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CHAPTER I

INTRODUCTION

Microbes have shown the ability to degrade a wide range of hydrocarbons, both 

those occurring naturally as well as environmental pollutants.  Earlier studies have 

demonstrated biodegradation of a variety of pollutant compounds including phenol, 

benzoate, eicosane, 2, 4-dichlorophenoxyacetic acid (2, 4-D), polyaromatic hydrocarbons 

(PAHs), and certain components of crude oil under saline conditions.  In addition, a few 

pure cultures of halophilic and halotolerant organisms have been isolated that degrade 

aromatic compounds.  However, little is known about the degradation of benzene, 

toluene, ethylbenzene, and xylenes (BTEX) under saline environments.  In addition, not 

much information exists in the literature on the isolation of pure cultures that degrade 

BTEX compounds. Therefore, evidence for the degradation of BTEX compounds under 

saline environment and isolation of relevant microbes that degrade BTEX as the sole 

carbon source is important for developing cost effective treatment technology for the 

cleanup of brine soil and produced water generated at oil exploration and production 

facilities.  

Many naturally occurring hypersaline environments such as the Great Salt Plains 

are being increasingly threatened by environmental pollutant compounds.  Most of these 

habitats are shown to harbor unique and ancient microbial life which could survive under 

earth’s harsh early environments. The physiology and metabolic capabilities these 

organisms may have important implications on our fundamental understanding of the 

processes they catalyze.  For example, halophiles living in naturally occurring 
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hypersaline habitats may employ novel strategies and pathways for the degradation of 

hydrocarbons thus these studies will provide insights into the microbiology, physiology, 

and metabolic pathways that might have existed once on this planet.  

The ubiquity of aromatic rings in nature allows for the exposure of these 

compounds to microorganisms despite any lack of environmental contamination.  This 

prior exposure to aromatics may allow for hypersaline organisms to carry the genes 

necessary for the degradation of pollutants if they are ever exposed to them.  Therefore, it 

is important to survey naturally occurring hypersaline environments to try to understand 

the ability of native organisms in pristine hypersaline environments to degrade 

hydrocarbons, such as BTEX.  These organisms could be used in bioremediation projects 

where the environment is co-contaminated with hydrocarbons since non-halophiles 

would not be able to survive. 

The major objectives of this work were to find evidence for the biodegradation of 

BTEX compounds in natural and contaminated hypersaline habitats, enrich and isolate 

relevant organisms (bacteria or archaea), characterize the isolated strains with respect to 

their phylogenetic affiliation and physiological and metabolic potential for maximum 

degradation.   
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CHAPTER II

REVIEW OF LITERATURE

Background

The oil industry has been a frequent topic of discussion as of late, from the supply 

of crude oil down to the price consumers pay at the pump for a gallon of fuel. As long 

there is a supply and demand for oil, oil will continue to be produced.  The United States 

ranks eleventh in the world with proven oil reserves of 21.9 billion barrels.  Currently, 

there are over 500,000 producing oil wells in this country; however the vast majority only 

produces a few barrels of oil per day (Field 2005).  In 2003, Oklahoma was the seventh 

most productive area in the United States with 179,000 bbl/d (including offshore 

reserves). This accounts for three percent of the crude oil production in the United States.  

In 2004, there were 83,750 producing wells and 159 rotary rigs in operation in Oklahoma 

(Hinton 2005).            

In oil production and exploration operations spills are inevitable.  Large volumes 

of crude oil spills occur during transportation, by leaking underground storage tanks and 

due to poor management.  Contamination by crude oil results in the release toxic and 

carcinogenic compounds such as BTEX that are detrimental to human health and the 

environment.  The high water solubility of BTEX poses special concern for rapid the 

contamination of subsurface and drinking water (Margesin and Schinner 2001).  

Organisms living in diverse environments have the ability to degrade BTEX under 

aerobic (Deeb and Alvarez-Cohen 1999, Ridgeway et al. 1990, Gibson and Subramanian 

1984) and anaerobic (Gieg et al. 1999, Chen and Taylor 1997a, Lovely et al. 1996) 
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conditions.  This activity has also been observed under psychrophilic (Margesin and 

Schinner 2001, Braddock and McCarthy 1996, Bradley and Chapelle 1995) and 

thermophilic conditions (Chen and Taylor 1997 a and b, Chen and Taylor 1995). Limited 

evidence exists about BTEX degradation under hypersaline (Brusa et al. 2001), acidophilic, 

alkaliphilic and barophilic conditions (Margesin and Schinner 2001).  Benzene, one of the 

BTEX compounds, is of particular concern.  This priority pollutant, as listed by the United 

States Environmental Protection Agency, is highly stable, water soluble, and a known 

human carcinogen.  Benzene and the other BTEX compounds constitute 1-2 % of crude oil.   

Environments that have been exposed to contaminants for long periods of time 

select for microorganisms that can utilize these compounds for growth.  Therefore, soils 

that have been contaminated by crude oil are likely to harbor organisms which are capable 

of breaking down these aromatics.  Hayes et al. (1999) showed that sites with the highest 

level of contamination showed the most rapid degradation rates for the contaminants, while 

sites that were not contaminated with petroleum were unable to degrade added 

contaminants.  The first evidences of BTEX degradation by microorganisms were noted in 

the early 1900’s (Gibson and Subramanian 1984).  Since that time, a wealth of knowledge 

has been accumulated about the organisms and conditions under which BTEX degradation 

occurs.  
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Aerobic BTEX Degradation 

In nature, many compounds are transformed into common degradation 

intermediates before they are further degraded.  This process of funneling compounds 

allows for common pathways in organisms that break down these substrates.  For instance, 

many aromatic compounds are oxidized by the incorporation of oxygen into the ring.  This 

can be accomplished via mono- or dioxygenases, which introduce one or two oxygen 

atoms, respectively, into the benzene ring.  It is more common for organisms to employ 

dioxygenases to incorporate the entire oxygen molecule into benzene to form a cis-diol, 

which is then rapidly transformed (Bouwer and Zehnder 1993).  Major breakdown 

intermediates of aromatic ring compounds are catechol or protocatechuate, (Harwood and 

Parales 1996).  Catechol is the most common intermediate of aerobic BTEX degradation, 

and it may be substituted during the degradation of alkylated benzenes, as seen in Figure 1.  

Once catechol is formed, the ring can be cleaved and broken into fragments that can be 

further degraded (Dagley 1975).  This oxidation can occur through ortho-fission (between 

the hydroxyl groups) or meta-fission (adjacent to one of the hydroxyl groups) (Cerniglia 

1984).  The ortho-cleavage of catechol is catalyzed by catechol 1, 2-dioxygenase and 

generates cis,cis-muconic acid (Hayaishi et al. 1957) which can enter β−oxidation, with 

acetyl CoA and succinate CoA as products which can enter the citric acid cycle.  Meta-

cleavage of catechol is catalyzed by catechol 2,3-dioxygenase (C23O) and produces 2-

hydroxymuconic semialdehyde (Bartilson and Shingler 1989), which is eventually broken 

into acetaldehyde and pyruvate.  This enzyme can be chromosomal or encoded by a 

plasmid. Three plasmids that have been found that encode for C23O:  the xylE gene
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Figure 1.  The aerobic degradation of BTEX compounds has common 
intermediates, such as catechol, which may be substituted in the case of alkylated 
benzenes.  General examples for the oxidation of A) benzene, B) toluene and 
ethylbenzene, and C) p-xylene are given.  (Modified from Gibson and Subramanian 
1984)
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of the IncP-9 Tol plasmid pWWO, the nahH gene of IncP-9 NAH7 plasmid, and the dmpB

gene from plasmid pVI150 of Pseudomonas CF600.  These three plasmids also show high 

degree of homology between nucleotide and amino acid sequences (Bartilson and Shingler, 

1989).  The C23O genes are widely distributed in nature (Brusa et al. 2001).  

While aerobic BTEX degradation has been shown by other species, such as 

Moraxella sp. (Högn and Jaenicke 1972), Nocarida sp., Alcaligenes denitrificans, 

Micrococcs sp., (Ridgeway et al. 1990), Arthrobacter sp. (Weber and Corseuil 1994), 

Rhodococcus rhodochrous (Deeb and Alvarez-Cohen 1999), and Thermus sp. (Chen and 

Taylor 1997b), much of the BTEX degradation activity has come from Pseudomonas sp. 

(Brusa et al. 2001, Yu et al. 2001, Reardon et al. 2000, Zamanian and Mason 1987, Gibson 

et al. 1970).  Ridgeway et al. (1990) supported the dominance of Pseudomonads as 

degraders when they found that 86.9% of the bacterial species found in gasoline-

contaminated aquifer were Pseudomonas sp. 

Anaerobic BTEX degradation

Although anaerobic degradation proceeds at a slower rate than aerobic 

degradation, BTEX degradation under various anaerobic conditions plays a major role in 

subsurface BTEX containment and cleanup.  Areas may be aerobic prior to 

contamination; however microbial respiration due to degradation of the contaminant 

rapidly depletes available oxygen.  Once an environment becomes anaerobic, a 

succession of terminal electron acceptor processes occurs from the most energetically 

favorable to the least (Anderson and Lovley 1997).  Likewise, BTEX degradation has 

also been found throughout this succession, which begins with brief periods of 
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manganese and nitrate reduction and then proceeds to iron (III) and then sulfate 

reduction, and teminates with methanogenic conditions (Anderson and Lovley 1997).  

Anaerobic degradation of toluene, ethylbenzene, and xylenes is well documented (Ball 

and Reinhard 1996, Morgan et al. 1993, Chen and Taylor 1997a), with toluene as the 

most extensively studied hydrocarbon under anaerobic conditions.  Anaerobic BTEX 

degradation occurs either through ring reduction or oxidation with the oxygen atoms 

coming from water (Vogel and Grbi’c-Gali’c 1986).  Many important oxidized 

intermediates that can be detected as BTEX compounds are biodegraded such as benzoic 

acid, phenol, and cresols (Caldwell and Suflita 2000, Grbi’c-Gali’c and Vogel 1987, 

Vogel and Grbi’c-Gali’c 1986).

The most energetically favorable of the anaerobic processes is manganese 

reduction.  Manganese oxide is readily found in groundwater where its microbial reduction 

has recently been linked to the degradation of BTEX (Langenhoff et al. 1997). Villatoro-

Monzon et al. (2003) have shown that sediments under Mn (IV)-reducing environments 

degrade BTEX at a faster rate than other alternative electron acceptors.   

Nitrate is not generally abundant in groundwater unless there is nitrate 

contamination. It is highly soluble and can be easily added to groundwater to enhance the 

bioremediation of hydrocarbon contaminated materials (Anderson and Lovely 1997, Ball 

and Reinhard 1996).  Early reports of the disappearance of benzene were not linked to 

reduction of nitrate, although other BTEX compounds were (Rabus and Widdel 1995, 

Evans et al. 1991, Dolfing et al 1990).  Burland and Edwards (1999) reported that 

microbial benzene oxidation was coupled to the reduction of nitrate to N2 in the absence of 

other electron acceptors.  Several isolates of BTEX degrading organisms have been 
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obtained with nitrate as the terminal electron acceptor, such as Thauera aromatica T1 

(Evans et al. 1991), Azoarcus sp. strain (Dolfing et al. 1990), Dechloromonas strain RCB 

and Decholoromonas strain JJ (Coates et al. 2001).

