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CHAPTER I 

 

INTRODUCTION AND OBJECTIVES  

 

Introduction 

Potato virus X (PVX) encodes a single 166 kDa protein that is the viral replicase.  

This protein contains methyltransferase, helicase, and polymerase domains. Since 

replication of positive strand RNA viruses is typically membrane-associated, my 

objective is to determine if the PVX replicase associates with cellular membranes during 

infection. Immunofluorescence labeling will be used to determine where the PVX 

replicase accumulates in PVX-infected tobacco protoplast and leaves.  Infection foci from 

inoculated leaves will be cryo-fixed and embedded in LR-White.  Immunogold labeling 

of thin sections will be conducted to study the membrane association of the viral 

replicase.   

Since the PVX triple gene block protein 2 (TGBp2) and TGBp3 are also 

membrane-associated proteins, experiments will be conducted to determine if these 

proteins co-localize with the PVX replicase during infection.  The PVX.GFP-TGBp2 and 

PVX-TGBp3-GFP infectious clones will be used to study co-localization of TGBp2 and 

TGBp3 with the viral replicase (Fig 1). The GFP-TGBp2 fusion contains GFP fused to 

the 5’ end of the TGBp2 coding sequence.  The TGBp3-GFP fusion contains GFP fused 

to the 3’ end of the PVX TGBp3 coding sequence. These fusions were introduced into the
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 PVX genome and GFP is used to track the sub-cellular distribution of TGBp2 and 

TGBp3 respectively during virus infection.  Immunofluorescence and immunogold 

labeling of infected tobacco protoplasts and plants will be used to determine if TGBp2 

and TGBp3 co-localize with the PVX replicase during virus infection.  Evidence that 

TGBp2 or TGBp3 co-localize with the replicase would suggest that these proteins 

interact to promote virus infection.   

 

Objectives 

 

1) Determine the sub-cellular localization of the PVX replicase during infection in 

protoplasts.  Determine if TGBp2 and TGBp3 co-localize with the PVX replicase. 

2) Determine the sub-cellular localization of the PVX replicase during infection in 

plants.  Determine if TGBp2 and TGBp3 co-localize with the PVX replicase. 

3) Conduct electron microscopy to determine the sub-cellular location of the PVX 

replicase during infection and to determine if TGBp2 and TGBp3 co-localize with the 

replicase in plants. 

4) Conduct membrane fractionations to determine if the PVX replicase, TGBp2, and 

TGBp3 co-localize. 
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CHAPTER II 

 

REVIEW OF LITERATURE 

 

PVX Genome. 

Potato virus X (PVX) is the type member of the Potexvirus genus. It is 6.4 kb 

(Baulcombe et al., 1995; Huisman et al., 1998), single-stranded, positive-sense RNA 

virus which is capped at the 5’ end (Sonenberg et al., 1978) and polyadenylated at the 3’ 

end.  The PVX genome contains five open reading frames (ORFs) (Huisman et al., 1988) 

(Figure1). The first ORF encodes a 166 kDa replicase protein (Huisman et al., 1988). The 

replicase ORF is followed by three partially overlapping ORFs called the triple gene 

block (TGB) which encode three movement proteins named TGBp1, TGBp2, and TGBp3 

(Beck et al.,1991; Verchot et al., 1998). These TGB proteins are conserved in potex-, 

beny-, carla-, hordei- and pecluviruses (Memelink et al., 1990; Morozov et al., 1999; 

Morozov et al., 1987; Skryabin et al., 1988). The PVX coat protein ORF is near the 3’ 

end of the genome (Huisman et al., 1988). PVX TGBp1 is an RNA helicase and is 

responsible for increasing plasmodesmata permeability for virus movement (Howard et 

al., 2004; Lough et al., 1998; 2000; Angel et al., 1996).  PVX TGBp2 and TGBp3 

associate with endoplasmic reticulum (ER) (Krishnamurthy et al., 2003; Mitra et al., 

2003).  TGBp2 induces vesicles to bud from the ER network (Ju et al., 2005).  The role 

of the ER and of ER-derived vesicles in PVX movement is unknown.  
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In the 1990s infectious clones of PVX were constructed.  PVX cDNAs were 

inserted into plasmids adjacent to the bacteriophage T7 promoter (Baulcombe et al., 

1995).  Infectious transcripts can be synthesized in vitro and used to inoculate plants.  

The advantage of using an infectious clone rather than purified virus is ease of preparing 

virus, the plasmids can be maintained longer than the purified virus and we can introduce 

mutations into the viral genome to test gene functions.  For the PVX infectious clone, the 

CP subgenomic promoter was duplicated and the green fluorescent protein (GFP) coding 

sequence was inserted into the viral genome.  GFP expression is used to visual virus 

infection as it spreads from cell to cell and from leaf to leaf (Baulcombe et al., 1995) (Fig 

1a).  We also deleted the TGBp2 coding sequence and introduced a GFP-TGBp2 fusion 

next to the duplicated coat protein subgenomic promoter.  This PVX.GFP-TGBp2 is 

infectious and has been used to study the subcellular distribution of TGBp2 during PVX 

infection in protoplast and tobacco leaves (Ju et al., 2005; Mitra et al., 2003) (Fig 1b).   

The PVX.TGBp3-GFP infectious clone was recently prepared and contains the GFP 

coding sequence directly fused to the TGBp3 coding sequence (Fig 1c).   
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(a)  PVX.GFP 

 

 

(b) PVX.GFP-TGBp2 

  

 

 

(c) PVX.TGBp3-GFP 

 

 

 

 

Fig 1: A diagramatic representation of PVX clones, 3’ of the bacteriophage T7 promoter 

and from which infectious transcripts can be made. The PVX-GFP clone contains the 

GFP gene inserted 3’ of a duplicated coat protein (CP) promoter (a).  The PVX.GFP-

TGBp2 infectious clone contains GFP-TGBp2 fused genes inserted 3’ of a duplicated CP 

promoter and the endogenous TGBp2 gene was deleted (represented in black box) (b).  

The PVX.TGBp3-GFP clone contains a GFP fusion inserted to TGBp3gene (c). 
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Replication of positive strand RNA viruses. 

Replication of all positive strand RNA viruses is fundamentally similar. The 

virion enters a cell and the genomic RNA is uncoated. The RNA is translated to produce 

proteins required for virus replication.  The viral replicase is typically anchored to 

cellular membranes and synthesizes complementary RNAs from the genomic RNA 

template (Buck, 1996; Schwartz et al., 2002). The complementary RNAs act as templates 

for synthesis of new positive strand RNAs and sub-genomic RNAs. Sub-genomic RNAs 

are used for the translation of TGB proteins and the coat proteins, which are necessary for 

the virus movement and encapsidation (Angel et al., 1996; Lough et al., 2000; 

Baulcombe et al., 1995). A general schematic diagram for positive strand RNA virus 

replication is shown in Figure 2.  
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Fig 2: Schematic diagram for positive strand RNA virus replication.  

 

 

 

 

 

 

 

 

 



 8 

The PVX replicase is a single protein which contains methyltransferase, helicase, 

and polymerase domains required for virus replication (Davenport and Baulcombe, 

1997).  The methyltransferase domain is responsible for capping the 5’ end of the viral 

genome. The polymerase domain is responsible for new strand synthesis and the helicase 

domain is responsible for unwinding duplex RNA during new strand synthesis (Buck, 

1996; Koonin and Dolja, 1993). Like many positive strand RNA viruses, PVX expresses 

these three domains on one protein (Buck, 1996). 

For all positive strand RNA viruses, synthesis of the complementary RNAs 

initiates from the 3’ terminus of the genomic RNA.  The 3’ untranslated region (3’ UTR) 

is approximately 74 nucleotides in length, although this varies among potexviruses.  The 

3’ UTR can fold into 3 stem loop structures but only the SL3 structure is known to be 

required for virus replication (Batten et al., 2003).  The SL3 loop contains a 

hexanucleotide sequence (5’-ACUUAA) that is necessary for initiation of minus strand 

synthesis (Bancroft et al., 1991; Lough and Lucas, 2006).  Mutations eliminating or 

altering this hexanucleotide sequence reduce minus strand synthesis (Batten et al., 2003; 

White et al., 1992). There is also a conserved U-rich sequence (UAUUUUCU) located 

downstream of the hexanucleotide sequence which is also important for minus strand 

synthesis. It has been suggested that this U-rich sequence binds host factors that may be 

involved in virus replication.  Cellular extracts were mixed with a PVX 3’ end probe and 

host proteins were found to bind to the 3’ end in gel retardation assays. The U-rich 

sequence was identified as a target for host factor binding, but the identity of these host 

factors is unknown (Pillai-Nair et al., 2003; Sriskanda et al., 1996).   
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This negative strand RNA acts as template strand for the synthesis of genomic 

and sub-genomic positive strand RNAs. It has been reported that the several cis-acting 

elements in the 5’ UTR region are essential for synthesis of positive strands and sub-

genomic RNAs (Kim and Hemenway, 1996). The 5’ UTR is 84 nucleotides in length but 

there are elements that fold into two stem loop structures required for virus replication 

that extend to the first 182 nucleotides. The SL1 structure is required for synthesis of 

genomic and subgenomic RNAs. There are extensive single-stranded regions between 

SL1 and SL2.  There are five ACCAA motifs repeated throughout the 5’ UTR and which 

overlap with SL1 (Kim and Hemenway, 1996). These repeats bind 54 kDa cellular 

proteins (p54) which are also important for PVX RNA replication (Kim et al., 2002).  

Since the ACCAA repeats overlap the SL1 structure, it is not clear whether the cellular 

protein recognizes the repeated elements specifically or the SL1 structure.   

While there has been significant progress in defining the 5’ and 3’ structures 

regulating PVX replication, very little is known about which elements attract the PVX 

replicase and what proteins comprise the replication complex. It is also not understood 

where replication occurs inside the cell.    

 

Role of cellular membranes in virus replication. 

Recent studies showed that the replication of positive-sense strand RNA viruses 

involves association with cellular membranes. In many cases, virus infection induces 

invaginations of cellular membranes, forming vesicles which are associated with 

replication complexes. These vesicles can be derived from a variety of membranes. For 

example, the Brome mosaic virus (BMV), Tobacco mosaic virus (TMV) and Cowpea 
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mosaic virus (CPMV) replicases associate with invaginations of the ER (Restrepo-

Hartwig and Ahlquist, 1996; Heinlein et al., 1998; Reichel and Beachy, 1998; Carette et 

al., 2000). The Turnip yellow mosaic virus (TYMV) and Alfalfa mosaic virus (AMV) 

replicases associate with the chloroplast outer membrane (Garnier et al., 1986; deGraaf et 

al., 1993).  The Cucumber mosaic virus (CMV) replicase associates with vacuolar 

membranes (Hatta and Francki, 1981).  The Carnation italian ringspot virus (CIRV) and 

the Tobacco rattle virus (TRV) replicases associate with mitochondria, while the Pea 

enation mosaic virus (PEMV) replicase associates with the nuclear envelope, and the 

Tomato bushy stunt virus (TBSV) replicase associates with peroxisomes (Rubino et al., 

1995; Harrison and Roberts, 1968; Demler et al., 1994; Russo et al., 1983; Lupo et al., 

1994). 

