
 

 
 
 
 
 

UNIVERSITY OF OKLAHOMA 
 
 
 

GRADUATE COLLEGE 
 
 
 
 
 

THE MICROBIAL CONVERSION OF SYNTHESIS GAS TO ETHANOL: 

CHARACTERIZATION AND OPTIMIZATION 

 

 

A Dissertation  

SUBMITTED TO THE GRADUATE FACULTY 

In partial fulfillment of the requirements for the 

Degree of  

Doctor of Philosophy 

 

 

By 

Shih-Chuan (Jack) Liou 

Norman, Oklahoma 

2005 

 



UMI Number: 3174449

3174449
2005

Copyright 2005  by
Liou, Shih-Chuan (Jack)

UMI Microform
Copyright

All rights reserved. This microform edition is protected against 
    unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company 
300 North Zeeb Road

P.O. Box 1346
     Ann Arbor, MI 48106-1346 

All rights reserved.

 by ProQuest Information and Learning Company. 



 

 

THE MICROBIAL CONVERSION OF SYNTHESIS GAS TO ETHANOL: 

CHARACTERIZATION AND OPTIMIZATION 

 

A Dissertation APPROVED FOR  

THE DEPARTMENT OF BOTANY AND MICROBIOLOGY 

 

 

 

BY 

   ____________________________________ 

Dr. Ralph S. Tanner 

 
 

____________________________________ 

Dr. Michael J. McInerney 

 
 

____________________________________ 

Dr. David P. Nagle 

 
 

____________________________________ 

    Dr. Mark A. Nanny 

 
 

____________________________________ 

Dr. John S. Downard 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by Shih-Chuan (Jack) Liou 2005 
All Rights Reserved 



iv 

ACKNOWLEDGEMENTS 

 

The work presented in this dissertation was supported by research grants 

from Aventine Renewable Energy, Inc., a U.S. Department of Agriculture 

CSREES Special Research Grant, the Oklahoma Agricultural Experimental 

Station and the University of Oklahoma Foundation.   

I would like to express my sincere gratitude to Dr. Ralph S. Tanner for 

having been an extraordinary mentor and friend.  I have been extremely fortunate 

to have the benefit of his guidance and experience in the many spheres of 

microbiology.  The advice and support that he has provided me has allowed me to 

develop professionally and grow maturely as a scientist.  Regardless of which 

field of microbiology one day receives me; I will always apply what I have 

learned from him, transcend the mere requirements and be the best in my field.  

Dr. Tanner, thank you so much for these wonderful six years.   

I would also like to thank the members of my committee, Dr. Jimmy 

Ballard, Dr. John Downard, Dr. Michael McInerney, Dr. David Nagle, and Dr. 

Mark Nanny for finding time in their busy schedules to meet with me.  I 

especially thank Dr. Michael McInerney and Dr. Mark Nanny for their advice and 

life lessons throughout my time at OU.  Thank you for the letters of 

recommendation. 

I thank Dr. Lisa Geig and Neil Wofford for showing me how to use and 

trouble shoot the fatty acid GC.  I thank Chris Struchtemeyer for all his help with 

molecular techniques.  Thank you for all of your patience.   



v 

I thank Dr. Matthew Caldwell and Dr. Tamara Marsh for the countless 

hours of editing, advice and their openness to answer questions and discuss topics 

whether they were related to my research or to life experiences.   

I thank all past and present members of the Tanner lab for their tolerance 

and helpful discussions.  I especially thank Toby Allen and Jason McGuire who 

have contributed to my research goals.   

I am grateful to my best friend, John E. Sacks for the confidence and 

patience you have shown me throughout the years.  I could not have asked for a 

more loyal friend and confidant. 

Special thanks to my family, my brother and sister, Justin S. Liou and Iris 

S. Liou, for all of their support and encouragement, and my parents, Yao-Meng 

and Chin-Yeh Liou for keeping me focused on my studies.  This work would not 

have been possible without their support. 

Most importantly, I thank my extraordinary friend, Lillian Rojo, M.D who 

taught me the true meaning of determination and hard work.  She has inspired me 

professionally, and I was so fortunate to have the benefit of her love and 

friendship throughout the past seven years.  Thank you so much for everything.  

Finally, I thank my wife Lara for her love and constant words of 

encouragement.  Words could never express how much her love and support has 

helped me……………..     

 

 

 



vi 

TABLE OF CONTENTS 

 

Acknowledgments…………………………………..……………………………iv 

Table of Contents…………………………………………………………………vi 

List of Tables…………………………………………………………………....viii 

List of Illustrations……………………………………………………………......ix 

Abstract……………………………………………………………………………x 

Introduction…………..…………………………………………………….……...1 

References………………………………………………………………………..12 

 

Chapter 1.   Clostridium carboxidivorans sp. nov., a solvent-producing 

clostridium isolated from an agricultural settling lagoon, and 

reclassification of Clostridium scatologenes strain SL1 as 

Clostridium drakei sp. nov. 

Abstract………………………………………………………………...……... 19 

Introduction………………………………………………………………….... 21 

Material and Methods………………………………………………................ 23 

Results and Discussion………………………………...................................... 28 

References…...………………………………………………………............... 37 

 

 

 



vii 

Chapter 2. Production of acids and alcohols from carbon monoxide by 

Clostridium carboxidivorans strain P7 

Abstract………………………………………………………………...…….... 49 

Introduction…………………………………………………………………..... 51 

Material and Methods………………………………………………................. 54 

Results………………………………………………………………….……… 58 

Discussion………………………………........................................................... 65 

References…...………………………………………………….……............... 72 

 

Appendix 1.   Fluoroquinolone-resistant bacteria from rural lakes  

 

Abstract………………………………………………………………...…….... 84 

Introduction…………………………………………………………………..... 86 

Material and Methods………………………………………………................. 87 

Results………………………………………………………………….……… 89 

Discussion………………………………........................................................... 90 

References…...………………………………………………….……............... 91 

 

 

Perspectives & Future Work…………………………………………..……... 94 

References……………………………………………………………………. 100 

 

 



viii 

LIST OF TABLES 
 
 
 
Chapter 1 
 
Table 1.  Characteristics of strain P7T , strain SL1T  and Clostridium 

scatologenesT…………………………………………………………………... 

 

44 

 
 
 
Chapter 2 
 
Table 1.  Effect of pH on solventogenesis in C. carboxidivorans with CO as 

the substrate…………………………………………………………………… 

 

80 

Table 2.  Effect of ethanol on CO metabolism by C. carboxidivorans……….. 81 

Table 3.  General effects of medium components on the fermentation of CO 

by C. carboxidivorans………………………………………………………… 

 

82 

Table 4.  General effects of metabolic inhibitors on the fermentation of CO 

by C. carboxidivorans………………………………………………………… 

 

83 

 
 
 
Appendix 1 
 
Table 1.  Antibiotic resistance profile of aquatic strains resistant to 

ciprofloxacin…………………………………………………………………... 

 

93 

 
 
 
 
 
 
 
 



ix 

LIST OF ILLUSTRATIONS 
 
 
 
Chapter 1 
 
Figure 1.  The phylogenetic tree for clostridial strain P7T , as determined from 

a 16S rRNA gene sequence analysis.  The total horizontal distance between 

species indicates the difference between their sequences……………………... 

 

 

46 

Supplementary Figure 1.  Transmission electron micrograph of a pair of 

negatively stained cells of strain P7T………………………………………….. 

 

47 

Supplementary Figure 2.  BOX-PCR fingerprints of C. scatologenesT  (lane 

2), strain SL1T  (lane 3) and strain P7T  (lane 4).  PCR fingerprinting was 

performed using the BOXA1R primer.  A DNA standard (2,072 – 400 bp) is 

shown in lane 1 and a gel control is shown in lane 5……………… 

 

 

 

48 

 
 
 
Chapter 2 
 
Figure 1.  Simultaneous utilization of H2 and CO, as the substrate by 

Clostridium carboxidivorans…………………………………………………. 

 

79 

 
 

 

 

 

 

 



x 

ABSTRACT 

 

As a result of the oil crisis of the 1970’s, national research began to explore 

alternatives to petroleum-based energy sources.  Initiatives sponsored by the 

Department of Energy (DOE) have encouraged the transition from petroleum-

based to bio-based energy.  DOE projections estimate that products and /or 

processes based on biological raw materials will replace 10% of the demand on 

fossil fuels by year 2020.  One aspect of this policy has targeted research 

involving biomass-based energy products not only to limit greenhouse gas 

emissions but for economic development in rural areas.  Traditionally, agricultural 

crops have served as sources of raw materials (i.e., for the bioconversion to 

ethanol) such as corn starch and beet sugar (the most prominent bio-based energy 

product).  However, lignocellulosic biomass can also be converted to ethanol by 

an indirect fermentation process, in which biomass is first gasified (similar to coal 

gasification, producing carbon monoxide (CO)), followed by fermentation of the 

carbon monoxide to ethanol.  Whereas this process offers a more cost efficient 

way to bioproduce ethanol, many challenges exist in optimizing synthesis gas 

fermentation.  Microbial strain development through increasing cell densities as 

well as overcoming the effects of inhibitory synthesis gas constituents are 

required before large scale fermentation can go online.  Microbial enhancements 

and process improvements have thus far been limited by the number of viable 

candidates with much of the current work focused on acetogens or butyric acid 

bacteria as potential microbial catalysts for synthesis gas fermentation.  Hence, 
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our research objectives concentrated on the enrichment, isolation and 

characterization of anaerobic microorganisms capable of the conversion of carbon 

monoxide to ethanol.   

 By screening 310 enrichments from 37 different sources of inocula (e.g., 

sediments, lagoons, compost, silage, and animal feces), seven potential microbial 

candidates (strain P7, P11, P14, P20, P21, MU1 and SK1) were isolated for the 

conversion of synthesis gas to ethanol.  The research presented herein focuses on 

Clostridium carboxidivorans strain P7 and is centered on three main topics: 

phylogeny, microbial physiology, and development for industrial scale purposes. 

  Phylogenetically, C. carboxidivorans is very similar to Clostridium drakei 

(99.8%) and Clostridium scatologenes (99.7%) in their 16S rRNA gene 

sequences.  All three strains are in cluster I (subcluster Ic) of Clostridium group I.  

The DNA-DNA reassociation value of C. carboxidivorans to C. drakei and to C. 

scatologenes  was 31.8% and 50.2%, respectively.  Using a threshold value of 

70% for the definition of the same species, these three clostridia each represent a 

different species.  C. carboxidivorans is able to convert C1 substrates to ethanol 

with relatively high efficiency.  A fermentation balance of C. carboxidivorans 

when grown on carbon monoxide yielded ethanol, acetate, butanol, and butyrate 

as end products.  These same end products were also observed when C. 

carboxidivorans was grown on fructose.  Growth of C. carboxidivorans required 

the addition of pantothenic acid, para-amino benzoic acid (PABA), and biotin.  

Growth on gaseous substrates was stimulated with the addition of isoleucine and 

proline.  Chemolithotrophic growth did not occur without an initial addition of 
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carbon dioxide (CO2) with CO as the primary substrate.  Increased ethanol 

production by C. carboxidivorans strain P7 was achieved by changing 

physiochemical properties of the growth media (i.e., pH, Fe+2) or by adding 

exogenous ethanol or the metabolic inhibitors trifluoroacetate or fluoroacetate.  In 

addition, growth of C. carboxidivorans was increased from an initial value of 0.7 

grams per liter to 10 grams per liter through growth medium optimization. 

Because of the results presented here, further studies to determine the commercial 

potential for the production of biofuels from CO by strain P7 seem warranted.  
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INTRODUCTION 

 

The development of renewable biofuels (primarily ethanol from biomass) 

is a national priority motivated by both economic and environmental concerns 

including the reduction of petroleum imports and greenhouse gas emissions and 

enhancement of the domestic fuel supply (Dale, 2003).  Biomass primarily refers 

to agricultural crops or plant material, but other sources of biomass such as 

residues from agr icultural practices, forestry and organic components of 

municipal and industrial wastes are generating greater interest (National Energy 

Policy, 2001).  Biomass is a continuous and constantly replenished energy crop 

and can be directly and indirectly converted into liquid fuels or “biofuels.”  The 

most common biofuels are ethanol and biodiesel.  Biodiesel is used mainly as a 

diesel additive made from vegetable oils, animal fats, algae, or even recycled 

cooking greases (National Energy Policy, 2001).  Ethanol is made directly by 

fermenting any biomass that is rich in carbohydrates, such as corn.   

The current practice for producing ethanol involves the saccharification 

fermentation of simple sugars from cornstarch (Ladisch and Svarczkopf, 1991).  

Though the technology is well established and the raw material (corn) is readily 

available, particularly in the Midwestern states of US, the limiting factors for this 

technology are its dependence on corn as the feedstock and the complexities 

(pretreatment) associated with the release of polymeric sugars prior to 

fermentation (Mielenz, 2001).  Through this process, the United States currently 

produces about 5 billion liters of ethanol from starch crops, mainly corn.  
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However, the projected target for ethanol production is between 38-53 billion 

liters per year or enough for a 10% ethanol blend of gasoline for use in the US 

(Mielenz, 2001).  Therefore, the demand for more ethanol is great, and alternative 

means of producing ethanol are necessary in order to meet this objective 

(Mielenz, 2001; Dale, 2003).   

The use of lignocellulosic biomass as a feedstock for a direct fermentation 

process to produce ethanol is an attractive alternative (Dale, 2003).  

Lignocellulosic biomass is an inexpensive source of carbohydrate and is abundant 

(Mielenz, 2001).  Lignocellulosic feedstocks (e.g. agricultural residues, 

herbaceous energy crops, and short rotation hardwoods) are composed of 35-50% 

cellulose, 20-40% hemicellulose, and 15-30% lignin (Claassen et al., 1999).  The 

cost of producing ethanol from lignocellulosic biomass has been greater than the 

cost of gasoline; however, continued development of a direct fermentation 

method has resulted in inexpensive and effective processing technology for the 

breakdown of lignocellulosic material to fermentable sugars (Lynd, 1996; 

Claassen et al., 1999; Mielenz, 2001).  For example, the simultaneous 

saccharification and fermentation (SSF) process and simultaneous 

saccharification cofermentation (SSCF) process were developed to significantly 

reduce production costs by conducting cellulose hydrolysis simultaneously with 

fermentation of the glucose (Mielenz, 2001).  New methods in molecular biology 

and genetic engineering have created recombinant strains of Saccharomyces, 

Escherichia coli and Zymomonas mobilis that utilize xylose and arabinose sugars 

(constituents of lignocellulose) in a direct fermentation process (Mielenz, 2001; 
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Ingram et al. 1998; Ingram et al. 1999).  However, these strains do not currently 

use polyphenolic lignin and other ‘extractables’ that constitute 15-30% of the 

plant’s matrix.  Continuous improvement of these strains will be necessary to 

create an ideal strain that will directly ferment all biomass sugars, tolerate 

inhibitors and alcohols, grow at low pH and high temperature ranges and have a 

high specific growth rate (Zaldivar et al., 2001).   