Petroleum contaminated sediments with Fe (III)-reducing activity have proven to 

harbor the most efficient BTEX degraders, especially with the addition of chelating agents, 

such as NTA and EDTA, which solubilize Fe (III) (Kazumi et al. 1997, Lovley et al. 1996, 

Lovley and Woodward 1996).  Studies with petroleum contaminated aquifers have 

demonstrated toluene as an electron donor in Fe (III) reducing conditions (Lovley and 

Lonergan 1990, Lovley et al. 1989).  Geobacter sp. are the only know pure cultures that are 

able to oxidize toluene and benzoate under Fe (III)-reducing conditions (Coates et al.

1996). 

Organisms from diverse sites have linked BTEX oxidation to sulfate reduction 

(Anderson and Lovely 2000, Chen and Taylor 1997a, Kazumi et al. 1997, Coates et al.

1996, Phelps et al. 1996, Lovley et al. 1995). Under sulfate-reducing conditions BTEX 

degradation has been enhanced upon the addition of sulfate when sulfate had already been 

depleted from petroleum-contaminated sediment (Anderson and Lovley 2000, Ball and 

Reinhard 1996).  

Evidence of BTEX degradation under methanogenic conditions has been shown by 

several studies (Weiner and Lovley 1998, Kazumi et al. 1997, Grbi’c-Gali’c and Vogel 

1987, Vogel and Grbi’c-Gali’c 1986).  Although it was once believed that benzene could 

not be degraded under methanogenic conditions, Kazumi et al. (1997) conclusively 

demonstrated that greater than 80% of 14C-benzene added to aquifer sediments was 

mineralized to 14C-CH4 and 14C-CO2.  



10

Inhibitions to BTEX degradation

There are factors that limit BTEX degradation. For example, the microbial 

population in a given site may not have the capability to degrade all the BTEX compounds 

(Schreiber and Bahr 2002, Lee et al. 2002, Yu et al. 2001).  The degradation of BTEX 

compounds can also be inhibited due to the presence of other petroleum compounds.   Deeb 

and Alvarez-Cohen (1999) found that the presence of xylenes or ethylbenzene inhibited 

degradation rates of other aromatics such as benzene and toluene.   High concentrations of 

contaminants can be toxic to microbial populations and therefore inhibit degradation 

(Alagappan and Cowan 2003).  

Hypersaline Environments

Studies of the past three decades have revealed that an enormous diversity of 

microbial life exists in extreme environments such as extremes of temperature, pH, high 

salinity, or high pressure (Madigan and Marrs 1997).  The organisms that live in these 

environments not only can tolerate such conditions, but also require them for their 

survival (Madigan and Oren 1999).  These habitats represent the harsh and unique 

environments of an ancient earth, and organisms that survive in these areas have been 

shown to possess unique capabilities that could be exploited for innovative 

biotechnologies including degradation of environmental pollutants (Oesterhelt et al.

1998).
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Halophilic and Halotolerant Organisms

Although osmotic stress can be fatal to many organisms, members of each of the 

three domains of life have adapted to high salinity (Madern et al. 2000, Martin et al.

1999, Oren 1999, Grant et al. 1998, Reed et al. 1984).  The majority of the organisms 

present in saline sites belong to the bacterial and archaeal domains. Some genera of 

bacteria are found throughout saline environments. They include Psuedomonas, 

Micrococcus, Bacillus, and Vibro species (Trüper et al. 1991).  In general, as salinity 

increases the diversity of microorganisms decreases (Benlloch et al. 2002, Rodriguez-

Valera et al. 1985).  However, in environments that approach NaCl saturation, dense 

microbial communities persist, perhaps because of limited predation and sometimes 

abundant nutrients.  Archaea are most prevalent at the highest salt concentrations, while 

halotolerant bacteria tend to dominate the environments with moderate NaCl 

concentrations.

Halophilic archaea have been found in many hypersaline lakes, such as the Dead 

Sea (Israel), Great Salt Lake (United States), Solar Lake (Sinai) (Oren 2002), and 

Antarctic lakes (Vestfold Hills lake system) (Bowman et al. 2000).  Hypersaline soda 

lakes such as Mono Lake (United States) and Lake Magadi (Kenya) have also been 

shown to harbor halophilic archaea (Oren 2002).  Many of these organisms have high 

caroteniod content.  Therefore dense populations often appear quite red (Oren 2002).  

Pure cultures of halophilic archaea have been isolated from many saltern crystallization 

ponds.  Halobacterium species have been isolated from crystallizer ponds in Israel and in 

the United States (Oren and Litchfield 1999).  Haloarcula, Haloferax, Halorubrum, and 

Halobacterium species are frequently recovered from saltern ponds in Spain (Benlloch et 
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al. 2001, Rodriguez-Valera et al. 1985).  The Dead Sea has been a source of isolation of 

several archaeal species, such as Haloferax volcanii and Halobaculum gomorrense (Oren 

and Gurevich 1993a) as well as the algal species of Dunaliella (Oren 1999b).  

Alkaliphilic halophilic archaea such as Natrialba magadii, Halorubrum vaculoatum, and 

Natronococcus occultus were found in Lake Magadi in Kenya (Grant et al. 1999).   

Halophilic archaea have also been isolated from the brine inclusions in halite crystals 

(Mormile et al. 2003).  A recent report shows that halophilic archaea are not restricted to 

only hypersaline conditions; they have also been detected in areas with lower salt 

concentrations such as sulfur-rich springs (Elshahed et al. 2004).  Denitrifying halophilic 

archaea have been isolated and include Haloarcula marismortui and Haloferax 

mediterranei (Oren 2001, Mancinelli and Hochstein 1986). 

Until recently, it was believed that only Archaea were the dominant members of 

hypersaline environments that contained saturated levels of NaCl.  Culture independent 

methods were used with samples from crystallizer ponds and found that bacteria were 

indeed an important part of the microbiota inhabiting NaCl-saturated waters.  The 

extremely halophilic bacteria Salinibacter ruber was isolated from these saltern 

crystallizer ponds (Antón et al. 2000).  It is unusual in that this organism has many 

similarities with archaea including employing many of the same mechanisms for osmotic 

protection. There are few other bacteria that have been isolated that grow in saturated 

salts.  Halorhodospira halophila (formerly Ectothiorhodospira halophila) is a halophilic 

phototrophic sulfur bacterium isolated from soda lakes that grows optimally near 25% 

total salts (Imhoff 1992).  Also, the actinomycete Actinopolyspora halophila was isolated 

that can be grown in saturated salt (Johnson et al. 1986).
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Other halophilic bacteria include the sulfate reducing Desulfovibro sp., whose 

optimum NaCl concentrations are between 50-100 g/L and have been isolated from Solar 

Lake (Caumette et al. 1990, Krekeler et al. 1997).  The Dead Sea is also home to many 

halophilic bacteria.  The obligate anaerobic bacterium, Selenihalanaerobacter shriftii

grows with selenate or nitrate as an electron acceptor (Switzer Blum et al. 2001).  

Methanogenic activity has been found in Dead Sea sediments by the methanogen, 

Methanocalculus halotolerans (Marvin DiPasquale et al. 1999).  Various fermentative 

bacteria have been isolated from Dead Sea sediments, including Halobacteroides 

halobius (Oren et al. 1984) and Sporohalobacter marismortui (later renamed Orenia 

marismortui) (Oren at al. 1987).  Also, Nitrosococcus halophilus, a halotolerant 

autotrophic bacterium can oxidize ammonium in concentrations up to 94 g/L was found 

in the Dead Sea (Koops et al. 1990).  Halophilic bacteria have also been found in oil 

brines (Bhupathiraju et al. 1999, Huu et al. 1999, Tardy-Jacquenod et al. 1996, Adkins et

a.l 1993) and salt marshes (Yoon et al. 2003).  Halotolerant bacteria have been isolated 

from many saline environments.  The aerobic alkaliphilic halotolerant methanotrophic 

bacterium, Methylobacter alcaliphilus was isolated from soda lakes (Khemelenina et al.

1997).  The haloalkaliphiles Bacillus arsenicoselanatis and Bacillus selenitrireducens

were isolated from Mono Lake and can respire arsenate and selenate respectively 

(Switzer Blum et al. 1998).  Pelagic waters and hydrothermal vents of the Pacific Ocean 

have been shown to sustain Halomonas and Marinobacter species (Kaye and Baross 

2000, Fernandez-Linares et al. 1996, Gauthier et al. 1992).
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Osmoprotection

In order for an organism to survive in saline conditions, it must regulate the solute 

concentration in its cytoplasm with its environment.  They do this in two ways:  1) by 

maintaining intracellular salt concentrations that are at least equivalent with their 

environment, or 2) by the production or accumulation of organic compatible solutes.    

The primary response in the osmoadaptation of bacteria and archaea involves maintaining 

a concentration of intracellular KCl similar to its environment.  The increased 

cytoplasmic salt concentration not only balances the internal and external environments, 

but also results in greater intracellular stability (Zaccai et al. 1986, Welsh 2000).  

Although it is more energetically favorable to maintain high intracellular salt 

concentrations than to produce organic solutes, the presence of such high concentrations 

of intracellular salt requires special adaptations of proteins and enzymes (Oren and 

Gurevich 1993b, Rengpipat et al. 1988, Reed 1984).  Accumulation (Csonka 1988) or de 

novo systhesis (Tempest et al. 1970) of intracellular glutamate additionally confers 

osmotic tolerance by countering the charges of salt cations.  However, the upper limit of 

K+ and its counter ion glutamate is ~ 400 mM in non-halophilic bacteria (Dinnbier et al.

1988).  This limits osmotic protection through the accumulation of K+ only up to ~ 0.5 M 

NaCl for these bacteria (Galinski 1995).  Salt concentrations above this trigger a 

secondary response in bacteria. 

The secondary response to osmotic stress for bacteria is the intracellular increase 

of osmoprotective compounds, either by their production or accumulation.  These 

compounds do not interfere with cellular functions even at molar concentrations (Brown 

1976) since they contain no net charge (Galinski 1995).  Additionally, compatible solutes 
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stabilize proteins and enzyme activities. This can lead to protection against high 

temperature, freeze-thawing and drying in addition to salinity (Lippert and Galinski 1992, 

Welsh 2000).   In times of starvation, organic compatible solutes may be utilized as 

carbon and energy sources (Wood 1988).  Glycine betaine can be utilized for growth in a 

nitrogen- and carbon-free minimal media in the absence of osmotic pressures (Bernard et 

al. 1986).  However, by increasing the osmotic pressure, the catabolism of glycine 

betaine is blocked to ensure it is preserved so it can provide osmoprotection (Oren 1999, 

Smith et al. 1988, Le Rudulier and Bernard 1986, Bernard et al. 1986).  The intracellular 

concentrations of these solutes rise as the environmental salinity rises to confer protection 

from osmotic stress (Lai and Gunsalus 1992).  The concentrations of non-ionic solutes 

often exceed that of what would be required by ionic solutes to balance environmental 

osmotic pressures (Measures 1975).  Generally, halophilic bacteria will prefer uptake of 

compatible solutes to de novo synthesis and obtain these solutes from their environment 

when they are released from other organisms (Galinski and Trüper 1994).  There are 

many compatible solutes, but the principle compatible solutes for bacterial 

osmoprotection are glycine betaine, carnitine, proline (Beumer et al. 1994), and ectoine 

(Ventosa et al. 1998, Galinski 1995).  While glycine betaine (Galinski and Louis 1999, 

Reed et al. 1984) and ectoine are found most abundantly in nature, many prokaryotic 

cells contain cocktails of osmolytes rather than a single compound (Galinski 1995).  

