyltransferase 

(LAEA) 
125066 Secondary metabolism 

Global regulator of 
secondary metabolism 

Fungal development 
phosphoethanolamine 
N-methyltransferase 

activity 
GO:0000234 

 
a Contig numbers correspond to sequences in the 454LargeContigs database at ftp://ftp.genome.ou.edu/pub/crr 
b From this study, based on multiple sources; serves as convenient categories for the clustering of genes based on main function of 

interest used for selection 
c  To the study of Phymatotrichopsis omnivora. 

ftp://ftp.genome.ou.edu/pub/crr�
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d From blastx searches of the GO websites Phytopathogenic Fungi and Oomycete EST Database (cogeme.ex.ac.uk) and AmiGO! The 

Gene Ontology (amigo.geneontology.org). 

   

  

http://cogeme.ex.ac.uk/�
http://amigo.geneontology.org/�
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TABLE 7. Quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) primers amplifying selected candidate genes. 

Gene ID (contig)a Gene Product Primer Nameb Primer Sequence 
Amplicon 

Size 
(bp) 

ITS1 (63109)  ITS-rRNA PoITS22F TCAGTGTACCTCTCCACGTTGCTT 131 
 PoITS22R AAGAGTTTGGAGAATTCCTCCCGTGG 

TEF1 (100253)  
Translation elongation factor 1-alpha 

TEF1-RTP-FOR GTCGAAATGCACCACGAGCAACTT 
102  TEF1-RTP-REV ACGTTTCCACGACGGATTTCCTTG 

HIS3 (107903)  
Histone H3/5 

HIS3-RTP-FOR TTCAAGTCCGATCTCCGCTTCCAA 
105  HIS3-RTP-REV ATGGCACACAAGTTGGTGTCTTCG 

PYRG (86363)  
Orotidine 5’-phosphate decarboxylase 

PYRG-RTP-FOR GGAGCGATGTCATCATTGTG 
142 

 PYRG-RTP-REV GATACCCCAAACTCGAGCAA 

CHS3 (52183)  Chitin synthase 3 CHS3-RTP-FOR GTCGTGCCAATTGCAGAAAGCGTA 129 
 CHS3-RTP-REV TCTACTTCGTCGCCTCGATCATGT 

CHT1 (182472)  
Endochitinase 1 

CHT1-RTP-FOR CCAGCAATGTACGCTTTAACGGCA 
146  CHT1-RTP-REV TTGACTTCTGGAACCTCATGGCCT 

HYP1 (147188)  
Hydrophobin 

HYP1-RTP-FOR AGGTTGATCGGTGTGCACTGGATA 
133  HYP1-RTP-REV TACGAAGACTTGCGGTAACGCTCA 

SOFT (147188)  Protein involved with hyphal fusion and 
septal pores  

SOFT-RTP-FOR GTGGAATGTTGGCATAGCTCTGGT 
144 

 SOFT-RTP-REV TATGGATGCGGCTTCGGGACAATA 

GS1 (99297)  Glycogen synthase 1 GLYS1-RTP-FOR ATTGGAAAGAGGCTGTTTGACCGC 127 
 GLYS1-RTP-REV CCGCTTCAACGCAAACATTCGTCT 

GS2 (170361)  Glycogen synthase 2 GLYS2-RTP-FOR ACGAGGAGGCAGAGAATCAACCAA 106 
 GLYS2-RTP-REV AGCCAGTTGCCTAGCTTTGACGTA 

GSK (37785)  
Glycogen synthase kinase 

GLYSK-RTP-FOR TGTTGATCACTGGCTGCCTCAAAC 
65 

 GLYSK-RTP-REV TTAAACCGTATCTGGACCACCCAC 
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Gene ID (contig)a Gene Product Primer Nameb Primer Sequence 
Amplicon 

Size 
(bp) 

HOG1 (92509)  MAP Kinase HOG1-RTP-FOR AAGGATCAACTCACAGGGCAGTCT 116 
 HOG1-RTP-REV GTCGCAAATGCTTCAACAACTTCAG 

CuOX (170488)  Copper oxidase (laccase?) CUOX-RTP-FOR AGTCCTTCTGCACCGGCATTGATA 131 
 CUOX-RTP-REV AAATGGCCTTCAACTGCTCGCTTG 