Recent studies of BMV, TBSV, and TMV showed these viral replicases 

accumulate in membranous vesicles in yeast cells.  Each of these viruses encodes two 

proteins which comprise the viral replicase.  BMV is a tripartite RNA virus which 

encodes the 1a and 2a proteins on RNA1 and RNA2. The 1a protein contains membrane 

binding, methyltransferases, and helicase domains. The 2a protein has polymerase 

activity. The 1a protein recruits the 2a protein to the viral RNA. The replication complex 

assembles along the outer perinuclear ER.  The BMV 1a protein induces inward 

invaginations of the ER and the replicase accumulates in vesicles inside the ER lumen 

(Schwartz et al., 2002; Schwartz et al., 2004). Assembly of the replication complex is 

necessary for formation of ER luminal vesicles (Schwartz et al., 2004).  

Assembly of the TBSV replication complex inside vesicles parallels BMV, 

although there are differences between these two viruses in their genome expression 
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strategies and sub-cellular location of their replicases. TBSV is a monopartite RNA virus 

which encodes the p33 and p92 proteins.  The p92 protein is produced by readthrough of 

a translation stop codon at the 3’ end of the p33 protein. The p33 protein has a membrane 

binding domain and an RNA binding motif.   The p92 protein has polymerase activity.  

The p33 protein recruits the p92 protein to the viral RNA. The replication complex 

assembles along the peroxisomal boundary membrane. This is followed by extensive 

inward invagination of this membrane forming novel peroxisomal vesicular bodies 

(pMVBs) (Martelli et al., 1998). These pMVBs fill the interior of the peroxisomes 

(Appiano et al., 1983, 1986) in yeast cells. 

TMV is similar to BMV because its replication complex forms along the ER 

network.  TMV is a monopartite RNA virus which encodes the 126 kDa and 183 kDa 

proteins.  The 183 kDa protein is produced by readthrough of a translational stop codon 

at the 3’ end of the 126 kDa ORF.  Both 126 kDa and 183 kDa proteins have helicase and 

methyl transferase domains, but the 183 kDa protein has the polymerase active site 

(Goregoaker et al., 2001; Watanabe et al., 1999).  Assembly of the TMV replicase along 

the ER network and invagination of these membranes has not been studied as extensively 

as BMV and TBSV.  However, replicase containing vesicles have been identified in 

TMV infected cells.  The TMV MP and CP also associate with these complexes.  It has 

been recently reported that viral replicase containing complexes move along the 

microfilament network to the periphery of the cell and sometimes these membrane 

containing replication complexes move across plasmodesmata (Liu et al., 2005; 

Kawakami et al., 2004). Thus, for TMV the membrane bound replicase serve as a vehicle 

for trafficking virus between neighboring cells.    
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PVX and cellular membranes. 

Current studies of PVX show the TGBp2 and TGBp3 protein associate with the 

ER and this association is important for virus movement (Mitra et al., 2003; 

Krishnamurthy et al., 2003). TGBp2 causes invagination of the ER network and the 

resulting vesicles play a role in virus cell-to-cell movement (Ju et al., 2005). The contents 

of the TGBp2 induced vesicles are not known. Vesicles may contain viral RNA and/or 

viral proteins.   

In this study, we are interested to determine the sub-cellular location and 

membrane association of the PVX replicase. These data are important for understanding 

how the PVX life-cycle progresses in infected cells.  We are also interested to learn if 

subcellular accumulation of the PVX replicase resembles the BMV, TBSV, or TMV 

models. Does the PVX replicase associate with the ER, with vesicles, or with movement 

factors?  This investigation will also determine if there is a possibility that the replicase 

may be a factor that is transported between cells based on its association with viral 

movement proteins.   
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Chapter III 

 

EXPERIMENTAL DESIGN AND METHODOLOGY 

 

Infectious clones and plasmids. 

PVX-GFP, PVX.GFP-TGBp2, and PVX.TGBp3-GFP are infectious clones of 

PVX containing the bacteriophage T7 promoter and GFP gene inserted into the PVX 

cDNA and was described in prior studies (Figure1; Verchot et al., 1998; Krishnamurthy 

et al., 2003; Mitra et al., 2003). The pRTL2 plasmids containing the Cauliflower mosaic 

virus (CaMV) 35S promoter and GFP or CFP fused to PVX TGBp2, TGBp3, or an ER 

targeting signal were used extensively in previous studies (Ju et al., 2005, Samuels et al., 

2007, and Ju et al., 2008)   All plasmids were maintained in Escherichia coli strain 

JM109 (Sambrook et al., 1989).   

The Pure Yield Plasmid Midi Prep System 
TM

 (Promega, Madison, WI) was used 

to extract plasmid DNA from E. coli grown in LB media plus ampicillin (50 µg/ml) at 

37
o
C for 16-18 hours. Cultures were centrifuged at 10,000 g for 10 minutes, and the 

supernatant was discarded, and tubes were drained on a paper towel to remove the excess 

media. Cell pellets were resuspended in 3 ml of cell resuspension solution. Three ml of 

cell lysis solution was added, and the samples were inverted gently for three to five times. 

Mixtures were incubated for 3 minutes at room temperature (22-25
o
C). Five ml of 
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neutralization solution was added, and Lysate were mixed by gentle inversion. Lysates 

were allowed to incubate for 2-3 minutes in an upright position and then centrifuged at 

14,000 g for 30 minutes. Pure Yield
TM

 Clearing Columns were placed into 50 ml 

disposable plastic tubes. The supernatants were poured into the column and incubated for 

2 minutes to allow the cellular debris to rise to the top. Pure Yield
TM

 Clearing Columns 

were centrifuged at 1,500 g for 5 minutes. Pure Yield
TM

 Binding Columns were placed 

into new 50 ml disposable plastic tubes and filtered lysates were poured into each tube. 

Columns were centrifuged at 1,500 g for 3 minutes. Five ml of endotoxin removal wash 

Solution (with added isopropanol) was added to each Pure Yield
TM

 Binding Columns, 

and then centrifuged at 1,500 g for 3 minutes. Flows through fractions were discarded. 

Twenty ml of column wash solution (with added ethanol) was added to the binding 

columns and centrifuged at 1,500 g for 5 minutes. The flow through was discarded, and 

the columns were centrifuged at 1,500 g for an additional 10 minutes to ensure the 

removal of ethanol. The binding columns were placed in new 50 ml disposable plastic 

tubes. DNA was eluted by adding 800 µl of nuclease free water to the binding columns 

and centrifuged at 1,500 g for 5 minutes. The filtrate was collected from the 50 ml tube 

and transferred to a 1.5 ml eppendorf tube. Quantity and purity of the DNA yield was 

measured by using a Nanodrop ND-1000 spectrophotometer (Innovadyne Technologies 

Inc., Santa Rosa, CA) and by 1% agarose gel electrophoresis and staining. 

 

In vitro transcription.  

Twenty five µg of PVX-GFP, PVX.GFP-TGBp2, or PVX.TGBp3-GFP 

containing plasmid were digested for 3 hours at 37
o
C with 4µl of  SpeI restriction enzyme 
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(New England Biolabs, Ipswich, MA), 10 µl of 10X buffer 2,  1 µl of 100X BSA, and 

nuclease free water.  DNA digestion was verified using 1% agarose gel electrophoresis 

and staining.  Digested DNA was stored at -20
o
C.  

One µg of linearized DNA was transcribed using the mMESSAGE 

mMACHINE
TM 

kit (Ambion Inc., Austin, TX). Ten µl of 2X NTP/CAP, 2  µl of 10X 

reaction buffer, 2 µl of enzyme mix were added to the DNA on ice and the mixture was 

incubated for 10 minutes at 37
o
C. Two µl of GTP was added to the mixture and again 

incubated for 2 hours at 37
o
C.  Transcription results were viewed by 1% agarose gel 

electrophoresis and EtBr staining. The transcription reaction was quantified using a 

Nanodrop ND-1000 spectrophotometer. 

  

BY-2 protoplast preparation & transfection. 

Suspension cells of tobacco BY-2 cells (Nagata et al., 1992) were maintained as 

described previously (Ju et al., 2005).  BY-2 cells were propagated in the BY-2 culture 

medium (Murashige and Skoog medium [Murashige and Skoog salts; Sigma-Aldrich Co., 

St. Louis, MO] supplemented with 30 g/l of sucrose, 256 mg/l KH2PO4, 100 mg/l 

myoinositol, 1 mg/l thiamine and 0.2 mg/l 2, 4-dichlorophenoxyacetic acid, pH 5.5 (w/v)) 

on a rotary shaker at 120 rpm at 28
o
C in the dark. Two ml of BY-2 cells were transferred 

to 50 ml of fresh media every 4 days.   

For protoplast preparation, 3 to 5 day-old cultures were collected by 

centrifugation at 59g for 5 minutes. Cells were resuspended in enzyme solution (1.5% 

Onozuka R10 cellulase [w/v; Yakult Pharmaceutical, Tokyo, JP], 0.2% macerase [w/v; 

Calbiochem-Novabiochem, La Jolla, CA], 0.45 M mannitol, and 3.6 mM 2-(N-
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morpholino) ethane sulfonic acid [MES], pH 5.5). Cells were digested for 3 to 5 hours at 

30
o
C while gently shaking at 108 rpm on a rotary shaker. The protoplasts were separated 

from cellular debris by filtration through two 41 µl nylon mesh (Spectrum laboratories, 

Rancho Dominguez, CA) into a 600 ml beaker and transferred into two 50 ml centrifuge 

tubes. The filtrate containing protoplasts, was centrifuged at 59g for 5 minutes and 

washed twice with solution I (0.5 M mannitol, 3.6 mM MES, pH 5.5 [w/v]) at 59g for 5 

minutes. Finally protoplasts were resuspended in 5 ml of solution II (0.45 M mannitol, 

3.6 mM MES pH 5.5, and 0.1mM CaCl2) and placed on ice for one hour. Fifty µl 

protoplasts were mixed with 100 µl of 0.1% fluoroscein diacetate, incubated for 5 

minutes, and the counted using a haemocytometer. The total number of protoplasts was 

determined using the following equation:  mean cells per 20 µl x 10,000 x dilution factor 

x total volume. The final volume of the protoplast mixture was adjusted to make 1 x 10
6 

protoplasts/ml.  

For DNA or RNA transfection, 500 µl of protoplasts were mixed with 5-10 µl of 

PVX-GFP, PVX.GFP-TGBp2, or PVX.TGBp3-GFP transcripts and 200 µl of solution II 

and placed in a 0.4 cm gap cuvettes (Bio-Rad Laboratories, Hercules, CA) on ice. 