Hypo-osmotic shock can also be detrimental to cells.  Rapid influxes of water (by 

rainfall, flooding, etc) can lead to an influx of water into the cell, due to the permeability 

of the cell membrane to water.  However, bacteria have also adapted mechanisms for 

dealing with this stress by the efflux of water and solutes.  Bacteria possess aquaporins 
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that facilitate the rapid movement of water in and out of the cell without dissipating the 

transmembrane potential (Engel et al. 2000, Calamita 2000).  Bacterial cells also contain 

channels that release cytoplasmic solutes under hypo-osmotic conditions in order to 

maintain turgor pressure (Sukharev et al. 1994, Szabo et al. 1993, Zorratti and Petronelli 

1988).  

Biodegradation by Halotolerant and Halophilic Organisms

Bioremediation utilizes the metabolic activities of microorganisms to transform 

organic contaminants into non-hazardous forms.  It is seen as a favorable method of 

cleanup technology because it seeks to accelerate the natural processes of contaminant 

degradation, is cost-effective, and does not destroy the surrounding areas.  This 

technology can use several approaches.  The addition of known degrading organisms to a 

site, known as bioaugmentation, can stimulate degradation; however the augmented 

organisms must compete with the indigenous microflora for nutrients.  Another approach 

is to alter prevailing environmental conditions so that they are more suitable for microbial 

growth.  Environmental conditions, such as pH value, nutrient availability, oxygen, 

concentration, composition, and bioavailability of the contaminants influence 

bioremediation activity (Margesin and Schinner 2001).  An area that is polluted with 

organics may already have the organisms present to degrade the contamination; however 

essential nutrients, such as nitrogen and phosphorus may be limiting, especially in marine 

areas.  Therefore, the addition of nutrients would allow growth and degradation by these 

indigenous organisms.  Bragg et al. (1994) illustrated how the addition of nutrients to the 

Alaskan shoreline after the Exxon Valdez oil spill increased the degradation of crude oil 
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five-fold.  The biodegradation of aliphatic and aromatic compounds in salt marshes has 

also been stimulated by the addition of nutrients, such as nitrogen and phosphorus 

(Jackson and Pardue 1999, Lin et al. 1999, Wright et al. 1997).  Other environmental 

factors render bioremediation more difficult because the extreme conditions that prevail 

are not ideal for the majority of microbes that might otherwise be successful in 

bioremediation processes.  These conditions include extremes in temperature and pH, 

high salinity, and high pressure.  Therefore bioremediation activities in these areas must 

utilize organisms who display the needed metabolic activity under these extreme 

conditions (Oren et al. 1992).  

Industrial activities can contaminate saline and hypersaline environments and lead 

to environmental problems since biodegradation under these conditions is difficult.    

Some reports indicate increased salinity has negative impact on the biodegradation of 

petroleum hydrocarbons (Ward and Brock 1978, Mille et al. 1991, Rhykerd et al. 1995).  

It has been proposed that the salt contamination first be removed before further 

remediation takes place (Rhykerd et al. 1995).  However, this type of activity is costly 

and damaging to the environment.  The use of halotolerant and halophilic organisms in 

the cleanup of organic contaminants in saline environments would prevent costly 

remediation strategies that reduce or remove salt by dilution methods, reverse osmosis, 

ion exchange, or electrodialysis before biological treatment begins (Margesin and 

Schinner 2001).  Bacteria are more promising candidates than archaea for bioremediation 

in areas co-contaminated with salt because they harbor a greater metabolic diversity.  The 

intracellular salt concentration of bacteria is low and therefore the enzymes involved in 

degradation may be similar to those of non-halophilic organisms (Oren et al. 1992).     



18

Organisms in saline environments have shown the ability to degrade numerous 

compounds including agar (Shieh and Jean 1998), atrazine (Shapir et al. 1998), eicosane 

(Fernandez-Linares et al. 1996, Betrand et al. 1990), 2, 4-dichlorophenoxyacetic acid 

(Maltseva et al. 1996), and organophosphorus compounds (DeFrank and Cheng 1991).  

Betrand et al. (1990) found that their halophilic archaebacterium, EH4, could degrade a 

number of odd and even carbon number saturated aliphatic and aromatic hydrocarbons. 

Bacteria have also shown the ability to degrade petroleum compounds at even the highest 

salinities (Kuznetsov et al. 1992, Kulichevskaya et al. 1992). Also, under anaerobic 

conditions, halophilic bacteria have shown the ability to reductively transform 

nitroaromatic compounds (Oren et al. 1991).  Many halogenated compounds have been 

shown to undergo biodegradation under saline conditions.  The halophilic 

Methylomicrobium sp. can oxidize TCE in 2-6% salt (Fuse 1998) and can be utilized for 

the bioremediation of contaminated sea water.

Generally, hydrocarbon-degrading bacteria make up < 1% of the bacterial 

population in pristine environments.  Those which harbor this activity utilize 

hydrocarbons that are produced naturally by plants, algae and other living organisms.  

However, the population of degraders increases rapidly when an area is contaminated 

with hydrocarbons (Atlas 1981).  Benzene rings are found throughout nature; therefore 

organisms must be present that can cleave these rings.  For example, lignin is ubiquitous 

and without its degradation much carbon would be locked up in plants and not returned to 

the nutrient cycle after they die (Dagley 1975).  However, organisms that possess the 

ability to degrade these rings, especially in saline environments have remained elusive.  

Bastos et al (2000) isolated two phenol degrading organisms from pristine Amazonian 
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forest soil.  Candida tropicalis and Alcaligenes faecalis demonstrated the ability to 

degrade phenolic compounds in the presence of 15 % and 5.6 % salt, respectively.  

Likewise, Halomonas sp. has been found suitable for the biotreatment of moderately 

saline phenolic wastewater (Hinteregger and Streichsbier 1997).  The halotolerant 

Pseudomonas halodurans is able to degrade benzoate and other aromatics by ortho ring 

cleavage (Rosenberg 1983).  Indication of the degradation of more complex compounds 

has been found in brackish waters where the indigenous microflora has shown the ability 

to degrade PAHs (Abbondanzi et al. 2005, Plotnikova et al. 2001).  Halomonas sp. have 

also demonstrated the ability to degrade PAHs (Melcher et al. 2002).  A wide variety of 

aromatic compounds, including benzoic acid, hydroxybenzioc acid, phenylpropionic acid, 

and phenol could be degraded by isolates from industrial sites contaminated with low-

molecular weight aromatics (Garcia et al. 2005).   Halotolerant microorganisms from the 

water/brine interface of hypersaline anoxic basins in the Mediterranean Sea have 

demonstrated the ability to readily degrade toluene, xylenes and PAHs, while benzene 

was poorly degraded (Brusa et al. 2001).  Therefore, halophilic and halotolerant 

organisms can be used in the bioremediation of halogenated, aliphatic, and aromatic 

hydrocarbons (Margesin and Schinner 2001, Oesterhelt et al. 1998).

Oilfield brine soils have been shown to harbor organisms with various metabolic 

activities including organisms that carry out sulfate-reducing, fermentative, and 

methanogenic activities, as well as organisms that degrade petroleum compounds 

(Bhupathiraju et al. 1999, Huu et al. 1999, Ollivier et al. 1998, Tardy-Jacquenod et al 

1996, Adkins et al. 1993).  The halophic archaeon Haloferax sp. D1227 has shown the 

ability to degrade aromatic compounds, including benzoic acid, cinnamic acid, and 3-
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phenylpropoinic acid as its sole carbon and energy sources (Emerson et al. 1994).  

Little work has been done on the metabolic pathways of halophiles.  Fu and Oriel 

(1999) studied the biodegradation of aromatics by the archeon Haloferax sp. D1227.  

Such studies with Archaea are important since they provide an opportunity to compare 

similar aromatic degradation pathways in Bacteria and Eukarya.  These studies with 

Haloferax sp. D1227 revealed that degradation of 3-phenylpropionic acid, cinnamic acid, 

and benzoic acid is regulated by the gentisate pathway catalyzed by gentisate 1, 2-

dioxygenase (Fu and Oriel 1999).  Likewise, Fairley et al. (2002) found that the 

halophilic archaeon Haloarcula sp. strain D1 also uses the gentisate pathway for the 

aerobic degradation of 4-hydroxybenzoic acid.  It remains unknown at this time if other 

halophiles utilize similar or unique pathways in the degradation of petroleum compounds.  

Archaea balance osmotic pressures with the uptake of salts, therefore the enzymatic 

activity of the archeons Haloferax sp. D1227 and Haloarcula sp. strain D1 most likely 

differ from pathways of organisms from the other domains. 
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CHAPTER III

BIODEGRADATION OF BTEX COMPOUNDS IN BRINE SOIL FROM
AN OIL PRODUCTION SITE

Background

Exploration and production activities generate large volumes of oily wastewater 

with a wide range of salinities.  The oily wastewater or produced waters inhibit plant 

growth leading to erosion of topsoil and contamination of groundwater by both salt and 

hydrocarbons.  Salinity also complicates bioremediation efforts of crude oil because it 

renders a harsh environment for the implementation of salt-sensitive microorganisms for 

bioremediation (Rhykerd et al. 1995).  Therefore, the bioremediation of oilfield brine can 

only be accomplished by using indigenous bacteria capable of degrading petroleum 

compounds or through the addition of degradative halophilic or halotolerant organisms.  

Unfortunately, information on the degradation of petroleum compounds under saline 

conditions is limited.  Only recently has limited degradation of BTEX compounds been 

shown under hypersaline aquatic conditions (Brusa et al. 2001).  However, more work is 

needed to understand how well such degradative activity is distributed in geographically 

different saline environments which can be utilized in the efforts to clean up these areas.  

The main focus of this chapter is to evaluate the biodegradation of BTEX compounds in 

oil brine soil, obtain BTEX-degrading aerobic enrichment cultures, and optimize

conditions for enhanced degradation rates.   
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Materials and Methods

Soil Samples

Five different soil samples were obtained from contaminated E&P sites in 

Seminole and Stephens Counties in Oklahoma.  These samples contained varying levels 

of different petroleum contaminants and salt (Table 1).  One of the samples (Sem 2) was 

of surface soil with relatively low total petroleum hydrocarbons (TPH).  This sample was 

subsequently used in aerobic experiments and in the development of an enrichment 

culture with benzene as the sole carbon and energy source.  The other soil samples were 

used to assay for anaerobic BTEX degradation. 

Chemicals 

14C-UL-Benzene with a specific activity of 33.2 mCi/mol was purchased from 

Sigma Chemical Co., St. Louis, MO.  The Carbon-14 cocktail used for trapping 14CO2

was obtained from the R.J. Harvey Instrument Corp., Hillsdale, NJ.  Benzene and xylenes 

(o-m-p-xylenes) were >99 % pure and purchased from Fisher Chemical Company (Fair

Lawn, NJ).  Toluene and ethylbenzene were >99 % pure and were obtained from Aldrich 

Chemical Company (Milwuakee, WI).  All other chemicals were of reagent grade. 

