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CHAPTER I 

INTRODUCTION 

 

The squash bug, Anasa tristis DeGeer, is a serious pest of cucurbits in the United 

States (Beard 1940). It is distributed throughout North America (Elliot 1935, Fargo et al. 

1988, Riley et al. 1998, Eichmann 1945, Provancher 1886, Van Duzee 1917). Squash 

bugs attack squash, pumpkin, watermelon, cantaloupe, and cucumber and can be found in 

large numbers in the commercial growing areas of southern Oklahoma (Edelson et al. 

1999). The squash bug is also regarded as the primary pest of watermelon (Riley et al. 

1998). It has piercing and sucking mouthparts which it uses to feed on the plant sap, 

primarily xylem, causing the plant to wilt and die (Beard 1940). This wilting condition is 

known as “Anasa Wilt” (Robinson and Richards 1931). The squash bug is also a vector 

of cucurbit yellow vine disease (Bruton 2003). 

Cucurbit yellow vine disease (CYVD) is a destructive disease of cucurbits that 

causes heavy losses. Losses to CYVD can exceed 10% of watermelon, cantaloupe, and 

pumpkin crops in central Texas and Oklahoma. Cucurbit yellow vine disease is caused by 

a phloem-inhabiting bacterium, Serratia marcescens. The diagnostic characteristic of this 

disease is the honey brown discoloration of phloem in the crown and primary root 

(Bruton et al. 1998). Host plant resistance has been shown to be an effective strategy for 

controlling many pests and diseases (Clough and Hamm 1995, Liu et al. 2007,
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Prischmann et al.2007). It is an ecofriendly method and can be integrated with other pest 

management programs. One of the most promising methods to control squash bug and 

CYVD in watermelon would be to develop a cultivar that is resistant to these pests.  

There are watermelon relatives that have been shown to be resistant to some 

watermelon diseases and insects, but the level and mechanisms of resistance are unknown 

(Davis et al. 2007). Likewise, there are no identified watermelon cultivars resistant to the 

squash bug and CYVD. Electrical penetration graph (EPG) technology has been used to 

screen and identify plant germplasm resistant to piercing-sucking insects. However, very 

little work has been done using EPG in watermelon resistance studies. Using traditional 

host plant resistance studies and EPG technology, my goal is to identify melon 

germplasm resistant to the squash bug which may eventually be used to develop a 

commercial watermelon cultivar resistant to CYVD and the squash bug. 

Therefore my research objectives are: 

Objective 1: Describe major EPG waveform patterns of the squash bug probing on 

watermelon  

Objective 2a: Screen watermelon relatives Citrullus colocynthis, Praecitrullus fistulosus, 

and watermelon hybrid USVL-200 (C. lanatus x C. colocynthis) for 

behavioral resistance to the squash bug 

Objective 2b: Compare the EPG waveforms produced by the squash bug feeding on 

watermelon to waveforms produced on C. colocynthis, P. fistulosus and 

hybrid USVL-200.
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CHAPTER II 

LITERATURE REVIEW 

 

Squash bug biology 

The squash bug, Anasa tristis (DeGeer) belongs to the order Hemiptera and 

family Coreidae. It is a serious pest of cucurbits in United States (Beard 1940). It attacks 

pumpkin, squash, cantaloupe, watermelon and other vine crops of the Cucurbitaceae 

family. Squash bugs prefer squash and pumpkin as hosts (Elliot 1935, Bonjour et al. 

1990) and are a serious pest of these crops in Texas and Oklahoma. The squash bug is 

regarded as the primary pest of watermelon (Riley et al. 1998) even though it does not 

prefer it (Bonjour and Fargo 1989, Bonjour et al. 1990, Bonjour et al. 1991). 

Watermelon, cantaloupe and cucumber are considered to be alternate hosts for the squash 

bug (Hoerner 1938, Eichmann 1945). 

The squash bug is native to United States (Beard 1940) and is distributed 

throughout North America in many states such as Connecticut (Elliot 1935), Illinois 

(Fielding 1990), Indiana (Cook and Neal 1999), Kansas (Wadley 1920), Oklahoma 

(Fargo et al. 1988), Texas (Riley et al. 1998), and Washington (Eichmann 1945). It can 

also be found in some parts of Canada (Provancher 1886, Van Duzee 1917) and also in 

Mexico and Central America (Uhler 1878, Wadley 1920). It can be found in high 
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numbers in commercial growing areas of southern Oklahoma as a serious pest of 

watermelon (Riley et al. 1998, Edelson et al. 1999).  

Eggs are fairly large, about 1.48 mm in length and 1.02 mm in width, and white to 

yellow color when deposited but gradually darken to bronze at the time of hatching 

(Beard 1940). Egg masses, each containing about a dozen or more depending on the 

availability of food and suitable temperature, are usually deposited on the undersides of 

the leaves in the angles formed by the veins. It takes 10 days or more for nymphs to 

emerge from the eggs, depending on the temperature. First instar nymphs are brightly 

colored upon hatching, with red legs, antennae, head and thorax and a green abdomen, 

which measures about 2.5 mm in length. After a few hours, the red body turns black and 

the abdomen remains green. After the first molt, nymphs are about 3 mm in length. Just 

after molting, the body regains the reddish color (Beard 1940). After the second molt, the 

insect can be distinguished by the development of the wide penultimate segment of the 

antennae. Third instar nymphs lack wing pads and measure about 4 mm in length. The 

development of wing pads and the size of the nymph help to distinguish the 4th and 5th 

instar from other stages. The 4th and 5th instar nymphs measure about 6-7 mm and 9-10 

mm in length, respectively (Beard 1940). The adults are larger, about 14-16 mm in length 

with well-developed wings and brownish black color. Males are smaller than females and 

weigh on average 27% less than females (Bonjour and Fargo 1989). 

Squash bugs overwinter as adults throughout the winter season. Overwintering 

sites of the squash bug include buildings, tree trunks, under stones, weed and wood piles 

and crevices (Wadley 1920). In late spring, the overwintering squash bugs move to 

nearby commercial squash fields soon after seedling emergence (Fargo et al. 1988). They 
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start ovipositing once they leave their overwintering sites depending on the day length 

and availability of food (Fielding 1990). 

 Overwintered females produce most of the eggs during June and early July 

(Nechols 1987). In Connecticut and Kansas, adult squash bugs emerge between late May 

and mid June and continue to oviposit until about early August (Beard 1940, Nechols 

1987), and in Oklahoma they appear in late spring after seedling emergence (Fargo et al. 

1988). Squash and pumpkin are the preferred hosts for oviposition by the squash bug 

compared to watermelon, muskmelon and cucumber (Bonjour et al. 1990). In Oklahoma, 

the squash bug completes two to three generations per year (Fargo et al. 1988). In the 

northern part of the United States, the squash bug has only one generation (Elliot 1935, 

Davidson and Lyon 1979), but in Kansas there are two generations (Nechols 1987). The 

temperature and availability of food are the most dependent factors to keep this insect 

active. 

Squash bugs overwinter in reproductive diapause, a condition in which they 

neither copulate nor oviposit (Chittenden 1908, Wadley 1920). Short day length induces 

reproductive diapause in newly molted, sexually mature and previously diapaused adult 

squash bugs, while long day length and high temperature prevents reproductive diapause 

(Fielding 1988). Squash bugs exposed to a photoperiod of 14:10 L:D or lower day length 

entered reproductive diapause, while those exposed to 14.5:9.5 L:D did not enter 

diapause (Nechols 1988). Similarly, squash bugs terminated diapause when exposed to 

long day length (17:7 L:D), while the diapause continued when they were exposed to 

short day length (12:12 L:D) (Fielding 1988). During diapause, the insect undergoes 

some physiological changes. The rate of respiration was lower in diapausing squash bugs 
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compared to non diapausing bugs (Fielding 1990). Thus, photoperiod, temperature and 

availability of food are responsible for stimulating the squash bug to break the diapause 

and leave the overwintering sites (Fargo et al. 1988, Nechols 1988, Fielding 1990). 

Absence of food after terminating diapause increases mortality of the squash bug 

(Fielding 1990). 

Plant damage caused by squash bugs 

Like other Heteropterans, squash bugs have piercing and sucking mouthparts and 

use their stylets to puncture and suck the contents from plant tissues, especially from 

collenchyma, xylem, and probably phloem (Bonjour et al. 1991, Neal 1993). Neal (1993) 

described squash bug feeding as the lacerate and flush type. When feeding on the plant 

vascular system, the plant wilts because of leaking of sap from the wound made by insect 

feeding or due to deposition of sheath saliva, blocking xylem transport of water (Neal 

1993). This wilting condition is known as “Anasa wilt” (Robinson and Richards 1931). 

Plant wilting is followed by plant death, but no toxin was identified in the condition (Neal 

1993). Squash bug feeding also causes loss of nutrients from the plant and interferes with 

the photosynthetic process, which results in slow growth and low productivity of squash 

(Woodson and Fargo 1991). Watermelon seedlings are vulnerable to squash bug feeding, 

hence, the mortality of the seedlings is high even in relatively low densities of the squash 

bug adults (Edelson et al. 2002). 

Osmotic pump feeding by coreid bugs  

Coreid bugs have a different feeding strategy compared to other Heteropterans. 

The feeding activities of coreids leaves water soaked lesions on the surface of the plant 

and straight and unbranched intracellular stylet tracks, which can be identified by the 



9 

 

presence of a thick, solidified salivary sheath. The salivary, or stylet, sheath is formed 

around the stylet bundle, forming a channel which lubricates and anchors the stylets 

(Miles 1987). The author also reported that coreid feeding leaves melanized lesions in the 

cells, beyond the feeding puncture, whose contents have been removed, suggesting that 

the contents of those cells had been drawn into a single locus and then removed by the 

insect. Miles and Taylor (1994) described coreid feeding as “osmotic pump feeding,” in 

which the salivary enzyme sucrase is secreted into the area near sieve elements. The 

sucrose of the nearby cells or tissues is hydrolyzed into glucose and fructose. This causes 

a gradient of the solutes in the area, resulting in the movement of cell solutes into a pool 

outside of the sieve element. Thus, the insect can ingest hydrolyzed phloem sugars 

without actually penetrating the phloem.  Although Miles generalized about coreid 

osmotic pumping, this activity has not yet been demonstrated for A. tristis.  

Squash bug as a vector of cucurbit yellow vine disease 

In addition to killing the plants by sucking sap and blocking xylem transport, the 

squash bug is also a vector of the phloem-colonizing bacterium, Serratia marcescens, the 

causal agent of cucurbit yellow vine disease (Bruton et al. 2003). Pair et al. (2004) 

showed that feral squash bugs have the ability to retain the pathogen in their body 

throughout the winter. In laboratory experiments, the transmission rate of S. marcescens 

was 9.2% for single inoculative insects (Bruton et al. 2003). Bextine (2001) hypothesized 

that A. tristis transmitted S. marcescens in a noncirculative manner but Wayadande et al. 

(2005) suggested, based on evidence of S. marcescens transmission by adults after 

nymphal acquisition, that the bacterium circulates throughout the body of the insect and 

is transmitted to its plant host via salivary secretions. 
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Sequential aspect of plant acceptance and feeding 

Plant feeding of an insect consists of a series of sequential events. Generally, 

insect preference differences among its hosts is based on color, intensity of light, 

mechanical stimuli (physical structures and surface of the plant), and chemical stimuli 

(odors and tasting). Colors and light play an important role in insect attraction to the host. 

Before landing on plants, insects respond to color and light as reflected from the surface 

of the plant (Painter 1968). Once hemipterans reach the host and have explored the plant 

surface, they oppress the rostrum to the surface and secrete a salivary flange on the 

surface of the plant. The function of this salivary flange is to act as a conduit for surface 

compounds to contact the chemosensilla at the tip of the insect rostrum. The chemical 

cues detected by the chemosensilla mediated further stylet insertion by the insect. The 

piercing and sucking insects have precibarial chemosensilla within the food canal used 

for host and tissue selection (Backus and McLean 1982, Backus 1985, Backus and 

McLean 1985).When the insect inserts its stylets, it draws liquid through the food canal 

to the precibarial chemosensilla that line the epipharyngeal wall. If cues are positive, the 

insect will continue to insert stylet deeper into the plant. During stylet insertion they 

secrete saliva inside the plant tissue that solidifies as the stylets go forward, forming a 

stylet sheath. Once they reach a preferred tissue, sustained ingestion will ensue (Backus 

1985). 

Cucurbit yellow vine disease 

Cucurbit yellow vine disease (CYVD) is a destructive disease of cucurbits. It was 

first observed in squash and pumpkin grown in the cross timbers region of Oklahoma and 

Texas in 1988 (Bruton et al. 1995a). In watermelon, it was observed in 1991 near Rush 
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Springs and Terral, Oklahoma, and Deleon and Gustine, Texas (Bruton et al. 1998). In 

addtition to Oklahoma and Texas, CYVD was also observed in Tennessee (Bost et al. 

1999), Massachusetts (Wick et al. 2001), Kansas, Arkansas, Colorado, Nebraska (Rascoe 

et al. 2003), Missouri (Kabrick 2002) and Kentucky (Bessin 2003).  