Electroporation was carried out at 0.25 KV, 100 Ω and 125 µF using a BioRad Gene 

Pulser (Bio-Rad Laboratories). Following electroporation, protoplasts were immediately 

transferred into a new eppendorf tube containing 800 µl of solution II and incubated on 

ice for 30 minutes. Protoplasts were collected by centrifugation at 59g for 5 minutes, 

resuspended in 1 ml of BY-2 culture media plus 0.45 M mannitol and transferred to 6-

well cell culture plates (Becton Dickinson Labware, Franklin Lakes, NJ). The culture 

plates were coated with a solution of BY-2 culture media plus 0.45 M mannitol and      
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1% agarose (w/v; pH 5.7). Protoplast samples were cultured at 27- 28 
o
C in dark and 

collected at early (12 or 18 hpi), and later (36 or 48 hpi) stages of infection, for 

immunofluorescence labeling.   

 

Immunofluorescence labeling of protoplasts. 

Experiments were conducted to determine if GFP fluorescence colocalizes with 

immunofluorescence detecting the PVX replicase. Immunofluorescence labeling of 

protoplasts was performed as described in Liu et al. (2005). To prepare slides, protoplasts 

were collected by centrifugation at 59g for 5 minutes. Supernatant was discarded and 

pellet was washed twice with PHEM buffer (60mM PIPES, 25mM HEPES, 5mM EGTA, 

2 mM MgCl2, pH 6.9) then resuspended in 500 µl fixative (2% [v/v] paraformaldehyde 

and 0.5% [v/v] DMSO in PHEM buffer) for 15 minutes at room temperature. Fixed 

protoplasts were centrifuged at 59g for 5 minutes and the pellet was washed twice with 

PHEM buffer. Following the last wash a small amount of PHEM was left with the pellet, 

mixed gently, and then transferred onto a cover glass. The cover glass was left for 30 

minutes in a sterile hood. A thin film of 0.7% Bacto-agar (dissolved in PHEM) was 

placed on the dried cover glass using a square-shaped wire loop.  Then PHEM was added 

on top of the cover glass. Excess buffer was blotted, 200 µl of 1% Triton X-100 (in 

PHEM) was added, and the cover glass was kept for 10 minutes at room temperature. 

Excess solution was blotted and the cover glass was washed thrice for 3 minutes with 

PHEM. Then NaBH4 was added to the cover glass, incubated for 10 minutes at room 

temperature, and then washed 3 times with PHEM. Ice cold methanol was added, 
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incubated for 10 minutes at room temperature, and then washed thrice for 5 minutes with 

PHEM. PHEM was removed by blotting and cover glass was left to air dry.  

For immunolabeling, cover glasses were incubated overnight with PVX replicase 

goat antisera obtained from Cindy Hemenway (NC State University) (diluted 1:500) in a 

moisture chamber at 4
o
C. Then cover glasses were washed five times for 5 minutes with 

PHEM. Then Alexa Fluor 633 conjugated secondary antisera (Molecular Probes, Inc., 

Eugene, OR.) was diluted 1:100 in PHEM, added to the cover glass, and incubated for 2 

hours in a moisture chamber at room temperature. Cover glasses were washed five times 

for 5 minutes with PHEM and then mounted on a slide with commercially available 

Vectashield
TM

 mounting media (Vector Laboratories, Inc., Burlingame, CA). 

 

Plants, plant inoculation, and plasmid bombardment. 

Nicotiana benthamiana plants were used in all experiments.  Infectious transcripts 

of PVX-GFP, PVX.GFP-TGBp2, and PVX.TGBp3-GFP were prepared as described in 

the previous objective. The leaves of N. benthamiana were dusted with cellite powder 

and rub inoculated with transcripts.  Two leaves per plant were treated, each with 5 µl of 

transcript. Non-inoculated control plants were treated similarly with 5 µl of ddH2O.  GFP 

fluorescent PVX infection foci were identified 3 days post inoculation (dpi) using a 

Nikon E600 epifluorescence microscope (Nikon USA Inc., Dallas, TX) and were excised 

for experiments involving immunofluorescence or immunogold labeling.  

Leaves were also bombarded with pRTL2 plasmids expressing GFP or CFP 

fusions and then directly imaged using confocal microscopy. Plasmid bombardments 

were conducted as described in Samuels et al. (2007).   
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Immunofluorescence labeling of PVX infected plants. 

Experiments were conducted to determine if GFP or GFP fusions co-localize with 

immunofluorescence detecting either the PVX replicase or the ER resident marker 

protein disulfide isomerase (PDI).  Leaf segments containing fluorescent infection sites 

were fixed in eppendorf tubes with a solution of 3.7% (v/v) formaldehyde, 5% (v/v) 

dimethyl sulfoxide, and PHEM buffer for 2 hours as in Liu et al. (2005). Leaf segments 

were washed thrice with PHEM (3 minutes/each wash) between each step in the 

procedure.  Fixed segments were placed on microscope slides and digested with cell wall 

degrading enzymes (1% Onozuka R10 cellulase, 0.1% pectolyase [Kikkoman, Tokyo, JP] 

and 0.1% bovine serum albumin [BSA; fraction V] in PHEM buffer) for 2 hours.  

Following washes the segments were incubated with 1% (v/v) Triton X-100 for 20 

minutes, and then incubated with ice cold methanol for 10 minutes.  Following washes 

the segments were incubated overnight in a moisture chamber at 4
o
C with PVX replicase 

(diluted 1:100) or PDI (Rose Biotechnology, San Francisco, CA) antisera. 

Immunolabelling was conducted as for protoplasts (Liu et al., 2005).     

 

Fixation and LR-White or Spurr’s resin embedding of plant materials.   

Virus-infected and mock-inoculated leaf segments were harvested at 5 dpi and 

subjected to either cryo-fixation (conducted at Oklahoma Medical Research Foundation 

(OMRF) with the assistance of Ben Fowler) and embedding in LR-White or, chemical 

fixation and embedding in Spurr’s resin (embedding in LR-White or Spurr’s resin was 

conducted by Terry Colberg at OSU).   
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Cryo-fixation and LR-White embedding was carried out as previously described 

for virus infected leaves (Ju et al., 2005; Kiss et al., 1990).  Leaf segments were washed 

with distilled deionized water (ddH2O) and were fitted into 0.4-mm freezer hats (Ted 

Pella, Reading, CA) filled with lecithin solution (100 mg/ml in chloroform).  A drop of 

15% (w/v) aqueous dextran (Mr 38,800) was added to each freezer hat.  Freezer hats were 

loaded onto a holder and inserted into the Balzer HPM010 high-pressure freezing 

machine (Manchester, NH) and immediately transferred into Nalgene (Rochester, NY) 

cryogenic vials containing super cooled 100% acetone which were located in a liquid 

nitrogen bath. Freeze substitution was carried out by transferring samples from the 

freezer hats to a solution of 1% OsO4 and acetone. Samples were maintained in a dry 

ice/acetone bath for 2.5 days at −78.6°C. Samples were transferred from the freezer hats 

to vials of acetone and incubated in a freezer at −20°C for 2 hours, then to a refrigerator 

at 0°C for 2 hours, and then on the lab bench (23°C) for 2 hours. Samples in vials were 

then rinsed three times in acetone for 20 minutes, three times in 100% ethanol for 20 

minutes, and embedded in LR White resin.  

Stepwise chemical fixation was carried out as described by Dunoyer et al. (2002).  

Leaf segments were pre-incubated with 1% glutaraldehyde in 25 mM potassium 

phosphate buffer (pH 7.4) for one hour in a bench top vaccum chamber and then 

immersed in a primary fixative [2% (vol/vol) glutaraldehyde, 0.1 ml of saturated picric 

acid in 25 mM potassium phosphate buffer (pH 7.4)] for 15 minutes at room temperature. 

Segments were incubated at 4
o
C for 16 hours, were washed four times (five minutes per 

wash) in 25 mM PIPES buffer (pH 7.0) and then transferred into secondary fixatives [2% 

(wt/vol) OsO4 and 0.5% (wt/vol) potassium ferrocyanide in 25 mM PIPES buffer (pH 



 21 

7.0)] for 2 hours at room temperature. Then samples were washed twice with 25 mM 

PIPES buffer (pH 7.0) for 15 minutes and then twice with ddH2O for another 15 minutes. 

Samples were transferred to 2% (wt/vol) aqueous uranyl acetate for 16 hours at 4
o
C and 

washed twice with ddH2O for 15 minutes. Samples were dehydrated in an acetone series 

(10, 20, 40, 60, 80, and 100%) and infiltrated with acetone/Spurr’s resin (1:1) overnight 

and then embedded in Spurr’s resin.  

Ultra thin sections (700 nm) of LR-White or Spurr’s resin embedded samples 

were cut using a diamond knife on a Sorvall MT 6000 ultra microtome. Sections were 

mounted on formvar-coated nickel grids (Electron Microscopy Science, Hatfield, PA) 

and used for immunogold labeling.   

 

Immunogold labeling of LR-White or Spurr’s resin-embedded plant material. 

Immunogold labeling of tissues were conducted using monoclonal GFP (BD 

Living Colors
TM

; Clontech Laboratories, Mountain View, CA) and PVX replicase 

polyclonal goat antisera. Grids were incubated in blocking solution consisting of PBS, pH 

7.5 (130 mM NaCl, 7.0 mM Na2HPO4, 3.0 mM NaH2PO4) plus 2% BSA (w/v) for 15 

minutes, and then was incubated with 5% normal sheep sera (Sigma-Aldrich Co.) in PBS 

plus 2% BSA for 15 minutes. Then samples were incubated with GFP monoclonal 

antisera diluted 1:500 in PBS plus 2% BSA (w/v), PVX replicase goat antisera diluted 

1:500 in PBS plus 0.1% Tween (v/v), or buffer containing no primary antisera for 2 

hours. Grids were then washed five times for 5 minutes with PBS and then with PBS plus 

2% fish gelatin (v/v) for 15 minutes. Grids were then incubated for 1 hour with either 10 
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or 20 nm gold-conjugated goat antisera (EY Labs, San Mateo, CA) diluted 1:10 in PBS 

plus 2% fish gelatin.  

Some grids were dual labeled with antiserum to detect replicase and GFP and a 

longer procedure was followed. Grids were first incubated with replicase goat antisera 

diluted 1:500 in PBS plus 0.1% Tween (v/v) for 2 hours and then with the 20 nm gold-

conjugated rabbit anti-goat serum diluted 1:10 in PBS plus 2% fish gelatin for 2 hours as 

described above. Samples were washed twice for 10 minutes with PBS and then 

incubated for 30 minutes with GFP monoclonal antisera diluted 1:500 in PBS.  Grids 

were washed five times for 5 min with PBS, then for 15 min with PBS with 2% fish 

gelatin, and were incubated 30 min with 10 nm gold-conjugated goat anti-mouse serum 

(EY Labs) diluted 1:10 in PBS plus 2% fish gelatin.  

