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CHAPTER I 
 

 

LITERATURE REVIEW 

 

The cultivated peanut 

Peanut is a member of the genus Arachis, in the legume family, which comprises 

about 100 species.  Arachis likely originated in what is now southwestern Mato Grosso 

do Sul, Brazil or northeastern Paraguay (Simpson et al., 2001).  Arachis includes species 

of both tropical and subtropical origin.  The cultivated peanut is an annual plant, which 

produces abundant underground pods containing seeds weighing between 0.2 to 2.0 

grams (Melouk and Shokes, 1995).  Peanut can have either upright or prostrate growth 

habits, generally growing 6 to 24 inches tall at maturity.  Beginning 4 to 6 weeks after 

planting, flowers begin to form, are self pollinated, and later produce pegs that grow into 

soil on which pods are produced.  Several market types of peanut are grown in the United 

States and are based mostly on growth habit of the plants and the size of seed produced.  

Spanish peanuts produce the smallest seeds, Virginias the largest, with runner varieties 

producing an intermediately-sized seed (Melouk and Shokes, 1995).
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Sclerotinia minor: 

Distribution and host range 

Sclerotinia minor Jagger is a soil-borne plant pathogenic fungus that is known to 

infect and cause economic losses in a wide range of plant hosts including the cultivated 

peanut (Arachis hypogaea L.) (Kokalis-Burelle et al., 1997).  S. minor causes disease 

known by a number of names depending on the host, which include Sclerotinia blight, 

cottony rot, white mold, stem rot, drop, and crown rot among others (Agrios, 2005). 

Besides peanut, a few other notable crops S. minor is known to infect include 

lettuce, sunflower, tomato, potato (Wong and Willetts, 1975), carrot, turnip, beet, sweet 

potato, cucumber, common bean (Ramsey, 1925), soybean (Phipps and Porter, 1982), and 

alfalfa (Palti, 1960).  In addition to these commonly grown vegetables and field crops, at 

least 94 species, among 66 genera and 21 families are known to be hosts of S. minor, 

(Melzer, 1997).  All known hosts are from the class Angiospermae, and the vast majority 

of these are dicotyledonous plants, with only a small number of monocots reported as 

being hosts. 

A number of weed species which are common throughout peanut fields are also 

known hosts for S. minor.  Hollowell and Shew (2001) were the first to report yellow 

nutsedge (Cyperus esculentus L.) as a host for S. minor.  Eclipta prostrata L. was found 

to be a host by Melouk et al., (1992).  Hollowell et al., (2003) reported on a number of 

weedy species that were hosts for S. minor in peanut fields in North Carolina.  These 

included smallflower bittercress (Cardamine parviflora L.), mouse-ear chickweed 

(Cerastium vulgatum L.), common chickweed (Stellaria media L.), cutleaf evening 

primrose (Oenothera laciniata Hill), henbit (Lamium aplexicaule L.), wild mustard 
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(Brassica kaber L.), swinecress (Coronopus didymus L.), horseweed (Conyza canadensis 

L.), and mouse-ear cress (Arabidopsis thaliana L.).  These weeds can possibly serve as 

sources of overwintering inoculum for S. minor when they occur in peanut fields that are 

left fallow between plantings.  A couple common weedy plants shown to support 

populations of S. minor in crops other than peanut include cocklebur (Xanthium 

strumarium L.) in soybean (Adams et al., 1983), and common lambsquarter 

(Chenopodium album L.) in pea (Baard and Los, 1989). 

 

Sclerotinia blight disease cycle on peanut 

S. minor primarily incites disease through eruptive or myceliogenic germination 

of overwintering sclerotia.  While carpogenic germination of sclerotia and the resulting 

production of apothecia and ascospores have been observed, this occurs only rarely under 

natural conditions and likely is of little importance with regard to development of disease 

(Abawi and Grogan, 1979).  Eruptive germination of sclerotia is characterized by a slight 

bulging of the sclerotial rind and subsequent rupture, which produces a large mass of 

mycelia.  These mycelia utilize the stored energy reserves of the sclerotium to initiate 

growth.  On the other hand, myceliogenic germination of the sclerotium results in the 

production of a small number of individual hyphal strands which are unable to use the 

stored energy reserves and therefore exhibit limited growth without the presence of an 

exogenous energy source. 

S. minor generally infects the lower branches of the peanut plant when 

germinating sclerotia are present on the surface of the soil, but infection of upper roots is 

also possible from buried sclerotia.  One frequent path of infection involves colonization 
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of pegs at the soil line and subsequently growth to the lateral branches and other parts of 

the peanut plant (Porter and Beute, 1974).  Stem infections are often the most 

economically important because pegs are directly attached to the stem, which allows 

quick colonization of the reproductive parts of the plant (Chappell et al., 1995).  Infected 

areas are quickly covered with white, fluffy mycelia, eventually producing tan colored, 

water-soaked lesions with discrete demarcation present between infected and uninfected 

tissue.  The tissue above the lesion often wilts and dies quickly after infection (Agrios, 

2005).  These lesions progress to a dark brown color.  Stem tissue becomes heavily 

shredded, and collapses.  When plants are heavily infected, pods are generally rotted, and 

healthy pods are often left behind in the soil during digging due to weakening of pegs 

(Porter and Beute, 1974). 

Small sclerotia (0.5-2.0 mm) are produced profusely on infected plants and can be 

found on all aerial plant parts, both on tissue surfaces as well as inside branches.  

Initially, sclerotia are white, but with maturation transform to a dark, melanized state.  

Roots are often also covered with sclerotia, and sclerotia also form on both the outer and 

inner surface of infected pods, as well as on the seed itself (Porter and Beute, 1974).  

Sclerotia can remain viable in the soil for anywhere from 3-8 years without a host, 

depending on environmental conditions.  This makes the disease particularly difficult to 

eliminate once introduced (Goldman et al., 1995). 

 

 

 

 



5 
 

Sclerotinia sclerotiorum:  

Distribution and host range 

Sclerotinia sclerotiorum (Lib.) de Bary is a soilborne, necrotrophic pathogen, 

which causes high levels of crop loss on a number of hosts.  Estimates for yearly crop 

losses in the United States to S. sclerotiorum have exceeded $200 million; with damage 

to sunflower alone in 1999 due to Sclerotinia head rot totaling $100 million (Bolton et al., 

2006).  Many names have been used to describe diseases caused by this pathogen; 

perhaps greater than sixty (Purdy, 1979).  A couple of the most commonly used names 

include cottony rot, watery soft rot, stem rot, drop, crown rot, and more commonly, white 

mold. 

Porter and Beute (1974) were the first to note peanut as a host for S. sclerotiorum 

in Virginia, with Wadsworth (1979) later noting presence of the pathogen on peanut in 

Oklahoma.  In addition to peanut, S. sclerotiorum causes disease on more than 400 

species of plants from a wide range of taxonomic groups worldwide.  The majority of 

plants attacked by the fungus are herbaceous plants from the subclass Dicotyledonae in 

the Angiospermae, but several examples from the class Gymnospermae have also been 

reported.  The ability of S. sclerotiorum to colonize a wide range of plants is well 

represented by comparing the number of reported hosts to the total number of described 

taxa.  S. sclerotiorum has been reported to cause disease in 75 of 294 plant families 

described (26%), and 278 of 4054 described genera (6.9%) (Boland and Hall, 1994). 

Because of its wide host range, S. sclerotiorum is an important pathogen on many 

agricultural crops.  A few important crops it is known to attack include oats, barley, 

sorghum, wheat, maize, lettuce, broccoli, turnip, beet, onion, watermelon, squash, 
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sunflower, soybean, pea, clover, cotton, pepper, tomato, tobacco, and potato, in addition 

to peanut (Boland and Hall, 1994).  Several weedy plants commonly found in North 

Carolina peanut fields that were determined to be hosts for S. minor by Hollowell et al. 

(2003) are also known hosts for S. sclerotiorum.  These include wild mustard (Brassica 

kaber L.), common chickweed (Stellaria media L.), henbit (Lamium aplexicaule L.), 

evening primrose (Oenothera laciniata Hill) (Boland and Hall, 1994).  

 

Disease cycle of S. sclerotiorum on peanut and related crops 

As few reports exist that describe S. sclerotiorum causing disease in peanut, little 

is known about the disease cycle of the pathogen on peanut.  Phipps and Porter (1982) 

reported that S. sclerotiorum was present in areas of Virginia that were planted to both 

soybean and peanut.  At this time, no infection of peanut by S. sclerotiorum was noted, 

but they hypothesized that increased intercropping between soybean and peanut could be 

causing the increased number of outbreaks in soybean. 

In other crops such as sunflower, S. sclerotiorum often initiates disease by 

carpogenic germination of sclerotia producing ascospores (Abawi and Grogan 1979); 

however, it has been suggested that this rarely occurs in soybean and peanut.  When 

Phipps and Porter (1982) looked at the sources of infection in soybean, they found that in 

all cases the infections were initiated near the soil line where plant tissues were in contact 

with the soil, indicating that infections were likely from direct sclerotial germination 

producing a mycelium.  They also found that senescent tissues were generally the first to 

be colonized, with the pathogen later moving to healthy parts of the plant.  When the 

authors completed pathogenicity studies, they found that while able to colonize both 
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peanut and soybean, S. sclerotiorum was generally less aggressive when compared to S. 

minor on the same crops.  Melouk et al. (2003) reported similar findings regarding the 

pathogenicity of S. sclerotiorum.  When they tested an S. sclerotiorum isolate from a 

Nebraska peanut field, they found that stem lesion lengths initiated by the pathogen were 

only about one fifth the lengths of those caused by S. minor. 