Recent work in genetic engineering on Saccharomyces cerevisiae has 

shown great promise for commercialization.  Several genes for cellulolytic 

enzymes (ß-glucosidase I, endoglucanase II, and cellobiohydrolase II) from 

Trichoderma reesei were successfully inserted into a strain of Saccharomyces 

cerevisiae (Fujita et al., 2004).  The recombinant yeast yielded 0.45 g/g (in grams 

of ethanol produced per gram of carbohydrate consumed), which corresponded to 

88.5% of the theoretical yield.  Escherichia coli strain KO11 is another 

recombinant microorganism that shows great promise.  Strain KO11 can produce 

ethanol from xylose at 94% of the theoretical yield (1.667 mmol of ethanol 

produced per mmol of xylose consumed) (Underwood et al., 2002).  All of these 

advancements in direct fermentation of biomass have allowed BC International 

Corp. to build the first US 30-million-gallon biomass-to-ethanol plant in Jennings, 

LA, which is anticipated to be operational by the end of 2006.  

A potential alternative process for converting biomass- lignocellulosic 

feedstock- to ethanol is through the indirect fermentation of the gasification of 

biomass to synthesis gas (CO2, CO, H2) followed by the subsequent 

bioconversion of synthesis gas to ethanol.  Biomass gasification is an established 
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process that produces a valuable gas from a renewable solid (Gil et al., 1997).  

The subsequent heat from the gasification process can be used in distillation of 

the final product.  Previously, the bioconversion of the synthesis gas via a 

microbial catalyst was considered an unproven alternative (Grethlein and Jain, 

1992); however, the use of biological catalysts would offer low operating 

temperatures and pressures, high yields, high end-product specificity, low energy 

costs and tolerance to sulfur species in the synthesis gas (Grethlein and Jain, 

1992; Klasson et al., 1992).  An additional benefit is the potential impact this 

process could have on the greenhouse gas balance.  This process has the potential 

to reduce air pollution since lignocellulosic materials such as switchgrass, 

elephant grass, and prairie bluestem are carbon neutral, consuming as much CO2 

in growth as they produce in combustion.   

Acetogenic bacteria have shown the greatest promise for converting 

synthesis gas into ethanol and other important solvents.  This group of bacteria 

was physiologically defined by its ability to produce acetic acid as the sole 

metabolic end-product from a variety of substrates ranging from carbohydrates to 

synthesis gas.  The classification of acetogenic bacteria evolved to a more specific 

definition which includes bacteria that grow by producing acetic acid via the 

carbon monoxide dehydrogenase (CODH) pathway, often referred to as the 

acetyl-CoA Wood/Ljungdahl pathway (Drake, 1994; Drake et al., 2002).  Most 

acetogens are phylogenetically classified as clostridial species (Tanner and 

Woese, 1994), with several clostridial species known to utilize CO as a substrate.  

These organisms include Acetobacterium woodii (Ljungdahl, 1983), Clostridium 
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aceticum (Ljungdahl, 1983), Moorella thermoaceticum (Daniel et al., 1990), 

Eubacterium limosum (Ljungdahl, 1986), and Acetogenium kivui (Daniel et al., 

1990).   

The microbial catalysts of choice for the bioconversion of synthesis gas to 

acids and alcohols include acetogens such as Butyribacterium methylotrophicum 

(Grethlein et al., 1990; Drake et al., 2002), Clostridium autoethanogenum (Abrini 

et al., 1994), and Clostridium ljungdahlii (Barik et al., 1988; Tanner et al., 1993).  

The physiological characteristics of these three strains were used to guide 

enrichment and screening of potential acetogens in the bioconversion of synthesis 

gas to acids and alcohols.  The selection of B. methylotrophicum was based on its 

metabolic versatility (Grethlein and Jain, 1992).  B. methylotrophicum grows on 

100% CO and produces ethanol, acetate, butyrate, and n-butanol as end products 

(Grethlein et al., 1991).  When grown using different carbon sources, B. 

methylotrophicum produced distinctive end-products.  Growth with H2 :CO2 

produced acetate, while growth on methanol (in the presence of acetate) produced 

butyrate at a 4:1 methanol:butyrate ratio (Grethlein and Jain, 1992).  pH also had 

an affect on acid production in B. methylotrophicum.  At pH 6.8, B. 

methylotrophicum produced acetate in a 32:1 acetate:butyrate molar ratio, 

whereas at pH 6.0, the acetate to butyrate ratio was 1:1 (Grethlein and Jain, 1992).  

At lower pH, B. methylotrophicum produced minor butanol and ethanol end-

products.   

On the other hand, C. autoethanogenum and C.  ljungdahlii (Barik et al., 

1988; Tanner et al., 1993) were primarily selected for their ability to produce high 
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concentrations of ethanol from synthesis gas.  Both C. autoethanogenum and C.  

ljungdahlii have the ability to convert CO:CO2 to ethanol and acetate.  The type 

strain of C. autoethanogenum typically produces ethanol concentrations of 

approximately 3-5 mM (Abrini et al., 1994), where as type strain of C. ljungdahlii 

can produce ethanol concentrations as high as 2 mM in batch studies (Tanner et 

al., 1993) or 500 mM when grown in continuous culture (Phillips et al., 1993).  

As with B. methylotrophicum, pH has a profound effect on acid and 

alcohol production when C. ljungdahlii is grown on carbon monoxide.  Acid 

production is favored at pH’s greater than 5.0 with an acetate to ethanol molar 

ratio of 20:1, whereas alcohol production is favored at pH less than 5.0 with a 

product molar ratio of 1:9 (Gaddy and Clausen, 1992).   

Where pH has been shown to affect solvent production in acetogenic 

bacteria, other physiochemical factors may also contribute in altering the 

acid:alcohol ratio.  The maximization of ethanol production in the bioconversion 

of synthesis gas is a prime component for the industrialization of this process.  

Research in this area has been expanded to include the butyric acid bacteria 

(Worden et al., 1991).   While little is known regarding the factors influencing 

acetogenic production of solvents from synthesis gas, extensive research has been 

conducted on Clostridium acetobutylicum, a butyrate producing bacterium (Jones 

and Woods, 1986; Adler and Crow 1987; Grupe and Gottschalk 1992).  Although 

C. acetobutylicum has not been shown to utilize CO, research on factors that 

affect solvent production have been studied in detail (Jones and Woods, 1986; 

Adler and Crow 1987; Worden et al., 1991; Grupe and Gottschalk 1992).  For 



7 

example, decreasing the pH from 6.0 to 4.5 or adding butyrate or acetate (50 mM 

each) to the medium played an important role in the production of alcohols (Adler 

and Crow 1987; Grupe and Gottschalk 1992).  In each case, butanol and acetone 

increased 2 to 3 fold from original conditions (Grupe and Gottschalk 1992).  

Grupe and Gottschalk (1992) proposed that two metabolic signals occurred during 

the shift from acidogenesis to solventogenesis.  When the intracellular ATP 

concentration reached a minimum, before the onset of solventogenesis, the change 

in ATP and ADP ratio initiated the generation of signal one.  This leads to the 

induction of acetoacetate decarboxylase and CoA-transferase to convert acetyl-

CoA and acetate to acetone and CO2.  Because of acetone formation, inadequate 

amounts of acetyl- CoA act as H+ acceptors.  Thus, the redox balance cannot be 

stabilized during glycolysis, and signal two is generated when a pool of NADH 

plus NADPH drastically increases.  Signal two induces the synthesis of 

butyraldehyde and butanol dehydrogenases, and acetone and butanol formation 

can proceed (Grupe and Gottschalk 1992).  

Nutrients are another factor which affected the regulation of solvent 

production.   Limiting inorganic nitrogen (NH4
+), phosphorous (PO4

3-) and sulfur 

(SO4
2-) have stimulatory affects on solvent production (butanol) in C. 

acetobutylicum (McNeil and Kristiansen, 1987; Bahl et al. 1982; Bahl and 

Gottschalk 1984).  In each incidence, solvent production peaked at 0.5 fold from 

standard concentrations when each nutrient was limited (McNeil and Kristiansen, 

1987).  Other factors that affected the regulation of solvent production in C. 

acetobutylicum included trace metals.  Iron or other essential metals serve as 
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important components in biological proteins and systems (Mills, 1997).  The 

elimination of ferrous iron in the medium decreased the production of solvents by 

6.1% from the standard concentrations in C. acetobutylicum (McNeil and 

Kristiansen, 1987).  Details of nutrient and cofactor additions are discussed in 

more detail with Clostridium carboxidivorans in Chapter 2.   

 Limiting factors to using Butyribacterium methylotrophicum, Clostridium 

autoethanogenum and Clostridium ljungdahlii in an industrial process for 

synthesis gas conversion are the low product yields and, hence, the final 

concentrations obtained.  It has been proposed that for industrial synthesis gas 

conversion to be economically feasible, 868 mM (40 g/l) ethanol needs to be 

made.  Clearly, a need exists for the discovery of alternative acidogenic or 

solventogenic microbial catalysts. 

The characteristics on these three strains were used to guide the isolation 

and metabolic potential of acetogens in the work presented in this dissertation on 

the Conversion of Agricultural Biomass to Liquid Fuels.  Prior to metabolic 

characterization, isolates were screened for the ability to produce ethanol from 

synthesis gas and were examined phenotypically to ensure that they were different 

from B. methylotrophicum, C. autoethanogenum, and C. ljungdahlii.  Of the 

microorganisms isolated for ethanol production strain P7 was determined to be 

the most viable candidate for continued study.  Strain P7 was selected based on its 

durability and robustness to tolerate environmental stresses (e.g., low pH ~4.2-

4.5; oxygen; minimum nutrients).  Moreover, strain P7 produced a significant 

ethanol concentration in comparison to the type strain of C.  ljungdahlii (Tanner 
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et al., 1993).  Phenotypic characteristics such as sole substrate-utilization, growth 

rate on synthesis gas, temperature and pH optima, and yield of end-products 

concluded that strain P7 is different from B. methylotrophicum (Grethlein et al., 

1990), C. autoethanogenum (Abrini et al., 1994), and C. ljungdahlii (Tanner et al., 

1993).   

The type strain, strain P7T  (=ATCC BAA-624T=DSM 15243T), is a novel 

Clostridium species enriched from an agricultural settling lagoon using CO as the 

substrate.  Strain P7 has been rename Clostridium carboxidivorans strain P7T  

[car.bo.xi.di.vo'rans.  N.L. neut. n.  carboxidum, carbon monoxide, L. part. adj. 

vorans, devouring, N.L. part. adj. carboxidivorans, carbon monoxide devouring] 

for its ability to utilize carbon monoxide.   

Chapter 1 deals with the physiochemical characterization of C. 

carboxidivorans strain P7.  Acetate, ethanol, butanol and butyrate were the 

metabolic end-products of growth on CO:CO2.  Phylogenetic analysis was 

performed to characterize C. carboxidivorans from other clostridial species , and 

the effects of physiochemical variables such as temperature, pH, nutrient 

requirements and tolerance to oxygen, methanol, and ethanol on the metabolism 

of CO were examined.  This chapter was written in the style of the International 

Journal of Systematic and Evolutionary Microbiology to which the article was 

accepted. 

Chapter 2 focuses on optimizing C. carboxidivorans for the conversion 

process of synthesis gas to ethanol.  Since the general principles of strain 

screening, identification and development for industrial purposes are well 
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established, especially for the production of butanol and acetone in Clostridium 

acetobutylicum (Monot, et al., 1982; McNeil and Kristiansen, 1987; Adler and 

Crow 1987; Grupe and Gottschalk 1992), the optimization of C. carboxidivorans 

for ethanol production from CO was followed by using C. acetobutylicum as a 

model.  Studies on the effect of metabolic inhibitors (e.g., trifluoroacetate, 

fluoroacetate, chlorobutyrate) to decrease the production of one product while 

increasing the production of the desired product were conducted.   Selection of 

strains with higher ethanol yields and increasing tolerance to ethanol was also 

conducted.  Finally, growth on a defined medium to decrease cost by reducing the 

provision of nutrients in the medium was also investigated.  To date, C. 

carboxidivorans has been optimized to produce 10 grams per liter of ethanol from 

an initial culturing of 0.7 grams per liter of ethanol.  The focus of this chapter is to 

provide a model for the study and exploration of future microbial catalysts and to 

propose C. carboxidivorans as a potential industrial candidate for the 

fermentation of synthesis gas to ethanol.  This chapter was written in the style 

required by Applied Microbiology and Biotechnology.   

 Besides the primary research on the microbial conversion of synthesis gas 

to ethanol, a variety of research projects with an emphasis on applied 

microbiology in anaerobic systems was conducted.  One project was on the 

microbiota of Lepomis macrochirus (bluegills) from treated wastewater and rural 

lakes.  Data generated in this study demonstrated the ecological impact humans 

and animals can have on the environment. 
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Appendix 1 is an extension of a finding made during the analysis of the 

multiple-antibiotic resistance data from a comparative study on the microbiota of 

the intestinal tract of bluegills from treated sewage water to that of bluegills from 

clean rural lakes.  The overall resistance to antibiotics among native bacteria was 

unexpectedly high in the clean rural lakes.  The two lakes in question are in 

sparsely populated counties with no identifiable antibiotic inputs.  Ciprofloxacin 

resistance was present in bacterial isolates from these two lakes in high numbers.  

Though the results were surprising, the study suggests that a natural reservoir of 

resistance against fluoroquinolones exists, a fact which must be considered if 

widespread use of these antibiotics is undertaken in response to treating patients 

with infections of multidrug-resistant bacteria and for broader systemic infections.  

