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CHAPTER I  
 

 

Introduction 

 

Diarrheal diseases impact millions of people worldwide every year.  Global 

mortality from diarrheal diseases is estimated between 4 and 6 million people per year 

according to the World Health Organization (WHO, 2003). Shigellosis and salmonellosis 

are two of the most important diarrheal diseases (Table 1.1). The gram-negative bacillus 

Shigella flexneri is a causative agent of shigellosis, a severe form of bacillary dysentery. 

According to the Centers for Disease Control and Prevention, there are approximately 

14,000 confirmed cases and perhaps 450,000 total cases of shigellosis occurring in the 

United States annually (CDC, 2008). This disease is endemic in the developing world 

with an estimated 1 million deaths per year, the majority of these being children under the 

age of five. Salmonella enterica serovar Typhimurium, one of the most common of the 

approximately 2500 serotypes of the genus Salmonella, is a gram-negative bacillus that 

causes nontyphoidal Salmonella  infection, which is a severe gastroenteritis in humans.  

The Centers for Disease Control and Prevention report an estimated 1.4 million cases of 

nontyphoidal salmonellosis annually in the United States, with 40,000 confirmed cases 

reported. Worldwide estimates of nontyphoidal Salmonella infections range from 
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Table 1.1- Common Foodborne Bacterial 

Pathogens Causing Diarrheal Disease 

 In the United States 

 

Species of bacteria                               Incidence per 100,000 

Salmonella                                                                      7,444 

Campylobater                                                                  5,825 

Shigella                                                                           3,029 

Shiga toxin producing Escherichia coli                             513 

(0157) 

Shiga toxin producing Escherichia coli                             205 

(Non-0157) 

Yersenia                                                                              164 

Listeria                                                                               135 

Vibrio                                                                                 131 

 

 Table 1.1-Many bacterial pathogens cause diarrheal disease. While not all 

inclusive, this table lists some of the most common bacteria, in order of 

prevalence, that cause diarrhea in the United States per 100,000 according to the 

CDC (2009). 
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200 million to 1.3 billion annually. The death toll worldwide is approximated at 3 million 

each year (Coburn, Grassl, and Finlay, 2007).  

 Salmonella and Shigella infections represent major global public health burdens 

and substantial expenses to societies around the world. As strains are emerging with more 

resistance to antibiotics, vaccine development research for these pathogens has become 

crucial.  Both Salmonella and Shigella use a type III secretion system (TTSS) to invade 

host cells. The TTSS is made up of a basal body spanning the bacterial inner and outer 

membranes and an extracellular needle-like structure used to recognize and inject effector 

proteins into the host cell. The exposed portions of the TTSS could potentially be 

targeted for vaccine development. 

Historical Evaluation of Shigella 

The first account of the characterization and isolation of the causative agent of 

bacillary dysentery was made in Japan by Kiyoshi Shiga in 1897 while studying skeiri 

(dysentery) outbreaks. This work was done at the Institute of Infectious Disease on 36 

dysentery patients (Shiga, 1897). From the stool of these patients, he isolated a gram-

negative bacillus that fermented dextrose, did not ferment mannitol, and had a negative 

indole reaction (Niyogi, 2005). Shiga continued characterization of the bacillus and 

originally called it Bacillus dysenteriae (Shiga, 1906). This discovery led researchers 

Flexner, Boyd and Sonne, in the next 40 years, to define and place three additional 

species of this organism into the Enterobacteriaceae whose names were attributed to their 

researchers: S. flexneri, S. boydii, and S. sonnei into the genus Shigella (Hale, 1991). The 

genus was first recognized in Bergey’s Manual of Determinative Bacteriology in the 1930 



4 
 

edition and was officially accepted into the Congress of the International Association of 

Microbiologists in 1952 (Shigella Commission).  

With the establishment of the genus, defining and characterizing the mechanism 

of virulence became the focus of Shigella research in the 1950s.  The natural host range 

of shigellosis is limited to humans and other higher primates. In the latter part of the 

1950s and into the 1960s the first animal models began to emerge.  The corneal epithelia 

of guinea pigs were first successfully infected with Shigella spp. (Sereny test)(Sereny, 

1957). Soon following, it was established that Shigella spp. could be grown in cultured 

mammalian cells (Gerber and Watkins, 1961). High doses of Shigella have more recently 

been found to induce pneumonia and diarrhea in rats if presented nasally or rectally, 

respectively (Mallet et al., 1993) (Kamgang et al., 2005).   

 It was assumed until 1964 that the pathogenicity of Shigella was a result of the 

release of toxins while the bacteria were adhering to the surface of the epithelial cells of 

the intestine (Watkins, 1960). LaBrec et al. fed guinea pigs virulent strains of S. flexneri, 

and found they caused ulceration and penetration of the epithelial cells of the colon and 

lamina propria. This showed that in fact, it was through invasion of the colonic 

epithelium that Shigella accomplished pathogenicity. (LaBrec et al., 1964). 

 It was not until 1981 that the genetic basis for Shigella pathogenesis was 

discovered. Sansonetti and his colleagues detected the presence of a large plasmid in S. 

flexneri and S. sonnei.  The loss of this plasmid resulted in a loss of invasion in cultured 

mammalian cells (Sansonetti, 1981). All Shigella species have a large 200-kb virulence 

plasmid that contains the necessary genes that are required for invasion (Buchrieser et al., 
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2000).  Current research on Shigella is mostly focused on classifying and understanding 

the genes and proteins encoded on this plasmid.  

Historical Evaluation of Salmonella  

Salmonella organisms are gram-negative, rod-shaped bacteria that live in the 

intestines of many animal types and have evolved with their hosts to cause gastroenteritis 

and/or enteric fever (Ohl and Miller 2001). Accounts of Salmonella infection can be 

dated back to ancient times and are well described throughout history (Cunha, 2004).  

William Jenner clarified differences between typhus and typhoid based on epidemiology 

and symptomology in 1850 (Ellermeier and Slauch, 2006, 2006). Discovery of the Typhi 

serovar occurred in 1880, when Karl Eberth observed rod shaped organisms in the lymph 

and spleens of typhoid patients (Ellermeier and Slauch, 2006, 2006). In 1895 Theobald 

Smith, working under veterinarian Daniel E. Salmon at the USDA, isolated what became 

known as Salmonella  serovar Choleraesuis while looking for the causative agent of hog 

cholera (Ellermeier and Slauch, 2006, 2006). Now known as S. enterica, the organism is 

one of two species, the other being S. bongori, recognized as members of 

Enterobacteriaceae (Ellermeier and Slauch, 2006, 2006). 

The evolution of the genus has been delineated by a large number of investigators 

(Selander et al., 1996)(Baumler et al., 1998)(Edwards et al., 2002)(Porowollik et al., 

2002)(Chan et al., 2003) and can be summarized as follows: Salmonella diverged from E. 

coli around the time mammals first appeared, 120-160 million years ago.  Roughly 25-40 

million years ago, Salmonella obtained the Salmonella pathogenicity island 1 (SPI1) 

which encodes the type III secretion system involved the invasion of the intestinal 
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epithelium. At this time Salmonella was an intracellular pathogen affiliated with cold-

blooded vertebrates.  Salmonella subsequently acquired the Salmonella pathogenicity 

island 2 (SPI2), which has a type III secretion system that permits the organisms to 

colonize deeper tissues by surviving in macrophages.  The presence of the SPI2 is a 

defining characteristic of Salmonella spp. The seven subspecies of S. enterica (I, II, IIIa, 

IIIb, IV, VI, and VII) continued to evolve to fit their respective host niches. The ancestor 

of subspecies I, II, IIIb and VI developed the ability to phase shift between multiple 

structural subunits of flagella, the organism’s principal organ of motility.  This provided 

S. enterica with the ability to evade the host immune system further.  The subspecies I 

ancestor then acquired the ability to colonize warm-blooded animals, a major advance 

with marked repercussions for human health.  The subspecies I strains have subsequently 

evolved to colonize a variety of hosts.  Serovars such as Typhi are host specific, infecting 

only humans, however, serovar Typhimrium is less specific, and is able to colonize and 

cause disease in a variety of mammalian species. Salmonella serovar Typhimurium 

usually causes a self-limiting gastroenteritis in humans, but in mice it causes a systemic 

disease similar to typhoid fever. This species of Salmonella has therefore offered a 

valuable animal model for the study of these invasive pathogens and allowed genetic, 

biological, and biochemical analysis of its infection process (Brummell and Finlay, 

2000).  

Epidemiology of Shigella and Salmonella  

Shigellosis is exclusive to humans and other higher primates and infection is 

limited to the intestinal mucosa. Common symptoms can include watery diarrhea with 

mucus, fever, malaise, abdominal cramping, and ulceration of the mucosa resulting in 
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bloody stools (Niyogi, 2005). Symptoms exhibited are dependent on the species and 

quantity of the organisms ingested and additional complications can ensue including: 

septicemia, bacteremia, dehydration, hypoglycemia, uremic and hemolytic syndrome, and 

toxic megacolon (Phalipon and Sansonetti, 2007). Shigellosis is widespread throughout 

the world, infecting approximately 165 million individuals, 163 million of which inhabit 

developing countries. Over 1 million of these instances result in death, and children under 

the age of five account for over 600,000 deaths. This mortality rate due to dehydration 

and is exacerbated by malnutrition (World Health Organization). S. flexneri is most 

prevalent in developing nations, while S. sonnei is more common in industrialized 

countries (Niyogi, 2005).  In the United States the majority of outbreaks of Shigella affect 

children in day care facilities, migrant workers, travelers, custodial workers, homosexual 

men, and persons living in community homes and prisons (Niyogi, 2005). 

 Salmonella species can infect an extensive range of animals, and those infections 

can cause distinctive diseases in different hosts, producing gastroenteritis, typhoid fever 

and bacteremia. Certain infections can be host specific, although Salmonella serovar 

Typhimuruim has the ability to infect a wide range of animal hosts (Brummell and 

Finlay, 2000). Symptoms of gastroenteritis caused by Salmonella serovar Typhimurium 

include diarrhea, which can be watery or bloody, abdominal cramps, fever, nausea and 

vomiting. Salmonella can occasionally establish a localized infection or enter the blood, 

causing bacteremia. The bacteria often remain in the intestine and are excreted for several 

weeks (CDC). 1.4 million cases of nontyphoidal salmonellosis are annually reported in 

the United States. Worldwide estimates of nontyphoid Salmonella infection range from 

200 million to 1.3 billion. The death toll worldwide is estimated to be 3 million each year 
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(Coburn, Grassl, and Finlay, 2007). Salmonella can infect anyone, at any age, but elderly 

individuals, infants and those with a compromised immune system are the most at risk for 

a Salmonella infection (Wallis and Galyov, 2000). 

Both Shigella and Salmonella infections are acquired via the fecal-oral route and 

are primarily linked to poor hygienic practices and contaminated food or water. 

Overcrowding further contributes to outbreaks around the world.  The incidence of both 

infections is greater in the developing world for the above reasons and this compounds 

already existing problems in these underdeveloped nations (DuPont, 1989). 