After a mycelium is produced in the senescent tissue, the S. sclerotiorum infection 

can progress to succulent tissue, producing symptoms similar to those of S. minor.  A 

white, fluffy, mycelium is often produced on aerial branches, eventually producing water-

soaked lesions that cause wilting and death of tissue above the lesion, and finally, tissue 

collapse.  All parts of the plant can be infected by the fungus, both on the tissue surface 

and within it.  This is followed by the production of large (2.0-10.0 mm), irregularly-

shaped sclerotia throughout.  Sclerotia initially are white, but eventually mature into a 

dark, melanized form (Agrios, 2005). 

 

Factors influencing disease occurrence in Sclerotinia 

A number of factors influence the incidence and severity of disease caused by S. 

minor and S. sclerotiorum including cool, wet weather, high relative humidity 

approaching saturation (95-100%) (Dow et al., 1988a; Dow et al., 1988b), and sclerotial 

density in the soil (Abawi and Grogan, 1979).  In the case of S. minor, temperature in the 

range of 18 to 25°C is the most conducive for sclerotial germination (Dow et al., 1988a; 

Imolehin et al., 1980).  Favorable temperature for S. sclerotiorum from beans is closer to 

10°C (Abawi and Grogan, 1975).  Dow et al., (1988a) found that the ideal overall 

temperature range for myceliogenic germination, infection, and colonization was between 
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20 and 25°C.  This could likely be an explanation as to why Sclerotinia blight is absent in 

areas of the country where nighttime temperatures rarely drop in to this range.   

Soil moisture is important for sclerotial germination as well, with potentials below 

-1.5 MPa generally required, although completely saturated soils tend to reduce 

germination and survival (Hao et al., 2003).  The formation of a favorable microclimate 

near the soil surface and in the dense canopy of maturing peanut plants is also a major 

factor in disease development.  The shading created by the canopy reduces sunlight 

penetration and extends cool, nighttime temperatures needed for disease development 

(Dow et al. 1988a).  The canopy can also restrict air movement, thereby increasing the 

relative humidity near the soil layer.  Finally, drying of the soil, and subsequently the 

sclerotia themselves, seems to be another requirement for successful germination (Abawi 

and Grogan, 1979). 

 

Pathogenesis of Sclerotinia 

Both S. minor and S. sclerotiorum produce a large assortment of cell wall 

degrading enzymes (CWDE), which can include pectinases, ß-1,3-glucanases, 

glycosidases, cellulases, xylanases, and cutinases (Annis and Goodwin, 1997).  By 

secreting a wide variety of these CWDE’s, Sclerotina spp. can macerate tissues, and 

break down cell wall components that greatly facilitates penetration of the host tissue.  

Breakdown of tissue also releases nutrients for use by the fungus (Bolton et al., 2006). 

The pathogenicity of Sclerotinia spp. is also enhanced by the production of oxalic 

acid (ethanedioic acid), and has several proposed methods of activity.  Soon after 

infection, a build up of oxalic acid in the infected tissues causes the extracellular pH to 
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decrease to a range of around 4.0-5.0.  The fungus benefits from this decrease in pH as 

many of the CWDE’s activities are optimized when pH is below 5.0 (Bateman and Beer, 

1965).  The production of oxalic acid has also been shown to block oxidative burst, a 

significant plant defense response (Cessna et al., 2000).  Oxalic acid has also been shown 

to manipulate guard cell function by causing stomatal opening and inhibiting closure, 

which results in wilting of the foliage (Guimaraes and Stotz, 2004).  Finally, high levels 

of oxalic acid in the plant are likely to be toxic to plant tissues that renders them more 

susceptible to further damage by the pathogen (Bolton et al., 2006). 

 

Sclerotinia blight of peanut 

In the United States, Sclerotinia blight was first observed on peanuts in Virginia 

in 1971 and in North Carolina in 1972 (Porter and Beute, 1974).  Since then, Sclerotinia 

blight has been established in all peanut producing areas of the United States including 

Oklahoma by 1972 (Wadsworth, 1973).  Losses in Virginia peanut can be upwards of 

15%, resulting in significant losses for producers (Dow et al., 1988a).  Currently, 

Sclerotinia blight is one of the major limiting factors in peanut production (Melouk and 

Shokes, 1995).  In Oklahoma, Sclerotinia blight usually occurs in fields in September and 

October as plants are reaching maturity and environmental conditions such as cool 

nighttime temperatures persist, creating optimum conditions for disease development 

(Maas et al., 2006). 
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CHAPTER II 
 

 

GROWTH CHARACTERISTICS OF SCLEROTINIA  

MINOR AND SCLEROTINIA SCLEROTIORUM ISOLATES 

 

 

Abstract 

Sclerotinia minor Jagger, and Sclerotinia sclerotiorum (Lib.) deBary cause 

Sclerotinia blight in peanut (Arachis hypogaea L.).  Sclerotinia blight causes most of its 

damage by infecting main stems and pegs of the peanut plant and by producing lesions.  

These lesions cause plants to wilt, and ultimately collapse, causing pods to be left in the 

ground during harvest.  S. minor is the primary species causing Sclerotinia blight in 

Oklahoma, although there are sporadic reports of S. sclerotiorum causing damage.  While 

considerable research has been completed on S. minor, limited information is known 

about the growth and sclerotial production of S. sclerotiorum on peanut.  Streptomycin 

potato dextrose agar (SPDA) was inoculated with three Sclerotinia isolates (one S. minor 

from peanut and two S. sclerotiorum from peanut and pumpkin) to determine mycelial 

growth rates and production of sclerotia.  On SPDA, the peanut and pumpkin isolates of 

S. sclerotiorum had significantly (P ≤ 0.05) higher rates of hyphal growth (1.85 & 1.88 

mm/hr, respectively) compared to S. minor (1.45 mm/hr).  S. minor produced both a
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significantly (P ≤ 0.05) greater number of sclerotia (334), and a significantly greater total 

sclerotial weight (0.179 g) per plate compared to the S. sclerotiorum (peanut) isolate, 

which produced 23 sclerotia weighing 0.150 g per plate.  By comparison, the S. 

sclerotiorum (pumpkin) isolate produced 35 sclerotia weighing 0.109 g per plate.  Six-

week-old peanut plants (Okrun & Valencia C) were inoculated with these isolates to 

determine rates of lesion expansion (RLE), area under disease progress curve (AUDPC) 

values, and sclerotial production on infected tissue.    The S. sclerotiorum isolate from 

pumpkin produced the greatest AUDPC on Okrun with 27.02 (P ≤ 0.05), while S. minor 

and S. sclerotiorum (pumpkin) produced similar RLE’s with 2.62 and 2.53 cm/day, 

respectively on Okrun (P ≤ 0.05).  On Valencia C, S. sclerotiorum from pumpkin had the 

highest values for both AUDPC and RLE with 26.43 units and 2.37 cm/day, respectively 

(P ≤ 0.05).  S. minor produced the greatest number of sclerotia per plant on both peanut 

cultivars (14 on Okrun, 15 on Val C; P ≤ 0.05).  The greatest sclerotial weight on Okrun 

was produced by S. sclerotiorum (pumpkin) with 0.026 g per plant (P ≤ 0.05), while on 

Valencia C the greatest weights were produced by S. sclerotiorum (pumpkin) and S. 

minor, with 0.022 g and 0.014 g, respectively per plant (P ≤ 0.05).  This data suggests 

that while the S. sclerotiorum pumpkin isolate is the most aggressive, the greater number 

of sclerotia produced by S. minor may give it the greatest disease causing fitness as each 

sclerotium constitutes an infection propagule.  

Key words: Groundnut 

________________________________________________________________________ 

 



15 
 

Sclerotinia minor Jagger, and Sclerotinia sclerotiorum (Lib.) deBary cause 

Sclerotinia blight in peanut (Arachis hypogaea L.) (Porter and Beute, 1974).  Sclerotinia 

blight is characterized by the presence of a white, fluffy mycelium on main stems and 

branches of peanut followed by the formation of tan, water-soaked lesions.  Stem tissue 

above the infection often quickly wilts, causing the collapse of infected tissue.  Sclerotia, 

which are survival structures, are produced in abundance in and on infected tissue which 

ultimately reach the soil and remain viable for extended periods of time (Agrios, 2005 

and Porter et al., 1984).   