Appendix 1 was written in the style required by the Journal of Antimicrobial 

Chemotherapy.  
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Chapter 1.  Clostridium carboxidivorans sp. nov., a solvent-

producing clostridium isolated from an agricultural settling 

lagoon, and reclassification of Clostridium scatologenes strain SL1 

as Clostridium drakei  sp. nov. 

 

Abstract 

 

A new solvent-producing anaerobic clostridium, strain P7T , was isolated from 

sediment from an agricultural settling lagoon after enrichment with CO as the 

substrate.  The metabolism of this Gram-positive motile, sporeforming rod was 

primarily acetogenic.  Acetate, ethanol, butyrate and butanol were the end 

products of metabolism.  Strain P7T  grew on CO, H2:CO2, glucose, galactose, 

fructose, xylose, mannose, cellobiose, trehalose, cellulose, starch, pectin, citrate, 

glycerol, ethanol, propanol, 2-propanol, butanol, glutamate, aspartate, alanine, 

histidine, asparagine, serine, betaine, choline or syringate as a substrate.  

Methanol, formate, D-arabinose, fucose, lactose, melibiose, amygdalin, gluconate, 

lactate, malate, arginine, glutamine or vanillate did not support growth.  Nitrate 

reduction, production of indole, gelatin hydrolysis and esculin hydrolysis were not 

observed.  Analysis of the 16S rRNA gene sequence of the isolate showed that it 

was closely related to Clostridium scatologenesT  (99.7% sequence homology) and 

clostridial strain SL1T  (99.8% sequence homology).  Strain SL1T  had been 

classified as a strain of C. scatologenesT .  However, DNA-DNA reassociation 

analysis showed that both strain P7T  and strain SL1T  were novel clostridial 
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species.  We propose that strain P7T  be named Clostridium carboxidivorans sp. 

nov. (type strain = ATCC BAA-624T =DSM 15243T) and that strain SL1T  be 

reclassified as Clostridium drakei sp. nov. (type strain = ATCC BAA-623T  = 

DSM 12750T). 
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Introduction 

 

The classic presentation of the acetogenic phenotype is the anaerobic reduction of 

CO2 to acetate, with the implication that the microorganism is using the "Wood-

Ljungdahl" pathway (Drake, 1994).  Other C1 compounds are utilized by 

acetogens, including formate, methanol and CO.  Some acetogens can produce 

additional end products of metabolism.  Acetobacterium woodii  (Buschhorn et 

al., 1989) and Clostridium strain PETC (Vega et al., 1989), later identified as 

Clostridium ljungdahlii (Tanner et al, 1993), can produce ethanol from C1 

substrates.  Eubacterium limosum produced the C4 product butyrate from H2 :CO2 

(Genthner et al., 1981) and the closely related "Butyribacterium 

methylotrophicum" produced butanol from CO (Grethlein et al., 1991).   

 

The addition of other metabolic capabilities in addition to the reduction of C1 

substrate to acetate was discovered by Kusel et al. (2000).  A Clostridium strain, 

SL1T , was isolated from an acidic sediment using H2 as the energy source and 

presumptively identified as an acetogen.  rRNA gene sequence analysis showed 

strain SL1T  was a strain of Clostridium scatologenesT , which is usually cultured 

on fermentable carbohydrates, forming acetate and butyrate as the main end 

products of fermentation.  C. scatologenesT  was also shown to utilize H2:CO2 or 

CO, and had key enzyme activities for the acetogenic pathway, leading to the 

conclusion that C. scatologenesT  was an acetogen (Kusel et al., 2000). 
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A Clostridium strain, designated P7T , was enriched from an agricultural settling 

lagoon using CO as the substrate.  This was done in a search for bacteria with the 

potential to ferment synthesis gas (CO:CO2:H2) and produce ethanol as a biofuel 

(Worden et al., 1991).  This strain, like strain SL1T  (Kusel et al., 2000), was 

closely related to C. scatologenesT .  Further investigation showed that both P7T  

and SL1T  were new species of Clostridium. 
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Materials and Methods  

 

Enrichment and isolation.  Clostridium strain P7T was isolated by Rossukon 

Laopaiboon.  Sediment from an agricultural settling lagoon at Oklahoma State 

University, Stillwater, OK was incubated with an acetogen medium (ATCC 

medium # 1754; Tanner et al., 1993) at 37 ºC with an initial pH of 5 and an 

atmosphere of CO:N 2:CO2 (70:24:6) at a gauge pressure of 230 kPa.  Enrichments 

were monitored by GC for ethanol and acetate production.  Strain P7T  was 

isolated from the enrichment using roll tubes (Hungate, 1969).   

 

Microorganisms and culture conditions.  Clostridium scatologenes ATCC 

25775T  was obtained from the American Type Culture Collection.  Clostridium 

scatologenes strain SL1T  (Kusel et al., 2000) was obtained from the laboratory of 

Harold L. Drake at the University of Bayreuth.  The basal medium for routine 

culture contained (per liter):  25 ml Mineral Solution (Tanner, 2002 [a source of 

sodium, ammonium, potassium, phosphate, magnesium, sulfate and calcium]); 10 

ml Vitamin Solution (Tanner, 2002); 10 ml Trace Metal Solution (Tanner, 2002); 

1 g yeast extract (# 0127-17-9, Difco Laboratories); 10 g 2-(N-

morpholino)ethanesulfonic acid (MES; M-5287, Sigma-Aldrich), with the pH 

adjusted to 6·1; 6 ml cysteine·sulfide reducing agent (Tanner, 2002).  Medium 

was prepared using strict anaerobic technique (Balch & Wolfe, 1976).  Substrate 

(5 g per liter) utilization cultures were grown under an atmosphere of N2 :CO2 
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(80:20) at a gauge pressure of 70 kPa.  For growth with H2 or CO, the atmosphere 

was H2 :CO2 (80:20) or CO:N 2:CO2 (70:24:6) at a gauge pressure of 230 kPa.    

 

The pH range and optimum for growth of strain P7T , strain SL1T  and C. 

scatologenesT  was examined from pH 4 to pH 8 with fructose as the substrate and 

a Good's buffer (20 g per liter) HOMOPIPES (pKa 4.6), MES (pKa 6.0), TES 

(pKa 7.2) or TAPS (pKa 8.1) as appropriate (Tanner, 2002).  The temperature 

range and optimum for growth was examined from 4 ºC to 45 ºC.  The pH and 

temperature ranges for strain P7T  were also examined with CO as the substrate.  

Further phenotypic characterization was performed using the procedures 

described in Holdeman et al. (1977) and Smibert & Krieg (1994). 

 

Microscopy.  Cells in exponential growth phase in a medium with yeast extract (5 

g per liter) were fixed with 1% glutaraldehyde, spread onto carbon-coated 

Formvar grids, and stained with phosphotungstate (0.5 %). Transmission electron 

microscopy was performed using a JOEL JEM 2000 FX transmission electron 

microscope. 

 

Phylogenetic/genetic analysis.  DNA was isolated from cells of strain P7T , strain 

SL1T  and C. scatologenesT  by chromatography on hydroxyapatite according to 

Cashion et al. (1977) or by using a modified Marmur procedure (Ludwig, 1991).  

The mol% G+C content was determined using the method of Mesbah et al. 
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(1989).  The mol% G+C was also determined in the laboratory of Dr. Peter 

Schumann at the DSMZ (Braunschweig, Germany).   

 

DNA was used as a template for PCR amplification of the 16S rRNA gene using 

the amplification primers fD1 and rP2 as described by Weisberg et al. (1991).  

The PCR amplification products were sequenced with an automated sequencer, 

and the resulting sequence assembled to produce 1,015-base contiguous DNA 

sequences corresponding to E. coli positions 23-1055 (Brosius et al., 1978).  

These contiguous sequences were aligned by hand, based on the secondary 

structure of the 16S rRNA molecule (Gutell et al., 1994), to the most closely 

related sequences from both the Ribosomal Database Project and 

GenBank/EMBL databases.  The phylogenetic positions of strain P7T  and SL1T  

were analyzed using distance matrix (Felsenstein, 1993), maximum likelihood 

(Olsen et al., 1994) and parsimony (Swofford, 2000) methods.  A heuristic search 

was conducted first (using the standard program defaults), followed by a bootstrap 

analysis (Felsenstein, 1985) to assess the branch points of the resulting 

phylogenetic trees.  A consensus tree was generated by bootstrapping at the 

greater-than-50% confidence limit, with 1000 replications. 

 

A DNA-DNA reassociation analysis was performed in the laboratory of Dr. Peter 

Schumann (DSMZ) as described in De Ley et al. (1970) with the modifications 

described by Escara & Hutton (1980) and Huss et al. (1983) using a model 2600 

spectrophotometer equipped with a model 22527-R thermoprogrammer and 
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plotter (Gilford Instrument Laboratories, Inc., Oberlin, Ohio).  Renaturation rates 

were computed with the TRANSFER.BAS program (Jahnke, 1992). 

 

Repetitive DNA PCR fingerprinting was performed using the BOXA1R primer, 

which was obtained from Invitrogen (Carlsbad, California), and the protocol from 

Versalovic et al. (1994).  PCR mixtures contained 2.5 µl 10X buffer B (500 mM 

KCl and 100 mM Tris·HCl), 2µl MgCl2·6H2O (25 mM), 0.25 µl Taq polymerase 

(Fisher Scientific), 0.5 µl of each deoxynucleoside triphosphate (10mM, Promega, 

Madison, Wisconsin), 1 µl primer, and sample DNA in a final volume of 25µl.  

The PCR reaction was run on a Robocycler Gradient 40 Temperature Cycler 

(Stratagene, Cedar Creek, Texas) using a protocol of an initial denaturation step 

(94 ºC, four min, one cycle), 30 reaction cycles (94 ºC for one min, 50 ºC for one 

min, 72 ºC for eight min), and a final extension step (72 ºC for eight min).  PCR 

product (10 µl) was run on a 5% polyacrylamide vertical gel with a 100 base pair 

ladder (Fisher Scientific) for 17 hr at 26 ºC and 120 mAmps.  The ethidium 

bromide-stained gel image was analyzed using a NucleoCam Digital Image 

Documentation System (Nucleo Tech Corp., San Mateo, California). 

 

Analytical procedures.  Growth in liquid cultures was measured at 600 nm using 

a Spectronic 20D spectrophotometer (Milton Roy Co., Rochester, New York; 

Balch & Wolfe, 1976).  Fructose was measured using the phenol-sulfuric acid 

carbohydrate assay (Dubois et al., 1956).  Acetate, ethanol, butyrate and butanol 

were measured using a 3400 Varian GC (Varian, Walnut Creek, California) 
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equipped with a FID detector and a 6 foot glass column packed with Carbopack B 

DA 80/20 4% Carbowax 20 M resin (Supelco, Bellefonte, Pennsylvania).  The 

concentration of acetate and butyrate was confirmed using ion exclusion HPLC 

on an Aminex HPX-87H organic acid analysis column (Bio-Rad, Richmond, 

California), and the concentration of ethanol confirmed using an alcohol 

dehydrogenase ethanol assay (Kit 333-B, Sigma-Aldrich).  Gasses were measured 

using a GC equipped with a TCD detector (Varian), and a Porapak Super Q 

column (Alltech, Deerfield, Illinois) or a molecular sieve 5A column (Alltech).   
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Results and Discussion 

 

Morphology of strain P7 

 

Colonies of P7T  grown with CO appeared white and opaque, with lobate edges, 

and were 2-4 mm in diameter after one to two weeks of incubation.  Electron and 

phase-contrast microscopy revealed that cells of strain P7T  were Gram-positive, 

rod-shaped (0.5 µm in diameter and, most often, 3 µm in length) bacteria 

occurring most often singly or in pairs (Supplementary Fig. 1).  Cells can be 

motile and peritrichously flagellated, but active motility was not always observed.  

Spores were rarely observed, but, when present, were subterminal to terminal with 

some cell swelling.  This morphology differs from that reported for strain SL1T  

with regards to the Gram reaction and presence of spores (Kusel et al., 2000).   

 

Growth properties and substrate utilization 

 

The growth rate, temperature range and pH range for strain P7T , strain SL1T  and 

C. scatologenesT  are given in Table 1.  All three bacteria had similar temperature 

and pH ranges and optima.  The growth rates under optimal conditions with 

fructose or CO as substrate for the three clostridia were in the same range.  A 

doubling time of 2.4 h was observed for strain SL1T  at 38 ºC, an initial culture pH 

of 6.2, and with fructose as the substrate.  A doubling time for SL1T  with fructose 

as the substrate and at 30 ºC was 5.3 h (Kusel et al., 2000).  The doubling time of 
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C. scatologenesT  (17.3 h) on H2 :CO2 was considerably longer than that for strain 

P7T  (5.8 h) or strain SL1T  (3.5 h).  All three Clostridium species utilized CO, 

H2:CO2, ribose, xylose, fructose, glucose, galactose, L-arabinose, mannose, 

rhamnose, sucrose, cellobiose, melezitose, cellulose, starch, inositol, glycerol, 

ethanol, propanol, pyruvate, citrate, serine, alanine, histidine, glutamate, aspartate, 

asparagine, casamino acids, betaine and choline as growth substrates.  Formate, 

methanol, D-arabinose, lactose, raffinose, melibiose, amygdalin, succinate, 

ferulate, vanillate and trimethoxybenzoate did not support the growth of these 

clostridia.   

 

A differential pattern of substrate utilization for the three Clostridium species was 

observed with pectin, fucose, maltose, trehalose, sorbitol, mannitol, gluconate, 

lactate, fumarate, malate, 2-propanol, butanol, glutamine, arginine and syringate 

(Table 1).  For example, C. scatologenesT  grew with maltose, sorbitol, or 

glutamine, but these did not support the growth of strain P7T  or strain SL1T .  

Strain P7T  did not grow on fucose, gluconate, lactate or arginine, but these 

substrates were utilized by strain SL1T  and C. scatologenesT .  Strain SL1T  did not 

grow on pectin and grew on malate, while the opposite result was observed for 

strain P7T  and C. scatologenesT .  These three Clostridium species could be 

distinguished based on growth with these 15 substrates. 