Grids were washed three times for 5 minutes with ddH2O, and stained with a 

solution of 2.5% uranyl acetate and 70% methanol (v/v) for 30 minutes, and then with a 

solution of 2% Reynold's lead citrate pH 12.0 (in ddH2O) for 20 minutes. Samples were 

washed with mildly warm ddH2O three times for 5 minutes and then dried.   

Spurr’s resin embedded sections were consecutively labeled with PVX replicase 

goat primary, anti-goat secondary and GRP78 (BiP) rabbit primary and anti-rabbit 

secondary antisera (ABR-Affinity Bioreagents, CO). Procedure for dual labelling of LR 

White-embedded plant material was followed.  

 

Staining of grids with uranyl acetate and Reynold’s lead citrate 

A petri dish was lined with a parafilm and one drop of uranyl acetate (EM 

Sciences, PA) per grid was placed on the parafilm. (Stains were stored in dark bottles.) 
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Grids were dipped in water and inserted into uranyl acetate drop, section side up and 

stained for 30 minutes. Grids were rinsed with ddH2O for 2 minutes and blot dried with a 

filter paper. One half of a partitioned petri dish was lined with a parafilm and other side 

was filled with NaOH and CO2 free ddH2O in order to make a CO2 free chamber. One 

drop of lead citrate (lead nitrate and sodium citrate (Sigma-Aldrich Co., St. Louis, MO) 

per grid was placed on the parafilm. Grids were dipped in CO2 free ddH2O and inserted 

into lead citrate drop, section side up and stained for 20 minutes. Grids were rinsed with 

CO2 free ddH2O for 2 minutes and blot dried with a filter paper. 

 

Laser scanning confocal microscopy and transmission electron microscopy. 

A Leica DMRE microscope with Leica TCS SP2 confocal imaging system was 

used for imaging the immunolabelled tissues. Ar/Kr lasers were used for detecting GFP 

and He/Ne lasers for detecting Alexa Fluor 633 fluorescence. Alexa Fluor 633 conjugates 

(Molecular Probes, Inc., Eugene, OR.) are bright and photostable, and have peak 

absorption centered at 632 nm and a peak emission at 650 nm. Images were recorded and 

compiled using Adobe Photoshop CS software (Adobe Systems, San Jose, CA).    

Electron microscopic analysis of samples was carried out using a JEOL JEM-

2100 Scanning Transmission Electron Microscope System with an EDAX Genesis 2000 

EDS system (JEOL Ltd., Tokyo, Japan) 

Electron microscopic images were taken, and number of gold particles labeling 

specific structural components of the cell was scored in 10 µm
2
 fields (using an 

ultrastructure size calculator) or in each organelle.  Gold particles in each field/organelle 

were counted manually. Average and standard error was calculated and tabulated. 
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Sucrose gradient fraction of plant extracts containing PVX replicase.   

Forty g of PVX.TGBp3-GFP infected N. benthamiana leaves were collected from 

plants at 14 dpi and then homogenized in 100 ml of ice-cold buffer A [50 mM Tris-HCl, 

pH 8.2; 15mM MgCl2, 120 mM KCl, 20% glycerol, 1 mM DTT, 5 mM EDTA and 10 

µl/ml of Protease Inhibitor Cocktail for plant cell and tissue extracts
TM

 (Sigma-Aldrich 

Co., St. Louis, MO) added just before use] in a waring blender. The crude homogenate 

was filtered through gauze and miracloth (Calbiochem, La Jolla, CA) into a fresh tube 

and centrifuged at 500g for 10 minutes at 4
o
C. The supernatant was removed and 

centrifuged at 30,000g for 30 minutes using a SW 32.1 ultracentrifuge rotor and 

Optima
TM

 L-XP Series preparative ultracentrifuge (Beckman Coulter, Inc., Fullerton, 

Cal.). The resulting pellet was resuspended in 6 ml buffer B (50 mM Tris-HCl, pH 8.2; 

15 mM MgCl2, 5% glycerol, 1 mM DTT, 5 mM EDTA and 10 µl/ml of Protease Inhibitor 

Cocktail) and divided into  3 ml samples and stored in liquid N2.  Each thawed sample 

was loaded onto 7.5 ml, 20-60 % continuous sucrose gradients. After centrifugation at 

189,000g for one hour at 4
o
C,    0.5 ml fractions were collected from the top of each 

gradient. Approximately 16 to 18 fractions were collected per gradient and then stored in 

liquid N2 (Plante et al., 2000).  

 

Protein gel electrophoresis and immunoblot analysis of concentrated sucrose 

gradient fractions. 

 Gradient fractions were concentrated five fold according to Wessel and Flugge 

(1984).  A 0.2 ml of each fraction was combined with 0.8 ml of methanol and then mixed 

by vortexing and low speed centrifugation at 9,000g for 10 seconds.  Then 0.2 ml of 
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chloroform was added and samples were mixed again.  Finally 0.6 ml of water was added 

and samples were mixed again and centrifuged at 9,000g for 1 minute. The aqueous 

phase was discarded and 0.6 ml of methanol was added to the lower chloroform phase 

and the inter-phase which has precipitated protein. Samples were mixed and centrifuged 

again at 9,000g for 2 minutes to pellet the protein. The supernatant was removed and the 

protein pellet was dried for 15 minutes under a stream of air.  

The dried pellets were diluted in 40 µl protein dissociation buffer (100 mM Tris-

HCl pH 7.5, 10 mM KCl, 5 mM MgCl2, 0.4M sucrose, 10% glycerol, and 10 mM β-

mercaptoethanol; Sambrook et al., 1989) and boiled for 5-10 minutes.  Samples were 

centrifuged for 5 minutes at 3,000g and loaded onto 12.5% SDS-polyacrylamide gels 

which were run at 100 V for 3 hours.  Vertical transfer of denatured proteins onto 

nitrocellulose membranes (Perkin Elmer, Boston, MA) was conducted using a BioRad 

Trans-Blot apparatus (BioRad Laboratories, Hercules, CA) at 100V for 1.5 hours at 4
o
C.  

 Since replicase antisera detected only intact non-denatured proteins, 150 µl 

unconcentrated fractions plus 50 µl protein dissociation buffer were applied directly to a 

nitrocellulose membrane using a Bio-Dot SF apparatus (Bio Rad, Hercules, CA).  To 

assemble the apparatus the nitrocellulose membrane and three 3MM chromatography 

papers were prewetted with PBS, 0.1% Tween for 10 minutes and then layered inside the 

apparatus. Air bubbles were removed, vacuum was applied, and then pins were tightened 

to prevent the cross contamination.  Membrane was re-hydrated with 100 µl of PBS plus 

0.1% Tween per well.  Samples were allowed to filter through the membrane gently and 

then the wells were washed with 200 µl of PBS plus 0.1% Tween.  The membrane was 
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allowed to completely dry and then was removed from the apparatus before turning off 

the vacuum. Membranes were used for immunoblot analysis. 

The ECL-Plus Chemiluminescence Immunodetection System (GE healthcare UK 

limited, Buckinghamshire, UK) was used for all protein blots.  Membranes that were 

stored at 4
o
C in a plastic wrap were pre-wetted in ddH2O for 5 minutes. Membranes were 

incubated in PBS, 0.1% Tween, plus 2.5% nonfat dry milk for 1 hour, washed three times 

for 10 minutes with PBS plus 0.1% Tween and incubated 1 hour with primary antisera.  

Membranes were probed with PVX replicase goat polyclonal or commercially available 

GFP monoclonal or BiP (GRP 78) rabbit polyclonal antiserum.  In addition, membranes 

were probed with Arabidopsis thaliana SEC12 (AtSEC12), AtSYP61, AtSYP21, and 

AtSYP41 rabbit polyclonal antiserum obtained from Dr. A. Sanderfoot at University of 

Minnesota (Bar- Peled and Raikhel 1997; Sanderfoot et al., 1999; Bassham et al., 2000) 

to determine if these cellular proteins reside in the same fractions as the PVX proteins.  

Blots were washed three times for 5 minutes with PBS plus 0.1% Tween and treated with 

horseradish peroxidase conjugated secondary antiserum, diluted 1:10,000 in PBS 

containing 2.5% nonfat dry milk for 1 hour.  Membranes were washed three times for 10 

minutes, developed using the Western Lightning Chemiluminescence reagent plus 

developer (Perkin Elmer, Boston, MA), and then exposed to Kodak bio max light film 

(Kodak, Rochester, NY). 

Densitometry was used to study changes in band intensities across the auto- 

radiographs for each immunoblot and to compare protein distributions in fractions of 

PVX.TGBp3-GFP infected and healthy leaf protein extracts. Density values were 

calculated using the Fluor Chem software.  For each autoradiograph, the background was 
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automatically subtracted by determining the average of the 10 lowest pixel values 

surrounding each individual band.  For a more rigorous quantification of the data, the 

density values for an empty lane was calculated and subtracted from each density value 

recorded for lane 1-16.  The final values are presented as relative density values (RDV) 

and were plotted using Microsoft Excel 2003. 
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CHAPTER IV 

 

RESULTS AND FINDINGS 

Sub-cellular localization of the PVX replicase during infection in plants. 

Mitra et al. (2003), Krishnamurthy et al. (2003), Ju et al. (2005), and Samuels et 

al. (2007) reported that PVX TGBp2 and TGBp3 associate with the ER and ER-derived 

vesicles. Confocal images shown in Figure 3 are to substantiate these prior reports.  First, 

the GFP ORF was fused to an ER targeting and retention signal and inserted into 

plasmids 3’ of CaMV 35S promoter (Haseloff et al., 1997). These plasmids were 

bombarded to tobacco leaf epidermal cells. Confocal microscopy revealed the typical 

reticulate tubular pattern indicative of the ER network (Figure 3A).  PVX TGBp2 and 

TGBp3 were each fused to GFP and inserted into plasmids that were bombarded to 

tobacco leaf epidermal cells.  As described in above mentioned studies, TGBp3-GFP is 

observed in the same reticulate network observed in GFP-ER expressing cells (Figure 

3B).  Tubular elements are sometimes shorter in TGBp3-GFP expressing cells and ER 

cisternae are often seen at vertices of the network.  GFP-TGBp2 in contrast is often seen 

in vesicles (Figure 3C).   

