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CHAPTER I 
 

 

INTRODUCTION 

 Oklahoma, the second largest producer of winter wheat (Triticum aestivum L.) in the 

United States, produced more than 120 million bushels in 2010 (USDA National Agricultural 

Statistics Service 2012). Price trends have increased in the last decade from $2.57/bushel in 2000 

to $7.45 in 2011 (USDA National Agricultural Statistics Service 2012). With the rise in prices 

and an increase in production, pest outbreaks can pose a significant threat to net profits and 

trigger preventative pesticide treatments (insecticides, herbicides and fungicides).  

 First introduced into the United States in 1882, the greenbug (Schizaphis graminum 

Rondani, Hemiptera: Aphididae) reached outbreak proportions on small grain crops by 1901 

(Jackson et al. 1970). The greenbug continues to be the most important and abundant winter 

wheat pest in the Southern Great Plains (Kring and Gilstrap 1983, Kindler et al. 2002). Greenbugs 

have piercing-sucking mouthparts with which they remove plant fluids; this feeding reduces the 

number of fertile plant tillers (i.e. leaves and stems) and seeds per plant, and ultimately grain 

yields (Burton et al. 1985, Kindler et al. 2002).  

 Cost effective management tools for greenbug population control involve resistant 

cultivars, insecticide treatments, and biological control. Unfortunately, the use of resistant 

cultivars is decreasing (Burton et al. 1985, Kindler et al. 2002) and insecticide resistance to some 

insecticides is common throughout the Southern Plains (Shufran et al. 1997, Wilde et al. 2001). 

Alternatively, biological control involving greenbug natural enemies has proven reliable in winter 

wheat systems (Jones 2001, Giles et al. 2003, Brewer and Elliot 2004).
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 In the Southern Great Plains, the most common natural enemies of the greenbug in winter 

wheat include an endoparasitoid wasp (Lysiphlebus testaceipes Cresson, Hymenoptera: 

Braconidae), ladybeetles (Coleoptera: Coccinellidae), and lacewings (Neuroptera: Chrysopidae) 

(Fenton and Fisher 1940, Jones 2001, Elliott et al. 2006, Donelson and Giles 2012). These 

organisms are considered to be in the same 'guild' because they share and compete for the same 

resource, the greenbug; and when one guild member consumes another it is termed intraguild 

predation (Polis and Holt 1992).  

 Several studies have examined the outcomes of intraguild predation. In particular, studies 

on the interactions between ladybeetle larvae and L. testaceipes have demonstrated negative 

outcomes for Coccinellidae that feed on parasitized greenbugs (Lebusa 2004, Mullins 2008, 

Royer et al. 2008). While green lacewings commonly occur throughout the Southern Great Plains 

(Donelson and Giles 2012), little is known about green lacewing biology in this region of the 

United States. Furthermore, no studies have documented interactions between guild members L. 

testaceipes and common Chrysoperla species. The studies described in this thesis were conducted 

to examine the effects of intraguild predation on Chrysoperla rufilabris Burmeister larvae to 

better understand how these predators function in winter wheat systems and ultimately contribute 

to aphid suppression. 

Objectives 

I.  Document the feeding capabilities and attack times for C. rufilabris larvae when 

 provided with mummified greenbugs (parasitized greenbugs containing the 

 prepupal/pupal stage of L. testaceipes).  

II.  Determine the suitability of parasitized greenbugs for C. rufilabris preimaginal 

 development, survival, and adult body weight. 

Explanation of Thesis Format 
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 This thesis describes the results of two experiments. The first experiment describes the 

feeding capability and attack time by C. rufilabris larvae when presented with L. testaceipes 

parasitized greenbugs. The second experiment quantifies the effects of L. testaceipes parasitized 

greenbugs as a food source on C. rufilabris larval survival, development, and weight gain. This 

general introduction is followed by a literature review (Chapter II), materials and methods 

(Chapter III), results (Chapter IV), discussion (Chapter V), and concludes with a brief summary 

of findings (Chapter VI). References are provided after each chapter.  
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

Winter Wheat and the Greenbug 

 Winter wheat, Triticum aestivum L., is a major commodity used for forage and grain and 

is primarily grown in the Central and Southern Great Plains. Oklahoma is the second largest 

winter wheat producing state in the country (second to Kansas); in 2010, a total of 120,900,000 

bushels was harvested in Oklahoma (USDA National Agricultural Statistics Service 2012). In this 

unique region of the Southern Plains, winter wheat can be planted as a forage-only, grain-only, or 

a dual-purpose crop (Hossain et al. 2004). In a recent survey, Hossain et al. (2004) documented 

an equal percentage of Oklahoma winter wheat fields being used for dual-purpose and grain-only 

(39%), while only 22% was used as forage-only. In 2011, a total of 3.4 million acres of grain-

only wheat was harvested in Oklahoma, despite a severe drought (National Agricultural Statistics 

Service, 2011). With the increase in price trends (from $2.57/bushel in 2000 to $7.45 in 2011), 

wheat production and profits are on the rise (USDA National Agricultural Statistics Service 

2012). Unfortunately, this increase in wheat production may also lead to pest outbreaks and 

subsequent preventative pesticide treatments, as well as herbicide and fungicide treatments. 

Environmental damage from excessive chemical treatments in winter wheat is yet unknown, but 

alternative practices, especially for pest control, need to be considered in order to decrease 

chemical inputs into the environment, and sustain profitable winter wheat production in 

Oklahoma.
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  As with all cereal crops, there are several major arthropod pests that are capable of 

causing serious crop injury and yield reduction. Frequent winter wheat pests include: multiple 

aphid species, Lepidopteran caterpillars, mites, Hessian fly (Mayetiola destructor Say, Diptera: 

Cecidomyiidae), and grasshoppers (Royer et al. 1998). Arguably, the most important pest in 

winter wheat in the Southern Plains is the greenbug, Schizaphis graminum Rondani (Hemiptera: 

Aphididae). Kring and Gilstrap (1983) found the greenbug to be the most abundant aphid species 

in Texas winter wheat fields.  

 The greenbug was first introduced into the United States in 1882 and reached outbreak 

proportions throughout the country by 1901 on small grain crops, including winter wheat 

(Jackson et al. 1970). This aphid damages wheat plants by inserting its proboscis into the plant 

and removing fluids from the phloem; this causes wheat tillers (i.e. leaves and stems) to turn 

brown and die.  Greenbugs can negatively impact crop productivity by reducing the number of 

fertile tillers and seeds per plant and subsequent grain yields (Burton et al. 1985, Kindler et al. 

2002). Between 1934 and 1939 Oklahoma regularly had high populations of greenbug that nearly 

devastated small grain crops (Fenton and Fisher 1940). Since first being introduced, greenbug 

damage had resulted in a net loss of 61 million bushels of grain by 1970 (Jackson et al. 1970). 

More recent studies in the Southern Plains indicate that greenbugs continue to reach economically 

damaging levels in winter wheat and limit profitable production of this important crop (Burton et 

al. 1985, Kindler et al. 2002, Giles et al. 2003). Based on data from replicated field experiments, 

Kindler et al. (2003) predicted a reduction in winter wheat yield of 0.22bu/acre for every 

greenbug per tiller during normal precipitation years, whereas, during a severe drought the 

reduction in yield increased to 0.51bu/acre.  