The most prominent symptoms of CYVD are yellowing of the lower canopy 

leaves and inward curving of the terminal leaves, followed by gradual or rapid decline 

and death of the vine, especially in early planted fields (Fig.2.1) (Bruton et al. 1998). The 

stunting, yellowing, and gradual decline begin about 10 to 14 days prior to harvest in 

older plants. In immature plants, rapid wilting occurs and plant collapse follows within a 

single day without the associated plant yellowing (Bruton et al. 1998). The diagnostic 

characteristic of this disease is the honey brown discoloration of phloem in the crown and 

primary root (Fig.2.2) (Bruton et al. 1998). In watermelon, the affected vines produce 

chlorotic, unmarketable fruit (Bruton et al. 1998). 

Bruton et al. (1995b) first suggested that CYVD might be transmitted by insects. 

The disease symptoms were often observed in watermelon plants in small patches 

(Duthie et al. 1993) and weekly application of insecticides significantly reduced the 

incidence of the disease (Bruton et al. 1998). Squash plants fed upon by squash bugs that 

previously had been caged on diseased plants exhibited symptoms of phloem 

discoloration (Pair et al. 2000). Similarly, 20-25% of uncovered squash plants showed the 

presence of the yellow vine bacterium by polymerase chain reaction (PCR) but no 

bacteria were found in plants protected by row cover (Bextine 2001). Finally, Bruton et 

al. (2003) confirmed by the completion of modified Koch’s postulates that the squash bug 

transmitted the bacterium S. marcescens. 
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Serratia marcescens 

Serratia marcescens, the causal agent of CYVD, is a rod shaped, gram negative, 

motile, facultatively anaerobic, non spore-forming, walled bacterium belonging to the 

family Enterobacteriaceae (Yu 1979, Hejazi and Falkiner 1997, Rascoe et al. 2003). S. 

marcescens was found associated with phloem vessels of infected cucurbit plants (Bruton 

et al. 1998). There are many strains of S. marcescens which can be found in different 

plant associated niches, including the root and stems of rice (Gyaneshwar et al. 2001) and 

cotton (Wei et al. 1996), but these strains were not reported to be pathogenic to the host 

plant. Unlike these strains, some strains of S. marcescens are known to cause crown root 

of alfalfa (Lukezic et al. 1982). S. marcescens is also found in water, soil, food products, 

insects and animals (Lium 1977, Rosenzweig and Stotzky 1980, Seitz et al. 1987, 

Grimont and Grimont 1992, Ahrenholtz et al. 1994).  

Many of the strains of S. marcescens produce a water insoluble red pigment, 

prodigiosin, also known as bloody discoloration of food (Yu 1979, Sikorowski and 

Lawrence 1998). Most of the human isolated strains of S. marcescens are non-pigmented 

but some from insects are red pigmented (Sikorowski and Lawrence 1998). Some strains 

are nonsocomial pathogens (Hejazi and Falkiner 1997). They cause infection in patients 

with urinary tract infections (UTI), septicemia, meningitis, endocarditis, wound 

infections and debilitating disorders (Okuda et al. 1984, Johnson et al. 1998). S. 

marcescens was also used as a biological marker to understand the dissemination and 

mechanism of infection in humans (Cumming 1920, Davis et al. 1970) and also used as 

markers by the US military in 1950 and 1952 (Yu 1979).  
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Several strains of S. marcescens cause disease in insects (Sikorowski et al. 2001) 

especially in insectary-reared insects (Steinhaus 1959, Sikorowski and Lawrence 1994), 

causing a lethal septicemia after invasion of the homocoel. A small number of S. 

marcescens in the digestive tract of insects is not pathogenic (Sikorowski 1985.) but 

when the bacteria reach the homocoel they multiply rapidly and kill the host (Sri-

Arunotai et al. 1975, Tanada and Kaya 1993). In soil, some of these bacteria produce a 

nematotoxic volatile that kills the larvae of root knot nematode, Meloidogyne incognita, 

in tomato plants (Zavaleta and Gundy 1989a, 1989b). Research showed that insects like 

the German cockroach, Blattella germanica, and ants act as carriers of S. marcescens in 

hospitals (Flower et al. 1993, Kim et al. 1995). 

In early times, S. marcescens was considered as a saprophytic microorganism 

living in soil. The bacterium plays a role in metabolizing organic iron and dissolving gold 

and copper (Pares 1964) and also was used as a biological control agent to suppress 

summer patch disease of Kentucky bluegrass (Kobayashi et al. 1995). S. marcescens also 

inhibits the growth of Botrytis fabae, causal agent of chocolate spot disease (Akutsu et al. 

1993) and protects the leaves of Vigna radiata from Xanthomonas campestris, causal 

agent of bacterial leaf spot (Bora et al. 1993). It is also known as the most frequent 

contaminant of laboratory cultures of bacteria (Hejazi and Falkiner 1997). 

Two strains of S. marcescens, WO1-A and ZO1-A, isolated from watermelon and 

zucchini squash, respectively, cause yellow vine disease in cucurbits. The sequence 

analysis of CYVD revealed the microbes as proteobacteria that differ significantly from 

other non-cucurbit strains of S. marcescens isolated from different environmental niches 

in biological functions and characteristics. These differences were demonstrated based on 
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the substrate utilization assays and fatty acid analysis and comparison of genomic DNA 

through repetitive elements-based polymerase chain reaction and DNA-DNA 

hybridization (Rascoe et al. 2003, Zhang et al. 2003). The CYVD associated bacteria can 

be detected by PCR using nonspecific primers designed from prokaryotic 16S rDNA 

(Francisco et al. 1998, Luo 2006). Rascoe et al. (2003) showed that the CYVD strains 

obtained from watermelon and zucchini produced smooth, circular, entire, convex, non 

pigmented colonies within 24 hrs and did grow under anaerobic conditions. They also 

illustrated that the groE sequence of these two strains were similar to each other but were 

significantly more distant to the strains isolated from cotton.  

S. marcescens’ ability to cause infectious disease in an organism is facilitated by 

many factors. This species of bacteria has pili, hair like appendages found on the bacterial 

surface that are used to adhere to the host epithelial surface (Yamamoto et al. 1985). The 

hydrophobic nature of these bacteria helps in distribution by air, water and oil, water 

interface and in the attachment to solid surfaces (Mudd and Mudd 1924, Ashkenazi et al. 

1986). Some of the genes in S. marcescens are responsible for the synthesis of 

lipopolysaccharide, a biologically active constituent of endotoxin that is effective against 

other strains of S. marcescens and E. coli strains (Traub 1980, Guasch et al. 1995). S. 

marcescens produces several extracellular enzymes that can degrade chitin. One of the 

extracellular proteins produced by these bacteria is HasA (for heme acquisition system) 

which binds heme and acquires iron from heme and hemoglobin (Letoffe et al. 1999). 

The Cucurbitaceae 

Squash bugs are oligophagous on the plants of the Cucurbitaceae. This cucurbit 

family includes gourds, pumpkin, squash and melons. They are found in tropical and 
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subtropical regions. The family Cucurbitaceae consists of two subfamilies, about 118 

genera, and 825 species (Jeffrey 1990). The subfamily Zanoniodeae includes cucurbits 

that have medicinal value and Cucurbitoidae includes the four major cucurbit crops: 

watermelon, cucumber, melon, and squash, along with other species.  

The cucurbit crop in the United States composed of fresh cucumber (used for 

quick consumption in the raw state), processing cucumber (processed and preserved for 

future consumption), cantaloupe, honeydew, pumpkin, squash and watermelon. Total 

production of cucurbits in the United States is 109 million metric tons on 229,000 

hectares, with a value of $1.43 billion in 2004. The major states for cucurbit production 

are Florida, North Carolina, Michigan, Texas, California, and Georgia (Cantliffe et al. 

2007). Watermelon, cantaloupe, squash and cucumber contribute about 9.3% of the value 

of the total vegetable production in the United States. Watermelon, cantaloupe, squash 

and cucumber are ranked as 11th, 12th, 14th and 15th, respectively, in total production 

value (Cantliffe et al. 2007). Table.1.1 shows total harvested area, production and value 

of seven classes of cucurbit crops in 2004. 

Watermelon and its relatives  

Watermelon, Citrullus lanatus (Thunberg, Matsumura & Nakai), is one of the 

economically important crops grown in the southern region of North America. It is a 

leading melon crop of United States in terms of planted area (176,827 acres in 2000-

2002), production, and per capita consumption (Lucier and Plummer 2003). In the United 

States, Florida, Texas, Georgia, Arizona, California, Indiana, North Carolina, South 

Carolina, and Delaware are the major watermelon growing states, producing more than 

1,000,000 cwt (Dogramaci et al. 2004, Cantliffe et al. 2007, Hassell et al. 2007). Besides 
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these states, Oklahoma, Missouri, Maryland, Arkansas, Alabama, Mississippi, Virginia, 

Louisiana, and Hawaii also grow watermelon (USDA 2010a). According to 2000-02 data, 

the farm value of watermelon production was $282 million, which is a 19% increase from 

a decade earlier (Lucier and Plummer 2003). In 2009, total watermelon production in the 

United States was 40,122,000 cwt from 126,300 harvested acres, with a value of 

$460,778,000 (USDA 2010a). 

Watermelon is a popular summer crop that is native to Africa (Marr and Tisserat 

1998). It thrives well in tropical and sub tropical climates with sandy or sandy loam soil. 

It can be consumed fresh, as roasted seeds, pickled rind or watermelon juice. 

Currently there are many seedless cultivars of watermelon grown in the United 

States. In 2009, more than 80% of the watermelon shipments in the United States are 

seedless (USDA 2010b). Some of the seedless cultivars adapted to grow in the US are 

Firecracker, Quality, Millionaire, AC 532, Crimson Trio, Genesis, King of Hearts, and 

Merrilee III (W1025) (Mayberry et al. 2003, Maynard 2003). 

This economically important crop is attacked by many pests and diseases causing 

a significant loss in the production every year. The major diseases of watermelon are 

cucurbit yellow vine disease (CYVD), caused by the bacterium S. marcescens (Bruton et 

al. 2003), Fusarium wilt, caused by Fusarium oxysporum f.sp niveum (Ay and Erklc 

2008), watermelon vine decline disease, caused by squash vein yellowing virus (Kousik 

et al. 2009), watermelon bud necrosis, caused by a tospovirus (Jain et al. 1998), bacterial 

fruit blotch, caused by Acidovorax avenae subsp. citrulli  (Latin and Hopkins 1995), 

powdery mildew, caused by Podosphaera xanthii (Davis et al. 2007), bacterial leaf spot, 

caused by Xanthomonas cucurbitae (Pruvost et al. 2009), papaya ringspot, caused by 
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papaya ringspot virus-watermelon strain PRSV-W, watermelon mosaic, caused by 

watermelon mosaic virus (WMV), and zucchini yellow mosaic, caused by zucchini 

yellow mosaic virus (ZYMV) (Guner and Wehner 2008). Major insect pests of 

watermelon are the squash bug vector of CYVD, thrips vector of watermelon bud 

necrosis virus (Kamanna et al. 2010), whitefly vectors of Geminiviruses, (Isakeit et al. 

1994), and aphid vectors of squash leaf curl disease (Dodds et al. 1984). 

Some of the watermelon relatives have been reported to have resistance 

characteristics against some pathogens. Plant introduction (PI) accessions of Citrullus 

spp., Praecitrullus spp. and watermelon cultivars have been screened for resistance to 

diseases and nematodes (Boyhan 1994, Thies and Levi 2003, Davis et al. 2007). Citrullus 

colocynthis PIs have been shown to be resistant to certain pathogens like watermelon 

mosaic virus and powdery mildew (Podosphaera xanthii) race 1W and moderately 

resistant to Fusarium wilt (Fusarium oxysporum f. sp. niveum) race 2 (Levi et al. 2001). 

Similarly, high to moderate resistance against P. xanthii race1W was seen in 

Praecitrullus fistulosus PIs (Davis et al. 2007). Similarly, these watermelon relatives are 

also resistant to some insect pests. C. colocynthis lines are resistant to arthropods, 

including the two spotted spider mite, Tetranychus urticae (Lopez et al. 2005), and 

whitefly, Bemisia tabaci (Simmons and Levi 2002). P. fistulosus is resistant to the white 

fly, B. tabaci, the  vector of watermelon vine decline disease (Levi et al. 2005). These 

germplasm lines have not been tested for other disease and insect resistance traits and 

could be a source of resistance to other pathogens and insects. 

C. colocynthis is a congener of watermelon and native of tropical Africa (C. 

colocynthis PI 525082 – origin Egypt and C. colocynthis PI 386015 – origin Iran). This 
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species is highly drought tolerant and grows on sandy soils throughout Northern Africa, 

southwestern Asia and the Mediterranean (Whitaker and Davis 1962, Jeffrey 1975, 

Whitaker and Bemis 1976). The seeds are rich in oil content and the oil is used for cooking. 

The seeds can also be roasted and eaten (Soliman et al. 1985).  