 

The substrate utilization results for SL1T  are mainly in accord with those reported 

in Kusel et al. (2000).  However, strain SL1T  was reported to utilize formate, 



30 

vanillate and ferulate in the prior report, and it was also reported that C. 

scatologenesT  utilized vanillate (Kusel et al., 2000).  Other results found for C. 

scatologenesT  differ somewhat from prior work.  In Holdeman et al. (1977), C. 

scatologenesT did not produce acid from (implying lack of growth) galactose, 

maltose, sucrose, cellobiose, melezitose, starch, sorbitol or inositol, but in this 

study these all served as growth substrates.  A later report (Cato et al., 1986) 

indicated that C. scatologenesT  is negative for utilization of galactose, maltose, 

sucrose, melezitose, starch or sorbitol, but these functioned as growth substrates 

in this study.  All of the substrate utilization assays here were  

performed independently three times and each result set for the three Clostridium 

species were identical.  To some degree the differences in reported substrate 

utilization reflect legitimate differences in performance of the bacteria, especially 

if slightly different culture conditions are used.   

 

All three Clostridium species were methyl red positive in an MRVP assay.  All 

yielded negative results for the Voges-Proskauer reaction, esculin hydrolysis, 

gelatin hydrolysis, nitrate reduction and production of indole.  Strain P7T  was also 

negative for catalase, oxidase and urease activities. 

 

End products of metabolism were examined in this study.  Strain P7T  converted 

600 mmoles of CO (equal number of carbons to 100 mmoles fructose) to CO2 

(264 mmoles), ethanol (96 mmoles), acetate (12 mmoles) and butanol (24 

mmoles).  Strain P7T  converted 100 mmoles of fructose to CO2 (280 mmoles), 
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ethanol (23 mmoles), acetate (81 mmoles) and butanol (4 mmoles).  It was not 

unusual to detect butyrate as an end product in other trials.  Butyrate was also 

reported as a minor end product from strain SL1T  (Kusel et al., 2000).  Under 

similar conditions (initial culture pH of 6.2 and incubation at 38 ºC), strain SL1T  

fermented 100 mmoles of fructose to CO2 (120 mmoles), ethanol (50 mmoles), 

acetate (70 mmoles) and butanol (50 mmoles), while CO2 (100 mmoles), acetate 

(200 mmoles) and ethanol (50 mmoles) were produced by C. scatologenesT .  

These are different from the ratio of end products from fructose by SL1T  and C. 

scatologenesT  reported in Kusel et al. (2000).  However, end product ratios in 

clostridia can change with alteration of pH and other growth conditions (Adler & 

Crow, 1987). 

 

rRNA gene sequence analysis and molecular characterization  

 

The phylogenetic relationship of strain P7T  to related Clostridium species is 

shown in Fig. 1.  The sequence for strain P7T  was deposited with GenBank under 

accession number AY170379, and the sequence for strain SL1T  was deposited by 

Harold Drake's laboratory under accession number Y18813.  The sequence of P7T  

was very similar to that of strain SL1T  (99.8%) and C. scatologenesT  (99.7%).  

The sequence of strain SL1T  was also very similar to that of C. scatologenesT  

(99.7%), which had been reported earlier (99.6%; Kusel et al., 2000).  All three 

strains are in cluster I (subcluster Ic) of Clostridium group I (Collins et al., 1994; 

Stackebrandt & Hippe, 2001).  Clostridium histolyticum, Clostridium limosum 
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and Clostridium proteolyticum are in cluster II of Clostridium group I, and the 

remaining species are in cluster I. 

 

The mol% G+C content of the DNA from P7T  was 31% (nuclease digest), similar 

to the number determined at the DSMZ (32%).  The mol% G+C content of the 

DNA from strain SL1T  was 32% (nuclease digest), similar to the value reported 

earlier (30%) in Kusel et al. (2000).  The mol% G+C content of the DNA from C. 

scatologenesT  was 31% (nuclease digest), somewhat different from the number 

reported previously (27%; thermal melting point) in Johnson & Francis (1975). 

 

The results from the 16S rRNA gene sequence analysis and determination of G+C 

content showed that these three Clostridium species were closely related.  The 

taxonomic status of these was further investigated using DNA-DNA 

reassociation.  The DNA-DNA reassociation values of strain P7T  to strain SL1T  

was 31.8%, of strain P7T  to C. scatologenesT  was 50.2%, and of strain SL1T  to C. 

scatologenesT  was 53.0%.  Using the threshold value of 70% for the definition of 

species (Wayne et al., 1987), these three clostridia are each a different species.  It 

had been shown earlier that strains with very similar 16S rRNA sequences could 

be demonstrated to be distinct species when analyzed by DNA-DNA reassociation 

(Fox et al., 1992), and that strains with a 16S rRNA sequence similarity greater 

than 97% require use of a DNA-DNA reassociation analysis to define speciation 

(Stackebrandt & Goebel, 1994). 
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As noted above and in Table 1, these three Clostridium species could also be 

separated based on substrate utilization patterns and the slow growth of C. 

scatologenesT  on H2 :CO2, in addition to separation based on DNA-DNA 

reassociation results.  Distinction among the three Clostridium species was also 

examined using repetitive DNA PCR fingerprinting (rep-PCR).  This technique 

should not be used to decide if a bacterium is a novel species, but is presented 

here as another method available to a greater number of laboratories, compared to 

DNA-DNA reassociation, to discriminate among the three clostridia.  The result 

of the gel electrophoresis of the PCR products from DNAs with the BOXA1R 

primer is available (Supplementary Fig. 2).  All three Clostridium species had a 

band of approximately 1,190 base pairs in size and a band of approximately 400 

base pairs in common.  Strain SL1T  and C. scatologenesT  had a band of 

approximately 1,350 base pairs in common.  C. scatologenesT  also had PCR 

product bands of 580 base pairs, 345 base pairs and 250 base pairs.  Strain SL1T  

showed unique gel bands of >2,000 base pairs and 720 base pairs in size.  Strain 

P7T  had a unique band of 830 base pairs.   

 

The sum of the above results demonstrates that strain P7T  and strain SL1T  should 

be considered as distinct species of Clostridium.  We propose the name 

Clostridium carboxidivorans for P7T , based on its ability to readily utilize CO as a 

substrate.  We propose the name Clostridium drakei for SL1T , in recognition of 

the contributions that Harold L. Drake has made to the microbiology of the 

acetogens.  In both instances, this expands the repertoire of species of acetogens 



34 

that are members of the genus Clostridium, and that can produce C4 compounds 

in addition to acetate as end products of metabolism.  This also adds, in addition 

to C. ljungdahlii, to the known acetogenic species of Clostridium species which 

can produce ethanol as a product from C1 substrates in addition to acetate, and 

expands upon this solvent-producing ability in that these new species can produce 

butanol, as well. 

 

Description of Clostridium carboxidivorans sp. nov.   

Clostridium carboxidivorans [car.bo.xi.di.vo'rans.  N.L. neut. n.  carboxidum, 

carbon monoxide, L. part. adj. vorans, devouring, N.L. part. adj. carboxidivorans, 

carbon monoxide devouring].  Gram-positive, motile rods (0.5 x 3 µm) occurring 

singly and in pairs.  Cells rarely sporulate, but spores are subterminal to terminal 

with slight cell swelling.  Obligate anaerobe with optimum growth temperature of 

38 ºC and optimum pH 6.2.  Grows autotrophically with H2 :CO2 or CO, and 

chemoorganotrophically with ribose, xylose, fructose, glucose, galactose, L-

arabinose, mannose, rhamnose, sucrose, cellobiose, trehalose, melezitose, pectin, 

starch, cellulose, inositol, mannitol, glycerol, ethanol, propanol, 2-propanol, 

butanol, citrate, serine, alanine, hisitidine, glutamate, aspartate, asparagine, 

casamino acids, betaine, choline, and syringate.  Methanol, D-arabinose, fucose, 

maltose, lactose, raffinose, melibiose, amygdalin, sorbitol, gluconate, lactate, 

malate, succinate, and arginine did not support growth.  Acetic acid, ethanol, 

butyrate and butanol are the end products of metabolism.  Cultures are methyl red 

positive, but negative for the Voges-Proskauer reaction, esculin hydrolysis, 



35 

gelatin hydrolysis, nitrate reduction, indole production, catalase, oxidase and 

urease.  The mol% G+C content is 31-32%.   

 

The type strain, strain P7T  (=ATCC BAA-624T=DSM 15243T), was isolated from 

an agricultural settling lagoon in Oklahoma.  16S rRNA gene sequence analysis 

showed C. carboxidivorans was very closely related to C. scatologenesT  and C. 

drakei, but DNA reassociation analysis showed that C. carboxidivorans is a 

distinct species, with a reassociation value of 50% to C. scatologenesT  and a 

reassociation value of 32% to C. drakei. 

 

Description of Clostridium drakei sp. nov. 

Clostridium drakei [drak'e.i.  N.L. gen. n. drakei, of Drake, in recognition of 

Harold L. Drake's contributions to our understanding of the physiology and 

ecology of acetogens].  Original description in Kusel et al. (2000).  Gram-

negative, motile rods (0.6 x 3-4 µm).  Forms terminal spores.  Obligate anaerobe 

with an optimum growth temperature of 30-37 ºC and optimum pH 5.5-7.5.  

Grows autotrophically with H2:CO2 or CO, and chemoorganotrophically with 

ribose, xylose, fructose, glucose, galactose, fucose, L-arabinose, mannose, 

rhamnose, sucrose, cellobiose, melezitose, starch, cellulose, inositol, mannitol, 

gluconate, glycerol, ethanol, propanol, 2-propanol, butanol, citrate, malate, 

fumarate, lactate, serine, alanine, histidine, glutamate, aspartate, asparagine, 

arginine, casamino acids, betaine, choline and syringate.  Methanol, D-arabinose, 

maltose, lactose, trehalose, raffinose, melibiose, amygdalin, sorbitol and succinate 
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did not support growth.  Acetic acid, ethanol, butyrate and butanol are the end 

products of metabolism.  Cultures are methyl red positive, but negative for the 

Voges-Proskauer reaction, esculin hydrolysis, gelatin hydrolysis, nitrate reduction 

and indole production.  The mol% G+C content is 30-32%.   

 

The type strain, strain SL1T  (=ATCC BAA-623T=DSM 12750T), was isolated 

from sediment collected from an acidic coal mine pond in east central Germany.  

16S rRNA gene sequence analysis showed C. drakei was very closely related to 

C. scatologenesT  and C. carboxidivorans, but DNA reassociation analysis showed 

the C. drakei is a distinct species, with a reassociation value of 53% to C. 

scatologenesT  and a reassociation value of 32% to C. carboxidivorans. 
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Table 1.  Characteristics of strain P7T, strain SL1T and Clostridium 

scatologenesT 

 

Temperature and pH range/optimum determined with fructose as the 

substrate. +, growth; -, no growth. 

 
Characteristics 

 
P7T 

 
SL1T 

 
C. 

scatologenesT  

Growth rate:    
   
 Fructose 

 
0.32 h-1 

 
0.29 h-1 

 
0.39 h-1 

 
CO:CO2 

 
0.16 h-1 

 
0.12 h-1 

 
0.09 h-1 

 
H2:CO2 

 
0.12 h-1 

 
0.20 h-1 

 
0.04 h-1 

 
Temperature range 

 
24 - 42 ºC 

 
18 - 42 ºC 

 
18 - 42 ºC 

 
Temperature optimum 

 
37 - 40 ºC 

 
30 - 37 ºC 

 
37 - 40 ºC 

 
pH range 

   
 4.4 -7.6 

      
4.6 - 7.8 4.6 - 8.0 

 
pH optimum 

   
 5.0 - 7.0 

 
5.4 - 7.5 5.4 - 7.0 

Utilization of: 
 

 
Pectin 

 
+ 

 
- + 

 
Fucose 

 
- 

 
+ 

 
+ 

 
Maltose 

 
- 

 
- 

 
+ 

 
Trehalose  

 
+ 

 
- 

 
- 

 
Sorbitol 

 
- 

 
- + 

 
Mannitol 

 
+ 

 
+ - 

 
Gluconate 

 
- 

 
+ 

 
+ 
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Lactate 

 
- 

 
+ 

 
+ 

 
Fumarate 

 
- 

 
+ 

 
+ 

 
Malate 

 
- 

 
+ 

 
- 

 
2-Propanol 

 
+ 

 
+ - 

 
Butanol 

 
+ 

 
+ 

 
- 

 
Glutamine 

 
- 

 
- 

 
+ 

 
Arginine 

 
- 

 
+ 

 
+ 

 
Syringate 

 
+ 

 
+ - 
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Clostridium novyi ATCC 17861T (L37594)

Clostridium algidicarnis DSM 15099T (X77676) 

Clostridium baratii ATCC 27638T (M59102)

Clostridium paraputrificum ATCC 25780T (X73445)

Clostridium butyricum ATCC19398T (M59085)

Clostridium cellulovorans ATCC 35296T (X71849)

Clostridium pasteurianum ATCC 6013T (23930)

Clostridium ljungdahlii ATCC 55383T (M59097)

Clostridium tyrobutyricum ATCC 25755T (M59113)

Clostridium magnum ATCC 49199T (X77835)

Clostridium scatologenes ATCC 25775T (M59104)

Clostridium carboxidivorans strain P7 ATCC BAA-624T (AY170379)

Clostridium drakei strain SL1 ATCC BAA-623T (Y18813)

Clostridium tetanomorphum ATCC 49273T (X68184)

Clostridium pascui DSM 10365T (X96736)

Clostridium sporogenes ATCC 3584T (X68189)

Clostridium limosum ATCC 25620T (M59096)

Clostridiium histolyticum ATCC 19401T (M59094)

Clostridium proteolyticum ATCC 49002T (X73448)

0.01 substitutions/site

Clostridium novyi ATCC 17861T (L37594)

Clostridium algidicarnis DSM 15099T (X77676) 

Clostridium baratii ATCC 27638T (M59102)

Clostridium paraputrificum ATCC 25780T (X73445)

Clostridium butyricum ATCC19398T (M59085)

Clostridium cellulovorans ATCC 35296T (X71849)

Clostridium pasteurianum ATCC 6013T (23930)

Clostridium ljungdahlii ATCC 55383T (M59097)

Clostridium tyrobutyricum ATCC 25755T (M59113)

Clostridium magnum ATCC 49199T (X77835)

Clostridium scatologenes ATCC 25775T (M59104)

Clostridium carboxidivorans strain P7 ATCC BAA-624T (AY170379)

Clostridium drakei strain SL1 ATCC BAA-623T (Y18813)

Clostridium tetanomorphum ATCC 49273T (X68184)

Clostridium pascui DSM 10365T (X96736)

Clostridium sporogenes ATCC 3584T (X68189)

Clostridium limosum ATCC 25620T (M59096)

Clostridiium histolyticum ATCC 19401T (M59094)

Clostridium proteolyticum ATCC 49002T (X73448)

0.01 substitutions/site  
 
 
 
 
 
 
 
Fig. 1.  The phylogenetic tree for clostridial strain P7T, as determined from 

a 16S rRNA gene sequence analysis.  The total horizontal distance 

between species indicates the difference between their sequences.  The 

bar indicates a difference of 0.01 substitutions per site (= 1% difference).   
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__________________________________________________________________ 
 

Supplementary Fig. 1.  Transmission electron micrograph of a pair of 

negatively stained cells of strain P7T. Bar, 1 µm. 