Plasmids containing CFP fused to TGBp2 and TGBp3-GFP fusions were co-

bombarded to tobacco leaves.  Confocal images of epidermal cells show that these fusion 

proteins co-localize in vesicles and along the ER network (Figure 3D, E, and F).  For 

further comparison, the GFP fusions were introduced into the PVX genome (Figure 1).
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  The images here show that both proteins have a high affinity for the ER and 

associated vesicles (Figure 3G and H) during virus infection.   
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Figure 3:  Confocal images of epidermal cells expressing (A) GFP-ER; (B) TGBp3-GFP; 

(C) GFP-TGBp2; (D, E, and F) CFP-TGBp2, TGBp3-GFP, and an overlay.  Fluorescence 

due to CFP-TGBp2 is presented in red pseudocolor.  The overlaid images show yellow 

where proteins co-localize.  (G, H) PVX.GFP-TGBp2 and PVX.TGBp3-GFP infected 

cells respectively.  Arrows in all panels point to examples of virus-induced vesicles.  Bars 

represent 10 µm. 
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Plante et al. (2000) determined that the PVX replicase is membrane bound and 

developed a method to solubilize the template dependent PVX replicase.  In this study, 

we conducted experiments to determine if the PVX replicase colocalizes with PVX 

TGBp2 and TGBp3 along the ER or ER-associated vesicles in PVX.GFP-TGBp2 and 

PVX.TGBp3-GFP infected cells. Transcripts derived from PVX.GFP-TGBp2 and 

PVX.TGBp3-GFP plasmids were used to inoculate N. benthamiana plants.  GFP 

fluorescence was first seen in single cells at 3 dpi and by 7 dpi infection foci were 

typically 10-15 cells in diameter.  Transverse sections of fluorescent foci harvested at 7 

and 12 dpi were immunolabelled using PVX replicase antisera followed by Alexa Fluor 

633 conjugated secondary antisera while GFP fluorescence was used to identify the 

TGBp2 and TGBp3 proteins in epidermal and mesophyll tissues. Immunolabelled tissues 

were viewed using confocal microscopy and the results were compared to determine if 

protein accumulation in each cell layer changed with time. Regardless of when foci were 

harvested the results were the same for each virus.  

Among PVX.GFP-TGBp2 and PVX.TGBp3-GFP infected epidermal cells treated 

with replicase antisera, green fluorescent vesicles (Figure 4A and D) co-label with red 

fluorescence (Figure 4B and E) indicating the presence of PVX replicase.  All vesicles 

which co-label with green and red fluorescence appear yellow in the overlaid images 

(Figure 4C, F).   

In PVX.TGBp3-GFP infected epidermal cells, perforated sheets of cisternae ER 

are seen following treatment with fixative and cell wall degrading enzymes rather than 

the tubular network commonly seen in untreated cells (compare Figure 3A with Figure 

4D and F).  These perforated sheets typically lie deeper in the cell than tubular ER (Ridge 
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et al., 1999).  Most confocal imaging of the tubular network focuses near the cell surface 

where imaging is easiest. The perforated sheets described by Ridge et al. (1999) are 

highly dynamic and change significantly with the streaming cytoplasm making it more 

difficult to image in cells that are not treated with fixative.   

Figure 4G-I show fluorescence due to PVX.TGBp3-GFP in palisade mesophyll 

where there are an abundance of chloroplasts. The ER is compressed by the vacuole and 

chloroplasts making it difficult to characterize ER architecture.  Vesicles that co-label 

with green and red fluorescence are abundant in these cells (Figure 4G-I).  The overlaid 

images show that red and green fluorescence co- localize in the ER and vesicles 

indicating that TGBp3-GFP, and replicase localize. 

Prior studies reported that GFP-TGBp2 induces novel vesicles to form from the 

ER (Ju et al., 2005, 2007).  These vesicles were examined using confocal and electron 

microscopy and were shown to contain ribosomes and label with BiP antisera (an ER 

localized chaperone).  To determine if the vesicles seen in this study are also ER-derived 

structures, PVX.TGBp3-GFP infected cells were treated with antisera detecting another 

ER localized chaperone: protein disulfide isomerase (PDI).  Figure 4J, K, L are views of 

spongy mesophyll cells with large air spaces between cells.  Green fluorescence (Figure 4 

J) and red fluorescence (Figure 4K) are seen in vesicles.  The yellow fluorescent vesicles 

in Figure 4L show that all TGBp3-GFP containing vesicles also contain PDI and are 

likely ER-derived. To verify non specific labelling, mock inoculated plants were also 

treated with replicase antisera. Figure 4M is a transmitted image of a mesophyll cell.  

Green and red fluorescence were not detected in control samples (Figures 4N and O) 

indicating that antiserum binding is specific to PVX infected tissues.   
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These preliminary experiments show that all epidermal and mesophyll cells 

contain replicase, GFP-TGBp2 and TGBp3-GFP along the ER network and ER-derived 

vesicles.  To further test this hypothesis, immunofluorescence labeling was conducted in 

virus infected BY-2 protoplasts.   
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Figure 4:  Confocal images of transverse sections of virus infected tobacco leaves.  Show 

epidermal [A-C (7 days post inoculation (dpi)) D-F (12 dpi)], palisade mesophyll (G-I (7 

dpi)) and spongy mesophyll (J-L (9 dpi)). Green fluorescence indicates GFP-TGBp2 (A) 

or TGBp3-GFP (D, G, J).  Red fluorescence indicates replicase (B, E, H) or PDI (K). 

Yellow indicates where red and green overlap indicating proteins co-localize. Panels with 

no signals (M-O) are for mock inoculated protoplasts. Bars represent 10 µm.  All images 

were taken using Kr/Ar laser set at 400 Hz and PMT detector within a 400 – 510 value 

range where chloroplast autofluorescence is not detectable as seen in panels N and O.  
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Subcellular localization of the PVX replicase, GFP-TGBp2, and TGBp3-GFP 

during infection in protoplast. 

Protoplasts were prepared from BY-2 suspension cells and transfected with 

pRTL2-GFP-TGBp2, pRTL2-TGBp3-GFP, or -GFP-ER plasmids or inoculated with 

PVX-GFP, PVX.GFP-TGBp2, and PVX.TGBp3-GFP infectious transcripts (Figure 1) 

and immunofluorescence labeling was conducted, as in leaves.  Protoplasts offer the 

advantage of studying viral protein accumulation in synchronously infected cells. Thus 

we can survey viral protein accumulation at specific times during the infection cycle. 

Since GFP fluorescence is first seen at 12 hpi, protoplasts were harvested at intervals 

between 12 and 48 hpi to determine if protein sub-cellular accumulation and co-

localization is time-dependent.  Protoplasts were inoculated with PVX.GFP-TGBp2 and 

PVX.TGBp3-GFP and then were harvested at early (12 or 18 hpi) and late (36 or 48 hpi) 

stages of virus infection (Figure 5).  Protoplasts were then fixed onto cover glasses and 

immunolabelled with PVX replicase polyclonal and GFP monoclonal antiserum to 

determine the subcellular location of the PVX replicase and TGBp2 proteins during early 

and late stages of virus infection. Alexa Fluor 633 conjugated secondary anti-goat sera 

was used to detect replicase with peak emission at 650 nm, while Alexa Fluor 488 

conjugated secondary anti-mouse sera was used to detect GFP, with peak emission at 520 

nm.  Confocal microscopic images of at least 30 protoplasts for each time point and for 

each treatment were taken and replicase and GFP fusions co-localized at all time points in 

most cells.  Fluorescence due to PVX replicase was not as abundant as fluorescence due 

to the GFP fusions because these proteins are expressed from different viral promoters 

which produce different levels of protein.  
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For PVX.GFP-TGBp2 at 18 hpi GFP-TGBp2 is detected mainly in vesicles or 

aggregates of vesicles (Figure 5A-C).  At 36 hpi GFP-TGBp2 is seen in the ER as well as 

in vesicles (Figure 5D-F). PVX replicase is seen in vesicles at 18 and 36 h in the 

PVX.GFP-TGBp2 infected protoplasts.  Most red vesicles seem to contain some green 

fluorescence at 18 hpi but more often the red and green fluorescence seems to be 

neighboring.  These data indicate that TGBp2 and PVX replicase probably do not directly 

interact with each other but they are often neighboring each other.  At 36 hpi the PVX 

replicase containing vesicles are seen along the strands of ER.  These data support the 

notion that the PVX replicase and TGBp2 co-localize along sub-domains of the ER.   

For PVX.TGBp3-GFP, green fluorescence is seen along the ER network at 12 and 

48 hpi.  Evidence of TGBp3-GFP in the ER network in protoplasts at early and late times 

following virus infection was documented by Samuels et al. (2007).  There are some 

green fluorescent vesicles at 48 hpi (Figures 5G-L).  Red fluorescent vesicles are seen 

along the ER network at 12 hpi as seen in PVX.GFP-TGBp2 infected protoplasts 

indicating that replicase, TGBp2, and TGBp3 likely colocalize along a sub-domain of the 

ER.  At 48 hpi the merged image in Figure 5L shows yellow fluorescence where TGBp3 

and replicase colocalize.  The yellow fluorescence could indicate close association of 

these proteins, perhaps due to direct protein-protein interactions.   
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Figure 5: Confocal Images of protoplasts infected with PVX.GFP-TGBp2 and 

PVX.TGBp3-GFP. (A, B, C) Protoplast at 18 hpi shows green fluorescence indicating 

GFP-TGBp2 and red fluorescence indicating replicase. (D, E, F) Protoplast at 36 hpi 

shows green fluorescence indicating GFP-TGBp2 and red fluorescence indicating 

replicase. (G, H, I) Protoplast at 12 hpi shows green fluorescence indicating TGBp3-GFP 

and red fluorescence indicating replicase. (J, K, L) Protoplast at 48 hpi shows green 

fluorescence indicating TGBp3-GFP and red fluorescence indicating replicase. Red 

fluorescence indicates replicase proteins labeled with Alexa fluor 633. (C, F, I, L) The 

overlaid images show yellow where GFP-TGBp2 and PVX replicase or TGBp3-GFP and 

replicase colocalize.  Bars represent 8 µm.   
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Imaging controls include protoplasts transfected with plasmids expressing GFP 

fused to an ER targeting signal (GFP-ER) were used to transfect BY-2 protoplasts.  

Images show the dense strands of ER extending across the vacuole from the perinuclear 

region toward the plasma membrane (Figure 6B).  The mesh-like tubular network is not 

as obvious as in transfected leaf epidermal cells and this could be due to the compact size 

of the cells causing compression of the ER, higher prevalence of cisternae, or occurrence 

of perforated sheets of ER (Ridge et al., 1999). Protoplasts were also transfected with 

pRTL2-GFP-TGBp2 which shows the TGBp2 induced vesicles (Figure 6C) described in 

Ju et al., (2005, 2007). 

PVX-GFP infected protoplasts treated with replicase antiserum have green 

florescence in the cytoplasm and nucleus while red fluorescence is in granules scattered 

throughout the cytoplasm (Figure 6A).  The green fluorescent granules resemble the 

GFP-TGBp2 induced vesicles observed in pRTL2-GFP-TGBp2 transfected protoplasts 

(Figure 6C).   

There were mainly two patterns observed in PVX.GFP-TGBp2 inoculated 

protoplasts.  Green fluorescence is seen in vesicles, aggregates of vesicles (Figure 6D), as 

well as the ER network (Figure 6E).  Green and red fluorescence sometimes colocalized 

in vesicles and along the ER network in PVX.GFP-TGBp2 infected protoplasts that were 

treated with PVX replicase and Alexafluor 633 antiserum (Figure 6F-L).  These data 

indicate that the PVX replicase can colocalize with TGBp2 in vesicles and along the ER 

in virus infected protoplasts, as well as in leaves. 
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Protoplasts transfected with pRTL2-TGBp3-GFP or infected with PVX.TGBp3-

GFP show green fluorescence in the ER network (Compare figure 7A and B with 6B).  