In the United States, Sclerotinia blight was first reported in peanut in 1971 in 

Virginia (Porter and Beute, 1974), and in Oklahoma in 1972 (Wadsworth, 1979).  Since 

then, the disease has become a widespread problem in the United States, causing 

significant losses wherever peanut is grown (Porter et al., 1984).  When it is not managed 

properly, Sclerotinia blight poses a significant threat to growers as it is one of the major 

limiting factors in peanut production (Melouk and Shokes, 1995).  In Oklahoma, 

Sclerotinia blight is caused almost exclusively by S. minor.  Near Clearwater, Nebraska, 

S. sclerotiorum was reported in a peanut field causing damage on cv. Valencia C (Melouk 

et al., 2003).  Nebraska is not considered a traditional peanut growing region in the 

United States.  The disease usually becomes apparent in late summer to early fall in 

Oklahoma when moisture levels increase and nighttime temperature begins to fall into the 

ideal range for disease development (Maas et al., 2006). 

Due to its importance in peanut production in Oklahoma, considerable research 

has been conducted related to the general biology and growth characteristics of S. minor 

on peanut.  Techniques such as stem inoculation with Sclerotinia allow simple 
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measurement of disease progress in the plant tissue by way of lesion growth rates 

(Melouk et al., 1992).  In addition to lesion growth data, sclerotia production and viability 

can be compared among different peanut cultivars to gain insight into the levels of 

resistance to S. minor present in peanut breeding lines and cultivars.  Similar testing has 

not been previously performed for S. sclerotiorum in peanut.  Therefore, the objectives of 

this research were to: 1) compare the mycelial growth and sclerotial production of S. 

minor and S. sclerotiorum in culture, and 2) compare pathogenicity of S. minor and S. 

sclerotiorum on peanut. 

 

Materials and Methods 

Plant material 

The cultivar ‘Okrun’, a Sclerotinia blight-susceptible, runner-type peanut, and 

‘Valencia C’, a Valencia type displaying moderate resistance to Sclerotinia blight were 

used in this study.  Seeds germinated on wet filter paper at 30 C in an incubator for two 

days were planted in pots (10 cm dia) in a 2:1:1 mixture of sand, shredded peat moss, and 

soil before being topped with a thin layer (0.5 cm) of sand to reduce moisture loss.  Plants 

were grown in a climate-controlled greenhouse, watered daily, and each was fertilized 

with 75 mL of a 0.45% ammonium nitrate solution on a weekly basis to produce highly 

succulent stems. 

 

Fungal cultures and inoculum production 

All experiments utilized three Sclerotinia isolates.  These included one S. minor 

isolate (H. Melouk #2, Oklahoma, 1993) from peanut, and two S. sclerotiorum isolates; 
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one from peanut, (H. Melouk, Nebraska, 2002) and the other from pumpkin (K. Conway, 

Oklahoma, 2007).  Isolates were maintained on potato dextrose agar (Difco Laboratories, 

Detroit, MI) containing 100 ppm of streptomycin sulfate (SPDA) for the duration of the 

experiments by way of weekly transfers to fresh medium at 25 ± 2 C. 

Sclerotinia cultures for plant inoculation were produced on SPDA in polystyrene 

petri plates (9-cm dia) containing 15 ml of medium.  Two-day-old fungal cultures were 

used for inoculations to avoid changes in the vegetative hyphal growth that occur in older 

cultures prior to formation of sclerotia. 

 

Sclerotial viability 

Sclerotia collected from various experiments were tested for viability, which was 

determined by germination on SPDA medium.  Before plating, sclerotia were sanitized 

with a sodium hypochlorite solution as described in Melouk et al., (1999) to reduce 

contamination.  For each treatment, five sclerotia were plated on each of five plates of 

SPDA, and plates were incubated at room temperature (25 ± 2 C).  The total number of 

germinated sclerotia was recorded after four days of incubation. 

 

Hyphal growth and production of sclerotia on nutrient medium 

For each of the three Sclerotinia isolates, SPDA plates were inoculated as 

described in the previous section, placed in plastic bags, and incubated in darkness at 25 

C in an incubator (Percival Scientific, Perry, IA).  Mycelial growth diameters were 

recorded on a 12 hour basis until the fungal mycelium had grown within 0.5 cm of the 

plate’s edge.  Cultures were allowed to mature in the incubator for a total of four weeks 
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from initial inoculation, and then placed on a laboratory bench at room temperature (25 ± 

2 C) for two days before sclerotia were harvested with the aid of a camel hair brush.  

Sclerotia from each individual culture plate were quantified by weight, number, and 

percent germination.  This experiment was conducted twice with five replications for 

each of the Sclerotinia isolates and analyzed with SAS (SAS institute, Cary NC) using 

analysis of variance (proc mixed; α=0.05).  Values for sclerotial number (square root) and 

sclerotial viability (arcsine square root) were transformed prior to analysis, but means and 

standard errors for the untransformed data are reported. 

 

Peanut plant inoculation with S. minor and S. sclerotiorum 

Plant inoculations were performed according to Faske et al., (2006).  Leaves on 

the main stem of peanut plants (6-8 weeks-old), from soil level to the near apex of the 

stem were trimmed off 24 hours prior to inoculation, leaving approximately 5 mm of 

each petiole intact.  This procedure helps to keep the disease lesions localized to the 

stems.  The two to three apical-most leaves and leaves on secondary shoots were left 

intact to help maintain plant health during experimentation.     

Plants were each inoculated with a mycelial plug (5 mm), taken from 2-day-old 

cultures, which were placed with the mycelial side towards the stem in the pocket 

between the petiole and the main stem at the vertical midpoint of the stem.  Plants were 

then placed in humidity chambers built from PVC pipe and clear plastic.  By lining the 

bottom of the chambers with wet cotton towels and opening them as infrequently as 

possible, the chambers provide high relative humidity (>95%) for optimum infection and 

lesion growth.  Inoculated plants were watered thoroughly when necessary for the 
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duration of the experiments.  Starting three days after inoculation, lesion length 

measurements were recorded for the infected stems and continued on a 24 hour basis 

through day 7. 

After completion of lesion measurements, the chambers were opened to allow a 

return to the ambient humidity level of the lab within 30 minutes (40-70% RH), which is 

well below the established ideal RH for lesion initiation and expansion.  The plants were 

then left to dry for two weeks in the chambers to facilitate production of sclerotia on 

infected tissue.  To facilitate further drying, the infected stems were clipped at soil level 

and placed in brown paper bags for two more weeks.  Lastly, sclerotia were collected 

from both the stem surface and from within the pith of the stem, and quantified based on 

number, weight, and germination rate.  The lesion expansion data allowed the calculation 

of two values for each treatment, these being rate of lesion expansion (RLE) and area 

under disease progress curve (AUDPC).  The RLE measures the slope of a line drawn 

between the lesion length on the first reading and the last reading, measured in cm per 

day.  AUDPC measures the area in standard units under a curve drawn between lesion 

length values (y) and time after inoculation (x). 

A randomized complete block design (RCBD) was used and consisted of four 

replications.  Each replication had two copies of each treatment (peanut variety + isolate) 

plus two controls for each genotype inoculated with a sterile SPDA agar plug for a total 

of 64 plants per experiment.  Two runs of the experiment were completed and were 

combined for analysis.  Combined data was then analyzed by analysis of variance 

(α=0.05) using SAS (proc mixed; SAS institute, Cary NC).  
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Results and Discussion 

 

Hyphal growth and production of sclerotia on nutrient medium 

S. sclerotiorum (pumpkin) had the highest overall growth rate at 1.88 mm/hr, with 

S. sclerotiorum (peanut) being slightly lower at 1.85 mm/hr. S. minor had a significantly 

lower hyphal growth rate of 1.45 mm/hr (Table 1).  S. minor produced the greatest 

number of sclerotia (though considerably smaller in size) than the S. sclerotiorum isolates 

with an average of 334 per plate (Table 1).  S. sclerotiorum (pumpkin) produced 

significantly less sclerotia per plate with 35, and S. sclerotiorum (peanut) produced fewer 

still, with only 23 per plate.  S. minor produced a significantly greater weight of sclerotia, 

with 0.179 g per plate, than that of S. sclerotiorum (peanut) with 0.150 g per plate, and S. 

sclerotiorum (pumpkin) with 0.109 g per plate (Table 1).  All three isolates had 

statistically similar values for sclerotial viability, with those for S. sclerotiorum (peanut), 

S. sclerotiorum (pumpkin), and S. minor being 96.3, 92.0, and 96.4%, respectively (Table 

1).  

Though the rate of hyphal growth of S. minor on culture medium was slightly 

lower than the two S. sclerotiorum isolates, S. minor produced a significantly higher 

number of sclerotia and greater sclerotial weight compared to S. sclerotiorum (pumpkin) 

and S. sclerotiorum (peanut).  This confers an advantage to S. minor because each 

sclerotium, regardless of size, constitutes an infection propagule.  Not only does the 

larger number of smaller sclerotia allow more sclerotia to be incorporated into the soil 

and thereby allow for more infections to occur in subsequent years, but the small 

sclerotial size also facilitates spread from location to location on equipment. 
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Peanut plant inoculation with S. minor and S. sclerotiorum 

On Okrun, S. sclerotiorum (pumpkin) produced the greatest AUDPC with 27.02, 

while S. minor and S. sclerotiorum (peanut) produced significantly lower AUDPC values, 

with 21.57 and 6.03, respectively (Table 2).  When the three isolates were compared by 

RLE values, S. minor had the highest value, 2.62, which was not significantly greater 

than S. sclerotiorum (pumpkin) with a value of 2.53.  S. sclerotiorum (peanut) had a 

significantly lower RLE value of 0.56 (Table 2). 

