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CHAPTER I 

 

 

SIEVE ELEMENT STRUCTURE AND FUNCTION 

 

1.1 PHLOEM STRUCTURE AND FUNCTION 

          The vascular tissues of higher plants, xylem and phloem, are responsible for the 

long distance transport of water as well as organic and inorganic compounds throughout 

the plant body. Xylem is composed of continuous elongated conducting cells, called 

tracheary elements, which primarily transport water and inorganic nutrients. Transport in 

xylem is driven by a water potential gradient generated by the transpiration of water from 

surfaces of leaves and maintained through the cohesion-tension mechanism (Holbrook et 

al., 1995).           

          In contrast to the xylem, the phloem tissue transports photoassimilates, amino 

acids, organic acids, hormones, macromolecules, and some mineral nutrients, such as 

potassium, chloride, phosphate, and magnesium, in water from sites of synthesis to sites 

of utilization or storage. The phloem is a complex vascular tissue minimally composed of 

parenchyma cells, companion cells, and sieve elements. Sieve tubes are formed by files 

of interconnected sieve elements creating the highly specialized, living conduit.  Sieve  
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elements are functionally associated and symplasmically connected via pore-

plasmodesmata units with adjacent companion cells. In angiosperms, the sieve element-

companion cell complex is derived from a common meristematic mother cell. Structural 

proteins including integral and membrane-associated proteins are likely synthesized 

within the immature sieve element. During differentiation, however, immature sieve 

elements undergo selective autophagy of specific organelles resulting in terminally 

differentiated cells that are incompetent for subsequent transcription and translation. At 

maturity, sieve elements are generally considered to rely on the metabolically active 

companion cells to synthesize macromolecules and other compounds, which are 

transported between the two cell types through pore-plasmodesmata. 

          The unique process of selective autophagy involves the degeneration of nuclei, 

disappearance of golgi apparatus, microtubules, ribosomes, reorganization of 

endoplasmic reticulum, and formation of sieve plates that join individual sieve elements 

(Evert R.F., 1990). Nuclear degeneration appears to be caused by chromatolysis. During 

differentiation, the chromatin becomes denser, showing prominent aggregates until the 

stainable contents of the nucleus disappear and the nuclear envelope is ruptured. The 

endoplasmic reticulum (ER) undergoes a series of changes from cisternal, rough-surfaced 

and randomly dispersed throughout the cytoplasm to stacks of smooth ER forming 

convoluted, tubular, or latticelike shapes that are in a parietal position attached to the 

sieve element plasma membrane (Evert et al., 1969; Esau and Hoefert, 1980; Torsch and 

Esau, 1981). Thus, the mature sieve element possesses a unique structure containing only 

a few mitochondria, plastids, smooth endoplasmic reticulum (ER) and functional plasma 

membrane. Ultrastructural studies of well preserved sieve elements suggest that the 
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parietal P-proteins, plastids, mitochondria and parietal smooth ER are associated together 

and firmly attached to the longitudinal plasma membrane through clamp-like structures, 

resulting in a low resistance lumen free of occlusions (Ehlers et al., 2000).           

          Münch’s pressure-flow theory describes the fundamental mechanism that drives 

the rapid translocation of phloem sap in the unobstructed phloem lumen (reviewed by 

Schulz and Thompson, 2009). The translocation of phloem sap in the longitudinal sieve 

tube is driven by an osmotically-generated pressure gradient that forms between source 

(high solute concentration) and sink (low solute concentration) tissues. This gradient can 

be generated by several mechanisms that rely on differential concentrations of osmolytes, 

primarily sugars, being loaded into the sieve elements at the source and/or removed from 

sieve elements at the sink. Establishing the osmotic gradient is generally thought to be a 

function of phloem loading in source tissues.  

          Two generalized mechanisms of phloem loading, apoplastic loading and symplastic 

loading, are well accepted, although, there is considerable evidence for an alternative 

mechanism that does not rely on phloem loading to establish the pressure gradient. 

Apoplastic phloem loading is the typical phloem loading mechanism in plants that 

primarily or exclusively translocate sucrose. Sucrose, synthesized in photosynthically 

active mesophyll cells, accumulates in the apoplast of the sieve element-companion cell 

complex (SE-CC). Apoplastic sucrose is actively loaded via sucrose/proton symporters 

into the SE-CC utilizing energy from adenosine triphosphate hydrolysis (Lalonde et al., 

2003). Symplastic loading involves the movement of sugars through plasmodesmata from 

the mesophyll cells into the SE-CC. A thermodynamically feasible mechanism of 

symplastic loading specific to the translocation of high concentration oligosaccharides 
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from raffinose-family or higher polymers of sucrose-galactosyl sugars is termed the 

polymer trap. In this mechanism, the sucrose symplasmically diffuses from bundle sheath 

cells to a specific type of companion cells, known as intermediary cells, which are 

extremely rich in pore-plasmodesmata units that are linked to the sieve element. In the 

intermediary cells, the sucrose is polymerized into sucrose-galactosyl polymers such as 

raffinose or stachyose preventing their diffusion back into the bundle sheath cells. 

Polysaccharide oligomers can, however, diffuse through wider pore-plasmodesmata units 

into sieve elements resulting in the high concentration of sugars required to establish the 

osmotic gradient (Turgeon and Medville, 2004; Schulz and Thompson, 2009). In some 

woody plants, such as Salix, the sucrose concentration in the mesophyll cytosol is much 

higher than that in sieve elements. This is explained by an “alternative” symplasmic 

loading model in which sucrose passively diffuses from mesophyll cytosol to the sieve 

element and the gradient appears to be established primarily by phloem unloading at the 

sink tissues (Schulz and Thompson, 2009).   

 

1.2 SIEVE ELEMENT PROTEINS  

1.2.1 P-PROTEINS 

           In angiosperms, structural phloem proteins (P-proteins) were detected as distinct 

proteinaceous inclusion bodies under light microscopy as early as 1854 by Hartig 

(Cronshaw and Esau, 1967). After the sieve element autophagy, the P-proteins are 

present in sieve elements as various morphological shapes, such as filaments in 

Cucurbita maxima and Ricinus communis, tubules in Nicotiana tabacum and Coleus 
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blumeii and crystalline in Phaseolus vulgare and Glycine max (Wergin and Newcomb, 

1970; Palevitz and Newcomb, 1971; Cronshaw et al., 1973). The phloem filament protein 

(PP1) and phloem lectin (PP2) of cucurbits are two well-characterized P-proteins. In 

mature sieve elements, these proteins are synthesized in companion cells, transported into 

sieve elements through pore-plasmodesmata units, and assembled in sieve element 

parietal layer (Clark et al., 1997). It appears that P-proteins are maintained in a dynamic 

equilibrium between unpolymerized subunits that are translocated in the phloem sap and 

large, ultrastructurally distinct polymers (Golecki et al., 1999). Although a variety of 

alternative functions are being attributed to PP2 (Bencharki et al., 2010), P-protein 

filaments are generally considered to maintain turgor pressure within damaged sieve 

tubes by accumulating at sieve plates, thereby, occluding the sieve elements that are 

adjacent to the damaged cells (Clark et al., 1997; Golecki et al., 1999).  

          Elegant studies on the forisomes (crystalline P-proteins) of the Fabaceae have 

revealed the regulatory events that occur during the occlusion of sieve elements in 

response to vascular damage (Knoblauch and Peters, 2004). Forisomes are calcium-

dependent contractile proteins located adjacent to the sieve plates, but not fixed to the 

parietal endomembrane system (Peters et al., 2007). In Vicia faba leaflets, the diameter of 

sieve element has a direct correlation with the size of the forisome (Peters et al., 2006). 

Interestingly, forisomes structurally and reversibly transform from “crystalline” to 

“amorphous” forms in response to changing calcium concentrations and pH, thereby 

providing a mechanism for rapid, reversible blocking of individual sieve tubes. Evidence 

is accumulating that calcium concentrations in wounded sieve elements can be 
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manipulated by phloem-feeding insects to prevent sieve element occlusion by forisomes 

(Will et al., 2007).  

 

1.2.2 SOLUBLE SIEVE ELEMENT PROTEINS 

          In addition to the structural P-proteins, a large number of soluble proteins have 

been detected in phloem sap that are significantly different from protein profiles found in 

adjacent cells (Turgeon and Wolf, 2009). Complete sets of enzymes that function in 

several different biosynthetic reactions have been detected in sieve elements. For 

example, many enzymes needed for ascorbic acid, jasmonic acid and alkaloid 

biosynthesis have been identified in phloem sap from squash, tomato, and opium poppy. 

The products of these enzymatic pathways participate in stress and defense responses 

(Bird et al., 2003; Hancock et al., 2003; Hause et al., 2003). Several kinases, including 

calmodulin-like domain protein kinase and calcium-independent protein kinase, have 

been detected in phloem sap. These kinases are thought to be responsive to abiotic and 

biotic stresses as well as influence plant development (Yoo et al., 2002). Another group 

of important phloem sap proteins are antioxidants, such as superoxide dismutases, 

reductases, and peroxidases. These enzymes ensure the maintenance of stable 

physiological conditions in sieve elements and could also serve in defense mechanisms 

(Ishiwatari et al., 1995; Szederkenyi et al., 1997; Walz et al., 2002).  

           Recently, considerable work has been done in identifying and characterizing RNA 

binding proteins in phloem sap. Several types of RNAs, such as mRNAs, microRNAs, 

and small interfering RNAs have been detected in phloem sap (Turgeon and Wolf, 2009) 



 

7 
  

that appear to be mobile regulatory signals in the plant body (Deeken et al., 2008). The 

first RNA binding protein, CmPP16 in pumpkin was detected as a homolog of viral 

movement protein and functions to mediate RNA transport (Xoconostle-Cazares et al., 

1999). Interestingly, the P-protein CmPP2 in cucumber was shown to play a role in 

systemic infection by binding viral RNA in addition to phloem mRNA (Gomez and 

Pallas, 2004). RNA binding proteins, such as the 50 kDa polypyrimidine tract binding 

protein RBP50 in pumpkin, form a functional core in the ribonucleoprotein complex 

(Ham et al., 2009). It is now clear that both protein- and RNA-based communication 

networks function within the phloem to transmit regulatory information throughout the 

plant body (Lough and Lucas, 2006). 

 

1.2.3 SIEVE ELEMENT MEMBRANE PROTEINS 

          The physiology of the phloem is highly dependent upon proteins that are integrated 

or associated with the sieve element membranes, especially the sieve element plasma 

membrane. Integral membrane proteins play essential roles in regulating the movement of 

metabolites, water, and ions across the sieve element plasma membrane. The best studied 

integral membrane proteins are the sucrose transporters that facilitate the uptake of 

sucrose into sieve elements (Stadler et al., 1995; Kuhn et al., 1997).  

 Sucrose transporters (SUTs) can be categorized into three subclasses, SUT1/SUT3, 

SUT2 and SUT4, based on their protein sequence homology, substrate affinity and 

functions. SUT1 subfamily members have the highest affinity for the substrate. In 

Solanum tuberosum, the activity of StSUT1 can be regulated by redox reagents and both 



 

8 
  

the monomer and dimer form proteins are detected in planta. SUT3 was only found in 

tobacco plants and shares high sequence homology with the SUT1 subfamily (Krugel et 

al., 2008). In Arabidopsis, AtSUC2 is the predominant sucrose proton symporter with 

dual functions of efficiently transporting sucrose and as a sucrose sensor in sieve 

elements (Barker et al., 2000). SUT4 subfamily members have the lowest substrate 

affinity. All the sucrose transporter proteins have been detected in sieve elements, 

whereas SUT1 mRNA was only detected in companion cells (Hackel et al., 2006).  

 Other membrane proteins also play important roles in sieve element physiology.  A 

phloem-specific ATPase has been identified that is thought to be responsible for 

establishing the proton gradient across the plasma membrane that is required for active 

phloem loading as well as other physiological processes in the phloem (DeWitt and 

Sussman, 1995). Maintaining proper water relations within the sieve element is another 

important function that affects long-distance transport, and aquaporins, a group of 

integral membrane proteins with roles in regulating water transport, have been identified 

in the phloem (Barrieu et al., 1998). In higher plants, amino acids that are produced in 

roots or shoots are transported throughout the plant organs through the phloem and xylem 

(Hirner et al., 2006). In Arabidopsis, the amino acids transporters are classified into six 

family members AAP1-AAP6 (Okumoto et al., 2004). Two of the family members, AAP4 

and AAP5, are primarily expressed in mature leaves and play major roles in amino acid 

translocation through phloem loading (Fischer et al., 1995). Ion channels, including 

calcium ion channels, a photosynthate-induced potassium channel, and a sulfate 

transporter are less well characterized, but have been detected in the sieve element 

plasma membrane (Lacombe et al., 2000; Lytle et al., 2000; Yoshimoto et al., 2003).  
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1.3 SIEVE ELEMENT EARLY NODULIN-LIKE PROTEIN (SE-ENOD)  

          The work described in this thesis focuses on a novel sieve element plasma 

membrane protein that was initially identified and characterized by Dr. Junaid Khan and 

Dr. Qi Wang in a collaboration between Dr. Richard Sjolund and Dr. Gary Thompson 

(Khan et al., 2007). A collection of monoclonal antibodies (mabs) was generated from 

partially purified sieve elements isolated from Streptanthus tortuosus (Brassicaceae) 

callus cultures. One of the mab lines, RS6, immunolocalized an antigen to the sieve 

element plasma membrane within the phloem of Arabidopsis and Brassica species. High 

resolution immunolocalization experiments showed that the antigen accumulated in the 

plasma membrane at the earliest stages of sieve element differentiation and persisted in 

mature sieve elements. Affinity purification of the protein antigen from S. tortuosus 

phloem (+) tissue cultures followed by N-terminal peptide sequencing of the entire 

peptide and a tryptic fragment provided two peptide sequences (amino-terminus 

REFAVGGAKGWTIPS and internal TSFSLTHSGPYYFISGNK) that corresponded to 

blue copper binding protein (cupredoxin) in BLASTP searches.   