SODA (142263)  
Superoxide dismutase A 

SODA-RTP-FOR TTCAAGGAAGCGGATGGAGTTGGT 
68  SODA-RTP-REV TGGGTGATAATCAGCAAGTGCCCA 

CATA (112126)  
Catalase A 

CATA-RTP-FOR ATCATTTAGAGGGTGCGAGGAGCA 
137  CATA-RTP-REV ATCGGCTTCAAGTGTCCAAATGCC 

GSHP (195073)  
Glutathione peroxidase 

GSHP-RTP-FOR ATGTCTGGACCCTCAATTCCCGTT 
107 

 GSHP-RTP-REV AAATTCCTCGTTTCCCGCGAAGG 

CUT1 (71968)  Cutinase 1 CUT1-RTP-FOR TCATTCTTTCGGGCTACAGATGGC 105 
 CUT1-RTP-REV TTGGGCTCCTTGGCTAGTTTGGTA 

NOXA (53840)  
NADPH oxidase 1 

NOXA-RTP-FOR TCCATTCGCAGGAAGAGAGTGGAA 
106  NOXA-RTP-REV TCCCTGTAAACCCTCTCGCAGAAA 

NOXR (102292)  
noxA regulator 

NOXR-RTP-FOR TGCTTGGAGAGTTTACCGAAGCCA 
124  NOXR-RTP-REV GCACTTCGCACGAGAACAACTTGA 

MAPK2 (17630)  
MAP kinase 

MAPK2-RTP-FOR ATCTGCTGCGAGCACCGAAGATAA 
142  MAPK2-RTP-REV GCAAGAATGCACCCAACACTCCAA 

PL (36239)  Pectin lyase PL-RTP-FOR TCCAGCAACACCTGCCCTAATGAT 126 
 PL-RTP-REV ACGTCAATGTAACCTGTTCCCGCT 

BGL3 (72017)  β-glycosidase BGL3-RTP-FOR TGTTGACGCCCAAGACATCAGGTA 124 
 BGL3-RTP-REV TGGTAGCAAGTCCGTTAACACCGT 

CPT3 (85987)  
Ceratoplatinin 3 

CPT3-RTP-FOR TGGTAGCAAGTCCGTTAACACCGT 
108 

 CPT3-RTP-REV GCCGTCAATGCTATTGCGGTTTCT 

MFS1 (75442)  
Multidrug efflux 1 

MFS1-RTP-FOR CGCTGCTATTACTTGCTTGCTGCT 
145  MFS1-RTP-REV TCATAGCCTACCCACCACTGCAAA 

MFS2 (125665)  Multidrug efflux 2 MFS2-RTP-FOR AACCACGAGGATAGGGCTGTGATT 138 
 MFS2-RTP-REV TTCTCCGGGAACTCGCCAATTTCT 
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Gene ID (contig)a Gene Product Primer Nameb Primer Sequence 
Amplicon 

Size 
(bp) 

SIRZ (5192)  transcription factor SIRZ-RTP-FOR TCAACAATCGTTCGCCGCA 74 
 SIRZ-RTP-REV AACGAACGTATTTGCCGGG 

LAEA (125066)  transcription factor LAEA-RTP-FOR CTGGTGCCACTGTGCTAAATTGCT 135 
 LAEA-RTP-REV GGTGCAAGACGTTGGCGATTACTT 

a Contig numbers correspond to sequences in the 454LargeContigs database at ftp://ftp.genome.ou.edu/pub/crr; color coding 

corresponds to the functional classification of each gene (black = housekeeping, orange = cell wall maintenance, brown = survival 

energy storage, blue = stress response, red = virulence, and violet = secondary metabolism). 

b Primers with names ending an ‘F’ or ‘FOR’ are forward primers and those with names ending with ‘R’ or ‘REV’ are reverse primers 

 

ftp://ftp.genome.ou.edu/pub/crr�
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Gene Prediction from P. omnivora Genome Sequences and Classification of Selected 

Genes into Gene Ontology (GO) Groups:  A collection of candidate “genes-of-interest” 

were selected from recent literature and based on potential usefulness for functional 

genomics studies.  Two hundred forty-four genes, or gene families, were identified in the 

P. omnivora genome database using tblastx searches 

(http://www.genome.ou.edu/blast/crr_blastall.html) with the DNA sequences of known 

fungal genes-of-interest and retrieved contigs with high similarity to the known gene 

were then used to reciprocally search GenBank (http://www.ncbi.nlm.nih.gov/) to 

confirm its identification.  A subset of 26 genes was selected based on their likelihood for 

differential expression during various life stages and in response to various stimuli.  

All twenty-six genes were classified into one of the following categories: a) 

housekeeping, b) cell wall, c) survival glycogen, d) stress response, e) virulence, or f) 

secondary metabolism based on the selection criteria used for each gene.  To determine 

the functional gene ontologies (GO) of each candidate gene, the sequence of each was 

used to perform blastx searches of both the Phytopathogenic Fungi and Oomycete EST 

(expressed sequence tag) Database (cogeme.ex.ac.uk) and AmiGO! The Gene Ontology 

(amigo.geneontology.org).  GO terms from COGEME and AmiGO associated with each 

gene are presented in Table 6.   

http://www.genome.ou.edu/blast/crr_blastall.html�
http://www.ncbi.nlm.nih.gov/�
http://cogeme.ex.ac.uk/�
http://amigo.geneontology.org/�
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Fig 9. Flow chart describing the process of candidate gene selection and functional gene 

ontologies.  JGI, http://www.jgi.doe.gov/; NCBI, http://www.ncbi.nlm.nih.gov/; 

COGEME, http://cogeme.ex.ac.uk/. 