On Valencia C, S. sclerotiorum (pumpkin) again produced the largest AUDPC 

value by a significant margin with 26.43, compared to S. minor with 16.67 and S. 

sclerotiorum (peanut) with 1.20 (Table 2).  When compared by RLE values, S. 

sclerotiorum (pumpkin) was also the highest with a value of 2.37.  S. minor and S. 

sclerotiorum (peanut) had significantly lower RLE’s of 1.78 and 0.11, respectively (Table 

2). 

In addition, the two peanut cultivars were compared individually against each 

isolate (Table 3).  AUDPC values for S. sclerotiorum (peanut) were significantly higher 

on Okrun with 6.03, compared to a value of 1.20 seen on Valencia C.  For S. sclerotiorum 

(pumpkin) no difference was observed between the two peanut cultivars, with the 

AUDPC values for Okrun and Valencia C being 27.02 and 26.43, respectively.  For S. 

minor, a significant difference was observed between Okrun and Valencia C, with 

AUDPC values of 21.57 and 16.67, respectively.  When looking at RLE values, S. 

sclerotiorum (peanut) produced a significantly higher value of 0.56 on Okrun as 

compared to 0.11 on Valencia C.  For S. sclerotiorum (pumpkin) no difference was 

observed in RLE values, with those for Okrun and Valencia C being 2.53 and 2.37, 



22 
 

respectively.  For S. minor, a significant difference was noted for RLE values, with those 

for Okrun and Valencia C being 2.62 and 1.78, respectively.   

For sclerotial production, the three isolates were again first compared to each 

peanut cultivar (Table 4).  On Okrun, S. minor produced significantly more sclerotia per 

stem with 13.56, compared to 2.63 for S. sclerotiorum (pumpkin), and 0.38 for S. 

sclerotiorum (peanut).  On Valencia C, S. minor again produced significantly more 

sclerotia per stem with 15.31, compared to 2.69 and 0.00 for S. sclerotiorum (pumpkin) 

and S. sclerotiorum (peanut), respectively.  When compared by sclerotial weight, the 

highest value on Okrun was produced by S. sclerotiorum (pumpkin) with 0.026 g per 

stem.  S. minor and S. sclerotiorum (peanut) produced significantly lower weights with 

0.012 g and 0.007 g, respectively.  On Valencia C, S. sclerotiorum (pumpkin) again 

produced the greatest sclerotial weight per stem with 0.022 g, but was not statistically 

higher than the 0.014 g per stem produced by S. minor.  S. sclerotiorum (peanut) 

however, produced a significantly lower sclerotial weight per stem on Valencia C, with 

0.000 g (Table 4).  Sclerotial viability was determined for each isolate/peanut cultivar 

combination, but the lack of sclerotia produced on some stems did not allow the same 

statistical analysis to be performed as in sclerotial number and weight.  When all sclerotia 

produced on Okrun were tested for viability, S. sclerotiorum (peanut) had the highest 

value, with 100% of sclerotia shown to be viable.  S. minor and S. sclerotiorum 

(pumpkin) were both lower with viabilities of 94.5 and 90.5% respectively (Table 4).  On 

Valencia C, S. sclerotiorum (peanut) produced no sclerotia, and S. sclerotiorum 

(pumpkin) and S. minor had viabilities of 90.7 and 86.9%, respectively. 
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Sclerotial production for each isolate was also compared against the two peanut 

cultivars (Table 5).  In the case of S. sclerotiorum (peanut), the number of sclerotia 

produced was not found to be different between Okrun and Valencia C, with values of 

0.4 and 0.0, respectively.  For S. sclerotiorum (pumpkin), there was also no difference in 

the number of sclerotia produced, with values for Okrun and Valencia C being 2.6 and 

2.7, respectively.  S. minor also showed no difference in sclerotia produced, with 13.6 

produced on Okrun and 15.3 on Valencia C.  In the case of sclerotial weight, again no 

statistical differences were seen between any of the isolate/cultivar combinations (Table 

5).  For S. sclerotiorum (peanut), weights were 0.007 g on Okrun and 0.000 on Valencia 

C.  The S. sclerotiorum (pumpkin) weights for Okrun and Valencia C were 0.026 g and 

0.022 g, respectively.  S. minor produced 0.012 g per stem on Okrun and 0.014 g on 

Valencia C.  As explained previously, sclerotial viability was determined from all 

available sclerotia and allowed no statistical analysis (Table 5).  For S. sclerotiorum 

(peanut), 100% of sclerotia produced on Okrun were viable, but on Valencia C, no 

sclerotia were produced.  Viability was nearly identical among cultivars for S. 

sclerotiorum (pumpkin) with 90.5% on Okrun and 90.7% on Valencia C.  The viability 

values for S. minor were 94.9% on Okrun and 86.9% on Valencia C. 

Our data show that both the AUDPC and RLE methods are suitable for comparing 

lesion expansion on peanut stems.  Both methods consistently reflected the lower rates of 

lesion expansion that would be expected on Valencia C because of its moderate level of 

resistance to Sclerotinia.  It is important to note though that neither method always 

showed significant differences in lesion expansion between Okrun and Valencia C. 
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The data also indicate that the S. sclerotiorum (pumpkin) isolate is the most 

aggressive isolate, as indicated by its highest AUDPC value on both Okrun and Valencia 

C.  When using RLE values, S. sclerotiorum (pumpkin) was not significantly higher than 

S. minor when inoculated on Okrun, but did show a significant difference on Valencia C.  

S. minor was consistently the second most aggressive isolate as determined by both the 

AUDPC and RLE methods.  Results seem to indicate that the S. sclerotiorum (peanut) 

isolate is only lowly aggressive on both peanut varieties. 

Comparing the three isolates by sclerotial production yielded slightly different 

results than those obtained by the plate inoculations.  S. sclerotiorum (pumpkin) produced 

the greatest weight of sclerotia on both Okrun and Valencia C stems compared to the 

other isolates.  This could be explained by the higher aggressiveness noted by S. 

sclerotiorum (pumpkin), possibly giving it some physiological advantage for production 

of sclerotia.  S. minor did however produce a considerably greater number of sclerotia 

when compared to the other isolates, again possibly giving it a higher disease-producing 

fitness.  Sclerotial viability values were relatively consistent among tests, but yielded no 

significant information relative to disease fitness or host plant resistance.  While lesion 

expansion data seems to be a good indicator for the level of resistance present in peanut 

cultivars, sclerotial production does not yield the same results.  With the exception of S. 

sclerotiorum (peanut), which produced no sclerotia on Valencia C, both sclerotial number 

and weight were higher on Valencia C compared to Okrun when looking at S. 

sclerotiorum (pumpkin) and S. minor, though no significance could be shown. 
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Table 1. Mean growth parameters of Sclerotinia minor and Sclerotinia sclerotiorum on culture medium                                        
(including standard errors). 
_________________________________________________________________________________________________________________________________________________________________________ 

 

Isolate   Rate of   Sclerotial  Sclerotial      Sclerotial 
  hyphal growth2 number3  weight4      viability %5 

______________________________________________________________________________________________________________________________ 
S. sclerotiorum 1.85a1 (0.019)  23c (1.05)  0.150b (0.0020) 96.3a (0.012)  
    (peanut)   
S. sclerotiorum 1.88a (0.022)  35b (1.94)  0.109c (0.0047)    92.0a (0.013) 
    (pumpkin) 
S. minor (peanut) 1.45b (0.039)  334a (7.72)  0.179a (0.0044)    96.4a (0.009) 
________________________________________________________________________________________________________________________________________________________________________ 
 

 
1 Different letters within columns indicate a significant difference at α=0.05.  Data of two experimental                                             

runs were combined for statistical analysis.  Sclerotial number and sclerotial viability data was                                              
transformed prior to analysis, but means and standard errors from the original data are reported. 

2 Colony diameter growth rate in mm/hr on potato dextrose agar containing 100 ppm streptomycin sulfate. 
3 Number of sclerotia/plate.  
4 Total sclerotial weight (g)/plate. 
5 Percent of sclerotia germinating and showing normal growth 4 days after plating on SPDA. 
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Table 2. Mean area under disease progress curve (AUDPC) and rate of lesion expansion 
(RLE) values for Sclerotinia minor and Sclerotinia sclerotiorum on two peanut cultivars 
(including standard errors). 

________________________________________________________________________________________________________________________________________________ 
 

     AUDPC2  RLE3  
________________________________________________________________________________________________________________________________________________ 

 

Okrun 
   S. sclerotiorum (peanut)   6.03c1 (1.71)  0.56b (0.14) 
   S. sclerotiorum (pumpkin)   27.02a (1.60)  2.53a (0.13) 
   S. minor (peanut)    21.57b (1.08)  2.62a (0.12) 
    
Valencia C 
   S. sclerotiorum (peanut)   1.20c (0.84)  0.11c (0.08)   
   S. sclerotiorum (pumpkin)   26.43a (2.01)  2.37a (0.10) 
   S. minor (peanut)    16.67b (1.45)  1.78b (0.18) 
 
________________________________________________________________________________________________________________________________________________ 

 
1 Different letters within columns, within cultivars indicate a significant difference at 
α=0.05.  Data of two experimental runs were combined for statistical analysis. 