Microcosm Preparation

Microcosms were prepared with 160 ml capacity serum bottles filled with 10 g 

soil and 40 ml of mineral salts medium supplemented with 2.5 M NaCl (MSM-NaCl).  

The composition of MSM-NaCl (g/L) is: NaCl, 145; MgCl2, 0.5; KH2PO4, 0.45; K2HPO4, 

0.9; NH4Cl, 0.3; KCl, 0.3.  The bottles were closed with Teflon-coated rubber 
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TABLE 1
OIL BRINE SOIL ANALYSIS*

   EPA       Sem 1       Sem 2       Sem 3       Sem 4       Stephens
Method

Sample depth (ft)                            4.0             0-3             4.0           4.0             0-1.5

Benzene (mg/Kg)  8021 B       4.48           3.41           1.72         0.149       BDL**

Toluene (mg/Kg)  8021 B       9.72           10.4           7.48         0.715       0.241

Ethylbenzene (mg/Kg) 8021 B      30.2   7.95           14.1         14.1           BDL

TPH (mg/Kg)   8051 M     72744        6071           25198 120276      125580

Chloride (mg/Kg) 325.3         42200        14800         3740 220       1270

*Soil analyses were performed by the Beacon Environmental Assistance, Corp., Edmond, 
OK.
**Below detection limit 
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septa and aluminum caps.  A gas-tight glass syringe was used to introduce 2 µl neat 

benzene, toluene, ethylbenzene, or xylenes (~25 µmole) into each serum bottle.  Air in 

the headspace (110 ml) served as the source of oxygen.  Bottles were incubated static in 

the dark at 30 °C.  Biodegradation of BTEX was monitored by withdrawing 200 µl of 

headspace gas and injecting into a gas chromatograph (GC).

Development of Enrichment Culture 

An aerobic enrichment culture was developed by adding 10 g soil (wet weight) 

from the Seminole County soil sample to duplicate 1-L bottles containing 500 ml of 

MSM-NaCl.  The bottles were closed with a black rubber stopper with a hole in the 

middle that fit a cut 3-inch Hungate tube.  The tubes were sealed with Teflon-coated 

septa and aluminum caps.  A gas-tight glass syringe was used to introduce 22 µl neat 

benzene (~250 µmole) into each enrichment bottle.  Air in the headspace served as the 

source of oxygen.  Bottles were incubated static in the dark at room temperature.  When 

the added benzene was depleted the bottles were opened to replenish the oxygen supply 

and respiked with benzene.  This was repeated 6-7 times before a 10 % sediment-free 

mixed culture was transferred to freshly prepared MSM-NaCl medium.  The bottles were 

repeatedly spiked with benzene, monitored for degradation, and transferred to fresh 

medium as before.   This continued for the next 7-8 months, at which time highly 

enriched and stable cultures were developed that degraded 200 to 300 µmole of added 

benzene consistently in 2.5 weeks.  The developed enrichment cultures were named Sem 

2 enrichment cultures.   

Biodegradation Studies with Sem 2 Enrichment
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All biodegradation assays were carried out using 120 or 160 ml serum bottles 

filled with 45 ml of MSM-NaCl.  Bottles were inoculated with 5 ml of Sem 2 enrichment 

culture.  The bottles were spiked with 2 µl (~25 µmole/bottle) of undiluted benzene, 

toluene, ethylbenzene, or xylenes with a 10 µl gas-tight glass syringe to serve as the sole 

carbon and energy source.  Triplicate active and duplicate autoclaved control bottles were 

prepared to study the biodegradation of individual BTEX compounds.  Microcosms were 

incubated static in an inverted position in the dark at 30˚C.  Biodegradation was 

monitored by injecting 200 µl of headspace gases into a GC.   

Initial studies evaluated benzene degradation by the Sem 2 in the presence of low 

concentrations of growth promoting nutrients such as yeast-extract (YE), vitamins, or 

trace elements.  Microcosms were prepared as above in 120 ml capacity serum bottles 

amended with 0.02 % YE, 1 µl of vitamin solution/ml, or 1 µl trace elements/ml (Löffler 

et al. 1996).   To determine the effect of salt concentration on benzene degradation, 

triplicate active microcosms were prepared with 160 ml capacity serum bottles containing 

45 ml of MSM amended with 0, 0.5, 1.0, 2.0, 2.5, 3.0, or 4.0 M NaCl.  Duplicate 

autoclaved controls were also prepared similarly for each salt concentration tested. 

GC Analysis

Biodegradation of BTEX compounds were assayed using a Hewlett Packard 6890 

GC equipped with a flame ionization detector and a DB-1 capillary column (30 m x 0.320 

mm x 1 µm; J&W Scientific, Inc., Folsom, CA).  Helium served as both carrier and 

makeup gas at flow rates of 10 and 40 ml/min, respectively.  The flow rates of hydrogen 

and air were set at 40 and 450 ml/min, respectively.  The operating GC conditions were 
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the following:  oven temperature, 70 ºC for 7 minutes; inlet temperature, 150 ºC; and 

detector temperature, 220 ºC.  Approximately 200 µl of headspace gas was removed from 

microcosms using a gas-tight syringe and injected into the GC for quantification.  The 

GC response for each compound tested was calibrated to give the total mass in that bottle.  

Assuming the headspace and aqueous phase concentrations were in equilibrium, the total 

mass present in the bottle was determined using standards prepared similarly.  After 

equilibration (approximately 1 hour) at room temperature, the GC response for a range of 

mass (µmol/bottle) of each compound tested was plotted and the slopes were used to 

quantify the unknown.   Benzene degradation in the enrichment bottles was accomplished 

as described above by using a calibration curve prepared with 1-L bottles containing 500 

ml of MSM-NaCl.  The GC detection limit for benzene using this method was < 1.0 

µmole/bottle.  

Mineralization of 14C-Benzene Under Anaerobic and Aerobic Conditions.

 In order to determine complete oxidation of benzene to CO2 under anaerobic 

conditions, microcosms (120 ml serum bottles) were set up in an anaerobic glove box for 

each of the anaerobic soils obtained from Seminole and Stephens Counties, OK.  

Similarly, aerobic microcosms were setup using the Sem 2 enrichment culture to test its 

ability to mineralize added benzene to CO2 under aerobic condition.  Each bottle was 

spiked with 100 µL stock 14C-benzene (specific activity of 14C-benzene = 33.2 

mCi/mmole).  This amounted to 2.75E+04 dpm/bottle.  Bottles were also spiked with 2 µl 

neat benzene.  The bottles were closed with Teflon-coated septa and aluminum caps and 

incubated static at 30 ˚C in the dark.  At the end of 4, 8, 12 weeks, triplicate active and 
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duplicate control bottles were sacrificed and stored at –20 °C until analyzed for 

radioactive CO2.  

Evidence of mineralization under anaerobic and aerobic conditions was 

determined by measuring the production of 14CO2 from 14C-benzene.  Bottles were 

injected with 0.2 ml of 10 N HCl (pH < 2) followed by vigorous hand-shaking the 

contents for 5 minutes.  It is anticipated that under strong acidic conditions, all aqueous 

14CO2 (
14C-HCO3

-) is converted to gaseous 14CO2.  The bottles were then purged with N2

(80-100 ml/min) for 40 min and the 14CO2 was trapped in 5 glass vials connected in 

series.  Each vial contained 10 ml of Harvey’s Carbon-14 Cocktail and was sealed with 

Teflon-coated septum and an aluminum cap.  In addition, a trap filled with activated 

carbon was placed between the flushing bottle and the first trapping vial to absorb 

volatile 14C-benzene as well as to prevent contamination of the trapping vials with 

escaping liquids during flushing.  Radioactivity in all 5 traps was measured using a 

Beckman LS 6000SC liquid scintillation counter (Beckman Instruments, Inc., Fullerton, 

CA). 

Microbial Community Analysis of Enrichment

Sem 2 enrichment grown on benzene and in the presence of 0 and 2.5 M NaCl 

were sent to Microbial Insights (Rockford, TN) for community analysis where samples 

were analyzed with the following protocols:  Nucleic acid extraction was performed 

using a bead-beating method (Stephen et al. 1999).   The DNA was purified by a glass-

milk DNA purification protocol using a Gene CleanTM kit as described by the 

manufacturer (Qbiogene, Irvine, CA).  PCR amplification of 16S rRNA gene fragments 
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was performed as described in Muyzer et al. (1993) with the following modifications:  

Thermocycling consisted of 35 cycles of denaturation for 45 seconds at 92 °C, annealing 

for 30 seconds at 55 °C, and extension for 45 seconds at 68 °C.  The PCR mix contained 

0.44 units of Clontech Advantage™ 2 polymerase (BD Biosciences, Mountain View, 

CA) and 12.5 pmole each primer in a total volume of 25 µl. Thermocycling was 

performed using a RobocyclerTM PCR block (Stratagene, La Jolla, CA).  Two primer sets 

were used in a nested PCR approach.  The first primer set corresponded to E. coli bp 

positions 27 and 1492 of the 16S rRNA gene.  The second set of primers targeted 

eubacterial 16S rDNA regions corresponding to E. coli positions 341-534, and the 

forward primer of this set contained a 40 bp GC-clamp.  A portion (20%) of each PCR 

product was analyzed by agarose gel electrophoresis (1.5% agarose, 1x TAE buffer) and 

ethidium bromide fluorescence.  The amount of DNA used for DGGE was standardized 

to 150 ng by comparison to molecular weight standards using Alpha ImagerTM software 

(Alpha Innotech Corp., San Leandro, CA).  DGGE was performed on a Bio-Rad 

(Hercules, CA) D-Code 16/16 cm gel system maintained at a constant temperature of 

60°C in 6-L of 0.5x TAE buffer (20 mM Tris actate, 0.5 mM EDTA, pH 8.0).  

Denaturing gradients were formed at 30 – 65 % denaturant (with 100% denaturant 

defined as 7 M urea, 40% v/v formamide).  A size gradient was imposed on the 

denaturing gradient by forming an 8 – 10 % acrylamide gradient (i.e., double gradient –

DGGE) as described by Cremonesi et al (1997).  Gels were electrophoresed at 35 V for 

16 hours.  Gels were stained with ethidium bromide (0.5 mg/L) and destained twice in 0.5 

x TAE for 15 min. each.  Gel images were captured using an Alpha ImagerTM system.  

The central 1 mm portion of intensely fluorescing DGGE bands were excised using a 
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razor blade and soaked in 50 µl of purified water overnight.  A portion (2 µl) was used as 

the template in a PCR reaction as described above.  The products were purified using 

QiaQuick PCR purification kits (Qiagen, Valencia, CA).  Purified DNA was sequenced 

with an ABI-Prism automatic sequencer model 377 with dye terminators.  Sequence 

identifications were performed using the BLASTN facility of the National Center for 

Biotechnology Information (http://ncbi.nlm.nih.gov/Blast) and the “Sequence Match” 

facility of the Ribosomal Database Project 

(http://www.cme.msu.edu/RDP/analyses.html).