Shigella flexneri and Salmonella  serovar Typhimurium-The Pathogens 

Species of Shigella and Salmonella belong to the family 

Enterobacteriaceae. (Kreig and Holt, 1984) (Haimovich and Venkatesan, 2006). Each 

organism is a gram-negative, faculatively anaerobic, oxidase negative, gastrointestinal 

pathogen with the ability to reduce nitrate and ferment glucose (Kreig and Holt, 1984).  

Shigella spp. can be differentiated serologically based on species-specific O-antigen 

components that each contain (Kreig and Holt, 1984). There are four species: A, B, C, 

and D belonging to S. dysenteriae, S. flexneri, S. boydii and S. sonnei, respectively 

(Niyogi, 2005). Shigella spp. are extremely infectious requiring as few as 10-100 

organisms to elicit shigellosis (DuPoint et al., 1989). 

The more serologically complicated Salmonella spp. are classified based on the 

Kauffman-White Classification Scheme. Salmonella is divided into 2 species, S. bongori 

and S. enterica, which are further divided into 2501 serovars based on surface antigens.  

O-antigen type is first determined followed by H-antigen expression classification. The 
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H-antigen expressed is dependent upon the flagellar protein type made and this can 

change through a process called phase variation. The phase, 1 or 2, denotes the 

organism’s motile or non-motile phenotype, respectively.  S. borgori is further divided 

into 21 serovars. S. enterica is  futher divided into 6 subspecies: I, S. enterica subsp. 

enterica,(1,478 serovars); II, S. enterica subsp. salamae, (498 serovars); IIIa, S. enterica 

subsp. arizonae, (94 serovars); IIIb, S. enterica subsp. diarizonae, (327 serovars);IV, S. 

enterica subsp. houtenae,(71 serovars); and VI, S. enterica subsp. indica. (12 serovars) 

(Centers for Disease Control and Prevention, 2006). 

Shigellosis and salmonellosis are self-limiting infections with symptoms lasting 

5-7 days or longer if untreated (Hueck, 1998) (Bullock et al., 2006). If treated with 

antibiotics, the duration of symptoms is lessened and the period that the organisms are 

shed following recovery is shortened, however, as long as the individual is shedding the 

organisms, the diseases can easily be spread (Sur, 2004) (Brands, 2006). Individuals with 

symptoms of diarrhea for salmonellosis and shigellosis are most responsible for 

transmission of the disease. Poor sanitation and hygiene practices and contaminated food 

or water sources are common causes of outbreaks of these diseases (Niyogi, 2005) 

(Brands, 2006).  Oral antibiotics are the most preferred means of treatment for Shigella 

and Salmonella infections. Unfortunately, due to the ability of bacteria to adapt and 

overcome host defenses, there has been an emergence of strains that have acquired 

antibiotic-resistance, which is limiting the number of drugs available for treating each 

infection (Hueck, 1998). 
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Genetics of Virulence 

All species of Shigella harbor a large virulence plasmid.  Genes encoded on this 

plasmid and those of the pathogenicity islands located on its chromosome, provide the 

bacteria with antibiotic resistance, iron acquisition and proteases (Schroeder and Hilbi, 

2008). Shigella virulence and its ability to invade human intestinal cells are made 

possible by genes on the 200-kb virulence plasmid, which contains approximately 100 

genes (Maurelli et al., 1985) (Yoshikawa et al., 1988).  Genes included on this plasmid 

are required for bacterial uptake and propagation within the colonic epithelium 

(Wantanabe, 1990). The type III secretion system facilitates bacterial uptake and is 

encoded by the 31-kb entry region of the virulence plasmid (Schroeder and Hilbi, 2008). 

This entry region also contains the Mxi-Spa and Ipa-Ipg operons, which encode the type 

III secretion apparatus, and its secreted effectors, and the translocators IpaA, IpaB, IpaC, 

IpaD along with the molecular chaperone IpgC (Espina, et al., 2006) (Figure 1.1). If this 

virulence plasmid is not present, Shigella are not infectious (Yoshikawa, et al., 1988). 

Noninvasive E. coli strains ahve been shown to become invasive upon receiving the 

Shigella virulence plasmid (Sansonetti 1982).  

  There are four categories of genes in the entry region of the virulence plasmid, 

which are distinguished based on their functions (Schroeder and Hilbi, 2008). Ipa 

(invasion plasmid antigen) genes function as effector and translocator proteins secreted 

by the TTSA make up the first group and these are involved in the cytoskeletal  
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Figure 1.1-The type III Secretion System of Shigella flexneri 

The TTSS is made up of a basal body; spanning the inner and outer 

bacterial membrane, a needle complex; facilitating injection of effector 

proteins, and a pore complex which allows host cell recognition and 

translocation of effectors into host cells (Schroeder and Hilbi, 2008).  
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 rearrangements, and the cell membrane ruffling which result in bacterial uptake. The 

structural proteins Mxi (membrane expression of Ipa proteins) and Spa (surface 

presentation of Ipa antigens) make up the second group (Espina et al., 2006) (Schroeder 

and Hlbi, 2008). Mxi and Spa structural protein polymers comprise the basal body and 

needle of the TTSA (Espina, et al., 2006).  Transcriptional activators control expression 

of the early and late entry region genes, and these make up the third group. The molecular 

chaperones then fall into the fourth group, and they function to protect effector and 

translocatorproteins while they are stored in the cytoplasm prior to secretion (Schroeder 

and Hilbi, 2008).  

 The invasion of human cells and subsequent intracellular replication by 

Salmonella is multifaceted.  There are approximately 200 genes including those on the 

five chromosomal pathogenicity islands (SPI-1 to SPI-5) on the Salmonella  serovar 

Typhimurium chromosome that are essential for virulence.  SPI-1 and SPI-2 encode two 

of the type III secretion systems that facilitate invasion by Salmonella species. SPI-1 is 

necessary for intestinal epithelium invasion and SPI-2 is required for survival within 

macrophages (Haimovich and Venkatesan 2006). SPI-1 encodes over 30 proteins, 

including those that comprise the TTSS-1 and its secreted effectors. Salmonella invasion 

proteins are encoded by the Sip/Sic operon on SPI-1 (Galan, 1996) (Hueck, 1998). 

Secreted proteins SipA, SipB, SipC and SipD and the molecular chaperone, SicA are 

homologues to Shigella Ipa proteins and IpgC., Each of the four required effectors and 

the chaperone function in host cell invasion in the same way their Shigella homologues 

(Espina, et al., 2006). Salmonella serovar Typhimurium mutants deficient in SPI-1 are 



13 
 

incapable of invading M cells and other intestinal epithelial cells, stressing the necessity 

of SPI-1 genes in intestinal colonization (Galan, 1996) (Hueck, 1998).  

Following invasion of host cells, SPI-2 genes are expressed and are necessary for 

intracellular survival of Salmonella in both epithelial cells and macrophages (Haimovich 

and Venkatesan 2006). SsrA-SsrB is encoded by SPI-2 and regulates the TTSS-2 which 

is required for intracellular survival and subsequent replication within the host. Mutants 

lacking SPI-2 genes resulted in a reduction of virulence and the inability to colonize the 

spleens of infected animals (Anthea, Detweiler and Falkow, 2000). It is believed that the 

systemic infection in mice caused by Salmonella infection is reliant upon its ability to 

colonize and replicate within macrophages, and this is one of the traits setting apart 

Salmonella infection from gut-confined shigellosis (Haimovich and Venkatesan 2006).  

Cellular Invasion by Shigella flexneri and Salmonella serovar Typhimurium 

After ingestion, Shigella flexneri is protected from the stomach due to its high 

acid tolerance. It then facilitates its way to the large intestine using as set of enterotoxins 

called sen and set (Kotloff, et al., 2000). In the large intestine, S. flexneri invades the 

colonic epithelium (Sur, 2004). . Invasion requires that the organism reach the basolateral 

face of the epithelial cells. Once in the large intestine, S. flexneri is taken up in vacuoles 

by microfold cells (M cells) via macropinocytosis in the colon (Owen, 1986) (Wassef, 

1989). The organisms then escape the vacuole into the cytosol, and travel to underlying 

macrophages that are associated with M cell-associated lymphoid follicles (Sansonetti, et 

al., 1996). Shigella is transcytosed into an intraepithelial pocket by M cells, (Schroeder 

and Hilbi, 2008) where it is then taken up by a resident macrophage, which is triggered to 
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undergo apoptosis. This allows escape of the pathogens to the basal side of the 

epithelium. Death of the macrophage is initiated via a caspase 1-dependent pathway, and 

this leads to the release of the proinflammatory cytokines, Interleukin-1β (IL-1β) which 

triggers inflammation in the lower intestine, and Interleukin-18 (IL-18) which activates 

NK cells. Production of IL-8 follows this inflammation trigger, which recruits 

polymorphonuclear cells. PMNs initiate tissue damage and allow more bacteria to bypass 

the M cells and reach the submucosa via destabilization of the epithelial lining 

(Schroeder and Hilbi, 2008) (Sansonetti, 2000). The tight junctions of epithelial cells are 

also altered and loosened, exacerbating the initial invasion of S. flexneri. All of this leads 

to the bloody diarrhea that the organism is known for (Schroeder and Hilbi, 2008). After 

crossing the epithelial barrier and inducing ingestion by the epithelial cells of the colon, 

Shigella uses actin-based motility to move through the cytoplasm laterally from cell to 

cell (Mounier et al., 1992).  This further enhances inflammation and ulceration of the 

mucosa in the colon. This is attributed to shigellosis, but it is actually a result of the 

host’s own immune response to the infection (Wassef et al., 1989) (Islam et al., 1997). 

The goal of Shigella flexneri is to replicate within its host cell’s cytoplasm, and invade 

neighboring cells by spreading laterally through the colonic epithelium. This intracellular, 

replicative niche of S. flexneri is also what protects the organism from the extracellular 

immune system components (Schroeder and Hilbi, 2008). 

 Salmonella serovar Typhimurium is not so resistant to the acid from the stomach 

and thus a much higher inoculum is required for invasion unless there is a deficiency of 

stomach acid, which can be caused by various factors including improper nutrient 

absorption, stress or alcohol consumption (Jones and Falkow, 1996) (Hersh, 1999). 
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Salmonella serovar Typhimurium achieves invasion of the colonic epithelia by the same 

mechanism as S. flexneri, but it does not necessarily stop there. The goal of Salmonella 

serovar Typhimurium is to penetrate the mucosal barrier and interact with the cells of the 

immune system (Bowe, Lipps, Tsolis, Groisman, Heffron, and Kusters, 1998). 

Salmonella serovar Typhimurium has adapted mechanisms to survive and replicate 

within the vacuoles of these cells. In particular, infection of macrophages allows 

Salmonella serovar Typhimurium to disseminate beyond the mucosal surface to initiate 

systemic infection (Brumel and Finlay, 2000). Following invasion of host cells, 

Salmonella serovar Typhimurium becomes localized in the Salmonella-containing 

vacuole (SCV) within which the organism replicates and is protected from stomach acid 

and the immune system.  It eventually lyses the host cell and escapes to the extracellular 

environment to infect its next host (Fields, Swanson, Haidaris and Heffron, 1986). This 

ability to survive and replicate within phagocytic cells, such as the macrophage, is 

another example of what differentiates Salmonella infections in humans from gut-

contained shigellosis (Haimovich and Venkatesan, 2006). 