 

http://cogeme.ex.ac.uk/�
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RESULTS 

 

Validation of ITS1 as the Housekeeping Gene to Use as Internal Control for qRT-PCR  

The Ct values of the three protein-coding housekeeping genes, PYRG, TEF1, and HIS3 

and the rRNA ITS1 were used to compare the expression of these genes in P. omnivora 

across all treatments (e.g. vegetative or root exudates induced mycelia or sclerotia) to 

determine which gene would provide the best internal reference for normalization of gene 

expression data (Fig. 10).  Expression of rRNA ITS1 was the highest (average Ct ≈ 20) 

and most stably expressed gene across all treatments, distantly followed by TEF1 

(average Ct ≈ 42).  Both PYRG and HIS3 expression levels were too variable or too low 

to be employed as internal controls.  Because of its consistently high expression, ITS1 

was selected as the internal control for all subsequent experiments.   
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FIG 10. Threshold cycles of housekeeping genes expressed in Phymatotrichopsis 

omnivora mycelia treated (TRT) with Sorghum bicolor (Sb) or Medicago truncatula (Mt) 

root exudates, 8 week-old (8wk) or 4 week-old sclerotia, or vegetative mycelia (V).  The 

Ct value is inversely proportional to gene expression level.  Error bars represent the 

standard deviation across reps.  
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Gene Expression in Vegetative Mycelia 

To observe differences in gene expression levels within the vegetative mycelia of P. 

omnivora, qRT-PCR was carried out on the 26 genes-of-interest and normalized as a ratio 

to ITS1 expression (Fig. 11).  Most genes’ expression levels fell between the values range 

from 0.6 to 0.8 with housekeeping and survival glycogen gene expression not 

significantly different from one another.  Among the cell wall biosynthesis genes, chitin 

synthase 3 (CHS3) was expressed the highest while endochitinase (CHT1) was the least 

expressed.  NADPH oxidase A (NOXA) was expressed the lowest of all the oxidative 

stress genes, while the others had relatively the same expression levels.  The virulence 

genes, cutinase (CUT1) and pectin lyase (PL), had the lowest expression levels among 

not only the virulence genes, but also out of all the genes.  The secondary metabolism 

genes had varying levels of expression with multidrug efflux pump 2 (MFS2) being 

expressed the least and multi-drug efflux pump 1 (MFS1) the highest.  
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FIG 11.  Relative expression of 26 genes-of-interest normalized with the internal 

reference ITS1.  Gene expression bars are categorized according to functional GO term, 

color-coded as in Table 8.  Relative gene expression is expressed as ratio to ITS1 

expression (i.e. [90 – Ctig] / [90 – CtITS1]).  Error bars represent standard errors of ratios. 
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Comparison of Gene Expression in Mycelia Treated with Host or Nonhost Root Exudates   

In this study, differential gene expression in P. omnivora mycelia challenged with root 

exudates from a host, M. truncatula or a nonhost, S. bicolor, was followed using qRT-

PCR (Fig. 11).  It was expected that genes categorized as involved in virulence, oxidative 

stress, and secondary metabolism would show greater expression levels with host root 

exudates than nonhost root exudates.  Across all genes, relative gene expression ranges 

(max-to-min whiskers) and medians varied across 40 and 23 orders of magnitude, 

respectively, in response to M. truncatula and S. bicolor root exudates.  

Surprisingly, the median expression values of 20 out the 26 genes were skewed towards 

mycelia treated with the nonhost root exudates (Fig. 12).  Most markedly, the gene for 

glycogen synthase 2 (GS2) was much more highly expressed in nonhost root exudates-

treated mycelia, with the full range of expression values (box and whiskers) skewed.  To 

a lesser extent, histone H3 (HIS3), and pectin lyase (PL) were also more highly expressed 

in the nonhost treatment.  Genes with the majority of both quartiles skewed towards the 

nonhost treatment included the following:  cell wall-related chitin synthase 3 (CHS3) and 

soft (SO), the survival-related glycogen synthase 1 (GS1) and glycogen synthase kinase 

(GSK), the stress-related catalase A (CATA), glutathione peroxidase (GSHP), NADPH 

oxidase A (NOXA), superoxide dismutase (SODA) and osmotic MAP kinase (HOG1), 

virulence-related MAP kinase 2 (MAPK2), cutinase (CUT1) and ceratoplatinin (CPT) 

and the secondary metabolism genes, multidrug efflux pump 1 (MFS1) and 2 (MFS2) and 

Zn-finger transcription factor (SIRZ). Only translation elongation factor-1α (TEF1), β-
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glycosidase 3 (BGL3), and laccase (CuOX) appeared to be slightly skewed towards 

expression in host root exudates treated mycelia.  The remaining genes expression values 

ranged across the center line (x-axis) and were interpreted as showing little expression 

differences between M. truncatula and S. bicolor root exudates. 
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FIG 12.  Box plot of gene expression levels in Phymatotrichopsis omnivora mycelia 

challenged with root exudates from either nonhost Sorghum bicolor or host Medicago 

truncatula.  The distribution of comparative gene expression values is represented in the 

box plot, with light and dark gray boxes represent the upper and lower quartiles of the 

range around the median value, respectively, and the whiskers extending to the maximum 

and minimum values.  Outliers were rare and are not presented.  Genes are grouped 

according to ‘GO’ functional terms in Table 6.  