          Cupredoxins are a superfamily of type 1 blue copper binding proteins that facilitate 

single electron transport both in plants and bacteria (Adman, 1991; Ryden and Hunt, 

1993). These proteins are typically composed of a single polypeptide chain of 100 to 140 

amino acids that share a conserved copper binding center core domain. X-ray 

crystallographic structure analysis revealed that many family members share a highly 

similar core structure consisting of a four to seven β-strands folded into a Greek key β-

barrel structure (Chothia and Lesk, 1982). In order to stabilize the binding of copper, the 

binding center consists of three or four copper binding ligands and two highly conserved 
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cysteines forming a disulfide bond. Consequentially, the geometry of the copper binding 

center is a distorted tetrahedral architecture with a single copper atom (Ainscough et al., 

1987). Plastocyanin is the type member of cupredoxins in higher plants (phytocyanins) 

that transfers single electrons from cytb6/f complex in photosynthesis system II to P700* 

of photosynthesis system I (Ubbink et al., 1998). Based on the spectroscopic properties, 

primary peptide sequence, glycosylation, and copper axial ligands, the phytocyanins can 

be classified into four subgroups: mavicyanins, stellacyanins, uclacyanins and early 

nodulins (ENODs) (Nersissian et al., 1998).  

          While the experimentally-derived peptide sequences could be used to initially 

identify the RS6 sieve element antigen as a phytocyanin, the specific protein could not be 

determined. This was accomplished by designing two sets of degenerate oligonucleotide 

primers based on the peptide sequences for nested reverse transcriptase polymerase chain 

reactions (nested RT-PCR) of total RNA isolated from Arabidopsis leaves. BLASTN 

searches of the TAIR (The Arabidopsis Information Resource) database revealed that the 

cDNA sequence obtained from nested RT-PCR corresponded to the At3g20570 gene. The 

deduced peptide encoded by At3g20570 revealed similar domain architecture with 

Medicago truncatula ENOD16 and 20 proteins and the related pea PsENOD5 protein. 

          The ENODs are encoded by nodule-specific genes that are expressed at the earliest 

stages of nodule development during rhizobia interactions with legumes (Mylona et al., 

1995). Sequence alignment revealed that ENODs are structurally related to cupredoxins, 

belonging to a subfamily of phytocyanin-like proteins. The typical ENOD precursor 

protein domain structure is composed of four domains: signal peptide; plastocyanin-like 

copper binding domain; a variable-length proline/serine rich domain; and a hydrophobic 
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domain. Significantly, the ENODs contain single amino acid substitutions for the copper 

binding ligands (Greene et al., 1998). Three of the four copper binding ligands (histidine, 

cysteine, histidine and methionine or glutamine) are not conserved in Pea PsENOD5, 

vetch VsEOND5, soybean ENOD55 and Medicago truncatula MtENOD16 and 20 

(Scheres et al., 1990; Vijn et al., 1995; Greene et al., 1998). These observations have let 

to the general assumption that ENODs have lost the ability to bind copper and have 

functions other than electron transport. The tertiary structures of the plastocyanin-like 

copper-binding domain in several ENODs have been predicted by homology modeling, 

and the core structures were predicted to be a Greek key β-barrel. 

          Multiple sequence alignment of twenty-nine Arabidopsis phytocyanin-like proteins 

and construction of the phylogenetic tree indicated that the RS6 antigen detected in sieve 

element plasma membrane belongs to the ENOD-like protein subfamily and contains the 

identical domain architecture of signal peptide (domain I), plastocyanin-like copper 

binding domain (domain II), proline/serine rich domain (domain III) and hydrophobic 

domain (domain IV) (Figure 1.1). Other computer algorithms predicted that the sieve 

element-specific ENOD-like protein (SE-ENOD) contains phosphate-binding loop (P-

loop), two arabinogalactan glycosylation recognition sites, and alternative ω sites for 

glycosylphosphatidylinositol (GPI) anchor. The signal peptide and the hydrophobic 

domain are posttranslationally cleaved from the precursor protein and generate a mature 

protein with plastocyanin-like copper binding domain and proline/serine rich domain, 

which is proposed to be attached to the plasma membrane by a GPI anchor (Khan et al., 

2007). To determine whether the SE-ENOD is GPI anchored in the sieve element plasma 

membrane, young cauliflower stem sections were treated with phosphatidylinositol-
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specific phospholipase C (PI-PLC), which specifically cleaves the phosphatidylinositol 

bond in GPI-anchored proteins (Pfaffmann et al., 1987). In immunolocalization 

experiments, the RS6 mab failed to detect the presence of the SE-ENOD in the sieve 

elements of fresh stem sections pre-treated with PI-PLC, suggesting that the enzymatic 

treatment was sufficient to release the antigen and that the SE-ENOD is attached to the 

sieve element plasma membrane by a GPI anchor. 

          Immunological and molecular data obtained using the RS6 mab were consistent 

with the conclusion that the At3g20570 gene encoded the SE-ENOD. Furthermore, 

approximately 1000 bp of 5’ flanking sequences encompassing the At3g20570 promoter 

directed β-glucuronidase activity specifically in the phloem of the vascular of leaves, 

stems, roots, and inflorescences. The analysis of T-DNA insertion mutants provided the 

final confirmation of the linkages among the mab, protein, and gene. Immunolocalization 

of Arabidopsis Columbia-0 and two independent, homozygous T-DNA insertion lines of 

At3g20570, SALK 105873 and GABI-371E08, with RS6 antibody showed that the SE-

ENOD is present in the wild type plant and absent in both mutants. The phenotypes 

between the Col-0 and SALK 105873 were compared, and while a significant difference 

was detected in the number of siliques, the mutants failed to produce a convincing 

phenotype.  
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1.4 OVERVIEW OF THIS STUDY 

            The goal of this research project was to further characterize structural components 

of the sieve element-specific early nodulin-like (SE-ENOD) protein to provide insights 

into the role this plasma membrane-associated protein plays in plant vascular biology. 

Three general approaches were taken to achieve this goal. In the first approach, structural 

predications and models were generated based on known structures of proteins within the 

same superfamily. In the second approach, two microbial expression systems were used 

to validate some of the computer-generated models created in the structural studies. In the 

third approach, studies were conducted to examine the protein in vivo using phloem-

enriched tissues.   

          Bioinformatic tools provide powerful approaches to study protein structure-

function relationships (Teufel et al., 2006). The second chapter of the thesis presents the 

strategies and results of in silico analyses to determine the secondary and tertiary 

structure of the SE-ENOD. The predictions suggested that the overall structure of SE-

ENOD is four polypeptide β-strands arranged as a Greek key topology structure located 

between another two β-strands and organized on one side of two polypeptide α-helixes. 

Models were constructed to determine whether the protein with copper-binding pocket 

that no longer binds the metal can alternatively interact with nucleotide phosphates via 

well-characterized ATP/GTP-binding motifs. Additional models suggest that the SE-

ENOD has the potential of forming homodimers or interacting with other molecules. 

          Microbial expression systems are well-established molecular tools that contribute 

to the functional studies of proteins from plant and animals. The third chapter of the 
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thesis describes the studies that were conducted with recombinant peptide domains 

expressed and purified from E. coli to determine if ATP/GTP-binding motifs in domain II 

of the SE-ENOD are functional. This chapter of the thesis also describes experiments that 

were conducted using a modified yeast two-hybrid system to determine whether the SE-

ENOD can form homodimers in Sacchromyces cerevisiae.    

           Previous studies of the SE-ENOD in Arabidopsis centered on its identification and 

initial molecular characterization, however, the conformational states of this plasma 

membrane associated protein in planta were not addressed. This was primarily due to the 

difficulties encountered in isolating significant amounts of enriched vascular tissue. The 

fourth chapter of this thesis describes the development of a new technique to isolate large 

amounts of highly enriched vascular tissues from broccoli plants and the use of these 

samples to initially characterize the SE-ENOD in planta.  
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CHAPTER II 
 

 

BIOINFORMATICS APPROACHES TO STUDY SE-ENOD STRUCTURE  

 

2.1 INTRODUCTION 

          The SE-ENOD is a novel protein with unknown structure belonging to the 

cupredoxin superfamily of copper-binding proteins. The overall structure of cupredoxins 

is well resolved. Members in this family consist of a single polypeptide chain of 

approximately 100-140 amino acid residues arranged into a “single copper binding 

center” core structure that functions in electron transfer reactions by accepting or 

donating a single electron to their redox partner proteins (Adman, 1991; Ryden and Hunt, 

1993). The copper binding center in cupredoxins share high similarity in the copper 

binding ligands Cys-X(n)-His-X(m)-Met/Gln located in a single loop region. The fourth 

ligand, histidine, is normally located near the carboxyl terminus at the peptide. This 

active copper binding center appears to have a geometry of a distorted tetrahedron and 

binds a single copper atom (Adman, 1991).   

          Phytocyanins are the predominant cupredoxins in higher plants. Based on the 

spectroscopic properties, primary peptide sequence, glycosylation, and copper axial 

ligands, the phytocyanins can be classified into four subgroups: mavicyanins, 
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stellacyanins, uclacyanins and early nodulins (ENODs) (Nersissian et al., 1998). The 

protein domain architecture in this family is conserved and consists of four domains: 

signal peptide (domain I), plastocyanin-like copper-binding domain (domain II), 

proline/serine rich domain (domain III), and hydrophobic domain (domain IV). The 

three-dimensional crystal structures of several phytocyanins, such as mavicyanin from 

Cucurbita pepo medullosa (zucchini), have been resolved at 1.6 Å resolution (Xie et al., 

2005).  

          Cucurbita mavicyanin is a glycosylated 109 amino acid blue copper protein 

containing four copper binding ligands His45, Cys86, His91, and Gln96 (Guckert et al., 

1995). The protein has a core structure of seven β-strands arranged as a Greek key β-

barrel in the middle of two β-sheets and three α-helixes (Xie et al., 2005). A highly 

conserved disulfide bond between Cys58 and Cys92 is significant in maintaining the 

overall structure of the protein. The X-ray crystallographic analysis of Cucurbita 

mavicyanin revealed that four 109 amino acid subunits are arranged into a single 

tetrameric asymmetric lattice (Xie et al., 2003).   

          The overall approach taken to model the structure of the SE-ENOD initially used 

mavicyanin as the predominant reference molecule for predictions. Secondary structure 

predictions use algorithms that assign one of three states (H: helix, E: strand and C: the 

rest) to each amino acid residue. These secondary structure codes are obtained by 

exploiting evolutionary relationships determined from multiple homologous sequence 

alignments. Homology modeling requires an accurate alignment between the target 

protein and its template to identify similar regions. To date, millions of proteins have 

been sequenced, however, only a limited number of domains and topologies have been 
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detected (Vitkup et al., 2001). Homology modeling takes advantage of the fact that 

protein primary sequence changes more rapidly than its structure and the protein amino 

acid sequence determines its tertiary structure. Therefore, a group of proteins that share a 

significant level of amino acid identity and similarity should adopt a similar tertiary 

structure (Chothia and Lesk, 1986; Sander and Schneider, 1991).   

          Khan and co-workers (2007) identified a phosphate-binding region within domain 

II of the SE-ENOD that was first described by Walker et al. (1982) as Walker A and B 

motifs. Several consensus amino acid arrangements of Walker A motifs, which are also 

known as P-loops, have been reported in the literature (Walker et al., 1982; 

Satishchandran et al., 1992). These include (G/A)X(4)GK(T/S), GX(4)GX(2)K, or 

GX(2)GXGKS with X representing any amino acid residue. The consensus sequence of 

Walker B has been defined as (R/K)X(7)h(4)D, with X representing any amino acid and h 

representing hydrophobic residues (Walker et al., 1982). These motifs are commonly 

found in adenosine triphosphate nucleotide (ATP)-binding proteins that often have 

ATPase activity. The residues in Walker A, especially Lys, interact with the phosphate 

group of the ATP, while the residues in Walker B, especially Asp, interact with the 

magnesium ion (Mg2+) and contribute to the stability of catalytic status (Reinstein et al., 

1990; Krell et al., 2001). The presence of both motifs suggests that the SE-ENOD binds 

Mg2+-ATP. Pocket-Finder is a well-suited program for predicting ATP binding sites. It is 

an online-based algorithm that employs the LIGSITE program to predict potential 

pockets. The LIGSITE program identifies small molecule binding sites based on several 

probe scanning command on a cubic grid. Predicted binding sites are only retained if the 

probe can detect it as a pocket for at least five times (Hendlich et al., 1997).  
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          The SE-ENOD is a sieve element plasma membrane-anchored protein that is 

expressed in nucleated sieve elements and persists in mature sieve elements. When this 

protein is partially purified from enriched vascular tissues, it appears to be in the form of 

complexed oligomers (See Chapter IV). Several other membrane-associated proteins in 

sieve elements regulate molecular transport in an oligomeric form (Krugel et al., 2008). 

Protein-protein docking analysis is a powerful bioinformatic approach to predict protein 

oligomers or complexes. The prediction employs several algorithms to evaluate 

parameters such as geometric complementarities, electrostatic energy, and collision 

possibility to obtain the most accurate model (Fischer et al., 1993; Stites, 1997; Mandell 

et al., 2001; Comeau et al., 2007). ClusPro is a fully automated, web-based program that 

can perform rigid body docking prediction. Rigid body docking is a filter method that can 

refine the docking predictions by screen energy properties and retain the models that with 

minimized energy potential (Comeau et al., 2007).  

          In this chapter, the SE-ENOD secondary structure was validated by four different 

programs, PSIpred, SSpro, HNN and Porter. The synthetic analysis for the results from 

these programs predicted that the secondary structure of SE-ENOD is composed of six 

strands, two or three helixes and a few coil structures. Further tertiary structure was 

predicted by SWISS-MODEL homology modeling and the core structure of the molecule 

is predicted to be four β-strands arranged into a Greek key β-barrel topology. This Greek 

key β-barrel is organized in the middle of two antiparellel β-strands, surrounded by two 

α-helixes and a few coils. Based on the sequence characteristic of the SE-ENOD P-loop, 

a potential ATP binding pocket was predicted by Pocker-Finder. Additionally, ClusPro 
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protein-protein docking server predicted that two single SE-ENOD molecules have the 

potential to form a homodimer.  
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2.2 MATERIALS AND METHODS  

2.2.1 SE-ENOD domain II (plastocyanin-like copper binding domain) secondary 

structure prediction by four different web-based programs, PSIpred, SSpro, HNN and 

Porter.  