__________________________________________________________________ 
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__________________________________________________________________ 
 

Supplementary Fig. 2.  BOX-PCR fingerprints of C. scatologenesT (lane 

2), strain SL1T (lane 3) and strain P7T (lane 4).  A DNA standard (2,072 – 

400 bp) is shown in lane 1 and a gel control is shown in lane 5. 
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Chapter 2.  Production of acids and alcohols from carbon 

monoxide by Clostridium carboxidivorans, strain P7 

 

Abstract 

 

Biofuels, such as ethanol from biomass have the potential to reduce petroleum 

imports, decrease greenhouse gas emissions and improve rural economics. 

Biomass can be fermented indirectly after pyrolysis with air to synthesis gas 

(N2:CO:CO2:H2).  Clostridium carboxidivorans can ferment synthesis gas to 

ethanol, butanol, acetic acid, and butyric acid.  The effects of physiochemical 

variables and medium components on the conversion of CO to ethanol by C. 

carboxidivorans were examined.  C. carboxidivorans grew in the presence of 

32,000 µl/l of oxygen with fructose, 29,000 µl/l of oxygen with CO:CO2 and 480 

µl/l of oxygen with H2 :CO2 as the substrate.  Initial growth on CO was dependent 

on having 11,000 µl/l CO2 in the gas phase.  C. carboxidivorans required 

pantothenic acid, para-amino benzoic acid, and biotin for growth.  Growth on 

gaseous substrates was stimulated with the addition of proline and/or isoleucine (5 

mg/L each).  The most important factors for induction of C. carboxidivorans 

solvent production, appeared to be a low pH of 5.0 and increased iron 

concentration (10X) in the medium.  By augmented and eliminated nutrient 

components, specific physiochemical parameters, and the addition of metabolic 

inhibitors, approximately 220 mM ethanol was produced during C. 

carboxidivorans growth on CO.  The potential utility of C. carboxidivorans for 
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the commercial production of organic acids and alcohols from synthesis gas 

warrants further investigation.   
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Introduction 

 

Economic and environmental considerations have directed attention to the 

development of alternative non-petroleum-based sources of energy such as 

biofuels.  The use and production of biofuels would decrease the amount of fossil 

fuel imported each year. In addition, biofuels would decrease and balance the 

amount of greenhouse gas emissions (Hohenstein and Wright 1994) since 

biomass-derived fuels burn more cleanly and consume as much carbon in growth 

as they produce in combustion.  Biomass, such as switchgrass, wood chips, and 

paper wastes, can be pyrolyzed to synthesis gas containing mixed concentrations 

of CO, H2 and CO2.  Aerobic and anaerobic bacterial growth with CO and H2 :CO2 

has been well documented (Mörsdorf et al. 1992; Mielenz 2001); solvents are 

often the end products.   

 The advantages of using a biological conversion of synthesis gas include 

the general resistance to sulfides observed with bacteria and reactions at lower 

pressure and temperatures than required for chemical catalysis, which could 

reduce operating and capital expenditures (Grethlein and Jain 1992).  Major 

limiting factors to using bacteria in an industrial process for synthesis gas 

conversion are the low product yield and rates of production obtained.  

Improvements of synthesis gas and fermentation technologies may alleviate some 

of these difficulties; however, it is clear that alternative acidogenic or 

solventogenic microbial catalysts should be explored. 
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 Clostridium carboxidivorans is a Gram-positive, motile, spore-forming, 

rod-shaped, obligate anaerobic bacterium isolated from an agricultural settling 

lagoon sediment for its ability to convert synthesis gas to ethanol (Liou et al. in 

press).  Under routine growth conditions on fermentable carbohydrates or 

synthesis gas, C. carboxidivorans produces C2 and C4 end products.  This strain, 

like Clostridium ljungdahlii (Tanner et al. 1993), produced acetate and ethanol as 

end products of metabolism.  However, like Clostridium scatologenes (Kusel et 

al. 2000), it also produced butyrate and butanol as end products.   

 The effect of nutrients, medium formulation and culture conditions on 

solvent production by Clostridium acetobutylicum, Clostridium beijerinckii, and 

Clostridium saccharobutylicum has been investigated (Roos et al. 1984; McNeil 

and Kristiansen 1987; Shaheen et al. 2000).  Solvent production by these species 

was affected by either the elimination or augmentation of NH4
+, PO4

3-, Mg2+ and 

Fe2+, and by varying the pH conditions or the kind of fermentable carbohydrates.  

Other factors that affected solvent production were metabolic inhibitors that either 

shifted the end products from acids to solvents or stimulated solvent production 

(Singh et al. 1991; Lohmeier-Vogel and Hahn-Hägerdal 1985).  Each species 

responded differently to varying culture conditions or manipulations, suggesting 

that one or the other might be preferred for certain industrial application.   

In this work, ethanol production by C. carboxidivorans with synthesis gas 

as the substrate was investigated.  The selection of this novel isolate was based on 

its robustness, especially for its viable culture stability even after storage at room 

temperature for 12 months.  Nutrient manipulations and use of metabolic 
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inhibitors contributed to increased solvent production.  Overall, the most 

important factors for C. carboxidivorans solvent induction appeared to be a low 

pH of 5.0 and increased iron concentration in the medium.  The investigation has 

identified C. carboxidivorans as another potential candidate for the fermentation 

of synthesis gas to ethanol.   
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Materials and methods  

 

Microorganism and culture conditions  

Clostridium carboxidivorans strain P7 (ATCC BAA-624T  = DSM 15243T) was 

maintained in the laboratory of R. S. Tanner at the University of Oklahoma.  

Stock cultures of C. carboxidivorans were maintained in 500 ml crimp-sealed 

serum bottles and culture tubes (Balch and Wolfe 1976) containing growth 

medium.  Cultures were grown at 37oC in shaking incubators set at 100 rpm and 

transferred weekly to fresh serum bottles and culture tubes.  Stock cultures of 

Clostridium thermocellum (ATCC 27405T  = DSM 1237T) were also maintained in 

culture tubes containing growth medium.  C. thermocellum were grown at 55oC 

and transferred weekly to culture tubes.   

The medium used for maintaining growth and performing physiological 

experiments was prepared by using strict anaerobic techniques (Balch and Wolfe 

1976) and contained (per liter):  Mineral Solution (25 ml), yeast extract (1 g) 

(#0127-17-9, Difco Laboratories), Trace Metal Solution (10 ml), Vitamin 

Solution (10 ml), 10 g of 2-(N-morpholino) ethanesulfonic acid (MES) (Sigma-

Aldrich Co., St. Louis, MO) as buffer (final pH 6.0-6.2) and 6 ml of 

cysteine·sulfide reducing agent (Tanner, 2002) with the exception of iron, 

molybdenum, calcium, boric acid (H3BO3), sodium formate (HCOONa ), sulfate, 

phosphate, and ammonium in the augmentation/elimination experiments.  A 

N2:CO2 (80:20, pressurized to 70 kPa) headspace was used for growth with 

organic substrates (5 g per liter), and either CO:N 2 :CO2 or CO:H2 :CO2 (70:24:6, 
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pressurized to 210 kPa) was used for growth on gaseous substrates (Tanner et al. 

1993) with the exception of the CO2 requirement experiment.   

 

pH 

The optimum pH for solventogenesis was examined with CO as the substrate 

from pH 4 to pH 8 in medium containing a Good’s buffer (20 g per liter), 

HOMOPIPES (pKa 4.6), MES (pKa 6.0), TES (pKa 7.2) or TAPS (pKa 8.1), as 

appropriate (Tanner, 2002). 

 

Nutrients 

Normal concentrations of Fe(NH4)2(SO4)2·6H2O (20 µM) and Na2MoO4·2H2O 

(0.05 µM) in the medium were eliminated (0X) or augmented (5X, 10X and 15X 

the original concentration).  NaCl (14 mM), CaCl2·2H2O (272 µM), MgSO4·7H2O 

(811 µM), KH2PO4 (735 µM), and NH4Cl (18 mM) were eliminated or 

augmented 10X the original concentration.  H3BO3 (16 mM, 80 mM, 162 mM) 

and HCOONa (1.5 mM, 15mM, 30 mM) at varying concentrations were 

augmented in the medium.  All experiments were conducted in a final volume of 

10 ml in triplicate.  

 

Metabolic inhibitors  

1 M methanol and 1 M 4-chlorobutyric acid stocks were diluted to a range of 

concentrations (5 – 70 mM) in final volumes of 10 ml in triplicate.   Ethanol (200 

proof) was diluted to a range of concentrations (0.33 – 1.74 M).  For ethanol 
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adaptation, sterile ethyl alcohol was serially transferred into medium using 

increasing concentrations (0.52 – 2.17 M).  Fluoroacetate and trifluoroacetate 

were diluted to a range of concentrations (5 – 60 mM) in final volumes of 10 ml 

in triplicate.  All stocks were prepared under strict anaerobic techniques. 

 

Gases 

The composition of the headspaces used in the CO2 requirement experiment was 

CO:H2, CO:N2, CO:CO2 (80:20, pressurized to 210 kPa), or CO:H2:CO2 (75:20:5, 

pressurized to 210 kPa) in triplicate.  Under CO:CO2, the composition of the 

headspaces was 100:0, 99.4:0.6, 98.8:1.2, 98.2:1.8, 97:3, 94.3:5.7 (pressurized to 

240 kPa) in triplicate.   

In the oxygen tolerance experiment, the composition of the headspaces 

was CO:N 2:CO2 or N2:CO2 with O2  additions of 0 to 67,034 µl/l or the 

composition of the headspace was H2 :CO2:N2 with O2  additions of 0 to 4,840 µl/l, 

all in triplicate.        

   

Analytical procedures 

Growth was quantitated by measuring optical density using a Spectronic 20D 

spectrophotometer (Milton Roy Company, Rochester, NY) at 600 nm.  Acetate, 

ethanol, butyrate, and butanol were measured using a 3400 Varian Gas 

Chromatograph (Varian, Sugar Land, TX), equipped with a FID and a 6 ft glass 

column packed with Carbopack B DA 80/20 4 % Carbowax 20 M resin (Supelco, 

Bellefonte, PA)  Synthesis gas and oxygen headspace were measured with a GC 
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equipped with a thermal conductivity detector (Varian, Sugar Land, TX) and a 6 

ft x 2 mm ID, glass Porapak Super Q 80/100 column (Alltech, Deerfield, IL) set at 

75oC with 20 ml/min helium flow rate or a 6 ft  x 1/8” OD, stainless steel 

Molecular Sieve 5A column (Alltech) set at 65oC with 30 ml/min helium flow 

rate.  Throughout each experiment, the final pH was verified by an AccutupH+ 

pH probe from Fisher Scientific. 
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Results 

 

Culture conditions  

C.  carboxidivorans grew chemolithotrophically with CO:H2:CO2, CO:N2:CO2, or 

H2:CO2 as well as chemoorganotrophically with some simple carbohydrates such 

as glucose and fructose (Liou et al. in press).  C. carboxidivorans reached an 

optical density greater than 3.0 at 600 nm within 10 hours using CO:CO2 as the 

substrate.  Batch cultures of C. carboxidivorans feeding on bottled synthesis gases 

showed simultaneous utilization of CO and H2 as substrates (Figure 1).  The 

temperature for growth with CO as the substrate was tested from 4 oC – 45 oC.  

Growth occurred between 30 oC and 42 oC, and the optimum temperature was 37 

oC - 39oC.   

 

pH 

The effect of pH on the growth and metabolism of C. carboxidivorans was 

examined over several pH values ranging from 4.0 to 8.0 in order to determine 

both the optimum initial pH to simulate growth as well as the optimum pH for 

solvent production under synthesis gas.  The optimum pH for growth was 

between 6.0 and 6.2.  Growth did not occur at an initial culture pH of 4.0 or 8.0, 

and minimal growth occurred at pH values of 4.2 or 7.5.  Cultures with an initial 

pH of 4.5 to 5.7 or 6.5 to 7.5 had longer lag time and longer doubling time 

(approx. 10 hours to 20 hours) compared with growth at pH 6.0 to 6.2.  C. 

carboxidivorans mainly produced acids at pH 6.0 and solvents at pH 5.0 (Table 
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1).  Maximum solventogenesis occurred at pH 5.0 (Table 1), at which C. 

carboxidivorans produced 32 mM of ethanol and 13 mM of butanol under 

substrate limiting conditions.  The optimum culture pH for production of acetate 

and butyrate was between 5.5 and 6.0 (Table 1).  C. carboxidivorans produced 78 

mM acetate and 15 mM butyrate in substrate limiting conditions with CO as the 

substrate.  Additionally, experiments with C. carboxidivorans growing in an 

unbuffered medium of pH 6.0 to 6.2 resulted in a final pH between 3.9 and 4.2. 