PVX.TGBp3-GFP also shows fluorescence in the nucleus and perinuclear bodies which 

were described in Samuels et al., (2007 and Ju et al., In Press). When CFP-TGBp2 and 

TGBp3-GFP were coexpressed in protoplasts fluorescence co-localized in vesicles as 

seen in N. benthamiana leaves (compare Figure 7C-E with Figure 4D-F). PVX.TGBp3-

GFP infected protoplasts were treated with replicase antisera.  Green and red florescence 

co-localizes in vesicles and the ER network (Figure 7F-K).   

The mock-inoculated samples treated with PVX replicase and Alexa fluor 633 

antisera did not have evidence of green or red fluorescence (Figure 7L-N).  In addition, 

virus infected samples treated with buffer and secondary antisera did not exhibit red 

fluorescence (data not shown). The combined controls indicate that green and red 

fluorescence are due to GFP and Alexa fluor 633 labeling of PVX replicase.   
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Figure 6. Confocal microscopic images of protoplasts transfected with viral protein -GFP 

fusion or infected with virus expressing viral protein -GFP fusion. Green fluorescence 

indicates (A) PVX-GFP, (B) GFP-ER, (C) pRTL2-GFP-TGBp2, (D, E, H, J) PVX.GFP-

TGBp2. Red fluorescence indicates replicase in PVX.GFP-TGBp2 infected protoplasts 

(G, K). The overlaid images show yellow where GFP-TGBp2 and PVX replicase 

colocalize (H, L). Arrows pointed to representative examples of vesicles. Bars represent 

10 µm.  All images were taken using Kr/Ar laser set at 400 Hz and PMT detector within a 

400 – 510 value range. 
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Figure 7. Confocal microscopic images of protoplasts transfected with viral protein -GFP 

and -CFP fusions or infected with virus expressing viral protein -GFP fusion. Green 

fluorescence indicates (A) pRTL2-TGBp3-GFP, (B) PVX-TGBp3-GFP, (D) pRTL2-

TGBp3-GFP, (F, I) PVX-TGBp3-GFP. Red fluorescence indicates replicase in (G, J), and 

(C) pRTL2-CFP-TGBp2.  The overlaid images show yellow where (H, K) TGBp3-GFP 

and PVX replicase, (E) CFP-TGBp2 and TGBp3-GFP colocalize. Panels with no signals 

(M, N) and transmitted image of a protoplast (L) are for mock-inoculated protoplasts 

labeled with PVX replicase and Alexa fluor 633 antiserum. Bars represent 10 µm. All 

images were taken using Kr/Ar laser set at 400 Hz and PMT detector within a 400 – 510 

value range.    
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These data indicate that the PVX replicase co-localizes with TGBp3 in vesicles 

and along the ER in virus-infected protoplasts, as well as in leaves. Evidence that CFP-

TGBp2 and TGBp3-GFP co-localize also further supports the hypothesis that these three 

proteins co-localize in vesicles and along the ER network. To determine the precise 

origin of these vesicles and visualize the proposed vesicles containing all three PVX 

proteins, further electron microscopic experiments were conducted.  

 

Transmission electron microscopy (TEM) evaluation of the sub-cellular localization 

of PVX replicase, GFP-TGBp2, and TGBp3-GFP during infection in plants.  

Previous reports using cryo-fixation and TEM showed GFP-TGBp2-induced 

novel vesicles to bud from the ER in transgenic tobacco leaves (Ju et al., 2005). These 

vesicles were co-labelled with BiP antisera.  TGBp3-GFP accumulated mainly along the 

ER when expressed alone in transgenic leaves and no vesicles were identified which 

resembled those in GFP-TGBp2 expressing tissues (Ju et al., 2005).   

In this study, PVX.TGBp3-GFP-infected  and mock-inoculated tobacco leaves 

were cryo-fixed and embedded in either LR-White or Spurr’s resin and immunogold 

labeling with GFP antisera, replicase antisera, or both replicase and BiP antiserum to 

determine the sub-cellular distribution of the TGBp3-GFP and PVX replicase proteins.  

Secondary antisera conjugated with 10 nm gold particles were used to detect BiP while 

secondary antiserum conjugated with 20 nm gold particles were used to detect GFP or 

PVX replicase.  

If PVX replicase and TGBp3-GFP colocalize in virus infected cells, then 

significant quantities of immunogold label will be detected in the same sub-cellular 
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compartment. Since confocal microscopy experiments suggest that these proteins likely 

co-localize along the ER network or within ER- related vesicles, thin sections were also 

treated with BiP antiserum.  BiP protein is an ER resident chaperone which is not present 

in the other areas of the endomembrane system and can be used to confirm the origin of 

ER-derived structures in virus infected cells (Fontes et al., 1991). If the PVX proteins co-

localize, but in a location other than the ER, then there should be noticeable amount of 

immunogold label for GFP and PVX replicase in a location separate from BiP. If PVX 

proteins do not co-localize then there should be noticeable gold label for GFP in a 

location separate from gold label detecting PVX replicase. For controls, thin sections of 

healthy N. benthamiana were treated with GFP, PVX replicase, and BiP antisera.  In 

addition, healthy and virus-infected thin sections were treated with buffer and secondary 

antisera.  

The number of gold particles labeling specific structural components of the cell 

was scored in 10 µm
2
 fields.  Thirty five 10 µm

2
 fields in which gold particles were found 

to be associated with cytoplasm, vacuole, cell wall (Figure 8A), chloroplast (Figure 8B), 

and ER (Figure 9D, E and H) were scored and the average and standard error of gold 

particles for all the sub-cellular structures were calculated (Table 1). Further control 

experiments will be added to this study before statistical analysis is to be completed by 

Dr. Mark Payton (Statistics Department, OSU, Stillwater, OK.).   

In PVX.TGBp3-GFP infected samples treated with PVX replicase antisera, 20 nm 

gold particles associated mainly with strands of ER network (Figure 9D, E and H) with 

less labeling seen along the cell wall and cytoplasm (Table1). Table 1 shows that PVX 

replicase accumulation is highest in the ER in sections treated with PVX replicase 
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antisera or both PVX replicase and BiP antiserum.  Gold particles detecting BiP are also 

highest in the ER, as expected.  The minimal amount of gold particles (<1/10µm
2
) 

detecting PVX replicase or BiP in the cell wall and cytoplasm is comparable to the 

minimal numbers of gold particles (<1/10µm
2
) seen in samples treated with buffer and 

secondary gold conjugated sera (Table 1). Gold particles detecting PVX replicase and 

BiP were seen in the vacuole of virus-infected leaves.  The levels of BiP seen in the 

vacuole of virus infected leaves was slightly higher than in healthy samples raising the 

possibility that PVX stimulated vacuolar targeted degradation of BiP.  Pimpl et al. (2006) 

reported evidence that BiP-ligand complexes can be carried by multi vesicular bodies 

(MVB) to the vacuole in tobacco cells for disposal. It is worth considering that BiP may 

direct replicase to the vacuole for disposal after replication is completed.  For GFP, the 

greatest amount of immunogold label was detected in the ER and lesser amounts were 

seen in the cytoplasm. Ju et al. (2008) recently demonstrated that PVX.TGBp3-GFP is 

degraded by the ER-associated degradation pathway (ERAD) which dislodges proteins 

from the ER for degradation by the 26S proteasome in the cytoplasm.  Thus evidence of 

TGBp3-GFP in the cytoplasm is probably related to protein turnover.  To conclude, these 

data indicate that PVX replicase, BiP, and TGBp3-GFP accumulate mainly along the ER.  

Antiserum detecting PVX replicase or GFP showed minimal label in the healthy samples 

(<1/10µm
2
) indicating specific labeling of virus infected tissues.   

Furthermore, specific vesicles and organelles were identified which were less 

abundant than the structures detailed in Table 1 and Figure 8.  The numbers of gold 

particles labeling these specific structures were quantified, and the average and standard 

error of gold particles associating with each vesicle or organelle were recorded in      
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Table 2. The specific vesicles or organelles studied here include:  protein bodies, coated 

vesicles (Figure 9F), ER-rich bodies (Figure 9A, B and C), mitochondria (Figure 8C), 

peroxisomes (Figure 8D), Golgi (Figure 9G) and plasmodesmata (Figure 8E).  Since 

many of these structures were less abundant or rare than the structures studied in Table 1, 

the population numbers for each antiserum treatment vary. These vesicles and organelles 

were studied to further investigate whether PVX replicase or TGBp3-GFP are present in 

specific locations outside of the ER network. 

 



 

 50 

 

 

 

 

 



 

 51 

Figure 8. Electron micrographs of thin sections through PVX.TGBp3-GFP inoculated 

leaf segments. (A) Low magnification image of a region of tissue showing neighboring 

cells.  Chloroplast (Chl), mitochondria (M), and the cell wall (CW) are identified.  (B, C, 

D and E) Chloroplast, mitochondria, peroxisome and plasmodesmata, respectively, 

treated with PVX replicase and BiP antisera. Few or no gold particles are detected in any 

of these organelles indicating that none of these organelles contain replicase or TGBp3-

GFP.  Scale bars represent 500 nm.   



 

 52 

 

 



 

 53 

Figure 9: Electron micrographs of PVX.TGBp3-GFP and mock inoculated leaf segments. 

(A, B, C) ER-rich bodies found in PVX.TGBp3-GFP infected leaf tissues, but are absent 

from mock-inoculated leaf tissues. These are PVX-induced structures which contain 

virions, ER membranes, and granules which resemble ribosomes. Bodies labeled with 

PVX replicase, BiP, and GFP antisera.  (D, E) Rough ER in PVX.TGBp3-GFP and 

mock-inoculated samples, treated with PVX replicase and BiP antisera, successively.  (F) 

Image of coated vesicle budding from ER membrane.  Sample was treated with PVX 

replicase antisera but no evidence of PVX replicase in coated vesicles. (G) Golgi 

apparatus in mock-inoculated sample treated with PVX replicase and BiP antisera. (H) 

Rough ER in PVX.TGBp3-GFP sample treated with GFP antisera. In all panels, 

arrowheads point to virus particles.  Lines point to 10 nm gold particles which correspond 

to BiP antisera in all panels.  Arrows point to 20 nm gold particles corresponding to PVX 

replicase (A, B) or GFP (C) antiserum.  Scale bars represent 500 nm. 
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Table 1.  Distribution of immunogold labeling on cell wall, cytoplasm, ER, vacuole and 

chloroplast with GFP, replicase, and BiP antisera in transgenic N. benthamiana leaves. 

