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A B S T R A C T  

The principal objective of this work is to answer the problems following 

questions:  

•  Can one extract Q directly from 2D reflection seismic in a way? 

•  Can the attenuation of a plane wave propagating through a medium be 

accurately quantified? 

•  What are the factors that complicate the measurement of attenuation from a 

propagating plane seismic wave? 

•  How does quality factor (Q) affect the near and far offset trace attenuation? 

•  Can one design a forward model that can effectively resolve effects of the 

complicating factors?  

•  What is the significance of measuring attenuation due to anelastic rock 

properties? 

A forward model using 2D reflection seismic is used to observe effects of 

different values of Q and of offset on the seismic wavelet, both in the time domain and 

frequency domain. The result indicates Q inversely affects amplitude decay (i.e. the 

higher value of Q, the smaller the amplitude decay), while offset directly affects 

amplitude decay. In addition, preferential attenuation of the higher frequency content 

is prevalent, but phase distortion is not observed.  



 

 xiv

  Measurements of P- and S-wave velocities are conducted on alternating 

layers of acrylic and aluminum. In this experiment, both thickness of the layers, and 

frequency of the propagating wave are varied. Based on these observations, for 

wavelength/thickness (λ/d) >> 1, the medium behaves as a transversely isotropic 

medium, and for (λ/d) << 1 the medium; is represented by individual homogeneous 

pieces. Velocity dispersion is minimal in both cases. However, when (λ/d) is between 

the two extreme cases there is a significant velocity dispersion due to interbed multiple 

scattering.  

 P- and S-wave velocities, Qp and Qs were measured on 46 core samples 

collected from Well C-276, La Concepcion Field, Lake Maracaibo Venezuela. 

Mmeasured Vp/Vs and Qp/Qs are correlated with petrophysical properties such as 

porosity and permeability of the core samples. Qp/Qs has shown a very good 

relationship with porosity and permeability. Finally, Q is estimated from a CMP-gather 

extracted 3D survey from La Concepcion Field, Venezuela. The computed Q values 

are correlated with Q values from the well, and there is a very good relationship 

between the two. Furthermore, all Q measurements show correlation with the porous 

and permeable layers. Therefore, properly measured Q can be used together with other 

geophysical methods in reservoir characterization. 
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Chapter 1  

PROBLEM DEFINITION AND GEOLOGICAL SETTING 

1.1 Introduction  

 Seismic waves are used to image and interpret the subsurface, and seismic 

properties such as velocities, travel time, attributes, AVO and intrinsic attenuation are 

used to characterize lithology, porosity, degree of saturation and environment. 

However, the scale at which information about the subsurface is obtained depends on 

frequency content of the propagating seismic wave and scale of the heterogeneity of 

the subsurface. Since the frequency of seismic waves varies widely depending on the 

seismic method used, the scale of the layers that can be mapped varies considerably. 

Correlating these investigations made at different scale plays a significant role 

exploration, in particular in reservoir geophysics. 

In addition, intrinsic attenuation, quantified by quality factor (Q), if measured 

accurately, can be used to predict petrophysical properties such as lithology, porosity, 

degree of saturation, and environment (pressure and temperature conditions). 

However, there are factors complicating computation of Q from plane waves 

propagating in a layered medium. For a wave propagating in a medium depending on 

the scale of the heterogeneity of the medium and the scale of the wavelength of the 

wave velocity dispersion and/or intrinsic attenuation will affect the wave. 

Discriminating the processes at work, and properly measuring Q have application in 

reservoir characterization. 
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The aim of this work is to explore the problems listed below, and elaborate on 

the significance of computing attenuation from reflection seismic data:  

•  Can one extract Q directly from reflection seismic in a meaningful way? 

•  Can the attenuation of a plane wave propagating through a medium be 

accurately quantified? 

•  What are the factors that complicate the measurement of attenuation from a 

propagating plane seismic wave? 

•  How does quality factor (Q) affect the near and far offset trace attenuation? 

•  Can one design a forward model that can effectively resolve effects of the 

complicating factors?  

•  What is the significance of measuring attenuation due to anelastic rock 

properties? 

 

1.2. Exploration History 

The indication of hydrocarbons in Venezuela goes as far back as the 16th 

century, when it was first mentioned by Fernandez de Oviedo in 1553. He wrote about 

oil seepages off the western shore of the Cubague Islands in 1540 (Berneys et al., 

1996). However, in the Zulia province of Western Venezuela, surface exploration for 

petroleum started in 1920, followed by gravity exploration in 1924. The La 

Concepcion Field is part of the Western Province of Lake Maracaibo basin, Zulia 

State, Venezuela. The field is located on the western coast of Lake Maracaibo (Figure 
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1.1), northeast of Boscan Field, and east of La Paz Field. The field was first discovered 

in 1925 (Berneys et al., 1996) as a result of surface exploration and exploratory 

drilling.  

In this region, production generally is from two zones; the lightest crude and 

condensates are from the oldest and deepest formations: the basement and Cretaceous, 

while the heavy to medium oils are associated with the Tertiary (Eocene) (Berneys et 

al., 1996). The La Concepcion Field produces light oil and gas from Cretaceous and 

Tertiary formations, whereas the nearby La Paz Field produces light oil from the 

basement and Cretaceous. 

Exploration for oil and gas in Venezuela has along history, but still has a long 

way to go. With advances in technology and geophysics, exploration in Venezuela has 

great potential.   
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Figure 1.1.Venezuela oil fields, and  The La Concepcion Field, Zulia, Venezuela (in-

set) 
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1.3 Objectives 

The aim of this study is to use the geology of the La Concepcion Field to 

constrain the velocity, intrinsic attenuation, and quality factor computed on a seismic 

line from this field. In this chapter, lithology, diagenesis, porosity and permeability of 

each formation are described. In addition, type and distribution of lithologies, 

diagenetic processes, porosities and permeability are briefly discussed. This 

information is used to tie down the theoretically and experimentally computed 

velocities, intrinsic attenuation, and quality factor from the seismic data. 

 

1.4 Stratigraphy 

The La Concepcion Field has a very thick Cretaceous section (1178 ft) in the 

studied well (Well C-276).  The stratigraphic section in Well C-276 starts at the base 

with the Cogollo Group, and is topped by the La Luna Formation. The underlying unit 

in the well is the Cogollo Group and which ranges in age from Baremian to 

Cenomanian; it is characterized by mixed carbonate and siliciclastic at the base and 

clean carbonate at the top. However, there is a basal clastic unit, Rio Negro Formation 

of Barremian age. There are three formations that belong to the Cogollo Group (Apon, 

Lisure, and Maraca), and these formations are the reservoir units in the La Concepcion 

Field. The Apon Formation is a limestone unit with rather significant interbeds of 

shale and dolomite. The top part of the formation is mainly shale with abundant 

dolomite. The Lisure Formation is a limestone unit with interbeds of dolomitic 
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limestone. The dolostone interbeds increase in abundance towards the base. The 

overlying Maraca Formation is chiefly limestone with minor interbeds of sandstone, 

dolomitic limestone, and shale. The sandstone and shale interbeds are mainly at the 

base, but the dolomitic limestone interbeds are distributed evenly in the section. 

Overlying the Maraca Formation is the La Luna Formation, Cenomanian to Santonian. 

The La Luna Formation is generally a carbonate (mudstone/wackestone to packstone), 

with skeletal grains of possibly foraminifera fragments (Figure 1.5b). It also has 

interbeds of thinly laminated shale at the base (Figure 1.2). The La Luna formation 

forms both the source and sealing rock in the field.  
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Figure 1.2 Lithostratigraphy for West Maracaibo Basin (Murat and Muñoz, 1997) 
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1.5 Chronostratigraphy  

 

The chronostratigraphy of La Concepcion Field ranges in age from Triassic 

basement to the Eocene La Luna Formation (Figure 1.3). The productive formations of 

the field are the Cretaceous and Early Tertiary formations. The Rio Negro Formation 

of Barremian age forms the base of the Cretaceous stratigraphy, and uncomformably 

overlies the Triassic basement. Overlying the Rio Negro is the Cogollo Group, which 

ranges in age from Aptian to Early Cenomanian, and it underlies the La Luna 

Formation of Early Cenemanian to Early Campanian age (Figure 1.3). The thickness 

of the Cogollo Group in the study well (C-270) is 1103 feet, while the thickness of the 

La Luna Formation in the logged section is 75 feet. 
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Figure 1.3. General Chronostratigraphy Cretaceous of the Maracaibo Basin 

(Murat and Muñoz, 1997) 
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Figure 1.4 Thin section from core sample (La Luna Formation), Well C-276, showing 

lamination. 

 

1.6 Depositional Environment 

The Cretaceous basal unit, the Rio Negro Formation, was deposited in a fluvio-

shoreline environment. The depositional environment of the overlying Cogollo Group 

varies from bars and lateral lagoons for the Apon Formation to marine for the Maraca 

Formation. The La Luna formation was deposited in a low-energy euxinitic marine 

environment (Berneys et al., 1996). 
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1.7 Petrographic Study of Core Samples from Well C-276 

Visual investigation and analysis by Scanning Electron Microscopy (SEM), X-

ray Diffraction (XRD), and thin-section petrography (corex UK, 2002) of core samples, 

from Well C-276 at various depths in La Concepcion Field, Venezuela, showed a fairly 

uniform mineralogical composition.  

The most common detrital grains throughout the samples were fragments of 

bivalves (Figure 1.5a and 1.7); the internal structure of these fragments was preserved 

as a result of  neomorphism, and this preservation helped in their identification. Other 

bioclastic fragments forming the detrital grains were observed in small amounts.  Non-

skeletal grains are rare, except ooid and peloidal grains which are dominant in a few 

samples (Figure 1.5a and 1.5b). The peloids shown in the thin section range in size 

between 1 mm and 200 µm, and make up 23% of the point count. In addition, 

glauconite is found in moderate amounts in most samples (Figure 1.6). Quartz grains 

are also present in trace amounts in majority of the samples, and the quartz grains are 

more concentrated around stylolites (Figure 1.7).  
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Figure 1.5a: Hand specimen from core sample, Well C-276, showing fragments of 

skeletal grains (bivalves), ooids and peloids, depth 11301.5’ to 11302’. 

 

 

 

 

 

 

Fragments of Bivalve
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Figure 1.5b. Thin section from core sample, Well C-276, showing peloidal grains, 

skeletal fragments, and fracture on the right corner of the section. 
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Figure 1.6a Thin section from core sample, Well C-276, showing quartz grains (G6, 

H5), and glauconite (F2, G4, F10). 
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Figure 1.6b Thin section from core sample, Well C-276, showing quartz, mica (lower 

left corner) and glauconite (Figure 6a under Cross-polarised light). 
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Figure 1.7 Thin section from core sample, Well C-276, showing skeletal fragments 

(bivalves) and stylolite.  

 

 

 

 

Moreover, the matrix is dominated by micrite, which sometimes makes up to 

55% of some samples, and micritisation of sparite is observed in some samples.   
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Figure 1.8 Thin section from core sample, Well C-276, showing sparite filling intra-

granular porosity, depth = 10897’. 

 

Sparite is present in most of the samples, generally forming the cement filling 

porosity (Figure 1.8). In some of the samples, it has formed through neomorphism of 

the micritic matrix. It is also observed replacing the skeletal fragments (bivalves); this 

occurs in two ways; dissolution of the shell, and infilling and neomorphism. Diagenesis 
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is prevalent, especially cementation, and dolomitization is not uncommon (Figure 1.9a 

and 1.9b). Moreover, different dgrees of dolomite formation are found throughout the 

samples The dolomitization process ranges from partial to complete (Figure 1.9a and 

1.9b). There are generally well-developed rhomboidal crystals and have formed along 

tracts of more porous and permeable sediment (Figure 1.9a and 1.9b).  
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Figure 1.9a. Thin section from core sample, Well C-276, showing partial 

dolomitization with floating dolomite rhombs in sparite matrix, depth = 10770’7”. 
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Figure 1.9b Thin section from core sample, Well C-276, showing complete dolomitizati

showing well-formed dolomite rhombs, and  intra-granular porosity with dead oil. 
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1.8 Porosity 

In general, porosity is poor to moderate and permeability is very low. 