The Type Three Secretion System 

  Bacteria carry secretion systems as part of their natural functions.  Many gram-

negative bacterial pathogens use needle-like, highly homologous secretion systems to 

manipulate host cell signals and eventually transport effector molecules or virulence 

factors into targeted eukaryotic host cells (translocation) or possibly into the extracellular 

environment (secretion). There are currently six recognized classed of bacterial secretion 

systems (numbered I to VI). Shigella and Salmonella spp. possess type III secretion 

systems and their invasion of human cells is dependent on the translocation of effector 
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proteins that manipulate a targeted host’s cytoskeleton, thereby inducing membrane 

ruffling and subsequent bacterial uptake.  Salmonella serovar Typhimurium also harbors 

a second type III secretion system which facilitates its survival and replication within 

host cell phagosomes (Monack, Raupach, Hromockyj and Falkow, 1996). Additionally, 

S. flexneri and Salmonella serovar Typhimurium are capable of inducing apoptosis of 

macrophages, which is facilitated by their type III secretion systems and which allows 

their escape after crossing the intestinal epithelium (Ruckdeschel, et al., 1997). 

 The type III secretion system is made up of a basal body that spans the inner and 

outer membranes of the bacterium and an extracellular needle complex that bacteria use 

as a molecular syringe to deliver effectors directly into the target cell’s cytoplasm and 

promote bacterial uptake or host cell killing (Hueck, 1998)(Cornelis, 2006) (See Fig. 1.1 

and 1.2) The needle is a polymer that is approximately 50 nm long, 7 nm wide, and 

contains an inner channel with a diameter of about 2.5 nm (Epler et al., 2009).  Type III 

secretion is contact dependent and is an ATPase-driven system. The ATPase elaborates 

protein unfolding, chaperone release, and transmembrane transport of the substrate 

proteins (Blocker et al., 2001) (Cornelis, 2006). 
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Figure 1.2. Components of the TTSS 

An overview of the TTSS including: the basal body, spanning the inner and outer 

membrane; extracellular needle; and tip complex for Salmonella (Sip, Prg and Inv 

proteins) and Shigella (Ipa and Mxi proteins). 
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The Ipa and Sip Proteins 

Shigella and Salmonella use closely related type of type III secretion systems to 

deliver effector proteins into host cells. The homologous proteins that make up the needle 

complex for Shigella and Salmonella are MxiH and PrgI, respectively. Due to their 

fundamental role in surface exposure and virulence, they are attractive vaccine 

component candidates (Darboe, et al., 2006). Effector proteins that are secreted and 

translocated during interaction of Shigella with the host cell are IpaD, IpaB, IpaC, IpaA 

and the molecular chaperone IpgC. Based on nucleotide sequencing Salmonella have 

genes that encode for homologues of these five Shigella proteins used in their own TTSS: 

SipD, SipB, SipC, SipA and SicA, respectively, which assemble and function in the 

TTSS in the same way and are required for invasion (Kaniga, Trollinger and Galan, 

1995). Salmonella further diverges from Shigella in that it uses a second TTSS to survive 

and replicate within the macrophage to induce systemic infection (Monack, Raupach, 

Hromockyj and Falkow, 1996). 

To promote bacterial uptake, Shigella exploits secreted effector proteins that 

facilitate entry into the target cell and seize control of host cytoskeletal proteins. IpaD sits 

at the tip of the MxiH needle apparatus, where it senses environmental signals, initiates 

secretion induction, (Espina et al., 2006) and is an important secretion substrate in 

Shigella type III secretion. As IpaD binds and thereby senses intestinal bile salts, IpaB is 

secreted and recruited to the tip of the TTSA needle (Stensrud et al., 2008). It is at this 

point that the TTSS of Shigella is equipped for full induction of type III secretion. 

Following host cell contact, additional secreted effectors include the final translocator 

protein, IpaC which is recruited to the needle tip and is secreted into the host cell 
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membrane (Epler et al., 2009) (van der Goot et al., 2004). Studies in our lab have shown 

that the presense of bile salts, found in high concentrations in the small intestine, induces 

the secretion of IpaB and leads to the co-localization of IpaB and IpaD at the distal tip of 

the TTSA needle (Olive et al., 2007). This is said to be a priming step that prepares the 

needle for interaction with the host cell via cholesterol binding by IpaB (Olive, 2007) 

(Hayward et al., 2005). 

 The molecular chaperone IpgC (invasion plasmid gene) binds to IpaB prior to 

IpaB secretion by S. flexneri (Birket et al., 2007), thus preventing aggregation of IpaB 

within the bacterial cytoplasm, and its binding to IpaC, the final translocator protein at 

the TTSA needle tip (Menard et al., 1994) (Page et al., 1999) (Lunelli et al., 2009).  

Association between IpaB and IpgC has been shown to maintain the pre-secretion state of 

IpaB for its consequent passage through the needle of the TTSS (Menard et al., 1994) 

(Page et al., 1999). IpgC additionally acts as a chaperone for IpaC, the final 

translocator/effector protein. IpaC joins with IpaB to form a translocon pore component 

(Menard et al., 1994) (Page et al., 1999) and it is involved with host cell signaling (Tran 

Van Nhieu et al., 1999).   

The preliminary proteins secreted by the Salmonella Pathogenicity Island-1 (SPI-

1) TTSS are called Sips (Salmonella invasion proteins), and are homologous to Shigella 

proteins and function in invasion of the host cell and secrete effectors in the same manner 

(refer to Figure 1.2). Invasion by Salmonella requires SipD, SipB, SipC, and the 

molecular chaperone SicA, just as homologues, IpaD, IpaB, IpaC,and IpgC, respectively, 

are essential for Shigella invasion (Kaniga, Trollinger and Galan, 1995)(Kaniga, Tucker, 

Trollinger and Galan, 1995). SipB and SipC are secreted through the Salmonella TTSA 



20 
 

and form a translocon pore in the host membrane (Cossart and Sansonetti, 2004) (Galan, 

2001). As with the Shigella homologues, mutations in Salmonella proteins SipD, SipB, 

SipC, and SicA individually, prevent the SipB/SipC translocon from inserting into the 

host cell membrane, which is why each protein is required for translocon formation 

(Cossart and Sansonetti, 2004). 

 IpaB and SipB are important to study because they have several functions that are 

crucial to Shigella and Salmonella pathogenesis.  Both serve as secreted effector proteins, 

both regulate type III secretion, and both function as structural proteins in the formation 

of the translocon pores that form in the host cell membrane (Schroeder and Hilbi, 2008).  

After initially crossing M cells, S. flexneri and Salmonella serovar Typhimurium secrete 

IpaB and SipB, respectively, to induce apoptosis via a caspase1-mediated pathway and 

allow escape from the macrophage (Hilbi et al., 1998) (Hersh et al., 1999).  This 

apoptotic (pyroptotic) pathway results in the massive release of IL-1β, which provides the 

signal for induction of the inflammatory processes that lead to the inflammation and 

tissue damage that give rise to symptoms (Sansonetti, 2000). IpaB and SipB also serve to 

control effector regulation, as do IpaD and SipD (Menard et al., 1994) (Galan, 2001). 

IpaB and SipB are also each a component of the two-part translocon pore that is inserted 

into the host cell membrane after intial contact.  The other translocon components for 

each are IpaC and SipC (Schroeder and Hilbi, 2008).  IpaD and SipD allow this pore to 

remain in contact with the TTSA needle tip (Schroeder and Hilbi, 2008) (Kaniga, 

Trollinger and Galan, 1995)(Kaniga, Tucker, Trollinger and Galan, 1995), thus forming a 

conduit through the membrane to the host cell’s cytoplasm, channeling direct injection 

and secretion of later effectors from the bacterium to the host cell’s cytoplasm (Menard et 



21 
 

al., 1994) (Zychlinsky et al., 1994) (Blocker et al., 1999)(Kaniga, Trollinger and Galan, 

1995)(Kaniga, Tucker, Trollinger and Galan, 1995). 

Research Focus 

Shigellosis and salmonellosis are two of the most common diarrheal diseases in the 

world, causing over 4 million deaths per year with the majority of these being in children. 

The development of vaccines for these diseases is dependent on overcoming several 

significant barriers. There is currently no vaccine for Salmonella serovar Typhimurium or 

S. flexneri available for use in humans. This problem is confounded further by the need 

for a vaccine that is safe and effective in children. Development of vaccines for 

salmonellosis and shigellosis is also difficult due to the massive number of serovars of 

the pathogen. Vaccine development is hampered due to the lack of an appropriate animal 

model. The current mouse model relies upon a pulmonary induced Shigella infection. 

This is much different than the gastroenteritis that occurs in humans. The mouse, 

employed as a model for human typhoid fever, develops a systemic disease when infected 

with Salmonella serovar Typhimurium, with no diarrhea (Santos et al., 2003). 

Constructing a vaccine that is applicable in the developing world has also been a 

challenge because of differences in the gut flora and nutrition status as compared to the 

developed world. There are also concerns with the use of a live-attenuated vaccine. It is 

not advantageous due to the serotype specificity of these vaccines and the need for a 

vaccine that can be safely administered to children.  

Formulating a vaccine that is protective against Shigella and Salmonella 

infections in mice is the initial step needed for development of a practical and successful 

vaccine in humans. This research is focused on the assessment of the translocators of the 
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type three-secretion system as protective antigens against Shigella and Salmonella 

infection in respective mouse models. My hypothesis is that the exposed parts of the 

Shigella and Salmonella TSSAs can be targeted for development of an effective subunit 

vaccine. In Shigella, this means targeting MxiH (needle), IpaD (tip protein), and IpaB 

(tip-associated translocator protein) and in Salmonella homologues, PrgI (needle), SipD 

(tip protein), and SipB (tip-associated translocator protein). 
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CHAPTER II 
 

 

Materials and Methods 

 

Reagents and Buffers 

 

Coomassie Blue Protein Gel Stain 

250 mL methanol 

1.25 g Coomassie brilliant blue 

75 mL acetic acid 

175 mL diH2O 

 

8X His-Tag Binding Buffer 

2.72 g imidazole 

237 g NaCl 

19.36 g Tris 

Adjust to 1.00 L with diH20 

 

4X His-Tag Charge Buffer 

52.56 g NiSO4 

Adjust to 500 mL with diH2O 

 

4X His-Tag Elution Buffer 

136 g imidazole 

58.44 g NaCl 

4.84 g Tris 

Adjust to 500 mL with diH2O 

pH to 7.9 

 

4X His-Tag Strip Buffer 

74.4 g EDTA 

58.44 g NaCl 

4.84 g Tris 

Adjust volume to 500 mL with diH2O 

pH to 7.9 
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8X His-Tag Wash Buffer 

5.44 g imidazole 

117 g NaCl 

9.68 g Tris 

Adjust volume to 500 mL with diH20 

pH to 7.9 

 

Luria-Bertani Broth (LB) 

25.0 g LB broth 

1.00 L diH2O 

 

Luria-Bertani Agar (LB) 

40.0 g LB agar 

1.00 L diH20 

 