 

Sample Treatment 
# 

Fields Cell Wall Cytoplasm ER Vacuole Chloroplast 
PVX.TGBp3-
GFP Replicase 35 1.58+0.46 2.73+0.5 3.71+1.40 NO NO 

 Rep+BiP 35 0.57+0.10 1.00+0.17 2.40+0.41 1.31+0.30 0.00+0.00 

 Rep+BiP 35 0.86+0.14 0.31+0.05 4.43+0.75 3.43+0.75 0.29+0.05 

 buffer 35 0.10+0.02 0.54+0.09 0.06+0.01 0.44+0.19 NO 

 GFP 35 0.43+0.08 0.97+0.16 2.80+0.47 0.00+0.00 NO 

        

Healthy        

 Rep+BiP 35 0.00+0.00 0.00+0.00 0.14+0.02 0.13+0.04 0.00+0.00 

 Rep+BiP 32 0.03+0.01 0.00+0.00 2.57+0.43 2.13+0.75 0.32+0.06 

 buffer NO NO NO NO NO NO 

 GFP 35 0.36+0.10 0.10+0.02 0.11+0.02 0.00+0.00 NO 
 

PVX.TGBp3-GFP infected N. benthamiana leaf segments were embedded in LR White, 

sectioned, and analyzed by immunogold labeling and electron microscopy to assess the 

sub-cellular accumulation patterns of TGBp3-GFP and replicase. Control samples 

included noninoculated healthy leaves. Immunogold labeling was conducted using 

commercially available full-length mouse monoclonal AV antiserum (BD living colors; 

CLONTECH Laboratories) to detect GFP, BiP rabbit antiserum (Affinity BioReagents), 

PVX replicase goat antisera obtained from Cindy Hemenway (NC State University), or 

no primary antiserum (buffer).   Samples were treated with 10 nm gold-conjugated anti-

mouse to detect GFP.   Samples were dual-labeled using antiserum to detect replicase and 

BiP and were treated with 20 nm and 10 nm of gold-conjugated anti-goat and anti-rabbit 

sera (specific particles counted in dual labeling experiments noted with red labeling). 

Fields are defined as areas of 10 µm
2
 (using an ultrastructure size calculator) that contain 

gold particles. Gold particles in each field were counted manually, average and standard 

error was calculated and, tabulated. The total numbers of fields analyzed for each plant 

sample are indicated.  The numbers of gold particles detected in the cell wall (CW), 

cytoplasm, ER, vacuole, and chloroplast were determined for all fields treated with each 

antiserum. Zeros indicate sub-cellular domains with no label. NO indicates that the 

structure was not observed. 
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In PVX.TGBp3-GFP infected samples, I found two virus-induced novel 

structures: coated vesicles and ER-derived vesicles. The coated vesicles appear to form 

from rough endoplasmic reticulum (RER) and the average diameter determined from 21 

vesicles is 375.95 +82.04 nm (Figure 9F).  These vesicles appear to be coated with dense 

granules and were undetected in healthy N. benthamiana sections.  The coated vesicles 

had low levels of gold label, detection of PVX replicase or BiP and, there was no label 

detecting GFP (Table 2).  These coated vesicles may be fewer in healthy cells, and 

therefore not easily found, or represent pathological structures unrelated to replication or 

virus movement.  It is possible that PVX infections causes an increase in the numbers of 

COPII or COPI coated vesicles compared to the non-infected samples making them 

easier to detect.  Other ER-derived vesicles were found in virus-infected but not healthy 

leaf sections (Table 2).  These ER-derived vesicles are larger, having an average diameter 

determined from 21 vesicles to be 1048.14 +228.72 nm (Figure 9A-C). These vesicles 

contain virus particles and ribosomes, and membraneous strands which label with PVX 

replicase, GFP, and BiP antisera. The PVX TGBp2 related ER-derived vesicles described 

in Ju et al., (2005) were 150-500 nm in diameter and similarly labeled with ribosomes 

and BiP.  It is possible that the larger ER-derived vesicles seen in PVX infected samples 

have the same origin as the TGBp2 related vesicles described previously. It is worth 

speculating that these vesicles induced by TGBp2 become larger, as caused by events 

during virus infection, to contain virions and replicating virus.   

In PVX.TGBp3-GFP infected samples, immunolabeling detected PVX replicase, 

BiP and GFP mainly in ER-derived vesicles (Table 2) and minimal label was found to be 

associated with protein bodies, coated vesicles, mitochondria, peroxisomes, Golgi and 
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plasmodesmata. Surprisingly, Golgi stacks were not easily identified in PVX.TGBp3-

GFP infected samples compared to healthy samples.  This may be evidence Golgi stacks 

are depleted during virus infection, or that there were similar difficulties in detecting 

Golgi as for detecting coated vesicles in healthy samples.  Healthy samples had minimal 

labeling with GFP, RdRp, and BiP antisera.   
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Table 2.  Distribution of immunogold labeling on protein bodies, coated vesicles, ER-rich 

bodies, mitochondria, peroxisomes, Golgi and plasmodesmata, with GFP, replicase, and 

BiP antisera in transgenic N. benthamiana leaves. 

 

Sample or    Protein Coated ER-rich Mito- Peroxi-  Plasmo- 

Treatment Fields  Bodies Vesicles Bodies chondria somes Golgi desmata 

PVX.TGBp3-GFP         

Replicase 
6 to 
13 NO NO 7.77+2.15 NO 0.67+0.22 NO NO 

Replicase+BiP 
6 to 
35 0.00+0.00 0.70+0.12 3.10+0.58 0.00+0.00 0.00+0.00 0.00+0.00 0.00+0.00 

Replicase+BiP 
6 to 
35 0.00+0.00 0.80+0.14 6.17+1.15 0.09+0.02 0.20+0.03 0.00+0.00 0.00+0.00 

buffer NO NO NO NO NO NO NO 0.00+0.00 

GFP 20-29 NO 0.08+0.02 1.90+0.42 NO 0.07+0.01 NO NO 

         

Healthy         

Replicase+BiP 
27 to 

35 0.00+0.00 NO NO 0.09+0.01 0.00+0.00 0.00+0.00 NO 

Replicase+BiP 
27 to 

35 0.00+0.00 NO NO 0.09+0.01 0.17+0.00 0.00+0.00 NO 

buffer NO NO NO NO NO NO NO NO 

GFP 17 NO NO NO NO 0.00+0.00 NO NO 

 

PVX.TGBp3-GFP infected and mock (Healthy) inoculated N. benthamiana leaf segments 

were embedded in LR White, sectioned, and analyzed by immunogold labeling and 

electron microscopy to assess the subcellular accumulation patterns of TGBp3-GFP and 

replicase. Control samples included noninoculated healthy leaves.  Immunogold labeling 

was conducted using commercially available full-length mouse monoclonal GFP 

antiserum (BD living colors; CLONTECH Laboratories), BiP rabbit antiserum (Affinity 

BioReagents), PVX replicase goat antisera obtained from Cindy Hemenway (NC State 

University), or no primary antiserum (buffer).   Samples were treated with 10 nm gold-

conjugated anti-mouse to detect GFP.   Samples were dual-labeled using antiserum to 

detect replicase and BiP and were treated with 20 nm and 10 nm of gold-conjugated anti-

goat and anti-rabbit sera (specific particles counted in dual labeling experiments noted 

with red labeling). Fields are defined as each organelle that contains gold particles. Gold 

particles in each organelle were counted manually, average and standard error was 

calculated and, tabulated. The total numbers of organelles analyzed for each plant sample 

are indicated.  The numbers of gold particles detected in protein bodies, coated vesicles, 

ER-rich bodies, mitochondria, peroxisomes, Golgi and plasmodesmata were determined 

for all fields treated with each antiserum. Zeros indicate subcellular domains with no 

label. NO indicates the structures were not observed. 
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In combination, immunofluorescence and immunogold labeling detected TGBp3-

GFP and replicase co-localize along the ER network and ER-derived vesicles. These 

novel ER-derived vesicles identified by electron microscopy contain virus particles, 

TGBp3-GFP protein and replicase protein. Considering the time-lapse imaging for TMV 

which shows that the TMV movement and movement associated proteins carry 

membrane associated replication complexes toward plasmodesmata (Asurmendi et al., 

2004; Kawakami et al., 2004, and Liu et al., 2005), it is possible that TGBp2 and TGBp3 

proteins traffic replicating PVX virus and virions toward plasmodesmata in these ER-

derived vesicles.     

 

Sucrose gradient fraction of PVX.TGBp3-GFP infected tobacco leaves. 

Sucrose gradient fractionation was used to determine if the ER-derived structures 

containing PVX replicase and TGBp3-GFP could be separated from other components of 

the endomembrane network.  Fractions were subjected to immunoblot analysis to 

determine if the PVX replicase, TGBp3-GFP and BiP co-fractionate as predicted based 

on confocal and electron microscopic experiments. Fractions were also treated with 

antisera recognizing other subdomains of the secretory system. The antisera tested 

recognize: PVX replicase, GFP, BiP (an ER resident protein used as a marker to identify 

fractions containing ER membranes), SYP21 (which resides in the late endosome and 

vacuole) SYP41 (which resides in the trans Golgi network [TGN]) and SYP61 (which 

resides in the TGN and endosome).  All SYP antiserum were obtained from Dr. Tony 

Sanderfoot at University of Minnesota (Bar- Peled and Raikhel 1997; Sanderfoot et al., 

1999; Bassham et al., 2000).    
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Protein extracts from PVX.TGBp3-GFP infected and mock-inoculated                 

N. benthamiana leaves were loaded onto 20-60 % continuous sucrose gradients. Sixteen 

0.5 ml-fractions were collected from the top of the gradient, leaving behind the 

chlorophyll fraction at the bottom. Proteins were concentrated and run on an SDS 

polyacrylamide gel and transferred to nitrocellulose for immunoblot analysis. Since the 

replicase antisera recognize intact and not denatured proteins, fractions were also loaded 

onto slot blots and then treated with PVX replicase antisera.  

PVX.TGBp3-GFP infected N. benthamiana leaf extracts treated with GFP 

antisera show bands mainly in the first five fractions.  As expected GFP was not detected 

in fractions of healthy leaf extracts (Figure 10). Fractions 1-5 of PVX.TGBp3-GFP 

infected leaf extracts tested positive for replicase and BiP indicating that these three 

proteins colocalize in ER membranes. 

SYP21, SYP41, and SYP61 antisera were used to characterize the distribution of 

the trans Golgi network, endosome, and vacuolar membranes across the sucrose gradient.  

These proteins were not detected in fractions 1-5 but were distributed across fractions 6-

16.  These data show a clear separation of the ER resident proteins from later components 

of the endomembrane network providing clearer evidence that the PVX replicase and 

TGBp3 do not associate with the Golgi or post-Golgi networks.  Interestingly, the band 

intensity for SYP41, and SYP61 proteins were greater in virus infected than healthy 

samples suggesting that PVX infection may have caused upregulation of these secretory 

proteins.  
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Figure 10: Sucrose gradient analysis for viral replicase, TGBp3-GFP, and host proteins 

representing various membraneous fractions. Extracts from PVX.TGBp3-GFP infected 

and healthy N. benthamiana plants were fractionated on a sucrose gradient and fractions 

were subjected immunoblot analysis using PVX replicase, GFP, BiP, SYP21, SYP41 and 

SYP 61 antisera. Fractions 1 to 16 of PVX.TGBp3-GFP infected and healthy leaf extracts 

appear in each membrane. Slot blot analysis with PVX.TGBp3-GFP protein extract 

treated with replicase antisera is also shown. 
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Densitometry was used to study changes in band intensities across the auto- 

radiographs for each immunoblot and to compare protein distributions in fractions of 

PVX.TGBp3-GFP infected and healthy leaf protein extracts. The final values are 

presented as relative density values (RDV) (Figure 11). 