P. fistulosus is popular in south Asia, especially in India and Pakistan. Immature 

fruit is used as a vegetable and seeds are also eaten. P. fistulosus is a distant relative of 

watermelon and is also known as Indian round gourd, apple gourd or Indian baby 

pumpkin. Earlier it was considered to be Citrullus lanatus, but was later placed in its own 

taxonomic category due in part to its difference in monoploid chromosome number 

(Sujatha and Seshadri 1989).  

USVL-200 is a watermelon breeding line developed by crossing the watermelon 

cultivar “Royal Sweet” (C. lanatus var. lanatus) with C. colocynthis PI 386015. USVL-

200 contains the nuclear genome of C. lanatus var. lanatus and the chloroplast and 

mitochondrial genomes of C. colocynthis (Levi et al. 2006). Its fruit characteristics 

include globular fruit, a dark green rind and yellow to pink flesh. USVL-200 can be used 

for enhancing watermelon germplasm, and in studies of lycopenes versus carotenoid 

production in watermelon. 

Host plant resistance 

Resistance of plants to insect or pathogen attack may be defined as the relative 

amount of heritable qualities possessed by the plant that influence the ultimate degree of 

damage done by the insect or pathogen (Painter 1968). Resistance of a crop can be 

determined by comparing the yield of the plant, survival of the plant, intensity of damage, 
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biological parameters of an insect or insect feeding duration between the susceptible and 

resistant cultivars. 

According to Painter (1968) the three mechanisms of resistance are antibiosis, 

antixenosis and tolerance. Antibiosis is an association between two or more organisms 

that is detrimental to at least one of them. In case of host plant resistance, the plant has 

toxic substances that have a negative impact on the insect pest biology. Some examples 

of antibiosis in plant include cotton genotype PA 183, which has an antibiotic effect on 

the development and survival of the whitefly, B. tabaci, and is regarded as a resistant 

genotype (Jindal et al. 2008). The high amount of SiO2 in leaf sheaths in the rice cultivars 

Zhendao2, Xudao3 and Xieyou136 is one of the factors responsible for resistance against 

the small brown planthopper, Laodelphax striatellus Fallen which causes high mortality, 

low fecundity and low hatchability (Liu et al. 2007). 

Antixenosis is the plant resistance mechanism that affects the behavior of the pest. 

The plant has the ability to repel insects causing reduction in oviposition and/or feeding 

which will reduce the pest population. Antixenosis can be due to certain types of plant 

structures or volatiles. For example, increased flavonoid content in the wild species of 

genus Vigna was correlated with resistance to aphids (Lattanzio et al. 2000). Similarly, 

the presence of the Vat gene in the resistant melon cultivar, Margot, inhibited sustained 

phloem ingestion by the aphid, Aphis gossypii Glover (Chen et al. 1997). 

According to Painter (1968) “Tolerance is a basis of resistance in which the plant 

shows an ability to grow and reproduce itself or to repair injury to a marked degree in 

spite of supporting a population approximately equal to that damaging a susceptible 

host”. The yield from tolerant plants does not decrease and they remain in the same vigor 
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as in the absence of the damaging population. Prischmann et al.(2007) explained that the 

synthetic maize hybrid CRW8-3 has tolerance to the root damage caused by the western 

corn rootworm larvae, Diabrotica virgifera virgifera LeConte. Similarly, hybrids OsSK 

617, OsSK 602 and OsSK 596 showed tolerance to the corn rootworm D. virgifera 

virgifera Le Conte (Ivezic 2007).  

Resistance of cucurbits to hemipterans and diseases has been previously 

documented. Collins et al. (1994) tested antixenosis and tolerance effects of muskmelon 

cultivars against the melon aphid and concluded that some were resistant to the melon 

aphid on the basis of fewer aphid numbers on the plants. Similarly, the effect of the Vat 

(monogenic, dominant) resistance gene of melon on A. gossypii phloem ingestion 

behavior using EPG showed that the expressed gene had some effect against the insect. 

The expression of the Vat gene inhibited the sustained ingestion of phloem from the 

melon plant, thus causing antixenosis resistance against the aphid (Chen et al. 1997). 

After genetically altering three yellow crookneck squash (Cucurbita pepo) and five 

cantaloupes (Cucumis melo), Clough and Hamm (1995) tested the resistance of these 

plants against zucchini yellow mosaic virus and watermelon mosaic virus. The transgenic 

plants showed significant reduction in disease incidence and yielded more marketable 

fruit than the non transgenic plants. 

There is some evidence of host plant resistance to coreid bugs. Koona et al. 

(2002) documented antibiosis effects of four wild accessions of cowpea, Vigna 

unguiculata subsp. dekindtiana, to Clavigralla tomentosicollis. The wild accession, TVnu 

151, causes high mortality (>50%) of C. tomentosicollis while TVnu 369, TVnu 517, and 

TVnu 707 extended the developmental period, causing the surviving adults to gain little 
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weight and oviposit few eggs. Similarly, Koona et al. (2003) tested the effect of extracts 

from seeds and glandular trichomes of different Vigna species and found that the 

trichome extracts from all genotypes caused significantly higher insect mortality and 

longer total developmental time of the insect. The bug avoided normally edible seeds 

treated with trichome extract from wild Vigna, suggesting antixenosis resistance. 

Some work has been done on resistance in cucurbits to the squash bug. The 

development and feeding behavior of the squash bug nymphs on cucumber, Cucumis 

sativus, and pumpkin, Cucurbita pepo, was compared earlier by Cook and Neal (1999). 

Margolies et al. (1998) documented that the survival rate of the squash bug increased 

from 20% in the first generation to 45% in the fifth generation when it was reared 

continuously on resistant squash cultivars. No squash bug resistant watermelon cultivars 

have been identified. 

Electrical penetration graph technology 

Electrical penetration graph technology was first developed by D. L. McLean and 

M. G. Kinsey of the University of California, Davis, in the 1960s to record characteristics 

of aphid feeding and salivation (McLean and Kinsey 1964, 1965, 1967). Originally it was 

referred to as the electronic feeding monitor or electronic measuring/monitoring system 

but later it became known as electrical penetration graph (EPG) technology after the 

convention of Tjallingii (Tjallingii 1985). Two different types of EPG systems are 

currently used to study insect feeding behavior, the alternate current (AC) system 

(McLean and Kinsey 1964) and direct current (DC) system (Tjallingii 1988). EPG works 

by detecting small changes in an electrical current passing through a feeding insect. The 

EPG system consists mainly of a voltage source and an input resistor. The voltage source 
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and input resistor are electrically connected inside a box. Outside the box is an output 

receptacle, which is connected to the voltage source, and an input receptacle attached to 

the input resistor (Fig.2.3). The output receptacle in the other end is attached to the plant 

electrode (an electrode that has contact with the plant or the pot soil), while the input 

receptacle is attached to the insect electrode (an electrode that has contact with the 

insect). When the insect penetrates the plant tissue, voltage flows from the voltage source 

through the output receptacle to the input receptacle and input resistor and returns to the 

voltage source, forming a circuit (Walker 2000). The electrical signal is sent to a rectifier 

amplifier and computer, which records the waveform output. The change in resistance, or 

voltage, in this circuit is translated into trace patterns, called waveforms. In EPG 

technology, the plant and insect are the biological components of the circuit and they 

resist the current flow from the voltage source. The change in resistance is due to the 

different electrical conductivity of the fluids (saliva, plant sap) that pass through the 

insect mouthparts (Cline and Backus 2002). 

Electrical penetration graph technology is used to study the feeding behavior of 

piercing and sucking insects by correlating the waveforms produced by the insect feeding 

on the plant surface with the stylet activities in the plant tissues. This technique allows 

the characterization of probing behavior (Hunter and Backus 1989, Bonjour et al. 1991, 

Walker and Perring 1994, Cline and Backus 2002, Almeida and Backus 2004, Backus et 

al. 2005, Joost et al. 2006), investigation of plant resistance mechanisms (Dorschner and 

Baird 1988, Kimmins 1989, Montllor and Tjallingii 1989), and the mode of action of 

pesticides (Caillaud et al. 1995, Harrewijn and Kayser 1997, Sauge et al. 1998, Annan et 

al. 2000, Kaufmann et al. 2004) and identification of behaviors necessary for plant 
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pathogen transmission (Wayadande and Nault 1993, Prado and Tjallingii 1994, Martin et 

al. 1997, Lett et al. 2001). Feeding behavior of many homopteran insects, including 

aphids (McLean and Kinsey 1964, Prado and Tjallingii 1994, Annan et al. 2000), 

whiteflies (Jiang et al. 2000, Johnson et al. 2002, Jiang and Walker 2003), heteropterans 

such as the Lygus bug (Cline and Backus 2002), squash bug (Bonjour et al. 1991, Cook 

and Neal 1999) and thrips (Harrewijn et al. 1996, Kindt et al. 2003, Kindt et al. 2006), 

has been studied using EPG. 

Electrical penetration graph technology was used to understand host plant 

resistance mechanisms. Caillaud et al. (1995) compared the EPG waveforms produced by 

the cereal aphid (Sitobion avenae) feeding on resistant (Triticum monococcum) and 

susceptible (Triticum aestivum) wheat lines. They characterized the EPG waveforms 

produced on susceptible wheat lines and then compared them to those produced on 

resistant lines. Repeated stylet penetration and reduced vascular tissue ingestion were 

observed for insects given access to the resistant plants. The aphid also delayed sap 

ingestion when on the resistant cultivar as compared to the susceptible one. Total time 

spent by the aphid in ingesting the sieve elements was reduced by 72% on the resistant 

plants. 

Similarly, Kimmins (1989) used the EPG technique to study the feeding behavior 

of the planthopper Nilaparvata lugens on different rice varieties showing different levels 

of resistance. The duration of the EPG waveform produced during phloem and xylem 

ingestion on resistant rice was shorter than that on the susceptible variety, but the time 

taken to produce these patterns from the beginning of the recording did not differ 
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between varieties, suggesting that the resistance factor was located in the vascular tissue 

and not in the epidermis or mesophyll. 

Bonjour et al. (1991) described the stylet activities of first instar squash bugs on 

squash seedlings. The authors described six different types of waveforms produced 

during insect feeding, waveforms B (a non probing wave corresponding to the baseline), 

P (insertion of the stylets into a leaf), Wa (high amplitude peaks), Wb (medium amplitude 

peaks), Wc (low amplitude peaks - the ingestion pattern) and E (exit peak – removal of 

stylets from the leaf). Histological sections of tissues excised during production of 

waveform Wc contained the the termination point of a single sheath located near the 

vascular bundle. In most of the tissue sections, salivary sheaths terminated in or near 

xylem tissue, but no difference in waveform patterns was found between alleged phloem 

and xylem ingestion.  

For insect species that have been electronically monitored, there is a noticeable 

difference between the phloem and xylem ingestion waveform patterns because of the 

differences in cibarial muscle pumping requirements and because of the different sap 

composition in these two tissues.  Phloem ingestion patterns usually have higher 

amplitude than xylem ingestion patterns when recorded using low input resistance, 

presumably because of higher electrical conductivity due to higher sugar content in 

phloem (Walker 2000). Cucurbit phloem sap is dissimilar to the phloem sap of other 

species as it contains high protein, low total sugar, and a high proportion of sugars as 

monosaccharide (Richardson et al. 1982). It also has a high pH and high K+ 

concentration. Xylem sap is similar among species, as it contains little protein or sugar, 

but has high nitrate and ammonia contents (Richardson et al. 1982). It has lower K+ and 
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lower pH than phloem exudates. Since, the electrical conductivity of the sap affects the 

waveform pattern the difference in the ionic makeup of phloem and xylem should result 

in different waveform characteristics.  

Relevant waveforms must be identified, correlated and compared to explain the 

squash bug stylet activities on different watermelon relatives and cultivars. The squash 

bug is considered to be a xylem drinker (Neal 1993) but the CYVD pathogen resides in 

the phloem. The process of transmission of S. marcescens by the squash bug is still under 

investigation. The characterization and comparison of the EPG waveforms produced by 

the squash bug on watermelon and its different relatives will show whether this insect 

probes in both xylem and phloem. This information will be used further to understand the 

inoculation process of S. marcescens into phloem tissue and also to screen melon lines to 

develop commercial cultivars resistant to CYVD and to the squash bug. 
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Table.2.1. Total harvested area, yield and value of seven classes of cucurbit in 2004. 

Crop Harvested area (ha) Yield (tons) Value ($1000) 

Cucumber (F) 9,213 434,340 

212,734 

Cucumber (P) 18,620 1,054,800 

Cantaloupe 14,755 912,150 300,578 

Honeydew 3,560 229,005 89,731 

Pumpkin 7,400 448,875 99,835 

Squash 8,628 349,020 222,718 

Watermelon 23,160 1,656,720 313,458 

Source: National Agricultural Statistics Service, U.S. Department of Agriculture.  
Vegetable Summary 2004.  
 
F = fresh market, P = processed. 
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Fig.2.1 Yellowing of cantaloupe vines by cucurbit yellow vine disease (Courtesy B.D. 