 Clearly, greenbugs remain a threat to winter wheat production in the Southern Plains and 

their potential for damage justifies the use of cost effective management tools. One such tool 

involves greenbug resistant wheat cultivars. Some cultivars of wheat are naturally resistant to 

greenbug attacks and have been shown to reduce greenbug reproduction and development 
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(Painter 1951, Lazar et al. 1995, Michels et al. 1997). Unfortunately, it has been documented that 

greenbugs can overcome a plant's resistance. Kindler et al. (2002) found that yield loss caused by 

greenbugs occurred regardless of wheat cultivar or initial density of greenbugs per tiller, but less 

damage occurred on naturally resistant plants. Similarly, Burton et al. (1985) showed that 

resistant winter wheat cultivars can be colonized and damaged by greenbugs albeit to a lesser 

degree than susceptible wheat cultivars. In fact, resistant cultivars can only tolerate 50% more 

greenbug damage than susceptible cultivars (Burton et al. 1985). In sorghum, Huang (2011) 

found 21 greenbug resistance genes in a worldwide sorghum germplasm database, and these 

genes are likely to provide the foundation of future resistance efforts associated with greenbug 

management.   

 Traditionally, wheat producers have relied on curative insecticidal treatments to reduce 

greenbug numbers; however, there are a limited number of insecticides available to treat 

greenbug populations (Royer and Giles 2010). Many producers are quick to apply an insecticide 

whenever a greenbug is encountered, but applications applied late in the growing season do little 

to save yield (Wratten et al. 1990). While there is documentation showing insecticides effectively 

inhibit greenbug feeding and reproduction (Costa et al. 2010), greenbug resistance to insecticides 

is common (Shufran et al. 1997, Wilde et al. 2001). Wilde et al. (2001) discovered greenbugs that 

are resistant to 4 different insecticides exist in low population numbers throughout Oklahoma and 

Kansas. The presence of resistant greenbug populations in the Southern Great Plains is clearly a 

threat to sustainable winter wheat production.  

  Biological control, primarily through conservation of natural enemies that feed on pest 

species, has proven effective in winter wheat systems for greenbug management (Jones 2001, 

Giles et al. 2003, Brewer and Elliott 2004). Using replicated field cages, Jones (2001) 

documented greenbug suppression by Lysiphlebus testaceipes Cresson, an endoparasitoid wasp 

(Hymenoptera: Braconidae). When cages had a parasitism rate of >1.5%, greenbugs were unable 

to reach economic thresholds on both susceptible and resistant wheat cultivars (Jones 2001). 
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Greenbug suppression by L. testaceipes is predictable enough that a binomial sequential sampling 

plan, Glance 'n Go, was established to provide producers with a quick and reliable sampling 

method to determine if greenbug numbers warrant an insecticide application (Giles et al. 2003). 

Ladybeetles (Coleoptera: Coccinellidae) are also capable of maintaining low greenbug 

populations in winter wheat and sorghum (Kring et al. 1985, Jones 2001). Once optimal 

temperatures are reached, ladybeetles are effective at regulating greenbug populations in sorghum 

(Kring et al. 1985).  Aside from Glance 'n Go, producers seldom utilize biological control for 

greenbug management in winter wheat.  

 With the rapid loss of available insecticides labeled for use in agricultural crops (Food 

Quality Protection Act 1996) and the occurrence of insecticide-resistant greenbugs (Shufran et al. 

1997, Wilde et al. 2001), it is imperative that greenbug management in the future incorporates 

more sustainable practices, such as biological control, to ensure continued production of winter 

wheat in the Southern Great Plains.  

Lysiphlebus testaceipes and Greenbugs  

 Parasitoids, most in the orders Hymenoptera and Diptera, are effective natural enemies 

utilized in biological control programs throughout the world (Van Driseche and Bellows 1996). 

While not much is known about Hymenopteran parasitoid mating and courtship, oviposition has 

been studied and detailed for many parasitoid species (Matthews 1974). Before oviposition 

occurs, however, the female parasitoid must locate its host using semiochemicals, usually plant 

chemicals that are emitted when tissue damage occurs from herbivore feeding (Matthews 1974). 

Once a suitable host is found, female parasitoids deposit eggs in or on a host. Parasitoid larvae 

then develop using the host as food and protection, and the host is eventually killed prior to adult 

emergence (Godfray 1994, Jervis et al. 2008).  

 Parasitoids can be divided into several categories based on how quickly the host is killed, 

where oviposition occurs and how many parasitoids are produced per host. Idiobionts 

immediately arrest host development or cause instant death, whereas koinobionts delay host death 
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by slowing down development (Pennacchio and Strand 2006, Jervis et al. 2008, Asgari and 

Rivers 2011). Ectoparasitoids lay their eggs on the surface of or around a host, and those that 

oviposit eggs directly into a host's hemocoel are endoparasitoids (Pennacchio and Strand 2006). 

Using the host as protection for preimaginal development, endoparasitoids do not have to exert 

extra energy on creating thick egg chorions which prevent terrestrial eggs from desiccation, or 

egg yolk to feed developing embryos (Pennacchio and Strand 2006). Endoparasitoids are thus 

able to have a higher fecundity compared to ectoparasitoids because more energy can be directed 

to producing a higher number of eggs (Pennacchio and Strand 2006).  

 Hymenopteran parasitoids can interfere with or entirely disrupt their host's immune 

response by injecting toxins, venom, and/or DNA into the host's body during oviposition 

(Fleming 1992, Strand and Pech 1995, Beckage and Gelman 2004). These injected "additives" 

typically produce host behavioral changes, such as reduced feeding and/or delayed reproduction 

(Fleming 1992, Strand and Pech 1995, Beckage and Gelman 2004). Polydnaviruses are symbiotic 

viruses transmitted by a female parasitoid during oviposition; once in the host, the viruses 

synthesize and release immunosuppressant enzymes disrupting the host's immune defenses 

(Beckage and Gelman 2004, Pennacchio and Strand 2006).  

 In the Southern Plains, winter wheat systems are relatively complex and support a variety 

of greenbug natural enemies (Kring and Gilstrap 1983, Jones 2001, Brewer and Elliott 2004, 

Elliott et al. 2006). The Braconid wasp, L. testaceipes, is a solitary endoparasitoid koinobiont that 

parasitizes many aphid species and is the most common parasitoid wasp of cereal aphids in the 

Southern Great Plains (Fenton and Fisher 1940, Jackson et al. 1970, Hight et al. 1972, Archer et 

al. 1974, Arnold 1981, Kring and Gilstrap 1983, Rice and Wilde 1988, Fernandes et al. 1998, 

Jones 2001, Giles et al. 2003, Brewer and Elliott 2004, Mullins 2008, Mullins et al. 2011). 

Females oviposit eggs regardless of the host's developmental stage (Hight et al. 1972).  

Lysiphlebus testaceipes prohibits younger aphid hosts from maturing and eventually reproducing, 

and decreases the fecundity of aphids attacked at the adult stage (Hight et al. 1972, Jones et al. 
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2005). In fact, greenbugs are no longer able to reproduce five days after being parasitized by L. 

testaceipes  (Hight et al. 1972). 