10X Phosphate Buffered Saline (PBS) 

85.0 g NaCl 

10.7 g sodium phosphate, dibasic 

3.90 g sodium phosphate, monobasic 

1.00 L diH2O 

 

12% SDS-PAGE Separating Gel 

3.00 mL diH20 

2.50 mL 1.5 M Tris-HCL, pH 8.8 

100 μL 10% SDS 

4.00 mL 30% Bis:Acrylamide 

 

15% SDS-PAGE Separating Gel 

2.50 mL diH20 

2.50 mL 1.5 M Tris-HCL, pH 8.8 

100 μL 10% SDS 

5.00 mL 30% Bis:Acrylamide 

 

5% SDS-PAGE Stacking Gel (2) 

2.85 mL diH2O 

1.25 mL 0.5 M Tris-HCl, pH 6.8 

50.0 μL 10% SDS 

1.00 mL 30% Bis:Acrylamide 

 

SDS-PAGE Running Buffer 

2.42 g Tris 

14.41 g glycine 

10.0 mL SDS 

1.00 L diH2O 
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1X Sodium Phosphate Dialysis Buffer (NaP buffer) 

20 mL .5 M NaP 

8.77g NaCl 

5 mL OPOE 

Adjust to 1 L with 1X PBS 

 

10 mM Histidine buffer 

2.1 g Histidine 

8.77 g NaCl 

in 1L H20 

 

1x PBS + 0.5% Tween 

1L 10x PBS 

5 mL Tween 20 

added to 9L di H20 

 

10%NFDM 

20 g Best Choice Non-fat dry milk 

200mL PBS or PBS + 0.5% Tween 

Mix on stir plate for 40 minutes 

 

TMB Peroxidase Substrate  

TMB peroxidase substrate- 0.4 g/L 3,3',5,5'- tetramethylbenzidine. 

Peroxidase Substrate Solution B - 0.02% H2O2 in Citric Acid buffer. 

 

Peroxidase-Labeled Antibody To Mouse IgG 

Affinity purified antibody isolated from a pool of serum from goats immunized with 

purified mouse IgG was labeled with peroxidase by the periodate method by KPL. 

 

Phosphoric Acid Stop Solution 

55.2 mL H3PO4 

944.8 mL diH20 

 

Construction/Production of Recombinant Proteins 

 mxiH, ipaB, ipaD, prgI, sipB and sipD were subcloned from the pUC-based 

plasmid pHS2 into pET15b.  The resulting constructs were then transformed into Nova 

Blue E. coli.  Transformants were screened with T7 promoter and terminator primers.  

Plasmids containing inserts were then purified using a QIAGEN QIAquick
TM

 plasmid 

purification kit.  ipaB/plasmid and ipgC/pACYC were then co-transformed, and 
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sipB/plasmid and sicA/pACYC were co-transformed, both into Tuner (DE3) E. coli. 

Transformations were plated on LB plates containing either ampicillin for bacteria 

containing genes on pET15b or ampicillin and chloramphenicol for those containing 

genes on both pET15b and pACYC plasmids.  Several colonies were selected and frozen 

as permanent stocks.  A loop of the permanent stock was resuspended in 50 mL of LB 

and grown overnight at 37 °C with shaking.  The 50 mL culture was then divided evenly 

between four liters of LB, each containing either 100 μg/mL ampicillin or 100 μg/mL 

ampicillin and 25 μg/mL chloramphenicol. Cultures were grown to mid-log phase (OD600 

= 0.6) and the protein expression was induced using 0.5 M isopropyl-thio-2-D-

galactopyranoside (IPTG).  Induced cultures were grown for an additional three hours.  

The bacteria were then collected by centrifugation and resuspended in 40 mL/L of 

culture, with 1X His-tag binding buffer.  The bacterial suspension was frozen at –80°C. 

Ni+ Affinity Protein Purification of His-Tag Containing Proteins 

 Frozen bacterial suspensions were thawed, sonicated and clarified by 

centrifugation for 15 minutes at 10,000 x g.  Three mL of iminodiacetic acid Sepharose 

resin were washed with five column volumes (CV) of distilled water.  The resin was 

charged with three CV of 1X His-tag charge buffer and then five CV of 1X His-tag 

binding buffer.   Clarified supernatants of IpaD and SipD were applied to the column, 

which was washed with an additional five CV of binding buffer.  Non-specifically bound 

proteins were removed with five CV of 1X His-tag wash buffer and bound proteins were 

then eluted in three CV of 1X His-tag elution buffer.  Fractions were collected and 

analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) to 
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check for presence of protein.  The resin was stripped with three CV of 1X His-tag strip 

buffer and stored at 4°C. 

Ni+ Affinity Protein Purification of His-Tag Containing Proteins with OPOE 

 Frozen bacterial suspensions were thawed, sonicated and clarified by 

centrifugation for 15 minutes at 10,000 x g.  Three mL of iminodiacetic acid Sepharose 

resin were washed with five CV of distilled water.  The resin was charged with three CV 

of 1X His-tag charge buffer and then five CV of 1X His-tag binding buffer.  Clarified 

supernatants of IpaB and SipB were applied to the column; three mL of binding buffer + 

1% n-octyl-poly-oxyethlene (OPOE) was added.  The column was allowed to rock 

overnight in a cold room at 4°C.  Non-specifically bound proteins were removed with 

five CV of 1X His-tag wash buffer with 1% OPOE and bound proteins were then eluted 

in three CV of 1X His-tag elution buffer with 1% OPOE.  Fractions were collected and 

analyzed by SDS-PAGE gel to check for presence of protein.  The resin was stripped 

with three CV of 1X His-tag strip buffer and stored at 4°C for future use. 

Ni+Affinity Protein Purification of His-Tag Containing Proteins with 6M Urea 

 Frozen bacterial suspensions were thawed, sonicated, homogenized and clarified 

by centrifugation for 15 minutes at 10,000 x g.  Three mL of iminodiacetic acid 

sepharose resin were washed with five CV of distilled water.  The resin was charged with 

three CV of 1X His-tag charge buffer and then five CV of 1X His-tag binding buffer.  

Clarified supernatants of MxiH and PrgI were applied to the column; three mL of binding 

buffer + 6M Urea was added. Non-specifically bound proteins were removed with five 

CV of 1X His-tag wash buffer with 6M urea and bound proteins were then eluted in three 

CV of 1X His-tag elution buffer with 6M urea.  Fractions were collected and analyzed by 
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SDS-PAGE gel to check for presence of protein.  The resin was stripped with three CV of 

1X His-tag strip buffer and stored at 4°C for future use. 

Dialysis of Proteins Following Purification 

 Proteins were placed in a Thermo Scientific Slide-A-Lyzer dialysis cassette.  All 

dialysis steps were done at 4°C.  Cassettes were dialyzed against 500 mL of 10mM 

Histidine or 1x PBS dialysis buffer for IpaD and SipD and 500 mL of 10mM Histidine 

buffer + 1% OPOE or 1x PBS +1% OPOE for IpaB and SipB, overnight at 4°C, stirring 

constantly. MxiH and PrgI were placed in dialysis tubing and dialyzed overnight at 4°C, 

stirring constantly in 1L of 1x PBS + 4M urea and continued to dialyze stepwise, 

decreasing the concentration of urea by ½ each day. This was done until buffer contained 

only 1x PBS. Purified proteins were removed from dialysis were placed into a 1.5 mL 

Eppendorf tube and stored at 4°C. 

The concentration of each protein was then determined by the Beer-Lambert Law: 

(A=εbc); where A is the absorbance at 280nm, ε is the extinction coefficient of the 

protein, b is the path length and C is concentration. The extinction coefficient measures 

the amount of light a protein absorbs at a given wavelength. From the amino acid 

composition of the protein and the known molar extinction coefficients of Tyrosine (Tyr), 

Tryptophan (Trp), and Cysteine extinction coefficients of native proteins can be 

calculated. The formula for this calculation is: 

Extinction coefficient (Protein) = (Number of Tyr)*(Extinction coefficient of Tyr) + 

(Number of Trp)*(Extinction coefficient of Trp) + (Number of Cysteines)*(Extinction 

coefficient of Cysteine)  

ε (prot) = (#Tyr)(5,500) + (#Trp)(1,490) + (#Cysteine)(125) 
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ProtParam is a tool in ExPASy Proteomics Server used by our lab to calculate the 

extinction coefficient. Using the native protein sequence provided, the program calculates 

the extinction coefficient of proteins based on their amino acid composition. Using the 

equation below and by solving for c, the concentration for each protein was calculated by 

dividing the absorbance by the extinction coefficient (Table 2.1)(Gasteiger, et al., 2005). 

When multiplied by the molecular weight of the protein, the product is the protein 

concentration in mg/mL. 

       C (concentration) = (absorbance) / (extinction coefficient) 
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Table 2.1 The proteins used in Experiment 2, their molecular weights, and extinction 

coefficients. Absorbance at A280, is divided by the extinction coefficient and 

concentration is calculated based on Beer-Lambert Law (A=εbc). Multiplying the 

concentration (C) by the molecular weight of the protein yields the protein’s 

concentration in mg/mL.  

 

 

 

 

 

 

 

 

 

 

Calculation of Protein Concentrations 

Protein Molecular weight 

(Da) 

Extinction 

coefficient 

(M
-1

 cm
-1

) 

MxiH 10,330 9,970 

IpaD 36,634 36,900 

IpaB 64,349 11,460 

PrgI 8,856.9 12,950 

SipD 37,112 38,390 

SipB 62,451 16,960 
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Animal Protocols  

 Prior to this current study, Dr. Wendy Picking and Dr. Julian Kissman conducted 

Experiment 1. These preliminary trials were used to determine the 50% mouse lethal dose 

(LD50) and evaluate Salmonella proteins PrgI and SipD along with Shigella proteins 

MxiH and IpaD, as potential protective antigens. This research was incorporated in the 

development of Experiments 2 and 3. Six to eight-week old female Balb/c mice (Mus 

musculus) were housed in groups of five in microisolator cages in the OSU animal 

facility. Animals were fed and watered ad libidum and they were ear-tagged for 

identification and weighed initially.     

There were 300 mice involved with Experiment 2. Adjuvants used in Experiment 

2 are listed in Table 2.2. Flow charts illustrating Experiment 2 are depicted in Figures 

2.1-2.4. Each chart follows a basic procedural outline and includes: number of mice per 

group, group classification, adjuvants used, bleeding schedule, immunization days, 

challenge, and monitoring of animals post challenge. Groups were established for 

intramuscular and intranasal vaccines. One hundred and forty mice were grouped for 

intramuscular vaccines and 160 mice were grouped to receive intranasal vaccines. Each 

animal group was comprised of ten mice (n=10). Classification of these groups was based 

on the vaccine components for the group. Proteins used for Salmonella vaccines were 

PrgI, SipD and SipB. Shigella vaccines incorporated the proteins MxiH, IpaD and IpaB. 

Intramuscular immunizations were formulated with Freund’s adjuvant, Freund’s 

Incomplete Adjuvant, and Monophosphoryl lipid A (MPL). Intranasal immunizations 

were formulated with cholera toxin adjuvant, MPL and MPL with chitosan. 