2 Area under disease progress curve values. 
3 Rate of lesion expansion in cm/day. 
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Table 3. Mean area under disease progress curve (AUDPC) and rate of lesion expansion 
(RLE) values for Sclerotinia minor and Sclerotinia sclerotiorum on two peanut cultivars 
(including standard errors). 
________________________________________________________________________________________________________________________________________________ 

 

Isolate   Cultivar  AUDPC2  RLE3   
________________________________________________________________________________________________________________________________________________ 

 

S. sclerotiorum Okrun:   6.03a1 (1.71)  0.56a (0.14)            
(peanut)  Valencia C:  1.20b (0.84)  0.11b (0.08) 

 
S. sclerotiorum Okrun:   27.02a (1.60)  2.53a (0.13) 
   (pumpkin)  Valencia C:  26.43a (2.01)  2.37a (0.10) 

 
S. minor (peanut) Okrun:   21.57a (1.08)  2.62a (0.12) 

  Valencia C:  16.67b (1.45)  1.78b (0.18) 
________________________________________________________________________________________________________________________________________________ 

 
1 Different letters within columns, within isolates indicate a significant difference at 
α=0.05.  Data of two experimental runs were combined for statistical analysis. 

2 Area under disease progress curve values. 
3 Rate of lesion expansion in cm/day. 
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Table 4. Mean sclerotial production and viability of Sclerotinia minor and Sclerotinia 
sclerotiorum on two peanut cultivars (including standard errors). 

________________________________________________________________________________________________________________________________________________ 
 

Cultivar & Isolate  Sclerotial  Sclerotial  Sclerotial 

    number2  weight3  viability4 
________________________________________________________________________________________________________________________________________________ 

 

Okrun 
   S. sclerotiorum (peanut) 0.4b1 (0.2)  0.007b (0.004)  100% 
   S. sclerotiorum (pumpkin) 2.6b (0.3)  0.026a (0.003)  90.5% 
   S. minor (peanut)  13.6a (0.8)  0.012b (0.001)  94.5%       

 

Valencia C 
   S. sclerotiorum (peanut) 0.0b (0.0)  0.000b (0.00)  N.A.  
   S. sclerotiorum (pumpkin) 2.7b (0.9)  0.022a (0.007)  90.7% 
   S. minor (peanut)  15.3a (2.4)  0.015a (0.002)  86.9% 
 
________________________________________________________________________________________________________________________________________________ 

 
1 Different letters within columns, within cultivars indicate a significant difference at 
α=0.05.  Data of two experimental runs were combined for statistical analysis. 

2 Number of sclerotia/plant.  
3 Total sclerotial weight (g)/plant. 
4 Percent of sclerotia germinating and showing normal growth 4 days after plating on 

SPDA.  This is the overall percentage of sclerotia germinating from both runs of the 
experiment.  Not all stems produced sclerotia, so this data could not be analyzed in the 
same manner as sclerotial number and weight.  No sclerotia were produced by S. 
sclerotiorum (peanut) on Valencia C. 
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Table 5. Mean sclerotial production and viability of Sclerotinia minor and Sclerotinia 
sclerotiorum on two peanut cultivars (including standard errors). 

________________________________________________________________________________________________________________________________________________ 
 

Isolate   Cultivar Sclerotial  Sclerotial  Sclerotial 
    number2 weight3  viability%4 

________________________________________________________________________________________________________________________________________________ 
 

S. sclerotiorum Okrun:  0.4a1 (0.2) 0.007a (0.004)  100.0 
   (peanut)  Valencia C: 0.0a (0.0) 0.000a (0.000)  N.A. 

 
S. sclerotiorum Okrun:  2.6a (0.3) 0.026a (0.003)  90.5 
   (pumpkin)  Valencia C: 2.7a (0.9) 0.022a (0.007)  90.7 

 
S. minor (peanut) Okrun:  13.6a (0.8) 0.012a (0.001)  94.9 

  Valencia C: 15.3a (2.4) 0.014a (0.002)  86.9 

________________________________________________________________________________________________________________________________________________ 
 

1 Different letters within columns, within isolates indicate a significant difference at 
α=0.05.  Data of two experimental runs were combined for statistical analysis. 

2 Number of sclerotia/plant  
3 Total sclerotial weight (g)/plant 
4 Percent of sclerotia germinating and showing normal growth 4 days after plating on 

SPDA.  This is the overall percentage of sclerotia germinating from both runs of the 
experiment.  Not all stems produced sclerotia, so this data could not be analyzed in the 
same manner as sclerotial number and weight.  No sclerotia were produced by S. 
sclerotiorum (peanut) on Valencia C. 
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CHAPTER III 
 

 

EFFECT OF POST-INOCULATION RELATIVE HUMIDITY ON INFECTION 

AND LESION EXPANSION OF SCLEROTINIA MINOR AND SCLEROTINIA  

SCLEROTIORUM ISOLATES ON PEANUT  

 

 

Abstract 

Sclerotinia minor Jagger, and Sclerotinia sclerotiorum (Lib.) deBary cause 

Sclerotinia blight in peanut (Arachis hypogaea L.).  Sclerotinia blight primarily damages 

peanut by infecting main stems and pegs of the peanut plant where lesions are produced.  

These lesions cause plants to wilt, and ultimately collapse, causing pods to be left in the 

ground during harvest.  S. minor is the primary species causing Sclerotinia blight in 

Oklahoma, though sporadic reports of S. sclerotiorum causing damage also exist.  Stem 

inoculations have been used to gauge host plant resistance and isolate aggressiveness 

with S. minor under high relative humidity (RH) conditions, but in this regard, little has 

been done with S. sclerotiorum.  In addition, little is known about the effect of shortening 

the period of high relative humidity post-inoculation during infection and lesion 

expansion of Sclerotinia in peanut.  Six-week-old seedlings of the peanut cultivars Okrun 

and Tamspan 90 were inoculated with S. minor and S. sclerotiorum.  Six humidity
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periods were used for the first humidity regime and included open for duration of 

experiment, closed 1 day, closed 2 days, closed 3 days, closed 4 days, and closed 7 days.  

For the second humidity regime, periods of open for the duration of experiment, closed 

12 hr, closed 24 hr, closed 36 hr, closed 48 hr, and closed 60 hr were used.  Percent 

infection and area under disease progress curve (AUDPC) values were subjected to 

statistical analysis.  50 to 65% infection occurred after maintaining a high RH of one day 

after inoculation under the first humidity regime.  88% infection was obtained when two 

days of high RH were maintained.  No infection occurred in the open for the duration of 

the experiment treatment, so AUDPC values were 0.00.  AUDPC values for the closed 1 

day treatment were significantly higher compared to the open treatment for both isolates 

on both peanut cultivars.  High RH treatments of between 2 days and 7 days had 

significantly greater AUDPC values compared to the closed 1 day treatment for both 

isolates on both cultivars (P ≤ 0.05).   Lesion formation was not observed in treatments 

involving less than 24 hr of high RH under the second humidity regime.  Between 69 and 

81% infection was noted when given 24 hr of high RH.  Percent infection values ranged 

from 88 to 94% when 36 hr of high RH was provided.  One hundred percent infection 

was noted in all treatments involving more than 36 hr of high RH.  AUDPC’s were 0.00 

for the open for the duration of the experiment and closed 12 hr treatments since no 

infection occurred.  AUDPC’s for the closed 24 hr and closed 36 hr treatments were 

significantly greater (P ≤ 0.05) than the closed 12 hr and open treatments when looking at 

S. minor on Okrun and S. sclerotiorum on Tamspan 90.  Values for the closed 48 hr and 

closed 60 hr treatments were significantly greater than the closed 24 hr and closed 36 hr 

treatments for S. minor on Okrun and S. sclerotiorum on Tamspan 90.  AUDPC’s for the 
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closed 24 hr treatment were greater (P ≤ 0.05) than those in the closed 12 hr and open 

treatments, the values for the closed 36 hr treatment were greater than the closed 24 hr, 

closed 12 hr, and open treatments, and the values for the closed 48 hr and closed 60 hr 

treatments were significantly greater than all shorter length RH treatments when looking 

at S. sclerotiorum on Okrun.  For S. minor on Tamspan 90, the AUDPC’s for the closed 

24 hr treatment were significantly greater than those for the closed 12 hr and open 

treatments.  AUDPC’s for the closed 36 hr, closed 48 hr, and closed 60 hr were 

significantly greater (P ≤ 0.05) than all shorter length RH treatments.  It appears that the 

period of post-inoculation high relative humidity is a very important influence on peanut 

infection and lesion expansion of S. minor and S. sclerotiorum on peanut.  The data also 

seems to indicate that while a minimum of 24 hr of humidity is often sufficient to 

produce disease lesions, longer periods are often necessary for optimal growth of the 

fungi. 