  



 

76  
 

 

Comparison of Gene Expression in 4 Week-Old or 8 Week-Old Sclerotia   

In this study, gene expression levels in sclerotia formed by P. omnivora grown on 

sorghum grains and black clay after 4 and 8 weeks were compared (Fig. 13).  It was 

expected that gene expression would be higher in 4 week-old than 8 week-old sclerotia, 

since after 8 weeks sclerotia should be mostly dormant.  Also since glycogen is the 

predominant energy store in the sclerotia of P. omnivora, it was expected that the survival 

glycogen genes would be expressed higher in one of the sclerotia ages.  Across all genes, 

relative gene expression ranges (max-to-min whiskers) and medians varied by 40 and 20 

orders of magnitude, respectively, in the different aged sclerotia. 

Unexpectedly, the relative expression medians of 15 out of the 26 genes were higher in 8 

week-old sclerotia and 9 genes’ expression medians were higher in 4 week-old sclerotia 

(Fig. 13).  In 8 week old sclerotia, the expression ranges of TEF1 and SIRZ were entirely 

higher than in 4 week-old sclerotia.  Also, both quartiles of the expression ranges of 

CHT1, SODA, NOXA, MAPK2, BGL3, CuOX, CPT1, and LAEA were higher in 8 

week-old sclerotia.  The expression of all remaining genes was skewed higher in 8 week-

old sclerotia.  In 4 week-old sclerotia, only the expression values of the MFS2 and CUT1 

genes were entirely higher.  The remaining 7 genes with median gene expression higher 

in 4 week-old sclerotia included survival glycogen synthases GS1 and GS2 and GS 

kinase, stress response genes NOXR and HOG1, and virulence-related CUT1 and PL 

were expressed higher in 4 week sclerotia. 
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FIG 13.  Box plot of gene expression levels in 4 week-old and 8 week-old sclerotia of 

Phymatotrichopsis omnivora. The distribution of comparative gene expression values is 

represented in the box plot, with light and dark gray boxes represent the upper and lower 

quartiles of the range around the median value, respectively, and the whiskers extending 

to the maximum and minimum values.  Outliers were rare and are not presented.  Genes 

are grouped according to ‘GO’ function terms in Table 6.  
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DISCUSSION 

 

ITS1 as the Internal Reference Gene:  The use of ITS1 as the internal reference gene for 

normalization of gene expression data was made possible due to several polyA and polyT 

stretches in the rDNA of P. omnivora, which facilitated reverse transcription of rRNA 

with the initial oligoT primers (data not shown).  Similarly, rRNA was validated as the 

most stable housekeeping for normalization of qRT-PCR expression in rice (Jain et al. 

2006).  Also, since the ITS-1 sequence is highly specific to P. omnivora (data not 

shown), the primers used in this study could potentially be used to help quantify P. 

omnivora biomass during infection and normalized gene expression during mixed 

infections of host roots with other fungi.  

Methods of cDNA Preparation Limited Cross Treatment Comparisons:  Originally, gene 

expression in vegetative mycelia was to be compared to that in sclerotia and root exudate-

treated mycelia.  However, while total RNA was isolated using identical kits across 

treatments, cDNAs were prepared from sclerotia and root exudate-treated mycelia using a 

kit (Clontech’s SMART PCR cDNATM Synthesis) designed to generate full-length 

cDNAs for downstream library construction. The cDNAs were prepared from vegetative 

mycelia using a kit (Invitrogen’s SuperScriptTM III First-Strand Synthesis System for RT-

PCR) designed to increase cDNA yields for RT-PCR.  The difference in overall cDNA 

levels between these two preparations is evident in the ITS1 expression levels in Fig. 10, 
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with CtITS1 values from sclerotia and root exudates-treated mycelia 2-fold greater than 

that from vegetative mycelia.   

Unfortunately, this gene expression bias due to cDNA synthesis kit differences prevented 

sufficient normalization of expression data using ITS1 levels to permit gene expression 

comparisons across treatments.  Also, because of large differences in SMART cDNAs 

prepared from sclerotia or root-exudate treated mycelia, relative gene expression 

comparisons were only made between 4 week and 8 week-old sclerotia or between 

mycelia treated with root exudates from either S. bicolor or M. truncatula.   

Selection and Differential Expression of Genes of Interest in Phymatotrichopsis 

omnivora:  The expression of twenty-six genes falling into various functional classes 

ranging from housekeeping to virulence was analyzed in the vegetative mycelium, 

sclerotia and mycelia treated with host and nonhost root exudates.  More specifically, 

differential gene expression in sclerotia after 4 and 8 weeks of maturation or in mycelia 

challenged with root exudates from M. truncatula (host) and S. bicolor (non host) were 

examined.   