          The primary sequence of the SE-ENOD domain II was input into different 

secondary structure prediction servers:  PSIpred (http://bioinf.cs.ucl.ac.uk/psipred/), 

SSpro (http://scratch.proteomics.ics.uci.edu/explanation.html#SSpro) , HNN (http://npsa-

pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_nn.html) and Porter 

(http://distill.ucd.ie/porter/). The predictions were run with server default parameters. The 

outputs of these four well-known programs adopt the identical three secondary structure 

states for each amino acid residues in the query sequence. The outputs were viewed and 

analyzed in MEGA 4.0, a software used for molecular evolutionary genetics analysis. It is 

commonly used to analyze multiple sequences, calculate evolutionary distance, estimate 

evolution relationships among the sequences, and generate phylogenetic map with 

multiple choices of distance method and models (Tamura et al., 2007; Kumar et al., 

2008). In MEGA 4.0, the secondary structure prediction results of SE-ENOD was labeled 

by different color and output as a picture.  As a control and comparison for the secondary 

structure prediction, the secondary structure of Cucurbita mavicyanin was also predicted 

by the same programs, and the resolved mavicyanin secondary structure was directly 

output from DSSPcont (http://cubic.bioc.columbia.edu/services/DSSPcont/).   

2.2.2 Homology modeling for the SE-ENOD tertiary structure by SWISS-MODEL  

http://bioinf.cs.ucl.ac.uk/psipred/
http://scratch.proteomics.ics.uci.edu/explanation.html#SSpro
http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_nn.html
http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_nn.html
http://distill.ucd.ie/porter/
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          The template for SE-ENOD homology modeling was initially searched by FASTA 

@ EMBL-EBI Protein Similarity Search (http://www.ebi.ac.uk/Tools/fasta33/). The 

database Protein Structure Sequences in RCSB protein data bank (PDB 

http://www.pdb.org/pdb/home/home.do) and all the other defaulted parameters were 

used. The SE-ENOD amino acid sequence was uploaded in a text file format. The 

molecules having available crystal structures that share >50% identity and similarity with 

the SE-ENOD were listed, and chain C of Cucurbita mavicyanin was ranked as the top 

candidate. The PDB (Text) file of Cucurbita mavicyanin crystal structure (PDB ID 

1WS8) was downloaded from PDB and analyzed by PyMOL Molecular Viewer 

(http://www.pymol.org/). The four chains of mavicyanin were displayed by checking the 

“Sequence mode” under “Display” in PyMOL program, and chain C was selected and 

saved as a separate molecule file. The mavicyanin chain C molecule was uploaded on the 

SWISS-MODEL server as the template for homology modeling for the SE-ENOD 

domain II. SWISS-MODEL (Peitsch et al., 1995; Arnold et al., 2006; Kiefer et al., 2009) 

is an automated protein tertiary structure prediction server based on target-template 

homologous alignment (Schwede et al., 2003).  

2.2.3 The SE-ENOD functional region and complex prediction 

          Potential pockets were predicted by uploading the predicted SE-ENOD tertiary 

structure .pdb file onto the website Pocket-Finder 

(http://www.modelling.leeds.ac.uk/pocketfinder/). Protein-protein docking was predicted 

by ClusPro (http://cluspro.bu.edu/home.php). The predicted SE-ENOD tertiary structure 

.pdb file was uploaded to the server. Dimers were predicted by input “2” for the “number 

http://www.ebi.ac.uk/Tools/fasta33/
http://www.pdb.org/pdb/home/home.do
http://www.pymol.org/
http://cluspro.bu.edu/home.php
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of multimers” under “Advanced OptionsMultimer Docking” option, then run the 

DOCK. The outputs were viewed and analyzed in PyMOL.  
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2.3 RESULTS  

2.3.1 Predicted secondary structure of the SE-ENOD plastocyanin-like copper binding 

domain  

          The Arabidopsis SE-ENOD and Cucurbita mavicyanin belong to the plastocyanin-

like copper binding protein family and share 39.4% amino acid sequence identity and 

72.7% amino acid sequence similarity. The two highly conserved cysteine residues, Cys58 

and Cys92, in mavicyanin are present within the SE-ENOD sequence, however, the four 

copper binding ligands in mavicyanin, (His45, Cys86, His91 and Gln96)  are substituted in 

the SE-ENOD (Gln43, Ser85, Asn90 and Glu95). The amino acid sequence alignment 

between the mature proteins (domains II and III) shown in Figure 2.1 can shed light on 

the accuracy of the analysis of the SE-ENOD secondary structure.  

          The SE-ENOD secondary structure predictions output from PSIpred, SSpro, HNN 

and Porter programs are shown in Figure 2.2. Each residue is assigned by a specific color 

by MEGA 4.0. The four prediction programs adopt the algorithm that assigns each amino 

acid residue to one of three states (H: helix, E: strand and C: the rest). The secondary 

structure of mavicyanin was also predicted by the same programs, and they predicted 

similar secondary structure (Figure 2.2, SSpro, HNN, and Porter data not shown). The 

experimentally determined secondary structure of mavicyanin was directly output from 

DSSPcont, however, the DSSPcont program adopts an alternative algorithm that assigns 

every residue to one of the eight states (H: α-helix, G: 3-10-helix, I: pi-helix, E: extened 

strand, B: β-bridge, T: turn, S: bend and C: the rest). Therefore, the secondary structure of 

H, G, I are grouped into Helix (H); E, B are grouped into Strand (E); S, T and the rest are 
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grouped into Coil (C) in accordance with the three state algorithm. Comparison between 

the resolved secondary structure of mavicyanin from DSSPcont and the PSIpred 

prediction result confirmed that the predictions primarily reflect the actual structure.  

          Analysis based on the total prediction output suggests that the SE-ENOD 

secondary structure is composed of six strands, two or three helixes and several coil 

structures.  
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Figure 2.1 Amino acid sequence alignment of the Arabidopsis SE-ENOD and Cucurbita 

mavicyanin mature proteins (domains II and III). The Arabidopsis SE-ENOD (152 amino 

acids) is labeled as Sequen and Cucurbita mavicyanin (109 amino acids) is labeled as 

PDB: 1W. The residues marked by the “:” indicates identical residues and residues 

marked by the “.” indicates similar residues. The cysteine residues that appear to form a 

highly conserved disulfide bond are connected by brackets. The copper binding ligands 

His45, Cys86, His91 and Gln96 in mavicyanin are indicated by “     ” and the corresponding 

substituted residues Gln43, Ser85, Asn90 and Glu95 in SE-ENOD are indicated by “     ”.  
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2.3.2 SE-ENOD domain II tertiary structure homology modeling  

The tertiary structure of SE-ENOD was predicted by SWISS-MODEL based on 

the crystal structure of Cucurbita mavicyanin chain C as the template. This template was 

determined by a Similarity and Homology BLAST on FASTA @ EMBL-EBI.  As shown 

in Figure 2.1, Cucurbita mavicyanin shared the greatest identity and similarity with the 

SE-ENOD. The significantly low E value of 5.7e-12 is a good indicator that the 

mavicyanin can serve as an appropriate template for the SE-ENOD homology modeling. 

The SE-ENOD tertiary structure homology modeling was analyzed by PyMOL 

and shown in Figure 2.3. The predicted structure of SE-ENOD contains three pairs of 

antiparallel β-strands, three α helixes and several loops. The core structure is composed 

of the four β-strands E2-E3-E4-E5 that are arranged into a Greek key β-barrel topology. 

The Greek key β-barrel topology is composed of three up-down-up β-strands (E2, E3, 

and E4) labeled as hot pink, cyan, and blue, respectively, connected to the fourth down β-

strand (E5) labeled red. This fourth down E5 β-strand is located adjacent to the first up 

E2 β-strand through a long connection composed of a loop-helix-loop topology, labeled 

wheat. All the other connection loops are also labeled wheat.   

It is important to point out that the SE-ENOD tertiary structure prediction is based 

on a copper binding protein as a homologous template even though the four copper 

binding ligands shown in Figure 2.4 are all substituted. Residues Gln43, Ser85, and Glu95 

are located on predicted loop regions, while Asn90 is located on the predicted third α-

helix (H3) (Figure 2.4). Structural modeling studies of Medicago truncatula ENOD 

proteins, MtENOD16/20, indicated that the members in ENOD-like protein family do not 
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bind copper (Greene et al., 1998). This raises some uncertainty about the accuracy of the 

SE-ENOD tertiary structure based on the copper binding mavicyanin as the template. 

The common features of proteins in the ENOD-like subfamily of phytocyanins 

are a highly conserved disulfide bond and the substitution of copper binding ligands by 

other amino acid residues. Multiple sequence alignment of fourteen ENOD-like proteins 

generated by Clustal X 2.0.10 exhibited the two conserved Cys57 and Cys91 residues that 

form a putative disulfide bond (Figure 2.5). The SE-ENOD plastocyanin-like copper 

binding domain contains predicted Walker A (P-loop) and Walker B ATP binding motifs. 

The Walker A motif extends from residue Ala64 to Thr71 and Walker B motif extends 

from residue Lys92 to Asp104 (Figure 2.5). Based on this alignment, it is significant to 

point out that among the fourteen proteins only the SE-ENOD contains Walker A and 

Walker B motifs. 

The Walker A motif residues are also shown on the predicted tertiary structure 

model. The full Walker A motif extends from the third β-strand (E3) to the fourth β-

strand (E4) with the catalytic residue Lys70 side chain facing to the surface of the 

predicted model (Figure 2.4). In addition, the sequence of Cucurbita mavicyanin domain 

II (105 amino acids) is eight residues shorter than that of Arabidopsis SE-ENOD (113 

amino acids), thus the homology modeling for the SE-ENOD ends at residue Ile100. This 

eliminated the full sequence of Walker B motif (from Lys92 to Asp104) from showing in 

the predicted tertiary structure of the SE-ENOD.   
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Figure 2.3. Ribbon diagram of the predicted Arabidopsis SE-ENOD domain II tertiary 

structure with Cucurbita mavicyanin chain C as a template viewed from the side of the 

molecule. Based on the SWISS-MODEL homology modeling with mavicyanin chain C 

as the template, the SE-ENOD tertiary structure is predicted to be consisting of six β-

strands, three α-helixes and a few loops. The core structure is composed of a Greek key β 

barrel topology structure, containing E2-hot pink, E3-cyan, E4-blue, E5-red, arranged 

into two antiparallel β-strands (E1and E6, both labeled yellow), organized on one side of 

two α-helixes which are H1and H3 (both labeled green). The β-strands in the Greek key β 

barrel topology is normally connected by loops, however, in this prediction the 

connections between E2 and E3 are connected by loop-helix-loop structure, while other 

β-stands connections are made by loops labeled wheat in this diagram.  
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Figure 2.4. Ribbon diagram of the predicted functional regions and motifs of SE-ENOD 

domain II viewed above the theoretical copper binding center. The atoms of functional 

residues, two highly conserved cysteines, four substituted copper binding ligands and 

Walker A motif, are displayed in stick model with atoms labeled as carbon-cyan, 

hydrogen-wheat, nitrogen-blue, oxygen-red and sulfur-orange. The disulfide bond formed 

by Cys57 and Cys91 is labeled yellow. The four substituted copper binding ligands, Gln43, 

Ser85, Asn90 and Glu95 are indicated by their single letter code in purple, Q, S, N and E, 

respectively. The residues of Walker A motif located on the third β-strand (E3) and 

fourth β-strand (E4). The important catalytic residue Lys70 of the Walker A motif on E4 

is indicated by dots.  
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2.3.3 SE-ENOD functional regions and complex prediction 

As shown in Figures 2.4 and 2.5, the SE-ENOD contains a Walker A (P-loop) 

ATP-binding motif and Walker B magnesium-binding motif (Walker et al., 1982). 

Potential ATP binding pockets were predicted by an online based program Pocket-Finder 

(Hendlich et al., 1997), and the result was viewed and analyzed by PyMOL. This analysis 

predicted a potential ATP binding pocket in the SE-ENOD (Figure 2.6) established by 

three criteria. Firstly, the distance between the potential pocket and the Walker A motif 

residues should be suitable for binding an ATP molecule. Secondly, the diameter of the 

pocket needs to fit the size of ATP molecule. Thirdly, the prior potential pocket should be 

located on or near the surface of the SE-ENOD to allow accessibility of ATP to the 

binding site. Due to the length limitation of the mavicyanin sequence used for homology 

modeling, the full residues in Walker B motif were not included in the predicted tertiary 

structure. Therefore, the pocket for the magnesium ion is not predicted in this structure.  