Results and Discussion

A highly enriched and stable aerobic enrichment was established with the Sem 2 

soil that could utilize benzene as the sole carbon and energy source.  After 7 to 8 months 

of continuous enrichment, the culture consistently degraded benzene within 18 days at 

room temperature at a rate of approximately 12 µmole/day.  Figure 2 shows the repeated 

benzene degradation of the enrichment.  

Mineralization of 14C-Benzene to 14CO2 by Oil brine Soil and the Sem 2 Enrichment 

In order to show conclusively that benzene is mineralized to CO2 under both 

aerobic and anaerobic conditions, universally labeled 14C-benzene was added to 

microcosms consisting of soil and MSM-NaCl.  As shown in Table 2, at the end of three 

months of incubation, about 5 to 10 % of the radiolabeled benzene was mineralized 

above that of the control bottles in all of the anaerobic soil samples obtained from 
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Figure 2.  Repeated use of benzene (▲) as the sole carbon and energy source in the 
presence of 2.5 M NaCl by the Sem 2 enrichment culture.  The enrichments were 
maintained in 1-L capacity bottles containing 500 ml of MSM-NaCl at room temperature.  
After an initial lag period, the enrichments degraded 200 to 300 µmole of added 
benzene/bottle consistently in 2.5 weeks.  Results for only one bottle are shown; 
duplicate enrichments behaved similarly.

TABLE 2
MINERALIZATION OF BENZENE BY HALOPHILES UNDER

AEROBIC AND ANAEROBIC CONDITIONS

Sem 1 Sem 2 Sem 3 Sem 4         Stephens

Soil Type         Anaerobic          Aerobic          Anaerobic       Anaerobic    Anaerobic

Time incubated      > 12 weeks          4 weeks           12 weeks         12 weeks      12 weeks

Percent 14C-benzene 
mineralized            5.93 ± 0.94   46.83 ± 14.09    10.16 ± 5.87        4.6 ± 0.12            <1%
to 14CO2

*                        

*Percentage of 14C-CO2 recoveries are above the control values
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Seminole County.  However, no degradation was seen under the same growth conditions 

in microcosms prepared with soils from Stephens County.  Although, the removal of 

benzene under anaerobic conditions seems poor, the rate and extent of degradation may 

be enhanced under more optimal growth conditions.  Results also showed that roughly 46 

% of the added benzene was mineralized under aerobic conditions by the Sem 2 

enrichment culture above that of the controls. 

BTEX Degradation by the Sem 2 Enrichment Culture 

The Sem 2 enrichment showed the ability to degrade benzene, toluene, 

ethylbenzene, or xylenes as the sole carbon and energy source (Figure 3).  This is not 

surprising since the enrichment was developed from a soil obtained from an oil 

production site where the microflora was exposed to crude oil (Hayes et al. 2001).  

Among the tested BTEX compounds, toluene degraded best.  Approximately 20 µmole of 

toluene was completely degraded in less than one week, while benzene, ethylbenzene, 

and xylenes required 2 to 3 weeks for degradation.  Autoclaved bottles showed no 

evidence of degradation.  Although a few reports have documented the ability of 

halophilic or halotolerant organisms to degrade hydrocarbons such as phenol (Woolard 

and Irvine 1995), nitrophenols (Oren et al. 1992), benzoate (Emerson et al. 1994), 

pesticides (DeFrank and Chang 1991), herbicides (Maltseva et al. 1996), n-alkanes 

(Betrand et al. 1990), and PAHs (Plotnikova et al. 2001, Betrand et al. 1990), little 

evidence has been shown on the degradation of BTEX under saline conditions (Brusa et 

a.l 2001).  
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Figure 3.  Biodegradation of benzene (▲), toluene (♦), ethylbenzene (■), and xylenes 

(●) in 160 ml capacity serum bottles containing 45 ml of MSM-NaCl and inoculated 
with 5 ml of Sem 2 enrichment culture. The microcosms were incubated at 30 °C.  The 
data are means triplicate active microcosms and averages of duplicate autoclaved control 

bottles.  Since all controls behaved similarly, only the control for xylenes (*) is shown.              
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Optimization Studies

Biostimulation involves the addition of rate-limiting nutrients to accelerate the 

biodegradation process.  Most of the hydrocarbon contaminated areas do not lack in 

carbon supply, but are limited in available nitrogen, phosphorus, and growth promoting 

trace nutrients.  Therefore, these additions may stimulate the degradation of pollutants by 

the indigenous microflora (Jackson and Pardue 1999, Lin et al. 1999, Wright et al. 1997).  

The Sem 2 degraded benzene more quickly in the presence of low concentrations of YE, 

vitamins, or trace elements, compared to the culture devoid of added stimulants (Figure 

4).  It has been suggested that halophiles have more demanding nutritional requirements 

at high salt concentrations.  Therefore, complex media may stimulate growth of 

halophilic bacteria at high salt concentrations (Ventosa et al. 1998).  The halophilic 

archeon strain EH4 showed increased eicosane degradation in the presence of YE, 

peptone, and casamino acids (Betrand et al. 1990).  Also, the addition of YE to growth 

media of halophilic organisms has been shown to increase the accumulation of the 

osmolyte glycine betaine (Wohlfarth et al. 1990). 

Although the addition of osmolytes has been shown to reduce the lag time needed 

for the degradation pollutants under saline conditions (Shapir et al. 1998), benzene 

degradation by the Sem 2 enrichment was inhibited by the addition of osmolytes (Table 

3).  The exact reason for this inhibition is not known.  It may be that these osmolytes 

were not compatible with organisms present in the enrichment culture.  Alternatively, the 

added osmolytes might have served as the source of carbon for the organisms in the 

enrichment.  Reports indicate that many halophilic bacteria are able to utilize compatible 
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Figure 4.  Biostimulation of benzene degradation by addition of YE, vitamin, or trace 
elements.  Microcosms were established with 45 ml MSM-NaCl and were inoculated 
with 5 ml of Sem 2 enrichment.  Biodegradation of benzene (20-25 µmol/bottle) was 
evaluated in the presence or absence of growth stimulants.  Symbols:  YE (■); vitamins 
(●); trace elements (-□-).  Positive control bottles with no amendments completely 
degraded added benzene in 15 days (data not shown).  The autoclaved microcosms were 
also amended with filter-sterilized 0.02 % YE, 1 µl of vitamin solution/ml, or 1 µl of 
trace elements solution/ml.  The results are means of triplicate active microcosms and the 
averages of two autoclaved control bottles.  Because all controls behaved similarly, only 
control data for YE (▲) are shown.  

TABLE 3
BIODEGRADATION OF BENZENE IN THE PRESENCE OF

KNOWN OSMOLYTES

Osmolyte Concentration % Degradation Days

No osmolyte*   97.77 ± 0.87  12

Glycine       1 M   62.69 ± 0.22  61

Proline       1 M   42.30 ± 4.20  61

Betain       1 M   67.25 ± 2.38  61

KCl       1 M   56.41 ± 2.11  61

*Benzene degradation was monitored in the absence of an osmolyte.
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Figure 5.  Biodegradation of benzene by Sem 2 enrichment culture in the presence of 
various NaCl concentrations.  Microcosms were established in 160 ml capacity serum 
bottles containing 45 ml MSM and inoculated with 5 ml of Sem 2 culture.  All 
microcosms were spiked with ~25 µmole benzene and amended with various 
concentrations of concentrations of NaCl.  Symbols:  0 M (□); 0.5 M (-♦-); 1 M (■); 2 M 
(▲); 2.5 M (○); 3 M (∆); or 4 M (●) NaCl.  The results are means for triplicate active 
microcosms.  Although results for 0, 3, and 4 M NaCl bottles are shown for only 2 weeks 
of incubation, no degradation occurred even after 4 weeks of incubation (data not 
shown).  
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solutes as osmoprotectants as well as for carbon sources (Fougère and Le Rudulier 1990, 

Smith et al. 1988, Bernard et al. 1986, Le Rudulier and Bernard 1986).

The Sem 2 culture degraded 25 to 30 µmole of benzene in 7 to 14 days in bottles 

containing 0.5, 1, 2, or 2.5 M NaCl, as seen in Figure 5.  No degradation occurred in 

bottles containing 0, 3, or 4 M NaCl, even after 4 weeks of incubation (data not shown).   

Our results show that degradation of benzene required the addition of at least 0.5 M NaCl 

to the growth medium since no degradation occurred in the absence of salt.   This 

indicates that the enrichment harbored true benzene degrading halophiles.  The ability of 

the culture to degrade benzene over a wide range of NaCl concentrations (0.5 to 2.5 M) 

suggests that this culture is well suited for field bioremediation applications because 

many produced waters or oilfield brines display a wide range of temporal or spatial 

salinity fluctuations.  The reason for the lack of benzene degradation at 3 and 4 M NaCl 

is not known.  Few studies have dealt with the effect of salinity on microbial degradation.  

Benlloch et al. (2002) and Rodriguez-Valera et al. (1985) observed that degradation 

activities decrease as salinity increases.  In contrast, Fernandez-Linares et al. (1996) 

showed that increasing salt concentrations had no effect on eicosane degradation by a 

Marinobacter sp.  

Microbial Community Analysis

The community structure of the Sem 2 culture grown in the presence and absence 

of added NaCl was characterized by profiling the 16S rDNA genes by using DGGE 

(Figure 6).  Multiple bands were amplified, and sequences from each of these bands were 

amplified.  Sequences from each of these bands aligned well (>99%) with Marinobacter 
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spp. sequences (GenBank accessions nos. AY136121, AF513448, and AF237685).  From 

analysis, it appears that bands A and B were heteroduplexes of bands C and D (accession 

nos. AJ294359, AF212213, AY136121, AY129889, and AF546961).  It may be that 

bands C and D represent two different yet closely related bacteria or that there are two 

ribosomal sequences for Marinobacter sp.  Similar bands were missing in the DGGE 

obtained from the enrichment grown on benzene but no NaCl.  These results are 

consistent with the degradation activity; benzene was not degraded in bottles that did not 

contain NaCl (Figure 5).  This suggests that perhaps Marinobacter spp. were responsible 

for the degradation of benzene.  Marinobacter spp. have been isolated from 

geographically different locations, including the French Mediterranean, from the mouth 

of a petroleum refinery outlet, from deep sea sediments in the western Pacific, and from 

oil wells off the coasts of Vietnam and California (Kaye et al. 2000, Gauthier et al.