 Depending on temperature, the typical life cycle of L. testaceipes requires 7-9 days for a 

wasp egg to mature into a pupa (Hight et al. 1972, Royer et al. 2001). During this final stage 

inside its host the aphid is referred to as a 'mummy' because of its swollen exoskeleton (Colfer 

and Rosenheim 2001). Between 10-13 days after oviposition, the adult wasp emerges from the 

back of the aphid and leaves behind the mummy case.  

 Parasitoid wasps, primarily L. testaceipes, help regulate aphid populations in the 

Southern Great Plains in a variety of cropping systems (Fenton and Fisher 1940, Archer et al. 

1974, Kring and Gilstrap 1983, Jones 2001, Giles et al. 2003, Elliott et al. 2006). Indeed, L. 

testaceipes has been observed to prevent greenbug populations from exceeding the economic 

thresholds in wheat and sorghum systems (Fernandes et al. 1998, Jones 2001). The Glance 'n Go 

sampling method takes into account the number of mummies present in order to delay insecticide 

treatment; for example, if there are > 4 mummies in 15 randomly sampled wheat tillers then 

chemical treatment is not necessary regardless of the number of greenbugs on the sampled plants 

(Giles et al. 2003, Royer et al. 2004).  

Lacewings  

 Insect predators are capable of fully consuming prey and, unlike parasitoids, typically 

require more than one prey item to complete development and reproduction (Van Driesche and 

Bellows 1996, Norris et al. 2003). In Oklahoma winter wheat, the most abundant predators are 

Coccinellidae, Chrysopidae, Carabidae, Nabidae, Staphylinidae, and Araneae (Elliott et al. 2006).  

 The main focus of greenbug predators has been on Coccinellidae (Jones 2001, Lebusa 

2004, Mullins 2008, Phoofolo et al. 2007 and 2008, Royer et al. 2008); however, little is known 

about the biology of green lacewings (Neuroptera: Chrysopidae) in Oklahoma winter wheat 

systems. Lacewings are common insect predators throughout the world and are used as biological 

control agents in row crops, orchards, greenhouses, and home gardens because of their voracious 
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larval appetites and tolerance to many pesticides (Afzal and Khan 1978, Canard et al. 1984, 

Hagley 1989, Mizel and Schiffhauer 1990, Nordlund et al. 1991, Romeis et al. 2004). 

Chrysoperla species are among the most abundant predator groups throughout North America 

inhabiting many agricultural systems such as cotton, corn, alfalfa, wheat, soybean, and citrus and 

apple orchards (Afazal and Khan 1978, Tassan et al.  1979, Elkarmi et al. 1987, Hagley 1989, 

Romeis et al. 2004, Woolfolk and Inglis 2004, Freier et al. 2007). During a 2011 study, green 

lacewings were the most abundant predator group on sticky traps in winter wheat systems; in fact, 

lacewings outnumbered ladybeetles in Oklahoma wheat fields 5:1 (Donelson and Giles 2012).  

 The most abundant green lacewings found in North America are C. rufilabris Burmeister 

and C. carnea Stephens. Chrysoperla rufilabris is found as far north as Ontario and as far south 

as northeast and central Mexico, and range from the east coast of the United States to as far west 

as Minnesota, Kansas, and Texas (Tauber 1974). The closely related species, C. carnea, is a 

Holoarctic species that has been recorded throughout the United States. Tauber and Tauber 

(1983) found that C. rufilabris is better adapted to moist climates, whereas C. carnea is more 

suited for drier areas.  

 Chrysoperla eggs are small green ovals that are laid in clusters or singly (Canard et al. 

1984). Eggs typically have a silk stalk that not only serves as protection from predation but also 

cannibalism (Ruzicka 1997). When larvae begin to hatch, they remain near their egg shell for a 

period of time, ranging from several minutes to a couple days, and refrain from eating (Canard et 

al. 1984). Larvae are caterpillar-like in shape and undergo two larval molts, resulting in a total of 

three larval instars (Afzal and Khan 1978, Canard et al. 1984). Tauber and Tauber (1983) found 

that low relative humidity (<35%) can lengthen larval development and decrease survivorship. 

Malpighian tubules, located in the hindgut, produce silk that is used to spin a pupal cocoon 

(Canard et al. 1984). Ru et al. (1976) found that C. rufilabris pupation was also dependent on 

relative humidity and other abiotic factors such as temperature. Adults are bright green with large 

membranous wings, and can survive for 3 months (Canard et al. 1984). Chrysoperla rufilabris 
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females are able to lay significantly more eggs (23 eggs/day) than C. carnea (13 eggs/day) and 

can continually lay eggs for 15-20 days (Ru et al. 1976, Elkarmi et al. 1987).  

 Lacewing larvae feed via extra-oral digestion (Cohen 1995). Their mandibles are 

hollowed tubes that allow for digestive fluid to be injected into a prey item from the lacewing's 

midgut (Canard et al. 1984). The digestive fluid breaks down the prey's solid internal materials 

which are then taken up through the mandibles for further digestion within the digestive tract. 

Chrysoperla adults feed on pollen, nectar and honeydews (Afzal and Khan 1978, Canard et al. 

1984). However, these foods contain few nutrients necessary for the adults to survive and 

reproduce (Woolfolk et al. 2004). Nutrient rich yeasts, bacteria and fungi are obtained from the 

natural environment; the symbiotic yeasts are then stored within the esophageal diverticulum, 

whereas bacteria and fungi are considered nonresidents and pass through the digestive track 

entirely (Hagan et al. 1970; Woolfolk and Inglis 2004, Woolfolk et al. 2004). Larvae and young 

adults (<24hr old) do not contain yeasts within their digestive tracks (Hagan et al. 1970, Woolfolk 

and Inglis 2004).  

 The quantity and quality of larval diet plays a significant role in lacewing development, 

survival and reproduction (Hydorn and Whitcomb 1979, Canard et al. 1984, Greenberg et al. 

1994, Balasubramani and Swamiappan 1994 and 1998, Chen and Liu 2001, Atlihan et al. 2004). 

Hydorn and Whitcomb (1979) showed that C. rufilabris larvae had the highest survival rate 

(75%), a longer duration of ovipositioning (59.3 days), and higher fecundity (188.7 eggs) when 

fed an aphid diet (Myzus persicae Sulzer, Acyrthosiphon pisum Harris, Aphis spiraecola Patch, A. 

rhamni Fonscolombe, and A. craccivora Koch) compared to a diet of citrus mite, Tetranychus 

tumidus Banks (Acarina: Tetranychidae). Chen and Liu (2001) evaluated the suitability of three 

aphid species: Aphis gossypii Glover, M. persicae, and Lipaphis erysimi Kaltenbach on C. 

rufilabris larvae. Development was significantly different among treatments with larvae 

developing quickest on a diet of A. gossypii, whereas larvae on the L. erysimi diet did not survive 

to adult emergence (Chen and Liu 2001). Atlihan et al. (2004) showed that varying aphid 
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densities can significantly increase developmental rates for C. carnea when fed Hyalopterus 

pruni Geoffroy. Larvae that were fed >10 aphids/day developed significantly faster during the 

third instar and the total preimaginal stage; however, even at low prey densities (<10/day), larvae 

were still able to complete their life cycle (Atlihan et al. 2004).  