Microporosity is observed in samples containing micritic cement, which is not altered 

by neomorphism. In addition, some samples contain limited and isolated vuggy and 

moldic porosity (Figure 1.11), which is ineffective for permeability. Fracture porosity 

does make up the largest proportion of porosity in the samples (Figure 1.10); some of 

this fracture porosity could be an artifact of sample preparation (Murat, 2001). Dead 

oil is noted in most samples; it is found in veins, coating vuggy porosity and filling 

some microporosity (Figures 1.9b, and 1.11 and 1.12).  
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Figure1.10. Thin section from core sample, Well C-276, showing fracture porosity 

(blue stained areas). 
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Figure 1.11 Thin section from core sample, Well C-276, showing moldic porosity 

formed by dissolution of skeletal grain, and oil filling the moldic porosity, depth = 

11288’8”.  
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Figure 1.12. Thin section from core sample, Well C-276, showing dead oil filling 

microporosity.  
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1.9 Summary  

 The La Concepcion Field, which is part of the Western Province of Lake 

Maracaibo Basin has been explored close to 80 years, and it is still producing. In 

addition, with the increase the science geophysics, and the advance of technology 

exploration in the area has a long way to go. Even though, the primary porosity in the 

samples studied show low values, the type of porosity, microporosity, fracture 

porosity, vuggy porosity and moldic porosity have potential to make a good reservoir 

unit. Especially, with the wide spreads of fracturing (provided not sample preparation 

artifact) there is high potential for the presence of a good reservoir. Diagenesis process 

is prevalent in the field, and this process plays a double role, it can enhance the 

reservoir quality, or destroy it. 

Therefore, this section forms the geological setting for the ensuing Q analysis 

from a 3D survey acquired from La Concepcion Field. 
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Chapter 2 

Forward Modeling 

 

2.1 Introduction 

 In order to investigate ultimate Q extraction from seismic, first we shall 

examine the theoretical Q effects from a forward model. Forward modeling, using 2D 

reflection seismic data from the Red Sea, Yemen, was performed to see the effect of 

constant Q at variable offset, and variable Q with no offset, on the amplitude spectrum 

of a propagating wavelet. Amplitude decay, due to transmission loss and spherical 

divergence, was computed prior to calculation of attenuation due to an anelastic 

property of the transmitting media. The variable offset at constant Q is directly related 

to amplitude decay, while variable Q at no offset is inversely related to amplitude 

decay. 

 
 A data conditioning process, such as noise reduction, multiple suppression 

and amplitude balancing for transmission loss and spherical divergence, was 

conducted using Omega (Western Geco) software. These processes include surface 

consistent deconvolution, radon transform (tau-p) velocity filtering, band pass filtering, 

and program-controlled gain. After data conditioning and sorting to CMP-gather, 

interactive velocity picking of stacking or root mean square (RMS) velocity was 

performed on CMP and semblance gather panels. Then, the same CMP-gather (CMP# 

300) with 23 traces was extracted into a text format. Since the data were originally 
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sampled at 1 ms, it was necessary to resample the data to 20 ms. The CMP-gather text 

data were loaded to a script written in MATLAB software for forward modeling, and 

analysis of the effects of constant Q at variable offset and variable Q at no offset on the 

time domain wavelet amplitude and frequency domain amplitude spectrum. 

Finally, forward modeling on the extracted CMP-gather was conducted to 

visualize change on the propagating wavelet and amplitude spectrum due to constant Q 

at variable offset, and variable Q with no offset. The modeling result shows a higher Q 

value decreases the change of the shape of the propagating wavelet as well as the 

bandwidth of the amplitude spectrum. However, increasing the offset decreases the 

amplitude of the pulse and the bandwidth of the amplitude spectrum.  

 

2.2 Objectives 

 The focus of this study is to show theoretically and computationally the 

effects of offset distance transmission loss and quality factor on amplitude decay of a 

plane propagating wave. The various factors affecting seismic amplitude decay will be 

evaluated. Furthermore, the important parameters of intrinsic attenuation coefficient 

and quality factor effects on amplitude will be measured. Finally, based on the results 

obtained from this forward modeling, a framework will be set to calculate intrinsic 

attenuation coefficient and quality factor on 3D reflection seismic data from 

Venezuela. 
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2.3 Data Acquisition  

2D reflection seismic data with common-shot gathers from the Yemen Red Sea 

area were used for this forward modeling study. The data were acquired by Western 

Atlas in 1985, using an air gun as an energy source (Western High Pressure air-guns) 

fired at water depths of 6 meters. Recording was done with hydrophones, six 

hydrophones per group, with 3200 meters streamer length, and the cable was at 6 

meters water depth. The record length recorded is 4.096 seconds, and acquisition-

sampling rate is 1 ms. In addition, the raw data were filtered in the field with low-cut 

(LC) 12/6 Hz dB/octave and high-cut (HC) 375/72 Hz dB/octave.  The data were in 

SEGD format, and stored on 6250 BPI 9-track tape. The data on the 9-track tapes were 

transferred to an IBM 3590 tape, which is compatible with the IBM 3590 tape reader 

available at the lab.  

2.4 Data Processing 

The 2D reflection seismic data were loaded onto Omega (Western Geco) 

processing software. The SEGD data were input, and demultiplexed using the proper 

marine geometry, and were output as common-shot gathers.   The common-shot 

gathers were processed to reduce noise, to reduce water bottom and inter-bed 

multiples, to increase the signal content, and to retain the proper amplitude. The 

processing included surface-consistent deconvolution, radon transform (tau-p) velocity 

filtering, amplitude balancing (gain), and interactive velocity processing (IVP). After 

the processing, a gather was extracted from the section and output as a text file for 

forward modeling.   
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2.4.1 Surface Consistent Deconvolution 

 Surface-consistent deconvolution is one set of deconvolution processes used to 

improve the temporal resolution of seismic data by compressing the basic wavelet. In 

addition, the deconvolution process removes a significant part of the multiple energy 

from a section (Yilmaz,1987). Theoretically, in surface-consistent deconvolution, the 

seismic trace is decomposed into the convolutional effects of source, receiver offset, 

and Earth’s impulse response. This explicitly accounts for variation in wavelet shape 

due to near-source and near-receiver conditions, and source receiver separation 

(Yilmaz, 1987). The surface-consistent deconvolution process used here inputs seismic 

data in shot-gather into the input seismic function module (INPUT) (Figure 2.1). The 

second step in the process is the Surface-Consistent Deconvolution Analysis 

(SC_DCN_SPCTRL_ANL) SFM, which generates logarithmic power spectra for use 

in the surface-consistent deconvolution process. Next, the log power spectra generated 

by the (SC_DCN_SPCTRL_ANL) SFM are decomposed by the Surface-Consistent 

Deconvolution Spectral Decomposition (SC_DCN_SOCTRL_DECOMP) SFM into 

surface-consistent spectral estimates corresponding to the source, detector, subsurface 

midpoint, and offset component for each window of each trace. Then, these spectral 

estimates are used to design a surface-consistent predictive deconvolution operator by 

the Surface-Consistent Deconvolution Operator Design (SC_DCN_OPR_DESIGN) 

SFM. Finally, the deconvolution operator application (DCN_OPR_APPLY), applies 

the designed operator to the seismic data (Figure 2.1). The assumption of surface 

consistency implies that the basic wavelet shape depends only on the source and 
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receiver location, not on the details of the ray path from source to reflector to receiver 

(Yilmaz, 1987). The surface-consistent deconvolution process improves the data 

content by increasing the wavelet bandwidth and removing multiples (Figure 2.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 31

 

 

 

 

Figure 2.1. Surface consistent deconvolution seismic flow module. 
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Figure 2.2. A common shot-gather after surface-consistent deconvolution and general 

bandpass filtering (low-cut = 4 Hz, low-pass = 8 Hz, high-pass = 250 Hz, and high-

cut = 375 Hz)  
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2.4.2 Radon (tau-p) Transform Filter 

The radon (tau-p) transform, also known as slant stack or projection (Yilmaz, 

1987), is a line integral of some property (e.g. amplitude) of a medium along a specific 

line (usually a straight line). The radon (tau-p) transform filter is used to suppress 

multiples. Multiple suppression techniques in radon transform are based on the 

following characteristics of the multiples: the move-out difference between the 

primaries and multiples (velocity discrimination); the dip difference between primaries 

and multiples on the CMP stack; the difference in frequency content between the 

primaries and the multiples; and the periodicity of multiples (Yilmaz, 1987). 

 

 

Figure 2.3. Radon transform seismic processing flow module. 
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2.4.3 Amplitude Balance (Program-Controlled Gain) 

Figure 2.4 shows a program-controlled gain (PCG) module, which is a simple 

type of amplitude balance seismic process (Yilmaz, 1987). In PCG, the envelope, 

which is the curve drawn by smoothly connecting the adjacent peaks (or troughs) 

along the trace, is a reliable attribute that describes amplitude decay (Figure 2.5). The 

PCG function is then the inverse of the trace envelope and is used to balance the trace. 

In the PCG, tabulated values of time vs. gain value pairs are entered for each selected 

gather.  

 

 

 

 

Figure 2.4. Program-Controlled gain seismic flow module. 
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Figure 2.5. Amplitude decay curve for a trace extracted from a CMP-gather (CMP# 

300); absolute amplitude values of trace plotted.  
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2.4.4 Velocity Analysis and Velocity Picking 

Velocity analysis on the 2D reflection seismic line from the Red Sea, Yemen, 

is performed in two steps. The first step is the velocity analysis (VELAN) process 

(Figure 2.6), and the second step is the interactive velocity picking (IVP) process. The 

objective of velocity analysis is to generate a velocity file that can be used in the 

forward modeling process. Both the velocity analysis and interactive velocity picking 

processes are performed on a CMP-sorted seismic gather. A single velocity function 

(time versus velocity pair) is derived at selected analysis positions (CMP) along the 

line. The picked velocities are stored in a file called pick velocity file and used as an 

input to a script written on MATLAB software. The VELAN process incorporates a 

data input (INPUT), pick velocity file generator (VEL_GENERATOR), CMP selector 

for velocity analysis (VELAN_DEFINITION), general purpose band pass filter 

(BPFILTER), and instantaneous gain (INSTANT_GAIN) processes (Figure 2.6) for 

data conditioning of the first part. In addition, the VEL_GENERATOR flow in the 

velocity analysis process consists of two major additional flows, multiple velocity 

function (MVFS) generation flow and composite gather generation flow. The pick 

velocity file generation flow is run before the other two flows so that the subsequent 

two flows can use the pick velocity file. A semblance gather is generated by the 

composite gather generator flow, while MVFS panel and interactive stack panel are 

generated by the MVFS generation flow (Figure 2.6). 
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Finally, the IVP process uses the semblance gather panel (Figure 2.7), the 

gather panel, the MVFS panel, and the interactive stack panel generated by the 

(VELAN) process for an on screen velocity picking. Velocity picking is performed on 

the semblance gather panel (black line with black square boxes) shown in Figure 2.7,  

while the gather panel, the MVFS panel, and the interactive stack panel serve as guides 

for the correct velocity picking. The picked velocity file is saved either as a text file or 

binary file based on the intended use of the velocity file. In addition, the picked 

velocity file output is a stacking or root mean square (RMS) velocity with time versus 

velocity pairs given at each selected CMP position. The velocity from this velocity 

picking is exported into a MATLAB program script for forward modeling. 
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Figure 2.6. Velocity analysis processing (VELAN) flow module, which generates four 

outputs [Gathers, Semblance, Multiple Velocity Functions (MVFS), and Interactive 

Stack], which will be used during the interactive velocity picking (IVP) process. 
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Figure 2.7. Semblance panel with RMS velocity pick (dashed black line = earlier pick 

and black solid line with diamonds = final pick), and velocity-fan (orange lines) shown. 
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2.5 Forward Modeling   

For the forward modeling written in MATLAB code, an RMS velocity is 

imported from the velocity picking done on the 2D marine reflection seismic data from 

the Red Sea, Yemen. The RMS velocity values are converted into interval velocities 

using the Dix equation (equation 2.1). The calculated interval velocities are used to 

generate a velocity profile (Figure 2.8a). In addition, the same interval velocity data 

are used to calculate densities from the empirical density velocity relationship equation 

2.2 (Gardner, et al, 1964). Based on the density values obtained earlier, a density log is 

constructed (Figure 2.8b). However, there are other velocity to density relationships, 

such as Castagna et al., (1993), which could give better approximation with the proper 

knowledge of lithology. From the density and velocity values, impedance and 

reflection coefficient values are calculated using equation 2.3. Then a reflectivity series 

is constructed (Figure 2.9) using the reflection coefficient values computed. Moreover, 

by convolving the reflectivity series (Figure 2.9) with a band limited zero-phase 

wavelet (Figure 2.10) a synthetic trace (seismogram) is generated (Figure 2.11). 