The SE-ENOD and mavicyanin are phytocyanins belonging to a highly conserved 

protein family. The dimer complex form of the SE-ENOD is predicted by a protein-

protein docking server with suggestions from the tetrameric mavicyanin complex 

structure. An online-based docking prediction was performed by ClusPro. Most of the 

twelve docking complexes were filtered and one potential complex form was targeted as 

the most promising prediction (Figure 2.7). The criteria used for this filtering is mainly 

the potential ionic or hydrogen bond interaction formed by the interface residues and the 

hydrophobicity of the interface surface (Figures 2.7 and 2.8). Because relatively strong 

interactions need to be formed at the adjacent interface to guarantee a stable complex 

formation, the best prediction showed the interactions at the β-strand or α-helix interface 
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and the potential interacting residues located on their interface are labeled (Figure 2.7). It 

is possible that Lys65 from one SE-ENOD and Tyr81 from the other SE-ENOD, Thr64 from 

one SE-ENOD and Gly79 from the other SE-ENOD, Arg51 from one SE-ENOD and Ser61 

from the other SE-ENOD, form hydrogen bonds at the interface of the predicted 

complex. An ionic interaction possibly forms between Arg51 from one SE-ENOD and 

Asp52 from the other SE-ENOD (Figure 2.7). More importantly, hydrophobic interactions 

are very critical for protein complexes, therefore, the electrostatic potential map on the 

overall dimer complex and their interface were analyzed and revealed that the major 

interaction between the two SE-ENOD single molecules is hydrophobic (Figure 2.8). 
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Figure 2.6. Ribbon diagram of the SE-ENOD predicted tertiary structure and potential 

pocket for ATP binding viewed from the side of the molecule. The molecule is displayed 

by both line and cartoon models and atoms are labeled as carbon-cyan, hydrogen-wheat, 

nitrogen-blue, oxygen-red and sulfur-orange. Each residue, except Cys57 and Cys91 

labeled in yellow, is assigned to one color according to its conserved property (variable-

cyanneutral-whiteconserved-dark purple). The residues of Walker A motif, 

AX(4)GKT are displayed by a spheres model. All the predicted pockets in the SE-ENOD 

are labeled cyan, except the best candidate for ATP binding labeled in red.  
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Figure 2.7, Ribbon diagram of the predicted SE-ENOD dimer complex viewed from one 

side of the molecules. The two single SE-ENOD molecules were labeled light orange on 

the left and light purple on the right. The residues, Lys65, Tyr81, Gly79, Thr64, Asp52, Ser61 

and Arg51, from different molecules having potentials to interaction with each other are 

showed in stick model with atom labeled as carbon-cyan, hydrogen-wheat, nitrogen-blue, 

oxygen-red and sulfur-orange. 
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Figure 2.8. Electrostatic potential surface of the predicted docking model on the SE-

ENOD viewed from the side of the complex. The figure was generated by PyMOL using 

the relative vacuum electrostatics option contoured from     -50 (red) to     +50 (blue). 

Panel A shows the electrostatic surface of the overall dimer complex. Panel B shows the 

electrostatic interface of the left molecule. Panel C shows the electrostatic interface of the 

right molecule. 
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2.4 DISCUSSION  

In this chapter, bioinformatic approaches were applied to predict and characterize 

the structure of the Arabidopsis sieve element-specific early nodulin-like protein (SE-

ENOD). The secondary structure predictions suggested that the protein structure was 

composed of six strands, two or three helixes and a few random coils. Further SE-ENOD 

tertiary structure prediction indicated four β-strands arranged into a core Greek key β-

barrel organizing into another two antiparallel β-strands, termed as a cupredoxin fold that 

is a typical core structure in phytocyanins (Roberts et al., 2002). Phytocyanins in higher 

plants such as plastocyanins, mavicyanins and stellacyanins bind copper and participate 

in electron transport reactions (Gewirth and Solomon, 1988; Hart et al., 1996; Xie et al., 

2005). The ENOD5-type subfamily of the phytocyanins, however, adopt the cupredoxin 

fold structure, but have substituted the copper binding ligands and have theoretically lost 

the electron transport function  (Greene et al., 1998). 

ENODs are a heterogeneous group of plant proteins that are normally expressed 

in response to lipo-chitooligosaccharide Nod factors synthesized by rhizobia at the initial 

stages of nodulation in legumes (Combier et al., 2007). Multiple sequence alignment with 

the Arabidopsis ENODs reveals that the domain II is highly conserved among the family 

members (Figure 2.5). It is remarkable that 95% of the extremely conserved residues 

such as Ser45, Val46, Leu47, Val49, Tyr82, Phe83, Ile84, Ser85, Gly86, Val99, and Val101 in the 

SE-ENOD are hydrophobic residues within the cupredoxin fold and are probably 

involved in forming elements of the secondary structure. Typical of the ENOD subfamily 

of phytocyanins, the two conserved cysteines formed a putative disulfide bond in the 

predicted tertiary structure. This disulfide bond has been proposed to be essential in 
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stabilizing the twisted adjacent β-strands (Guss et al., 1996). In Figure 2.4, this disulfide 

bond connects the second helix (H2) and third helix (H3) closing the distance between 

the second β-strand (E2) and the fifth β-strand (E5), that is important to form the Greek 

key β-barrel topology. This topology requires the fourth β-strand (E5 in the SE-ENOD 

predicted structure) to be located adjacent to the first β-strand (E2 in the SE-ENOD) in a 

reverse orientation (Figure 2.3 and 2.4).  

Arabidopsis ENOD-like genes are expressed in highly-specialized cell types 

including phloem sieve elements as well as the male and female gametophytes in 

reproductive tissues (Kouchi and Hata, 1993; Scutt et al., 2003). The presence of Walker 

A (P-loop) and Walker B motifs (Figure 2.5) only in the SE-ENOD suggests that the 

protein could have evolved a unique function among the Arabidopsis ENODs. The 

Walker A motif interacts with the phosphate groups of the nucleotide in the presence of 

magnesium ions. The functional residues on Walker A motifs (Figure 2.4) are predicted 

to be located on the surface of the protein with Lys70 side chain exposed to the solvent 

area and the candidate pocket was located near the ATP binding center (Figure 2.6). The 

combined results suggest the SE-ENOD could perform an alternative function that 

involves the binding of ATP in the vascular tissue. 

Sieve elements are terminally differentiated cells with a well-developed system of 

endomembranes composed primarily of the sieve element plasma membrane and sieve 

element reticulum. In light of the highly modified anatomy of sieve elements, the 

relationships of membrane proteins could serve critical roles in regulating physiological 

interactions of these cells. It has been proposed that microdomains, also called lipid rafts, 

play an important role in organizing proteins within the plasma membrane of sieve 
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elements. The targeting of proteins to lipid raft microdomains can increase the local 

protein concentration and consequently facilitate their interaction, including homo- or 

hetero-oligomeric interactions (Grennan, 2007). There is experimental evidence 

indicating that the SE-ENOD is a glycosylphosphatidylinositol-anchored protein (GPI-

anchored protein) (Khan et al., 2007). The association of GPI-anchored proteins with 

lipid rafts and the importance of these interactions has been the topic of considerable 

research (Sangiorgio et al., 2004). GPI-anchored proteins could play an important role in 

stabilizing the position of lipid rafts by maintaining interactions with components of the 

plant cell wall. On the other hand, the lipid environment could enhance protein activities 

by influencing their conformation (Garcia et al., 2003). It has yet to be demonstrated 

whether the SE-ENOD co-localizes with integral plasma membrane proteins to affect 

their function. Recent evidence has shown that the dimer form of the SUT1 sucrose 

transporter in Solanum tuberosum was present in lipid rafts and the activity of sucrose 

uptake was enhanced by this form. It was proposed that the significant increase in activity 

was a result of conformational changes induced by oxidants with inter- or intramolecular 

disulfide bridges as the major contributors. This oxidative stimulation can positively 

regulate the flexibility of the SUT1, and stimulation can be abolished by thiol modifying 

agents (Krugel et al., 2008). A similar regulatory mechanism could affect the SE-ENOD 

because it also contains structurally important disulfide bridges.  

Recent studies revealed that a complex protein profile of 270 proteins had been 

identified by proteomic approach in lipid rafts of Medicago truncatula root plasma 

membrane, including proteins such as H+-ATP synthase and voltage-dependent anion 

channels (Lefebvre et al., 2007). Significantly, a complete redox protein system was 
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shown to exist in the Medicago truncatula root plasma membrane lipid rafts. Several 

putative cytosolic NADH-ubiquinone oxidoreductases, apoplasm-facing L-ascorbate 

oxidase and peroxidases had been detected (Lefebvre et al., 2007). Based on the 

electrostatic potential distribution of the predicted SE-ENOD dimer, several charged 

hydrophilic residues were regularly distributed on the surface (Figure 2.8). It is possible 

that the solvent-exposed side chains of these residues are involved in interactions with 

other lipid raft proteins. These interactions could provide an alternative function of SE-

ENOD in sieve element plasma membrane and further build a cohesive picture of 

membrane-associated protein-protein interactions in combination with signal transduction 

pathways involved in phloem long distance transport.  

Based on the structural predictions, it is reasonable to conduct further 

investigations to determine whether the SE-ENOD is involved in protein-protein 

interactions. Empirical studies to resolve the structure by X-ray crystallography or 

nuclear magnetic resonance are required to validate the predicted structures and docking 

models for the SE-ENOD. 
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CHAPTER III 
 

 

FUNCTIONAL STUDIES OF SE-ENOD 

 

3.1 INTRODUCTION 

Sieve elements, with their highly modified cellular anatomy, rely on both the 

intimately associated companion cells as well as a highly organized endomembrane 

system to transduce information with functional consequences. The SE-ENOD is a 

plasma membrane associated protein with several structural characteristics that are 

consistent with a function as an information transducing molecule. The protein is post-

translationally modified by the covalent attachment of a glycosylphosphatidylinositol-

anchor (GPI-anchor), which is thought to attach the protein to the extracellular leaflet of 

the plasma membrane (Khan et al., 2007). Previous studies indicate that GPI-anchored 

proteins play important roles in connecting the communication of cell exterior and 

interior through their function as enzymes or receptors in the extracellular matrix (Borner 

et al., 2002; Elortza et al., 2003; Sardar and Showalter, 2007). Recently, a GPI-anchored 

arabinogalactan-protein was shown to structurally interact with transmembrane callose 

synthase and produce downstream effects on class VIII myosin in Tobacco BY-2 cells 

(Sardar and Showalter, 2007).  
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The mature SE-ENOD is composed of two domains, the plastocyanin-like copper 

binding domain II and the serine/proline-rich domain III. The proline/serine-rich domain 

III, which is GPI anchored to the plasma membrane, could serve as a flexible hinge for 

the globular domain II. As is the case for other members of the cupredoxin superfamily, 

domain II is predicted to adopt an overall cupredoxin fold structure. Amino acid 

substitutions of the four copper binding ligands in domain II, however, suggest that like 

other members of the ENOD subfamily, the protein does not bind copper and has 

undefined physiological functions other than electron transport. The presence of Walker 

A (P-loop) and B motifs in this domain suggests that the protein could serve an 

alternative function as an ATP-binding molecule within the extracellular matrix. 

Structural modeling experiments of domain II described in Chapter II predicted that the 

functional residues of Walker A motif are solvent exposed within a suitable ATP sitting 

pocket. Interestingly, recent studies revealed that a putative ATP-binding protein located 

in the extracellular leaflet of Arabidopsis root plasma membrane performed the functions 

of regulating extracellular ATP and initiating plant wound responses (Demidchik et al., 

2009).  

The regulatory roles of extracellular nucleotides in plant signaling responses are 

poorly studied, despite the observations that these signaling mechanisms exist in very 

primitive plants. In contrast, the regulatory function of extracellular nucleotides in 

animals is well established, and animal studies provide good examples to guide 

investigations of extracellular nucleotide signaling in plants. For example, purinoceptors 

in green algae are structurally similar to mammalian receptors and were shown to 

regulate the eATPs that function as wound signals (Burnstock, 1996). It is now believed 
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that plant responses to extracellular ATP, ADP, and analogues, such as ATPγS and 

ADPβS, occur primarily through fluxes in cytoplasmic calcium (Jeter and Roux, 2006). 

There are several examples demonstrating the importance of calcium fluxes in regulating 

physiological events within mature sieve elements (Eckardt, 2001). 

The structural modeling studies described in Chapter II also predicted that SE-

ENOD subunits interact either as a homodimer or with other proteins primarily through 

hydrophobic interactions on the surface of domain II. The GPI anchored proteins, like the 

SE-ENOD, are often located in lipid raft microdomains placing them in proximity to 

other proteins that are associated with the sieve element plasma membrane. 

Conformational changes induced by this specialized lipid environment could influence 

such intra- or inter-molecular interactions. For example, the SUT1 sucrose transporter in 

Solanum tuberosum showed elevated sucrose transport activity as a dimer when targeted 

to lipid rafts (Krugel et al., 2008). SE-ENOD interactions could be a function of its 

conformation in the highly specialized environment within sieve element plasma 

membranes. 

            Microbial expression systems, including Escherichia coli (E. coli) and 

Sacchromyces cerevisiae, are well-established molecular tools to generate recombinant 

proteins for functional and mutagenesis studies (Frommer and Ninnemann, 1995; 

Rajagopala and Uetz, 2009). In this chapter, wild-type and mutated versions of the SE-

ENOD domain II were expressed in E. coli to test whether the ATP-binding motifs are 

functional. The ability of domain II to form homodimers as predicted in silico was 

analyzed in yeast two hybrid experiments.  
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3.2 MATERIALS AND METHODS 

3.2.1 Amplifying wild type and mutated versions of SE-ENOD domain II  

          The 336 bp DNA sequence encoding the SE-ENOD domain II extending from 

amino acid Arg1 to Ala112 was PCR amplified from the RS6-ORF full-length cDNA 

(NCBI accession no. AAP88350) in pCDNA3.0 vector with primers No.1 and No.2 

(Table 3.1). The template and primers were added to PCR Master Mix (Promega, catalog 

no. M7502), and PCR amplification was performed following a standard program  (94°C 

2 min: 35 cycles of 94°C, 30 sec - 57°C, 30 sec - 72°C, 30 sec: 72°C, 10 min).  

          The Walker A motif A64X(4)G69K70T71 in domain II was mutated to 

T64X(4)A69A70A71 through a series of PCR reactions. The 336 bp wild-type domain II 

amplicon generated in the initial experiment was used as a template for two PCR 

reactions using the conditions as described above. Segment I was amplified using primers 

No. 1 and 3 (Table 3.1) resulting in a 237 bp DNA fragment that encoded the equivalent 

peptide extending from Arg1 to Gly79. Segment II was amplified using primers No. 4 and 

5 (Table 3.1) resulting in a 171 bp DNA fragment that encoded the equivalent peptide 

extending from Cys56 to Ala112. The mutated domain II sequence was obtained by a third 

PCR reaction that amplified a 336 bp DNA sequence from segments I and II as templates 

and primers No. 1 and 5 (Table 3.1). PCR reactions were conducted using the conditions 

previously described.  