 

Nutrients 

Growth of C. carboxidivorans did not occur in the absence of either Vitamin or 

Trace Metal Solution.  Reliable and reproducible growth on gaseous substrates 

required the addition of either yeast extract (1 g per liter) or Casamino Acids (1 g 

per liter), whereas growth on glucose or fructose did not required the addition of 

yeast extract or Casamino Acids.  Growth of C. carboxidivorans required the 

addition of pantothenic acid, para-amino benzoic acid (PABA), and biotin, as 

essential vitamins, whereas B12 or folic acid were not required.  C. 

carboxidivorans, growing under CO-limited conditions, typically produced 

acetate (30 mM), ethanol (21 mM), butanol (5 mM) and butyrate (7 mM).  Cell 

density typically reached an OD600nm value between 0.7 and 1.2, and the final pH 

typically ranged from 4.8 to 5.0.  Specific nutrients required to simulate CO 

metabolism without the addition of yeast extract or Casamino Acids for C. 

carboxidivorans under gaseous substrates were 5 mg per liter of proline and 

isoleucine. 
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Ammonium or sodium as provided by the mineral solution was not 

required for growth on gaseous substrates or simple carbohydrates.  Increased or 

decreased concentrations of ammonium, sodium, molybdenum and calcium in the 

medium showed no increases in solvent or acid production.  Product formation 

over time, cell growth measured by the absorbance at 600 nm and pH were 

similar to their typical end product concentrations.  Limiting phosphate in the 

medium reduced ethanol production by 6.5%, butanol production by 36.4%, 

acetate production by 13.4% and butyrate production by 2.2% from normal 

concentrations.  Elevated levels of phosphate increased acetate production by 

32.3% from the typical concentration; however, ethanol production was reduced 

by 22%, butanol production by 12% and butyrate production by 3.3% from 

normal concentrations.  The elimination or elevation of sulfate from the normal 

concentration had no effect on solvent production.  However, when sulfate was 

eliminated from the medium, acetate and butyrate production was reduced by 

75.5% and 100%, respectively, and when sulfate was elevated in the medium, 

acetate and butyrate production was increased by 125% and 350%, respectively.  

The addition of H3BO3 in the medium had an insignificant effect on the 

production of ethanol and acetate; however, the production of C4 products was 

significantly reduced by an average of 50% with the addition of 80 mM H3BO3.   

The deletion of ferrous iron from the medium eliminated the production of 

ethanol and inhibited acetate, butyrate and butanol production.  Ethanol 

production from CO was increased 100% when the concentration of ferrous iron 

in the medium was increased 10X from the normal concentration.  Interestingly, 
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production of acetate and butyrate was decreased approximately 17% and 14%, 

respectively, by the presence of elevated ferrous iron concentration greater than 

ten-fold times the normal concentration.    

No or insignificant effects in the single variable experiments for the 

optimization of solventogenesis in CO metabolism demonstrates that ethanol 

production was limited by an entirely different variable rather than the one under 

investigation. 

 

Co-substrates and metabolic inhibitors  

Formate and methanol may be potential co-substrates for ethanol production.  

Methanol was added to growing cultures of C. carboxidivorans under CO at 

concentrations ranging from 5 to 70 mM.  Methanol inhibited the growth of C. 

carboxidivorans at concentrations greater than 30 mM when grown with 

CO:N2:CO2 and 45 mM on fructose.  Analysis of the samples grown on fructose 

or CO:N2:CO2 showed no significant conservation of CO, stimulation of growth 

or increased solvent production.  Formate was taken up; however, no effects on 

final production of end products were observed with the addition of 1.5 mM, 15 

mM or 30 mM formate in the medium.   

The adaptation of C. carboxidivorans to tolerate high concentrations of 

ethanol and the affinity of C. carboxidivorans to ethanol as a growth substrate 

were investigated.  Cultures of C. carboxidivorans grown on CO:N2 :CO2 were 

amended with 0 to 1.74 M ethanol.  An average of 108 mM ethanol was 

consumed after CO:N 2:CO2 was utilized as the substrate (Table 2).  The addition 
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of ethanol at concentrations greater than 0.33 M inhibited the formation of 

butyrate and butanol (Table 2).   C. carboxidivorans was adapted and screened 

with increasing concentrations of ethanol.  Ethanol inhibited the growth of C. 

carboxidivorans at 0.54 M initially.  After a series of serial transfers of C. 

carboxidivorans into medium with increasing concentrations of ethanol, C. 

carboxidivorans was shown to metabolize CO in the presence of 1.74 M ethanol 

(Table 2).   

Trifluoroacetate (TFA) or fluoroacetate (FA) were examined for their 

potential as a C2 inhibitor.  TFA or FA reduced the production of C4 products.  

Production of C4 products was inhibited by 60 mM of TFA or FA.  The addition 

of TFA reduced butanol and butyrate concentrations on average by 39% and 15%, 

respectively.  FA reduced butano l and butyrate concentrations by an average of 

33% and 84%, respectively.  The addition of TFA or FA to the medium reduced 

the amount of acetate produced by 24% on average. However, ethanol production 

was unaffected.   

Chlorobutyrate is a C4 analog of FA.  The effect on growth of C. 

carboxidivorans was minimal at 100 mM chlorobutyrate.  Chlorobutyrate reduced 

solvent production and increased acid production.  The addition of chlorobutyrate 

on average reduced ethanol by 8.6% and butanol by 24%; however, acetate 

production was increased by 18.6% and butyrate production by 33.3% from 

normal concentrations.  Growth and production of solvents and acids were 

completely inhibited at 500 mM of chlorobutyrate,.   



63 

The ability to withstand oxygen contamination was conducted due to 

conditions that might exist in scale-up plants.  Oxygen tolerance in C. 

carboxidivorans was tested between 0 and 67,034 µl/l of O2.  C. carboxidivorans 

tolerated up to 32,186 µl/l of O2 under fructose, 29,040 µl/l of O2 under CO:CO2 

and 484 µl/l of O2 under H2 :CO2 as the substrate.  At maximum oxygen tolerance 

levels for C. carboxidivorans growth on CO:CO2 as the substrate, ethanol 

production was reduced by 78%, butanol production by 55.5%, acetate production 

by 41% and butyrate production by 36% from normal concentrations.  Growth of 

C. carboxidivorans on H2 :CO2, as the substrate, at maximum oxygen tolerance 

levels, ethanol production was reduced by 40%, butanol production by 100%, 

acetate production by 70% and butyrate production by 100% from normal 

concentrations.  Oxygen contamination above the tolerance maxima inhibited 

growth and end-product formation under all growing conditions.   

 

CO2 requirement   

The amount of CO2 required for growth under different gaseous or simple 

carbohydrate substrates was examined.  Carbon dioxide was required for growth 

with different gaseous substrate mixtures, even though C. carboxidivorans 

produces CO2 as a metabolic end product (Liou et al. in press).  An initial 11,000 

µl/l of CO2 was required for growth to occur when CO or H2 was supplied as a 

substrate.  CO2 was not required for growth on glucose or fructose substrates.   
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Direct fermentation 

The ability to utilize lignocellulose as a raw material was investigated.  C. 

carboxidivorans produced ethanol (1.3 mM) and acetate (7.4 mM) with 1% (w/v) 

of switchgrass as substrate in medium under N2:CO2 headspace.  This 

fermentation was comparable to Clostridium thermocellum, which produced 2.4 

mM ethanol and 12 mM acetate under identical conditions.  Controls without 

switchgrass as the substrate did not produce ethanol or acetate.   

 

Pilot study 

Several batch culture runs were conducted with synthesis gas generated from a 

pilot-scale fluidized bed air gasifier at Oklahoma State University.  Cultures of C. 

carboxidivorans utilized the producer gas; however a long lag phase of 

approximately 50 hours occurred before the optical density of the cells increased 

and before CO and H2 concentration were significantly reduced.  Growth on 

producer gas in batch cultures on average produced 33 mM ethanol, 35 mM 

acetate, 3 mM butanol and 5 mM butyrate.   

 

By optimizing the solventogenic properties of C. carboxidivorans, the final 

concentration of ethanol was increased from initial culturing.  Ethanol was 

increased from 15 mM (0.7 g/l) initially to 220 mM (10 g/l), along with acetate 

from 10 mM to 80 mM, and butanol from 2.5 mM to 13.4 mM, while butyrate 

was decreased from 30 mM to 10.2 mM with CO as a substrate by varying culture 

conditions and medium compositions (Table 3 and Table 4). 
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Discussion 

 

Clostridium carboxidivorans was selected based on its robustness (stable and 

viable after an extend period (9 -12 months) of storage) at room temperature and 

tolerance of O2, low pH, minimal nutrient supplementation and significant ethanol 

concentrations.  All of these traits were evidenced by the physiological and 

biochemical experiments conducted in the indirect fermentation process.  The 

selection of this novel isolate over other potential candidates was also due to its 

responsiveness to manipulation (Table 3 & 4).  The primary focus of the research 

presented here was to improve the microbial conversion of synthesis gas (CO and 

other components) to ethanol.  Strain development and process improvements, 

such as nutrient manipulation and adaptation, were employed to better understand 

and improve the conversion process (Parekh et al. 2000).  The optimization of C. 

carboxidivorans resulted in increased production of ethanol from 15.2 mM (0.7 

g/l) initially to a final concentration of 220 mM (10 g/l) in continuous cultures.     

C. carboxidivorans physiology is similar to other solvent-producing 

Clostridium, such as C. acetobutylicum.  Much like C. acetobutylicum in batch 

cultures (Grupe and Gottschalk 1992), it is probable C. carboxidivorans 

undergoes an initial period of rapid growth, coupled to production of CO2, 

acetate, and butyrate.  As the cell density increased and the concentration of 

available nutrients decreased, acidic end products accumulated, and the medium 

pH dropped.  The culture went into stationary phase, and metabolism shifted to 

solvent production of ethanol and butanol.  During solventogenesis, the carbon 
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flow switched from acid production to solvent production (Grupe and Gottschalk 

1992).  This acid to solvent shift was observed with C. carboxidivorans in 

unbuffered medium and end product analysis at solventogenic and acidogenic 

conditions.   

The discovery of the metabolic switch in C. acetobutylicum is potentially 

advantageous from an industrial consideration as the ability to grow optimally 

and, then, switch to solvent formation means continuous operation and 

production.  The optimal pH for growth in C. carboxidivorans was different from 

the optimal pH for solvent formation, as seen in C. acetobutylicum (Adler and 

Crow 1987; Grupe and Gottschalk 1992).  In this investigation, the role of pH in 

triggering solventogenesis is a part of a multiple-component stimulus involving 

other factors such as specific nutrient factors (Table 3).  Though the evidence was 

indirect, solventogenesis was controlled by pH, and the products formed were not 

growth associated.   

Other factors that affected the regulation of solvent production were 

nutrient components (Table 3).  Iron or metals serve as important components in 

biological systems (Mills, 1997).  The augmentation of ferrous iron concentration 

in the medium significantly increased the production of solvents, where as the 

elimination of ferrous iron from the medium led to a decrease in solvent 

production, as also seen in C. acetobutylicum (McNeil and Kristiansen, 1987).  

The ferrous iron could be serving as a prosthetic group or cofactor to carbon 

monoxide dehydrogenase, hydrogenase, or formate dehydrogenase during CO 

metabolism (Mills, 1997; Ragsdale and Kumar, 1996; Ragsdale, 2004).  Ferrous 
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iron could also be stimulating solvent production due to its involvement with 

many oxidation-reduction reaction through Ferredoxin (McNeil and Kristiansen, 

1987).   

Solvent production by C. acetobutylicum was increased by limiting 

concentrations of phosphate or sulfate (Bahl et al. 1982; Bahl and Gottschalk 

1984), however, in C. carboxidivorans, limiting phosphate concentrations reduced 

solvent and acid production.  Microbial growth requires phosphate, therefore, it 

was not surprising that limiting phosphate led to a decrease in solvent and acid 

production.  Sources of mineral nutrients such as sulfur are required for growth, 

and since acid production in C. carboxidivorans is growth associated, the addition 

or elimination of sulfate in the medium explains why acid production was effected 

(Table 3).  The addition or deletion of molybdenum, calcium and boric acid 

concentrations in the medium had no effect on ethanol production; however, 

adding boric acid did significantly reduce C4 products.  Since these components 

are nonessential to the growth of the microorganism, eliminating or increasing the 

concentrations of these components could be affecting its secondary metabolite 

and, therefore, explained the effect H3BO3 has on the production of C4 products.  

The addition of yeast extract to the growth medium for reliable and reproducible 

growth could also be minimizing the elimination effect of micronutrients, such as 

molybdenum.    

Ethanol production by C. carboxidivorans could be increased by using 

metabolic inhibitors such as fluoroacetate or trifluoroacetate which would allow 

the bacteria to metabolize more carbon through the ethanol rather than the acetate 
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pathway (Cappenberg and Prins, 1974; Chidtha isong and Conrad, 2000).  Both 

FA and TFA inhibited production of C4 products from CO, but the flow of end 

products to ethanol formation did not occur even though acetate production was 

decreased.  Metabolic inhibitors commonly affect each organism differently, and 

therefore, unpredicted results ensue. 

In addition to increasing the ethanol yield, industrial requirements are such 

that C. carboxidivorans must have a high tolerance for ethanol in the medium.  

The initial culturing inhibition concentrations of ethanol were in excess of 540 

mM (25 g/l); however, as C. carboxidivorans adapted to increasing ethanol 

concentrations, inhibition decreased.  The ability of C. carboxidivorans to tolerate 

high concentrations of a metabolite is associated with its potentia l ability to 

produce high concentrations of the same compound.  The ethanol tolerance in C. 

carboxidivorans was similar to other solvent producing Clostridium, like C. 

saccharolyticum (Murray et al. 1983) or C. acetobutylicum with butanol tolerance 

(Hermann et al. 1985; Lin and Blaschek 1983).  The results of these selective and 

adaptive strategies indicated that increased solvent yield could be coupled to 

increased solvent tolerance since most strains with higher ethanol yield tolerate 

higher ethanol concentration.  In acetogens and methanogens, ethanol could be 

used as a substrate (Drake, 1994).  The results showed that the ethanol produced 

by C. carboxidivorans would be minimally consumed and would not inhibit CO 

metabolism when desired concentrations of ethanol were reached experimentally.     