 

Equation 2.1 Interval velocity 
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where 
2
nV   and 

2
1−nV  are the stacking velocities from the datum to the reflectors above 

and below the layer, and tn and tn-1 are reflection arrival times. 
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Equation 2.2 Gardener Relation 

 

ρb = 1.741 V p
0.25

                                                                                                            

 

where V p  is P-wave velocity in km/sec           

   

Equation 2.3  Reflection coefficient (Normal incident) 
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Equation 2.4 Transmission coefficient 
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Where ρi and ρi+1 are densities of the layers above and below the ith interface 

respectively, and Vi and Vi+1 are velocities of the layers above and below the ith 

interface respectively. iRC is the reflection coefficient at the ith interface, while TCi is 

the two-way transmission coefficient of the ith interface. 



 

 42

 

Figure 2.8. a) Velocity profile generated from interval velocities calculated from RMS 

velocity picks, and b) Density profile generated from calculated density using 

Gardener rule (Gardener et al., 1964). 
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Figure 2.9 Reflectivity series generated from interval velocity and density given in 

Figures 2.8. a and b.  
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 Figure 2.10. Band limited zero-phase wavelet with Lowcut = 4 Lowpass = 8,  

Highpass = 80 and Highcut  = 120 Hz, a) amplitude spectrum in time domain 

b) amplitude spectrum frequency domain.
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Figure 2.11. Synthetic trace (seismogram) generated by convolving the reflectivity 

series in Figure 2.9 and the band limited zero-phase wavelet in Figure 2.10 a. 
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2.5.1 Amplitude Decay due to Spherical Divergence and Transmission 

Loss 

From the calculated reflectivity coefficient, transmission loss is computed 

using equation 2.5. Next, the radius of the propagating wave from the source is 

calculated using the two-way time, velocity, and offset distance. Then, amplitude 

decay due to spherical divergence is calculated from the radius information obtained 

above and equation 2.6. A plot of this amplitude decay is shown in Figure 2.12. A 

synthetic seismogram trace plot is generated after amplitude balancing for 

transmission loss and spherical divergence (Figure 2.13), using program gain control. 

To compare the effects of transmission loss and amplitude decay due to spherical 

divergence and transmission loss, Figure 2.14 is shown with both decay terms. 

 

Equation 2.5 Total transmission loss 
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where iRC is the reflection coefficient at the ith interface. 

 

Equation 2.6 Amplitude decay due to spherical divergence 

r
A

Ar
0=            

where Ar is the amplitude at distance r from the source, and A0 is the amplitude at the 

source position.  
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Figure 2.12. Curve for amplitude decay due to spherical divergence for traces with 

offset between 1000 to 8000 m (MATLAB generated). 
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Figure 2.13. Extracted CMP-gather (CMP#300), after amplitude balanced using 

program controlled gain (PCG).  
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Figure 2.14. Synthetic seismogram for CMP#300, after application of amplitude decay 

due to spherical divergence and transmission loss to Figure 2.13.  
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2.5.2 Attenuation due to an Anelastic Property Computation  

To characterize the effects of intrinsic attenuation on the synthetic trace 

(seismogram) of Figure 2.13, variable quality factors (Q) and different offset distances 

are used to compute the amplitude spectrum of the trace. Results of these computations 

are shown in Figures 2.15 and 16. A wavelet (Ricker wavelet) amplitude spectrum in 

terms of frequency can be expressed by equation 2.7 (Zhang and Ulrych, 2002).  

 

Equation 2.7 Amplitude spectrum of a Ricker wavelet 

 

( ) 2

2

2

22
mf

f

m

e
f
ffA

−

=
π

         

 

where fm is the dominant frequency, and at its initial, the wavelet peak frequency and 

dominant frequencies are the same. The evolution of the amplitude spectrum through 

time (t) of the wavelet traveling through an anelastic media with quality factor (Q) is 

given by equation 2.8 (Futterman, 1962). 

 

Equation 2.8 
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For a single layer with layer quality factor (Q) and wavelet traveling for time t, the 

amplitude spectrum is given by equation 2.9 

Equation 2.9 Amplitude spectrum for wave 

Q
ft

efAtAtfA
π−

= )()(),(    

        

where A(t) is an amplitude factor independent of frequency and absorption. Then, we 

can extend this to multiple layers, and the amplitude attenuation for multiple layers is 

given by equation 2.10. 

Equation 2.10 Amplitude decay for multiple layers 
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where Qi and ∆ti are the quality factors and the travel time in layer i. 

 

The intraval quality factor in a multi-layered section can be calculated using Equation 

2.11 (Dasgupta and Clark, 1998) 

 

Equation 2.11 Interval Q from a multi-layer section for  
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where tn-1 and tn are the two-way travel time from layer n-1, and layer n and  Qn-1 and 

Qn are the quality factors for the two layers respectively. 

 

 

2.6 Results and Discussion  

Figures 2.15a and b show the effect of varying the quality factor, and the result 

shows high amplitude decay associated with small quality factor values. In addition, 

the wavelet bandwidth broadens for the lower quality factor (Q) < 100 values Figure 

2.15a. The high frequency component of the wavelet attenuates faster than the low 

frequency component (Figure 2.15b). Attenuation of the high frequency component 

has produced stretching in the wavelet Figure 2.15a. Therefore, quality factor (Q) has 

an inverse effect on amplitude attenuation; the lower the quality factor value the higher 

the attenuation (Figures 2.15a and b). In the forward modeling the effects of offset 

distance and travel time were also evaluated. Figures 2.16a and b show there is a direct 

relationship between travel time plus offset distance and attenuation. As the 

propagating wave travel time and offset distance increase there is an increased 

attenuation of the higher frequency component (Figure 16b). There is a direct 

relationship between offset distance plus and amplitude decay.   
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Figure 2.15a. Time domain amplitude spectrum, showing amplitude decay 

with decreasing Q value, and wave broadening (MATLAB generated). 
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Figure 2.15b. Frequency domain amplitude spectrum, shows amplitude decay with 

decreasing quality factor value (MATLAB generated). 
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Figure 2.16a. Time domain amplitude spectrum, shows amplitude decay with changing 

offset distance (MATLAB generated). 
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Figure 2.16b. Frequency domain amplitude spectrum, shows amplitude decay with 

changing offset distance and strong attenuation of the higher frequency components 

(MATLAB generated). 
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Figure 2.17 shows effect of interval Q applied to the synthetic seismogram in 

Figure 2.13. The trace in Figure 2.13 is amplitude balanced removing the effects of 

spherical divergence and transmission loss. Normal move-out (NMO) correction is 

applied to the CMP gather before interval anelastic attenuation for Q values = 10, 50 

and 100 is applied. Comparison of Figure 2.13 to Figure 2.17 clearly shows presence 

of significant amplitude decay in the latter. Interval quality factors are applied to the 

horizons at 1000, 1200, and 2000 ms. The width of the interval is set to 40 to 50 ms. 

Evidently, these intervals show marked amplitude decay, and the section beneath the 

intervals shows a similar effect. The effect of the attenuation includes, first, an overall 

amplitude decay on each trace, as seen in the amplitude decrease from the top going 

down, and second a significant amplitude decrease at the specific intervals where the 

attenuation coefficient is large.  
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Figure 2.17 Synthetic trace of CMP#300, after amplitude decay due to an anelastic 

attenuation for Q = 10, 50 and 100. Q = 10 corresponds to light yellow, Q = 50 

corresponds to light red, and Q = 100 corresponds to light magenta (MATLAB 

generated). 
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2.7 Summary and Conclusions 

 The layered Earth attenuates part of the propagating seismic wave energy by 

converting it to heat energy due to friction. Amplitude decay of the propagating wave 

through the earth layer is frequency dependent. In addition, attenuation depends also 

on the type of lithology, physical state, amount of pore volume, and degree of 

saturation. This attenuation is the intrinsic attenuation, which only depends on the 

above mentioned layer properties. The intrinsic attenuation is inversely related to the 

quality factor (Q), which is the measure of the energy dissipation per cycle of peak 

energy. Understanding the attenuative character of the Earth will help to characterize a 

layer, its constituents and its physical state.  From this work, first one can see the 

effects of intrinsic attenuation on a reflection seismic.   Second, the quality factor can 

be calculated for a pre-stack CMP gather from the power amplitude spectrum of 

selected horizons Equation 2.11. Third, the interval quality factor can be computed 

using Equation 12.12, which subsequently can be used to filter the whole seismic 

section by inverse Q filtering. Therefore, in conjunction with velocity information and 

other physical measurements we have observed attenuation can be used to characterize 

lithology and its contents on a reflection seismic section. 

 Before one attempts to apply this model to seismic, it is necessary to investigate 

the scale effects of the propagating wave, which will be discussed in the following 

chapter. 
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Chapter 3 

COMPUTATIONAL AND EXPERIMENTAL INVESTIGATION 

OF SCALE EFFECT IN LAYERED MEDIA FOR 1D CASE 

 

3.1 Introduction 

Since reflection seismic provides information on a much larger scale than 

petrophysics, it behooves as to investigate scale effects. In general rocks exhibit 

compositional heterogeneity at different scales. In particular sedimentary rocks owing 

to their layering display pronounced directional heterogeneity. These variations are in 

mineralogical, petrological, and structural properties, to name a few. In addition, these 

heterogeneities affect rock properties such as elasticity, velocity, porosity, 

permeability, and pore-pressure. The scale of layering and heterogeneity that can be 

imaged and interpreted is directly related to the scale of the wavelength of the 

propagating wave through the medium. For a wave much larger than the layer 

thickness (λ/d >>1) the medium is known to behave like a homogeneous or nearly 

homogeneous transversely isotropic (effective) medium (Backus, 1962), whose 

properties, such as densities are average densities and the elastic property coefficients 

are algebraic combinations of averages of  the elastic properties (Backus, 1962; 

Mukerji et al., 1995). However, for a medium which has wavelength to layer ratio 

(λ/d) << 1, the layers behave as individual entities and the heterogeneous medium may 

be treated as a piecewise homogeneous medium with velocities that are faster than the 
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effective medium. The pulse transmission technique, where a plane wave is 

propagated through a medium held between source and receiver transducers, is used 

for this experiment. The samples in this test are composite samples made up of layered 

stacks of aluminum and acrylic disks. The disks have different thickness, and the total 

thickness is 36.61 mm. However, the disks have the same diameter of 25.4 mm. The 

tests were run at different frequencies ranging between 125 kHz and 750 kHz. In this 

investigation factors such as constituent fraction, layer thickness, wavelength, and 

frequency are considered. The scale of heterogeneity and stratification that can be 

imaged and interpreted seismically affects wave propagation. The proper 

understanding of the scale effect in this experiment will help us extend our knowledge 

of the relationship between heterogeneity, velocity, and elastic parameters in a 

complex layered geology. Therefore, proper interpretation and imaging of these scale 

dependent variations and their relation to wave propagation play a significant role in 

seismic exploration and reservoir geophysics. 