3.2.2 Amplifying ATP binding domain from E. coli DnaA 

          A 717 bp DNA sequence encoding the ATP binding domain, with both Walker A 

and B motifs, from the chromosomal replication initiator DnaA protein of E. coli 
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BL21(DE3) was PCR amplified using High Fidelity Platinum Tag DNA Polymerase kit 

(InVitrogen, catalog no. 11304-011). Genomic DNA from an E. coli BL21(DE3) single 

colony culture served as the template for the PCR reaction using the standard program 

(94°C 2 min: 35 cycles of 94°C, 30 sec - 57°C, 30 sec - 72°C, 60sec: 72°C, 10 min) with 

primers No. 6 and 7 (Table 3.1). 

3.2.3 Constructs, bacterial strains and culture conditions for E. coli  

          The amplicons encoding the SE-ENOD wild type and mutated domain II as well as 

the DnaA ATP binding domain were individually inserted into the 5’ NdeI and 3’ XhoI 

restriction sites of the modified pET28 vector (pSKB3) containing an N-terminal 6xHis 

tag and a Tobacco etch virus (TEV) cleavage site (ENLYFQG). Plasmids containing the 

recombinants were inserted into competent E. coli BL21(DE3) cells using the 

Electroporator 2510 (1800 V).  

          Recombinant proteins were expressed in 1 liter of E. coli BL21(DE3) cells grown 

in Luria Bertani (LB) medium containing 50µg/ml kanamycin (Sigma, EC no. 246-933-

9) at 18°C on a rotary shaker (250 rpm) for 22 hours. Growth of the cultures was 

monitored by measuring absorbance at A600 and were induced by the addition to a final 

concentration of 1 mM IPTG (GOLDBIO, catalog no. I2481C25) when cultures had 

reached an absorbance of A600=0.8 to 1.0. Initial induction experiments were conducted 

under similar growth conditions at 37°C for a total of 4 hours. The induced cells were 

harvested by centrifugation at 5,000 rpm for 25 minutes with a JLA 9.1000 rotor in 

Avanti J-E centrifuge (Beckman Coulter) and the pellets were stored at -80°C (Krumm et 

al., 2008).  
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3.2.4 Recombinant protein purification  

          The induced E. coli cell pellets were resuspended with 30 ml of 1% sarkosyl 

(Catalog No.61207-5000; Acros, Morris Plains, NJ, USA) in buffer A (50 mM Tris, pH 

7.9, 500 mM NaCl, 25 mM imdizole and 10% glycerol) by rocking at room temperature 

for 30 minutes. The cells were lysed by sonication (550 Sonic Dismembrator, Fisher 

Scientific) with two bursts of 3 seconds on, 3 seconds off for a total time of 1 minute. 

After sonication, the cell lysates were centrifuged at 16,000 rpm for 30 minutes using a 

JA-20 rotor in Avanti J-E centrifuge (Beckman Coulter) at 4°C. Supernatants (30.25 ml) 

were transferred into a new 50 ml tube. CHAPS (J.T. Baker Inc, catalog no. 4145-00) and 

Triton X 100 (Fisher Biotech, catalog no. CAS9002-93-1) were added to the final 

concentration of 20mM CHAPS and 2% Triton X 100. The 35.25 ml mixtures were 

rocked at room temperature for 30 minutes and loaded onto 500 µl of resuspended Ni-

nitrilotriacetic acid (NTA) (Qiagen, catalog no.1018611) affinity column matrix. Non-

specific background proteins were washed off with 800 ml of buffer A. Finally, 6xHis-

tagged recombinant proteins were eluted by buffer B (20 mM Tris, pH 7.9, 500 mM 

NaCl, 250 mM imidizole and 10% glycerol) at 4°C (Krumm et al., 2008; Tao et al., 

2010).  

          The proteins were further purified by high-performance liquid chromatography 

(HPLC). The Ni-NTA purified recombinant proteins were centrifuged at 14,000 rpm for 

15 minutes at 4°C in a microfuge to clarify the samples of insoluble aggregates. The 

Superdex 200 (GE Healthcare, catalog no. 17-5175-01) size exclusion column was 

equilibrated by loading pre-chilled equilibrium buffer (20 mM Tris, pH 7.9, 500 mM 

NaCl and 10% glycerol) onto the AKTA Explorer HPLC (Pharmacia Biotech). Cleared 
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samples were injected into the HPLC with a 1ml syringe and separated using the program 

“S200 without equilibrium” with a flow rate of 0.3 ml/min. Samples were collected in 42 

fractions representing different molecular weights. Proteins (10 µl) from even numbered 

fractions from 16-40 were visualized by 4-20% SDS-PAGE, and the recombinant 

proteins were present in fractions 30-32. Fractions 30, 31, and 32 (500 µl each) were 

combined and concentrated with a 10 kDa molecular weight cut off Amicon Ultra 

centrifugal filter device (MILLIPORE, catalog no. UFC901008) to a final concentration 

of 0.5 mg/mL (Krumm et al., 2008).  

3.2.5 Nitrocellulose filter ATP-binding assay  

          A nitrocellulose filter binding assay suitable for detecting ATP-protein interactions 

was adapted from Sekimizu and co-workers (1987). Briefly, the negatively charged 

nitrocellulose filter binds and immobilizes proteins with a net positive charge. Proteins 

binding [α-32P]ATP will be retained on the filter and bound radioactivity can be measured 

in a liquid scintillation counter.  

          Individual reactions containing 3 picomoles or 30 picomoles of recombinant wild-

type domain II,  mutated domain II, DnaA ATP binding domain, and BSA were 

incubated with 1 mM [α-32P]ATP (25 Ci/mmol) (MP BIOMEDICALS, LLC, serial no. 

427121) at 0°C for 15 minutes in 25µl of buffer C (50 mM Tricine-KOH pH 8.25, 0.5 

mM magnesium acetate, 0.3 mM EDTA, 20% glycerol (v/v), 0.007% Triton X-100, and 

7 mM dithiothreitol). Individual reactions were filtered through a glass filter apparatus 

containing a 0.22 µM  nitrocellulose membrane (MILLPORE, catalog no. GSWP02500) 

that had been presoaked in buffer D (50 mM Tricine-KOH pH 8.25, 10 mM (NH4)2SO4, 
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0.5 mM magnesium acetate, 0.3 mM EDTA, 5 mM dithiothreitol, 17% glycerol (v/v), 

0.005% Triton X-100). Filters were washed with 30 ml of buffer D to remove any 

unbound [α-32P]ATP. Radioactivity retained on the filters was measured in a Multi 

Purpose Scintillation Counter (Beckman Coulter) in 4 ml Ecolume (MP 

BIOMEDICALS, LLC, catalog no. 882470) (Sekimizu et al., 1987). One replicate was 

conducted for each of three experiments. The data were analyzed with the 32P 

radioactivity counts recorded by liquid scintillation counter in Microsoft Excel. The 

change in ATP binding was calculated by dividing the difference in the 32P radioactivity 

counts between the high (30 picomole) and low (3 picomole) protein concentration by the 

difference in the protein concentration (27). The average counts per picomole protein and 

the standard errors of the three replicates were calculated and shown in Figure 3.3. 

3.2.6 Yeast two hybrid analysis  

          A 336 bp DNA sequence encoding the SE-ENOD domain II was amplified by PCR 

using the previously described wild type domain II PCR amplicon as the template. The 

template DNA and primers No. 8 and 9 (Table 3.1) were added to the PCR Master Mix 

(Promega, catalog no.M7502) and amplification was conducted using the standard 

program (94°C, 2 min: 35 cycles of 94°C, 30 sec - 57°C, 30 sec - 72°C, 30 sec: 72°C, 10 

min). A 456 bp DNA sequence encoding the SE-ENOD domain II/III extending from 

amino acid Arg1 to Asn152 was PCR amplified with the RS6-ORF full-length cDNA 

(NCBI accession no. AAP88350) in pCDNA3.0 vector as the template using the same 

conditions with primers No.10 and No.11. The template and primers were added to PCR 

Master Mix (Promega, catalog no. M7502), PCR amplification was performed following 
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a standard program  (94°C 2 min: 35 cycles of 94°C, 30 sec - 57°C, 30 sec - 72°C, 30 

sec: 72°C, 10 min).   

         The domain II and domain II/III amplicons were inserted into the 5’ EcoRI and 

3’BglII restriction sites of the plasmid pRM1151 GAD-C1(LEU) and pRM1154 GBDU-

C1(URA). The recombinant pRM1151 plasmid and pRM1154 plasmid were mixed with 

the S. cerevisiave MATa PJ69-4A (yRM1757) and MATα PJ69-4α (yRM1756) strains, 

respectively, in 40% PEG transformation buffer and vortexed for 1 minute followed by 

incubation for 1 hour at 30°C on a roller drum. The cells were then heat shocked for 10 

minutes at 42°C and pelleted by centrifugation at 3,000 rpm for 3 minutes in a microfuge. 

Cells were resuspended in sterile ddH2O and plated on selective plates.     

          The yRM1756 containing pRM1154 plasmids and yRM1757 strains containing 

pRM1151 plasmids were mated on yeast-peptone-dextrose (YPD) plates over night at 

30°C. Diploids were selected on synthetic complete (SC) plates lacking both uracil and 

leucine over night at 30°C. Diploids were transferred with a multiprong transfer device to 

SC plates lacking both uracil and leucine (-ura/-leu), histidine (-his) and adenine (-ade). 

Interactions were detected by scoring the growth of diploid colonies on the respective 

plates after incubation at 30°C for 2-3 days. 
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Table 3.1. DNA sequences of primers used in PCR reactions for microbial expression 

experiments1. 

 

No. Primers Oligonucleotides 
1 II-wt-forward 5’-GGGTTTCATATGAGAGAGTTTACGGTCGGTG-3’ 

2 II-wt-reverse 5’-CCGCTCGAGTTATGATGCGGTGTTTTTG- 3’ 

3 II-mut-1-reserve 5’-GCCCAGAGTGGTTCAGCGTGACAGAAGCTGCAGC 

ATCGGCGAATTTAGTGGTTGGTGAGTCCGTGTTGCAG-3’ 

4 II-mut-2-forward 5’-CTGCAACACGGACTCACCAACCACTAAATTCGCC 

GATGCTGCAGCTTCTGTCACGCTGAACCACTCTGGGC-3’ 

5 II-mut-reverse 5’-CCGCTCGAGTCATGATGCGGTGTTTTTG-3’ 

6 DnaAATP-forward 5’-GGGTTTCATATGAAACACACGTTTGATAAC-3’ 

7 DnaAATP-reverse 5’-CCGCTCGAGTCACAGTTTTTCCTGCAATGCC-3’ 

8 Y2H-II-forward 5’-CCGGAATTCAGAGAGTTTACGGTCGGTG-3’ 

9 Y2H-II-reverse 5’-GGAAGATCTTCATGATGCGGTGTTTTTG-3’ 

10 Y2H-II/III-forward 5’-CCGGAATTCAGAGAGTTTACGGTCGGTG-3’ 

11 Y2H-II/III-reverse 5’-GGAAGATCTTCAGTTTGGAGTGTCTT-3’ 

1Primers were diluted to a final concentration of 0.5µM  for individual PCR reactions. 
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3.3 RESULTS 

3.3.1 Domain II ATP binding assays 

 The ENOD subfamily of cupredoxins represents a significant functional 

divergence from the single electron transport reactions that typify other members of the 

superfamily. While the function of members of the ENOD5 subfamily is unknown, it is 

of interest to note that this class of proteins is found in highly specialized tissues such as 

nodules, gametophytes, and sieve elements of the phloem. ENODs appear to have lost the 

ability to bind copper, essential for electron transport, but retain the structural copper-

binding pocket (see Chapter II). Interestingly, the Arabidopsis SE-ENOD has evolved 

signature motifs of the well characterized Walker A (P-loop) and B nucleotide binding 

sites located near the surface of domain II. Significantly, the SE-ENOD is the only 

member of the Arabidopsis ENOD-like protein family to contain complete Walker A and 

B domains, although, other members contain partial motifs (see Chapter II).  

 Experiments were conducted to determine whether the domain II of the SE-

ENOD was capable of binding ATP. As a true negative control, the Walker A motif 

A64X(4)G69K70T71 in domain II was mutated to T64X(4)A69A70A71. Both SE-ENOD wild-

type domain II and mutated domain II are 112 amino acids in length with a calculated 

molecular mass of 12 kDa. The recombinant proteins included a 6xHis-tag and a TEV 

cleavage site extending the length to 138 amino acids with a calculated molecular mass of 

15 kDa. In an induction test conducted with cultures grown at 37°C, a fusion protein with 

an apparent molecular weight of 16 kDa was induced within one hour after the addition 

of IPTG that accumulated to a maximum amount within three hours (Figure 3.1A). 
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Similar results were obtained for both the wild type and mutated domain II recombinant 

proteins. The induced protein was confirmed as SE-ENOD domain II by immunoblotting 

with the RS6 monoclonal antibody (Figure 3.1B).  

The recombinant proteins primarily accumulated within insoluble inclusion 

bodies in E. coli cells grown at 37°C. Initial attempts to isolate soluble domain II peptides 

using native Ni-NTA purification resulted in co-purification of multiple E. coli proteins. 

Because the mutated domain II protein serves as a true negative control, colorimetric 

ATPase activity assays (QuantiChromTM ATPase/GTPase Assay Kit, BioAssay Systems, 

catalog no. DATG-200) were conducted using the partially purified wild type and mutant 

domain II (data not shown). ATPase activity assays showed similar ATPase activity (16 

micromoles ATP hydrolyzed by 1 microgram protein) for both wild type and mutated 

fusion domain II samples. The ATPase activity was attributed to endogenous E. coli 

proteins that co-purified with the recombinant domain II proteins. 