 The suitability of aphid prey can also be influenced by differences in host plants, i.e. 

tritrophic interactions (Messina et al. 1995, Legaspi et al. 1996, Balasubramani and Swamiappan 

1998, Clark and Messina 1998, Giles et al. 2000). Giles et al. (2000) documented a host plant-

related qualitative difference in aphid diets for C. rufilabris larvae. Pea aphids reared on alfalfa, 

Medicago sativa L., had a higher myristic acid and total fatty acid content than pea aphids reared 

on faba bean, Vicia faba L.; and this resulted in quicker development for larvae supplied with 

alfalfa-reared pea aphids compared with those supplied pea aphids reared on faba bean (Giles et 

al. 2000).  

Intraguild Predation 

 A phenomenon termed intraguild predation occurs when one guild member consumes 

another guild member (Polis and Holt 1992). Most intraguild predation studies have focused on 

interactions between predators competing for the same prey resource (Rosenheim et al. 1993, 

Finke and Denno 2003, Holt and Huxel 2007); however, intraguild predation can occur between 

predators and parasitoids. Many studies have shown the negative effects intraguild predation has 

on specialist natural enemies (Rosenheim et al. 1993, Snyder and Ives 2001 and 2003, Finke and 

Denno 2003). Finke and Denno (2003) state that intraguild predation decreases the pressure of 

top-down interactions and thus the lower-trophic level organism may no longer be under control. 

Snyder and Ives (2001) examined the interactions between pea aphids (A. pisum), carabid beetles, 

and the Braconid parasitoid Aphidius ervi Haliday. They found that the carabid beetles decreased 

the parasitoid population and thus reduced the control the wasps had over the pea aphids in an 

alfalfa system; however they did not examine how other predators interacted within that system 

and thus provided additional herbivore suppression (Snyder and Ives 2001).   
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  Some predators are able to differentiate, or show preference for, unparasitized aphids 

from parasitized aphids. Colfer and Rosenheim (2001) evaluated interactions among the cotton 

aphid A. gossypii, the convergent ladybeetle Hippodamia convergens Guérin-Méneville, and L. 

testaceipes. During a preference study, H. convergens was more likely to consume an 

unparasitized aphid than a parasitized one and this combined mortality resulted in pest reductions 

(Colfer and Rosenheim 2001). When ladybeetles were coupled with L. testaceipes in field cages, 

cotton aphids were significantly reduced and maintained at low population levels (Colfer and 

Rosenheim 2001). Because ladybeetles showed a preference for unparasitized aphids, wasps were 

able to escape intraguild predation (in the parasitized aphids) and suppress aphid populations. 

 Recently, there has been an increase in intraguild predation research involving 

Hymenopteran parasitoids, ladybeetles, and aphids. Takizawa et al. (2000) demonstrated that the 

seven-spotted ladybeetle, Coccinella septempunctata L., had a significantly lower survival rate 

when fed mummies (A. craccivora parasitized by Aphidius colemani Viereck). It was suggested 

that parasitized greenbugs and nonparasitized greenbugs have different nutritional qualities, and a 

diet of parasitized greenbugs is suboptimal for the ladybeetle (Takizawa et al. 2000). Using L. 

testaceipes, Lebusa (2004) found that H. convergens and C. septempunctata first and second 

larval instars were incapable of consuming late-stage mummified greenbugs; however, no 

preference could be detected for older ladybeetle instars. They also showed that a diet of 

parasitized greenbugs slowed development for third and fourth instars and caused a decrease in 

adult weight (Lebusa 2004, Royer et al. 2008). Another experiment using L. testaceipes showed 

early and late stages of parasitism (prior to mummification) also negatively affected development 

of H. convergens third and fourth instars (Mullins 2008). These recent life history studies 

between Coccinellidae and parasitoids have revealed that intraguild predation may overall be 

more detrimental to the predator because parasitized aphids are a lower quality food source.  

 Chrysoperla species are often the most abundant predators in winter wheat systems of the 

Southern Plains (Fenton and Fisher 1940, Gaona et al. 2000, Donelson and Giles 2012); however, 
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no studies have documented the interactions between the greenbug-guild members L. testaceipes 

and lacewings. Studies investigating the effects of parasitized aphids on Chrysoperla biology will 

provide important information on how these predators interact with parasitoids, and ultimately, 

their contribution to aphid suppression in winter wheat systems in the Southern Great Plains. 
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CHAPTER III 
 

 
MATERIALS AND METHODS 

Greenbug Colonies 

 Four colonies of Biotype 'E' greenbugs, Schizaphis graminum, were maintained using 

specimens obtained from the USDA Agricultural Research Service Laboratory located in 

Stillwater, Oklahoma. Susceptible wheat (Triticum aestivum) cultivars ('OK101' and 'Custer') 

were planted in a 50:50 mixture of fritted clay and potting soil with a 20:20:20 (N:P:K) fertilizer 

in 15cm diameter pots (Mullins 2008). Approximately 150 seeds were planted into each pot and 

when plants were approximately 6 inches tall (1 week after emergence), greenbugs were added by 

placing older infested wheat tillers on top of the new plants. All infested plants were kept in 

double-walled (2.5cm) fine mesh cages which prevented parasitism and aphids escaping through 

the mesh but allowed for airflow into the cages (Jones 2001, Mullins 2008). Cages were 

maintained in the laboratory at room temperature (~24°C) under florescent lighting (12:12 L:D). 

Plants damaged due to greenbug feeding were replaced two times per week and plants were 

watered as needed.  

Pea Aphid Colonies 

 Pea aphids, Acyrthosiphon pisum, were reared on faba bean, Vicia faba  (Cultivar 

'Windsor'). All plants were grown in 15cm diameter plastic pots in a 50:50 mixture of fritted clay 

and potting soil with 20:20:20 (N:P:K) fertilizer. When plants were 11 days old (approximately 6 

inches tall), pea aphids were added directly onto the leaves and infested pots were then placed in 

four separate single-walled mesh cages in the laboratory at room temperature under florescent 

lights (12:12 L:D). Six new plants were added weekly to each cage and old, damaged plants were
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removed as needed. Pea aphids were harvested daily to prevent excessive plant injury and all 

plants were watered as needed.  

Lysiphlebus testaceipes Colonies 

 The L. testaceipes colonies were initiated by obtaining parasitized aphids from an 

infested greenhouse in Stillwater, Oklahoma. Adult wasps were identified as L. testaceipes using 

a taxonomic key. Emerged parasitoid adults were aspirated and placed into double-walled 

(2.5cm) fine mesh cages that contained 3-4 pots (15cm diameter) of greenbug infested wheat (see 

Greenbug Colonies); each cage had a cloth sleeve for access. Cages were maintained at room 

temperature under florescent bulbs (12:12 L:D) in a separate laboratory to prevent contamination 

of aphid colonies (Jones 2001, Mullins 2008). In addition, parasitoid colonies were attended last 

in sequence to prevent contamination of aphid colonies.  

 One week old plants were infested with greenbugs 24 hours prior to being placed in 

parasitoid cages. Newly formed parasitoid mummies were removed as needed for experiments 

(see Experiments I and II) and wheat plants were replaced weekly. Damaged wheat tillers with 

mummies were cut and placed on new plants which allowed for retention of wasps that had not 

yet emerged from parasitized greenbugs, and were interchanged among cages to maintain 

parasitoid vitality (Mullins 2008). All plants were watered as needed which provided adequate 

moisture in the cages for adult parasitoids (Mullins 2008).  