The addition of methanol to growing cultures of anaerobic bacteria has 

been previously reported (Grethlein 1989).  Methanol, as a co-substrate, has been 
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used experimentally to spare or conserve carbon contained in CO2 (Grethlein 

1989).  The amendment of methanol has also been shown to increase growth rates 

and product formation (Grethlein and Jain 1992).  Some Clostridium species, such 

as C. formicoaceticum and C. aceticum, are able to utilize alcohols like methanol 

by using bicarbonate or CO2 as an electron acceptor for acetate formation (Clarke 

and Minton 1989).  For this study, methanol and formate were examined as 

substrates to spare the utilization of CO for increased solvent production.  The 

results did not show increased solvent or acid production in C. carboxidivorans 

(Table 4).  Methanol was tested as a co-substrate because it has been shown as a 

growth substrate in other acetogens (Drake 1994).  Low concentration of 

methanol (40 mM (1.3 g/l) with fructose and 30 mM (0.96 g/l) with CO as the 

substrate) inhibited the growth of C. carboxidivorans. 

C. carboxidivorans did not grow chemolithoautotrophically without CO2 

present with CO as the substrate.  A minimum of 11,000 µl/l (0.01 mM) CO2, an 

electron acceptor for acetogens (Drake 1994), was required by C. carboxidivorans 

for growth.  Our observations indicate that once initial concentrations of CO2 were 

obtained, metabolism and growth proceeded.  CO2 is a major component in 

synthesis gas, therefore, supplying the initial concentration to initiate metabolism 

of CO and H2 will not present additional capital or expenditures in the indirect 

fermentation process.   

In an anaerobic system or anaerobic metabolism, oxygen contamination 

can lead to fatal termination or instability in product formation (Gupta et al 1994). 

The generation of producer gas from the gasification of switchgrass produces 
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mainly N2, CO, CO2 and H2; however, traces of O2, NOx, and other C2 

compounds could contaminate the producer gas (Cateni et al. 2000, 2003).  Tests 

on oxygen sensitivity with C. carboxidivorans were conducted to simulate 

conditions with producer gases and in scale-up plants.  The differences in the 

oxygen tolerance between cultures grown on CO:CO2 and H2 :CO2 as the substrate 

were due to the sensitivity of the enzymes used for metabolizing the substrate.  In 

this study, carbon monoxide dehydrogenase was not as oxygen liable as the 

hydrogen dehydrogenase.  Though not measured directly, we speculate the 

defense mechanism against toxic byproducts of oxygen metabolism (hydroxyl 

radical, superoxide anion, and hydrogen peroxide) was sufficient for the complete 

removal of toxic products derived from oxygen.  C. carboxidivorans' oxygen 

tolerance in synthesis gas should be sufficient to withstand possible oxygen 

contamination in the system without shutting down biosynthetic metabolism as 

evident by the successful growth of C. carboxidivorans on producer gas with 

oxygen contamination of 1000-1300 mg per liter (Cateni et al. 2000, 2003).   

C. carboxidivorans ability to metabolize synthesis gas to ethanol, acetate, 

butanol and butyrate along with high ethanol, methanol, and oxygen tolerance is 

very desirable.  C. carboxidivorans is the first known Clostridium species capable 

of both direct and indirect fermentation of lignocellulosic material.  C. 

carboxidivorans produced ethanol and acetate in a direct fermentation of 

switchgrass at about 45% of the activity of Clostridium thermocellum (Ng et al. 

1981).  The capacity of C. carboxidivorans to grow at elevated temperatures and 

without the addition of ammonia, sodium, yeast extract or Casamino Acids makes 
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it desirable in industrial applications over other microbial catalysts.  

Experimentation on nutritional factors (Table 3), CO2, methanol, ethanol, pH, and 

oxygen has answered many questions on the physiology and solventogenesis 

pertaining to ethanol production.  The compilation of the data has allowed us to 

increase ethanol production from 15.2 mM (0.7 g/l) to 220 mM (10 g/l) and has 

made it possible for us to use this novel organism for a pilot study conducted in 

Oklahoma State University. 
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Figure 1.  Simultaneous utilization of H2 and CO, as the substrate by 

Clostridium carboxidivorans. ¦  CO, ? H2, ? CO2. 
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Table 1.  Effect of pH on solventogenesis in C. carboxidivorans with CO as 

the substrate  

 Acid and Alcohol Produced   

 Acetate Ethanol Butanol Butyrate  

pH1 Concentration (mM) A600nm
2 

 
4.5 

 
14.9 

 
15.1 

 
1.5 

 
0.3 

 
0.42 

 
5.0 

 
16.1 

 
32.0 

 
13.4 

 
5.4 

 
0.87 

 
5.5 

 
51.2 

 
11.6 

 
5.6 

 
14.3 

 
1.04 

 
6.0 

 
77.9 

 
6.4 

 
2.3 

 
15.4 

 

 
1.10 

 

1pH was constant throughout growth. 

2Final OD. 
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Table 2.  Effect of ethanol on CO metabolism by C. carboxidivorans 

Acid and Alcohol Produced and Consumed∗  

Etha

nol 

 Acetate Ethanol∗  Butanol Butyrate  

(mol/l) pH1 Concentration (mmol/l) A600nm
2  

 

0 

 

5.5 

 

33 

 

40 

 

12 

 

3 

 

1.0 

 

++++ 

 

0.33 

 

5.5 

 

106 

 

(100) ∗  

 

3 

 

0 

 

0.63 

 

++++ 

 

0.54 

 

5.5 

 

87 

 

(120) ∗  

 

3 

 

0 

 

0.48 

 

+++ 

 

1.10 

 

6.0 

 

5 

 

(0) ∗  

 

0 

 

0 

 

0.12 

 

+ 

 

1.74 

 

6.2 

 

0 

 

(0) ∗  

 

0 

 

0 

 

0.02 

 

+ 

 

1Final pH 

2Final O.D 

∗Amount consumed  

+ + + +  ̃  100% CO utilization 

+ + + = 50% CO utilization 

+ = 10% CO utilization 
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Table 3.  General effects of medium components on the fermentation of 

CO by C. carboxidivorans 

 Acids and Alcohols 

 Acetate Ethanol Butanol Butyrate 

 
- Na+ 

 
- 

 
- 

 
- 

 
- 

 
- NH4

+ 
 
- 

 
- 

 
- 

 
- 

 
- Mo2+ 

 
- 

 
- 

 
- 

 
- 

 
- Ca2+ 

 
- 

 
- 

 
- 

 
- 

 
- PO4

3- 
 

dec 
 

dec 
 

dec 
 

dec 
 

10X PO4
3- 

 
inc 

 
dec 

 
dec 

 
dec 

 
- SO4

2- 
 

dec 
 
- 

 
- 

 
dec 

 
10X SO4

2- 
 

inc 
 
- 

 
- 

 
inc 

 
- Fe2+ 

 
dec 

 
dec 

 
dec 

 
dec 

 
10X Fe2+ 

 
dec 

 
inc 

 
inc 

 
dec  

 

-, no effect 

inc, increased product concentration 

dec, decreased product concentration 
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Table 4.  General effects of metabolic inhibitors on the fermentation of CO 

by C. carboxidivorans 

 Acids and Alcohols 

Inhibitors Acetate Ethanol Butanol Butyrate 

 
Methanol 

 
- 

 
- 

 
- 

 
- 

 
Formate 

 
- 

 
- 

 
- 

 
- 

 
Ethanol 

 
- 

 
- 

 
dec 

 
dec 

 
TFA1 

 
dec 

 
- 

 
dec 

 
dec 

 
FA2 

 
dec 

 
- 

 
dec 

 
dec 

 
Chlorobutyrate 

 
inc 

 
dec 

 
dec 

 
dec 

 
O2 

 

 
dec 

 
dec 

 
dec 

 
dec 

 

1Trifluoroacetate 

2Fluoroacetate 

-, no effect 

inc, increased product concentration 

dec, decreased product concentration 
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Appendix 1.  Fluoroquinolone-resistant bacteria from rural lakes  

 

Abstract 

 

Objective:  A reservoir of resistance against ciprofloxacin was discovered during 

a study of the microbiota of lakes in Oklahoma, USA.   

 

Materials:  The microbiota of the water column and of the lower gastrointestinal 

tract of inhabitant Lepomis macrochirus (bluegill) was surveyed at Mountain 

Lake, Carter County, OK, and American Horse Lake, Blaine County, OK.   

Isolates from CHROMagar ECC plates and a most-probable-number assay for 

each fish and water sample were screened for resistance using minimum 

inhibitory concentrations (MICs) of sixteen antibiotics. 

 

Results:  Most all the isolates were resistant to one or more of the sixteen 

antibiotics, and two of the isolates were resistant to ciprofloxacin.  Strain 

AHW1G3 and MLF3G2 were then post-screened initially with 5 µg/ml of 

ciprofloxacin and levofloxacin, and then the MIC was determined.  The MIC for 

strain MLF3G2 from the intestinal tract of a bluegill caught from Mountain Lake 

was 100 µg/ml and 20 µg/ml for ciprofloxacin and levofloxacin, respectively.  

The MIC for strain AHW1G3 from the water sample taken in American Horse 

Lake was 400 µg/ml and 2,500 µg/ml for ciprofloxacin and levofloxacin, 
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respectively.   Both of these lakes are rural lakes and are little impacted by human 

activity (angling). 

 

Conclusion:    The overall resistance to antibiotics among native bacteria was 

unexpectedly high.  Reservoirs for antibiotic resistances to ciprofloxacin and 

levofloxacin were discovered from screening of native bacteria from two rural 

lakes in Oklahoma.  The two lakes are in sparsely populated counties with no 

identifiable antibiotic inputs.  Based on the presence of natural resistance 

reservoirs, the potential for widespread resistance to ciprofloxacin following 

extensive use and overuse is probably considerable.   

 

 

 

 

 

 

 

 

 

 

 

 

 



86 

Introduction 

 

Widespread antibiotic resistance in bacterial populations has been associated with 

humans and human activities, such as intensive animal husbandry or hospital 

effluent.  The presence of multiple antibiotic resistant (MAR) bacteria in clinical 

settings is especially troubling.1  Resistance is presumed to be acquired by 

bacterial populations after exposure to antibiotics, leading to the proposal that 

strict regulation of antibiotics could control the spread of resistance.2-3  Antibiotic 

resistance was almost absent in enterobacteria from feces of wild mammals 

collected in Finland, consistent with the presumption above.3  In contrast, a prior 

study showed extensive antibiotic resistance in coliforms from wild rodents,4 

raising questions about the origins of this resistance, persistence of resistance, and 

proper management of antibiotic resistance.  Resistance genes may exist in natural 

ecosystems and be transferred to bacteria in humans and other hosts.5-6  Natural 

resistance to fluoroquinolones, synthetic antibiotics, is more difficult to 

understand compared to resistance to penicillin or streptomycin.  Although 

nosocomial pathogens have developed multidrug resistance7-8, currently, 

fluoroquinolones have been successful in combating these pathogens.  The 

potential existence of natural reservoirs of fluoroquinolone-resistant bacteria 

becomes important in light of the use of ciprofloxacin as a recommended 

treatment for multidrug-resistant pneumococci infections,7-8 prophylactic for 

anthrax exposure,9 and potential transfer from natural reservoirs to pathogens. 
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Materials and methods  

 

Antibiotic resistances from strain MLF3G2 and AHW1G3 were identified in the 

study of the microbiota of Lepomis macrochirus (bluegill) and associated waters, 

respectively.  The lakes studied were in Blaine Co. (33 inhabitants per square 

kilometer) and Carter Co. (143 inhabitants per square kilometer), OK, USA (see 

www.factfinder.census.gov).  Land use in the watersheds was agricultural, e.g., 

low-intensity cattle grazing.  Lake water contained <0.2 E. coli per ml; 

identification and counts were done using CHROMagar ECC (Paris).  Samples of 

bluegill intestinal contents and lake water were diluted to extinction in tryptic soy 

broth in a most-probable-number assay.  Isolates recovered, presumably of cells 

present in high numbers, were identified using a BIOLOG system (Hayward, CA) 

and were tested for sensitivity to 16 antibiotics (Table 1).  Antimicrobial 

susceptibility was determined using a Bauer-Kirby antimicrobial disc assay 

according to National Committee for Clinical Laboratory Standards (NCCLS - 

Approved Standard M2-A7) guidelines.  Isolates resistant to the Ciprofloxacin 

Sensi-Disc (5µg) (Becton Dickinson and Company, Sparks, MD, USA ) were 

further subjected to MICs testing of ciprofloxacin (Bayer, West Haven, CT, USA) 

and levofloxacin (Ortho-McNeil Pharmaceutical Inc., Raritan, NJ, USA) by the 

broth microdilution technique according to NCCLS - Approved Standard M7-A4 

guidelines.  The ciprofloxacin-resistant isolates were also further identified using 

partial 16S rRNA gene sequence analysis.  DNA sequencing of the PCR products 

were carried out on an Applied Biosystems Model 3730 automatic sequencer at 
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the Oklahoma Medical Research Foundation, OK.  Sequence analyses were 

aligned and corrected using the computer program Sequencer.  Related sequences 

of the 16S rRNA gene were conducted by using Blastn search program of the 

National Center for Biotechnology Information.   
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Results  

 

Genera identified from intestinal contents included Aeromonas, Plesiomonas, and 

Enterococcus.  Genera identified from water samples included Citrobacter, 

Pectobacterium, Enterobacter, and Microbacterium.  Two isolates were resistant 

to fluoroquinolones, one from a water sample (strain AHW1G3) and one from 

bluegill intestinal contents (strain MLF3G2) (Table 1).  Identification of these 

strains was confirmed by partial 16S rDNA sequence analysis, and strain 

AHW1G3 was deposited with ATCC (accession no. BAA-799).  The resistant 

phenotype was unexpected, and the level of resistance was exceptional.  The MIC 

of ciprofloxacin and levofloxacin against strain AHW1G3 was 400 and 2,500 

µg/ml, respectively.  The MIC of ciprofloxacin and levofloxacin against strain 

MLF3G2 was 100 and 20 µg/ml, respectively.  This is in contrast to that reported 

for clinical isolates such as Streptococcus pneumoniae (MIC of ciprofloxacin for 

>99% of strains <4 µg/ml10), and Pseudomonas aeruginosa (MIC of ciprofloxacin 

and levofloxacin 0.25-1 µg/ml and 0.5-4 µg/ml, respectively).   