 

3.2 Objectives  

The purpose of this work is to study the relationship between scale of 

heterogeneity and wavelength, and their effect on plane wave propagation, velocity 

dispersion, and waveform distortion in a layered medium. Based on the observations 

made the study will propose methods to compute velocity and elastic parameters. We 

will try to answer these questions: 
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What scale of heterogeneity will cause velocity dispersion and waveform 

distortion?  

How thin is a layer to be summed into one composite unite?  

What happens to the wave and its velocity between the two bounding limits? 

3.3 Theoretical Background 

There have been numerous theoretical, computational and experimental studies 

concerning wave propagation in stratified media (Postma, 1955; Backus, 1962; Sun et 

al, 1968; O’ Doherty and Anstey, 1971; Scheonberger and Lavin, 1974; Berryman, 

1979; Helberg, 1984; Malia and Carlson, 1984; Carcione et al, 1991; Mukerji et al., 

1995  and Mavko et al, 1998). The majority of these studies can be grouped us either 

effective medium theory or ray theory. In the long wavelength limit case, theoretical 

and experimental results indicate when the wavelength is much larger than the layer 

thickness (λ/d >>1), the medium behaves as a homogeneous transversely isotropic 

media (Postma 1955; Backus, 1962; Mukerji, 1995 and Mavko et al., 1998). Velocity 

for the equivalent isotropic medium is given by equation 3.1. 

Equation 3.1 Equivalent Effective Medium 
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where fk,ρk, and Vk are the volume fractions, densities, and velocities. 
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In the short wavelength limit case, when the wavelength is much smaller than 

the layer thickness, each layer of the medium behaves as an individual entity, and the 

medium can be treated as a piecewise medium (Mavko et al., 1998). In the short 

wavelength limit there is velocity dispersion due to multiple scattering effects, and the 

velocity through the medium is given by equation 3.2 

 

 

Equation 3.2 Velocity for the short wavelength limit (Ray theory) 
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3.4 Ray Theory and Effective Medium Case 

Waves propagating in a layered medium undergo attenuation and velocity 

dispersion caused by multiple scattering at the layer interface (Aki and Richards, 1980; 

Frazer, 1994, Mavko et al., 1998). For a wave propagating in a stratified media made 

up of two components that have phase velocities V1 and V2, densities ρ1 and  ρ2, and 

thickness d 1 and d 2, dispersion ratio can be found from the well known Floquet 

solution  equation 3.3 (Mavko et al, 1998)  

 

Equation 3.3 Floquet Solution for Velocity Dispersion in two component medium 
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If the spatial period d1 + d2 is an integer multiple of one-half the wavelength, multiple 

reflections are in phase and add constructively, resulting in a large total accumulated 

reflection (Figure 3.4a). The frequency at which this Bragg scattering condition is 

satisfied is called Bragg frequency (Mavko et al., 1998). 

   In a layered media the effective phase slowness (inverse phase velocity) of the 

propagating wave depends on the relationship of thickness of the layers and the 

wavelength of the propagating wave. The effective phase slowness (1/velocity) can be 

expressed by equation 3.4 (Frazer, 1994; Mavko et al., 1998), Srt is the ray theory 

slowness of the direct ray which does not undergo any reflection. Its value is the 

thickness-weighted average of individual layers. However, the Sst (stratigraphic 

slowness) results from multiple scattering within the layers. Kennett’s (1974) invariant 

imbedding formulation for the transform function of a layered medium laid the basis 

for calculating the effective slowness and travel time (Figure 3.1). In addition, in the 

above method the response of a layered medium is generated by iteratively adding one 

layer at a time. The transmission coefficient of the added layer can be given by 

equation 3.5.  
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Equation 3.4 Effective Phase Slowness 

 

Seff = Srt + Sst 

 

Figure 3.1 Kennett, 1974, Layer imbedding method, Frazer, 1994. 

 

Equation 3.5 Transmission Coefficient of the added layer 

 

( ) DdUdD TrRtT 2' 1 θθ −=  

 where rd, td, ru and tu are the up and down going reflection and transmission 

coefficients at the lower interface of the added layer (Figure 3.1), and ( )dSiωθ exp= .  

For a complete stack of N layers the total transmission coefficient (TD) is given by 

equation 3.6. 
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Equation 3.6 Transmission Coefficient for the complete stack of layers. 
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This can be expanded to equation 3.7 to show the intrinsic and stratigraphic parts. 

 

Equation 3.7  
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The first part of equation 3.7 is the intrinsic transmission operator for the particular 

layer in the stack of layers, and for large number of layers it has the value exp(iωDSin), 

where D is the thickness of the total stack and Sin is given by equation 3.8. 

 

Equation 3.8 Intrinsic Transmission 
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where 21 dandd  are the average thickness of the mean thicknesses of the two 

component medium. The second part of equation 3.7 is the stratigraphic filter 

exp(iωDSst), where by it is given as equation 3.9 

 

Equation 3.9 Stratigraphic Filter 
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and taking the log of both sides, the stratigraphic filter expression gives by equation 

3.10. 

 

Equation 3.10 Stratigraphic Filter 
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For a two component medium that has total thickness D, and layers with slowness 

(1/velocity) density, and thickness Si, ρi and di respectively.  

 

3.5 Sample Preparation 

Cylindrical samples of aluminum and acrylic disks were cut to different 

thicknesses to generate layers of various sizes, and then stacked alternatively to 

simulate a 1D layered medium for velocity analysis and elastic property 

measurements. The samples were prepared at Department of Physics and Astronomy 

laboratory, the University of Oklahoma. The individual disk length ranges from 1.395 
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mm to 11.16 mm for the acrylic, and from 3.181 mm to 25.45 mm for the aluminum. 

Based on the velocities (Table 3.1) of the two materials and the frequencies at which 

the measurements were run, the disk lengths range from 1/16th of the calculated wave 

length (λ) at 125 kHz to 3 times the calculated λ at 750 kHz (Table 3.2). The sample 

top and bottom surfaces were polished using 400 fine-grade sandpaper, to get a good 

coupling between the sample and transducer.   

 

 

 

Wavelength (λ) mm 
@ 500 kHz 

Impedance 
(g/cc)(m/s) 

Material Density 
(g/cc) 

P-wave Vel. 
(m/s) 

S-wave Vel. 
(m/s) 

P-wave S-wave P-wave 

Acrylic 1.18 2730 1430 5.58 1.144 3221.4 

Aluminum 2.69 6260 3080 12.725 2.464 16839.4 

Titanium 4.5 6070 3310 4.856 2.648 27315 

 

 

Table 3.1 Published material properties for acrylic, aluminum and endcaps (Titanium). 
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3.6 Experimental Procedure 

This experimental work is geared toward understanding the interdependence 

between seismic wavelength (λ) and layering thickness (d) during seismic parameters 

measurement. It also tries to determine λ/d values that bound the long wavelength 

limit and the short wavelength limit. More importantly, this work attempts to 

demonstrate the effect of λ/d on reflection coefficient at layer interfaces.    

Samples of aluminum and acrylic disks were used to simulate 1D stratified 

media. The aluminum and acrylic disk lengths were varied. In addition, experiments 

were done at several frequencies ranging from 125 kHz to 750 kHz. Choice of sample 

length was made based on published sound velocity values for aluminum and acrylic 

(Table 3.1), and the dominant frequency at which the measurements were done. 

Length of the aluminum disks range from 3.182 mm to 25.45 mm, while the acrylic 

disks ranged from 1.395 mm to 11.16 mm. This will generate a λ/d ratio ranging from 

16 at 125 kHz to 0.333 at 750 kHz per disk. The compressional (P) wave, and two 

orthogonal shear (S1 and S2) wave velocity measurements were made on stacked 

alternating layers of acrylic and aluminum disks with a total thickness of 36.61 mm 

(figure 3.3a and 3.3b). Compressional and shear wave transducers, placed at both ends 

of the stack measure propagation velocity in three directions, one perpendicular, and 

two horizontal to the layering. The sample is placed in an impermeable jacket which 

also incased the two endcaps.  A firm contact between sample and endcaps is achieved 

by applying sufficient pressure during sample mounting. 
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Figure 3.2 Ultrasonic pulse transmission velocity measurement assembly, showing two 

samples mounted at cell#1 and cell#2. 

Cell # 1 

Cell # 2 
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 Sample Type 
(Thickness (d) mm) 

Sample Vel. 
(m/sec) 

Frequency (kHz) Wavelength to thickness 
ratio (λ/ d) 

Acrylic (1.395 ) 2730 125 16 
Acrylic (2.790) 2730 125 8 
Acrylic (5.58) 2730 125 4 
Acrylic (11.16) 2730 125 2 
Aluminum (3.181) 6270 125 16 
Aluminum (6.362) 6270 125 8 
Aluminum (12.724) 6270 125 4 
Aluminum (25.45) 6270 125 2 
Acrylic (1.395 ) 2730 250 8 
Acrylic (2.790) 2730 250 4 
Acrylic (5.58) 2730 250 2 
Acrylic (11.16) 2730 250 1 
Aluminum (3.181) 6270 250 8 
Aluminum (6.362) 6270 250 4 
Aluminum (12.724) 6270 250 2 
Aluminum (25.45) 6270 250 1 
Acrylic (1.395 ) 2730 500 4 
Acrylic (2.790) 2730 500 2 
Acrylic (5.58) 2730 500 1 
Acrylic (11.16) 2730 500 0.5 
Aluminum (3.181) 6270 500 4 
Aluminum (6.362) 6270 500 2 
Aluminum (12.724) 6270 500 1 
Aluminum (25.45) 6270 500 0.5 
Acrylic (1.395 ) 2730 750 2.667 
Acrylic (2.790) 2730 750 1.333 
Acrylic (5.58) 2730 750 0.667 
Acrylic (11.16) 2730 750 0.333 
Aluminum (3.181) 6270 750 2.667 
Aluminum (6.362) 6270 750 1.333 
Aluminum (12.724) 6270 750 0.667 
Aluminum (25.45) 6270 750 0.333 

 

 Table 3.2 Computed wavelength to thickness ratio (λ/d) of acrylic and aluminum disks 
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Figure 3.3a Single alternating acrylic and aluminum disk stacks a) 16 disks stack 

layers (λ/ d = 16 at 125 kHz), b) 8 disks stack (λ/ d = 8 at 125 kHz), c) 4 disks stack 

(λ/ d = 4 at 125 kHz) d) 2 disks stacks (λ/ d = 2 at 125 kHz). 
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Figure 3.3b Acrylic/aluminum stacking arrangements a) Single alternating acrylic 

aluminum disks stack (λ/d = 16 at 125 kHz). b) Double alternating acrylic aluminum 

disks stack (λ/d = 8 at 125 kHz). 
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Sample 

No. 