Relative expression of housekeeping genes:  The selected housekeeping genes histone H3 

(HIS3), orotidine-5’-monophosphate decarboxylase (PYRG), and translation elongation 

factor 1α (TEF1a) in this study are involved in nucleic acid maintenance and have been 

studied extensively in other fungal genomes.  Chromatin modifications involving 

histones like HIS3 control many major functions in fungal cells, such as cell 

differentiation, metabolic function, and cell development, all of which influence a 

fungus’ ability to cause disease in plants and adapt to environmental changes (Brosch et 
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al. 2008).  The TEF1 gene is essential for translation in fungal cells and was also 

examined because it possesses a good promoter useful for gene expression systems, as in 

the fungus Aspergillus oryzae (Kitamoto et al. 1998).  PYRG is essential for pyrimidine 

biosynthesis and, in the model system A. nidulans, has been proven to be a very good 

positive selection marker in transformation systems when auxotrophic mutants are 

available as demonstrated by Kanamasa et al. (2003).  In vegetative mycelia of P. 

omnivora, all three genes were expressed similarly (Fig 8) and indicates that during the 

vegetative growth in rich media, such as M1078, P. omnivora does appear to be starved 

and nucleic acid metabolism appears homeostatic to maintain DNA packaging (HIS3), 

RNA biosynthesis (PYRG) and translation (TEF1) for hyphal growth.  In mycelia 

challenged with nonhost S. bicolor root exudates, HIS3 is expressed at higher levels than 

PYRG and TEF1 (Fig 11).  In sclerotia, HIS3 and PYRG are express similarly in both 4 

and 8 week-old sclerotia, albeit highly variably and with slightly more expression in 8 

week old sclerotia, while TEF1 is expressed more in the 8 week-old sclerotia (Fig. 12).  

Slightly higher expression of HIS3 in the 8 week-old sclerotia may be required for 

compaction of chromatin in preparation for dormancy.  Similarly, DNA methylation is 

higher in dormant sclerotia P. omnivora than in metabolically active cells (Jupe et al. 

1986).  Less clear, is why TEF1 expression, indicative of active metabolism, is higher in 

8 week-old sclerotia. 

Relative expression of cell wall related genes:  The hyphal cell wall protects a fungus 

from the environment and plant defenses during fungal-plant interactions.  Cell wall 

related genes chosen for this study all perform important functions in hyphal 

development.  Most of the scientific knowledge about chitin synthases’ comes from 
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studying yeast.  Class I is a repair enzyme during budding, where as class II is involved 

in division of septae and class IV generates chitin at bud scars and in the lateral wall 

(Choquer et al. 2004).  Chitin synthase III (CHS3) is a major biosynthetic enzyme of 

chitin, the predominant polysaccharide in fungal cell walls and is crucial to the structural 

integrity (Souza et al. 2009).  CHS3 was the most consistently expressed of all the cell 

wall-related genes across all studies (Figs 10-12).  CHS3’s high expression in vegetative 

mycelium (Fig 10) suggests that P. omnivora is actively growing and must synthesize cell 

wall materials to maintain this growth.  In root exudate challenged mycelia, CHS3 is 

more highly expressed in response to S. bicolor root exudates than to M. truncatula root 

exude (Fig 11).  One reason for this result could be that the fungus is finding more 

nutrition in the sorghum exudates than the M. truncatula root exudates.   

One of the more interesting cell wall-related genes is the SOFT (SO) gene.  The SO gene 

was first described in the model system Neurospora crassa as responsible for not only 

hyphal fusion, but also septal plugging to prevent cell nutrients from leaking out of 

damaged hyphae (Fleibner and Glass 2007).  Also, the SO homolog (Aso1) in Alternaria 

brassicicola is required for hyphal fusion and pathogenicity on cabbage (Craven et al. 

2008).  The SOFT gene is expressed in vegetative mycelia in relatively high levels (Fig 

10).  However, expression was similar in both root exudate treatments and both 4 and 8 

week-old sclerotia (Figs 11 and 12).  The other two cell wall-related genes were 

endochitinase 1 (CHT1) and hydrophobin (HYP), which degrade chitin, contributing to 

wall plasticity and coat aerial hyphae with hydrophobic proteins, respectively.  In 

vegetative mycelia, CHT1 and HYP were expressed at lower levels than CHS3 and SOFT 

(Fig 10).  In host-nonhost root exudate treated mycelia, expression levels of CHT1 and 
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HYP did not differ (Fig 11).  CHT1 seemed to be expressed slightly more in 8 week-old 

sclerotia and HYP expression was expressed higher in the 4 week sclerotia (Fig 12).   

The importance of the cell wall-related genes to fungi is the subject of much current 

research and CHS enzymes are being targeted for drug development to inhibit fungal 

growth in plants and humans (Souza et al. 2009).  Hydrophobins are small proteins that 

self assemble on the surface of hyphae, fruiting structures and aerial structures and 

prevent the lost of moisture from coated structures (Kershaw and Talbot 1997).  Also, 

hydrophobin MHP1 plays essential roles in the pathogenicity-related development and 

surface hydrophobicity of the rice blast fungus Magnaporthe grisea (Kim et al. 2005).  

Interestingly, HYP was expressed in P. omnivora under all treatments even though aerial 

structures were not formed.  Sclerotia may use HYP to prevent desiccation in the soil 

during droughty periods.  