Intramuscular immunizations were administered on days 0, 14 and 28. Intranasal 
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immunizations were given on days 0, 14, 28 and 42. Mice were bled via facial vein two 

days prior to all immunizations and challenge. Mice receiving Shigella vaccines were 

challenged intranasally with Shigella strain 2457T. Mice that were given Salmonella 

vaccines were challenged ororgastrically with Salmonella strain SL1344. All animals 

were challenged 28 days after receiving the final immunization. Mice were monitored for 

up to two weeks post challenge. During this period, mice were scored based on health 

and weights were recorded daily. Mice losing 25% of initial body weight were promptly 

euthanized by cervical dislocation. All survivors were euthanized on day15 day post 

challenge per Institutional Animal Care and Use Committee regulations. 
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Table 2.2. Adjuvants used in Experiment 2 for intramuscular (IM) and intranasal (IN) 

vaccinations. AH, CFA , IFA and MPL were used in intramuscular immunizations with 

and with out antigens. CT, MPL and Chitosan formulated with and without antigens were 

components of intranasal immunizations. All adjuvants for Experiment 2 were provided 

by the University of Kansas.  

 

 

  

 

 

 

 

Adjuvants used for Experiment 2 

Alhydrogel-Aluminum hydroxide (AH) -10 mg/mL                          [IM] 

Cholera toxin (CT) -1mg/mL                                                              [IN] 

Freund’s (CFA)-1mg/mL                                                                     

[IM] 

Incomplete Freund’s (FA) -1mg/mL                                                    

[IM] 

Monophosphoryl lipid A- (MPL) -1mg/mL                           [IM and IN] 

Chitosan -2mg/mL                                                                               [IN] 
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Flow Charts for Experiment 2 

 

                             

Figure 2.1. 70 mice were given intramuscular immunizations on days 0,14 and 28. Mice were bled 2 days prior to 

immunizations and orogastric challenge with S. typhimurium strain SL1344.  Groups of 10 mice were given vaccines 

formulated with and without Salmonella proteins: PrgI, SipD and SipB; using Freund’s and MPL+AH as adjuvants 

(refer to Table 2.2). Animals were monitored for up to 14 days post challenge. 
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Flow Charts for Experiment 2, continued 

                          

Figure 2.2. 80 mice were given intranasal immunizations on days 0,14 and 28. Mice were bled 2 days prior to immunizations and 

orogastric challenge with S. typhimurium strain SL1344.  Groups of 10 mice were given vaccines formulated with and without 

Salmonella proteins: PrgI, SipD and SipB; using Cholera toxin and MPL and Chitosan + MPL as adjuvants (refer to Table 2.2). 

Animals were monitored for up to 14 days post challenge. 
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Flow Charts for Experiment 2, continued 

                  

Figure 2.3. 70 mice were given intramuscular immunizations on days 0,14 and 28. Mice were bled 2 days prior to 

immunizations and intranasal challenge with S. flexneri strain 2457T.  Groups of 10 mice were given vaccines formulated 

with and without Shigella proteins: MxiH, IpaD and IpaB; using Freund’s and MPL+AH as adjuvants (refer to Table 2.2). 

Animals were monitored for up to 14 days post challenge. 
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Flow Charts for Experiment 2, continued 

                                   

Figure 2.4. 80 mice were given intramuscular immunizations on days 0,14 and 28. Mice were bled 2 days prior to 

immunizations and intranasal challenge with S. flexneri strain 2457T.  Groups of 10 mice were given vaccines formulated with 

and without Shigella proteins: MixH, IpaD and IpaB; using Cholera toxin, MPL and Chitosan + MPL as adjuvants (refer to 

Table 2.2). Animals were monitored for up to 14 days post challenge.
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Vaccine Formulation for Experiment 2 

Vaccines for Experiment 2 were mass formulated by group in 1.5mL, sterile 

Eppendorf tubes. Tables 2.3-2.6 provide the quantities of adjuvants (listed in Table 2.2) 

used in microliters for each immunization. Amounts of each protein used at calculated 

concentrations (A=εbc) are given in microliters in these tables as well. For intramuscular 

vaccines alhydrogel (AH) was initially bound to the antigens by mixing with gentle 

agitation for 30 minutes, which ensured maximal antigen binding to Monophosphoryl 

lipid A (MPL). Vaccines formulated with these adjuvants contained 30μg of both AH and 

MPL. Freund’s complete (FCA) and Freund’s incomplete adjuvants (FA) were used for 

intramuscular immunizations and were mixed at a 1:1 ratio with antigens by pipetting 

with subsequent vortexing.  For intranasal immunizations, 1mg of cholera toxin (CT) 

adjuvant was reconstituted with 1 mL deionized water.  Reconstituted CT was then mixed 

with antigens by simple pipetting. Vaccines formulated with CT contained 2.5μg for each 

immunization. The adjuvant chitosan was used with MPL in intranasal immunizations. 

Each vaccine was formulated with 10ug of each chitosan and MPL. Chitosan was first 

vortexed into 1x histidine buffer to dissolve, prior to mixing with antigens by pipetting. 

MPL was then added and mixed by pipetting with subsequent vortexing.  

All Salmonella intramuscular immunizations containing antigens were formulated 

with 25μg PrgI, 25μg SipD, and 10μg SipB. The first three Salmonella intranasal 

immunizations were formulated with a total of 10μg PrgI, 10μg SipD and 2.5μg SipB. 

The fourth intranasal booster contained 10μg SipD and 2.5μg SipB only. 

All Shigella intramuscular immunizations containing antigens were formulated 

with 25μg MxiH, 25μg IpaD, and 10μg IpaB. Shigella intranasal immunizations 1-3 
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contained antigen amounts of 10μg MxiH, 10μg IpaD and 2.5μg IpaB. The fourth booster 

contained 10μg IpaD and 2.5μg IpaB only. The quantity of each protein (in μL) at 

calculated concentrations (mg/mL) that were used in each immunization is given in 

Tables 2.3-2.6.  PBS and histidine buffers were added as appropriately needed to bring 

each intramuscular vaccine to a final volume of 100μL. Each intranasal vaccine had a 

final volume of 30μL per dose. Vaccine group tubes were kept at 4°C until they were 

administered.  
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Table 2.3. Quantities and concentrations of Salmonella proteins and quantities of adjuvants used in formulations of 

intramuscular vaccines. There were three rounds of immunizations which required that we purify additional SipB for rounds 

two and three. The total volume of each vaccine was 100μL.  Vaccines for each group were mass formulated in 1.5mL 

Eppendorf tubes. PBS and histidine buffers were added to complete formulation quantities to 100μL per dosage, when 

necessary.  

Table 2.3. Expt 2A 

Intramuscular 

Immunization 1-3-Salmonella 

 

Protein Concentration 

 

Group/Adjuvant 

 

Adjuvant 

Quantity 

PrgI 

1.12 

mg/mL 

 

SipB 

0.435 round 1/ 

 0.862 round 2/3  

mg/mL 

 SipD 

2.32 

mg/mL 

Total 

Immunizati

on 

Volume 

1- PBS - - - - 100μL 

2-Protein   - 22.3 μL 23/11.6μL 10.78 

μL 

100μL 

3-Freund’s (1)/ 

Incomplete 

Freund’s (2,3) 

44μL - - - 100μL 

4-Freund’s (1)/ 

Incomplete 

Freund’s (2,3)  + 

protein 

44μL 22.3 μL 23/11.6μL 10.78 

μL 

100μL 

5-MPL+AH 30μL + 

3μL 

- - - 100μL 

6-MPL+AH + 

protein 

30μL + 

3μL 

22.3 μL 23/11.6μL 10.78 

μL 

100μL 

7-Vaccine strain 

-SL-3261 

- - - - 100μL-

Gavage 
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Table 2.4. Quantities and concentrations of Salmonella proteins and quantities of adjuvants used in formulations of intranasal 

vaccines. There were three rounds of immunizations plus a fourth booster with only SipB and SipD. It was required to purify 

additional SipB for rounds two and three, and additional SipB and SipD for the fourth boost. The total volume of each vaccine 

was 30μL.  Vaccines for each group were mass formulated in 1.5mL Eppendorf tubes. PBS and histidine buffers were added to 

complete formulation quantities to 30μL per dose, when necessary.  

Table 2.4. Expt 2B 

Intranasal 

Immunization 1-3 - 

Salmonella 

Protein Concentration Immunization 4- Boost 

SipB and SipD only 

 

Group/ 

Adjuvant 

 

 

 

Adjuvant 

quantity 

PrgI 

1.12 

mg/mL 

SipB 

0.435 round 

1/0.862 round 

2-3  

mg/mL 

SipD 

2.32 

mg/ 

mL 

SipB 

9.35 

mg/ 

mL 

SipD 

 3.97 

mg/ 

mL 

Total 

Immunization  

Volume 

8- PBS - - - - - - 30μL 

9-Cholera Toxin 2.5 μL - - - - - 30μL 

10-Cholera Toxin 

+ Protein 

2.5 μL 8.93 

μL 

 

5.75/2.9μL 4.31 

μL 

 

0.3μL 2.5μL 30μL 

11-MPL 10μL - - - - - 30μL 

12-MPL+ protein 

 

10μL 8.93 

μL 

 

5.75/2.9μL 4.31 

μL 

 

0.3μL 2.5μL 30μL 

13-Chitosan + 

MPL 

5μL +  

10μL 

- - - - - 30μL 

14-Chitosan + 

MPL + protein 

5μL +  

10μL 

8.93 

μL 

 

5.75/2.9μL 4.31 

μL 

 

0.3μL 2.5μL 30μL 

15-protein - 8.93 

μL 

5.75/2.9μL 4.31 

μL 

 

0.3μL 2.5μL 30μL 
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Table 2.5. Quantities and concentrations of Shigella proteins and quantities of adjuvants used in formulations of 

intramuscular vaccines are listed above. There were three rounds of immunizations. The total volume of each vaccine 

was 100μL.  Vaccines for each group were mass formulated in 1.5mL Eppendorf tubes. PBS and histidine buffers were 

added to complete formulation quantities to 100μL per dose when necessary.

Table 2.5. Expt 2C 

Intramuscular 

Immunization 1-3 - Shigella 

Protein Concentration 

 

Group/Adjuvant 

 

 

 

Adjuvant 

quantity 

MxiH 

 3.76 

mg/mL 

IpaB 

0.65  

mg/mL 

IpaD 

3.15 

 mg/mL 

Total 

Immunization  

Volume 

1- PBS - - - - 100μL 

2-Protein - 6.65μL 15.4μL 7.94μL 100μL 

3-Freund’s (1)/ 

Incomplete 

Freund’s (2,3) 

30μL - - - 100μL 

4- Freund’s (1)/ 

Incomplete 

Freund’s (2,3) + 

protein 

30μL 6.65μL 15.4μL 7.94μL 100μL 

5-MPL+AH 30μL + 

3μL 

- - - 100μL 

6-MPL+AH + 

protein 

30μL + 

3μL 

6.65μL 15.4μL 7.94μL 100μL 

7-Vaccine strain-

1207 

- - - - 30μL 
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Table 2.6. Quantities and concentrations of Shigella proteins and quantities of adjuvants used in formulations of intranasal 

vaccines. There were three rounds of immunizations plus a fourth booster with only IpaB and IpaD. It was required to purify 

additional IpaB and IpaD for the fourth boost. The total volume of each vaccine was 30μL.  Vaccines for each group were 

mass formulated in 1.5 mL Eppendorf tubes. PBS and histidine buffers were added to complete formulation quantities to 30μL 

per dose when necessary. 