The magnitude of MAR from the two rural lakes and bluegill intestines 

was extensive among all isolates collected (n=65) from CHROMagar ECC plates 

and the most-probable-number assays.  68% of the isolates were resistant to 2 or 

more of the 16 antibiotics screened, 57% to three or more, and 35% to four or 

more of the antibiotics screened.   
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Discussion 

 

The finding of high levels of antibiotic resistance, including in two instances to 

ciprofloxacin, among the numerically dominant culturable heterotrophs from rural 

lakes in areas that are sparsely populated, have limited human impacts, and no 

identified antibiotic input was puzzling, but similar to the observations of Gilliver 

et al.4  A low population density per se3 does not account for antibiotic resistance 

patterns.  How these resistances were established and are maintained remains 

unknown.  However, a natural reservoir of ciprofloxacin resistance exists, a fact 

which must be considered if widespread use of this antibiotic is undertaken in 

response to treating patients with multidrug-resistant bacteria and for broader 

systemic infections. 
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____________________________________________________________________________________________________________ 

Table 1  Antibiotic resistance profile of aquatic strains resistant to ciprofloxacin 

____________________________________________________________________________________________________________ 

   CRO30      E15       GEN10      K30       STR10      NA30         ST250       CIP5            MIC CIP      MIC LVX 

Microbacterium sp.                                                          

strain AHW1G3      S          S  S      S          S   R        S           R          400 µg/ml     2,500 µg/ml 

 

Enterococcus sp.                                                         

strain MLF3G2      R          R  R      R          R   R        R           R       100 µg/ml          20 µg/ml 

____________________________________________________________________________________________________________ 

Antibiotic sensitivity (S) and resistance (R) were determined using a Bauer-Kirby antimicrobial disc assay.  Antibiotic discs were 

from Becton, Dickinson and Company, Sparks, MD, USA.  Antibiotic discs listed above were:  ceftriaxone, 30 µg; erythromycin, 15 

µg; gentamicin, 10 µg; kanamycin, 30 µg; streptomycin, 10 µg; nalidixic acid, 30 µg; sulfathiazole, 250 µg; ciprofloxacin, 5 µg.  Both 

strains were sensitive to ampicillin (10 µg), carbenicillin (100 µg), cefaclor (30 µg), chloramphenicol (30 µg), doxycycline (30 µg), 

oxytetracycline (30 µg), tetracycline (30 µg) and trimethoprim (5 µg) in this assay.  The minimal inhibitory concentration (MIC) of 

ciprofloxacin and levofloxacin was determined in tryptic soy broth.  The MIC of these antibiotics against Escherichia coli was <0.1 

µg/ml. 
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PERSPECTIVES & FUTURE WORK 

 

Perspective.  The work presented in this dissertation has, in part, fulfilled 

the objectives set for the bioconversion of agricultural biomass to liquid fuels.  In 

chapter 1, Clostridium carboxidivorans strain P7 was characterized and identified 

as a novel solvent-producing Clostridium species.  Although molecular techniques 

were utilized to distinguish the species, the classical approach in microbial 

systematics was an integral part in differentiating C. carboxidivorans from other 

species.  The utilization of classical and molecular systematics (i.e., phenotype 

and phylotype) has led to many new discoveries in taxonomy; however, much of 

the decoded relationship among prokaryotes stems directly from the molecular 

approach.  It would be short-sighted to say that phenotypic traits do not contribute 

to defining microbial taxa (Wheelis et al., 1992).  An example of this is exhibited 

by the intestinal bacterial community of the termite (Ohkuma and Kudo, 1996).  

Of 55 bacterial clones sequenced, two-thirds of the analyzed clones had less than 

90% sequence identity to any known 16S rRNA gene sequences of cultivated 

organisms.  Furthermore, one-third of the clones showed no sequence similarity to 

any recognized bacterial phylum in the rRNA database.  The phylogenetic 

approach was limited, and the best course of action was to use phenotypic 

analysis to determine taxonomy (Ohkuma and Kudo, 1996).  The balance between 

classical and molecular systematics helps to define and direct the understanding 

of a complete evolutionary paradigm.   
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Another example of utilizing classical and molecular systematics was 

exemplified in the characterization of Clostridium carboxidivorans strain P7.   

The 16S rRNA gene sequence of C. carboxidivorans strain P7 was very similar to 

that of Clostridium scatologenes strain SL1T  (99.8%) and C. scatologenesT  

(99.7%).  The 16S rRNA gene sequence of strain SL1T  was also very similar to 

that of C. scatologenesT  (99.7%), which had been reported earlier (99.6%; Kusel 

et al., 2000).  All three strains are in cluster I (subcluster Ic) of Clostridium group 

I (Collins et al., 1994; Stackebrandt and Hippe, 2001).  Based only on 16S rRNA 

gene sequences, the three strains would likely have been considered the same 

species and elucidation of  C. carboxidivorans or strain SL1T  as novel 

Clostridium species would not have occurred.  However, classical methods in 

phenotypic characterization had indicated distinct differences between the 

species.  Although other molecular techniques (e.g., BOX-PCR and DNA:DNA 

reassociation) did phylogenetically differentiate the species, phenotyp ical 

characterization played a critical role in distinguishing C. carboxidivorans strain 

P7T  from other clostridial species such as C. scatologenesT  and C. scatologenes 

strain SL1T .  Utilizing both classical and molecular systematics to identify and 

characterize an organism is truly how one can respectively differentiate one 

species from another.   

Future Work.  In chapter 2, growth of C. carboxidivorans was optimized 

to increase the yield of ethanol.  Knowledge gained from this research will 

improve the future cultivation and use of acetogens for maximizing conversion of 

synthesis gas to ethanol.  Chapter 2 illustrates how the effects of nutrients and 
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metabolic inhibitors can influence CO fermentation, thus signifying a means of 

achieving useful solvent production by the manipulation of these factors.  

However, further research is necessary.  For example, other components such as 

trace metals should be investiga ted.  Iron and other essential metals serve as 

important components in biological systems (Mills, 1997); therefore, future 

experiments should explore the effect individual trace metal components can have 

on solvent production in C. carboxidivorans.   

Although future research on media components may lead to increased 

solvent production in C. carboxidivorans, these experiments will not elucidate 

how CO is utilized to produce alcohols.  It is well established how carbohydrates 

are utilized to produce alcohols in acetogens (Drake et al., 2002); however, the 

basic metabolic pathway for how CO feeds into the pathway to produce alcohol is 

still speculative.  Therefore, more fundamental research on carbon monoxide 

metabolism in C. Carboxidivorans would seem practical.  One starting point 

would be to determine the activities of key enzymes under acidogenic and 

solventogenic conditions.  Under acidogenic conditions, activities of acetate 

kinase, butyrate kinase, phosphotransacetylase, and phosphotransbutyrylase 

should be high, and activities of acetaldehyde dehydrogenase, butyraldehyde 

dehydrogenase, ethanol dehydrogenase, and butanol dehydrogenase should be low 

(Andersch et al., 1983).  Under solventogenic conditions, the level of activities 

should be reversed (Andersch et al., 1983).  Although these experiments indirectly 

provide understanding of how CO feeds into the pathway to produce alcohol, 

determining variations in enzyme activities at different periods of growth will 
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pinpoint conditions for acid or solvent production more precisely, thereby finding 

the rate limiting step to increasing ethanol production.  It will also illustrate 

whether regulated enzyme activities are coordinated or independent when 

utilizing CO to produce alcohols.  In addition to providing basic physiological 

data, this information would further help identify metabolic control mechanisms 

and influence industrial fermentation strategies.   

Other factors for increasing solvent production that should be considered, 

in conjunction with medium manipulation and strain adaptation, are random 

mutagenesis and metabolic engineering.  Clostridial mutagenesis has been 

successfully performed using N-methyl-N’-nitro-N-nitrosoguanidine (NTG), a 

strong alkylating agent (Murray et al., 1983).  NTG mutant strains produced up to 

4-fold higher ethanol to acetate ratios when compared to the parent strain.  As a 

mutagen, NaBr and NaBrO3 salt (Cueto and Mendez, 1990) release a toxic 

bromine gas at low pH.  The bromine gas selectively kills acid producers and 

spares cells that are non-acid producers.  Strains obtained with this method also 

produced up to 1-fold higher solvent to acid ratios when compared to the parent 

strain (Cueto and Mendez, 1990).  These methods should be employed for 

engineering a better solvent producing strain of C. carboxidivorans.   

As a model for metabolic engineering, genes of minicellulosomes (i.e. 

miniCipC1-man5K complex) from Clostridium cellulolyticum have been 

successfully inserted into Clostridium acetobutylicum to degrade cellulose and 

related plant cell wall polysaccharides (Mingardon et al., 2005).  The recombinant 

strain of C. acetobutylicum secreted mannanase and degraded galactomannan, 
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thereby indicating successful insertion of the gene and the ability to utilize 

lignocellulosic materials (Mingardon et al., 2005).  Therefore, it might be possible 

to insert duplicate copies of ethanologenic genes such as alcohol dehydrogenase 

or genes such as formate dehydrogenase to increase solvent production in C. 

carboxidivorans.  Pursuing metabolic engineering to increase the yield and 

efficiency of C. carboxidivorans’ ability to utilize synthesis gas can eventually 

make it optimal for a industrial scale fermentation. 

The discovery made during the analysis of the multiple-antibiotic 

resistance data from the comparative study on the microbiota of the intestinal tract 

of bluegills from treated sewage water to that of bluegills from clean rural lakes 

certainly warrants further investigation.  In Appendix 1, the overall resistance to 

antibiotics among native bacteria from the clean rural lakes was noticeably high, 

and fluoroquinolone-resistant bacteria were present in high numbers.  This 

discovery suggested that a natural reservoir of resistance against fluoroquinolones 

exists.  Continued studies determining the source of this fluoroquinolone 

resistance are justifiable due to the potential public health issues.  Future work 

should include field studies to identify and sample watersheds and any natural 

springs or waterways that may feed into these lakes.  Direct screening against 

ciprofloxacin should be conducted on the water and soil in these lakes and on the 

water sources feeding into these lakes.  In addition to illustrating the potential 

prevalence of this phenotype among the native bacteria, it will address which 

bacterial species constitute the principal reservoirs of resistance, what proportion 

of these resistant populations may carry the plasmid, and the pattern of resistance 
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among different species with various antibiotics.  The origin of this resistance 

could be eluded by addressing these questions (Esiobu et al., 2002) or determining 

the sources where this resistance is established and maintained (Levy, 2002).   

Although the primary research in this dissertation was on the microbial 

conversion of synthesis gas to ethanol, research conducted in applied 

environmental microbiology on anaerobic systems such as microbial water 

ecology enhances the overall research.  The richness of microbial diversity 

present in these anaerobic systems (e.g. lakes, natural waterways) may yield 

organisms with multiple functions of value, such as high capacity biodegradative 

or specialized metabolic functions.  The isolation of Clostridium carboxidivorans 

strain P7 and bacteria resistant against fluoroquinolones surely exemplifies this 

value; therefore, further research in applied environmental microbiology on 

anaerobic systems seems warranted to further explore other multiple functions of 

value. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



100 

REFERENCES 

 

Andersch, W., Bahl, H., and Gottschalk, G. 1983. Levels of enzymes involved in 

acetate, butyrate, acetone, and butanol formation by Clostridium 

acetobutylicum. Eur. J. Appl. Microbiol. Biotechnol. 18: 327-332.   

 

Collins, M. D., Lawson, P. A., Willems, A., Cordoba, J. J., Fernandez-

Garayzabal, J., Garcia, P., Cai, J., Hippe, H. and Farrow, J. A. E. 1994.  

The phylogeny of the genus Clostridium:  proposal of five new genera and 

eleven new species combinations.  Int. J. Syst. Bacteriol. 44: 812-826. 

 

Cueto, P. H., and Mendez B. S. 1990. Direct selection of Clostridium 

acetobutylicum fermentation mutants by a proton suicide method. Appl. 

Environ. Microbiol. 56: 578-580.   

 

Drake, H. L., K. Küsel, and C. Matthies. 2002. Ecological consequences of the 

phylogenetic and physiological diversities of acetogens. Antonie Van 

Leeuwenhoek. 81: 203-213.   

 

Esiobu, N., Armenta, L., and Ike, J. 2002. Antibiotic resistance in soil and water 

environments. Int. J. Environ. Health Res. 12, 133-144. 

 



101 

Kusel, K., Dorsch, T., Acker, G., Stackebrandt, E. and Drake, H. L. 2000.  

Clostridium scatologenes strain SL1 isolated as an acetogenic bacterium 

from acidic sediments.  Int. J. Syst. Evol. Microbiol. 50: 537-546. 

 

Levy, S. B. 2002. Factors impacting on the problem of antibiotic resistance. J. 

Antimicrob. Chemother. 49, 25-30. 

 

Mills, A. L. 1997. Metal requirements and tolerance. In: Hurst CJ, Knudsen GR, 

McInerney MJ, Stetzenbach LD, Walter MV (eds) Manual of 

Environmental Microbiology. American Society of Microbiology, DC, pp. 

349-357. 

 

Mingardon, F., Perret, S., Belaich, A., Tardif, C., Belaich, J-P., and Fierobe, H-P. 

2005. Heterologous production, assembly, and secretion of a 

minicellulosome by Clostridium acetobutylicum ATCC 824. Appl. 

Environ. Microbiol. 71: 1215-1222.   

 

Murray, W. D., Wemyss, K. B., and Khan, A. W. 1983. Increased ethanol 

production and tolerance by a pyruvate-negative mutant of Clostridium 

saccharolyticum. Eur. J. Appl. Microbiol. Biotechnol. 18: 71-74.   

 



102 

Ohkuma, M. and Kudo, T. 1996. Phylogenetic Diversity of the intestinal bacteria 

community in the termite Reticulitermes speratus. Appl. Environ. 

Microbiol. 62: 461-468.   

 

Stackebrandt, E. and Hippe, H. 2001. Taxonomy and systematics,. In Clostridia, 

pp. 19-48. Edited by H. Bahl & P. Dürre, New York City, NY: Wiley-

VCH. 

 

Wheelis, M. L., Kandler, O., and Woese, C. R. 1992. On the nature of global 

classification. Proc. Natl. Acad. Sci. U.S.A. 89: 2930-2934.   

 