1992). Marinobacter hydrocarbonoclasticus, a halotolerant bacterium, is able to degrade 

eicosane (Fernandez-Linares et al. 1996).  BTEX degradation in saline environments 

been only recently been observed in marine environments (Brusa et al. 2001).   
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Figure 6.  DGGE gel depicting the dominant members of the Sem 2 enrichment culture 
extracted from microcosms amended with 0 M and 2.5 M NaCl.  Labeled bands were 
excised, sequenced, and compared to sequences in the database.  Results indicate that the 
dominant members of the Sem 2 culture grown at 2.5 M NaCl have 97 to 100% sequence 
similarity to the members of the genus Marinobacter (bands A, B, C, and D).  Similar 
bands were missing at 0 M NaCl.  Bands labeled F failed to yield usable sequences due 
the lack of sufficient DNA.                               .                                                 
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Conclusions

This study conclusively demonstrated the ability of halophiles to degrade 

benzene, toluene, ethylbenzene or xylenes as the sole carbon and energy source.  A 

highly enriched aerobic consortium was developed from an oil-brine soil obtained from 

an E&P site in Seminole County, Oklahoma.  Studies using 14C-benzene showed that the 

enrichment was able to oxidize roughly 46 % of the added benzene to CO2 in 4 weeks, 

thus suggesting mineralization ability of the organisms.  Benzene degradation by this 

halophilic enrichment could be stimulated with the addition of low concentrations of YE, 

vitamins, or trace elements.  Benzene degradation proceeded normally in the presence of 

NaCl ranging from 0.5 to 2.5 M, while at 3 M NaCl, degradation was inhibited.  These 

results indicate that the enrichment can survive fluctuating salt concentrations commonly 

seen in the field.   Community analysis using DGGE revealed that Marinobacter sp. were 

the dominant members of the consortium at 2.5 M NaCl, while there were no dominant 

members in the absence of NaCl.  This corresponded well with the lack of benzene 

degradation in bottles lacking added salt.  Marinobacter sp. have previously been shown 

to degrade petroleum hydrocarbons in saline environments. 
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CHAPTER IV

BIODEGRADATION OF BTEX COMPOUNDS IN A NATULLY HYPERSALINE 
ENVIRONMENT, THE GREAT SALT PLAINS, OKLAHOMA

Background

The Great Salt Plains National Wildlife Refuge is a naturally hypersaline 

environment located near Cherokee, Oklahoma.  The surface of the salt flats is covered 

by a thin crust of salt deposited from the evaporation of Permian brine from underlying 

strata (Caton et al. 2004).  Rainfall dissolves the salt crust and temporarily creates 

streams and ponds.  Consequently, salt concentrations widely fluctuate from very low to 

saturation.  Groundwater salinity ranges from 4 to 37 %, while surface salinity varies 

from 0.3 to 27 %, depending on prevailing weather conditions.  The pH of the soil at the 

Salt Plains varies between 7.34 and 9.23 (Caton et al. 2004).  The rapid changes in salt 

concentration, wide fluctuations in surface temperature (diel temperature change = 30 

˚C), and direct exposure to UV light makes this habitat an extreme environment.  There is 

no known contamination, although nearby oil production activities may contaminate the 

shallow water table.  Pristine environments contain natural genetic diversity that may be 

utilized for the degradation of problematic compounds (Bastos et al. 2000).   Aromatic 

compounds are abundant in nature especially in the form of lignin and phenols (Bastos et 

al. 2000, Dagley 1975).  Therefore, extremophiles who have not been exposed to oil 

contamination may still possess the ability to degrade BTEX compounds.  Identifying 

and harnessing the unique capabilities of extremophiles inhabiting these areas may offer 

new solutions to longstanding challenges in environmental and waste cleanup.  
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Conversely, such habitats may be entirely devoid of microbes capable of degrading 

environmental pollutants.  If this is the case, bacteria native to such habitats are likely to 

have been exposed to low-level, non-point sources of toxic contaminants from increased 

human activities.  Therefore, it is important to understand how extremophiles modulate 

the fate of pollutants and quantify the degradative capacities to prevent the buildup of 

toxic levels of contaminants in these delicate and largely unexplored ecosystems.  

The primary objective of this chapter is to assess the ability of indigenous bacteria 

at the Great Salt Plains to degrade BTEX compounds and to determine the impact of 

concentration of salt on degradation rate and bacterial community structure.  This study is 

important because naturally hypersaline environments such as salt flats are ancient and 

may harbor unique organisms of considerable interest in terms of their evolution and as 

novel biocatalysts (Margesin and Schinner 2001, Hough and Danson 1999, Ventosa and 

Nieto 1995). 

Materials and Methods

Soil Samples and Chemicals

Two soil samples, A and B were obtained from the surface of the salt flats at the 

Great Salt Plains Wildlife Refuge, OK.  The coordinates (obtained using GIS) are N 36˚ 

42.435’ W 98˚ 15.620’ and N 36˚ 42.485’ W 98˚ 15.700’ for samples A and B 

respectively.  14C-UL-naphthalene with a specific activity of 31.3 mCi/mole was 

purchased from Sigma Chemical Co. (St. Louis, MO).  All other chemicals were 

described in Chapter 3.
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Microcosm Setup

Initially, microcosms were prepared with soils A and B in 160 ml serum bottles 

containing 10 g soil and 40 ml MSM-NaCl (described in Chapter 3).  Bottles were closed 

with Teflon-coated septa and aluminum caps.  Each bottle was spiked with approximately 

25 µmole of benzene and incubated static in the dark at 30 ˚C.  Triplicate microcosms 

were prepared for each soil.  Benzene degradation was monitored using a GC as 

described in Chapter 3.  After five weeks of lag time, all three bottles from soil A and one 

of the three bottles from soil B degraded the added benzene in seven days.  

Development of Enrichment Culture

A stable and highly enriched aerobic microbial consortium that degraded benzene 

as the sole carbon source was developed for each soil sample (soil A and B) by 

transferring the entire contents of a serum bottle (approximately 50 ml of slurry) to 1-L 

capacity bottles containing 450 ml MSM-NaCl.  Bottles were closed with black rubber 

septa with a hole in the middle that fit a cut 3-in. Hungate tube.  The tubes were sealed 

with Teflon-coated septa and aluminum caps.  Enrichment cultures were developed by 

repeatedly spiking the bottles with benzene and transferring 10 % of the sediment-fee 

culture to fresh MSM-NaCl medium as described in Chapter 3.  

Biodegradation Studies with the Salt Plains Enrichment  

All studies involving the Salt Plains enrichment culture were carried out in 120 ml 

or 160 ml serum bottles as described before (Chapter 3).  Microcosms were spiked with 

25 to 30 µmoles of benzene, toluene, ethylbenzene, or xylenes as sole carbon and energy 
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sources.  Biodegradation of BTEX compounds was monitored with a GC as described in 

Chapter 3.  The ability of the enrichment culture to mineralize 14C-benzene and 14C-

naphthalene was also evaluated.  Bottles were spiked with 100 µl of 14C-benzene 

(5.38E+4 dpm/bottle) or 14C-naphthalene (7.01E+5 dpm/bottle) from an aqueous stock.  

After 4 weeks of incubation, bottles were sacrificed and analyzed for the production of 

14CO2 as described in Chapter 3.   

Biodegradation of benzene by the Salt Plains enrichment culture was assessed 

under various electron accepting conditions, including fermentative (no externally added 

electron acceptor), nitrate reducing (150 µmole NaNO3/bottle), and iron reducing (750 

µmole FeCl3/bottle). Since FeCl3 is highly insoluble in aqueous phase, we also setup 

microcosms with FeCl3 (750 µmol/bottle) and NTA (4 mM).  NTA is an iron-chelating 

agent that increases the solubility of FeCl3.   All bottles were purged with N2 (80-100 

ml/min) for 15 minutes to remove dissolved oxygen prior to the addition of 25 µmole of 

benzene and an alternative electron acceptor.  Bottles were closed with Teflon-coated 

septa and aluminum caps.    

The Salt Plains enrichment culture was studied for its ability to degrade benzene 

under various growth conditions.  Microcosms were amended with low concentrations of 

growth promoting nutrients to study if the rate of benzene degradation could be 

enhanced.  These include peptone (0.02 %), casamino acids (0.02 %), YE (0.02 %), 

vitamins (1 µg/ml) or trace elements (1 µg/ml). The composition of vitamins and trace 

elements can found elsewhere (Löffler et al. 1996).   The effect of salinity on benzene 

degradation was determined in microcosms using MSM supplemented with 0, 0.5, 1.0, 

2.0, 2.5, 3.0, or 4.0 M NaCl.  Also, degradation of benzene was evaluated in the presence 
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of different types of salts such as KCl, MgCl2, or CaCl2 at 2.5 M each.  Duplicate 

autoclaved controls were prepared for each salt concentration and salt type.  

Biodegradation of benzene at different temperatures was evaluated by incubating bottles 

at different temperatures ranging from 5 to 60 °C.  Microcosms were brought to room 

temperature prior to GC analysis.

Analytical Techniques

Biodegradation of individual BTEX compounds was monitored by analyzing 

headspace gases using the GC as described in Chapter 3.  A separate set of standard plots 

were prepared using 160 ml serum bottles for 2.5 M MgCl2, 2.5 M KCl, or 2.5 M CaCl2 

since partitioning of benzene in headspace was different for each of the salt types tested.  

Microbial community analysis was performed by Microbial Insights, Inc. (Rockford, 

TN).  Genomic DNA from the Salt Plains enrichment grown on benzene and in the 

presence of different concentrations of NaCl (0 to 4 M) was extracted using the bead-

beating method (Stephen et al. 1999).  Details of PCR amplification of 16S rDNA and 

community analysis using DGGE are described in Chapter 3.  Sequence identifications 

were performed using the “Sequence Match” facility of the Ribosomal Database Project 

II (http://rdp.cme.msu.edu/html/).

Results and Discussion

The results of this study demonstrate that organisms living in hypersaline soils 

can readily degrade simple aromatic compounds such as benzene and toluene.  Although 

biodegradation of BTEX has been extensively studied by non-saline aerobic and 
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anaerobic bacteria, little is known about the degradative ability of organisms native to 

natural hypersaline environments that have no history of contamination.  However, the 

abundance of aromatics such as phenols (Bastos et al. 2000) and lignins (Dagley 1975) in 

the natural environment may sustain microbial populations that can degrade aromatic 

compounds in pristine environments. 

Highly enriched microbial consortia capable of using benzene as the sole carbon 

and energy source in the presence of 2.5 M NaCl were developed.   The enrichments 

consistently degraded added benzene (~250 µmole/bottle) within one week with no 

apparent lag time, as seen in Figure 7.   Microcosm studies were initiated with MSM-

NaCl and inoculated with 5 ml of the enrichment culture (10 % inoculum size) to study 

the degradation of individual BTEX compounds.  The culture completely degraded added 

benzene or toluene under aerobic conditions.  No degradation of ethylbenzene or xylenes 

occurred even after incubating for more than 50 days (Table 4).  This was also true for 

the enrichment developed from Soil A.  This lack of degradation activity towards 

ethylbenzene and xylenes is interesting because these compounds are readily degraded by 

non-saline aerobic bacteria of various genera (Alvarez and Hunt 2002).  We also assessed 

the ability of the enrichment to degrade benzene and toluene under alternative electron 

accepting conditions.  Results shown in Table 5 illustrate that no degradation of benzene 

or toluene occurred under denitrifying, iron-reducing, and fermentative/methanogenic 

conditions even after incubating for more than four weeks.  The lack of degradation 

activity by the enrichment under denitrifying conditions could not be explained since 

nitrate is prevalent at the Salt Plains (Caton et al. 2004).  Moderately halophilic bacteria 

have been shown to grow under both aerobic and denitrifying conditions (Vreeland et al.
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Figure 7.  Repeated degradation of added benzene by the Salt Plains enrichment culture.  
Duplicate enrichments behaved similarly therefore only degradation for one enrichment 
is shown.  