Disk Arrangement No. of 

disks 

Frequency 

kHz(λ/d) 

12501 Ac/Al/Ac/Al/Ac/Al/Ac/Al/Ac/Al/Ac/Al/Ac/Al/Ac/Al 16 125 (16) 
12502 Ac/Al/Ac/Al/Ac/Al/Ac/Al 8 125 (8) 
12503 Ac/Al/Ac/Al 4 125 (4) 
12504 Ac/Al 2 125 (2) 
12505 AcAc/AlAl/AcAc/AlAl/AcAc/AlAl/AcAc/AlAl 16 125(8) 
12506 AcAc/AlAl/AcAc/AlAl 8 125(4) 
12507 AcAc/AlAl 4 125(2) 
12508 AcAcAcAc/AlAlAlAl/AcAcAcAc/AlAlAlAl 16 125(4) 
12509 AcAcAcAc/AlAlAlAl 8 125(2) 
12510 AcAcAcAcAcAcAcAc/AlAlAlAlAlAlAlAl 16 125(2) 
25001 Ac/Al/Ac/Al/Ac/Al/Ac/Al/Ac/Al/Ac/Al/Ac/Al/Ac/Al 16 250 (8) 
25002 Ac/Al/Ac/Al/Ac/Al/Ac/Al 8 250(4) 
25003 Ac/Al/Ac/Al 4 250 (2) 
25004 Ac/Al 2 250 (1) 
25005 AcAc/AlAl/AcAc/AlAl/AcAc/AlAl/AcAc/AlAl 16 250(4) 
25006 AcAc/AlAl/AcAc/AlAl 8 250(2) 
25007 AcAc/AlAl 4 250(1) 
25008 AcAcAcAc/AlAlAlAl/AcAcAcAc/AlAlAlAl 16 250(2) 
25009 AcAcAcAc/AlAlAlAl 8 250(1) 
25010 AcAcAcAcAcAcAcAc/AlAlAlAlAlAlAlAl 16 250(1) 
 

Table 3.3 Acrylic (Ac) and aluminum (Al) disks arrangements in the layered stack. 
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Table 3.3 Continued 

50001 Ac/Al/Ac/Al/Ac/Al/Ac/Al/Ac/Al/Ac/Al/Ac/Al/Ac/Al 16 500 (4) 

50002 Ac/Al/Ac/Al/Ac/Al/Ac/Al 8 500 (2) 

50003 Ac/Al/Ac/Al 4 500 (1) 

50004 Ac/Al 2 500 (0.5) 

50005 AcAc/AlAl/AcAc/AlAl/AcAc/AlAl/AcAc/AlAl 16 500(2) 

50006 AcAc/AlAl/AcAc/AlAl 8 500(1) 

50007 AcAc/AlAl 4 500(0.5) 

50008 AcAcAcAc/AlAlAlAl/AcAcAcAc/AlAlAlAl 16 500(1) 

50009 AcAcAcAc/AlAlAlAl 8 500(0.5) 

50010 AcAcAcAcAcAcAcAc/AlAlAlAlAlAlAlAl 16 500(0.5) 

75001 Ac/Al/Ac/Al/Ac/Al/Ac/Al/Ac/Al/Ac/Al/Ac/Al/Ac/Al 16 750 (2.67) 

75002 Ac/Al/Ac/Al/Ac/Al/Ac/Al 8 750 (1.33) 

75003 Ac/Al/Ac/Al 4 750 (0.67) 

75004 Ac/Al 2 750 (0.33) 

75005 AcAc/AlAl/AcAc/AlAl/AcAc/AlAl/AcAc/AlAl 16 750(1.33) 

75006 AcAc/AlAl/AcAc/AlAl 8 750(0.67) 

75007 AcAc/AlAl 4 750(0.33) 

75008 AcAcAcAc/AlAlAlAl/AcAcAcAc/AlAlAlAl 16 750(0.67) 

75009 AcAcAcAc/AlAlAlAl 8 750(0.33) 

75010 AcAcAcAcAcAcAcAc/AlAlAlAlAlAlAlAl 16 750(0.33) 
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3.7 Experimental Results and Discussion 

Results from the experimental work on stacks of acrylic and aluminum disks that 

simulate a 1D layer medium (Figures 3.3a and b) are presented here. The 

measurements on the stacks were conducted using different combinations of disk 

arrangements (Figure 3.3a and b) and (Table 3.3). The tests were also done at four 

different frequencies (125 kHz, 250 kHz, 500 kHz and 750 kHz), and pressure values 

were varied (i.e. 1000 psi, 2000 psi and 3000 psi). Results from these measurements 

include time trace of the propagating wave and P- and S-wave velocities. 

Measurement at low frequency (125 kHz) with wavelength to thickness ratio (λ/d) >>1 

such as in Figure 3.4d shows the wave propagating through a stack of 16 disk layers 

could not differentiate individual layers  or  the interfaces between individual layers.  

However, increasing special distance between the layers, for the same frequency value, 

which decreased the λ/d ratio, has increased the ability of the wave to pick the 

individual layer boundaries, but not the individual layers.  In addition, this increase in 

frequency has generated velocity dispersion (Figures 3.5a and b). Multiple scattering 

of seismic waves in a heterogeneous medium causes velocity dispersion and waveform 

distortion (Liu and Schmitt, 2002). 

 Further increase in frequency and layer thickness has increased the ability of the 

propagating wavelet to distinguish individual layers and layer boundaries (Figures 3.5c 

and d). Here, individual layers and the interfaces between layers are clearly 

distinguished, and the layer thickness is larger than the δb/2√6 limit of Ricker, 1953. 

Figure 3.4a and b show strong dispersion and higher observed velocity than the 
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computed velocity (i.e. early arrival time break). The λ/d in the two figures are in the 

specular scattering (Ray theory) and Mie scattering range, where there is a marked 

velocity increase (Mavko et al., 1998). Figure 3.4c shows the observed velocity is 

slower than the computed velocity and the λ/d is in the Rayleigh scattering. However, 

Figure 3.4d, which has λ/d above the Rayleigh scattering region shows the computed 

and observed velocities are close in value, which is a characteristic of an equivalent 

isotropic medium.   
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Figure 3.4a Trace for acrylic aluminum layers @ 125 kHz run: a) 16 disks with 

alternating layers of acrylic and aluminum ((λ/d = 16), b) 8 disks with alternating 

layers of acrylic and aluminum ((λ/d = 8).  
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Figure 3.4 Continued …: c) 4 disks with alternating layers of acrylic and aluminum 

(λ/d = 4), d) 2 disks with alternating layers of acrylic and aluminum ((λ/d = 2).  

 

 

 



 

 80

 

Figure 3.5 Time traces for wave propagation through two component medium at 

constant thicknesses: a) 16 alternating disk stacks (λ/d = 2.67), b) 16 alternating disk 

stacks (λ/d = 4). 
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Figure 3.5 continued…: c) 16 alternating disk stacks (λ/d = 8), and d) 16 alternating 

disk stacks (λ/d = 16). 
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Figure 3.6 Time traces for wave propagation through two component medium at 

different thicknesses: a) 16 alternating disk stacks (λ/d = 2.67), b) 8 alternating disk 

stacks (λ/d = 1.333). 

 

 

 

 

  



 

 83

 

Figure 3.6 continued …: c) 4 alternating disk stacks (λ/d = 0.667), and d) 2 alternating 

disk stacks (λ/d = 0.333). 
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 Observed velocity values from experimental work are tabulated in Table 3.4. In 

addition, Figures 3.7 through Figure 3.9 are generated based on the compressional 

velocity values from Table 3.5, at different confining pressure . In Figures 3.7 through 

3.9 we see a general velocity decrease with increasing λ/d. There are three distinct 

regions on all the graphs, which are characterized by different degrees of velocity 

decrease with increasing λ/. The first part between 0.1 and 4 λ/d, here the velocity 

trend observed is gentle, but in the second part between 4 and 10 λ/d values there is a 

steep decline in velocity, and in the third part, for λ/d greater than 10 the velocity 

decrease trend completely changes showing a slight increase. The first part of the 

graphs corresponds to the dispersion region of specular scattering (Ray Theory) up to 

Mie scattering (Mavko et al., 1998). Then, the second portion of the graph relates to 

the region between the Mie scattering and Rayleigh scattering, and the λ/d ≈ 10 to the 

Rayleigh scattering region (Mavko et al., 1998) .  

Based on the observation made, there are three regions of velocity dispersion. 

The first is where λ/d < 4, with very low dispersion and the medium can be expressed 

using Ray theory. Here, dispersion is small and the medium is constituted by 

individual homogeneous entities. Second the region between the Mie and Rayleigh 

scattering, where there is significant velocity dispersion. Finally, the region beyond the 

Rayleigh scattering can be represented by an effective medium (Backes, 1962; Marion 

and Coudin, 1992; Mukerji at al., 1995; Mavko et al., 1998; and Liu and Schmitt, 

2002).  
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 P-wave and S-wave Velocities for Single Alternating Acrylic and Aluminum Disk Stacks, 16 Disks 
λ/d Frequency Pp1_vel Pp2_vel Pp3_vel Sp1_vel Sp2_vel Sp3_vel 

16 125 kHz 3448 3583 3514 3141 3252 3195 
8 250 kHz 3569 3744 3870 2005 2050 2097 
4 500 kHz 3728 3759 3790 2121 2097 2050 

2.67 750 kHz 3838 3846 3879 2225 2309 2225 

P-wave and S-wave Velocities for Single Alternating Acrylic and Aluminum Disk Stacks, 8 Disks  
λ/d Frequency Pp1_vel Pp2_vel Pp3_vel Sp1_vel Sp2_vel Sp3_vel 

8 125 kHz 3524 3593 3524 1988 2010 2055 
4 250 kHz 4262 4282 4302 2257 2257 2303 
2 500 kHz 4333 4333 4353 2368 2425 2444 

1.333 750 kHz 4322 4353 4374 2464 2504 2525 

P-wave and S-wave Velocities for Single Alternating Acrylic and Aluminum Disk Stacks, 4 Disks  
λ/d Frequency Pp1_vel Pp2_vel Pp3_vel Sp1_vel Sp2_vel Sp3_vel 

4 125 kHz 3728 3806 3806 2198 2172 2172 
2 250 kHz 4498 4565 4565 2532 2532 2568 
1 500 kHz 4515 4543 4554 2634 2657 2657 

0.667 750 kHz 4515 4543 4571 2721 2721 2721 

P-wave and S-wave Velocities for Single Alternating Acrylic and Aluminum Disk Stacks, 2 Disks  
λ/d Frequency Pp1_vel Pp2_vel Pp3_vel Sp1_vel Sp2_vel Sp3_vel 

2 125 kHz 3740 3665 3740 2688 2688 2770 
1 250 kHz 4406 4406 4448 3252 3206 3252 

0.5 500 kHz 4427 4427 4465 2728 2728 2778 
0.333 750 kHz 4411 4427 4448 2451 2451 2812 

P-wave and S-wave Velocities for Double Alternating Acrylic and Aluminum Disk Stacks, 16 Disks 
λ/d Frequency Pp1_vel Pp2_vel Pp3_vel Sp1_vel Sp2_vel Sp3_vel 

8 125 kHz 3583 3806 4151 1941 1941 1941 
4 250 kHz 4151 4151 4228 1992 1992 1992 
2 500 kHz 4267 4328 4369 2005 2027 2073 

1.333 750 kHz 4308 4297 4287 2027 2027 2073 
 

Table 3.4 P-wave and S-wave velocities for acrylic and aluminum disks 1D layer case 
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Table 3.4 Continued 
 

P-wave and S-wave Velocities for Double Alternating Acrylic and Aluminum Disk Stacks, 8 Disks  
λ/d Frequency Pp1_vel Pp2_vel Pp3_vel Sp1_vel Sp2_vel Sp3_vel 

4 125 kHz 3524 3593 3593 2471 2471 2471 
2 250 kHz 4262 4302 4343 2680 2712 2745 
1 500 kHz 4312 4312 4374 2728 2804 2778 

0.667 750 kHz 4302 4343 4343 2778 2812 2812 

P-wave and S-wave Velocities for Double Alternating Acrylic and Aluminum Disk Stacks, 4 Disks 
λ/d Frequency Pp1_vel Pp2_vel Pp3_vel Sp1_vel Sp2_vel Sp3_vel 

2 125 kHz 4059 4151 4248 2252 2252 2280 
1 250 kHz 4248 4248 4267 2438 2438 2412 

0.5 500 kHz 4267 4308 4433 2315 2338 2338 
0.33 750 kHz 4292 4313 4338 2498 2532 2532 

P-wave and S-wave Velocities for Quadruple Alternating Acrylic and Aluminum Disk Stacks, 16 Disks 
λ/d Frequency Pp1_vel Pp2_vel Pp3_vel Sp1_vel Sp2_vel Sp3_vel 

4 125 kHz 3524 3665 3665 2649 2612 2612 
2 250 kHz 4364 4395 4416 2680 2712 2712 
1 500 kHz 4395 4427 4448 2830 2804 2830 

0.667 750 kHz 4416 4416 4459 3555 3611 3501 

P-wave and S-wave Velocities for Quadruple Alternating Acrylic and Aluminum Disk Stacks, 8 Disks 
λ/d Frequency Pp1_vel Pp2_vel Pp3_vel Sp1_vel Sp2_vel Sp3_vel 

2 125 kHz 4151 4151 4248 2252 2280 2280 
1 250 kHz 4248 4267 4348 2387 2412 2438 

0.5 500 kHz 4267 4308 4338 2464 2532 2498 
0.333 750 kHz 4318 4338 4390 2532 2568 2604 

P-wave and S-wave Velocities for Octuple Alternating Acrylic and Aluminum Disk Stacks, 4 Disks 
λ/d Frequency Pp1_vel Pp2_vel Pp3_vel Sp1_vel Sp2_vel Sp3_vel 

2 125 kHz 4072 4165 4072 2374 2344 2314 
1 250 kHz 4312 4333 4343 2612 2634 2612 

0.5 500 kHz 4282 4312 4364 2728 2704 2753 
0.333 750 kHz 4322 4333 4353 2778 2795 2812 

 

 

 



 

 87
 

Fi
gu

re
 3

.7
 P

- w
av

e 
ve

lo
cit

y 
ve

rs
es

 λ
/d

  f
or

 la
ye

re
d 

ac
ry

lic
 a

nd
  a

lu
m

in
um

 d
isk

s a
t c

on
fin

in
g 

pr
es

su
re

 =
 

10
00

 p
si.