An increased amount of soluble recombinant proteins was obtained by growing 

the E. coli cultures overnight at 18°C. Furthermore, recombinant proteins were isolated 

from the E. coli cultures following the procedures for difficult to solublize proteins 

described by Tao et al. (2010). This proceedure utilizes sarkosyl in the isolation buffer to 

gently enhance the solublization and recovery of recombinant proteins that readily form 

inclusion bodies. The initial native Ni-NTA affinity purification step resulted in 

considerable enrichment of the domain II recombinant proteins (Figure 3.2, lanes 2 and 

5). The proteins were further purified by HPLC size exclusion chromatography (Figure 

3.2, lanes 3 and 6).   
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          The initial colorimetric assays to assess ATPase activity were replaced with a 

radioactive-ATP binding assay as a more sensitive and directed test to determine whether 

domain II binds ATP. The ATP binding domain from the chromosomal replication 

initiator DnaA protein of E. coli BL21(DE3) contains both Walker A (GX(4)GKT) and B 

motifs (KX(7)hhhhD) that are very similar to the Walker A (AX(4)GKT) and B 

(KX(7)hhhhD) motifs in the SE-ENOD domain II. The 239 amino acids domain is of 

similar size to domain II and thus, served as a good positive control for the [α-32P]ATP-

binding assays. The mutated domain II recombinant protein served as the true negative 

control, and bovine serum albumin (BSA) served as a non-specific protein negative 

control. ATP binding was assessed as the difference in the amount of radioactivity in 

binding reactions with 3 picomoles and 30 picomoles of test protein in three replicated 

experiments. As shown in Figure 3.3, the binding of ATP by the wild type SE-ENOD 

domain II (162 counts/picomole) was about half of the binding recorded for the DnaA 

positive control (312 counts/picomole). Both negative controls, the mutated SE-ENOD 

domain II (-7.6 counts/picomole) and BSA (3.58 counts/picomole) showed minimal 

differences in ATP binding between the two protein concentrations. These results 

indicate that domain II of the SE-ENOD is capable of binding ATP, however, these 

experiments are preliminary and additional experiments must be conducted to fully 

attribute this function to the SE-ENOD.  
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Figure 3.1. Time course analysis of the recombinant SE-ENOD domain II expressed in E. 

coli and immunoblotting with the RS6 monoclonal antibody. Expression of the 

recombinant SE-ENOD domain II was induced by addition of 1mM IPTG  in E. coli 

BL21(DE3) cells cultured at 37°C. Aliquots of 1 ml were collected at 1, 2, 3, and 4 hours 

following the addition of IPTG. The cells were collected by centrifugation and lysed in a 

buffer containing 20 mM Tris pH 8.0, 8 M Urea and 2% SDS. Molecular weight 

standards in kDa are shown at the left. Panel A. Proteins in the E. coli cell lysate (20 µL) 

were separated on a 4-20% gradient SDS-polyacrylamide gel and stained with Coomassie 

Blue. Panel B. Immunoblot of duplicate SDS-PAGE of proteins in E. coli cell lysate (10 

µl ) detected with the RS6 monoclonal antibody (1:5000 dilution). The time points for 

each sample are indicated in both panels A and B. 
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Figure 3.2. Purification of recombinant SE-ENOD wild type (lanes 1-3) and mutated 

(lanes 4-6) domain II proteins. Recombinant SE-ENOD peptides in E. coli lysates (lanes 

1 and 4) were sequentially purified on Ni-NTA affinity chromatography (lanes 2 and 5) 

followed by HPLC size exclusion chromatography (lanes 3 and 6). Protein fractions (10 

µl lanes 1 and 4; 10 µg lanes 2, 3, 5, 6) were loaded on a 4-20% gradient SDS-

polyacrylamide gel and visualized by Coomassie blue stain. The position of molecular 

mass standards in kDa is shown on the left.  
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Figure 3.3. Nitrocellulose filter ATP-binding assay. The ATP binding activity ([α-

32P]ATP radioactivity counts per picomole protein) for DnaA ATP binding domain 

(DnaA), wild type domain II (II), mutated domain II (II-m) and BSA (BSA) are 

represented as blue bars. The blue bars are the mean +SD of three replicates. 
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3.3.2 Dimerization analysis by yeast-two-hybrid system 

The structural predictions described in Chapter II indicated that an exposed 

hydrophobic face in domain II would allow homodimers to form between two SE-ENOD 

subunits. Yeast two hybrid experiments were conducted to provide an empirical test to 

determine whether SE-ENOD proteins (domains II/III) or the isolated domain II peptides 

dimerize. The yeast two hybrid system takes advantage of the properties of the budding 

yeast Sacchromyces cerevisiae (S. cerevisiae) GAL4 protein that functions as a 

transcriptional activator of the genes encoding enzymes in galactose utilization process. 

The GAL4 protein has an N-terminal DNA binding domain (BD) and a C-terminal 

transcriptional activation domain (AD). The two domains can be physically separated and 

maintain their specific individual functions. When the two domains are brought together 

into close physical proximity by intermolecular protein interactions between proteins 

fused to the domains, the GAL4 protein is functionally reconstituted as a transcriptional 

activator. This is accomplished experimentally by mating two haploid yeast strains; one 

containing a BD plasmid and the other an AD plasmid. The expression of reporter genes, 

such as HIS or ADE, under the regulation of promoters that contain the activation 

sequences recognized by the DNA binding domain of the system serve as indicators for 

positive protein-protein interactions that will allow the mated diploid yeast strains to 

grow on histidine or adenine deficient media (McAlister-Henn et al., 1999). 

The budding yeast S. cerevisiae spindle positioning protein Kar9 has a well-

defined interaction with another spindle positioning protein Bim1 (Meednu et al., 2008). 

To serve as a positive control for the analysis, pRM1154-BD plasmid containing Kar9 

protein sequence and pRM1151-AD plasmid containing Bim1 protein sequence were 
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transformed into S. cerevisiae yRM1757 and yRM1756 strains, respectively. As negative 

controls, strains containing empty AD plasmid (E-AD) were mated with strains 

containing empty BD plasmid (E-BD). The pRM1151-AD plasmid contains the gene for 

synthesizing leucine, therefore, the yeast strains containing AD plasmid can be selected 

by growing on leucine deficient plates (-leu). The pRM1154-BD plasmid contains the 

gene for synthesizing uracil, therefore, the yeast strains containing BD plasmid can be 

selected by growing on uracil deficient plates (-ura). The diploid yeast containing both of 

the plasmids can be selected on leucine and uracil double deficient plates (-leu/-ura).  

Growth of the diploid colonies on the -leu/-ura media (top) of panels A-E in 

Figure 3.4 demonstrated successful matings between all of the constructs made in the 

BD-plasmids and AD-plasmids, including the empty vectors (E-BD and E-AD). Colony 

growth on both the –his (middle) and –ade (bottom) media of the Kar9 and Bim1 positive 

control and the lack of growth of the empty vector negative controls on the respective 

selective media shown in Panel A demonstrated that the experimental system was 

functioning correctly.  

The SE-ENOD domain II and the mature SE-ENOD protein (domains II/III) were 

each cloned into pRM1151-AD and transformed into yRM1757 strains. Likewise, 

domain II or domains II/III were each cloned into pRM1154-BD and transformed into 

yRM1756 strains. Haploid yeast cells were mated by crossing the two strains containing 

corresponding plasmids to generate multiple combinations that were replicate-plated on 

either –ura/-leu media, -his media, or –ura media. Figure 3.4 shows the results of the 

various combinations: domain II-AD x domain II-BD (Panel B); domain II/III-AD x 

domain II/III-BD (Panel C); domain II-AD x domain II/III-BD (Panel D); and domain 
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II/III-AD x domain II-BD (Panel E). All of the yeast containing SE-ENOD combinations 

failed to grow on both –his and –ade plates. These results failed to confirm the predicted 

structural model that the SE-ENOD forms homodimers.      
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Figure 3.4. Domain II and domain II/III dimerization analysis in the yeast two hybrid 

system. Diploid two-hybrid reporter strains were generated by crossing yRM1757 

containing recombinant II-AD, II/III-AD in pRM1151or empty-AD (pRM1151) plasmid 

with yRM1756 containing II-BD, II/III-BD in pRM1154 or empty-BD (pRM1154). 

Diploid colonies were replicate plated on SC-ura/-leu, SC-his and SC-ade media (from 

top to bottom, mating types are indicated on each plate). Panel A shows the Kar9-BD and 

Bim1-AD positive interaction. The dimerization tests for SE-ENOD domain II or II/III 

are shown as follows: panel B is II-BD x II-AD, panel C is II/III-BD x II/III-AD, panel D 

is II/III-BD x II-AD, and panel E is II-BD x II/III-AD. The negative control strains 

containing the empty-BD (E-BD) plasmid x empty-AD (E-AD) plasmid were present 

multiple times on each plate. Two replicates were blotted on each plate. 
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3.4 DISCUSSION  

Extracellular ATP signaling in phloem: a functional model for the SE-ENOD 

Plant cells respond to wide range of intrinsic and extrinsic signals, such as 

hormones, elicitors, stimuli, and some intermediate metabolites. Besides these traditional 

signals, studies focusing on nucleotide effects on plant biological processes proposed 

extracellular adenosine triphosphates (eATP) to be an additional extrinsic signal in plants 

(Jeter and Roux, 2006). Evidence is accumulating that eATP influences physiological 

development in Arabidopsis, such as plasma membrane depolarization in root hairs (Lew 

and Dearnaley, 2000), inhibition of auxin transport (Tang et al., 2003), and obstruction of 

pollen germination (Roux and Steinebrunner, 2007). ATP is the energy currency for all 

living organisms and mostly exists within organelles, such as mitochondria or 

chloroplasts, and the cytoplasm. Increasingly, studies revealed that plant cells efflux ATP 

from the cytoplasm into the extracellular matrix mainly through two processes. One is 

that ATP passively diffuses from the intracellular matrix to extracellular matrix when the 

plasma membrane is disrupted by wounding. The other alternative process is that efflux 

occurs by active transport via three mechanisms: ATP exocytosis by secretory vesicles, 

anion channels, and multidrug resistance (MDR) transporters (Sauer et al., 2000; Bowler 

et al., 2001; Song et al., 2006). The function of eATPs by active transport into the 

extracellular matrix is poorly defined, however, evidence of eATP influencing plant cell 

viability has been reported (Tang et al., 2003; Jeter et al., 2004; Chivasa et al., 2005).   

Studies suggest that eATP released by disruptions in the plasma membrane serves 

as an important signal for plant stress responses. The concentration of eATP at plant 
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wound sites was recorded as high as millimolar levels at the moment of the wound, 

gradually decreasing to micromolar levels around the wound site. However, the 

micromolar levels of eATP appear to be sufficient to trigger wound responses (Song et 

al., 2006). It was suggested that plants respond to eATP by rapidly increasing 

cytoplasmic calcium as an early step in multiple signal transduction pathways 

(Demidchik et al., 2003). Notably, callose deposition and forisome plugging are two 

critical calcium-dependent injury responses in the sieve elements of the phloem (Zabotin 

et al., 2002; Furch et al., 2007). In plants, the cytosolic free calcium concentration is 

maintained by membrane associated Ca2+-release channels (Dodd et al., 2010). A recent 

study revealed that a putative ATP binding protein in the plasma membrane of 

Arabidopsis roots senses eATP to activate a plasma membrane NADPH oxidase resulting 

in the production of reactive oxygen species (ROS) (Demidchik et al., 2009). This signal 

further activated plasma membrane hyperpolarization-activated Ca2+ influx channels and 

promoted Ca2+ release from endoplasmic reticulum or vacuole. Eventually, the 

transcription of stress-signaling mitogen-activated protein kinase MPK3 was activated.   

          Efficient metabolism of eATP within the extracellular matrix appears to be critical 

to maintain normal physiological conditions. Therefore, multiple mechanisms responding 

to eATP could exist in plants. The SE-ENOD has several characteristics that suggest a 

role in the eATP regulatory pathway as an ATP sensor. The SE-ENOD is anchored to the 

extracellular leaflet of sieve element plasma membrane where it could sense increasing 

eATP concentrations as cytoplasmic ATP is released to extracellular matrix in response 

to wounding. In order to amplify the signal and initiate wounding response reactions, the 

SE-ENOD could indirectly interact with a low-affinity Ca2+-H+ antiporter to induce 
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calcium release from sieve element endoplasmic reticulum by a high-affinity Ca2+-

pumping ATPase. The increase of cytoplasmic Ca2+ concentration can induce calcium-

dependent callose deposition and P-protein dispersal to occlude damaged or disrupted 

sieve tubes (Furch et al., 2007). Furthermore, it is possible that the SE-ENOD functions 

as an ATP sensor and interacts with other proteins that are present in the sieve element 

plasma membrane. 

Can local membrane environments affect the structure and function of the SE-ENOD? 

          Plasma membrane studies revealed that the biological membranes are usually not 

homogeneous, instead, contain organized microdomains that are rich in sterols and 

sphingolipids (Martin et al., 2005). The microdomains, often called lipid rafts, have been 

proposed to enhance oligomeric interactions as well as alter the function of membrane 

associated proteins by shortening the distance between proteins that are located within 

this specialized lipid environment (Grossmann et al., 2006; Krugel et al., 2008). For 

example, dimers of the sucrose transporter SUT1, a sieve element plasma membrane 

protein located in lipid rafts of potato phloem sieve elements, were the dominant 

structural and most active forms of the protein (Krugel et al., 2008). While the SE-ENOD 

did not dimerize in the yeast-two-hybrid analysis (Figure 3.4), detergent extractions of 

the protein from phloem-enriched tissues showed immunoreactive aggregates that are 

consistent with dimers, tetramers or oligomeric complexes with other membrane proteins 

(see Chapter IV). The SE-ENOD domain II and domain II/III were expressed as soluble 

proteins in the yeast system, which could have significantly influenced their structure and 

subsequent interactions. There is good evidence that the SE-ENOD is embedded in the 

sieve element plasma membrane via the post-translational addition of a GPI anchor to the 
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carboxy-terminus of domain III (Khan et al., 2007). A number of studies have shown  

that GPI-anchored proteins are components of lipid rafts (Sangiorgio et al., 2004). 