Relative expression of survival glycogen genes: One of the most epidemiologically 

important life stages of P. omnivora is the resting stage facilitated by the formation of 

specialized structures called sclerotia.  These thick-walled, multicellular structures form 

in the soil when environmental conditions are unfavorable and there is little to no 

nutrients on which the fungus can survive.  In these sclerotia, the fungus deposits high 

levels of glycogen and other lipids for energy storage (Ergle 1947).  In this study we 

chose two glycogen synthase genes (GS1 and GS2) and a glycogen synthase kinase 

(GSK) gene.  In vegetative mycelia, all three genes are expressed at similar levels (Fig 8), 

while growth on nutrient rich media could be made possible as a way to store the excess 

available carbon nutrition.  In root exudate challenged mycelia, GS2 is much more highly 

expressed in response to exudates from nonhost sorghum than those from host M. 
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truncatula (Fig 11), and GS1 and GSK were only slightly more expressed in the sorghum 

root exudates.  The reason for this result could be that P. omnivora obtains more nutrients 

from the sorghum root exudates and GS2 is specifically induced by this excess nutrition.  

Or, some other signal in sorghum root exudates induces nonhost-dependent glycogen 

biosynthesis specifically through GS2.  In sclerotia, GS1 is only expressed a slightly 

higher after 4 weeks than after 8 weeks.  GS2 and GSK were expressed even higher in 4 

week-old sclerotia than in 8 week-old sclerotia (Fig 12).  From these findings it seems 

glycogen storage occurs mostly in the 4 week-old sclerotia and after sufficient glycogen 

has accumulated, glycogen biosynthesis pathways are repressed in 8 week-old sclerotia.  

Previous studies showed that free glycogen in 30-day old sclerotia makes up 10.1% of the 

dry weight of sclerotia and bound glycogen makes up to 26.6% of sclerotial dry weight 

(Ergle 1947).   

Relative expression stress response genes:  Reactive oxygen species (ROS) defense plays 

an important role during fungal development as fungi are constantly exposed to physical 

and chemical stresses in the environment including pH and osmotic fluctuations, ionizing 

radiation, UV, and ROS production during plant infection (Gessler et al. 2007).  In 

vegetative mycelia, most of the oxidative stress response genes are expressed at similar 

levels, except for NADPH oxidase A (NOXA), which was expressed at lower levels (Fig 

9).  In sclerotia, only the NOXA gene is expressed more highly in the 8 week-old 

sclerotia (Fig 12), while GSHP, NOXR and HOG1 are expressed slightly more in 4 

week-old sclerotia. Catalase A (CATA) and superoxide dismutase (SODA) were 

expressed at similar levels at each time point.  Although the functions of these genes in P. 

omnivora are only presumed, previous studies in other fungi permit inferences to be 
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drawn as to what role these genes may play in P. omnivora.  For example, the HOG1 

gene is important for the osmoregulation of fungal cells, which is crucial for the 

homeostatic balance of water and solute levels across membranes and cell walls 

(Hohmann et al. 2007).  The HOG1 MAP kinase is activated at the plasma membrane by 

numerous stresses (e.g. osmotic, oxidative and heavy metal) and once activated by 

hyperosmotic shock, migrates into the nucleus where it can trigger gene expression for 

water and glycerol uptake.  HOG1 has also been shown to be required for the 

pathogenicity of both plant and animal pathogenic fungi (Weiwei et al. 2008; Alonso et 

al. 2006).  The NADPH oxidase (NOXA) and its regulator (NOXR) may play a role 

when P. omnivora is penetrating a plant’s root, while at the same time overcoming the 

defenses produced by the plant.  NoxA and NoxR have been studied in the fungus 

Epichlöe festucae with its grass host Lolium perenne (Takemoto et al. 2006).  

Interestingly, when NoxA is deleted, E. festucae, normally a mutualistic endophyte of the 

grass, becomes a pathogen (Tanaka et al. 2006).  NoxR interacts with the GTP-binding 

protein RacA and is a key regulator for NoxA, which controls the symbiotic relationship.  

To our knowledge P. omnivora is a plant pathogen and has no symbiotic relationship 

with any plant, but the NoxA and NoxR genes may have multiple roles in different 

fungal-plant interactions. 

Among mycelia challenged with root exudates, NOXA and HOG1 are expressed higher 

in response to sorghum root exudates, while NOXR is expression occurs over a wide 

range in both sorghum and M. truncatula root exudates (Fig. 11).  The other stress-

relatecd genes, CATA, GSHP and SODA are expressed only slightly more in sorghum 

root exudates but (Fig 11).  Catalases catalyze the break down hydrogen peroxides into 
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water and molecular oxygen in most species of fungi (Gessler et al. 2007).  Catalase A 

has been described in S. cerivisiase and is localized in peroxisomes (Charay and Natvig 

1989; Schlibes et al. 2006).  In the model system N. crassa, catalases are located in the 

cytosol and perform a variety of functions from defense against extreme temperature-

induced peroxides and denaturants and aid spore germination (Michan et al. 2002).  

Superoxide dismutases (SODs) are among the first genes to be triggered in fungi upon 

infecting a plant and are believed to defend against plant-produced ROS (Gessler 2007).  

SODs dismutate superoxide, a highly reactive ROS, into oxygen and hydrogen peroxide 

(which must be catabolized by catalases), thereby preventing mutagenic DNA damage.  It 

is hypothesized that when filamentous phytopathogenic fungi, Rhizoctonia solani, 

Sclerotinia sclerotiorum, Sclerotium rolfsii and Sclerotinia minor, form sclerotia; in 

response to oxidative stress (Pastoukis and Georgiou 2007).  In yeast, glutathione 

peroxidases, GPX1, GPX2 and GPX3 play roles during carbon starvation, oxidative stress 

and as a redox-transmitter that activates the oxidative stress defense response (Tanaka et 

al. 2006).   