Experiment I. Feeding capability and attack time for Chrysoperla rufilabris larvae when 

provided L. testaceipes parasitized greenbugs  

 Lacewing eggs were purchased from Rincon-Vitova Insectaries Inc., California. Eggs 

were isolated into 30ml plastic containers with lids and observed every 12 hours for eclosion. 

Upon eclosion, larvae were provided unlimited pea aphids daily prior to feeding observation 

studies. Feeding capability evaluations were conducted during the first or third instar stage for C. 

rufilabris. First instars were 3 days old at the time of observations (just prior to molting), whereas 

observations on third instars were initiated at the beginning of the stadium. Prior to beginning 
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individual observations, larvae were starved for 24 hours. All larvae were maintained in table-top 

environmental chambers at 24°C, 16:8 L:D cycle, and 24% RH (See Experiment II for low 

relative humidity explanation). A total of 59 larvae were randomly assigned to three treatments 

for first and third instars (9-10 individuals/treatment). First (n=29) or third (n=30) instars were 

provided four 1 day old mummies, four 3 day old mummies, or four unparasitized greenbugs.  

 Observations of individual larval behavior occurred within a 5cm petri dish over 30 

minutes using a handheld stopwatch. For each individual observation, the assigned food items 

were placed in the center of the petri dish followed by a randomly assigned individual lacewing 

larva. The number of attacks per food item, length of attack and consumption of any food items 

were recorded during each observation. "Consumption" of unparasitized greenbugs was recorded 

when feeding caused the greenbug to be shriveled and white. Consumption of the mummy food 

items was recorded when, upon dissection, the wasp larvae (1 day old mummy) or pupae (3 day 

old mummy), was shriveled in appearance (C. N. Jessie unpublished data).   

Experiment II. Suitability of L. testaceipes parasitized greenbugs for C. rufilabris 

preimaginal development, survival and adult body weight 

 Lacewing eggs were purchased (Rincon-Vitova Insectaries Inc., California) 6 different 

times throughout 2011. Eggs were isolated into 30ml plastic containers with lids and maintained 

in table-top environmental chambers (24°C; 16:8 LD; 24% RH). The low RH used for this 

experiment is typical of the stressed conditions organisms face in Western Oklahoma during late 

winter and early spring when atmospheric saturation is low due to moderate-high temperatures 

and little precipitation (National Oceanic and Atmospheric Administration 2012). Upon eclosion, 

lacewing larvae were randomly assigned one of 4 daily diet treatments. The daily treatments 

were: 10 large, unparasitized greenbugs (2mg); 2 large, unparasitized pea aphids (2mg); 12 

mummies (2mg); and 12 mummies (2mg) with a moistened cottonball ("mummy+water"). 

Chrysoperla larvae are capable of completing development at these low prey levels which allows 

for quantitative assessment of suitability differences among diet items (Legaspi et al. 1994, Giles 
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et al. 2000, Atlihan et al. 2004). Mummies used for this study were considered to be mid-stage (2 

day old), that is, the mummy had taken form but the parasitoid larvae was not yet a fully formed 

adult wasp. Previous studies have evaluated early-stage (1 day old) or late-stage mummies 

(Lebusa 2004 and Mullins 2008, respectively).  

 There were a total of 60 larvae assigned to the greenbug (GB) treatment, 52 larvae 

assigned to the pea aphid (PA) treatment, 48 larvae assigned to the mummy (M) treatment, and 43 

larvae assigned to the mummy+water (MW) treatment. An additional 43 larvae were individually 

fed 16mg of pea aphids per day and this diet treatment was considered an unlimited check (Giles 

et al. 2000) but was not included in the statistical analyses. Individual larvae were systematically 

checked every 24 hours. Old, uneaten prey items were removed daily and replaced with freshly 

collected prey. All lacewing molts and deaths were recorded daily. Upon adult emergence, a total 

of 32 lacewings from the 2mg diet treatments (GB = 8, PA = 11, M = 5, MW = 8) and 29 

lacewings from the unlimited diet treatment were placed into an oven at 50°C for 4 days and 

individual dry weights were recorded using a digital microbalance. Voucher specimens from each 

diet treatment were placed in the Department of Entomology and Plant Pathology Museum at 

Oklahoma State University, Stillwater.  

 Analyses were performed using SAS version 9.1 (SAS Institute 2003), and a significance 

level of P = 0.05 was used for all analyses. For feeding observations the number of attacks, length 

of attack (time in seconds), and number of prey items consumed over a 30 minute period were 

analyzed using ANOVA (PROC MIXED) followed by LSMEANS comparisons among 

treatments. For the suitability study, differences in developmental time and adult body weight 

among the 4 diet treatments were analyzed using ANOVA (PROC MIXED) with a Satterthwaite 

adjustment for degrees of freedom. LSMEANS comparisons were performed when diet 

treatments were significantly different. Lacewing purchase number (1-6) was included as a 

categorical blocking factor to account for potential differences in fitness among orders. Chi-

square analysis (PROC FREQ) was used to compare acute and cumulative survival ratios (larval, 
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pupal, and larval+pupal) for all of the diet treatments. Acute survival is the ratio of larvae 

surviving within a life stage, whereas cumulative survival is the ratio of larvae surviving to each 

successive life stage. 
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CHAPTER IV 
 

 

RESULTS 

Experiment I. Feeding capability and attack time for Chrysoperla rufilabris larvae when 

provided Lysiphlebus testaceipes parasitized greenbugs  

First Instar C. rufilabris  

 Among diet treatments, handling times differed significantly for first instar C. rufilabris 

(Table 1; F = 10.98, df = 2, 26, p < 0.001). Larvae supplied with 1 day old mummies (1d M) or 3 

day old mummies (3d M) spent significantly less time handling ("Attack Time") prey items (p = 

0.002 and p < 0.001, respectively) than did larvae supplied with unparasitized greenbugs (GB). 

The number of attacks by first instars were significantly different among treatments (F = 4.25, df 

= 2, 26, p = 0.025), and larvae supplied the 1d M treatment had a significantly higher number of 

attacks than larvae supplied the greenbug treatment (p = 0.008). The number of prey items fully 

consumed by first instars did not differ among treatments (F = 1.24, df = 2, 26, p = 0.306). First 

instars supplied the greenbug treatment did not fully consume any prey items, whereas two larvae 

in the 1d M treatment consumed 1 prey item each, and one larva supplied the 3d M treatment 

consumed 1 prey item.   

Third Instar C. rufilabris  

 Handling time for third instars (Table 1) did not differ significantly among diet 

treatments (F = 2.63, df = 2, 27, p = 0.090). In addition, there was no significant difference in the 

number of attacks among treatments for third instars (F = 0.39, df = 2, 27, p = 0.680), or the 

number of prey items consumed for third instars (F = 0.20, df = 2, 27, p = 0.821). Third instars in
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the 3d M treatment consumed an average of 2.0 prey items, while larvae supplied the 1d M 

treatment and greenbug treatment consumed an average of 1.8 and 1.7 prey items, respectively.  