Key words: Ground nut 
________________________________________________________________________ 

 

Sclerotinia minor Jagger and Sclerotinia sclerotiorum (Lib.) deBary cause 

Sclerotinia blight in peanut (Arachis hypogaea L.) (Porter and Beute, 1974).  Sclerotinia 

blight is characterized by the presence of a white, fluffy mycelium on main stems and 

branches of peanut followed by the formation of tan, water-soaked lesions.  Stem tissue 

above the infection often quickly wilts, causing the collapse of infected parts.  Sclerotia, 

which are survival structures, are produced in abundance in and on infected tissue that 

ultimately reach the soil and remain viable for extended periods of time (Agrios, 2005 

and Porter et al., 1984).   
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In the United States, Sclerotinia blight was first reported in peanut in 1971 in 

Virginia, (Porter and Beute, 1974) and in Oklahoma in 1972 (Wadsworth, 1979).  Since 

then the disease has become a widespread problem in the United States, causing 

significant losses wherever peanut is grown (Porter et al., 1984).  When it is not managed 

properly, Sclerotinia blight poses a significant threat to growers as it is a major limiting 

factor in peanut production (Melouk and Shokes, 1995).  In Oklahoma, Sclerotinia blight 

is caused almost exclusively by S. minor, but sporadic presence of S. sclerotiorum was 

reported in Oklahoma by Wadsworth, (1979).  Near Clearwater, Nebraska, S. 

sclerotiorum was reported in a peanut field causing damage on cv. Valencia C (Melouk et 

al., 2003).  Nebraska is not considered a traditional peanut growing region in the United 

States.  The disease usually starts to become apparent in late summer to early fall in 

Oklahoma, when moisture levels increase and nighttime temperatures begin to fall into 

the ideal range for disease development (Maas et al., 2006). 

Due to its importance in peanut production in Oklahoma, considerable research 

has been conducted related to the general biology and growth characteristics of S. minor 

on peanut.  Techniques such as stem inoculation with Sclerotinia spp. allow simple 

measurement of disease progress in the plant tissue by way of lesion expansion rates. 

These rates can be compared among different peanut cultivars to gain insight into the 

levels of resistance to S. minor present in peanut cultivars and breeding lines (Melouk et 

al., 1992).  For these types of inoculations, high relative humidity (RH) levels (98-100%) 

are generally maintained in incubation chambers for the duration of the experiment, 

which is often up to one week (Melouk et al., 1992).  Shortening this post-inoculation 

period would facilitate screening of peanut for reaction to S. sclerotiorum and S. minor. 
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Therefore, the objective of this research was to determine the effect of shortening the 

period of post-inoculation high relative humidity on infection and lesion expansion by S. 

minor and S. sclerotiorum under laboratory conditions. 

 

Materials and Methods 

Plant material 

The cultivar ‘Okrun’, a Sclerotinia blight-susceptible, runner-type peanut, and 

‘Tamspan 90’, a spanish variety displaying moderate resistance to Sclerotinia blight 

(Smith et al., 1991) were used in this study.  Seeds germinated on wet filter paper in a 30 

C incubator for two days were planted in a 2:1:1 mixture of sand, shredded peat moss, 

and soil before being topped with a thin layer of sand to reduce moisture loss.  Plants 

were grown in a climate-controlled greenhouse, watered daily, and each was fertilized 

weekly with 75 mL of a 0.45% ammonium nitrate solution to produce highly succulent 

stems. 

 

Fungal cultures and inoculum production 

All experiments utilized cultures of two Sclerotinia isolates.  These included one 

S. minor isolate (H. Melouk #2, Oklahoma, 1993) from peanut, and one S. sclerotiorum 

isolate from pumpkin (K. Conway, Oklahoma, 2007).  Isolates were maintained on potato 

dextrose agar (Difco Laboratories, Detroit, MI) containing 100 ppm streptomycin sulfate 

(SPDA) for the duration of the experiments by performing weekly transfers to fresh 

medium at 25 ± 2 C. 
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Sclerotinia cultures used for inoculation were produced on SPDA in 9 cm 

polystyrene petri plates each containing 15 ml of medium.  Two-day-old fungal cultures 

were used for inoculations to avoid changes in the vegetative hyphal growth, which occur 

in older cultures prior to formation of sclerotia. 

 

Effect of post-inoculation relative humidity on Sclerotinia disease progress 

Plant inoculations were performed according to Faske et al., (2006).  Leaves on 

the main stem of 6 to 8 week-old peanut plants were trimmed from the soil level to near 

the apex of the stem 24 hr prior to inoculation leaving approximately 5 mm of each 

petiole intact.  This procedure helps to keep disease lesions localized to the stems.  The 

two to three apical-most leaves and leaves on secondary shoots were left intact to help 

maintain plant health during the experiments.    

Plants were inoculated with the two Sclerotinia isolates produced as described 

previously.  Inoculum plugs (5 mm dia), taken from 2-day-old cultures, were placed with 

the mycelial side towards the stem in the pocket between the petiole and the main stem at 

the vertical midpoint of the stem.  Two plants were then placed in humidity chambers 

built from PVC pipe and clear plastic (dimensions 12 x 12 x 12 in).  By lining the bottom 

of the chambers with wet cotton towels and opening as infrequently as possible, the 

chambers provide high relative humidity (>95%) for optimum infection and lesion 

growth.  Inoculated plants were watered thoroughly when necessary for the duration of 

the experiments.  Starting three days after inoculation, lesion length measurements were 

recorded for the infected stems and continued on a 24 hr basis through day 7. 
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Two different regimes of lowering the post-inoculation relative humidity were 

examined for their effects on disease progress in Sclerotinia.  The first regime consisted 

of six treatments for each isolate, and included humidity chambers left open for the 

duration of the experiment, closed for 1 day and then opened, closed 2 days, closed 3 

days, closed 4 days, and closed 7 days.  Opening of the chambers lowered the humidity to 

the ambient level of the lab within 30 minutes (40-70% RH) which is well below the 

established ideal RH for infection and lesion formation.  Two experiments were 

conducted with 4 replications for each humidity treatment/isolate combination and two 

plants per replication.  The lesion expansion data was used to calculate an area under 

disease progress curve (AUDPC) value for each treatment.  Data from the two 

experimental runs were combined for analysis.  All data was analyzed using SAS (SAS 

Institute, Cary NC) using analysis of variance (proc mixed), alpha=0.05, to determine 

significance among treatments. 

The second humidity regime for lowering the post-inoculation RH consisted of 

six treatments for each isolate, and included humidity chambers left open for the duration 

of the experiment, closed for 12 hr and then opened, closed 24 hr, closed 36 hr, closed 48 

hr, and closed 60 hr.  Two experiments were conducted with 4 replications for each 

humidity treatment/isolate combination, and two plants per replication.  Lesion length 

measurements were taken starting three days after inoculation and continued on a 24 hour 

basis through day 7 providing the same AUDPC data as under the first humidity regime. 
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Results and Discussion 

24 hour relative humidity regime: 

Data on percent infection were taken on all treatments for Okrun and Tamspan 90.  

With treatments of open for duration of the experiment, closed 1 day , closed 2 days, 

closed 3 days, closed 4 days, and closed 7 days, S. minor inoculation produced percent 

infection values of 0.0, 50.0, 87.5, 100.0, 100.0, and 100.0%, respectively on Okrun 

(Table 1).  In this case the closed 1 day produced a significantly higher percent infection 

compared to the open for the duration of the experiment treatment, but had a significantly 

lower percent infection compared to the closed 2, 3, 4, and 7 day treatments.  For S. 

sclerotiorum on Okrun, percent infection values of 0.0, 62.5, 100.0, 100.0, 100.0, and 

100.0%, respectively were obtained (Table 1).  For this treatment, no statistical difference 

could be noted between the closed 2, 3, 4, and 7 day treatments.  The closed 1 day and 

open treatments produced significantly lower percent infection compared to the others, 

with the open treatment also producing a significantly lower value compared to the 

closed 1 day treatment.  On Tamspan 90, S. minor produced percent infection values of 

0.0, 62.5, 100.0, 100.0, 100.0, and 100.0%, respectively for the six treatments (Table 1).  

No statistical difference could be noted between the closed 2, 3, 4, and 7 day treatments, 

but the closed 1 day treatment again produced a significantly higher percent infection 

compared to the open treatment, though still significantly lower than the other four.  S. 

sclerotiorum produced percent infection values of 0.0, 50.0, 100.0, 100.0, 100.0, and 

100.0% for the six treatments, respectively on Tamspan 90 (Table 1).  As with S. minor 

on Tamspan 90, the closed 2, 3, 4, and 7 day treatments yielded a significantly higher 
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percent infection with respect to the other two treatments, with the closed 1 day treatment 

producing a significantly higher value compared to the open treatment. 

AUDPC values were also compared between each isolate and the six humidity 

treatments on each peanut cultivar.  On Okrun, the S. minor values for the six treatments 

were 0.00, 8.20, 18.01, 19.02, 19.39, and 19.98, respectively (Table 2).  Though values 

increased as the post-inoculation relative humidity period was lengthened, no statistical 

difference was observed among the closed 2, 3, 4, and 7 day treatments.  The open and 

closed 1 day treatments yielded significantly lower AUDPC values, with no lesions being 

formed on any plants in the open treatment.  For S. sclerotiorum on Okrun, AUDPC 

values of 0.00, 9.34, 22.10, 26.23, 20.11, and 20.79 were obtained for the 6 treatments, 

respectively (Table 2).  In this case, the closed 2 and closed 3 day treatments yielded the 

highest AUDPC compared to all other treatments, but the closed 2 day treatment could 

not be statistically separated from the closed 4 day and closed 7 day treatments.  The 

closed 4 day and closed 7 day treatments produced significantly lower AUDPC’s 

compared to the closed 3 day, but also significantly higher values than the closed 1 day 

and open treatments.  Again, the open treatment produced no lesions, giving it a 

significantly lower AUDPC compared to all other treatments. 