TABLE 4
DEGRADATION OF AROMATIC COMPOUNDS

BY THE SALT PLAINS ENRICHMENT

Compound      Degradation*

Benzene    +

Toluene    +

Ethylbenzene ―

o-, m-, p-xylenes ―

Naphthalene ―

* “+” denotes degradation, “―” denotes no degradation by the Salt Plains enrichment
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TABLE 5
BENZENE AND TOLUENE DEGRADATION BY THE SALT PLAINS 

ENRICHMENT WITH VARIOUS ELECTRON ACCEPTORS

Electron Acceptor Benzene or Toluene Degradation**

Oxygen    +

Fermentation ―

Nitrate ―

Iron (III) ―

Iron (III) + NTA* ―

*Nitrilotriacetic acid, ** “+” denotes degradation, “―” denotes no degradation by the 
Salt Plains enrichment 
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1980). It is probable that the growth conditions used during the enrichment process did 

not select for denitrifying activity.  Autoclaved control bottles did not degrade BTEX 

compounds indicating that microorganisms are responsible for the observed degradation 

under hypersaline conditions.  Studies also evaluated the ability of the enrichment to 

mineralize 14C-benzene or 14C-naphthalene to 14CO2.  Roughly 33% of the initially added 

radiolabeled benzene was converted to 14CO2 in 4 weeks, while little (<1 % above 

control) of radiolabeled naphthalene was converted to 14CO2 within the same time period 

(data not shown).  Perhaps longer incubations were needed for greater mineralization of 

added benzene or naphthalene.  The ability of the cultures to degrade benzene and 

toluene under hypersaline conditions is significant since these compounds are highly 

soluble and can easily find their way to the salt flats from non-point sources, human 

activities, and/or spills originating from oil production sites, which are widespread in 

Oklahoma. 

Optimization Studies

Although a previously established halophilic enrichment culture from an oil brine 

soil showed increased benzene degradation in the presence of low concentrations of YE, 

vitamins, and trace elements (Figure 4 in Chapter 3), similar amendments to the Salt 

Plains enrichment culture neither helped nor hindered benzene degradation (Figure 8), 

Ventosa et al (1998) have proposed that complex media may stimulate growth of 

halophilic bacteria due to more demanding nutritional requirements at high salt 

concentrations.  In our studies, we did not see such stimulation with the Salt Plains 

enrichment culture. The exact reason is not known.  
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Figure 8.  In an effort to stimulate benzene degradation by the Salt Plains enrichment 
culture, low amounts of peptone (■), casamino acids (-∆-), YE (●), vitamins (-▲-) or 
trace elements (○) were added to microcosms containing MSM-NaCl.  Control bottles 
with no addition (×) degraded benzene similarly. 
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Biodegradation of benzene was evaluated at various salt concentrations ranging 

from 0 to 4 M.  As seen in Figure 9, benzene was rapidly degraded within 7 days in 

microcosms containing moderate levels of salt including 1, 2, and 2.5 M NaCl, while in 

microcosms containing 0, 0.5, and 3 M NaCl degradation occurred at reduced rates 

requiring up to 2 weeks for complete degradation.   At the highest salt concentration 

tested (4 M NaCl), the growth rate decreased (Le Rudulier and Bernard 1986) and longer 

lag times were noted for degradation (Hinteregger and Streichsbier 1997).  This could be 

due to several reasons including the lack of sufficient number of bacteria that can tolerate 

high salinity, and/or reduced availability of dissolved benzene due to high partitioning of 

benzene into the headspace.  Tests have shown that more than 68 % of the added benzene 

was partitioned to the headspace at 4 M NaCl, compared to only 41 % at 1 M NaCl (data 

not shown).   The ability of the enrichment to degrade benzene at higher salt 

concentrations (3 M and 4 M) is interesting because the enrichment was developed and 

maintained in MSM containing 2.5 M NaCl.  Few studies have dealt with the effect of 

salinity on microbial degradation of hydrocarbons.  These studies have found that, in 

general, biodegradation of hydrocarbons is negatively affected at elevated NaCl 

concentrations (Diaz et al. 2002, Betrand et al. 1990).  In contrast, Fernandez-Linares et 

a.l (1996) showed no significant effect on eicosane degradation when the salinity was 

increased from 0.2 to 2.5 M NaCl.  

Studies evaluated the degradation of benzene in the presence of different 

monovalent and divalent salts including NaCl, KCl, MgCl2 or CaCl2 each added at 2.5 M, 

as seen in Figure 10.  Benzene was completely degraded within 10 days only in 

microcosms supplemented with NaCl and no degradation was seen in the presence of 
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Figure 9.  Biodegradation of benzene by the enrichment at different NaCl concentrations.  
Microcosms were amended with benzene (~22 µmole/bottle) and varied concentrations of 
NaCl: 0 M (�); 0.5 M (�); 1.0 M (�); 2.0 M (�); 2.5 M (�); 3.0 M (�); 4.0 M NaCl (�).  
The Salt Plains enrichment could degrade benzene in MSM with 0 to 4 M NaCl added.  
The results are averages of triplicate active microcosms.  Autoclaved controls established 
for each salt concentration tested showed no degradation of benzene (data not shown). 
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Figure 10.  Benzene degradation by the Salt Plains enrichment culture in the presence of 

2.5 M NaCl (�), KCl (-�-), MgCl2 (�), or CaCl2 (∆).  Benzene degradation was only 
observed in the presence of 2.5 M NaCl.  The results are averages of triplicate 
microcosms.  Control bottles for each salt showed no degradation (data not shown).
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KCl, MgCl2 or CaCl2 even after incubating for 4 weeks. These results are interesting 

considering the presence of other salts such as CaSO4 available at the Salt Plains.   This 

lack of activity is unlike that of organisms isolated from the Dead Sea which can tolerate 

relatively higher concentrations of Mg2+ and Ca2+, perhaps due to their higher 

concentrations in the Dead Sea (Oren et al. 1984).  Therefore, it is possible that the 

addition of 2.5 M KCl, MgCl2, or CaCl2 proved to be toxic to benzene-degrading 

populations.  Also, since the culture was enriched in medium with only NaCl, organisms 

which could survive in the presence of other salts were not selected.  For example, no 

degradation of benzene occurred in the presence of CaCl2, despite the presence of high 

levels of CaSO4 at the salt flats.  Salt requirements and tolerance are highly variable 

among different species and may vary greatly according to the growth temperature and 

the nutrient availability (Kushner 1993). 

Biodegradation of benzene was evaluated at different temperatures ranging from 5 

°C to 60 °C.   Although the enrichment was developed and maintained at 30 °C, results 

showed that benzene was degraded at maximum rates of 6.44 and 5.96 µmol/bottle/day at 

37 oC  to 45 oC, respectively (Figure 11).  Also, slow degradation occurred at 50 °C (0.77 

µmol/bottle/day).  The capacity of the enrichment to degrade benzene at high 

temperatures could be attributed to the site conditions.   In summer, surface temperatures 

at the salt flats often reach 45 °C to 50 °C with a daily diel temperature range of 30 ºC.
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Figure 11.  Effect of temperature on rate of benzene degradation by the Salt Plains 
enrichment culture.  Although the enrichment culture was maintained at 30 °C, maximum 
degradation rates were seen at 37 °C and 45 °C.  Slow degradation was seen at 50 °C.  
Bars are averages of triplicate bottles plus standard deviations.
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Microbial Community Analysis 

This study also evaluated the impact of salt on the bacterial diversity of the 

enrichment grown on benzene at various salt concentrations (0 to 4 M NaCl).  DGGE 

analysis showed the presence of different phylotypes dominating at different NaCl 

concentrations (Figure12).  In the absence of added NaCl, only one prominent band was 

seen whose sequence places it in the family Comamonadaceae, with a best match 

(Sequence Match S_ab score of 1.0) to a strain of Acidovorax delafieldii and

Pseudomonas sp.  This lack of diversity at 0 M NaCl correlates well with the relatively 

slow benzene degradation observed (Figure 9).  Band B was dominant in the enrichment 

grown at 1.0 and 2.5 M NaCl.  The sequence places it in the Bacillaceae family, with 

closest match to a strain of Halobacillus salinus, (Sequence Match S_abscore of 0.842).  

Band C was detected in the enrichment grown at broad salt concentrations ranging from 1 

to 4 M NaCl thus suggesting that this organism can tolerate varying degrees of NaCl 

concentration.  The band C sequence matched closely (Sequence Match S_ab score of 

0.92) to the type strain of Bacillus simplex, which is a well-characterized metal-adsorbing 

bacterium.  Band D was prominent only at higher salt concentrations including 3 and 4 M 

NaCl. The sequence for band D yielded no close matches to characterized bacteria 

(Sequence Match S_ab score of 0.529).  Repeated DGGE analysis of the enrichment 

grown with 3 M NaCl yielded similar profiles and sequence matches, possibly indicating 

a novel organism.  Band E was seen at the highest salt concentrations (2.5 to 4.0 M) 

tested.  Sequence analysis again resulted in only a poor match (similarity score of 0.719) 

to Cytophagales from inland waters of remote Hawaiian islands, more specifically the
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Figure 12.  Comparison of DGGE profiles of PCR-amplified bacterial 16S rRNA gene 
fragments derived from the Salt Plains enrichment culture grown on benzene in the 
presence of different concentrations of NaCl.  The figure shows the DGGE separation 
pattern of PCR fragments.  The prominent bands were excised, reamplified and 
sequenced.  The sequences were compared with those in the RDP database using the 
Sequence Match similarity function and the putatively identified organisms are indicated 
by the letters to the left of bands.  The Genbank access number for the letters are: A, 
AF078767, AF015487; B, AB021195, AF500003; C, AJ439078; D, AF507866, 
AF235111 ; E, AF513957. 
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hypersaline Lake Laysan and a brackish water pond.  These results clearly suggest that 

the bacteria yielding bands D and E needed higher salt concentrations to become 

dominant.  The DGGE analysis provided a sensitive and efficient method for measuring 

diversity and changes in community structure due to changes in growth conditions, which 

will lead to a better understanding of microbial dynamics.  However, it should be noted 

that these profiles obtained from the enriched culture do not necessarily represent the 

community structure at the salt flats.  Further, these results only show bacterial and not 

archaeal responses to salt concentrations.  

Conclusions

A highly enriched aerobic consortium was developed from a hypersaline soil with 

no known history or source of contamination.  The enrichment rapidly degraded benzene 

and toluene, but not ethylbenzene and xylenes.  The enrichment mineralized 33 % of the 

added 14C-benzene to 14C-CO2 in 4 weeks.  Despite the presence of nitrate at the salt flats, 

the enrichment did not degrade benzene or toluene under denitrifying or other alternative 

electron accepting conditions.  Benzene degradation occurred over a wide rang of NaCl 

concentrations ranging from 0 to 4 M NaCl.  These observations suggest that the 

enrichment is comprised of mainly halotolerant and halophilic microorganisms that can 

withstand varying level of salt.  Such results can be attributed to the site conditions where 

microorganisms are exposed to rapid fluctuations in salinities both temporally and 

spatially.  Analysis of microbial community structure of the enrichment exposed to 

varying concentrations of salt revealed that a great diversity of organisms was present in 
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the enrichment and different phylotypes dominated at different salt concentrations.  