Experiment II. Suitability of L. testaceipes parasitized greenbugs for C. rufilabris 

preimaginal development, survival and adult body weight 

 As previously described, the unlimited (16mg/day) pea aphid daily treatment (PAU) was 

included in the study as a separate control. And as expected, larvae supplied with the unlimited 

daily levels of pea aphids had the highest survivorship levels, the shortest developmental times 

and largest body weight (Tables 2 and 3; Figure 1). These findings indicate that the 2mg/day diet 

treatments were indeed limited and allowed for quantitative evaluation and comparisons of prey 

suitability.  

Survivorship 

 Cumulative proportion survivorship differed among diet treatments at each successive 

developmental stage (Table 2; χ2 > 10.8, df = 3, p = 0.013). Among diet treatments statistically 

compared, larvae fed the limited (2mg/day) pea aphid (PA) diet had the highest overall 

cumulative survivorship (0.500), whereas those fed the mummy diet had the lowest overall 

cumulative survivorship (0.184). Larvae provided the mummy (M) diet had the lowest survival 

rate through each successive developmental stage, whereas larvae provided the pea aphid diet had 

the highest survival rate (Table 2).  

 Acute survivorship (within instar only) was only significant for first instars (χ2 > 35.3, df 

= 3, p < 0.001); there was no significant difference in acute survivorship for second instars (χ2 = 

5.15, df = 3, p = 0.1614), third instars (χ2 = 4.26, df = 3, p = 0.2345), or pupae (χ2 = 3.75, df = 3, 

p = 0.29) among diet treatments.     

 A small proportion of adults were not able to successfully emerge from pupal casings 

(Table 2 "Success"). Interestingly, the highest level of mortality associated with this phenomenon 

occurred among larvae supplied with limited daily levels of pea aphids. When these proportions 
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were included as a measure of survivorship ("Success"), overall successful emergence as adults 

were similar among treatments (χ2 = 2.15, df = 3, p = 0.542).  

Preimaginal Development 

 Developmental times were significantly different among the 4 diet treatments for first 

instar C. rufilabris (Table 3; F = 5.00, df = 3, 101, p = 0.003). First instars provided with 

greenbugs had a significantly shorter average developmental time compared with those fed pea 

aphids (p = 0.002) and mummies+water (MW) (p = 0.002); however, developmental times were 

similar among larvae provided with pea aphids, mummies+water, or mummies. While 

developmental times varied for second instars, there were no significant differences among the 

diet treatments (F = 2.50, df = 3, 83.9, p = 0.065). Similar to first instars, second instars fed the 

greenbug diet had the shortest development time. There were no significant differences in 

developmental times among diet treatments for third instars (F = 1.41, df = 3, 68.3, p = 0.248). 

Third instars fed the mummy diet went into pupation more quickly and larvae fed the 

mummy+water diet took the longest to begin pupation. There were no significant differences in 

overall larval developmental times among the 4 diet treatments (F = 1.03, df = 3, 69, p = 0.384), 

but interestingly, larvae fed the mummy+water diet took the longest to develop. There were 

significant differences in pupal developmental times among diet treatments (F = 4.10, df = 3, 67, 

p = 0.010). Larvae fed the mummy+water diet were in pupation for a significantly shorter period 

than larvae fed the greenbug diet and pea aphid diet (p = 0.004 and p = 0.002, respectively); 

however, larvae provided with greenbug and pea aphid diets did not differ significantly. The total 

time for preimaginal (larval+pupal) development was not significantly different among diet 

treatments (F = 1.01, df = 3, 67, p = 0.395). Larvae developed quickest when fed the 

mummy+water diet; whereas larvae fed the pea aphid diet developed the slowest. 

Adult Body Weight 

 Average adult dry weights ranged from 1.28 - 1.45mg for the limited daily diet 

treatments, and 2.86mg for the unlimited daily pea aphid treatment. In general, larvae weighed 
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more when fed the limited pea aphid diet, whereas, larvae fed the mummy diet weighed the least. 

However, there were no significant differences in adult body weights among limited diet 

treatments (Figure 1; F = 1.12, df = 3, 28, p = 0.357). Females and males were combined in 

analyses as C. rufilabris sex ratios pertaining to low levels of daily prey have been documented as 

insignificant (Giles et al. 2000). 
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CHAPTER V 
 

 
DISCUSSION 

 By the end of the growing season (April-June), winter wheat (Triticum aestivum) in the 

Southern Great Plains is regularly inhabited by large populations of greenbug (Schizaphis 

graminum) natural enemies, including parasitoids, ladybeetles, and lacewings (Giles et al. 2003, 

Elliott et al. 2006, Phoofolo et al. 2010, K. L. Giles unpublished data). However, evidence is 

unclear as to the timing of when predator and parasitoids initially interact in winter wheat 

systems. Rice and Wilde (1988) documented that ladybeetles are negatively impacted by cold 

winter weather and Lysiphlebus testaceipes is often absent, therefore, these organisms rarely 

interact. In Oklahoma, however, L. testaceipes is present in winter wheat fields throughout the 

growing season and will continue to parasitize greenbugs, even at low atmospheric temperatures 

(Jones 2001, Giles et al. 2003, Jones et al. 2003). Predators (ladybeetles and lacewings) in the 

Southern Plains are present in winter wheat during the late summer-fall but more often achieve 

high populations during the mid-to-late spring when higher populations of parasitoids are actively 

foraging (Agnew et al. 1981, Phoofolo et al. 2010, Mullins et al. 2011, K. L. Giles unpublished 

data). With the co-occurrence of these natural enemies in Oklahoma, intraguild predation is likely 

to occur. Indeed, Mullins et al. (2011) used PCR techniques to document that ladybeetles (both 

adults and larvae) collected from winter wheat fields during early spring were in fact consuming 

L. testaceipes parasitized greenbugs; up to 100% of ladybeetles collected had parasitoid DNA 

within their gut tracks. Recent studies describing ladybeetle-parasitoid life history interactions 

provide evidence that intraguild predation can negatively affect both natural enemies (Takizawa 

et al. 2000, Lebusa 2004, Mullins 2008, Royer et al. 2008). However, lacewings are often the 
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most common predators in these systems, but nothing is known about their interactions with L. 

testaceipes.  

 Despite being the only grain crop during winter months in the Southern Plains, winter 

wheat grows during stressed conditions for most natural enemies. The low atmospheric moisture 

is unsuitable for organisms, such as lacewings, that require high relative humidities for optimal 

survival and development (Tauber and Tauber 1983). Food supply is also limited because 

greenbug populations have a characteristic "boom/bust" cycle dependent on host plant quality, 

natural enemy interactions and weather conditions (Dixon 1977, Phoofolo et al. 2009). These 

common stressed conditions likely increase competition for greenbug resources and subsequently 

the frequency of intraguild predation events. The experiments described in this thesis were 

designed to mimic the stressed conditions common in the Southern Great Plains region with low 

relative humidities and low prey densities and to define intraguild interactions between 

Chrysoperla rufilabris and L. testaceipes.  