 



 

 88
 

Fi
gu

re
 3

.8
 P

- w
av

e 
ve

lo
cit

y 
ve

rs
es

 λ
/d

  f
or

 la
ye

re
d 

ac
ry

lic
 a

nd
  a

lu
m

in
um

 d
isk

s a
t c

on
fin

in
g 

pr
es

su
re

 =
 

20
00

 p
si.

 



 

 89
 

Fi
gu

re
 3

.9
 P

- w
av

e 
ve

lo
cit

y 
ve

rs
es

 λ
/d

  f
or

 la
ye

re
d 

ac
ry

lic
 a

nd
  a

lu
m

in
um

 d
isk

s a
t c

on
fin

in
g 

pr
es

su
re

 =
 

30
00

 p
si.

 



 

 90

3.8 Summary and Conclusions 

From the computational and experimental observation made, scale of 

heterogeneity and wavelength of the wavelet propagating through the medium play 

important role in shaping the way the velocity of the medium computed. For the long 

wavelength limit, by applying the equivalent medium theory of Backus (1962), it is 

possible to replace fine layered units by an equivalent thicker homogeneous 

transversely isotopic layer. However, for the short wavelength case, each layer 

behaves as a piecewise homogeneous medium. Therefore, the velocity in this case can 

be computed for the individual entity. In each extreme case velocity dispersion is very 

small, and there is less velocity deviation. However, for the case in between the 

extreme cases velocity dispersion is very high, and the velocity dispersion can be 

computed Floquets solution (Mavko et al., 1998). It is evident that with increasing 

dispersion amplitude of the propagating wave also affected. Depending on the phase 

and spacial separation of the medium, the interfering wave complexes interact 

constructively or destructively. When the spatial period d1 + d2 is an integer multiple 

of one-half the wavelength, multiple reflections are in phase and add constructively, 

resulting in a large total accumulated reflection (Figure 3.4a). 

Now, one needs to apply these important aspects of bed thickness to 

wavelength relationship to the actual rocks in the subsurface.  
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Chapter 4 

LABORATORY MEASUREMENT OF INTRINSIC 

ATTENUATION AND QUALITY FACTOR ON CORE SAMPLES 

4.1 Introduction 

Seismic waves propagating through the earth are attenuated by a number of 

processes, and these processes include conversion of some fraction of the elastic 

energy to heat energy due to friction. Proper understanding of the attenuative property 

of the earth has two important implications in seismic exploration and reservoir 

geophysics. First, seismic wave amplitudes dissipate as waves propagate through an 

anelastic medium, and this reduction in amplitude is generally frequency dependent. 

Second, the intrinsic attenuation (α), the exponential decay constant of the amplitude 

of a plane wave traveling in a homogeneous medium, and quality factor (Q), the 

internal friction or dissipation factor,  reveal much information, such as lithology, 

physical state, fluid content, and degree of saturation (Toksoz and Johnston, 1981). 

Laboratory measurements, using the wave propagation method, of 

compressional velocity (Vp), shear velocity (Vs), attenuation coefficient, and quality 

factor were conducted on a reference sample and core samples collected from Well C-

276 in La Concepcion field, Venezuela. Wave propagation experiments are classified 

into two principal techniques based on their use of pulse-echo or pulse-through 

transmission techniques. For this research the pulse-through transmission technique is 

used to measure velocities (Vp and Vs), intrinsic attenuation, and quality factor. A 
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spectral ratio, which is by far the most commonly used technique in seismology (Ward 

and Toksoz, 1971), is used to calculate the intrinsic attenuation and quality factor. 

Cylindrical samples (25.4 mm in diameter) of aluminum (reference sample) and core 

samples of different length were prepared for measurement. The experiment was 

carried out in a pressure vessel on jacketed samples, and it was performed at 750 kHz. 

The confining pressure was varied (5372 psi, 5448 psi, and 5753 psi) to simulate 

borehole condition. However, the pore pressure was kept constant. On-screen velocity 

picking was conducted for compressional velocity (Vp), and shear velocities (Vs1 and 

Vs2) from the first break of the trace display. Finally, the velocities (Vp and Vs) were 

plotted against Qp and Qs values. 

The results from these plots indicate there are significant correlations between 

Vp, Vs, Qp and Qs. In addition, the Qp/Qs plot show a better correlation to porosity and 

permeability than the Vp/Vs plot. A better understanding of the absorptive property of 

the earth should enhance the efficiency of seismic exploration work. 

 

4.2 Objectives 

 The importance of this investigation is to experimentally measure velocity, 

intrinsic attenuation coefficients and quality factor of core samples collected from a 

well in La Concepcion Field, Venezuela. The results from these measurements will be 

used to constrain the velocity, intrinsic attenuation coefficients and quality factors 

computed from well log and 3D seismic data of the same field. 
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4.3 Sample Preparation  

Cylindrical core samples representing a source and seal unit (La Luna 

Formation), and reservoir unit (Cogollo Group) were collected between 10450 and 

11541 ft depth of Well C-276.  A total of 62 samples were gathered, of which 46 

samples were ready for analysis. Most of the samples are cored vertically the bedding 

plane; however, there are a few samples which are cored horizontally the bedding 

plane. The samples vary in length from 21.22 mm to 42.40 mm, and the average length 

is 34.21 mm. The path of the pulse wave from the source to the receiver and the rock 

sample length (d) should be greater than one wavelength of the pulse (d/λ > 1). In this 

experiment, the average wavelength of the pulse is 6.1 to 8.53 mm. The sample 

diameter ranges between 25.77 mm to 25.33 mm with the mean value for the sample 

diameter being 25.18 mm.  To avoid cancellation of the direct first arrival amplitude 

by interference from waves reflected off the sample sidewalls, the sample length 

should be less than five times the sample diameter. Accurate velocity estimation can 

only be achieved in samples with length to diameter ratio (d/a) less than five. In 

addition, this range of sample diameters helps to prevent a waveguide effect, a 

geometric diffraction, because the sample radius average of 12.59 mm exceeds the 

wave length of the ultrasonic pulse wavelength that is transmitted along the sample. 

When sample radius (r) < λ, the waveguide effect  attenuates and slows the 

propagating wave, which causes the wave to travel at a reduced velocity- bar velocity- 

as r becomes smaller and smaller with respect to λ (Schreiber et al., 1973). The 

samples generally have grains and pores smaller than 0.8 mm; this helps to avoid 
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multiple scattering of the ultrasonic wave by pores and grains in the rock sample.  

Furthermore, the wavelength of the transmitted pulse should be at least three times 

larger than the largest grain and/or pore size (λs/ds > 3) in the sample (Plona and 

Tsang, 1979).  To obtain a good coupling with the transducer during measurement, the 

two ends of the core samples are polished smooth. A very fine grade (400) sand paper 

is used to polish the samples. 

 

4.4 Sample Description 

The samples collected came from four formations, the La Luna, the Marca, the 

Lisure, and the Apon Formations. The last three formations make up the Cogollo 

group, a reservoir unit in the region. The La Luna Formation is generally a mixed 

carbonate with inter-layered shale (Figure 4.1). The La Luna Formation is both the 

source and sealing rock in the field. The Cogollo Group is a mixed carbonate with 

interbeds of siliciclastic layers at the base, and becomes a clean carbonate at the top. 

The lower three formations that belong to the Cogollo Group (Marca, Lisure, and 

Apon) make the reservoir unit in the La Concepcion Field. The formations are mainly 

limestone, with some diagenetic dolomite and minor quartz wackestone interbeds 

(Figure 4.2). In general, porosity is poor to moderate, and permeability is very low 

(Table 4.3) in the samples collected. Diagenesis is prevalent, especially cementation. 

Dolomitization is not uncommon, and it ranges from partial dolomitization (dolomite 

rhombs floating in sparite ground mass) to complete dolomitization (Figure 4.3). 
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Figure 4.1. Core sample from Well C-276, La Concepcion Field, La Luna Formation. 

Sample shows thinly laminated shale with fracture; fracture is filled calcite (depth 

10431’1”). 
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Figure 4.2. Thin section from the La Luna Formation, with layering indicated by 

preferred orientation of elongate grains of micas and quartz. 
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Figure 4.3. Thin section of dolomite from the Cogollo Group with inter-crystaline 

porosity and dead oil filling porosity (depth 10954’11.5”). 
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4.5 Velocity and Attenuation Measuring Apparatus 

Measurement of P-wave and S-wave velocities was carried out in a pressure 

vessel (figure 4.4), and the samples were jacketed in an impermeable rubber-sheath 

(Figures 4.4 and 4.5). The measuring pressure vessel consists of a cylindrical vessel 

that encases the transducers, the samples, the electrical wiring, and a fluid connected to 

pressure pumps and pressure gauge via small tubes. There are two recording cells, a 

top and a bottom one, each with a top and a bottom transducer (Figure 4.4).  In 

addition, each cell holds the sample to be measured; the sample covered with an 

impermeable rubber-sheath is held in between the two transducers. The transducers 

have piezoelectric crystals that generate and record ultrasonic pulse (Figure 4.5).  
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Figure 4.4. Through-pulse transmission measuring pressure vessel assembly. 
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Figure 4.5. Schematic diagram of  pulse transmission technique. By connecting the wires, we 
can select the proper combination of P and S transducers (after Dr. Sondergeld).   
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4.6 Velocity Measurement 

In ultrasonic through-pulse transmission, velocities (Vp, Vs1 and Vs2) are 

measured indirectly from the recorded travel-time of the transient pulse (ultrasonic 

pulse). In this experiment the software used to record the transient pulse travel time 

accounts for the time delay through the endcaps (Figure 4.6). However, the velocity 

computed from the trace curve (Figure 4.7) is calculated using Equation 4.1. 

 

Equation 4.1 Velocity calculated from direct arrival time. 

 

ecT
ij tt

DV
−

=  

 

where ijV  is either P-velocity or S-velocities; D is length of the sample; tT is one-way 

total travel time (i.e. travel time through the top and bottom endcaps and the sample), 

and tec is travel time through the two endcaps.  

In this velocity computation the measured travel time is a one-way travel time. 

Moreover, during velocity measurement, one end of the transducer served as a source 

while the other end served as a receiver (Figure 4.6), and vice versa. In addition, a time 

trace is generated from this measurement (Figure 4.7). This time trace shows multiple 

reflections generated by wave bouncing back and forth in between the top and the 

bottom interfaces (Figure 4.6). Therefore, the complete time trace section contains the 

first break, the primary reflector, and multiple reflectors (Figure 4.7). Throughout the 
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velocity measurement processes the confining pressure is varied to simulate subsurface 

condition, but the pore pressure is kept constant by venting it out to the atmosphere. 