Relative densitometry values for PVX.TGBp3-GFP infected protein extracts show 

34- or 36-fold more TGBp3-GFP or replicase than in protein extracts from healthy tissue 

(Figure 11A and B). BiP was detected mainly in fractions 1-5 in infected tissues (Figure 

11C).  BiP was also detected in the same fractions as SYP21 (which is in the vacuole). 

This data support earlier described electron microscopic studies which found noticeable 

amount of BiP in the vacuole of virus-infected cells.   
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Figure 11: Density gradient analyses of the distribution of sub-cellular membranes of 

PVX.TGBp3-GFP infected and healthy N. benthamiana leaves. Immunoblot assays were 

performed to identify GFP, BiP, SYP 21,SYP 41, SYP 61 and replicase proteins. Fraction 

number was plotted against relative density value.  
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CHAPTER V 

 

 

CONCLUSION AND DISCUSSION 

The replication of positive-sense RNA viruses is typically associated with cellular 

membranes and there are many examples of viruses which induce invaginations of 

cellular membranes to protect the replicating virus from host defenses (Restrepo-Hartwig 

and Ahlquist, 1996; Heinlein et al., 1998; Reichel and Beachy, 1998; Russo et al., 1983; 

Lupo et al., 1994; Schwartz et al., 2002; Schwartz et al., 2004). In this study, we used 

confocal microscopy, transmission electron microscopy, and sucrose gradient 

fractionation followed by immunoblot analysis to detect the subcellular localization of 

the PVX replicase and to determine if PVX TGBp2 and TGBp3 reside in the same 

subcellular domain. Confocal microscopic analysis of leaves indicated that all infected 

epidermal and mesophyll cells contain replicase, GFP-TGBp2, and TGBp3-GFP along 

the ER network and ER-derived vesicles, while results from infected protoplasts 

indicated that the PVX replicase co-localizes with TGBp3 in vesicles and along the ER. 

Evidence that CFP-TGBp2 and TGBp3-GFP colocalize also further supports the 

hypothesis that these three PVX proteins colocalize in vesicles and along the ER network.   

Time course experiments in protoplasts found no evidence that the co-localization 

of PVX replicase, GFP-TGBp2 or TGBp3-GFP varies with time.  Proteins were found to 

co-localize in vesicles and along the ER in cells early and late in infection.  

Immunofluorescence labeling with PDI antisera and immunogold labeling with BiP
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 antisera confirmed that these three PVX proteins co-localize along ER strands and in 

ER-derived vesicles. 

Prior literature has stated that PVX replicase associates with cellular membranes        

(Doronin and Hemenway, 1996; Plante et al., 2000), but no work was done to identify the 

type of membrane compartment where PVX replicates. Considering reports that BMV 

replication occurs in invaginations protruding into the ER lumen along with reports that 

poliovirus replication occurs in novel vesicles derives from ER (Schwartz et al., 2002, 

2004; Schlegel et al., 1996; Suhy et al. 2000), we undertook this study to determine if 

PVX replicase colocalizes with TGBp2 and TGBp3 proteins which are known to reside 

in the ER and ER-derived vesicles.   

Virus-infected and mock-inoculated leaf segments were harvested at 5 dpi and 

subjected to both cryo-fixation and embedding in LR-White or, chemical fixation and 

embedding in Spurr’s resin for transmission electron microscopic studies. The two 

methods of tissue preparation have different benefits. Cryo-fixation is superior for 

preservation of antigenicity of cytosolic proteins and is comparable to chemical fixation 

for preservation of membrane structures (Howard, 2001).  Chemical fixation is superior 

for preservation of certain cellular structures, although antigenic structures in plants that 

are sensitive to aldehyde are negatively impacted by the fixative and by the time for 

fixation relative to the more rapid cryo-fixation method (Ripper et al., 2007).  Spurr’s 

resin and LR-White were both used in case the nature of the embedding resin might 

impact tissue preservation and staining.    

Electron microscopic studies identified novel ER-derived vesicles containing 

PVX replicase, TGBp3-GFP, and virions.  Virion particles are around 500 nm in length 
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and easily cargo in the 1048.14 +228.72 nm novel ER –derived vesicles (Figure 9A, B 

and C).  These vesicles were not found in healthy plant tissues suggesting that they are 

virus-induced structures.  Electron microscopic experiments are under way to find out 

whether TGBp2 protein is also present in these vesicles. Time-lapse imaging for TMV 

shows that the TMV movement and movement-associated proteins carry membrane 

associated replication complexes which has replicase, MP, CP, and viral RNA toward 

plasmodesmata (Asurmendi et al., 2004; Kawakami et al., 2004 and Liu et al., 2005).  

Probably these PVX induced vesicles also function to transport viral nucleic acids and 

proteins to the plasmodesmata.  

Electron microscopic analysis of PVX.TGBp3-GFP infected leaf segments found 

a second class of vesicles which appear to be coated with dense granules, here called 

coated vesicles (Figure 9F). These vesicles are 375.95 +82.04 nm in diameter, which is 

smaller than the length of a virus particle. These vesicles show low levels of immunogold 

labeling detecting PVX replicase, BiP, or GFP (Table 2) suggesting that these structures 

are unrelated to PVX replication or movement.  Further analysis is needed to clarify the 

role (if any) of these vesicles in virus infection.   

Fractionation and densitometry analyses identified PVX replicase, TGBp3-GFP, 

and BiP in the first five fractions near the top of the gradient, providing further support 

that these PVX proteins target to the ER or ER-derived vesicles. SYP41 and SYP61 

localize to the trans Golgi network and endosome, and there is a total 4-5 fold increase in 

these proteins in PVX infected fractions over healthy fractions. SYP21, SYP41, and 

SYP61 are not detected in the same fractions as PVX replicase, TGBp3, and BiP 
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indicating that these PVX proteins do not traffic through the secretory system but more 

often reside in the ER.  

Interestingly, we detected BiP and PVX replicase in the vacuolar lumen of virus 

infected leaves by immunogold labeling and electron microscopy.  SYP21 localizes to the 

endosomal and vacuolar membrane and failed to co-localize with BiP and replicase in 

sucrose gradient fractions.  These data demonstrate that PVX replicase and BiP do not 

accumulate along the vacuolar membrane but do not preclude vacuolar degradation of 

these proteins.  Previous reports have shown that BiP is exported from the ER via a 

pathway involving COPII vesicles and multivesicular bodies (Pimpl et al., 2003; 2006; 

daSilva et al., 2005) to the vacuole (Tse et al., 2004; Sanderfoot et al., 1998).   Since we 

failed to detect adequate Golgi stacks, COPII vesicles, or multivesicular bodies in this 

study we can only speculate that PVX replicase follows the same route as BiP to the 

vacuole for degradation.  Further experiments are needed to determine the path for 

degradation of the PVX replicase.  

Studies have shown that the PVX TGBp2 and TGBp3 are exported from the ER 

to the cytosol for degradation.  Recently Ju et al. (2008) showed PVX TGBp3-GFP also 

traffics into the nucleus.  General accumulation of TGBp3-GFP is impacted by inhibitors 

of the 26S proteasome suggesting that these proteins are degraded by the ERAD pathway.  

Thus the pathway for degradation of the PVX replicase is likely to be distinct from 

TGBp2 and TGBp3.   

Combining the results of this study with those of Ju et al. (2005, 2008), I propose 

a new model to describe PVX replication, cell-to-cell spread, and protein turnover.  First, 

PVX replicase, TGBp2, and TGBp3 colocalize along the ER or ER-derived vesicles.  
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These vesicles contain PVX virions, replicase, TGBp2 and TGBp3.  We propose that the 

vesicles carry infectious agents and viral movement proteins to the plasmodesmata for 

transport into neighboring cells. The 1 µm diameter vesicles observed in this study 

appear like larger versions of the GFP-TGBp2 150- 500 nm diameter vesicles reported by 

Ju et al. (2005).  Both vesicles co-label with antisera detecting TGBp3-GFP and BiP and 

appear early in infection, as seen in protoplasts. Further electron microscopic and sucrose 

gradient fractionation need to be conducted to determine if GFP-TGBp2 co-localizes in 

the replicase containing vesicles or in another vesicle population. The result presented in 

this study and in related studies indicates that PVX replicase, GFP-TGBp2 (Ju et al., 

2005, 2007) or TGBp3-GFP proteins were found to colocalize in ER-derived vesicles and 

along the ER in cells early and late in infection. The results here resemble results reported 

for TMV showing that the viral replicase along with the movement and movement 

associated proteins carries infectious agents to the plasmodesmata in membrane 

associated complexes (Asurmendi et al., 2004; Kawakami et al., 2004 and Liu et al., 

2005). Considering the model proposed for TMV movement, it is possible that PVX 

replication complexes are also transported to the plasmodesmata by a similar mechanism 

(Figure 12).  
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Figure 12:  Model describing PVX replication, cell-to-cell spread, and protein turnover. 

(1) PVX TGBp2 and TGBp3 export from the ER to the cytosol for degradation. (2) PVX 

TGBp3-GFP traffics into the nucleus. (3) PVX replicase, TGBp2, and TGBp3 colocalize 

along the ER or ER-derived vesicles.  (4) ER-derived vesicles carry infectious agents and 

viral movement proteins to the plasmodesmata for transport into neighboring cells. (5) 

Replicase and BiP export from the ER via a pathway involving COPII vesicles and 

multivesicular bodies to the vacuole. 
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Abstract:  

 

 

Potato virus X (PVX) encodes a 166 kDa replicase. RNA virus replication 

typically occurs along cellular membranes. Since recent studies showed that PVX TGBp2 

and TGBp3 proteins associate with endoplasmic reticulum(ER), experiments were 

conducted to find out whether PVX replicase is also ER associated. Protoplasts and plants 

were inoculated with PVX.GFP-TGBp2 and PVX.TGBp3-GFP. Following 

immunolabeling and confocal or electron microscopy, the PVX replicase, TGBp2, and 

TGBp3 were seen in vesicles and along the ER. Furthermore replicase, BiP (ER resident 

protein) and GFP labelling were mainly observed in ER and ER-derived vesicles. The 

ER-derived vesicles were novel virus-induced structures containing virions. Sucrose-

gradient-fractionation, immunoblot analysis, and densitometry were conducted to 

determine if the PVX replicase, TGBp3-GFP and BiP co-fractionate with other 

components of the endomembrane network. PVX replicase, TGBp3-GFP, and BiP were 

found in the ER-containing fraction, providing further support that these PVX proteins 

target to the ER or ER-derived vesicles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