Relative expression of virulence genes:  Out of all the virulence genes looked at in this 

study, the most notable differences in gene expression in vegetative mycelia, are the low 

expression of pectin lyase (PL) and the cutinase 1 (CUT1) genes (Fig 10).  Pectin lyases 

(PLs) are sometimes referred to as pectin transeliminases are one of many cell wall 

degrading enzymes (CWDE) secreted by plant pathogenic fungi to digest host cell walls 

(Juge 2006).  Fungi use cutinases, cutin-specific lipid esterases, as a means to penetrate 

and degrade the external cuticle layer of plant cell walls (Verrips et al. 2000).  Other 

CWDEs likely used by P. omnivora to break down plant cell walls include a number of 
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different enzymes such as cellulases and polygalactuonases (Muñoz and Bailey 1998).  

The relatively low expression of PL and CUT1 in vegetative mycelia may be due to 

catabolite repression of these genes during growth in rich media (Wubben et al. 2000). 

In root exudate challenged mycelia, the MAPK2, PL and CUT1 are expressed the highest 

in response to nonhost sorghum root exudates (Fig 11).  Numerous studies have identified 

Pmk1/Fus3/Kss1 MAP kinase (MAPK2) pathway in many plant and human pathogenic 

fungi as a major signaling pathway regulating pathogenicity, (Zhao et al. 2007; Cho et al. 

2006).  The other three virulence genes examined in this study, beta glycosidase (BGL3), 

copper phenoloxidase (CuOx, laccase) and ceratoplatanin (CPT, sometimes referred to as 

SnodProt1), are all expressed at slightly higher levels in response to nonhost sorghum 

(Fig 11).  Snodprot1 was identified as a small secreted protein phytotoxin in the wheat 

pathogen Stagonospora nodorum (Skinner et al. 2001) and orthologs in M. grisea 

(MSP1), Botrytis (bcspl1) and Ceratocystis (CFP) have been shown to be important for 

virulence (Jeong et al. 2007; Chague et al. 2006; Pazzagli et al. 1999).  CuOx could be a 

type of laccase (a ligninolytic enzyme), which in the vascular wilt pathogen, Fusarium 

oxysporum, may be used to penetrate the lignified xylem elements of the host plants.  

One study identified six laccase genes in F. oxysporum, of which three of them lcc1, lcc3, 

and lcc9, are expressed in roots and stems of infected plants (Cordoba-Cañero and 

Roncero 2007).  P. omnivora does not specifically infect the xylem of its hosts, but 

vascular discoloration and rapid wilting of leaves indicate the vascular system of the 

plant is affected.   

In the sclerotia, the virulence genes MAPK2, BGL3, CuOx, and CPT seem to be 

expressed the highest in 8 week-old sclerotia, while CUT1 seems to be expressed higher 
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in 4 week-old sclerotia (Fig 12).  Since these genes are all considered virulence factors it 

is interesting to find these genes to be expressed during sclerotial formation since 

sclerotia are survival structures and do not directly interact with plants.  Perhaps the 

virulence-related gene products in sclerotia are mobilized to hyphal germ tubes when 

sclerotia break dormancy and germinate in response to root exudates. 

Relative expression of secondary metabolism genes:  Multi-drug transporters in 

phytopathogenic fungi actively pump small molecular weight toxins from their 

cytoplasms, thereby protecting against plant phytoalexins and secreting potentially 

autotoxic phytotoxins (Sun et al. 2006; Daub and Chung 2007) 

http://www.apsnet.org/online/feature/cercosporin/).  Thirty-one putative multidrug ABC-

transporters were identified in the genome sequence of P. omnivora (data not shown).  

Two of these multidrug efflux transporter genes, MFS1 (a xenobiotic transporter) and 

MFS2 (trichothecence efflux transporter), were examined in the study.  Fusarium spp. 

can produce trichothecenes, which can harm animals and plants (Desjardins et al. 1993).  

A well known trichothecene is T-2 toxin, which is a regulated contaminant of moldy 

grains that can lead to the rejection of harvested grains.  It is not known if P. omnivora 

produces trichothecenes like Fusarium spp.  But, since Fusarium is a common 

constituent of the soils inhabited by P. omnivora, perhaps MFS2 protects P. omnivora 

from trichothecenes produced by competing Fusarium spp.  In the rice blast fungus M. 

grisea, a multi drug transporter (ABC3) plays a vital role in pathogenesis because M. 

grisea mutants lacking this gene were completely nonpathogenic, but still capable of 

forming appressoria (Sun et al. 2006).  Thus these genes should be of interest for future 

investigations studying their roles in the pathogenicity of P. omnivora on its host(s).  In 

http://www.apsnet.org/online/feature/cercosporin/�
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vegetative mycelia, MFS1 is at a higher level than MFS2 (Fig 10).  On the other hand, in 

sclerotia, MFS2 is much more highly expressed in 4 week-old sclerotia than 8 week-old 

sclerotia (Fig 12).  In root exudate challenged mycelia, MFS1 and MFS2 were expressed 

to higher levels in response to sorghum root exudates (Fig 11).  This could be attributed 

to P. omnivora deriving more nutrition form sorghum root exudates, or may have been 

due the presence of small molecules secreted by sorghum roots that induced the 

expression of MFS1 and MFS2. 