Bruton) 

 

Fig.2.2 Phloem discoloration of watermelon crown caused by cucurbit yellow vine 

disease (Courtesy B.D. Bruton)
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Fig.2.3. Flow of current through voltage source to input resistor and returned to the 

voltage source forming a circuit in an electrical penetration graph.
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CHAPTER III 

CHARACTERIZATION OF ELECTRICAL PENETRATION 

GRAPH WAVEFORMS PRODUCED BY SQUASH BUG 

NYMPHS FEEDING ON WATERMELON 

 

Abstract 

The squash bug, Anasa tristis, is a major pest of cucurbits and causes serious 

damage to watermelon plants by direct feeding on the plant and by transmitting the 

bacterium, Serratia marcescens, the causal agent of cucurbit yellow vine disease. 

Previous work on feeding behavior of this insect did not fully describe probing activities. 

This study was conducted to describe the major EPG waveform patterns of squash bug 

probing on watermelon plants. Waveforms were correlated with probing activities using 

the previously published interpretations and by direct observation and histology of 

probed tissue. Four different types of waveforms were identified and their respective 

voltages were measured. These waveforms and their associated behavioral activities 

were: 1. non probing 2. test probing 3. salivation/pathway and 4. ingestion. Voltages 

measured during the ingestion waveform C were relatively low compared to those 

measured during other waveforms. The squash bug spent more than 60% of its
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time performing non probing behavior and the remainder was spent performing test 

probes, salivating and ingesting. Ingestion events averaged 30 min in duration, some 

lasting for several hours. Frequent short test probes before an ingestion probe was typical 

for this insect on watermelon. The function of these test probes is not fully understood 

but could be related to conditioning the plant tissue for ingestion or tasting fluid or 

overcoming plant defense responses. Histology of the probed tissue during ingestion 

waveform C showed the salivary sheaths of the squash bug terminated near xylem, 

therefore, waveform C is consistent with xylem ingestion. The characterization of these 

waveforms produced by the squash bug on watermelon can be used to compare the 

probing behavior of the squash bug when it feeds on different host and non host plants to 

determine host acceptability by this insect. 

Keywords: EPG, Squash bug, watermelon, Serratia marcescens, cucurbit yellow vine 

disease, feeding behavior 

Introduction 

Cucurbit yellow vine disease (CYVD) is a destructive disease of cucurbits in the 

major cucurbit growing regions in the United States. CYVD was first observed in central 

Texas and Oklahoma in squash and pumpkin (Bruton et al. 1995). In watermelon, it was 

first observed in the field near Rush Springs, OK, causing total loss in some fields but 

only a few patches of vine yellowing in others (Bruton et al. 1998). CYVD can cause 

losses <5 -100%, equivalent to several hundred thousand dollars of grower income 

annually (Bruton et al. 2003). Infected plants show symptoms of stunting and yellowing, 

followed by gradual decline of the vines 7-14 days prior to harvest. The causal organism 

of this disease is a bacterium, Serratia marcescens (Sm), which resides in the phloem of 
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infected plants, causing a honey brown discoloration of phloem tissue by the invasion of 

secondary microorganisms (Bruton et al. 2003). 

S. marcescens is transmitted among cucurbits by the squash bug, Anasa tristis 

DeGeer, which is one of the more serious pests of cucurbits (Bruton et al. 2003). It 

attacks pumpkin, squash, watermelon, cantaloupe and cucumber and causes damage to 

the plant by penetrating plant tissues with its stylets, sucking the sap from xylem tissue 

and blocking xylem vessels with salivary sheath saliva (Neal 1993). High squash bug 

density is associated with reduced plant growth and plant death (Edelson et al. 2002). The 

mechanisms of squash bug feeding are still not clear but Miles and Taylor (1994) 

proposed that coreids suck the sap from phloem by a mechanism called osmotic pumping, 

which gives the insect indirect access to phloem sugars without piercing the sieve 

elements. 

Electrical penetration graph (EPG) is an advanced technology used to study the 

probing behavior of piercing and sucking insects. It records waveforms when the insect 

comes in contact with the electrified plant or artificial diet chamber. Different waveforms 

are the result of measurable changes in resistance when fluids of varying conductivity 

pass through the insect mouthparts during probing (Cline and Backus 2002). EPG is used 

to study the stylet activities of a probing insect (Backus et al. 2005, Joost et al. 2006) and 

also to identify the proper time and place for pathogen acquisition and inoculation to and 

from the plant (Wayadande and Nault 1993, Lett et al. 2001). It has been used also to 

screen for plant resistance by comparing the waveforms produced by an insect probing on 

susceptible and resistant lines (Calderon and Backus 1992, Caillaud et al. 1995). EPG 

was used to record probing behavior of many Homopterans (Tjallingii 1978, Wayadande 
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and Backus 1989, Rapusas and Heinrichs 1990, Van Giessen and Jackson 1998) and a 

few Heteropterans (Bonjour et al. 1991, Joost et al. 2006, Backus et al. 2007). Bonjour 

(1991) recorded 1st instar squash bug feeding behavior using an old battery-operated 

monitor on three dual-pen strip-chart recorders, but these waveforms lacked detail. New 

EPG technology has the ability to expand and compress the waveforms with less 

background noise, greater stability and finer detail (Backus and Bennett 1992). This study 

uses the latest EPG technology to characterize the waveforms produced by squash bug 

feeding on watermelon. 

Materials and Methods 

Plants 

Watermelon var. “Royal Sweet” (a CYVD - susceptible cultivar ) was seeded in 

4.5 in. diameter plastic pots (Smurfit Stone Container Corporation, Jefferson, OH) 

containing Sungrow Metromix 200 (Sun Grow Horticulture Products, Belleview, WA) 

potting soil in a greenhouse maintained at 80-90oF. Plants were fertilized using Miracle-

Gro ™ (Stern's Miracle-Gro Products Inc., Port Washington, NY) as directed by the 

manufacture every seven days. Plants were used at the 4-5 true leaf stage. 

Insects 

A squash bug colony was maintained in an insect rearing room at Oklahoma State 

University at 70-80oF with a 16:8 (L:D) photoperiod. Bugs were reared on Cucurbita 

pepo var. “Lemon Drop” and supplemented with squash fruit purchased at a local grocery 

store. The colony was started in 2007 with feral squash bugs collected from squash plants 

in Perkins and Coyle, Oklahoma. The eggs were collected and transferred to separate 
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metal cages (8” x 12” x 12” with mesh screening). Resulting nymphs were used to 

supplement the colony. 

Electrical penetration graph recordings 

Fourth and fifth instar squash bug nymphs of undetermined sex were starved for 

24 hours prior to use. The insects were tethered at the pronotum with a 0.025 inch 

diameter gold wire (Sigmund Cohn, Mount Vernon, NY), attached to the pronotum using 

silver print paint (Ladd Research Industries, Burlington, VT). Each insect was restrained 

to the table surface using paper tape placed across the head and the abdomen of the 

insect, during tethering process in order to facilitate attachment of the wire to the insect. 

Each tethered bug was then placed into a single head-amplifier receptacle via a brass nail 

glued to copper wire. Insect waveforms were recorded at 60-70oF under constant light 

conditions, using an alternating current (AC) EPG “Missouri Monitor” (Backus and 

Bennett 1992) with four channels using Windaq/Pro+ software (Dataq Instruments Inc, 

Akron, Ohio). A 100-mV AC electrical current was applied to the test plant via an 

electrode inserted into the rhizosphere. A 108 Ω input resistance level was used with a 

gain of 1 x 2000 25%. Data output was digitized using a DI-720 analog-to-digital board 

(DATAQ® Instruments, Inc., Akron, Ohio) with a 16-bit resolution and 100-Hz sampling 

rate per channel before sending signals to a Dell Latitude computer. Plants were adjusted 

so that the bug had easy access to the abaxial surface of the leaf. All recordings were 

done for 20 hours inside a Faraday cage (2’ X 2’ X 4’, constructed of an aluminum frame 

with a steel base and wire mesh). Once recordings were complete, the plant and insect 

were discarded.  
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Histology 

To correlate the stylet tip termination points with the suspected ingestion 

waveform, probed plant tissues were histologically sectioned. When a specific waveform 

was produced, the monitor was turned off and the feeding site was marked with a fine tip 

permanent marker. Then the bug was forced to pull out its stylets using paint brush and 

the small piece of probed tissue was excised using a sharp razor blade. The tissues were 

transferred into an ELISA plate well, submerged in 2% glutaraldehyde in 0.1M phosphate 

buffer, and stored at -20oC. The tissues were subjected to a standard ethanol dehydration 

sequence and embedded in Paraplast wax (Oxford Labware, St. Louis, MO). The 

embedded tissues were then sectioned at 10 µm using an A20 rotary microtome 

(American Optics Buffalo, NY) and heated fixed on the glass slides. The sectioned 

tissues were then dewaxed and stained using 0.5% safranin and 0.1% fast green and a 

coverslip was attached using Permount (Fisher Scientific, Pittsburgh, PA). Tissues were 

examined using an Olympus BX51 compound microscope at 200X and 400X 

magnification and digital images were captured using an Olympus DP7000 digital 

camera.  

Measurement and Data Analysis 

Waveforms were measured and analyzed using WinDaq waveform browser 2.61 

software (DATAQ® Instruments, Inc., Akron, Ohio) and means of each parameter 

(described later) were calculated. For measurement of waveform voltages and frequency 

of peaks during ingestion, 24 systematically selected waveforms were measured, at least 

two from each insect recorded (N =12). 
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Waveform characterization 

Primary, secondary and tertiary waveform structures were described using the 

convention of Cline and Backus (2002). Insect posture was also noted by direct 

observation of the squash bug during probing and non probing activity. The ingestion 

waveform produced by the squash bug was correlated with its stylet’s termination point 

inside the plant tissue. 

Waveform Parameters 

Four non sequential parameters were considered for describing the waveforms. 

1. Duration of waveform event: Total duration of waveform events was calculated and 

means were obtained by dividing the total duration by 12 insects. 

2. Frequency of occurrence of waveforms: For each type of waveform, frequency was 

calculated by dividing the total numbers of each waveform event by 12. 

3. Waveform voltage: For each type of waveform event, the voltage was calculated and 

the mean was derived from the data. A total of 24 waveform event was selected from the 

middle of the 20 hr recording period and the voltage was measured from the midpoint of 

each waveform event. 

4. Number of peaks per unit time during ingestion: During ingestion, the number of 

waveform peaks produced per unit time was calculated. A total of 24 ingestion 

waveforms were systematically selected from the middle of the 20 hrs recording and 

number of peaks per second of each ingestion waveform was calculated.  
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Results 

Overall description of probing activity on watermelon 

A typical, highly compressed EPG waveform sequence produced by a squash bug 

is shown in Fig.3.1. This nine hour sequence includes non probing, short duration test 

probes and ingestion probes. At this level of compression, it is difficult to resolve 

individual waveform events. In general, the squash bug does some non probing activities 

when it comes in contact with the plant. They perform a few to several test probes at the 

beginning followed by the probes which include salivation and ingestion waveforms. 

Insect posture as it relates to probing activity 

Non probing activities of the squash bug were discernable both in the body 

posture and in the waveform. Non probing can be identified because of its irregular, high 

relative amplitude waveform structure. The rostrum was extended along the ventral side 

of the body during extended periods of non probing, except when the insect extended the 

rostrum without apparent stylet penetration during labial dabbing. Stylet insertion was 

associated with telescoping of the rostrum, which exposed the stylets from the labial 

sheath. During feeding, squash bug stylets are pressed into the plant at a right angle to the 

head (Fig.3.2). 

EPG waveforms 

Squash bug EPG waveforms were placed into four different categories (given a 

letter designation Z, A, B and C after the convention of Cline and Backus 2002) (Fig.3.3). 

The waveforms were assigned and interpreted based upon their similarity to those of 

Lygus hesperus (Cline and Backus 2002) and A. tristis (Bonjour et al. 1991) waveforms.  
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Non probing (Z) 

Non probing waveforms occurred in both high and low relative amplitude, and 

displayed irregular shape and patterns. There was no consistent association of signal 

frequency with non-probing. These waveforms were produced by squash bugs during 

walking, standing/ resting, surface exploration with antenna, grasping with tarsal claws, 

labial dabbing and excretion activities. Non probing waveforms (Fig.3.4-I and II) were 

produced when insects were either resting or involved in the non probing activities 

mentioned above. The voltage of non probing waveforms ranged from 0 to the maximum 

voltage settings (variable). When the insects were resting, the voltage remained low, 

approximately equal to base line. When the insects moved, the voltage varied, but upper 

limits were raised to the maximum. 

Test probes (A) 

Test probes were usually of short duration, less than one minute, but sometimes 

lasted for more than two minutes. Test probes were the most prevalent type of probe 

performed by the squash bug. Squash bug test probes consisted of three component 

stereotypic subpatterns: 1) Stylet insertion peak, which has one or two high amplitude 

peaks; 2) waveforms of lower amplitude relative to the insertion peak; and 3) a single 

high amplitude stylet withdrawal peak (Fig.3.5). 

Salivation or Pathway (B) 

Waveform B, which occurred primarily in longer probes containing ingestion 

events, was characterized by a few high amplitude chevron type peaks that immediately 

followed an insertion peak (Fig.3.6-B). The average duration of waveform B was shorter 
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than that of ingestion waveform (C), and it was usually of uneven shape. Waveform B 

had higher average amplitude than the ingestion waveform, but the B waveform 

amplitude gradually declined after insertion of the stylets. Waveform B often occurred 

one or more times in a single probe. Table 3.1 shows the average voltage of waveform B. 