Table 2.6. Expt 2D 

Intranasal 

Immunization 1-3- 

Shigella 

Protein Concentration Immunization 4- Boost 

IpaB and IpaD only 

 

Group/ 

Adjuvant 

 

 

 

Adjuvant 

quantity 

MxiH 

 3.76 

mg/mL 

IpaB 

0.65  

mg/mL 

IpaD 

3.15 

mg/

mL 

IpaB 

4.28 

mg/mL 

IpaD 

7.25 

mg/mL 

Total 

Immunization  

Volume 

8- PBS - - - - - - 30μL 

9-Cholera 

Toxin 

2.5μL - - - - - 30μL 

10-Cholera 

Toxin + 

Protein 

2.5μL 6.65μL 3.85μL 

  

3.17 

μL 

 

0.6 μL 1.38μL 30μL 

11-MPL 10μL - - - - - 30μL 

12-MPL+ 

protein 

10μL 6.65μL 3.85μL 

  

3.17 

μL 

 

0.6 μL 1.38μL 30μL 

13-Chitosan + 

MPL 

5μL +  

10μL 

- - - - - 30μL 

14-Chitosan + 

MPL + 

protein 

5μL +  

10μL 

6.65μL 3.85μL 

  

3.17 

μL 

 

0.6 μL 1.38μL 30μL 

15-protein - 6.65μL 3.85μL 

  

3.17 

μL 

 

0.6 μL 1.38μL 30μL 
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Experiment 3 

Dr. Wendy Picking completed all vaccine formulations and immunizations for 

Experiment 3.  The experimental design followed the basic procedures of Experiment 2. 

There are however several significant differences involved in the antigen/adjuvant 

combinations used. Needle proteins for Salmonella and Shigella (PrgI and MxiH 

respectively) are not used in Experiment 3. The reason for this is that these proteins 

yielded no protective value in Experiment 2. In addition to SipB and SipD, Salmonella 

protein variants of SipB were used with SipD for some of the immunizations in 

Experiment 3.These variants included SipB/SicA which stabilizes SipB, and a newly 

identified stable SipB fragment (amino acid residues 77-237). Modifications also 

included the use of fewer adjuvants in Experiment 3. Freund’s adjuvants, both complete 

and incomplete, as well as chitosan were not used in Experiment 3. These adjuvants did 

not seem to contribute to protection when immunized with antigens in Experiment 2. 

Adjuvants used in Experiment 3 are listed in Table 2.7. The less toxic, double mutant 

heat-labile toxin (dmLT) was used in place of cholera toxin. Monophosphoryl lipid A 

(MPL) was used once again along with alhydrogel (AH).  Decisions on changes made in 

Experiment 3 were loosely based on the data from Experiment 2. The overall goal of both 

experiments was to close in on an efficient antigen/adjuvant combination using the proper 

route of administration. Flow charts 2.5-2.7 depict the general process for Experiment 3, 

each chart follows the same basic procedure as Experiment 2 including: number of mice 

per group, group classification, adjuvants used, bleeding schedule, immunization days, 

challenge and monitoring of animals post challenge.  
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Table 2.7. Adjuvants and protein amounts for Experiment 3. Antigens were formulated 

with listed adjuvants for intranasal and intramuscular immunizations for Shigella and 

Salmonella test groups by Dr. Wendy Picking. MPL and AH were used with and without 

antigens for intramuscular Shigella vaccines, rounds 1-4. Intranasal immunizations with 

and without antigens for Salmonella vaccines 1-4 were also formulated with MPL and 

AH. dmLT was used in Salmonella  intranasal immunizations for vaccine rounds 1-4.  

 

 

Table 2.7- Ex 3- Immunizations 1-4   

Adjuvants 
 Protein Amount Buffer 

IpaB 200μg His Alhydrogel-

Aluminum 

hydroxide (AH) -

10 mg/mL 

IpaD 350μg His 

IpaD 600μg PBS 

SipB 200μg His Monophosphoryl 

lipid A (MPL)- 

1mg/mL SipB 300μg PBS 

SipB/SicA 200μg His 

SipB/SicA 150μg PBS Double mutant 

heat-labile toxin 

(dmLT) SipD 350μg His 

SipD 550μg PBS 



46 
 

Flow Charts for Experiment 3 

                        

Figure 2.5. 30 mice were given intramuscular immunizations on days 0,14 and 28. Mice were bled 2 days prior to 

immunizations and intranasal challenge with S. flexneri  strain 2457T.  Groups of 10 mice were given vaccines formulated 

with and without Shigella proteins: IpaD and IpaB; using MPL + AH a as adjuvants (refer to Table 2.6). Animals were 

monitored for up to 14 days post challenge. 
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Flow Charts for Experiment 3, continued 

                 

Figure 2.6. 50 mice were given intranasal immunizations on days 0,14 and 28. Mice were bled 2 days prior to immunizations and 

orogastric challenge with S. typhimurium strain SL1344.  Groups of 10 mice were given vaccines formulated with and without 

Salmonella proteins: SipB and SipD, SipB/SicA with SipD and SipB fragment with SipD; using MPL with alhydrogel as adjuvants 

(refer to Table 2.6). Animals were monitored for up to 14 days post challenge. 
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 Flow Charts for Experiment 3, continued 

                     

Figure 2.7. 60 mice were given intranasal immunizations on days 0,14 and 28. Mice were bled 2 days prior to immunizations 

and orogastric challenge with S. typhimurium strain SL1344.  Groups of 10 mice were given vaccines formulated with and 

without Salmonella proteins: SipB and SipD, SipB/SicA with SipD and SipB fragment with SipD; using dmLT as the adjuvant 

(refer to Table 2.6). Animals were monitored for up to 14 days post challenge. 
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Immunization 

For Experiment 2, the animals receiving the intramuscular vaccine were given 

three immnizations every two weeks beginning with day 0. Twenty-eight days after the 

third immunization, animals were challenged with either Salmonella serovar 

Typhimurium (SL1344) or S. flexneri (2745T). Animals receiving the intranasal vaccine 

were given a fourth boost containing tip protein antigens and then subsequently 

challenged 28 days later with SL1344 and 2457T. 

All groups receiving intramuscular vaccines were immunized with a 100μL 

injection into the biceps femoris using a 1 mL syringe with a 27-gauge needle. Intranasal 

immunizations and the Shigella vaccine strain  (1207) were administered as 30μL doses. 

Immunizations were applied to nares of mice via micropipette tip. To immunize with the 

Salmonella (SL3261) vaccine strain, 100μL of the bacterial strain was given 

orogastrically by passing 20-guage bulb-tipped gavage needle through the mouth into the 

stomach. 

Vaccine Strain 

Salmonella serovar Typhimurium strain SL3261 (attenuated vaccine strain) was 

grown to mid-log phase overnight at 37°C with shaking at 100rpm in 100mL of LB.  

Bacteria were collected by centrifugation at 3200rpm.  Bacteria were then resuspended in 

1mL of 1X PBS. Absorbance of the culture was taken at a dilution of 1:100 (10μL 

bacteria in 990μL of PBS) and further diluted with PBS to reach desired A600 of 0.15. 

100μL of Salmonella serovar Typhimurium vaccine strain SL3261 was administered 

orogastrically by gavage for each vaccine round.  
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The S. flexneri vaccine strain 1207 was grown to mid-log phase overnight. 

Guanine was added to media at 37°C with shaking at 200rpm in 100mL of TSB.  Bacteria 

were collected by centrifugation at 3200rpm.  Bacteria were then resuspended in 1mL of 

1X PBS. Absorbance of bacteria was taken at dilution of 1:100 and diluted further with 

PBS to reach desired A600 of 6.6. 30μL of S. flexneri vaccine strain 1207 was 

administered intranasally for each vaccine round.  

Blood Sampling 

Blood was collected via submandibular vein lancet technique. Mice were 

manually restrained as 0.2mL of blood obtained and drip collected into 1.5mL serum 

separation tubes. The samples were centrifuged at 12,000 rpm and sera were collected 

after separation from clotted red blood cells. One hundred μL of serum was collected 

from each animal and the samples were pooled, labeled, and stored in the freezer at -20°C 

for each experimental group. The remaining 100μL was labeled and stored for each 

individual specimen. Animals were bled two days prior to each immunization to allow 

recovery from the stress.  

Challenge 

Log-fold dilution experiments were performed to determine bacterial strain 

concentration for challenge dose. One hundred-fold dilutions of bacterial strains SL1344 

and 2457T plated on LB agar and left overnight to incubate at 37°C. Colony forming 

units were quantified to determine the bacteria/mL to allow for administration of a 

uniform dose per animal.  Animals were challenged 28 days after last immunization. 

Salmonella serovar Typhimurium strain SL1344 was grown to mid-log phase 

overnight at 37°C with shaking at 100rpm in 200mL of LB.  Bacteria were collected by 
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centrifugation at 3200rpm.  Bacteria were then resuspended in 10mL of 1X PBS. 

Absorbance at 600nm was taken of bacteria at a dilution of 1:100 (10μL bacteria in 

990μL of PBS) and further diluted with PBS to reach desired A600 of 0.15. One hundred 

μL of Salmonella serovar Typhimurium vaccine strain SL1344 was administered 

orogastrically by gavage for challenge.  Animal appearance and weights were monitored 

and recorded for up to two weeks post challenge. 

S. flexneri strain 2457T was grown to mid-log phase overnight at 37°C with 

shaking at 200rpm in 200mL of TSB.  Bacteria were collected by centrifugation at 

3200rpm.  Bacteria were resuspended in 10mL of 1X PBS. Absorbance of the culture was 

taken at dilution of 1:100 (10μL bacteria in 990μL of PBS) and diluted further with PBS 

to reach desired A600 of 6.6. Thirty μL of S. flexneri vaccine strain 2457T was 

administered intranasally for challenge using the accepted mouse lung infection model. 

Monitoring 

Animals were examined for appearance twice-daily post challenge. Weights were 

recorded once daily at which time the animals were scored based on degree of sickness. 

Moribund animals were euthanized promptly by cervical dislocation as per Institutional 

Animal Care and Use Committee regulations. All surviving animals were euthanized 

after the 15
th

 day post challenge.   

Immunology 

Upon completion of vaccine trials, serum collected from animals at each 

preimmunization time-point was analyzed for immune response by enzyme-linked 

immunosorbent assay (ELISA). All ELISA’s were performed following the Standard 

Operating Procedures (SOPs) provided by the Center for Vaccine Development at the 
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University of Maryland School of Medicine. In conjunction with the SOPs, each assay 

was documented, step-by-step using the Qualitative ELISA Worksheet: AI-01. This 

template provides the basic ELISA protocol but can be individualized for each assay. The 

form also provides a place for documentation of: 1) coating of plates with antigens, 2) 

blocking of plates with 10% non-fat dry milk, 3) incubation of plates with specimens, 4) 

conjugate incubation of plates with secondary antibody, 5) binding of substrate, 6) 

addition of stop solution to end the reaction. ELISA’s for Experiments 2 and 3 were 

completed using these guidelines.  