On Tamspan 90, the S. minor AUDPC values were 0.00, 5.29, 13.18, 24.86, 

21.50, and 26.38, respectively for the six treatments (Table 2).  In this case the closed 7 

day treatment produced significantly higher AUDPC’s compared to the other treatments, 

but could not be statistically separated from the closed 3 day treatment.  The closed 4 day 

treatment yielded the second highest AUDPC’s.  The closed 2 day treatment produced 

significantly lower values compared to the closed 3, 4, and closed 7 day treatments, but 
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these values were still significantly greater than the closed 1 day and open treatments.  

For S. sclerotiorum on Tamspan 90, the AUDPC values were 0.00, 4.84, 20.83, 24.06, 

22.92, and 24.15, respectively for the six treatments (Table 2).  No significant difference 

was observed between the closed 3, 4, 5, and 7 day treatments.  The closed 1 day 

treatment produced significantly lower AUDPC’s compared to the closed 3, 4, 5, and 7 

day treatments, but was still significantly higher than the open treatment. 

The data were presented in an alternate format for isolates to be compared to the 

two peanut cultivars by humidity treatment.  As no lesions were formed in the open 

treatment, no differences were noted between the two cultivars for either S. minor or S. 

sclerotiorum (Table 3).  In the closed 1 day treatment, no statistical difference was noted 

for S. minor, with AUDPC’s on Okrun and Tamspan 90 being 8.20 and 5.29, 

respectively.  There was also no difference shown for S. sclerotiorum, with values of 9.34 

and 4.84 for Okrun and Tamspan 90, respectively.  For the closed 2 day treatment, S. 

minor did show a difference in AUDPC’s between Okrun and Tamspan 90 with values of 

18.01 and 13.18.  No statistical difference was shown between the cultivars for S. 

sclerotiorum in the closed 2 day treatment, with AUDPC’s of 22.10 and 20.83 for Okrun 

and Tamspan 90, respectively.  In the closed 3 day treatment with S. minor, a 

significantly higher AUDPC was noted in Tamspan 90, with AUDPC’s of 19.02 and 

24.86.  There was not shown to be a significant difference in the closed 3 day treatment 

with S. sclerotiorum in the closed 3 day treatment with values of 26.23 and 24.06 for 

Okrun and Tamspan 90, respectively.  For the closed 4 day treatment, no differences 

were seen in S. minor, with values for Okrun and Tamspan 90 being 19.39 and 21.50, 

respectively.  The closed 4 day treatment also showed no difference between Okrun and 
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Tamspan 90 in S. sclerotiorum, with values of 20.11 and 22.92, respectively.  In the 

closed 7 day treatment, a significant difference was noted with S. minor between Okrun 

and Tamspan 90, with AUDPC’s of 19.98 and 26.38, respectively.  No differences were 

seen with S. sclerotiorum in the closed 7 day treatment though, with values for Okrun and 

Tamspan 90 being 20.79 and 24.15 respectively. 

As none of the open for the duration of the experiment treatments produced 

lesions, it can be concluded that a period of high humidity is always required for 

successful infection of peanuts.  The AUDPC results seem to indicate that while one day 

of humidity is often sufficient to produce disease lesions, the lesions expand more slowly 

than those given longer periods of post-inoculation humidity.  While the highest 

AUDPC’s were in most cases obtained on the longest post-inoculation humidity 

treatments, there was also an example on Okrun where S. sclerotiorum produced the 

largest AUDPC in the closed 3 day treatment.  In general, it seems that there is a 

minimum length of post-inoculation humidity which is required for successful infection, 

but beyond that, the period of high humidity is not crucial for lesion expansion. 

  

12 hour relative humidity regime: 

Percent infection was analyzed for the two isolates on Okrun and Tamspan 90 for 

each humidity treatment (open, closed 12 hr, closed 24 hr, closed 36 hr, closed 48 hr, and 

closed 60 hr) (Table 4).  For S. minor on Okrun, a significantly higher percent infection 

was observed in the closed 48 hr and closed 60 hr treatments compared to the others.  The 

closed 36 hr treatment had a lower percent infection compared to the closed 48 hr and 60 

hr treatments, but still had significantly higher values compared to the closed 24 hr, 
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closed 12 hr, and open treatments.  The closed 24 hr treatment also had significantly 

higher percent infection compared to the closed 12 hr and open treatments.  For S. 

sclerotiorum on Okrun, the closed 60 hr and closed 48 hr treatments had significantly 

higher percent infection compared to all other treatments (Table 4).  The closed 36 hr 

treatment had significantly lower percent infection compared to the closed 48 hr and 

closed 60 hr, but was still greater than the shorter treatments.  The closed 24 hr treatment 

had a significantly higher percent infection compared to the closed 12 hr and open 

treatments.  For S. minor on Tamspan 90, the closed 60 hr and closed 48 hr treatments 

had significantly higher percent infection compared to the other treatments (Table 4).  

The closed 36 hr treatment had significantly lower percent infection compared to the 

closed 48 hr and closed 60 hr treatments, but was still significantly greater than the 

shorter treatments.  The closed 24 hr treatment had lower percent infection compared to 

the longer humidity treatments, but still had significantly higher values compared to the 

closed 12 hr and open treatments.  For S. sclerotiorum on Tamspan 90, the closed 60 hr 

and closed 48 hr treatments had significantly higher values compared to all other 

treatments (Table 4).  The closed 36 hr and closed 24 hr treatments had significantly 

lower percent infection compared to the closed 48 hr and closed 60 hr treatments, but 

were still greater than the closed 12 hr and open treatments.   

AUDPC values for each isolate were also compared to the six humidity treatments 

on the two peanut cultivars (Table 5).  For S. minor on Okrun, AUDPC values of 0.00, 

0.00, 9.70, 11.45, 15.99, and 17.60 were obtained, respectively.  In this case, the closed 

60 hr and closed 48 hr treatments were found to yield significantly higher AUDPC’s 

compared to the open, closed 12 hr, closed 24 hr, and closed 36 hr treatments.  The 
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closed 36 hr and closed 24 hr had significantly higher values than the open and closed 12 

hr treatments, where no lesions were formed.  For S. sclerotiorum on Okrun, AUDPC’s 

for the six treatments were 0.00, 0.00, 9.46, 14.04, 17.67, and 19.73, respectively (Table 

5).  Again, in this case, the closed 60 hr and closed 48 hr treatments yielded significantly 

higher values compared to the open, closed 12 hr, closed 24 hr, and closed 36 hr.  The 

closed 36 hr treatment had lower values than the 60 hr and 48 hr, but they were still 

significantly higher than the open, closed 12 hr, and closed 24 hr treatments.  The closed 

24 hr treatment values were only greater than the open duration and closed 12 hr 

treatments.  The AUDPC values for S. minor on Tamspan 90 were 0.00, 0.00, 8.19, 

14.01, 15.49, and 16.40, respectively (Table 5).  In this case, the closed 60 hr, closed 48 

hr, and closed 36 hr treatments were found to have significantly higher AUDPC’s 

compared to the open, closed 12 hr, and closed 24 hr treatments.  The closed 24 hr 

treatment had significantly higher values than the open and closed 12 hr treatments.  For 

S. sclerotiorum on Tamspan 90, the AUDPC values for the six treatments were 0.00, 

0.00, 9.07, 10.54, 15.23, and 17.35, respectively.  In this case the closed 60 hr and closed 

48 hr treatments yielded significantly higher values compared to the open, closed 12 hr, 

closed 24 hr, and closed 36 hr treatments.  The closed 36 hr and closed 24 hr treatments 

had significantly higher AUDPC’s compared to the closed 12 hr and open treatments. 

The two cultivars were also compared by each isolate under each humidity 

treatment (Table 6).  In the case of S. minor, no significant differences in AUDPC were 

seen with any of the humidity treatments between Okrun and Tamspan 90.  For S. 

sclerotiorum, the only difference in AUDPC’s between cultivars was seen in the closed 

36 hr treatment where a significantly larger AUDPC was obtained on Okrun (Table 6). 
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As was the case in the 24 hour humidity regime, no plants were successfully 

infected when the humidity chambers were left open for the duration of the experiment.  

In addition, no plants were infected when given only 12 hr of humidity.  Similar to the 24 

hour relative humidity regime, the 12 hour relative humidity regime appears to show that 

approximately 24 hr of humidity is the minimum requirement for successful infection and 

lesion formation.  While the 24 hr and 36 hr humidity periods did not cause lesion 

development on all plants, 100% of plants were successfully infected when the humidity 

period was increased to 48 hours.  These are similar results to the 24 hour humidity 

regime, where there was only one case where 100% infection was not observed after two 

days of high RH.   