The calculation for confining pressure is performed assuming a normal pressure 

gradient, and a value of 0.50 psi/ft. Three depth points, at the top, in the middle, and at 

the bottom of the section were selected for the confining pressure computation. 

However, all the samples were measured using the three confining pressure values (i.e. 

top pressure = 5231 psi at 10462 ft, middle pressure = 5448 psi at 10896.3, and bottom 

pressure = 5753 psi at 11506.8). The outputs for each sample from the velocity 

measurements include, P-wave velocity, S1-wave velocity, and S2-wave velocity at 

each confining pressure points (Table 4.1). In addition, elastic parameters such as bulk 

modulus (K) and shear modulus (µ) are calculated from the P-wave, S-wave and 

density information (Table 4.2). Measured P-wave and S-wave velocities and density 

verses depth are given in Table 4.1, and plotted in Figure 4.8. Furthermore, Vp and Vs 

at each pressure point are calculated and presented in Table 4.1. 
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Figure 4.6 Schematic diagram of transducer assembly with jacketed sample, shows 

interface boundaries (blue arrows), ray path (red arrows), and source and receiver 

transducer (modified after Dr. Sondergeld). 
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Figure 4.7 Time-trace plot, a) P-wave, b) S1-wave, and c) S2-wave, showing First 
break, reflections, and multiple reflections due to reverberation. 
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4.6 Attenuation Measurement 

 In the laboratory attenuation is generally measured by one of several techniques. 

These include the resonant bar method (Birch and Bancroft, 1938; Born, 1941; 

Gardner et al., 1964; Spetzler and Anderson, 1968); amplitude decay of multiple 

reflections (Peselnick and Zietz, 1959); slow stress strain cycling (Jackson, 1969); or a 

pulse transmission method (Kuster and Toksoz, 1974; Tittman et al., 1974; Watson 

and Wunschel, 1973). Accurate measurement of intrinsic attenuation is a tricky task 

and it seriously limits the utilization of anelastic rock properties, both in the laboratory 

and in the field. Seismic wave amplitudes are strongly affected by geometric 

spreading, reflection, and scattering in addition to intrinsic attenuation. So, it is 

important to account for the aforementioned factors while calculating intrinsic 

attenuation and quality factor. By using a reference sample, such as aluminum, with 

very small attenuation (α ≈ 0) and similar geometry to the sample, the geometric and 

transmission loss can be resolved. In addition, the pulse transmission technique is most 

suited for use in pressure vessels with jacketed and saturated samples (Figures 4.5), 

provided correction can be made for geometric factors such as beam spreading and 

reflections as mentioned above. 

A pulse transmission technique, is the method used in this work to measure 

attenuation coefficient (α) and quality factor (Q), where the amplitude decay of a 

seismic signal traveling through a sample is measured at the opposite end. In the pulse 

transmission technique a spectral ratio method is applied to compute α and Q. Spectral 

ratio is by far the most common technique used in seismology, and it allows for the 
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elimination of many of the problem associated with other wave-propagation methods 

(Toksoz et al., 1979), where a reference sample such as aluminum with similar 

geometry is measured together with the desired sample. In the spectral ratio method, 

the log amplitude spectral ratio of a reference sample to a core sample is plotted 

against the frequency of the pulse. From the slope of this plot the α of the sample is 

calculated. Then Q is computed from the α value obtained. This technique relies on the 

fact that high frequencies are preferentially attenuated relative to low frequencies. A 

media with high intrinsic attenuation (α), or low quality factor (Q) dissipate more than 

those media with low (α). In general, the spectral amplitude of a propagating wave in a 

given media at a given frequency may be expressed by equation 4.1, (Ward and 

Toksoz 1971).  

 

Equation 4.1 

  

)exp()(),( * ffGAxfA r α−=  

 

where G includes geometric spreading, and transmission and reflection coefficients. 

rA  is the receiver response and α* is given by equation 4.2. 

Equation 4.2 Attenuation 

 

∫=
path

QVdx /πα        
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This is valid for frequency independent Q. In addition, the above expression is also 

valid for slowly varying Q in the frequency band of interest. For a plane wave 

propagating through a medium (reference sample such as aluminum) placed in 

between two transducers (i.e. a source transducer and a receiver transducer) the wave 

power spectrum including the geometric factor at the receiver transducer is expressed 

as  

 

Equation 4.3 Amplitude power spectrum for reference sample 

 

21
)( )()()( rrrr
D

r TTaDGeSA r λωω ωα−=  

 

where αr is the attenuation coefficient of the reference sample; D is the length of the 

reference sample; Tr1 and Tr2 are the transmission coefficients from the transmitter 

endcap to the reference sample and from the reference sample to the receiver endcap; 

and Gr(λr,a,D) is a geometric diffraction correction term. The geometric diffraction 

correction is a function of the wave length term λr = Vr/fc, and radius of the sample (a). 

The same way for a plane wave propagating in a rock sample the power spectrum can 

be given by equation 4.4. 
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Equation 4.4 

),,()()( 21
)( DaGTTeSA ssss
D

s
s λωω ωα−=  

 

where S(ω) is the power spectra of the source wave; αs is the attenuation coefficient of 

the measured rock sample; L is the length of the rock sample; Ts1 and Ts2 are the 

transmission coefficients from the transmitter endcaps into the rock sample and from 

the rock sample into the receiver endcaps respectively; and Gs(λs,a,α) is the geometric 

diffraction correction term. Since the Tr1 = 1 – Rr1, and Tr2 = 1 – Rr2; and Rr1 = - Rr2, 

which is the same for the measured rock sample, the ratio of the power spectra of the 

sample to the reference sample, after taking the logarithm, and dropping attenuation of 

the reference sample (αr ≈ 0), the attenuation of the rock sample can be expressed  by 

equation 4.4. 

 

Equation 4.4 
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If the geometric shape of the reference sample and the rock sample are the same, and 

measurement on both samples is conducted under identical environment, then the 

geometric diffraction loss term in equation 4.4 reduces to 0, and equation 4.4 can be 

rewritten as equation 4.5. 

Equation 4.5 Equation for α can be obtained from the slope of the log ratio 
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then the quality factor of the rock sample can be expressed by Equation 4.6. 

Equation 4.6 quality factor (Q) in terms of attenuation coefficient α per wavelength. 

( )
π
λα

686.8
/1 dB

Q
=  

 

4.7 Results and Discussion 

   Pulse transmission technique with spectral ratio is used to determine attenuation 

coefficients and quality factor (Q) values relative to a reference sample with a very low 

attenuation (e.g. aluminum). The samples used in this acoustic measurement system 

are cylindrical samples with 2.54 cm diameter, and variable in length. Transmitter and 

receiver transducers, each 2.54 cm in diameter, are mounted at opposite ends of the 

sample (Figure 4.4). During velocity and attenuation coefficient computation only one 

way travel time is measured. However, for attenuation coefficient calculation two-way 

transmission loss effect is considered (equation 4.5). The sample to be studied and the 

reference samples have exactly the same geometry and shape (Figure 4.11). 

Essentially, two measurements are made using identical procedure, one on the rock 

sample of interest and the second on the reference sample (aluminum). In Figure 4.8 P-

wave and S-wave velocities, and density verses depth of core samples are shown. 

According to the figure no significant change on both P-wave and S-wave velocities is 
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observed due to pressure change. All the P-wave and S-wave velocities at different 

pressure (5231 psi, 5448 psi, and 5753 psi) plot together. The velocities for both the 

reference and core sample are calculated from the first break travel time (Figure 4.7), 

which is the one way travel time through either the core sample or reference sample 

plus the travel time through the endcaps (equation 4.1). Figure 4.12 shows two plots of 

time-trace amplitude verses time, the first for the core sample and the second for the 

reference sample. Transmission loss corrections are applied to both the reference and 

core sample amplitude, because the endcaps are made of titanium alloy. The time-trace 

plots given for both the reference and core sample are plotted amplitude verses one-

way time. Furthermore, these traces include multiples, and only those multiples which 

are clearly identified are marked. Attenuation coefficients for the core sample are 

calculated from the log amplitude spectral ratio slope of the reference sample and core 

sample (Figure 4.13a and b). From the computed attenuation coefficients quality factor 

(Q) values for each sample is calculated using the relation given in Equation 4.6. In 

addition, the Q values calculated are for P-wave (Qp) and S-waves (Qs), these values 

are given in Table 4.3. Figure 4.14 show Vp/Vs and Qp/Qs, porosity, and permeability 

verses depth plots. Based on the observation from the plots in Figure 4.13, there is a 

general correlation between low Vp/Vs and Qp/Qs and high porosity and permeability 

(green circled regions). Thus, the observed porosity and permeability values of the 

samples are characterized by very low porosity and permeability. Porosity values show 

a wide range of variation, but very few samples have porosity value greater then 5 

percent, while most samples have porosity value ranging between 1.5 and 5 percent. 
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Similarly, permeability of the samples displays wide variations, but only a handful of 

samples have permeability value greater than 3 mD. Most of the samples have 

permeability less than 0.1 mD. In Figure 4.15, Vp/Vs and Qp/Qs verses porosity are 

plotted, and from the plot very little relation can be seen. However, in Figure 4.16 

Vp/Vs and Qp/Qs verses permeability values are plotted and there is a better 

relationship. In general, the trend observed is a decrease in both porosity and 

permeability with increasing Vp/Vs and Qp/Qs. 
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Figure 4.11 Reference sample (aluminum) left, and core sample right. 
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Figure 4.13. a) Frequency-domain amplitude spectrum for reference sample (red), and 

core sample (blue); b) log amplitude spectral ratio of aluminum and core sample. 
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Depth Vp5231/Vs5231 Qp/5231/Qs5231 Porosity Permeability 
10455.3 2.04 3.70 1 0.002 
10464.1 1.84 0.78 2.8 0.02 
10465.9 2.13 1.12 2.8 0.1 
10468.7 1.79 0.51 3 1 
10470.1 1.86 1.08 4 3 
10488.2 2.17 0.45 1.5 0.15 
10510.5 1.85 2.31 2 2 
10523.5 1.86 2.45 2.2 0.6 
10543.6 1.81 1.59 4 0.008 
10765.7 2.24 2.46 2 0.015 
10816.9 1.80 8.64 4 0.004 

10832 1.81 1.18 1.5 0.05 
10899.9 2.05 1.46 3.5 3 
10922.1 1.86 1.77 1.5 0.3 
10954.9 1.86 2.40 1 0.005 
10955.5 1.81 5.68 2 0.03 
10998.3 2.13 1.63 1.2 0.003 
11027.3 1.78 1.01 6 6 
11133.8 2.14 1.54 1 0.15 
11135.9 1.71 1.08 1 0.15 
11163.9 2.20 1.11 1.5 1 
11198.7 1.80 1.23 1.2 0.002 
11214.8 1.87 3.87 3.5 0.008 
11220.5 1.64 1.80 2.5 0.08 
11242.5 1.94 1.00 4 0.15 
11259.5 1.87 2.55 3 0.05 
11283.2 2.31 1.11 2.2 0.02 
11290.8 1.81 1.85 4 0.9 
11293.5 2.04 2.84 4 1 
11300.9 1.82 4.67 7 0.1 
11301.5 2.02 0.50 7 0.1 
11307.9 1.81 2.27 3.5 0.015 

11322 2.11 2.49 3.2 0.015 
11330.2 1.83 0.99 3.2 0.008 
11345.6 2.11 5.42 2 0.006 
11347.7 1.67 5.12 2 0.006 

11363 1.92 1.47 1.5 0.006 
11390.6 1.72 1.39 1.5 0.01 

11408 1.98 0.44 6 0.05 
11442.1 2.06 0.60 1.5 0.003 
11450.9 2.07 1.72 3 0.4 
11484.2 2.17 2.91 3 0.03 
11504.5 1.88 5.33 2 0.005 