  On day one antigens were diluted into 10mL of PBS to achieve 0.1μg/100μL. 

Ninety-six well Immulon* Immunoassy U-bottom plates were coated with antigen. Each 

well was coated with 100μL of antigen and incubated for 3 hours at 37°C.  Following 

incubation, plates were then washed 6 times with 1x PBS + 0.5% Tween. The plates were 

aspirated between each wash. Plates were coated with 10% non-fat dry milk (NFDM) 

blocking buffer in the amount of 250μL/well. Plates were incubated at 4°C overnight. 

On day two plates were washed 6 times with 1x PBS + 0.5% Tween. The plates were 

aspirated between each wash. Serum samples from previously bled mice were used as 

primary antibody. The lowest dilution for mouse serum accepted is 1:50 (Standard 

Operating Procedure provided by the Center for Vaccine Development). Five μL of 

mouse serum was diluted into 250uL 10% NFDM + 1x PBS + 0.5% Tween. Each well 

was coated with 100μL of diluted serum. Samples were laid down in pairs following pre-

determined template (Figure 2.8). Row H contained 10% NFDM + 1x PBS + 0.5% 

Tween to serve as blank for each plate. Columns 11and 12 were reserved for the standard 

control. This control is titered down the columns by beginning with 200μL of diluted 
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control in row A of columns 11 and 12. Rows B-G in columns 11 and 12 contained 

100μL of 10% NFDM + 1x PBS + 0.5% Tween. One hundred μL was taken from row A 

and diluted by mixing into row B. This 100μL dilution was followed through row G in 

columns 11 and 12.Plates were incubated for 1 hour at 37°C, and washed 6 times with 1x 

PBS + 0.5% Tween. One hundred μL of peroxidase-labeled, goat anti-mouse IgG was 

laid down on plates as secondary antibody. Each well received 100μL of secondary 

antibody at a concentration of 1mg/mL diluted 1:1000 in 10% NFDM. Plates were 

incubated for 1 hour at 37°C, and washed 6 times with 1x PBS + 0.5% Tween. Equal 

volumes of TMB Peroxidase Substrate and Peroxidase Substrate Solution B were mixed 

to form the substrate. One hundred μL of substrate was placed in each well and incubated 

on shaker at room temperature for 15 minutes, covered. One hundred μL 1M phosphoric 

acid stop solution was added to plates with bound substrate. Plates were read immediately 

on multi-scan plate reader taking the optical density at 450nm.  Values for each well were 

pasted into Qualitative ELISA regression template, provided by the Center for Vaccine 

Development, which assigned titers for each sample based on the optical density at 

450nm. 
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ELISA Plate Template 

               

 

 

Figure 2.8. ELISA plate template. Template is used for each ELISA run and made before beginning assay. Row H is 

always reserved for the plate blank. Rows A-G in columns 11-12 are always reserved for the standard control for the 

plate.
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CHAPTER III 
 

 

The Overall Results 

Animals immunized with the PrgI, SipD and SipD (from Salmonella) or MxiH, 

IpaD and IpaB (from Shigella) showed increasing antibody titers with each additional 

immunization.  Overall results of Experiments 2 and 3 are best presented in tables 

illustrating serum antibody titers resulting from ELISA assays for each bleed followed by 

plotting the accompanying survival rates for vaccination regimen.  These tables are 

divided into groups of mice immunized with Salmonella proteins (intramuscular and 

intranasal immunizations) and mice immunized with Shigella proteins (intramuscular and 

intranasal immunizations).  

This chapter also reports the titer values determined using ELISA’s for each 

group and each bleed.  Titer values reflect the detectable level of antibody present in the 

serum.  Titers are determined based on optical density of samples at 450nm according to 

the protocols in the previous chapter.  Results must fall between the standard control 

curves to be assigned a titer value.  Titers are used here as an assessment of the immune 

response to a given antigen.  It is assumed here that higher levels of antibodies will yield 

protection, but that cannot be verified without also determining the survival rates in 

challenge experiments. Survival curves are listed for each route of administration for both 

Salmonella and Shigella. Each curve plots survival percentage for a given group of 
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animals versus time post challenge with the final data collected by Dr. Wendy Picking. 

Salmonella Results for Experiment 2 

Results of intramuscular Salmonella vaccines are presented in Figure 3.1. Results 

show no protection using Freund’s adjuvant with Salmonella proteins PrgI, SipD, and 

SipB (I/D/B). There was 90% survival within the group immunized with 

Monophosphoryl lipid A (MPL) + Ahlydrogel (AH) + I/D/B. Mice immunized with MPL 

+ AH alone had 56% surivial within the group. Freund’s adjuvant was not anticipated to 

offer protection when immunized with I/D/B and results in Figure 3.1 confirm this. 

Protection was anticipated with the use of MPL + AH +I/D/B and the 90% survival rate 

looks promising.  The 56% survival of mice immunized with MPL + AH alone brings 

protection of the group immunized with MPL + AH +I/D/B into question, however, since 

there should be no reason for these mice to survive the challenge at this high rate.  

The titers shown in Table 3.1 reflect antibodies to SipB and SipB generated post-

ELISA at each bleed interval.  Each bleed was completed two days prior to 

immunizations.  All animals whose immunizations included I/D/B showed increasing 

antibody production by by bleed four as expected. Mice immunized with I/D/B alone had 

the lowest titers of the animals receiving antigens and these values correlated with a low 

survival rate. Titers for immunizations with Freund’s + I/D/B had the highest titers but 

the lowest of all the survival rates. Titers for the group immunized with MPL + AH 

+I/D/B displayed a modest correlation with survival.  

It is generally expected that the titers of mice immunized with I/D/B should 

increase with each bleed. Although mice in each group given I/D/B show such increases,  
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Figure 3.1. Survival of mice immunized intramuscularly with Salmonella proteins: PrgI, 

SipB and SipD, Freund’s and Incomplete Freund’s with and without antigens, and MPL 

with and without antigens  

 

 

 



58 
 

 

Antibody Titers for Salmonella Immunizations 

Table 3.1. Assigned titers reflecting the quantity of antibodies to SipB and SipD based on ELISA. TMB (3,3',5,5'-

tetramethylbenzidine) soluble substrate was used for enzyme catalysis of peroxidase-labeled goat anti-mouse IgG. This 

reaction yields a blue color when peroxidase is detected. The color then changes to yellow with the addition of 

phosphoric acid with maximum absorbance at 450 nm. Quantified optical densities were used to calculate titers.  
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they did not show strong rates of survival during the challenge.  The MPL + AH titers 

were low, as expected; however a large number (56%) of these animals survived. This 

was not expected. No titers were expected for the control group given PBS, but for an 

unknown reason, had titers beginning at bleed three.  

Results of intranasal Salmonella vaccines are presented in Figure 3.2. Mice 

immunized with cholera toxin (CT) had 50% survival. Mice given CT +I/D/B had a 60% 

survival, which is only 10% more survival than CT alone.  Mice immunized with MPL 

had a survival of 60% and mice given MPL + I/D/B had a survival of 80%. 

Immunizations with MPL + Chitosan resulted in a 40% survival within the group and this 

was greater than the survival seen for mice given MPL + Chitosan + I/D/B (10% 

survival. Titers reflect poor antibody response for this group. 

It was anticipated that groups given immunizations formulated with I/D/B would 

have substantially higher survival than those immunized without I/D/B, however, this 

was not the case. While groups given immunizations containing I/D/B had higher 

survival (excluding the MPL + Chitosan + I/D/B group) than that of their corresponding 

control groups, none were substantially higher and offer no definitive results with regard 

to vaccine efficacy.   

Titers for mice given intranasal immunizations are shown in Table 3.1. 

Antibodies to SipB and SipD generated post ELISA are evident at each bleed interval. 

All animals whose immunizations included I/D/B showed increasing titer values by bleed 

four as expected, however, these increases were not as substantial as the increases seen 

for the intramuscular immunizations. Survival of mice within groups did not appear to 

correlate closely with antibody titers (Table 3.1) and the survival rates were not  
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 Figure 3.2. Survival of mice immunized intranasally with Salmonella proteins: PrgI, 

SipB and SipD, Cholera toxin with and without antigens, MPL with and without antigens, 

and Chitosan + MPL with and without antigens.  
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substantial when compared to adjuvants alone. These results are not consistent due to 

discrepancies in the survival versus the titer values. For example, based on lower titers 

than the group given MPL+ Chitosan+ I/D/B, animals given MPL+ Chitosan alone 

should not have survived, yet they did and in fact had higher survival than the group 

given MPL+ Chitosan+ I/D/B.  All other groups given immunizations with I/D/B had 

higher titers and survival than that of their controls, but none were great enough to yield 

substantial results.  

Shigella Results for Experiment 2 

Mice immunized intramuscularly with Shigella proteins did not survive the 

challenge.  There are no results of survival for this section due to the death of all groups 

of mice.  This outcome was not expected and was unfortunate.  It was assumed based on 

high titer values, that mice given immunizations with H/D/B would survive the challenge. 

The titers for mice immunized intramuscularly with Shigella proteins are listed in Table 

3.2. Titers reflect antibodies to IpaB and IpaD generated post-ELISA at each bleed 

interval.  Each bleed was completed two days prior to the subsequent immunization.  All 

animals whose immunizations included MxiH, IpaD, and IpaB (H/D/B) showed 

increasing titers by bleed four as expected, however, while titers for all animals 

immunized with H/D/B were high, there is no sign of vaccine efficacy if there is no 

survival. 

The intranasal immunizations with the Shigella proteins and cholera toxin (CT) 

provided the most substantial results for Experiment 2.  The immunizations with H/D/B  

+ (CT) were successful in providing complete (100%) protection against challenge (Fig 
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3.3). The H/D/B  + CT group antibody titers were 5,041,306.68 against IpaB and 

2,667.69 against IpaD after the fifth bleed (Table 3.2), which was anticipated and 

certainly correlates with survival in this section of the experiment. CT alone had only 

30% survival within the group, which is higher than expected but substantially lower than 

CT with the proteins. Immunizations formulated with MPL, and MPL + Chitosan with 

H/D/B did not fare well in the challenge. These results from Experiment 2 seem to 

indicate that the intranasal immunizations with Shigella proteins and CT provide 

considerable protection against challenge with S. flexneri.  
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Figure 3.3. Survival of mice after intranasal immunizations with Shigella proteins MxiH, 

IpaB, and IpaD. The adjuvants used for immunizations included: cholera toxin with and 

without proteins; MPL with and without proteins; and Chitosan + MPL with and without 

proteins. The graph illustrates survival rate versus time. The survival rate of the mice begins 

on day one post challenge. 
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                          Antibody titers for Shilgella immunizations 

    

  

 

Table 3.2 lists assigned titers reflecting the quantity of antibodies to IpaB and IpaD based on ELISA assay and optical density 

at 450nm. 
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Shigella Results for Experiment 3 

Shigella immunizations for Experiment 3 were only done intramuscularly (see 

Figure 3.4). Animals given IM immunizations formulated with Monophosphoryl lipid A 

(MPL) + AH + IpaD and IpaB (D/B) had 60% survival within the group.  Only 10% of 

mice immunized with MPL + AH alone survived the challenge. These results are based 

upon and reinforce anticipated potential using MPL as an adjuvant for IM vaccination. 