Lacewing Larval Feeding Capability and Attack Time 

 Unlike third instars, first instars of C. rufilabris had higher number of attacks and a 

shorter handling (attack) time when supplied with mummies (1 day and 3 day old mummies: 1d 

M and 3d M) compared to greenbugs (Table 1). The shorter handling time of C. rufilabris 

suggests that first instars were rejecting 1d M and 3d M by attacking the prey items multiple 

times and only handling the prey items for short periods. Therefore, first instar C. rufilabris 

larvae appeared to prefer unparasitized greenbugs over mummified greenbugs. Similarly, 

Nordlund and Morrison (1990) showed that for preferential prey, such as Lepidopteran larvae, C. 

rufilabris larvae had a longer handling time compared to prey items that were not preferred 

(Lepidopteran eggs). Alternatively, the hard mummy exoskeleton could be inhibiting the small 

mandibles of first instar C. rufilabris from penetrating the mummy in order to feed. Lebusa 

(2004) found that first instar ladybeetles were unable to penetrate the hardened mummy 

exoskeleton and thus were incapable of feeding on mummies. However, despite the apparent 
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rejection of mummies, some C. rufilabris first instars were capable of consuming 1d M and 3d M 

(Table 1). These contrasting results demonstrate a significant difference in feeding capabilities 

between lacewing and ladybeetle larvae.  

 Chrysoperla rufilabris third instars showed no significant difference in handling times 

among the treatments, although handling times with greenbug prey were slightly longer than the 

handling times of 1d M and 3d M. Meyhöfer and Klug (2002) documented similar results with C. 

carnea third instars and the aphid Aphis fabae Scopoli; however, C. carnea spent an average of 

10min per mummy (A. fabae parasitized by L. fabarum Marshall) whereas C. rufilabris had a 

handling time of 5min per mummified greenbug (although aphid species and/or parasitoid species 

could account for these differences). Lacewing handling times differ from ladybeetle larvae 

which take a significantly longer time to handle mummies than unparasitized greenbugs (Lebusa 

2004, Royer et al. 2008). Regardless of stadia, compared with ladybeetle larvae, lacewing larvae 

have larger sized mandibles and are likely able to manipulate and consume prey more quickly 

(Michaud and Grant 2003).  

Lacewing Larval Survivorship and Development  

 Cumulative survivorship levels (the proportion of larvae surviving to each successive life 

stage) were significantly different among the diet treatments for the larval stages and the pupal 

stage, but ultimately, the proportion of larvae surviving to adulthood was not significantly 

different among the diet treatments (Table 2). For each diet treatment, the vulnerable first larval 

stage had the highest mortality level suggesting that under stressed conditions this stage is critical 

for C. rufilabris larval survivorship. Considering the feeding capabilities of first instar C. 

rufilabris larvae on mummies, it is no surprise that the first larval stage experienced a significant 

drop in survivorship, especially for those larvae supplied mummy and mummy+water diets. 

Comparing survival between larvae supplied the limited 2mg/day pea aphid diet and 16mg/day 

unlimited pea aphid diet, larvae were twice as likely to survive on the unlimited diet (69% versus 

30% survivorship). This indicates, relative to the current study, quantity of diet, not "quality" of 
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diet, may play the most important role in C. rufilabris survival. In fact, many studies have 

documented the significance of diet quantity as it pertains to Chrysoperla survival. (Canard et al. 

1984, Giles et al. 2000). Despite significant differences in larval survivorship, the proportion of 

successfully emerged adults was similar for all limited diet treatments, indicating that quality of 

diet was less of a factor in C. rufilabris surviving to adulthood.  

 Low survival among the 2mg/day diet treatments could also be a result of an interaction 

between prey quantity and low relative humidity (Tauber and Tauber 1983). Pappas et al. (2008) 

suggest that lacewing larvae could overcome low relative humidities by feeding on aphids or 

nectar and thus increasing their water content. Michaud (2005) suggested that ladybeetle rearing 

include a water treatment especially when ladybeetles are fed a non-aphid diet and maintained at 

low relative humidities. Therefore, dietary water, or the lack thereof, could play a significant role 

in lacewing larval survival when exposed to suboptimal relative humidities. In this study, as 

expected, higher (nonsignificant) levels of survivorship occurred when C. rufilabris larvae were 

supplied with mummies+water compared with larvae supplied mummies only.  

 Among diet treatments, developmental times were significantly different for C. rufilabris 

during the first larval stage and the pupal stage. Overall, preimaginal (larval+pupal) 

developmental times were similar among the limited diet treatments, but the quickest 

developmental times occurred among larvae supplied with either mummies+water or mummies 

alone (Table 3). Since mummies were proposed to be a less suitable food source for predators 

(Royer et al. 2008, Mullins et al. 2011), these results were unexpected and appear to differ from 

many studies involving C. rufilabris as well as C. carnea that evaluated prey consumption and 

suitability (Hydorn and Whitcomb 1979, Canard et al. 1984, Giles et al. 2000, Atlihan et al. 

2004). Typically, when supplied with an inadequate quantity and/or quality of prey, lacewing 

larvae take longer to develop. Atlihan et al. (2004) supplied varying prey densities to C. carnea 

and documented that when larvae were supplied <20 aphids/day, developmental time was 

increased significantly. Similarly, Giles et al. (2000) documented a significantly longer 
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developmental time for C. rufilabris larvae when supplied with low daily prey levels 

(<8.2mg/day), but also demonstrated slower developmental rates when "lower-quality" prey were 

consumed. Relative to the current study, perhaps the combined stressed conditions of low relative 

humidity and low daily prey levels are more of a hindrance to C. rufilabris preimaginal 

development than prey quality. Tauber and Tauber (1983) documented C. rufilabris larvae 

(reared on ad libitum grain moth eggs) took 28.4 days to complete their life cycle when reared at 

35% relative humidity, whereas  larvae reared at the optimal 75% relative humidity had a 

significantly shorter life cycle (24.2 days).  

 Initiation of pupation for holometabolous insects may be influenced by an interaction 

between prey resource availability and probabilities of survival (Shafiei et al. 2001, Phoofolo et 

al. 2009). For example, dung beetles (Onthophagus taurus Schreber, Coleoptera: Scarabaeidae) 

have been documented to undergo premature pupation when food is scarce (Shafiei et al. 2001). 

Premature pupation did not occur during this study; compared with C. rufilabris larvae supplied 

the unlimited pea aphid diet (16mg/day), larvae in the 2mg/day diet treatments took 3-6 days 

longer to initiate pupation (Table 3).  The factors that trigger pupation for lacewings are complex 

and involve abiotic factors (Ru et al. 1976, Canard et al. 1984), but prolonged larval stages may 

simply be related to limited daily food intake. Alternatively, C. rufilabris third instars in the 

2mg/day diet treatments may have delayed pupation (compared to larvae supplied with the 

16mg/day diet treatment) until a critical weight was reached. Little is known about this pupation 

trigger for lacewings (Canard et al. 1984), however, Phoofolo et al. (2009) documented that 

fourth larval stage ladybeetles must achieve a critical weight in order to initiate pupation and 

successfully eclose. Because lacewings are generalist predators and are able to utilize a variety of 

prey, this pupation strategy can increase the probability of survival even when primary aphid prey 

exhibit boom/bust cycles (Canard et al. 1984). Clearly, multi-factorial studies evaluating prey 

level, relative humidity, and prey suitability are required to evaluate the primary factors that drive 

developmental time and initiation of pupation.   
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Evolutionary Implications 

 Larval diet has a significant impact on adult body size, reproduction and subsequently 

fitness (Hydorn and Whitcomb 1979, Canard et al. 1984, Atlihan et al. 2004). Ovarian 

development is dependent upon nutrient reserves acquired during the larval stage and therefore an 

inadequate larval diet can delay ovarian development (Canard et al. 1984). Atlihan et al. (2004) 

documented that C. carnea fecundity increased with increasing daily larval prey levels. For C. 

rufilabris, no significant differences were detected among adult body weights for the 2mg/day 

diet treatments (Figure 1) suggesting that mummified aphids had no effect on adult body weight 

and potentially fitness. Larvae supplied unlimited pea aphids had a much higher adult body 

weight which further indicates that daily prey level was the primary factor influencing adult 

weight for C. rufilabris.  