Ingestion (C) 

Waveform (C) was the waveform of longest duration during squash bug probing. 

It was always preceded by waveform B and had lower relative amplitude. Waveform C 

had a definite frequency associated with it (3-5 peaks per second or 3-5 Hz) (Fig.3.6-C). 

The formation and appearance of peaks was uniform. However, there was a high degree 

of variation in the number of, and amplitude, of ingestion peaks. The average duration, 

frequency and voltage are shown in Table 3.1. There was some variability in appearance 

of waveform C, but these different subpatterns were not individually measured. 

Histology 

Several leaf tissues excised during waveform C were sectioned and examined as 

described above. Only one tissue showed a clear view of the salivary sheath termination 

point (Fig.3.7-I and II) near the vascular bundle. The stained salivary sheath was 

terminated adjacent to a xylary vessel and not in phloem. 

Discussion 

Host plant acceptance by hemipterans is partitioned into a number of sequential 

events beginning with orientation to the plant via visual and chemical cues progressing 

through plant surface exploration and test probing, and culminating in sustained ingestion 

(Backus 1985). Although these activities are well described for aphids and leafhoppers 
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(Wayadande and Nault 1993, Lett et al, 2001, Backus et al, 2005), they are poorly 

understood in the Heteroptera. Prior to this study, only a few of true bugs had been 

studied comprehensively using electrical penetration graph technology. Bonjour et al. 

(1991) described the major EPG waveforms produced by first instar squash bug nymphs 

on squash seedlings based on data obtained using an older model electronic feeding 

monitor that recorded waveforms on three dual-pen strip-chart recorders at a chart speed 

of 0.5 cm/min. The strip chart recording provided fewer details about the waveforms 

produced and did not allow expansion and contraction of the highly compressed 

waveforms. Here we describe squash bug waveforms obtained from older nymphs using 

a newer version of the AC DC Missouri monitor with computer interface capability. The 

digitized and compressed waveforms were expanded horizontally and vertically to see 

more detail at different time scales, thus revealing more measurable information. 

This work shows that squash bugs probed frequently, ingested primarily from 

xylem, and followed a stereotypical sequence of events while feeding on watermelon, 

confirming many of the observations made by Bonjour et al. (1991). Most of the 

waveforms produced by the squash bug resembled those of Lygus hesperus (Hemiptera: 

Miridae) as described by Cline and Backus (2002), except that they differentiated and 

described nine different feeding and non-feeding waveforms, while in this study only 

four of those waveforms were characterized for the squash bug. There were fewer 

waveform types for A. tristis compared to L. hesperus because Cline and Backus (2002) 

named several non probing activities as separate waveforms. Non-probing activities of 

the squash bug included several behaviors, including walking, moving, antennal surface 
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exploration, fecal discharge, pulling, grasping, and labial dabbing, all of which were 

considered as a single category for ease of analysis.  

Non probing behavior comprised the predominant activity of this species on 

watermelon. The non-probing activities occurred frequently, both before and after probes. 

Some of these behaviors may have been due to the effect of the wire tether attached to 

pronotum, which restrained the insect’s movement to certain portions of the leaf. The 

unusual restriction of movement may have influenced their behavior on the leaf. 

Pretreatment, such as handling, tethering and other manipulations during the period 

preceding the EPG access period, is another important factor to consider as it also could 

alter the normal insect behavior during EPG, increasing variation (Montllor and Tjallingii 

1989). Spiller et al. (1990) showed that aphids starved during the period preceding 

recording had greater xylem ingestion compared to non-starved aphids. Experimenters 

usually reduce the stress encountered during handling and wiring by placing the insects 

on the rearing plant or in a petri dish for several hours before placing them on the test 

plant of the EPG experiment (Van Helden and Tjallingii 1993). In this case, squash bugs 

were not placed on a rearing plant for conditioning after wiring because if they fed during 

this time they would not feed afterwards during the EPG access period. Non-starved 

squash bugs do not readily feed when wired for EPG recordings and can survive for 

many days without food (personal observation).  

All hemipterans electronically recorded to date produce a stereotypic waveform 

that is associated with salivation (Wayadande and Nault 1996, Walker 2000). The squash 

bugs in this study produced waveform “B” which was identical in appearance to 

homologous waveforms produced by other piercing sucking insects (Bonjour et al. 1991, 
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Wayadande and Nault 1993, Cook and Neal 1999, Cline and Backus 2002). Also termed 

“pathway” in the literature, this waveform represents deposition of the salivary sheath as 

the insect stylets are pushed deeper into plant tissue. In this study, waveform B occurred 

one or two times primarily in longer ingestion containing probes. The production of 

waveform B before ingestion waveform may be due to secretion of saliva by the insect to 

form a salivary sheath. However the production of waveform B after ingestion may also 

be due to secretion of saliva to facilitate easy withdrawal of stylets from the probing site. 

Our work shows greater detail of the ingestion waveform C than was possible in 

the EPG studies by Bonjour et al. (1991) and Cook and Neal (1999). This waveform was 

interpreted as ingestion by these two previous studies, but the histology was inconclusive. 

Sheath termination points in six out of fifteen tissue samples were in vascular bundle in 

phloem or xylem or unclear. Bonjour et al. (1991) examined histological sections of the 

probed tissues taken during ingestion, and showed that the termination points of the 

salivary sheaths were in vascular tissue. Some of these termination sites were near 

phloem sieve elements but the diffuse nature of the squash bug salivary sheaths made it 

impossible to pinpoint the site with the same level of accuracy possible with aphid or 

leafhopper salivary sheaths. Neal (1993) conducted a more thorough histological study of 

squash bug salivary sheaths and concluded that this species feeds primarily from xylem. 

Our data is consistent with these previous studies. We correlated one sheath termination 

point with the C waveform that was adjacent to a xylary element. 

We can now discern that waveform C has low amplitude peaks, at regular 

intervals, which are likely the result of cibarium pumping action. Xylem sap is under 

negative pressure, so insects feeding from xylem must suck strongly using large cibarial 
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muscles. During ingestion of sap from the xylem, the cibarial muscles contract and relax, 

forcing electrolyte fluid to enter the food canal and causing a charge difference between 

the two ends of the food canal and hence a change in resistance. This phenomenon of 

increasing and decreasing resistance during ingestion results in the formation of peaks in 

the waveform. The 3-6 Hz frequency of the peaks in waveform C is generally consistent 

with the frequency of xylem ingestion waveforms measured for other insects (Lett et al. 

2001, Joost et al. 2006), but frequency alone is not diagnostic for tissue specific 

ingestion. In homopterans, honeydew droplet frequency and pH are used as indirect 

measures of ingestion and sap source. Unlike homopterans, however, squash bugs do not 

produce honeydew. Therefore, we were not able to use honeydew to distinguish xylem 

ingestion from alleged phloem ingestion during production of waveform C. 

According to Miles and Taylor (1994), some coreids suck the plant sap (xylem 

and phloem) from a pool of liquid created by the enzymatic release of cellular contents (a 

phenomenon termed osmotic pumping). Coreid saliva contains the enzyme sucrase, 

which hydrolyzes sucrose into glucose and fructose, creating a sucrose gradient. This 

gradient causes an outflow of water and amino acids from the adjacent phloem. We 

attempted to identify a unique EPG waveform that might be associated with squash bug 

osmotic pumping, but were unable to do so. We were not able to correlate different 

squash bug ingestion waveforms because of recalcitrant nature of the bug  

In this work, we have described four different types of squash bug EPG 

waveforms that are similar to those reported by Bonjour et al. (1991). We combined all 

non-probing (resting and non resting) activities of the squash bug into a single category, 

termed “Z”. All test probes were considered group “A” and salivation events before 
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ingestion group “B”. We combined all ingestion activities into a single group, “C”, 

though we recorded different subpatterns of the ingestion waveform. The variability in 

appearance of this waveform may be a characteristic unique to the squash bug. The data 

and interpretations are useful for further detailed study of this insect, and can be used in 

further studies to understand S. marcescens transmission behavior and EPG screening for 

A. tristis resistant germplasm. 
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Table.3.1. Average duration, mean number and voltage of the EPG waveform events 
produced by squash bug nymphs (4th and 5th instar) feeding on watermelon. 

 

Waveform Events 
Average duration (sec) 

(±sd) 

Average number 

(±sd) 

Average 
voltage 

Non Probing (Z) 44895±18904.09 160.75±113.99 Min-max 

Test Probe (A) 5135±4057.06 148.75±110.40 3.80 

Salivation (B) 664.6±740.40 15.25±13.36 3.78 

Ingestion (C) 21302±18121.36 12.33±10.05 3.55 
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List of Figures 

Figure 3.1 Highly compressed nine hour section of squash bug nymph (4th and 5th instar) 

EPG waveform on watermelon var. “Royal Sweet”. Each grid represents 600 sec. 

All waveforms are measured from left to right. 

 

Figure 3.2 Insect’s rostrum postures during ingestion. I) Lateral view of Lygus hesperus 

head and rostrum posture during ingestion (Cline and Backus 2002). II) Lateral 

view of squash bug nymph head and rostrum posture during ingestion. Arrow 

showing the insect rostrum. 

 

Figure 3.3 EPG waveform produced by squash bug nymph (4th and 5th instar) feeding on 

watermelon var. “Royal Sweet”. Z = Non probing, A = Short probe or test probe, 

B = salivation, C = Ingestion. Each grid represents 24 sec per division. All 

waveforms are measured from left to right. 

 

Figure 3.4 EPG waveform produced by squash bug nymph (4th and 5th instar) feeding on 

watermelon var. “Royal Sweet”. Non probing waveforms (Z). I) Non resting 

waveform. II) Resting waveform. Each grid represents 1 sec per division. All 

waveforms are measured from left to right.
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Figure 3.5 EPG waveform produced by squash bug nymph (4th and 5th instar) feeding on 

watermelon var. “Royal Sweet”. Different test probes (A): Insertion (1) and exit 

(3) peaks with salivation waveform (2) in between which is a general 

characteristic of a test probe. Each grid represents 1 sec per division (I) and 5 sec 

per division (II). All waveforms are measured from left to right. 

 

Figure 3.6 EPG waveform produced by squash bug nymph (4th and 5th instar) feeding on 

watermelon var. “Royal Sweet”. Waveform showing salivation (B) and ingestion 

(C) waveform. Waveform in big box is a part of a 20h recording. Inset B: Peaks 

during salivation. Inset C: Peaks during ingestion. Each grid in big box represents 

8 sec per division and 0.2 sec per division in small boxes. All waveforms are 

measured from left to right. 

 

Figure 3.7 Cross section of “Royal Sweet” watermelon leaf showing a single stained 

salivary sheath left by a squash bug producing waveform C: I) single-branched 

salivary sheath stained red with Mc Bride’s stain II) next section showing the 

salivary sheath termination point in the vascular bundle, near a xylary element.
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CHAPTER IV 

COMPARISON OF THE EPG WAVEFORMS PRODUCED 

BY SQUASH BUG NYMPHS ON WATERMELON, 

CITRULLUS LANATUS, AND ITS RELATIVES, CITRULLUS 

COLOCYNTHIS AND PRAECITRULLUS FISTULOSUS 

 

Abstract 

Cucurbit yellow vine disease (CYVD) is a disease of cucurbits caused by the 

bacterium, Serratia marcescens and it is transmitted by the squash bug, Anasa tristis. The 

squash bug attacks most cucurbits and watermelon serves as an alternate host for this 

bug. Very little work has been done on host plant resistance of the squash bug on 

watermelon. To identify potential resistant germplasm, squash bug acceptance was 

compared on watermelon, Citrullus lanatus var. “Royal Sweet”, Citrullus colocynthis 

lines, Praecitrullus fistulosus and a watermelon x C. colocynthis hybrid, USVL-200 using 

behavioral assays and electrical penetration graph (EPG) comparisons. Host acceptance 

of the squash bug was assessed by choice and no choice tests. A number of bugs chose 

USVL-200 followed by “Royal Sweet” but a significant number remained off of the 

plants. Similarly, the number of salivary sheaths on leaves during no choice test was  
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highest for squash var. “Lemon drop” followed by “Royal Sweet” and USVL-200. Based 

on EPG comparisons, there were no significant differences among the treatments in the 

time to first probe, first probe duration, time to first probe with ingestion or duration of 

first probe with ingestion probes. However, total probing duration and ingestion duration 

were significantly longer on “Royal Sweet” than on the other test plants. Bugs on USVL-

200 and “Royal Sweet” probed more frequently than bugs on the C. colocynthis lines and 

on P. fistulosus. These data suggest that plant resistance factors in the latter two hosts are 

encountered after initiation of probing during ingestion, and are probably associated with 

the vascular tissue. This information can be used further for identifying the resistance 

factor(s) present in these plants which can be used to develop squash bug resistant 

watermelon lines. 