Titers for mice immunized intramuscularly with Shigella proteins are listed in Table 3.3. 

These titers show strong antibody responses to IpaB and IpaD at each bleed interval.  

Each bleed was completed two days prior to the subsequent immunization.  All animals 

whose immunizations included IpaD and IpaB (D/B) showed increasing titer values by 

bleed four as expected. High antibody titers provide a foundation for the observed 

protection. 

Salmonella Results for Experiment 3 

In Figure 3.5 intramuscular Salmonella immunizations were formulated with 

MPL + AH alone and with SipB and SipD (B/D), with SipB/SicA and SipD (B-A/D), and 

with a SipB fragment and SipD (B-frag/D). Unfortunately, none of the mice survived the 

challenge. High titer values for the groups immunized with SipB and its variants with 

SipD did not correlate with a high rate of survival (Table 3.4). These results were not 

expected since such high titers were generated. 
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Figure 3.4. Survival of mice after intramuscular immunizations with Shigella proteins: 

IpaB and IpaD with and without MPL.  
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                                          Antibody Titers for Shilgella Immunizations

 

Table 3.3. Shigella antibody titers listed above reflect the quantity of antibodies to IpaB and IpaD based on ELISA  

assay and optical density at 450nm. 
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Figure 3.5. Survival of mice immunized intramuscularly with Salmonella proteins SipB 

and SipD with and without MPL, SipB-SicA complex with MPL and SipD, SipB-

fragment and SipD with MPL. 

 

 

Mice immunized IM with Salmonella proteins and Challenged with Salmonella

Days after challenge

2 4 6 8 10 12

%
 s

u
rv

iv
a
l

0

20

40

60

80

100

HIS

MPL/AH

SipB/SipD/MPL/AH

SipB/SicA/SipD/MPL/AH

SipB frag/SipD/MPL/AH



69 
 

Intranasal immunizations with Salmonella proteins in Figure 3.6 show mice 

immunized with the SipB-SicA complex and SipD + dmLT had a survival rate of 50%. 

No other groups had higher than 30% survival, however the group given dmLT alone had 

only 20% survival within the group. Titers for the group immunized with the SipB-SicA 

complex along with SipD + dmLT were very high against SipB at 1,280,663.67 (Table 

3.4). They were the highest titers out of all the mice in this experiment. It was expected 

that with such high titers this group would have the highest rate of survival. These results 

show promise for immunizations formulated with the SipB-SicA complex.  

Substantially high antibody titer levels for both immunization regimens in 

Experiment 3 show that immunity is developed against IpaD, IpaB, SipD and SipB. In 

addition to high titer levels, survival rates of animals immunized with with IpaD/IpaB + 

MPL+ AH and the SipB-SicA complex and SipD + dmLT had higher survival rates 

compared to any of the other groups tested. Although the Salmonella intramuscular 

immunizations yielded high titer values, there was no survival in these experiments. 
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Figure 3.6. Survival of mice immunized intranasally with Salmonella proteins SipB and 

SipD with and without dmLT, SipB-SicA complex with dmLT and SipD, SipB-fragment 

and SipD with dmLT.  
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Antibody titers for Salmonella immunizations 

 

 

 

 

Table 3.4 lists assigned titers reflecting the quantity of antibodies to SipB and SipD based on ELISA assay and optical 

density at 450nm. 
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CHAPTER IV 
 

 

Discussion and Future Directions 

The goal of Experiment 2 was to determine the effectiveness of different 

adjuvants in combination with type III secretion needle, translocator and effector proteins 

as subunit vaccines to protect against Salmonella serovar Typhimurium and Shigella 

flexneri infections. Both intranasal and intramuscular immunizations were tested to 

determine the influence that the route of administration has on protective efficacy.  PrgI, 

SipB, and SipD were used as antigens for protection against Salmonella serovar 

Typhimurium and MxiH, IpaB, and IpaD were the antigens used to protect against S. 

flexneri infection.  These proteins comprise the essential extracellular components of the 

type three-secretion apparatuses used by these pathogens. These virulence factors are 

required for invasion of host cells by these facultative intracellular pathogens. The 

adjuvants chosen for this experiment stimulate the innate and adaptive immune responses 

in different ways. Freund’s adjuvant is heat killed, dried mycobacterium components 

dispersed in a water in oil emulsion and it can potentially be toxic or cause tissue 

damage; however, it is known to be an effective adjuvant in animals immunized by the 

intramuscular route. It was only used for a primary immunization because it is known to 

be very effective in stimulating the initial immune responses in animals when co-

administered with antigens. Incomplete Freund’s adjuvant lacks the mycobacterial 
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components but continues to boost the immune system after the initial immunization for 

these animals. Monophosphoryl lipid A (MPL), is derived from the lipid A portion of 

Salmonella LPS and is known to enhance specific immunity and stimulate the synthesis 

of cytokines after recognition by toll-like receptor 4 (TLR-4). Alhydrogel (aluminum 

hydroxide) is currently approved for use in human vaccines because it is very stable, it 

readily adsorbs proteins and it rarely yields adverse effects in animals or humans.  

Cholera toxin (CT) promotes long-term mucosal immunity when used in intranasal 

vaccine formulations; however, it is not approved for use in humans due to toxicity 

issues. Nevertheless, E. coli heat-labile enterotoxin (LT) is almost identical to CT and a 

mutated derivative of LT (called dmLT). It is greatly reduced in toxicity and it may be 

promising for future use in humans for eliciting mucosal immune responses against co-

administered antigens.  Chitosan was also used as an adjuvant because it has been shown 

to stimulate cytokines that enhance the immune response while providing a nontoxic and 

natural mucosal delivery vehicle for protein antigens. Live-attenuated Salmonella and 

Shigella vaccine strains were used in these experiments as positive controls. Survival of 

these mice demonstrates antibody production to the lipopolysaccharide components of 

these strains.  

A major outcome of Experiment 2 was that it has provided a foundation upon 

which additional experiments could be developed for identifying a fully efficacious 

adjuvant/immunization combination. Only the mice immunized intranasally with Shigella 

proteins MxiH, IpaB, and IpaD formulated with CT provided complete protection against 

lethal challenge with S. flexneri 2457T. This level of protection was even better that that 

seen for a known protective live, attenuated Shigella vaccine strain. CT is known to be a 
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strong systemic and mucosal adjuvant (Vajdy and Lycke, 1992). Another encouraging 

result within Experiment 2 involved the intramuscular immunizations in which MPL and 

AH were combined with Salmonella proteins PrgI, SipD and SipB. These immunizations 

appeared to provide partial protection against Salmonella challenge. Unfortunately this 

adjuvant combination alone also provided partial protection. Although the overall result 

was inconclusive, it does provide promise that MPL and AH can be used as intramuscular 

adjuvants for anti-salmonellosis vaccines and suggests that PrgI, SipD, and/or SipB are 

effective and protective antigens.  

The data from Experiment 2 that were not successful still provided valuable 

information with respect to future direction of research. The low survival rate of the 

group immunized intramuscularly with Salmonella proteins PrgI, SipD and SipB with the 

Freund’s was somewhat surprising since the MPS plus AH adjuvnats appeared to work 

with these antigens. The intranasal vaccines formulated with MPL with PrgI, SipD and 

SipB for Salmonella could not be evaluated unfortunately due to the high survival rates of 

the negative controls (adjuvants only). In contrast, the intranasal administration of MPL 

with MxiH, IpaD and IpaB clearly offered no substantial protection against Shigella 

challenge, perhaps implying that MPL may be better served when used as an adjuvant for 

intramuscular vaccines. Chitosan was added to intranasal immunizations formulated with 

MPL and Salmonella and Shigella proteins with the expectation that it would offer 

enhanced delivery and presentation of these proteins. The low survival rate of these 

groups showed that it did not enhance protection at all. In the end, Experiment 2 only 

offered two possible vaccine insights.  First, the proteins PrgI, SipD and SipB with MPL 

and AH may provide protection against Salmonella infection when administered 
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intramuscularly. Second, MxiH, IpaD and IpaB may provide protection when 

administered intranasally with CT as the adjuvant. 

The approach of Experiment 3 focused more on the TTSS needle tip proteins as 

vaccine components rather than the needle proteins. For protection against Shigella 

infection, this meant focusing on IpaD and IpaB. In this experiment, we also focused on 

vaccinating intramuscularly for protection against shigellosis. Shigella proteins IpaB and 

IpaD were used as antigens for intramuscular immunizations. Mice immunized 

intramuscularly with MPL with AH and Shigella proteins IpaB and IpaD had 60% 

survival with high antibody titers against IpaB and IpaD. Survival of mice given MPL 

with AH alone was only 10%. These results appear to validate the use of MPL with AH 

as successful intramuscular adjuvants, and show that protection against shigellosis be 

possible with an intramuscular vaccine. 

The goal for the Salmonella immunizations in Experiment 3 was to provide a 

more stable form of the antigen that was being delivered.  This involved using the 

SipB/SicA complex along with SipD, and a SipB fragment that is known to be stable 

alone with SipD as the antigens for both intramuscular and intranasal immunizations. 

Double mutant heat-labile toxin (dmLT) was used as an intranasal adjuvant in these 

experiments instead of CT. dmLT is considered safe and effective and the mice 

immunized intranasally with the Salmonella SipB-SicA complex and SipD with dmLT 

had the greatest survival at 50%. This shows some promise for intranasal immunizations 

using the more stable SipB-SicA complex and SipD with dmLT, however, several of the 

negative control animals showed high rates of survival too (30% for PBS alone).  
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Unfortunately, the Experiment 3 intramuscular immunizations for protection 

against Salmonella challenge were not successful. It was expected that high antibody 

levels and protection would be achieved by using the adjuvants MPL and AH with the 

Salmonella proteins, however there was a high rate of death among the groups. Possible 

reasons for this may again be due to too high a challenge dose. Alternatively, lack of 

survival could be due to problems with the mouse model, since Salmonella causes a 

typhoid type of disease in mice instead of the gastroenteritis that occurs in humans.  

The dire need for a vaccine for humans against S. flexneri and Salmonella serovar 

Typhimurium infections drives research in this field. These experiments will continue 

since there is still a need for determining the optimal antigen/adjuvant combinations for 

formulating vaccines against these important enteric pathogens. The more stable 

SipB/SicA complex will be used in future experiments since it shows some early promise 

in providing protection against Salmonella challenge in mice. It may be necessary, 

however, to consider using an alternate (gastroenteritis) model for this work. Further 

work with MPL as an adjuvant is also a direction worth pursuing. Taking these initial 

steps in formulating an effective way to combat against these bacterial diseases will 

prove valuable for global public health. Though this portion of research is concluded, 

there is much more to be done in hopes of an eventual vaccine that will save countless 

lives.
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