 Similarities for survival, larval+pupal development and C. rufilabris adult body weights 

among the limited diet treatments suggests that parasitized greenbugs are a relatively suitable 

prey resource, and winter wheat systems in the Southern Great Plains appear to be suitable source 

habitats for lacewings. In particular, populations of Chrysoperla would be expected to increase 

rapidly in winter wheat fields when unparasitized aphids were present; ideally, gravid female 

lacewings would arrive to winter wheat fields prior to parasitoids. This would allow first instar 

lacewings to easily consume unparasitized aphids which are not as frequently rejected as 

mummified aphids. During this time, initial aphid populations would be small but still growing. 

Early lacewing instars do not consume as many aphids as older instars (Balasubramani and 

Swamiappan 1994, Atlihan et al. 2004) thus the occurrence of young lacewing larvae and small 

aphid populations is ideal. By the lacewing's second instar, aphid populations would be larger and 

therefore more accommodating for the increased larval appetites. As parasitoids arrive, the 

proportion of mummified prey increases and thus intraguild predation is more likely to occur 

(Mullins et al. 2011). Older lacewing larvae are more adept at capturing, feeding and surviving on 
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a diet of mummified aphids and the potential negative outcomes associated with intraguild 

predation on L. testaceipes (Mullins 2008, Royer et al. 2008) would be avoided.  

 The results of this thesis suggest that generalist lacewings are more adapted to 

consuming, developing and surviving on mummified greenbugs compared with ladybeetles; and 

therefore lacewings are less likely to be negatively impacted during intraguild interactions with L. 

testaceipes in winter wheat. When ladybeetles feed on parasitized greenbugs, larval development 

and weight gain is significantly slower and survival is substantially reduced (Takizawa et al. 

2000, Lebusa 2004, Mullins 2008, Royer et al. 2008). In fact, when reared on an exclusive late-

stage mummy diet, ladybeetles (Coccinella septempunctata and Hippodamia convergens) fail to 

complete pupation (Lebusa 2004, Royer et al. 2008). Compared with larvae supplied with 

unparasitized aphids only, larval C. rufilabris supplied with mummies exhibited reduced 

survivorship, however, overall survivorship was similar among the limited diet treatments 

because of low levels of pupal mortality on the mummy diet (Table 2). In addition, C. rufilabris 

had a shorter preimaginal development when supplied a mummy diet suggesting that generalist 

Chrysoperla species are adapted at surviving in agricultural crops where parasitism and intraguild 

predation is prevalent.  

Biological Control  

 Predatory lacewings are highly effective natural enemies and are successful biological 

control agents (Hassan et al. 1985, Hagley 1989, Nordlund et al. 1991, Breene et al. 1992). 

Lacewings are not only capable of feeding on and regulating pest populations, but are also 

tolerant to many pesticides including pyrethroids and Bt toxins (Mizel and Schiffhauer 1990, 

Romeis et al. 2004, Li et al. 2008). It is unclear how Chrysoperla species interact with other 

natural enemies (ladybeetles and L. testaceipes) in field situations, and how such interactions 

affect overall natural enemy suppression of aphid populations in winter wheat systems.    
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 Biological control in agricultural systems has proven most effective when multiple 

natural enemies act together in regulating aphid populations (Colfer and Rosenheim 2001, Jones 

2001, Snyder and Ives 2003, Brewer and Elliott 2004, Gardiner and Landis 2007). Parasitoid 

wasps are effective at relatively low aphid intensities and are able to prevent small aphid 

populations from increasing exponentially (Jones 2001, Giles et al. 2003). Unfortunately, 

intraguild predation of parasitoids can decrease parasitoid populations, especially since 

Chrysoperla species are capable of consuming adult parasitoids (Meyhöfer and Klug 2002, C. N. 

Jessie personal observation). Because Chrysoperla species are so abundant in the Southern Plains, 

high levels of intraguild predation could potentially lead to a reduction in overall natural enemy 

suppression of cereal aphids in winter wheat during early spring. Future field studies evaluating 

the combined effects of lacewings and parasitoids on aphid population density would provide 

insight into the ecological impact of intraguild predation.  

Conclusions and Future Research  

 Chrysoperla rufilabris larvae are capable of feeding and developing on a diet of 

mummified greenbugs. The results of this thesis show that ultimately there is no significant 

difference in survival, developmental time and adult body weights when larvae are reared on 

mummified greenbugs compared to unparasitized greenbugs; however, the first instar stage 

appears to be the most vulnerable. Documenting the impact of a parasitized aphid diet on 

lacewing reproduction and fecundity would shed more light on how intraguild interactions shape 

the evolution of these species in winter wheat systems.  
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CHAPTER VI 

 

 

SUMMARY OF FINDINGS 

 Oklahoma is the second largest winter wheat producer in the United States; in 2010 over 

120 million bushels were harvested (USDA National Agricultural Statistics Service 2012). 

Greenbugs (Schizaphis graminum) are the most important winter wheat pest and are capable of 

reaching economically damaging levels in a short amount of time resulting in significant grain 

yield losses (Kring and Gilstrap 1983, Kindler et al. 2002). Natural enemies in winter wheat have 

proven effective at regulating greenbug populations (Jones 2001, Giles et al. 2003, Brewer and 

Elliott 2004); however, intraguild predation among natural enemies can occur (Mullins et al. 

2011). Intraguild predation results when one natural enemy consumes another (Polis and Holt 

1992). The studies described in this thesis were conducted to document the feeding capabilities 

and handling times of larval Chrysoperla rufilabris supplied with  mummified greenbugs 

(parasitized by Lysiphlebus testaceipes), and determine the suitability of parasitized greenbugs for 

lacewing larval development, survival and adult body weights.  

 First and third C. rufilabris instars are capable of consuming mummified greenbugs; and 

while first instars show a significant difference in handling times between mummified greenbugs 

and unparasitized greenbugs, third instars showed no difference. Reduced handling times by first 

instars indicates reduced preference and/or inability to easily feed on mummified aphids. 

Cumulative survival was significantly different among diet treatments for all three larval stages 
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and the pupal stage; however, because of low mortality on a diet of mummified aphids overall  

preimaginal survival did not differ between mummified greenbugs and unparasitized greenbugs. 

Overall, developmental times for C. rufilabris were similar between mummified greenbug and 

unparasitized greenbug diet treatments. Prey differences had little effect on lacewing 

development and survivorship and thus C. rufilabris would be predicted to persist in winter wheat 

systems in the Southern Great Plains where intraguild predation levels are high. Based on the 

results from this thesis, it appears that C. rufilabris is better adapted to prey on parasitized aphids 

compared with ladybeetles that inhabit the same agricultural systems (Takizawa et al. 2000, 

Lebusa 2005, Mullins 2008, Royer et al. 2008).   
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