Therefore, the unique environment of these plasma membrane microdomains could be 

required to promote protein-protein interactions between the SE-ENOD subunits or with 

other proteins.  

Previous studies have confirmed the presence of NADPH oxidoreductases in 

Medicago truncatula root plasma membrane lipid rafts (Lefebvre et al., 2007). The model 

of the SE-ENOD indirectly interacting with Ca2+-H+ antiporter could be further extended 

through activation of NADPH oxidase and the production of reactive oxygen species as a 

signal to trigger Ca2+ release from sieve element endoplasmic reticulum. Whether the 

lipid raft environment plays a critical role in the formation of SE-ENOD dimers or 

complex interactions with other proteins could be analyzed by expressing the 

unprocessed SE-ENOD protein in yeast. With the presence of the signal peptide and GPI 

anchor ω site, the SE-ENOD should be post-translationally modified by adding a GPI 

anchor and inserted into the plasma membrane. Lipid raft microdomains can be isolated 

by non-ionic detergents and the presence of the SE-ENOD can be analyzed by blue-

native PAGE gel. Additionally, a similar analysis can be conducted in vivo utilizing an 

Arabidopsis mutant deficient in ergosterol biosynthesis. The lipid rafts microdomains in 

this mutant line will be very rare because of the low ergosterol level in the plant (Pierson 

et al., 2004). Therefore, the SE-ENOD should not be targeted into the lipid raft region in 

the mutant. The conformation of SE-ENOD in plasma membrane can be analyzed by 

isolating plasma membrane vesicles and visualized on a blue-native PAGE gel. To 

further confirm the role of lipid raft, the mutant can be complemented with the functional 
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gene effectively reconstituting lipid raft regions in the mutant plants. Such studies could 

provide an insightful perspective to better understand the proposed eATP regulatory 

function and the native conformation of the SE-ENOD in planta.  
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CHAPTER IV 
 

 

IN VIVO CHARACTERIZATION OF THE SE-ENOD  

4.1 INTRODUCTION 

          The sieve element-specific early nodulin like protein (SE-ENOD) is specifically 

expressed in the phloem sieve elements in members of the Brassicaceae family, including 

species in the genera Streptanthus, Arabidopsis, and Brassica (Khan et al., 2007). 

Immunolocalization studies using the SE-ENOD-specific RS6 monoclonal antibody 

showed that the protein accumulates in the sieve element plasma membrane of 

Arabidopsis at the earliest developmental stages and persists in mature sieve elements. 

The pre-protein appears to be synthesized and extensively processed in the 

endomembrane system of immature sieve elements prior to selective autophagy. The N-

terminal signal peptide (domain I) and C-terminal hydrophobic domain (domain IV) of 

the pre-protein are post-translationally cleaved, and the mature protein, composed of the 

plastocyanin-like copper binding domain (domain II) and proline/serine rich domain 

(domain III), is attached to the outer leaflet of the plasma membrane via a covalently 

bound glycosylphosphatidylinositol (GPI)-anchor. Experiments conducted with live 

tissue sections of cauliflower (Brassica oleracea var. botrytis) stems demonstrated that 

treatment with phosphotidylinositol-specific phospholipase C would cleave the protein 

from the GPI anchor. ATP/GTP-binding motifs in domain II and arabinogalactan 
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glycosylation motifs in domain III have been identified in the primary amino acid 

sequence. While in vitro data presented in Chapter III of this thesis indicated that the SE-

ENOD can bind ATP, there is no in planta data in support of these potentially important 

functional features.  

Structure-function studies of the SE-ENOD have been hampered by the difficulty 

in obtaining large amounts of the protein from vascular tissues of intact plants with 

functional, translocating sieve elements. Khan and coworkers (2007) purified the SE-

ENOD from vascularized callus cultures of Streptanthus tortuosus by immuno-affinity 

chromatography. The parenchyma cells of the vascularized callus cultures were digested 

with cell wall degrading enzymes and the thicker-walled sieve elements could be 

obtained by sequential filtering of the cells, resulting in an enriched sample of sieve 

element membranes. The technique was tedious, and damage to the cells most often 

resulted in isolating membrane ghosts rather than intact sieve elements. Furthermore, the 

sieve elements differentiating in callus cultures, while appearing morphologically and 

developmentally normal, do not function in long-distance transport. This limits the utility 

of the system to conduct functional studies. Reverse genetics is another approach that 

often provides insights into the function of specific proteins. Analysis of two independent 

T-DNA tagged insertion mutants of the gene encoding the Arabidopsis SE-ENOD 

resulted in knock-out mutants without an obvious and consistent phenotype (Khan et al. 

2007). The gene encoding the SE-ENOD is a member of a small multigene family in 

Arabidopsis, and while there is no evidence for a second sieve element-specific gene, 

functional complementation of the mutants by another family member is possible.     
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          GPI-anchored proteins appear to be abundant in plant plasma membranes, where 

they are thought to function in cell-to-cell signaling as well as interactions within the 

extracellular matrix that impact reproduction, cellular growth, and differentiation 

(Schultz et al., 1998). One model for the function of the SE-ENOD presented in Chapter 

III focuses on its role as a regulatory molecule for sensing extracellular ATP (eATP) to 

initiate plant wound responses. GPI-anchored proteins are often located within lipid raft 

microdomains of the plasma membrane. These specialized membrane domains are 

thought to enhance oligomeric interactions and influence the interactions of membrane 

associated proteins (Grossmann et al., 2006; Krugel et al., 2008). Structural modeling 

studies in Chapter II predicteded that the SE-ENOD can adopt a dimer conformation. 

Although the dimerization analysis in the budding yeast Sacchromyces cerevisiae was 

negative, this result does not preclude the possibility of SE-ENOD dimer conformation 

exists in planta. 

This chapter describes the development of a simple technique to isolate tissues 

from broccoli plants that are highly enriched in phloem sieve elements. Extraction of the 

SE-ENOD from the phloem enriched tissues required the addition of detergents to the 

extraction buffers. Immunoblot analysis using the SE-ENOD-specific RS6 mab, however, 

showed extensive aggregation that was insensitive to reducing agents, boiling, and 

denaturants. 

 

 

 



 

70 
  

4.2 MATERIALS AND METHODS 

 4.2.1. Isolation of phloem-enriched tissues from broccoli 

Stems from commercially grown broccoli crowns were scored with a double-

edged razor blade near the base into cylinder-like sections ~3-5 cm wide at a depth of ~1-

2 mm. A vertical slice was made to expose the cambium, and the exterior layer composed 

mostly of the epidermis was peeled off using fine forceps under a binocular microscope. 

The majority of the phloem tissue was removed with the epidermal peel, leaving behind 

the xylem tissues. Strands of phloem-enriched tissue were prepared by peeling phloem 

fibers from the epidermal peel with a probe under the binocular microscope, which were 

flash frozen in liquid nitrogen. The phloem strands were weighed and immediately stored 

at -80°C. Phloem enrichment was confirmed by visualization by light microscopy and 

immunolocalization with phloem specific antibodies.  

4.2.2 Phloem membrane protein extraction 

            Two grams of phloem-enriched tissue were ground in liquid nitrogen with a 

mortar and pestle and extracted with 4 ml of soluble protein extraction buffer (10 mM 

Tris pH 7.2, 10 mM EGTA, 150 mM NaCl, 10 mM KCl, 1% Sigma plant protease 

inhibitor cocktail, 20 mM dithiothreitol). The tissue was incubated in the soluble 

extraction buffer for one hour on a rocking platform at 4°C. Soluble proteins in 4.5 ml of 

the supernatant were removed following centrifugation at 17,000 rpm for 25 minutes in 

JA 20 rotor in Avanti J-E centrifuge (Beckman Coulter). Tissues were resuspended in 4 

ml of buffers containing either CHAPS or SDS detergents and incubated at room 

temperature for 1 hour on a rocking platform. CHAPS buffer was composed of 1% 



 

71 
  

CHAPS, 10 mM Tris pH 7.2, 10 mM EGTA, 150 mM NaCl, 10 mM KCl, 1% Sigma 

plant protease inhibitor cocktail, 20 mM dithiothreitol. SDS buffer was composed of 4% 

SDS, 125 mM Tris-HCl pH 7.2, 150 mM NaCl, 10 mM KCl, 50 mM dithiothreitol, 1% 

Sigma plant protease inhibitor cocktail. Four ml of the supernatant containing total 

membrane proteins were collected following centrifugation as described above. Protein 

concentrations were determined with the RCDC protein assay kit (Bio-Rad, catalog 

no.500-0119), which is compatible with CHAPS and SDS. Serial dilutions of BSA in the 

respective detergent buffers served as concentration standards. Aliquots of the aqueous 

and detergent soluble protein fractions were flash frozen in liquid nitrogen and stored at -

80°C.  

4.2.3 Immunolocalization of the SE-ENOD in phloem-enriched tissues  

          Several newly isolated phloem-enriched strands were blocked with 2.5% dry milk 

in PBS (137 mM NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4 and 1.47 mM KH2PO4, pH 7.4) 

for 20 minutes at room temperature on a rocking platform. Tissues were incubated with 

the RS6 (1:100 dilution in PBS) primary antibody for 45 minutes to 1 hour at room 

temperature with rocking. Tissues were then washed three times for 10 minutes each with 

PBS followed by incubation with Alexa Fluor 488-labeled goat anti-mouse IgG 

(InVitrogen, A11001) secondary antibody (1:1000 dilution in PBS) in the dark at room 

temperature with rocking. The tissues were then washed three times for 10 minutes each 

with PBS and visualized by light and fluorescence microscopy.  

4.2.4 Immunoblotting proteins extracted from phloem-enriched tissues  
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          Different concentrations of membrane proteins, as specified by the experiment, 

were extracted from 2 grams phloem-enriched tissues and separated by SDS-PAGE. 

Proteins were transferred for 90 minutes from the gel to a PVDF membrane (GE 

Healthcare, pack no. RPN303F) in a western blot wet transfer apparatus in 1 liter Tris-

glycine transfer buffer (28 mM Tris base pH 8.3, 190 mM glycine) at 90 volts. Following 

transfer, the PVDF membrane was blocked with 5% dry milk in TBS (10 mM Tris, pH 

7.5, 150 mM NaCl) for 1 hour at room temperature. The membrane was then washed five 

times with for five minutes each with TTBS (20 mM Tris, pH 7.5, 500 mM NaCl, 0.05% 

Tween 20). The membrane was incubated in RS6 mab (1:5000 dilution in TTBS) for 1 

hour at room temperature followed by five washes for five minutes each with TTBS. The 

membrane was then incubated with anti-mouse IgG horseradish peroxidase (HRP) 

(Amersham, NXA931) (1:4000 dilution in TTBS) for 1 hour at room temperature 

followed by five washes for five minutes each with TTBS. Immunoreactive proteins were 

visualized following treatment of the membranes with five ml of western blotting luminal 

reagent buffer A mixed with five ml of buffer B (Santa Cruz Biotechnology, Inc. catalog 

no. sc-2048) on X ray films and AFP Imaging (AFP Imaging Corp).  
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4.3 RESULTS 

4.3.1 Isolation and immunolocalization of broccoli phloem-enriched tissues 

          The SE-ENOD was initially immunopurified from dispersed islands of phloem that 

were induced to differentiate in Streptanthus tortuosus callus cultures. While the protein 

accumulated in the plasma membrane of phloem tissues generated in vitro, the sieve 

elements are discontinuous and non-functional. Furthermore, the maintenance of the 

tissue cultures combined with low yields of enriched sieve elements prompted the 

development of an alternative technique to easily isolate significant amounts of phloem 

tissue from whole plants. Previous work had shown that the SE-ENOD-specific RS6 mab 

readily labeled sieve elements in fresh tissue sections of commercially available Brassica 

species including both cauliflower and broccoli (Khan et al, 2007). The large stems of 

broccoli crowns proved to be a useful source to isolate strands of phloem-enriched 

tissues. The outer layer composed mostly of epidermis and adjacent cells was easily 

peeled from the stem. These sections also contained vertical files of phloem tissue that 

had separated at the cambium from the xylem tissue. The phloem fibers allowed strands 

of phloem-enriched tissue to be removed with a probe and forceps. 

          Sieve tubes with their connecting sieve plates in the isolated strands could be 

clearly observed by light microscopy (Figure 4.1B). Immunolocalization experiments 

with the RS6 mab confirmed the presence of SE-ENOD in sieve elements within the 

strands (Figure 4.1C). Interestingly, the SE-ENOD was abundant in these phloem strands, 

but its distribution showed a clustered pattern rather than homogeneous distribution along 

the length of the contiguous sieve elements. 
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Figure 4.1 Broccoli phloem-enriched tissue strands and SE-ENOD immunolocalization 

visualized by light and fluorescence microscopy. Panel A. Brightfield image shows the 

tissue strands under low magnification (100x). Panel B. Brightfield image shows the 

tissue strands under higher magnification (400x) where sieve tubes can be readily seen. 

Sieve plates are indicated by black arrows. Panel C. Fluorescence immunolocalization of 

the SE-ENOD with the RS6 monoclonal antibody in contiguous sieve elements present in 

the tissue strand shown in Panel A. 
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4.3.2 Protein extractions from phloem-enriched tissues and immunoblot detection of the 
SE-ENOD 

          Proteins were extracted in a two-step process from the phloem-enriched tissue 

strands. Because the SE-ENOD is attached to sieve element plasma membrane by a GPI 

anchor, this membrane-bound protein can be further enriched by initially extracting the 

soluble proteins within the tissue sample with an aqueous buffer. Aqueous insoluble 

proteins, including membrane bound proteins, were extracted by adding detergents to the 

extraction buffers to disrupt membrane structure and solubilize hydrophobic proteins.  