Two other secondary metabolism-related genes examined are regulatory genes, a zinc 

finger transcription factor (SIRZ) and a methyltransferase (LAEA).  These are expressed 

more in 8 week-old sclerotia than in 4 week-old sclerotia (Fig 12). However, SIRZ and 

LAEA show very little change in expression in response to root exudates (Fig 11).  

Biosynthesis of sirodesmin PL phytotoxin is controlled by a gene cluster consisting of 18 

genes in the phytopathogenic fungus Leptosphaeria maculans (Gardiner et al. 2004).  

Transcriptional control of this biosynthetic cluster is regulated in L. maculans by the 

Zn(II)2Cys6 (zinc finger) transcriptional regulator, SirZ (Fox et al. 2008).  The 

biosynthesis of a related secondary metabolite, gliotoxin, is regulated in A. fumigatus by 

the orthologous zinc finger transcription factor GliZ and PlGliZ (putative regulator of 

gliotoxin).  The LAEA methyltransferase has been studied in several Aspergillus spp. and 

has been shown to be a global regulator in secondary metabolite biosynthesis (Bok and 

Keller 2004).   
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CONCLUDING REMARKS 

 

 There is limited literature describing a qRT-PCR experiment, like the one described in 

this chapter, which looks at the expression level of twenty six genes across life stages.  

The selected genes represented a wide range of functions and in spite of the large 

experimental error, trends in differential gene expression were identified that warrant 

further investigation.  Even though this data is preliminary, lessons learned during these 

studies (e.g. reduce pipetting error, use only one appropriate kit to prepare RNA and 

cDNA) could be followed to reduce experimental error.  If successful, then this 

experiment could be repeated with a closely related fungus (e.g. Pezizomycetes, Rhizina 

or Tuber) to investigate how gene expression trends have diverged or converged during 

evolution.  If a successful genetic transformation system is successfully developed for P. 

omnivora, then the function of the genes studied could be investigated through gene 

deletion and overexpression studies.  Most of the fungal systems described in the 

literature cited were highly tractable genetically and had numerous genomic tools 

available.  In the absence of such molecular genetics tools, more descriptive biochemical 

experiments can be designed to study the activities of the enzymes encoded by the genes 

described here and how these change in response to nutritional and developmental 

changes.  More molecular investigations into P. omnivora’s interactions with its hosts are 

needed.  P. omnivora is a difficult fungus to manipulate genetically perhaps, because it is 

multinucleate heterokaryon, which may make transformation difficult.  We think that this 

pathogen still warrants investigation because cotton root rot is endemic to many 

Oklahoma alfalfa and cotton fields and negatively impacts growers to the point that entire 
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fields must be abandoned or replanted with grasses.  This qRT-PCR experiment is a good 

start to future investigations into the gene functions and pathogenicity of P. omnivora.
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stages.  Pulsed field gel electrophoresis (PFGE), telomere fingerprinting, nucleic 
acid staining, and real-time quantitative reverse transcription-polymerase chain 
reaction (qRT-PCR) were employed to investigate the study’s objectives. 

 
Findings and Conclusions:  Efforts to characterize the genome of P. omnivora using 

PFGE and telomere fingerprinting were unsuccessful.  However, chromosomal 
standards were separated by PFGE in two experiments.  We confirmed the 
multinucleate nature of our P. omnivora isolates using fluorescent nucleic acid 
staining and microscopy, which showed younger hyphae have fewer nuclei than 
older hyphae and newly branching hyphal cells contained up to 24 nuclei.  The 
gene ontology (GO) categorization and life stage expression patterns of twenty-
six different genes were followed using qRT-PCR.  However, because cDNAs 
were prepared using two different kits, sample bias prevented comparisons of 
gene expression across treatments.  Of four housekeeping genes examined, 
expression of ITS-1 rRNA was most consistent across treatments and was used as 
an internal control to normalize expression of all other genes.  Gene expression 
levels differed among the life stages of P. omnivora investigated.  In vegetative 
mycelia, two virulence-related genes appeared repressed, while individual genes 
in all categories were highly expressed.  In mycelia challenged with host 
(Medicago truncatula) or nonhost (Sorghum bicolor) root exudates, some genes 
involved in secondary metabolism, virulence and glycogen synthesis were 
expressed higher with nonhost root exudates.  In sclerotia, genes involved in 
glycogen biosynthesis and secondary metabolism were expressed higher in 4 
week-old sclerotia than 8 week-old sclerotia.  Unfortunately, due to the high level 
of error, all gene expression data can only be considered preliminary.  However, 
these findings point to interesting new directions for future gene expression and 
genomics studies comparing P. omnivora with other fungal pathogens and related 
fungi in the Pezizomycetes. 
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