Key Words: Cucurbit yellow vine disease, squash bug, watermelon, electrical 

penetration graph 

Introduction 

Cucurbits are one of the economically important crops in the United States with a 

total production of 109 million metric tons on 229,000 hectares, and a value of $1.43 

billion in 2004 (Cantliffe et al. 2007). Watermelon, cantaloupe, squash and cucumber 

contribute about 9.3% of the total vegetable production value in the United States. 

Watermelon, cantaloupe, squash and cucumber are ranked 11th, 12th, 14th and 15th, 

respectively, for the total production value (Cantliffe et al. 2007). In 2009, total 

watermelon production in United States was 40,122,000 cwt from 126,300 harvested 

acres with a value of 460,778,000 US dollars (USDA 2010).  
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Every year economic losses in cucurbit production are attributed to diseases and 

pest attacks. Cucurbit yellow vine disease (CYVD) is a destructive disease causing 5 to 

100% loss in production (Bruton et al. 2003). CYVD is caused by Serratia marcescens, a 

phloem colonizing bacterium transmitted by the squash bug, Anasa tristis (Bruton et al. 

2003). The general symptoms of CYVD are stunting, yellowing, wilting and collapse of 

the vine and a honey brown discoloration of the phloem tissue (Bruton et al. 2003). The 

squash bug vector attacks most cucurbit crop species and causes damage by sucking plant 

sap and blocking xylem transport (Neal 1993). Seedlings are vulnerable to squash bug 

feeding, hence, the mortality of the seedlings is high even in relatively low densities of 

the squash bug adults (Edelson et al. 2002).  

Bextine (2001) hypothesized that A. tristis transmits S. marcescens in a 

noncirculative manner but Wayadande et al. (2005) suggested, based on evidence of S. 

marcescens transmission by adults after nymphal acquisition, that the bacterium 

circulates throughout the body of the insect and is transmitted to its plant host via salivary 

secretions. In laboratory experiments, the transmission rate was 9.2% (Bruton et al. 

2003). Reducing vector numbers by using insecticides resulted in a reduction in CYVD 

incidence (Bruton et al. 1995). Single management practices (chemical, cultural, 

biological, or host plant resistance) are not effective in controlling squash bugs (Zavala 

1991, Olson et al. 1996) because they develop resistance to insecticides and resistant 

cultivars within a few generations (Margolies et al. 1998). Until now, no watermelon 

germplasm resistant to CYVD or the squash bug was reported, but some watermelon 

relatives have resistance characteristics against some disease and insects.  
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C. colocynthis, commonly known as Egusi (Ng 1993), bitter apple (Levi et al. 

2001, Dane et al. 2007), Tumba (Sharma et al. 2004), Handal (Ageel et al. 1987), and 

wild gourd (Qureshi and Bhatti 2007), is a relative of watermelon and a native of tropical 

Africa (C. colocynthis PI 525082 - origin Egypt and C. colocynthis PI 386015 - origin 

Iran). This species is highly drought tolerant and grows on sandy soils throughout 

northern Africa, southwestern Asia and the Mediterranean region (Whitaker and Davis 

1962, Jeffrey 1975, Whitaker and Bemis 1976). It is used as a medicinal herb due to its 

strong purgative impact, due to the presence of several types of alkaloids (Qureshi and 

Bhatti 2007). The seeds are rich in oil which is used for cooking. The seeds can also be 

roasted and eaten (Soliman et al. 1985). Citrullus colocynthis PIs are resistant to 

watermelon mosaic virus, watermelon vine decline disease, caused by the whitefly-

transmitted squash vein yellowing virus (Kousik et al. 2009) and powdery mildew 

(Podosphaera xanthii) race 1W and moderately resistant to Fusarium wilt (Fusarium 

oxysporum f. sp. niveum) race 2 (Levi et al. 2001). C. colocynthis lines have been 

reported to be resistant to some arthropods, including the two spotted spider mite, 

Tetranychus urticae (Lopez et al. 2005) and the whitefly, Bemisia tabaci (Simmons and 

Levi 2002). 

P. fistulosus, a distant relative of watermelon (Levi et al. 2005), is commonly 

known as round gourd, round melon (Dahiya et al. 2007), or tinda (Davis et al. 2007), 

and is popular in south Asia, especially in India and Pakistan. Its immature fruit is used as 

a vegetable and the seeds are also eaten. Previously named Citrullus lanatus, it was later 

placed in its own taxon due in part to its difference in monoploid chromosome number, 

x=12 (Sujatha and Seshadri 1989). High to moderate resistance against powdery mildew 
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(P. xanthii) race1W was reported for Praecitrullus fistulosus PIs (Davis et al. 2007). P. 

fistulosus also has moderate resistance to watermelon vine decline disease, caused by the 

whitefly-transmitted squash vein yellowing virus (Davis et al. 2007, Kousik et al. 2009). 

It is also resistant to the whitefly, Bemisia tabaci (Levi et al. 2005). These germplasm 

lines have not been tested for other disease and insects resistance traits and could be a 

source of resistance to other pests. 

Plant introduction (PI) accessions of Citrullus spp., Praecitrullus spp. and 

watermelon cultivars were screened for resistance to diseases and nematodes (Boyhan 

1994, Thies and Levi 2003, Davis et al. 2007). Watermelon relatives can be sources of S. 

marcescens and squash bug resistance genes, which can be incorporated into commercial 

watermelon varieties. Electrical penetration graph (EPG) technology is a useful tool for 

comparing the feeding activities of piercing and sucking insects on resistant and 

susceptible cultivars (Calderon and Backus 1992, Annan et al. 2000). In this study squash 

bug responses while feeding on watermelon and several of its relatives were compared 

using behavioral assays and EPG recordings. These findings will help to identify 

resistance mechanisms and resistance genes, which can then be used to develop 

watermelon cultivars resistant to the squash bug. 

Materials and methods 

Plants 

Watermelon var. “Royal Sweet”, USVL-200 (a hybrid of C. colocynthis PI 

386015 x C. lanatus), C. colocynthis PI 525082, C. colocynthis PI 386015 P. fistulosus PI 

179660 and Cucurbita pepo var. “Lemon Drop” (yellow squash) were grown in 4.5 inch 

diameter plastic pots (Smurfit Stone Container Corporation, Jefferson, OH) containing 
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Sungrow Metromix 200 (Sun Grow Horticulture Products, Belleview, WA) potting soil 

in a greenhouse at 80-90oF. Plants were fertilized using Miracle-Gro ™ (Stern's Miracle-

Gro Products Inc., Port Washington, NY) every seven days. When the plants reached the 

4-5 true leaf stage, they were used for EPG recordings. Seeds of C. colocynthis lines, 

USVL-200 and P. fistulosus were provided by Dr. Benny Bruton at USDA-ARS Lane, 

Oklahoma. 

Insects 

Insects were collected from fields near Coyle, Perkins and Terrel, Oklahoma. 

Feral squash bugs were reared inside aluminum cages surrounded with nylon mesh. Eggs 

were collected and transferred to another cages. Newly hatched nymphs were reared on 

squash plants (variety “Lemon drop”) and fruits (from local grocery store) at a 

temperature between 60-70oF with a 16:8 (light: dark) photoperiod.  

Behavioral Assays 

These experiments were done to determine the host acceptance by the squash bug. 

Squash bug preference was tested by giving access to five different plants (“Royal 

Sweet”, C. colocynthis PI 525082, P. fistulosus PI 179660, USVL-200, and C. 

colocynthis PI 386015) in a choice test. For the no choice test, the probing behavior of the 

squash bug was evaluated by giving bugs access to a single plant leaf during whole 

experiment. In this test squash was used as a control. 

Choice test 

After a 24 hr starvation period, ten fourth or fifth instar squash bug nymphs of 

undetermined sex were released in the middle of an arena constructed of a cardboard 
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panel formed into a circle and surrounded by nylon mesh (Fig.4.1). After the squash bug 

nymphs were released, the open end of the arena was closed to prevent insect escape. 

Within the arena, one each of the five host plant species was placed at the edge of the 

circle, equidistant from the point of insect release. After 24 hours, the number of insects 

on each plant was counted. Insects off the plants (on the walls of the arena) were also 

counted. Insects not on the plant, but on the plastic pot, were counted for that plant. Each 

treatment was replicated eighteen times.  

Data were analyzed using SAS 9.2 software. Significant differences in the mean 

number of bugs per plant in each treatment were determined using ANOVA, and means 

compared by the least significance difference test with p values at the 0.05 level. 

No choice test 

Individual third instar squash bugs of undetermined sex were placed onto two 

different leaves (2nd and 3rd true leaves) of four-leaf stage plants. After a 24 hr starvation 

period, each bug was placed inside a cylindrical cage, with a mesh window for aeration, 

together with the leaf for 24 hours. Bamboo sticks were used as a stand to hang the 

circular cages in an upright position (Fig.4.2). After 24 hr, the bugs were removed and 

the leaves were collected by cutting at the petiole. Excised leaves were stained for the 

presence of salivary sheaths using the method outlined in Backus et al. (1988). Leaves 

were soaked in McBride’s stain (0.2% acid fuschin in 1:1 acetic acid and ethanol 95%) 

for 24 hours in a petri dish, submerged in a clearing solution (1:1:1 glycerin, lactic acid 

and distilled water) and autoclaved at 121oC for 1 minute to reveal the stained salivary 

sheaths. After cooling, the clearing agent was removed and fresh clearing agent was 
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added. The leaf was examined using a Wild Heerbrugg M15 stereomicroscope (10 X - 

50X) and salivary sheaths were counted.  

This experiment was conducted using a completely randomized design (CRD). 

There were total of seven treatments including squash leaves without bugs as a negative 

control and squash leaves with bugs as a positive control. Each treatment was replicated 

20 times (N = 40 for each treatment). 

Statistical Analysis 

Data were analyzed using SAS 9.2 software. Significant differences in the mean 

number of salivary sheaths in each treatment were determined using ANOVA and means 

compared using the least significance difference test with p values at the 0.05 level. 

EPG recordings of squash bugs on watermelon and watermelon relatives 

Squash bug 4th and 5th instar nymphs of undetermined sex were starved for 24 

hours prior to recording. Each insect was restrained to the table surface using paper tape 

placed across the head and the abdomen of the insect during tethering process in order to 

facilitate attachment of the wire to the insect. The insects were tethered at the pronotum 

with a 0.025 inch diameter gold wire (2.5cm long) (Sigmund Cohn, Mount Vernon, NY), 

using silver print paint (Ladd Research Industries, Burlington, VT). Each tethered bug 

was then placed into a single head-amplifier receptacle via a brass nail glued to copper 

wire (2.5cm long). Insect behavioral waveforms were recorded at 60-70oF under constant 

light condition, using an alternating current (AC) EPG “Missouri Monitor” (Backus and 

Bennett 1992) with four channels using Windaq/Pro+ software (Dataq Instruments Inc, 

Akron, Ohio). A 100-mV AC electrical current was applied to the test plant via an 
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electrode inserted into the rhizosphere. A 108 Ω input resistor level was used with a gain 

of 1 x 2000 25%. Data output was digitized using a DI-720 analog-to-digital board 

(Dataq Instruments, Akron, OH) with a 16-bit resolution and 100-Hz sampling rate per 

channel before sending signals to a Dell Latitude computer.  

Plants of each line were selected daily using a completely randomized design. 

Plants were adjusted so that the bug had easy access to the abaxial surface of the second 

or third fully expanded leaf. All recordings for each insect were done for 20 hours inside 

a Faraday cage (2’ X 2’ X 4’, constructed of an aluminum frame with a steel base and 

wire mesh) to reduce external noise. Once recordings were complete, the plant and insect 

were discarded. A total of 12 insects were recorded for each treatment. 

Measurement and Data Analysis 

During EPG recording, the probing and non probing behavior of the squash bug 

were recorded in the form of waveforms using WinDaq software. These waveforms were 

later measured using the WinDaq waveform browser 2.61 software (DATAQ® 

Instruments, Inc., Akron, Ohio). This software enabled amplification and compression of 

waveform for ease of identification. Measured waveforms and various EPG parameters 

commonly used to assess host plant resistance (Van Helden and Tjallingii 2000) were 

tabulated in a Microsoft Excel Spreadsheet (2007). The data were analyzed in SAS 9.2 

and subjected to analysis of variance (ANOVA) and a pair wise comparison using the 

Least Significant Difference (LSD) Test. Differences at p<0.05 level were considered 

significant. 

  



84 

 

EPG Waveform Parameters 

Waveform descriptions are the same as those described in Chapter III. Five 

sequential parameters and six non-sequential parameters (described below) were 

compared. 

Sequential parameters  

Means were generated by totaling all events or durations or numbers, then 

dividing by the number of insects (12). In cases in which the ingestion was not achieved 

by the end of the experiment (20 hr), the time to first probe with ingestion was considered 

to be the same as the total time of EPG recording. Therefore, 72,000 seconds or 20 hr was 

given as the time to reach the first ingestion in those replications in which the squash bug 

did not initiate ingestion during the recording period of 20 hours. Similarly, the duration 

of the first probe with ingestion is given as zero because there was no ingestion recorded 

during the 20 hour access period. 

Time to first probe: Average time between initial access and initiation of the first probe. 