           In the first set of experiments, the total soluble proteins were extracted in the 

aqueous buffer followed by detergent buffer containing 1% CHAPS. CHAPS is a 

zwitterionic detergent that is used to solubilize membrane proteins in a native 

conformation (Khan et al., 2007). Panel A in Figure 4.2 shows the protein profiles 

separated by SDS-PAGE of the sequential aqueous (lanes 2, 4, and 6) and CHAPS (lanes 

1, 3, and 5) extractions. It should be noted that the two profiles are significantly different 

from one another and that the proteins appear to be well resolved. Immunoblot analysis 

with the RS6 mab shown in Panel B of Figure 4.2 failed to detect immunoreactive 

proteins in the two lowest concentrations of soluble protein extractions (lanes 7 and 9) 

and appeared to cross-react with abundant soluble protein species in the highest 

concentration of soluble proteins resolved on the gel (lane 11). Unexpectedly, the SE-

ENOD was detected as high molecular weight smears ranging from 40 kDa to 120 kDa in 

all concentrations of CHAPS extracted proteins that were loaded on the gel (Figure 4.2, 

lanes 8, 10, and 12). Another phloem-specific monoclonal antibody, RS32, consistently 

detected a well-resolved, detergent soluble protein with apparent molecular weight of 35 

kDa. The presence of the 35 kDa protein indicated that the high molecular weight smear 
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detected by RS6 mab is not simply the result of non-specific interactions of detergent 

soluble proteins with the antibodies. Rather the results suggest that the SE-ENOD forms 

complexes that are not resolved after boiling in loading buffer containing SDS and 

reducing agents and separation in SDS-PAGE. These complexes were thought to be 

either an artifact of extraction with CHAPS or hydrophobic interactions with other 

cellular components. In contrast to these results, previous investigators reported 

extracting and purifying the 15 kDa SE-ENOD in a 1% CHAPS buffer from vascularized 

Streptanthus callus cultures (Khan et al., 2007).  

            In a second set of experiments, total proteins were extracted from the phloem-

enriched tissues with one step protocol using 4% sodium dodecyl sulfate (SDS). SDS is 

an anionic surfactant that has a high solubility of proteins. The total proteins showed a 

similar smeared immunoblot pattern to what had been previously observed with the 

CHAPS extraction (Figure 4.3, lanes 1, 3, 5, and 7). Pre-extraction with aqueous buffer 

containing moderate concentrations of salt and a reducing agent was performed before 

the sequential extraction with 4% SDS added to an identical buffer. The aqueous buffer 

pre-extraction step followed by the addition of 4% SDS detergent resolved the high 

molecular weight smear into three predominant species  that are consistent with SE-

ENOD monomer (15 kDa), dimer (30 kDa), and tetramer (60 kDa) as well as less 

resolved species up to 120 kDa (Figure 4.3, lanes 4, 6, and 8). 

It appeared that the proteins could be reasonably resolved by the sequential 

extraction with aqueous and SDS-containing buffers, however, the results were not 

consistent for every extraction. Questions still persisted as to whether some steps, such as 

boiling before loading on a SDS-PAGE gel, contributed to the high molecular smear and 
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whether higher levels of thiol modifying agents might aid in fully resolving the proteins. 

Figure 4.4 shows the immunoblot results of a single tissue sample that was sequentially 

extracted with an aqueous buffer (discarded) and SDS-containing buffer (analyzed) 

diluted with SDS loading buffer containing either 20 mM (lanes 1-4), 100 mM (lanes 5 

and 7), or 200 mM (lanes 6 and 8) dithiothreitol (DTT). The samples were either boiled 

(lanes 1, 2, 5, and 6) or denatured on ice (lanes 3, 4, 7, and 8) prior to separating the 

proteins by SDS-PAGE. The method of denaturing the proteins or the concentration of 

reducing agent in the SDS-PAGE loading buffer did not improve the resolution of the 

SE-ENOD complexes. Additionally, increasing the SDS concentration to 8% in the 

detergent buffer did not have effect in resolving the complexes (data not shown).  

Hydrophobic aggregation caused by long incubation periods with extraction buffers or 

long-term storage was also eliminated by a rapid extraction followed by immediate 

separation by SDS-PAGE. Finally, phloem-enriched tissues taken from commercially 

available broccoli crowns were compared with tissues isolated from living plants with no 

difference in the results. 
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Figure 4.2 SDS-PAGE separation (Panel A) and immunoblot analysis (Panels B and C) 

of proteins sequentially extracted from broccoli phloem-enriched tissues with aqueous (-) 

and 1% CHAPS (+) buffers. Panel A. Proteins (25µg in lanes 1 and 2; 50µg in lanes 3 

and 4; 100µg in lanes 5 and 6) were separated in a 12% SDS-PAGE gel and visualized by 

Coomassie blue stain. Panel B. Immunoblot of the protein fractions (10µg in lanes 7 and 

8; 25µg in lanes 9 and 10; 50µg in lanes 11 and 12) separated by 12% SDS-PAGE, 

blotted onto PVDF membrane, and detected with the RS6 mab (1:5000 dilution). Panel C. 

Immunoblot of a 1% CHAPS-extracted protein sample (10 µg in lane 13; duplicate of 

lane 8 in Panel B) reacted with the RS32 mab (1:5000 dilution). Molecular weight 

standards are shown in kDa on the left.  
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Figure 4.3 Immunoblot analysis of the SE-ENOD extracted from broccoli phloem-

enriched tissues with 4% SDS with or without aqueous buffer pre-extraction. Proteins 

extracted by a one step protocol using a 4% SDS buffer (lanes 1, 3, 5, and 7) or 

sequentially extracted by a two step protocol using an aqueous buffer followed by a 4% 

SDS buffer (lanes 2, 4, 6, and 8) were separated in a 4-20% SDS-PAGE gradient gel, 

blotted onto PVDF membrane, and detected with the RS6 mab (1:5000 dilution). 

Increasing volumes of the extractions were loaded onto the gel: 5µl (lanes 1 and 2), 10µl 

(lanes 3 and 4), 15µl (lanes 5 and 6), and 25µl (lanes 7 and 8). Molecular weight 

standards are shown in kDa on the left.  
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Figure 4.4 Immunoblot analysis of the SE-ENOD extracted from broccoli phloem-

enriched tissues: effects of boiling and reducing agents. Detergent soluble proteins were 

sequentially extracted with aqueous buffer followed by 4% SDS buffer. Two volumes of 

proteins: 30µl (lanes 1, 3, 5, 6, 7, and 8) and 50µl (lanes 2 and 4) were separated by 4-

20% SDS-PAGE. Samples were denatured by boiling at 100°C (lanes 1, 2, 5, and 6) or 

on ice (lanes 3, 4, 7, and 8) prior to loading onto the gel. Different dithiotreitol (DTT) 

concentrations (20mM, lanes 1 to 4; 100mM, lane 5 and 7; 200mM, lanes 6 and 8) in 

SDS loading buffer are shown. The SE-ENOD was detected with the RS6 mab (1:5000 

dilution). Molecular weight standards are shown in kDa on the left.  
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4.4 DISSCUSSION 

 One of the challenges in studying the function of sieve element membrane 

proteins is the efficient isolation of significant amounts of phloem-enriched tissue. 

Historically, this has been resolved by several approaches depending upon the protein 

and the species being investigated. For example, sugar beet leaves have high 

concentrations of sucrose transporters that can be efficiently isolated in plasma 

membrane-enriched vesicles prepared from the leaves. Similar approaches have been 

used to study sucrose transporters in other species, but the choice of the plant is directed 

by the ability to isolate the protein. Sieve element-specific proteins, although abundant 

within the sieve element, are often difficult to detect in whole organ extracts even with 

sensitive antibody probes. To solve this problem, Sjolund and coworkers developed 

techniques to induce vascular differentiation in callus cultures by optimizing growth 

regulators in the culture media (Toth et al., 1994; Khan et al., 2007). The sieve elements 

formed in callus cultures were shown to be developmentally and structurally similar to 

the sieve elements in intact plants, however, these sieve elements are not connected and 

do not function in long distance transport (Evert R.F., 1990).  

 Another approach has been to isolate sieve element membrane proteins from 

plants that have easily accessible vasculature. The unusually large petioles of celery 

contain thick-walled parenchyma associated with the vascular tissues allowing the 

phloem to be easily stripped from the organ at the vascular cambium. This technique was 

modified for broccoli as a companion approach to complement molecular and genetic 

studies that can be conducted in Arabidopsis. The technique of collecting phloem-

enriched strands from broccoli stems enables the enrichment of phloem tissues directly 
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from living plants. Broccoli stems are large and easy to peel off the epidermis along with 

adjacent cell layers that contain the phloem tissues. Phloem-enriched tissue strands can 

be readily dissected from the epidermal peels.  

 Immunoblot analyses using a number of different sieve element-specific 

antibodies detected discrete protein antigens as well-resolved, single species from both 

aqueous- and detergent-soluble extractions of the broccoli phloem-enriched tissues. As 

expected, the initial experiments to identify the SE-ENOD found that the protein was 

present only when the phloem-enriched tissues were extracted in the presence of a 

detergent. This agrees with the previous data that the SE-ENOD is a plasma membrane 

anchored protein. Surprisingly, the SE-ENOD-specific RS6 monoclonal antibody 

detected an unresolved smear of proteins ranging from 40 kDa to 120 kDa on the 

immunoblot when the tissue was extracted with CHAPS. This is in contrast to previous 

results when a CHAPS buffer of identical composition was used to extract the SE-ENOD 

from vascularized Streptanthus callus cultures. In those experiments, the RS6 mab 

detected a single 15 kDa protein (Khan et al., 2007). Different methods, such as 

increasing the concentration of reducing agent, loading proteins on gels without 

denaturing the sample by boiling, and changing extraction detergent to SDS, were used in 

attempts to resolve the SE-ENOD to the 15 kDa monomer.  

 The best results were obtained by first extracting the phloem-enriched tissues 

with an aqueous buffer containing moderate salt concentrations and reducing agent 

followed by a second extraction with the 4% SDS added to the aqueous buffer. Following 

this protocol, the RS6 antibody detected protein species resolved at 15 kDa, 30 kDa, and 

60 kDa that could correspond to the SE-ENOD monomer, dimer, and tetramer, 
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respectively. High molecular weight smears were still present as background. These 

results suggested that the SE-ENOD forms stable oligomeric conformations in the sieve 

element plasma membrane of whole plant tissues.  

             The plasma membrane is primarily composed of phospholipids that are rich in 

unsaturated aliphatic chains loosely packed into a fluid bilayer. Rapid lateral movement 

and constant fluidity are characteristic of this disorganized structure. Lipid rafts are 

specialized regions of the apical plasma membrane that are rich in sphingolipids, 

ergosterol, and cholesterol that play important roles in sorting GPI-anchored proteins, 

transmembrane receptors, and palmitoylated signaling proteins (Grossmann et al., 2006). 

The association of different proteins in lipid rafts appear to alter their functions of these 

proteins, sometimes inducing oligomeric confirmations, in order to regulate various 

biological processes such as signaling, cell adhesion, and pathogen recognition (Brown 

and London, 2000; Edidin, 2003; Zurzolo et al., 2003). Therefore, it is proposed that the 

different conformations of the SE-ENOD are associated with lipid rafts. 

             As proposed in the Chapter III, the SE-ENOD could bind eATP in order to 

regulate the eATP concentration. The regulatory function could be enhanced if the SE-

ENOD was located in lipid rafts. The size of lipid rafts is critical in regulating the 

function of their associated proteins. It is thought that the small size of an individual raft 

usually keeps the proteins inactive. In order to initiate protein functions in response to a 

stimulus, several individual rafts cluster with one another to form a platform. 

Interestingly, the immunolocalization pattern in sieve elements shows the presence of the 

SE-ENOD in large, but discrete, areas on the surface of the cell. The platform will induce 

protein-protein interactions that further activate their functions (Garcia et al., 2003; 
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Mongrand et al., 2004). This could explain why multiple conformations of the SE-ENOD 

were detected from phloem-enriched tissues.   

          Other sieve element membrane proteins appear to be localized in lipid rafts as 

activated multimers. Experimentally, the SUT1 sucrose transporter in Solanum 

tuberosum was extracted from plasma membrane vesicles as dimers and/or monomers 

depending upon the protein-to-detergent ratio of the extraction buffer. A high protein-to-

detergent ratio (200 µg total protein to 0.2% detergent) yielded two distinct proteins 

corresponding to SUT1 dimers and monomers on blue native-PAGE gel. In contrast, a 

low protein-to-detergent ratio (20 µg total protein to 2% detergent) yielded a single 

protein corresponding to the SUT1 monomer (Krugel et al., 2008). Detergent extractions 

of the broccoli phloem-enriched tissues were performed with a single weight to volume 

ratio of tissue to extraction buffer. Unlike plasma membrane vesicles, the total amount of 

protein present in whole tissues is difficult to estimate. Thus, inappropriate protein-to-

detergent ratios during the extractions could, in part, explain why oligomeric complexes 

were only partially resolved in the different experiments. Another explanation for the 

oligomeric complex pattern observed following SDS-PAGE and immunoblotting could 

be due to covalent interactions with the SE-ENOD and other proteins. However, the lack 

of resolution following harsh denaturing conditions and separation in SDS-PAGE is still 

unexplained.  

          The approach of bulk extracting proteins from the phloem-enriched tissues with 

various detergents could also be generating SE-ENOD-specific artifacts. As an 

alternative approach, phloem-enriched tissues could also be used to isolate microsomes 

and if necessary, plasma membrane vesicles. Extracting proteins from partially or highly 
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purified membrane preparations could provide an entirely different result that was 

obtained from bulk extraction of whole tissues. Furthermore, microsomes or plasma 

membrane vesicles could be used to conduct the appropriate experiments to determine 

whether the SE-ENOD is localized in lipid rafts. Lipid raft microdomains contain 

saturated aliphatic chains that are insoluble in 1% Triton X-114 at 4°C providing a 

convenient way to isolate lipid raft-associated proteins (Radeva and Sharom, 2004). 

Future work could include a proteomics approach to analyze lipid raft protein profiles in 

phloem-enriched tissues. Further functional characterization of the SE-ENOD in the sieve 

element plasma membrane promises to provide interesting insights into our 

understanding of how membrane-associated proteins regulate events that influence the 

physiology of the phloem.  
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Findings and Conclusions: In silico structural predictions suggested that the overall 
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