11520 2.00 1.48 1.5 0.005 
11529.4 1.86 0.71 3 0.3 
11541.1 1.90 2.11 0.5 0.05 

Table 4.3 Core sample Vp/Vs, Qp/Qs, porosity and permeability with 
sample depth (after Murat, 2001). 
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4.8 Summary and Conclusions 

Rocks can be distinguished by their velocity, density, elastic parameters and 

anelastic parameters. Furthermore, rock properties, lithology, physical state and degree 

of saturation can be characterized by the above mentioned parameters. Anelastic 

parameters of a rock include attenuation coefficient (α), the exponential decay 

constant of the amplitude of a plane wave propagating in a homogeneous medium, and 

quality factor (Q), the internal friction or dissipation factor. Laboratory measurement, 

on core samples and reference samples (aluminum), using pulse-through transmission 

technique, allowed computation of P-wave and S-wave velocities, and compressional 

and shear quality factors. Corrections such as geometric spreading are accomplished 

by using the reference sample. In addition, transmission loss correction is done based 

on the knowledge of sample and endcap velocities and density information. Computed 

results of Vp, Vs, Qp, Qs, Vp/Vs, and Qp/Qs for each sample plotted verses sample depth 

have indicated their relationship with the available porosity and permeability 

information. Therefore, if properly computed, Vp, Vs, Qp, Qs, Vp/Vs, and Qp/Qs can be 

used to characterize a reservoir formation in conjunction with other hydrocarbon 

indicators. 
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Chapter 5 
 

GEOLOGICALLY CONSTRAINED, ESTIMATION AND ANALYSIS OF 

QUALITY FACTOR (Q) FROM SONIC LOG AND 3D SEISMIC DATA 

 

5.1 Introduction 

 Quality factor (Q) values are estimated from full-wave sonic log and 3D reflection 

seismic data, and results are compared to Q values from 46 core samples collected 

from the same well. The compressional and shear wave sonic log, and density log 

recorded in Well C-276 between the 10400 ft and 11600 ft interval are used to 

compute compressional wave quality factor (Qp) and shear wave quality factor (Qs). In 

addition, Qp is estimated from a CMP-gather extracted from 3D reflection seismic 

data. Reliable estimation of quality factor from seismic data can lead to improved 

methods for the prediction of petrophysical properties.   

Reflection seismic amplitude decay results from a number of decay processes. 

These factors include spherical divergence, transmission loss, intrinsic attenuation 

(frictional adsorption), dispersion (stratigraphic filter), and mode conversion. Spherical 

divergence and transmission loss decays are generally redistribution of seismic energy, 

and they are balanced during seismic processing. Amplitude balance (Program Gain 

Control), and noise filtering (General Purpose Band-pass Filter) processes are 

performed on the CMP-gathers. On the other hand, intrinsic attenuation, dispersion 

and mode conversion involve energy transformation. The intrinsic attenuation, 
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quantified by quality factor (Q) has a significant impact on surface reflection seismic 

data (Dasgupta and Clarks, 1998). Furthermore, the anelastic loss of seismic energy is 

linked to petrophysical properties such as porosity, permeability and clay content 

(Murphy, 1982 and 1984; Peacock, et al., 1994; Best, et al., 1994; Best and McCann, 

1995; and Dasios et al., 2001). In addition, the frictional absorption preferentially 

attenuates the high frequencies, and thus this lengthens the dominant signal 

wavelength and period, which degrades resolution. However, by applying inverse Q 

filtering to the seismic data, the quality can be enhanced, and the resolution of the 

seismic section improved.  

Attenuation measurements together with other hydrocarbon indicators (DHI) 

can be useful as they may find application in the following fields: reservoir 

characterization for predicting petrophysical properties from seismic data; over 

pressure zone detection; time-laps methods for improving detection and monitoring of 

petroleum production.  

 

5.2 Objectives 

 The objective of this work is, in the first part, to compute quality factor (Q) from 

the sonic log from Well C-276, and then correlate the result to Q values calculated 

from core samples of the same well. In the second part, Q values from reflection 

seismic CMP-gathers are estimated, and then correlated with estimated Q values to Q 

values for Well C-276. Finally, the calculated Q values from the well are applied for 
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inverse Q filtering CMP-gathers, extracted from a 2D line close to Well C-276, which 

is extracted from a 3D seismic volume.  

 

5.3 Quality Factor (Q) Estimation from the Well-Log 

 Compressional and shear wave attenuation, quantified by quality factor (Q), are 

estimated from the full-wave sonic from Well C-276. The computation is performed 

using the log spectral ratio (LSR) method.  The LSR method estimates attenuation by 

comparing the amplitude spectra of two pulses measured at two different receivers. 

The pulses are generated from the same source. Attenuation is estimated by applying 

least-square linear regression fitted to the logarithm of the spectral ratio of the two 

pulses within the selected frequency band. The LSR method is based on the equation 

given below (Dasios et al., 2001), equation 5.1. 

( )
( ) ( )**ln

,
,

ln r
rrr

tt
G
G

xA
xA

−−=
ω
ω

ω
ω

 

where A(ω,x) and A(ω,xr) are the amplitude spectra for two receivers at distance x and 

xr, respectively from the source, while G and Gr are the geometric spreading factors, 

which are assumed frequency independent, and ω is the radial frequency. Then t* is the 

cumulative attenuation given by equation 5.2 
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−
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where Q(s) is the quality factor, v(s) is the velocity and s is distance traveled by the ray 

path. 

For estimation of Qp and Qs from Well C-276, the amplitude spectra of both 

the P-wave and S-wave arrivals from a reference receiver 1 (near-offset) and target 

receiver 8 (far-offset) are used. Then, attenuation coefficient (α) is calculated from the 

slope of the least square regression line of the logarithm of the spectral ratio plotted 

against the selected frequency bandwidth. In addition, for the given frequency range Q 

is assumed independent of frequency. 

 In Figures 5.1a and b P- and S- sonic velocities (blue dashed lines) from Well C-

276 are shown for the section between 10300 ft and 11600 ft. In addition, P- and S-

wave velocities (green dots) measured from core samples in the same interval are 

overlain on the same figures for correlation. From Figure 5.1a it can be observed that 

there is a good correlation between P-wave sonic velocity and P-wave velocity from 

core sample. However, the correlation between S-wave sonic velocity and S-wave 

velocity from the core samples is relatively poor. The density log from Well C-276 

(blue dashed line) is shown in Figure 5.2, and the density values (green dots) measured 

from the core samples are also superimposed on the density log. The two density 

measurements, the log and core samples, show a very good correlation. Figures 5.3a 

and b show both reflectivity series and synthetic seismogram for the section between 

10300 ft and 11600 ft, generated from the density and velocity information in Figures 

5.1 and 5.2. The synthetic trace is filtered using a zero phase 50 Hz filter. Quality 

factor values are computed for both P- and S-wave sonic logs, and are presented on 
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Figures 5.4a and b (blue dashed lines). In addition, P- and S-wave Q values measured 

from the core samples (green dots) are overlain onto the P- and S-wave sonic Q 

graphs. Based on observation from Figure 5.4a and b, there is a good match between 

Qp and Qs from sonic and Qp and Qs from core samples. However, upon close 

investigation Qp from sonic and Qp from core samples show better correlation 

compared to Qs from sonic and Qs from core samples.  
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Figure 5.2 Density log (blue dashed line), and density from 
core samples (green dots) from Well C-276. 
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5.4 Seismic Data Processing 

 A 3D seismic data for quality factor (Q) analysis is from the La Concepcion Field 

(Figure 1.1). The 3D survey is located between 10:28:00N and 10:48:00N latitude, and 

71:36:00W and 72:04:00W longitude. A 2D line (Inline171) shown in Figure 5.6 is 

extracted from the 3D volume, and tied to a synthetic trace from Well C-276. Then, a 

CMP-gather (CMP 722) is extracted from the 2D line (Figure 5.7) for processing and 

Q estimation. Figures 5.7 and 8 show the data have a low signal to noise ratio, 

specially the frequency noise. Then, to increase the signal to noise ratio, the data are 

filtered using General-Purpose-Band-Pass Filter (Low-cut = 4, Low-pass = 8, High-

pass = 30 and High-cut = 50); compare Figures 5.7 and 5.8 with Figures 5.9 and 10. 

Next, CMP-gathers 720, 721 and 722 are program-control gained to recover the 

amplitude decay due to spherical divergence and transmission loss (Figure 5.10). In 

addition, on the amplitude balanced CMP-gathers shown in Figure 5.10, RMS velocity 

picking is performed interactively through data-driven-interactive (DDI) processing, 

and the picked RMS velocity panel is shown as an overlay on the CMP-gathers (Figure 

5.11). The interactively picked RMS velocity, tabulated as time and velocity pair, is 

saved into velocity file for later use. Then, a normal move out (NMO) correction is 

applied to CMP-gathers, using the RMS velocity file generated earlier, to prepare the 

data for Q estimation and analysis. The NMO corrected CMP-gathers are shown in 

Figure 5.11. Even though, stretching correction was applied during  NMO correction, 

the far offset traces still exhibit stretching characterized by wavelet broadening. 

Therefore, only ten traces are extracted from the CMP-gather 721, and Figure 5.12 
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shows the location of the traces selected, to minimize the effect of stretching during 

NMO correction. Besides, the traces are reduced to mitigate the effect of mode 

conversion due to large offset. The pre-conditioned and selected traces are converted 

to text format, and then exported to MATLAB for interval Q estimation using 

Equation 2.11 (Dasgupta and Clark, 1998). A MATLAB script is written to compute 

the interval quality factor. Log spectral ratio (LRS) method is used to estimate the 

attenuation factor. The calculated interval Q is plotted verses Two-Way-Time (TWT) 

and shown in Figure 5.13, and then compared with Q measurement from core samples 

collected from Well C-276. 
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Figure 5.8 Raw CMP-gathers amplitude and phase spectra plot in the frequency domain 
before band-pass filtering  
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Figure 5.10 Amplitude and phase spectra plot in the frequency domain after band-
pass filtering (filter: Lowcut = 4, Lowpass = 8, Highpass = 40 and Highcut = 60) 
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5.5 Observation and Discussion 
  
 Figure 5.13 shows the estimated interval Q values from the selected traces and the 

measured Q values from core samples collected from Well C-276 (red solid line). The 

figure indicates there is a good correlation between the Q values plot from the core 

samples and the Q values plot from the reflection seismic traces. However, there are 

few traces which do not show significant relationship, and these traces are the far 

offset traces. The figure also indicates low Q values at two locations (circled green) for 

the Q measurement from the core samples, as well as for the Q measurement from the 

reflection seismic traces. The two locations with low Q values correspond to the high 

porosity and permeability zones imaged by Q earlier (Figure 5.13).   

 Figure 5.14 shows the CMP-gathers after inverse Q filtering, where Q values 

measured from Well C-276 core samples are used for the inverse Q filtering. The 

interval filtered is between 1.66 seconds and 1.78 seconds. Based on the observation 

on Figure 5.14 and comparison with Figures 5.7 and 9, there is a significant 

improvement on the amplitude and resolution. 
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5.6 Summary and Conclusions  

 Quality factor (Q) values computed from sonic log, Well C-276, are 

compared to the Q values from core samples, Well C-276, and there is a strong 

maching between the two Q measurements. In addition, Q values estimated from 

reflection seismic traces extracted from CMP-gather (CMP 722) show good 

relationship with the Q values calculated from the core samples of Well C-276. 

Correlation of Q from the core samples with porosity and permeability (Chapter 4) has 

indicated the presence of a positive link between Q and porosity and Q and 

permeability. Inverse Q filtering processing of the CMP-gathers has improved the 

resolution of the reflection seismic data affected by attenuation.  

 Therefore, geologically constrained Q measurements can have useful 

application for predicting petrophysical properties such as lithology, porosity and fluid 

characteristics, and these petrophysical properties are the critical criteria for reservoir 

characterization. Furthermore, knowledge of Q can help enhance seismic data quality 

such as resolution, by applying inverse Q filter to reflection seismic data affected 

presence of attenuative horizons. 
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