Sum of time required for an individual bug to initiate first probe in each treatment 

divided by the number of replication or number of insect (N=12) per treatment. 

Duration of first probe: Average duration of first probe per insect per treatment. Sum of 

duration of first probe in each treatment divided by the number of bugs per treatment 

Time to first probe with ingestion: Average time between initial access and initiation of 

first probe with ingestion. Sum of time required for an individual bug to initiate first 

probe with ingestion in each treatment divided by the number of insects per treatment. 

Duration of first probe with ingestion: Average duration of the first probe with ingestion 
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per insect per treatment. Sum of duration of first probe with ingestion in each treatment 

divided by the number of bugs per treatment 

Distribution of test probes per ingestion probe: Average number of test probes per 

ingestion probe per insect per treatment. Sum of average test probe (A) per each ingestion 

probe (C) in each replication divided by number of bugs. 

Example: Average A per C is calculated by dividing total number of A per 

replication by total number of C in that replication. Average A per C in rep 1 is 10 and 

rep 2 is 8, then proportion of A per each C per treatment will be the average of 10 and 8 

i.e. 9. 

Nonsequential parameters 

Means were generated by adding duration or number of events per insect then 

dividing by the number of insects (12). To avoid calculation errors during measuring 

mean waveform events duration and number, we included the waveforms that were 

artificially ended. This will result in the underestimation of the mean duration. According 

to Walker (2000), the level of underestimation of the mean duration by including the last 

artificially ended waveform is lower than the level of underestimation that would occur if 

the last occurrence was excluded from the calculations. 

Duration of individual waveform events: Average duration of waveform events (A, Z, B 

or C) per insect per treatment. It is calculated by adding the total duration of each type of 

waveform in each replication and dividing by the number of bugs per treatment.  
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 Example: Total duration of waveform Z (sum of all Z waveform in one rep) in rep 

1 is 100 sec and rep 2 is 200 sec, then the duration of Z per treatment is average of 100 

sec and 200 sec i.e. 150 sec. 

Probing duration: Average probing duration (A+B+C) per insect per treatment. Duration 

of all the activities between stylets insertion and exit are regarded as probing duration. 

Probing duration is calculated by adding all the probes from each replication and dividing 

the sum by the number of bugs or number of replication per treatment. 

Number of probes (frequency of probes): Average number of probes (A+C) per insect per 

treatment. We considered the sum of the test probe number (A) and the sum of the 

ingestion probe number (C) as the number of total probes. B is not included in the 

calculation because B and C occur within a single probe.  

Results 

Squash bug preference test 

Squash bug nymphs were subjected to choice and no choice tests to determine 

whether they showed preference for any of the watermelon relatives and, if given no 

choice, whether they would feed anyway. In the choice test, the squash bugs were more 

attracted to USVL-200 than to “Royal Sweet”, C. colocynthis lines and P. fistulosus 

(Fig.4.4) as indicated by higher bug numbers. Squash bug numbers on “Royal Sweet” 

were significantly higher than those on C. colocynthis PI 525082. The number of squash 

bugs found off of the plant was significantly higher than on “Royal Sweet”, P. fistulosus 

and C. colocynthis lines. 
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Squash bug no choice test 

Salivary sheaths were easily observable after staining and clearing (Fig.4.3). In 

the no choice test the squash bug salivary sheath number was significantly higher in 

squash leaves than in the other treatments (Fig.4.5). “Royal Sweet” and USVL-200 had 

significantly higher numbers of salivary sheaths than C. colocynthis lines and P. 

fistulosus. No salivary sheaths were observed on the negative control plants. 

Comparison of sequential EPG parameters 

The EPG parameters for all five treatments were compared and results are shown 

in Fig.4.6-4.13. The squash bugs took less time to initiate the first probe on “Royal 

Sweet” and USVL-200 than on the C. colocynthis lines and P. fistulosus, but the 

differences were not significant (Fig.4.6). First probes did not differ statistically in 

duration among the treatments, but this may have been due to the high level of variation 

observed in probe duration (Fig.4.7). First probes were longest on “Royal Sweet”, 

followed by those on C. colocynthis PI 525082, P. fistulosus PI 179660, USVL-200 and 

C. colocynthis PI 386015 in that order. No significance differences were detected in the 

time to, and duration of, the first probe with ingestion among “Royal Sweet”, USVL-200, 

P. fistulosus and C. colocynthis lines (Fig.4.8-4.9). 

Fig.4.10 shows the proportion of test probes (A) before ingestion probes. The 

mean number of test probes per ingestion probe was not significantly different among the 

treatments but the pattern shows that squash bugs do more short probes preceding 

ingestion probes on P. fistulosus, than when on other plants. 
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Comparison of non sequential EPG parameters 

Fig.4.11 shows the comparison of mean duration of waveform events in the five 

different treatments.  Squash bugs spent significantly more time feeding on “Royal 

Sweet” than on USVL-200, C. colocynthis lines and P. fistulosus.  Test probes (A) and 

pathway (B) were significantly longer on “Royal Sweet” than on C. colocynthis lines and 

P. fistulosus but indistinguishable in length from those made on USVL-200. Squash bugs 

also spent more time ingesting on “Royal Sweet” than on USVL-200, P. fistulosus and C. 

colocynthis lines. The number of test probes and pathway events was significantly higher 

on “Royal Sweet” and USVL-200 than on P. fistulosus and the C. colocynthis lines. 

Similarly, the mean number of ingestion waveforms was significantly higher when 

insects fed on “Royal Sweet” and USVL-200 than other treatments. Squash bugs spent 

significantly more time probing on “Royal Sweet” than USVL-200, C. colocynthis and P. 

fistulosus (Fig.4.12). Similarly, the number of probes on “Royal Sweet” was greater than 

on other experimental plants (Fig.4.13). 

Discussion 

Squash bugs, like other true bugs, feed very differently than the better-studied 

aphids and leafhoppers. Most sheath-feeding homopterans make a few test probes to 

determine host suitability, then proceed to long term ingestion, with most successful 

ingestion probes lasting up to several hours when the insect is ingesting from phloem 

sieve elements (Kimmins 1989, Wayadande and Nault 1996). Thus, fewer probes coupled 

with long-term ingestion are an indication of a suitable feeding source for homopterans. 

Previous studies of squash bug and other heteropteran feeding behavior suggest that true 

bugs probe much more frequently on a preferred host plant (Bonjour et al. 1991, Cook 
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and Neal 1999, Cline and Backus 2002) than do the homopterans. Cline and Backus 

(2002) reported that frequent Lygus hesperus test probes executed before longer ingestion 

probes might function to soften the plant tissue or to overcome plant defense activities. 

Lygus ingestion probes were of much shorter duration than aphid or leafhopper ingestion 

probes, which typically last several hours. We observed similar probing activities for 

squash bug feeding on watermelon. Insects initiated several test probes at the feeding site 

before starting an ingestion probe and the subsequent ingestion probes were, on average, 

30 minutes in duration. The sequence was repeated several times as the insect moved up 

or down a leaf vein, confirming the findings of Bonjour et al. (1991) and Cook and Neal 

(1999), that repeated bouts of short test probes followed by a longer probe with short 

periods of ingestion is typical for this species on an acceptable plant host. This 

observation was further supported by the high number of salivary sheaths observed in the 

no-choice test control (highly preferred) squash plants. There were exceptions to this, 

however. A few probes lasted several hours, demonstrating that a long-term sustained 

ingestion strategy, previously thought to be exclusive to the Homoptera, is also used by 

this coreid bug.  

Choice and No choice test 

Host plant acceptability was reflected in the results of the two behavioral assays. 

Given a choice, squash bugs showed no preference for any of the plants offered, but this 

finding may be an artifact of the test conditions. These insects are recalcitrant feeders and 

it may be that a longer period of time in the testing arena would have resulted in more 

insects moving to the plants. Of those that did make a choice, more bugs selected the 

hybrid USVL-200, which is a cross between C. colocynthis and “Royal Sweet” 
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watermelon, than “Royal Sweet”, the two C. colocynthis lines and P. fistulosus. 

Similarly, the significantly fewer salivary sheaths left by bugs exposed to the two C. 

colocynthis lines and P. fistulosus suggest lower palatability of these plants. The two C. 

colocynthis lines have leathery leaves and are much tougher in texture than watermelon, 

USVL-200. P. fistulosus leaves are more succulent than those of the two C. colocynthis 

lines, but have longer trichomes. 

EPG comparisons 

The EPG data also reflected lower palatability of C. colocynthis and P. fistulosus 

in several parameters frequently used to assess resistance to homopterans (Kimmins 

1989, Calderon and Backus 1992, Diaz-Montano et al. 2007). Considered together, these 

data suggest that, once in contact with the plant, squash bugs probed just as readily on the 

watermelon relatives as they did on “Royal Sweet” or the hybrid USVL-200. However, 

once probing was initiated, the ingestion events within these probes were shorter, and 

there were fewer total probes made by each insect suggesting that C. colocynthis lines 

and P. fistulosus either lacked additional host acceptance cues or possessed some 

gustatory or mechanical cue negative to prolonged and repeated feeding. 

Most hemipteran insects that have been studied using EPG were shown to ingest from 

several different plant tissues including phloem, xylem, and mesophyll, and the duration 

and frequency of probing from these tissues can be used as an indicator of acceptance of 

the plant host (Wayadande and Backus 1989). Sauge et al. (1998) compared the feeding 

behavior of Myzus persicae on resistant and susceptible genotypes of peach and found 

that the resistance of the host was linked with the ingestion behavior of the aphid. They 

found reduced phloem sap ingestion (E2), reduced percentage of salivary secretion (E1) 
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into sieve elements followed by ingestion and increased number of shifts from E1 to E2 

by the aphid on the resistant genotype of peach. Similar results were reported for aphids 

electronically recorded on resistant and susceptible genotypes of melon and alfalfa 

(Klingler et al. 1998, Jiang and Walker 2003). The authors all concluded that the 

resistance factors were not encountered as aphid stylets moved through the epidermis and 

parenchyma, but were likely located in the phloem sieve elements. The presence of the 

Vat gene (virus aphid transmission factor) in melons resistant to aphids has been shown 

to have a negative effect on probing and phloem contact (Chen et al. 1997). The observed 

reduction in squash bug ingestion probes and sustained ingestion on C. colocynthis lines 

and P. fistulosus suggests that a similar gene or genes mediates vascular tissue chemistry 

in these plants. The next line of inquiry should be to identify putative compounds in the 

watermelon relatives and the genes that regulate expression in plants. 

CYVD transmission 

We found similar results of some of the parameters of EPG waveform of squash 

bug recorded on watermelon and its relatives and S. marcescens transmission by the 

squash bug on these test plants (described in Appendix B). A low percentage of “Royal 

Sweet” and USVL-200 were CYVD positive whereas C. colocynthis PI 386015 and P. 

fistulosus PI 179660 showed no or very little S. marcescens transmission. The mean 

number of probe data paralleled the percent transmission data. Higher number of probes 

by a squash bug on “Royal Sweet” and USVL-200 was associated with the higher 

percentage of S. marcescens transmission by the squash bug. Similarly, the longer 

duration of ingestion and total probes seen on “Royal Sweet” and USVL-200 is also 

associated with the higher percentage of S. marcescens transmission by the squash bug to 
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these plants. Although, there was a significant difference in the mean probing duration 

and ingestion duration between “Royal Sweet” and USVL-200, the trend does not seem 

different than that of the transmission data. The mechanical inoculation of the bacteria S. 

marcescens shows that all the test plants were infected by CYVD. Therefore, resistance 

in C. colocynthis and P. fistulosus is not against the pathogen, S. marcescens but to the 

vector, A. tristis. 
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List of Figures 

Figure 4.1 Choice test arena showing “Royal Sweet” watermelon, Citrullus colocynthis 

PI 525082, C. colocynthis PI 386015, Praecitrullus fistulosus PI 179660, and 

USVL-200 experimental plants at the 2 – 4 true leaf stage. Arena is constructed of 

bamboo sticks holding a nylon mesh surrounding a circular piece of cardboard. 

 

Figure 4.2 No choice test set-up showing 2nd and 3rd leaf of a test plant caged inside a 

petri dish cage enclosing a single squash bug. Bamboo sticks were used to hold 

the circular cage in an upright position.  

 

Figure 4.3 Salivary sheaths stained with Mc Bride’s stain left behind by squash bugs 

feeding on squash leaves. A: Low magnification. Arrows showing the stained 

salivary sheaths. B: High magnification. Salivary flange inside left parenthesis 

and line showing the length of the salivary sheath inside leaf vein tissue. 

 

Figure 4.4 Mean number of squash bugs found on individual test plants in a choice test. 

The bar represents standard error of the mean and p<0.0001. Means followed by 

different letters are significantly different (p≥0.05). Squash bug off the plants was 

designated as outside.
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Figure 4.5 Mean number of squash bug salivary sheath left on test plants during 24 hr 

access period. The bar represents standard error of the mean and p<0.0001. Means 

followed by different letters are significantly different (p≥0.05). 