AUDPC values increased as the humidity period was increased under all 

isolate/cultivar combinations.  In most cases the highest AUDPC values seen at a specific 

humidity period were obtained on Okrun, though there was only one instance where it 

could be shown statistically.  This makes sense, as Okrun is considered susceptible to 

Sclerotinia.  In general, S. sclerotiorum tended to produce larger AUDPC’s compared to 

S. minor by humidity treatment, though high variability made showing significance 

difficult. 

When both humidity regimes are considered, it appears that the period of post-

inoculation high relative humidity (>95%) is a very important influence on percent 

infection and lesion expansion of S. minor and S. sclerotiorum on peanut.  The data also 

seem to indicate that while a minimum of 24 hours of humidity is sufficient to produce 

disease lesions, longer periods are often necessary for optimal growth of the fungi, and 

once 48 hours of humidity is reached, AUDPC values stabilize.  AUDPC values seem to 
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be useful when attempting to compare fungal isolates or different peanut cultivars by 

their aggressiveness, but larger sample sizes or other control measures which allow for 

smaller variations in the data might be required to show significant differences in many 

cases.  It is clear though, that S. sclerotiorum has the ability to infect and cause blight 

symptoms in peanut to the same, if not a greater degree when compared to the more 

commonly seen species, S. minor. 
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Table 1. Mean percent infection1 values under different humidity treatments for                                                                       
Sclerotinia minor and Sclerotinia sclerotiorum on two peanut cultivars2. 

________________________________________________________________________________________________________________________________________________ 
 

Humidity   Okrun               Tamspan 90 

treatment  S. minor S. sclerotiorum      S. minor         S. sclerotiorum     

________________________________________________________________________________________________________________________________________________ 
 

Open duration  0.0c3  0.0c         0.0c           0.0c        
Closed 1 day  50.0b  62.5b         62.5b           50.0b        
Closed 2 days  87.5a  100.0a         100.0a           100.0a        
Closed 3 days  100.0a  100.0a         100.0a           100.0a         
Closed 4 days  100.0a  100.0a         100.0a           100.0a        
Closed 7 days  100.0a  100.0a         100.0a           100.0a   

________________________________________________________________________________________________________________________________________________ 
 

1 Percent infection is defined as the percent of plants that developed a disease lesion. 
2 Because data was pooled across reps, standard errors are artificial and are not provided. 
3 Different letters within columns indicate a significant difference at α=0.05.  Data of two                                                         

experimental runs were combined for statistical analysis. 
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Table 2. Mean area under disease progress curve (AUDPC) values under different humidity treatments                                   
for Sclerotinia minor and Sclerotinia sclerotiorum on two peanut cultivars (including standard errors).  

_________________________________________________________________________________________________________________________________________________________________________ 
 

Humidity    Okrun          Tamspan 90 

treatment  S. minor  S. sclerotiorum    S. minor            S. sclerotiorum      

_________________________________________________________________________________________________________________________________________________________________________ 
 

Open duration  0.00c1 (0.00)  0.00d (0.00)      0.00e (0.00)  0.00c (0.00)        
Closed 1 day  8.20b (3.14)  9.34c (1.24)      5.29d (2.07)  4.84b (1.65)        
Closed 2 days  18.01a (2.54)  22.10ab (1.70)      13.18c (2.22)  20.83a (1.95)           
Closed 3 days  19.02a (1.87)  26.23a (1.59)    24.86ab (2.38)  24.06a (1.36)         
Closed 4 days  19.39a (0.64)  20.11b (2.52)        21.50b (1.61)  22.92a (1.68)            
Closed 7 days  19.98a (1.16)  20.79b (2.86)    26.38a (1.97)  24.15a (1.46)            

_________________________________________________________________________________________________________________________________________________________________________ 
 

1 Different letters within columns indicate a significant difference at α=0.05.  Data of two experimental                                 
runs were combined for statistical analysis. 
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Table 3. Mean area under disease progress curve (AUDPC) values under different humidity treatments for                                             
Sclerotinia minor and Sclerotinia sclerotiorum on two peanut cultivars (including standard errors). 

_______________________________________________________________________________________________________________________________________________________________________________ 
 

Humidity        S. minor             S. sclerotiorum 

treatment  Okrun   Tamspan 90  Okrun  Tamspan 90  

_______________________________________________________________________________________________________________________________________________________________________________ 
 

Open duration  0.00a1 (0.00)  0.00a (0.00)  0.00a (0.00)  0.00a (0.00)   
Closed 1 day  8.20a (3.14)  5.29a (2.07)  9.34a (1.24)  4.84a (1.65)   
Closed 2 days  18.01a (2.54)  13.18b (2.22)  22.10a (1.70)  20.83a (1.95)  
Closed 3 days  19.02b (1.87)  24.86a (2.38)  26.23a (1.59)  24.06a (1.36)  
Closed 4 days  19.39a (0.64)  21.50a (1.61)  20.11a (2.52)  22.92a (1.68)  
Closed 7 days  19.98b (1.16)  26.38a (1.97)  20.79a (2.86)  24.15a (1.46)  

_______________________________________________________________________________________________________________________________________________________________________________ 
 

1 Different letters within rows, within isolates indicate a significant difference at α=0.05.  Data of two                                                         
experimental runs were combined for statistical analysis. 
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Table 4. Mean percent infection1 values under different humidity treatments for                                                                       
Sclerotinia minor and Sclerotinia sclerotiorum on two peanut cultivars2. 

________________________________________________________________________________________________________________________________________________ 
 

Humidity   Okrun     Tamspan 90 
treatment  S. minor S. sclerotiorum     S. minor          S. sclerotiorum     
________________________________________________________________________________________________________________________________________________ 

 

Open duration  0.0d3  0.0d       0.0d  0.0c   
Closed 12 hours 0.0d  0.0d       0.0d  0.0c        
Closed 24 hours 75.0c  75.0c       68.8c  81.3b        
Closed 36 hours 93.8b  87.5b       93.8b  87.5b   
Closed 48 hours 100.0a  100.0a       100.0a  100.0a        
Closed 60 hours 100.0a  100.0a       100.0a  100.0a   

________________________________________________________________________________________________________________________________________________ 
 

1 Percent infection is defined as the percent of plants that developed a disease lesion. 
2 Because data was pooled across reps, standard errors are artificial and are not provided. 
3 Different letters within columns indicate a significant difference at α=0.05.  Data of two                                                         

experimental runs were combined for statistical analysis. 
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Table 5. Mean area under disease progress curve (AUDPC) values under different humidity treatments                                               
for Sclerotinia minor and Sclerotinia sclerotiorum on two peanut cultivars (including standard errors). 

_________________________________________________________________________________________________________________________________________________________________________ 
 

Humidity          Okrun        Tamspan 90 

treatment  S. minor  S. sclerotiorum     S. minor           S. sclerotiorum     
_________________________________________________________________________________________________________________________________________________________________________ 

 

Open duration  0.00c1 (0.00)  0.00d (0.00)       0.00c (0.00)  0.00c (0.00)        
Closed 12 hours 0.00c (0.00)  0.00d (0.00)       0.00c (0.00)  0.00c (0.00)        
Closed 24 hours 9.70b (2.07)  9.46c (1.37)       8.19b (1.13)  9.07b (1.38)        
Closed 36 hours 11.45b (1.24)  14.04b (1.82)       14.01a (1.04)  10.54b (0.97)       
Closed 48 hours 15.99a (0.75)  17.67a (1.05)       15.49a (0.79)  15.23a (0.85)       
Closed 60 hours 17.60a (0.55)  19.73a (0.42)       16.40a (1.14)  17.35a (0.48)       
 
_________________________________________________________________________________________________________________________________________________________________________ 
1 Different letters within columns indicate a significant difference at α=0.05.  Data of two experimental                                             

runs were combined for statistical analysis. 
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Table 6. Mean area under disease progress curve (AUDPC) values under different humidity treatments for                                 
Sclerotinia minor and Sclerotinia sclerotiorum on two peanut cultivars (including standard errors). 

______________________________________________________________________________________________________________________________________________________________________________ 
 

Humidity      S. minor     S. sclerotiorum 

treatment  Okrun   Tamspan 90  Okrun   Tamspan 90  

______________________________________________________________________________________________________________________________________________________________________________ 
 

Open duration  0.00a1 (0.00)  0.00a (0.00)  0.00a (0.00)  0.00a (0.00)   
Closed 12 hours 0.00a (0.00)  0.00a (0.00)  0.00a (0.00)  0.00a (0.00)   
Closed 24 hours 9.70a (2.07)  8.19a (1.13)  9.46a (1.37)  9.07a (1.38)   
Closed 36 hours 11.45a (1.24)  14.01a (1.04)  14.04a (1.82)  10.54b (0.97)  
Closed 48 hours 15.99a (0.75)  15.49a (0.79)  17.67a (1.05)  15.23a (0.85)  
Closed 60 hours 17.60a (0.55)  16.40a (1.14)  19.73a (0.42)  17.35a (0.48)  

______________________________________________________________________________________________________________________________________________________________________________ 
 

1 Different letters within rows, within isolates indicate a significant difference at α=0.05.  Data of two                                                          
experimental runs were combined for statistical analysis.
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