 

Figure 4.6 Mean time taken by the squash bug nymphs to initiate first probe from the 

beginning of the 20hr EPG recording per treatment. The bar represents standard 

error of the mean and p=0.16. Means followed by different letters are significantly 

different (p≥0.05). 4th and 5th instar squash bug nymphs recorded on watermelon 

var. “Royal Sweet”, USVL-200 (a hybrid of Citrullus colocynthis PI 386015 x C. 

lanatus), C. colocynthis PI 525082, C. colocynthis PI 386015 and P. fistulosus PI 

179660 using electrical penetration graph technology. 

 

Figure 4.7 Mean duration of first probe produced by the squash bug nymphs during 20hr 

EPG recording. The bar represents standard error of the mean and p=0.5. Means 

followed by different letters are significantly different (p≥0.05). 4th and 5th instar 

squash bug nymphs recorded on watermelon var. “Royal Sweet”, USVL-200 (a 

hybrid of Citrullus colocynthis PI 386015 x C. lanatus), C. colocynthis PI 525082, 

C. colocynthis PI 386015 and P. fistulosus PI 179660 using electrical penetration 

graph technology. 

 

Figure 4.8 Mean time taken by the squash bug nymphs to initiate first probe with 

ingestion during 20hr EPG recording. The bar represents standard error of the 
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mean and p=0.35. Means followed by different letters are significantly different 

(p≥0.05). 4th and 5th instar squash bug nymphs recorded on watermelon var. 

“Royal Sweet”, USVL-200 (a hybrid of Citrullus colocynthis PI 386015 x C. 

lanatus), C. colocynthis PI 525082, C. colocynthis PI 386015 and P. fistulosus PI 

179660 using electrical penetration graph technology. 

 

Figure 4.9 Mean duration of first probe with ingestion produced by the squash bug 

nymphs during 20hr EPG recording. The bar represents standard error of the 

mean and p=0.88. Means followed by different letters are significantly different 

(p≥0.05). 4th and 5th instar squash bug nymphs recorded on watermelon var. 

“Royal Sweet”, USVL-200 (a hybrid of Citrullus colocynthis PI 386015 x C. 

lanatus), C. colocynthis PI 525082, C. colocynthis PI 386015 and P. fistulosus PI 

179660 using electrical penetration graph technology. 

 

Figure 4.10 Mean number of test probe per each ingestion probe produced by the squash 

bug nymphs on watermelon and its relatives during 20 hr EPG recording period. 

The bar represents standard error of the mean and p=0.83. Means followed by 

different letters are significantly different (p≥0.05). 4th and 5th instar squash bug 

nymphs recorded on watermelon var. “Royal Sweet”, USVL-200 (a hybrid of 

Citrullus colocynthis PI 386015 x C. lanatus), C. colocynthis PI 525082, C. 

colocynthis PI 386015 and P. fistulosus PI 179660 using electrical penetration 

graph technology. 
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Figure 4.11 Mean duration of waveform events produced by the squash bug nymphs on 

watermelon and its relatives during 20 hr EPG recording period. Means followed 

by different letters are significantly different (p≥0.05). 4th and 5th instar squash 

bug nymphs recorded on watermelon var. “Royal Sweet”, USVL-200 (a hybrid of 

Citrullus colocynthis PI 386015 x C. lanatus), C. colocynthis PI 525082, C. 

colocynthis PI 386015 and P. fistulosus PI 179660 using electrical penetration 

graph technology. Waveform events test probe (A) (p=0.0044), non-probing (Z) 

(p<0.0001), salivation or pathway (B) (p=0.056) and ingestion (C) (p<0.0001) on 

X-axis and the mean time of each waveform events per treatment on Y-axis. 

 

Figure 4.12 Mean duration of probing waveform (A+B+C) produced by the squash bug 

nymphs on watermelon and its relatives during 20 hr EPG recording period. The 

bar represents standard error of the mean and p<0.0001. Means followed by 

different letters are significantly different (p≥0.05). 4th and 5th instar squash bug 

nymphs recorded on watermelon var. “Royal Sweet”, USVL-200 (a hybrid of 

Citrullus colocynthis PI 386015 x C. lanatus), C. colocynthis PI 525082, C. 

colocynthis PI 386015 and P. fistulosus PI 179660 using electrical penetration 

graph technology. 

 

Figure 4.13 Mean number of probing waveform (A+C) events produced by the squash 

bug nymphs on watermelon and its relatives during 20 hr EPG recording period. 

The bar represents standard error of the mean and p=0.001. Means followed by 

different letters are significantly different (p≥0.05). 4th and 5th instar squash bug 



104 

 

nymphs recorded on watermelon var. “Royal Sweet”, USVL-200 (a hybrid of 

Citrullus colocynthis PI 386015 x C. lanatus), C. colocynthis PI 525082, C. 

colocynthis PI 386015 and P. fistulosus PI 179660 using electrical penetration 

graph technology.
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Chapter V 

Epilogue 

 

In this study, I characterized the probing and non probing behavior of fourth or 

fifth instar squash bug (Anasa tristis) nymphs on watermelon var. “Royal Sweet”, using 

an advanced electrical penetration graph (EPG) technology which converts unobservable 

stylet activities of an insect into measureable waveform patterns. I compared squash bug 

probing and non probing EPG waveforms on watermelon with the waveforms produced 

on watermelon relatives Citrullus colocynthis, Praecitrullus fistulosus and the hybrid 

USVL-200. The EPG waveforms produced by the squash bug nymphs on watermelon 

were divided into four different categories: 1. Test probes (A) 2. Non probing (Z) 3. 

Salivation or pathway (B) and 4. Ingestion (C). The waveforms observed during this 

study were similar to those of first instar squash bug nymphs obtained with a battery-

operated monitor on three dual-pen strip-chart recorders (Bonjour et al. 1991 and Cook 

and Neal 1999). Using the convention of Cline and Backus (2002) to describe Lygus 

hesperus waveforms, we assigned the letters to each of these waveform events. I 

combined all the non probing activities in a single group “Z” and all ingestion probing 

into a single group “C” for the ease of analysis. I found that squash bugs did several test 

probes before an ingestion probe, and concluded that the function of these test probes 
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might be to soften the tissues or overcome the plant defensive response by the squash bug 

during feeding. Waveform “B”, which is also known as pathway, occurred during 

secretion of salivary sheaths before and after ingestion. I also observed that the squash 

bug spent more of its time on non probing activities than probing activities. This might be 

an effect of wiring and restraining bugs during EPG recording. I found several types of 

uniform EPG waveforms during ingestion “C” which had a 3-5 hz frequency of the 

peaks. However, I was not able to distinguish between xylem and phloem ingestion based 

on this frequency. Histological sections of one probed tissue taken during ingestion 

waveform “C” showed that the squash bug salivary sheath tip was terminated in vascular 

tissue, very close to the xylem. 

To determine host acceptance by the squash bug, I tested older nymphs using 

feeding bioassays by placing them in choice and no choice situations. The choice test 

revealed no preference of squash bug among watermelon and its relatives which may be 

due to the test conditions. In the no choice test, squash was used as a control. The no 

choice test demonstrated that squash bugs left fewer salivary sheaths on the watermelon 

relatives, the C. colocynthis lines and P. fistulosus, suggesting that these plants lacked 

host acceptance cues. When the feeding activities of squash bug nymphs were compared 

between watermelon and its relatives using EPG technology, the data showed that the 

squash bug probed longer and more often in watermelon var. “Royal Sweet” and the 

ingestion duration in watermelon was longer than duration on other test plants. It 

demonstrated the same results of non palatability of the C. colocynthis lines and P. 

fistulosus as in the no choice test. The sustained ingestion phase in C. colocynthis lines 

and P. fistulosus was shorter than in “Royal Sweet” indicating that the plant resistance 
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factor(s) to the squash bug were encountered after initiation of ingestion, suggesting that 

the resistance factor(s) are probably present in the vascular tissue. Future work will 

include the identification of putative compound(s) present in the vascular sap of the 

watermelon relatives. 

The percent transmission of S. marcescens by the squash bug on C. colocynthis 

and P. fistulosus was less than “Royal Sweet” and USVL-200. The higher number of 

probes, longer duration of probes and longer ingestion on “Royal Sweet” and USVL-200 

was consistent with higher pathogen transmission. Mechanical inoculation of the 

pathogens did not show any difference in the percent transmission among the test plants, 

suggesting that the host resistance of C. colocynthis and P. fistulosus is not directed to the 

pathogen but to the vector.
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APPENDIX A 

 

Serratia marcescens transmission by the squash bug, Anasa tristis, at Oklahoma 

State University, Stillwater, Oklahoma 

The purpose of this study was to compare the transmission rates of the bacterium 

Serratia marcescens, by the squash bug (Anasa tristis), to watermelon var. “Royal 

Sweet” and its relatives Praecitrullus fistulosus PI-179660, Citrullus colocynthis PI-

525082, C. colocynthis PI-386015 and USVL-200. Squash bug adults were exposed to S. 

marcescens vacuum infiltrated squash cubes (5mm3) for 24 hours. After 24 hours, 

individual squash bugs were placed on a single test plant inside a cylindrical cage. After 

one week, the bugs were transferred into another set of new plants of same species and 

kept for another one week. Bugs were removed from the second set of plants after a week 

and the plants were kept in the green house for symptom development. After 40-45 days 

the crown root of the plants were excised and brought in to the lab. The section of crown 

root was stained with Diene’s stain and examined under the microscope to see the 

presence of bacteria in the phloem. There were total of 10 test plants for each treatment 

and each treatment was replicated four times (N=40).
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 Table Transmission test of Serratia marcescens by the squash bug.   

S.N. Plants 
Sample number 

(N) 

No of positive plants for 

CYVD/No. exposed 

1 C. colocynthis PI 525082 40 0/40 

2 C. colocynthis PI 386015 40 
0/40 

3 P. fistulosus PI-179660 40 
0/40 

4 USVL-200 40 
0/40 

5 Royal Sweet (+ve control) 40 
0/40 

6 Royal Sweet (-ve control) 40 
0/40 

 

 

Fig. Transmission test set up keeping plant inside a cylindrical plastic cage.
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APPENDIX B 

 

Serratia marcescens transmission by the squash bug, Anasa tristis, at United States 

Department of Agriculture, Lane, Oklahoma 

Dr. B. D. Bruton did a similar transmission test in 2009 using squash var. “Lemon 

drop” (preferred host), “Royal Sweet” (susceptible to squash bug), Citrullus colocynthis 

PI 386015, P. fistulosus PI 179660 and USVL-200 in Lane, Oklahoma. Newly hatched 

squash bug adults were starved for 24 hours and then placed on the vacuum imbibed 

squash cubes with WO1 strains of S. marcescens suspension (108 CFU/ml) for 48 hours. 

After acquisition period, single bugs were transferred to each test plant for seven days. 

Plants were assessed for honey brown discoloration of phloem tissue after five to six 

weeks. 

Table Transmission of S. marcescens by the squash bug  

S.N. Plants 
Sample number 

(N) 

No of positive 

plants for CYVD 

Percentage of 

total positive 

1 Squash var “Lemon drop” 138 5 3.6 

2 C. colocynthis PI 386015 136 1 0.7 

3 P. fistulosus PI-179660 127 0 0 

4 Royal Sweet  126 6 4.7 

5 USVL-200 130 10 7.6 
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APPENDIX C 

 

Mechanical Inoculation of Serratia marcescens in watermelon and its relatives  

Dr. B. D. Bruton mechanically inoculated six different host plants with S. 

marcescens, a phloem colonizing bacteria. The bacteria were grown on the LB plates and 

were scrapped and suspended in PBS buffer for concentration of 1010-1011 CFU/ml. The 

cotyledon stage plants were inoculated with the suspension using inoculation fork at the 

stem cotyledon junction making 10 puncture per plant. The plants were kept in green 

house for approximately one month and the crown root was examined for honey brown 

discoloration of phloem tissue. 

Table Mechanical inoculation of S. marcescens 

S.N. Plants 
Sample number 

(N) 

No of positive 

plants for CYVD 

Percentage 

total positive 

1 Squash var “Lemon drop” 361 124 34.34 

2 C. colocynthis PI 525082 306 21 6.86 

3 C. colocynthis PI 386015 285 22 7.71 

4 P. fistulosus PI-179660 306 30 9.8 

5 Royal Sweet  373 43 11.52 

6 USVL-200 341 78 22.87 



124 

 

S.N. Plants Sample number 

(N) 

No of positive 

plants for CYVD 

Percentage  

total positive 

7 Pumpkin 9 2 22.22 

8 Charleston Gray X C. 

colocynthis PI 386015 
187 14 7.48 
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APPENDIX D 

 

Definitions 

Probe: An uninterrupted time period in which stylets are inserted into the plant tissue. A 

probe may be long or short, high or low amplitude and include different waveform events 

(specific waveform within a probe). 

Waveform: Graphic structure formed due to the insect activity (probing and non probing) 

in the electrified system. It consists of different subtypes. 

Event: An event is a single waveform type during a waveform. Events can occur several 

times within a waveform. 

Probing number: Number of occurrences of a repeating event (probe) per unit time 

Waveform number: Number of occurrences of a waveform per unit time 

Non-sequential parameter: Parameter that does not include sequential order of the 

waveform in EPG
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