Results also showed that degradation of benzene occurred at relatively higher 

temperatures such as 45 °C and 50 °C.  This can be attributed the site conditions where 

the surface temperature often exceed 45 °C in the summer.  Overall, these results show 

that extreme environments with no known history or source of contamination have the 

potential to rapidly degrade toxic pollutants.  However, the exact mechanism, pathways, 

and organisms involved in the degradation are not known from this study.  The ability of 

the enrichment to degrade benzene over a wide range of salt concentrations and the 

corresponding changes in the microbial community structure reflects natural attenuation 

potential of the culture and its ability to adapt to the fluctuating salt concentrations, which 

are often encountered in the field.                                                     
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CHAPTER V

ISOLATION AND CHARACTERIZATION OF A HALOPHILIC BENZENE-
DEGRADING BACTERIUM

Background

While there are many isolates of aerobic and anaerobic BTEX degrading 

organisms, few have been isolated from hypersaline environments.  Halophiles with 

biodegradative potential can be used in the bioremediation of saline environments 

contaminated with organic pollutants (Margesin and Schinner 2001, Bastos et al. 2000).  

Isolation of halophilic and halotolerant organisms and characterization of their 

phylogenetic affiliation and metabolic capabilities are important for elucidating 

degradation pathways and developing bioremediation technologies (Garcia et al. 2004). 

Two highly enriched microbial consortia, the Sem 2 and Salt Plains enrichments, 

were developed from an oil production facility and the Great Salt Plains, respectively 

(Chapters 2 and 3).  These consortia were able to rapidly degrade BTEX compounds 

under aerobic conditions thus giving hope for the isolation of pure cultures that can 

degrade aromatic hydrocarbons under saline conditions.  This chapter deals with the 

isolation and characterization of a novel halophilic bacterium isolated from the Sem 2 

enrichment that assimilated benzene or toluene as the sole carbon and energy source.  

Here physiological, phylogenetic, and metabolic capability of the isolated microorganism 

is reported. Optimization studies on benzene degradation were carried out using the 

isolate.  Such optimization studies are important for natural attenuation and in-situ

bioremediation of hydrocarbon-impacted brine soil and produced water at E&P facilities.  

Attempts to isolate microorganisms from the Salt Plains failed.  
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Materials and Methods

Chemicals Used

VC, cis-DCE, and TCE were 98 % pure and obtained from Aldrich Chemical Co., 

Milwaukee, WI.  All other chemicals were described in Chapter 3.  

Isolation Procedures

A benzene-degrading halophilic bacterium was isolated from the Sem 2 

enrichment. The isolation was accomplished by performing a 10-fold serial dilution of 

the enrichment and streaking 0.1 ml of diluted aliquots onto agar plates prepared with 

MSM containing 1 M NaCl and 0.1x LB.  The plates were incubated at 30 ˚C.  Colonies 

first appeared after 10 days.  After three weeks, colonies appeared smooth, round, beige 

and measured 1.5 - 2 mm in diameter.  Single colonies were aseptically transferred to 120 

ml serum bottles containing 50 ml of sterile MSM-NaCl, 0.01 % YE, and 25 µmoles of 

benzene.  Headspace samples were withdrawn periodically and monitored for 

degradation using the GC.  Please refer to Chapter 3 for microcosm set-up and analysis of 

hydrocarbons.  The bottles that showed benzene degradation were further plated and 

single colonies were picked and monitored for benzene degradation as before.  Purity of 

the culture was confirmed by routine microscopic observations and by culturing the 

isolated strain on LB plates for three consecutive times. 
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Phylogenetic Analysis

Phylogenetic analysis of the isolate was performed by comparative 16S rRNA gene 

sequence analysis.  A 10 ml sample of the pure culture was centrifuged at 12,000 rpm for 

15 minutes.  The supernatant was decanted and the cells were washed twice with 5 ml of 10 

mM potassium phosphate buffer (pH 7).  The cells were resuspended in 0.5 ml MSM-NaCl.  

The cells were subjected to a freeze/thaw cycle (-20 °C overnight and 65 °C for 10 

minutes) to aid in cell lysis.  Genomic DNA was extracted from the pure culture using 

UltraCleanTM Soil DNA Kit (Mo Bio Laboratories, Inc., Carlsbad, CA).  Three primers 

were used in the amplification of 16S rDNA.  These include: Bact 27f (5’-

AGAGTTTGATC(A/C)TGGCTCAG-3’), Bact 1492r (5’-

TACGG(C/T)TACCTTGTTACGACTT-3’), and Bact 1098r (5’-

AAGGGTTGCGCTCGTTGCG-3’) (Chang et al 2000).  Theoretically, amplification with 

Bact 27f -1492r should yield 1505 bp and amplification with Bact 27f -1098r should yield 

1108 bp from the 16S rDNA. Amplifications with these two primer sets were used to 

obtain the nearly full-length sequence (1453 bp) of the 16S rDNA of the isolate.  For 

sequence, see Appendix.    

PCR amplification was performed in a total volume of 50 µl in a Bio-Rad My 

Cycler (Hercules, CA).  Each PCR mixture contained 25 ng of template DNA, 0.6 µM of 

each primer, 1.75 mM MgCl2, 200 µM of dNTPs, 1.25 U of Taq polymerase in Buffer A 

(M1865, Promega Chemicals, Madison, WI).  Amplification of 16S rDNA using both 

primer sets consisted of an initial denaturation of the genomic DNA at 94 ºC for 3 

minutes, followed by 30 cycles of denaturation at 94 ºC for 1 minute, annealing at 53 ºC 

for 1 minute, and extension at for 2 minutes, and a final extension at 72 ºC for 8 minutes.  
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PCR products were checked for expected size on 1% agarose gels.  The PCR product was 

purified with shrimp alkaline phosphatase and exonuclease I (DaSilva et al. 2003) and 

was directly sequenced using an ABI PRISM 3700 DNA analyzer (Applied Biosystems, 

Foster City, CA).   

The 16S rDNA sequence of the isolate was compared to sequences of other 

microorganisms obtained from GenBank (http://www.nbci.nlm.nih.gov).  Sequences 

were aligned using the integrated Clustal-W (MEGA 3.0).  The phylogenetic tree was 

constructed using neighbor-joining algorithm and p-distance estimation method 

implemented in MEGA, version 3.0 (Kumar et al. 2004).  The confidence for individual 

branches of the resulting tree was estimated by performing 1000 bootstrap replicates.  

Novosphingobium pentaromativorans was used as the outgroup.  

Experimental Setup for Batch Culture Studies 

In order to provide a consistent source of inoculum for all experiments, a stock 

culture (500 ml) of the isolated microorganism was prepared in 1-L bottle. The bottle was 

amended with 250 µmoles of benzene twice as the sole carbon source and when all the 

added benzene was degraded, the culture was used as an inoculum.  All studies involving 

the pure cultures were carried out in 120 ml capacity serum bottles as described before 

(Chapter 2). 

The ability of the isolate to degrade BTEX compounds was assessed in bottles 

containing MSM-NaCl and inoculated with 5 ml of the stock inoculum and spiked with 2 

µl (~25 µmole/bottle) of undiluted benzene, toluene, ethylbenzene, or xylenes as the sole 

carbon and energy source.  Triplicate active and duplicate autoclaved control bottles were 
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prepared to study biodegradation. Bottles were incubated static at 30 °C in the dark.  

Headspace samples were withdrawn periodically and analyzed for the target compound 

as before (Chapter 2).  

The isolate’s ability to degrade benzene at different initial concentrations was 

studied in bottles containing MSM-NaCl and amended with 6, 12, 25, 35, or 50 

µmole/bottle of benzene. The bottles were inoculated with 5 ml of the stock culture.  

Similarly, the isolate’s ability to degrade benzene in the presence of different 

concentrations of NaCl ranging from 0 to 4 M was assessed.  Bottles were also setup with 

MSM-NaCl and different concentrations of YE, including 0, 0.01, 0.02, 0.03, 0.04, or 

0.05 % to determine the stimulatory effects of YE on benzene degradation. 

Experiments with Chloroethenes 

The ability of the isolate to degrade chlorinated ethenes such as VC, cis-DCE or 

TCE was assessed.  Microcosms were prepared in bottles containing MSM-NaCl as 

described in Chapter 3.  Microcosms were amended with VC, cis -DCE or TCE in the 

presence or absence of benzene. Biodegradation of the chlorinated ethenes and benzene 

were monitored with a GC.

Analytical Techniques

Biodegradation of BTEX compounds was monitored with a GC as described in 

Chapter 3.  Production of 14CO2 from 14C-benzene was measured using a scintillation 

counter as described in Chapter 3.  Analysis of VC, cis-DCE, and TCE was accomplished 

using a GC as described by Singh et al. (2004).  Total protein was estimated by 
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withdrawing 0.5 ml of liquid culture (grown in the absence of YE) using a sterile 1 ml 

syringe.  Cells were mixed with 0.5 ml of 2 N NaOH and heated at 90 °C for 10 min. 

The samples were analyzed for total protein as described by Lowry et al. (1951).  The 

standards were prepared using bovine serum albumin treated with 1 N NaOH and heated 

at 90 °C for 10 min.  The resulting plot was used to estimate the concentration of total 

cell protein.  

Scanning Electron microscopy 

Colonies grown on MSM-LB plates were scraped with a sterile spatula and cells 

were fixed with 2% cacodylate buffered glutaraldehyde solution at room temperature for 

2 hours.    Cells were placed onto a poly-L-lysine coated cover slip and 2 % cacodylate 

buffered glutaldehyde was added and allowed to stand for 15 minutes.  The cover slip 

was washed with 0.1 M cacodylate buffer.  The samples were dehydrated through a series 

of ethanol-water washes (50 %, 70 %, 90 %, 95 %, and three 100 % ethanol).  The cells 

were dried using a critical point drying apparatus and the specimens were coated with 

gold/palladium (60-40) using a Balzer MED 010 sputter coater.  Cells were observed in a 

JEOL JXM 6400 Scanning Electron microscope with an Evex Analytical Imaging 

Package.

Results and Discussion

An halophilic bacterium was isolated from the Sem 2 enrichment using benzene 

as the sole carbon and energy source.  Phylogenetic analysis of the nearly full length 16S 

rDNA revealed that the isolate had > 95 % sequence similarity with Arhodomonas 

aquaeolei—a gram negative rod that was isolated from an oil brine in Payne County, OK 



64

(Adkins et al. 1993).  A. aquaeolei is a halophile that can utilize a number of different 

organics as a carbon source.   The isolate is tentatively referred to as Ahrodomonas sp. 

strain Seminole.  The isolate is a Gram negative, rod-shaped (0.5 x 2-3 µm in length), 

oxidase positive, and catalase negative bacterium (Figure 13). 

Figure 14 is a phylogenetic tree showing the relationship of Arhodomonas sp. 

strain Seminole to other halotolerant/halophilic organisms. The strain Seminole closely 

clustered with A. aquaeolei and Ralstonia pickettii.   Although, the closely related A. 

aquaeolei has been isolated from an oil-brine environment, its ability to degrade 

hydrocarbons is not known.  On the other hand, Ralstonia pickettii is not a halophilic 

organism that degrades aromatic compounds (Kukor and Olsen 1996, Kukor and Olsen 

1991).   Phylogenetically Marinobacter spp. formed a separate cluster.  Many members 

of the Marinobacter are shown to degrade aliphatics and PAHs, but no degradation of 

BTEX compounds have been reported.  In addition, most members of Marinobacter have 

been isolated from marine environments.  Phylogenetically, Halomonas spp. form a 

distinct group.  Halomonas have been isolated from a variety of habitats with a wide 

range of salinities.  Many Halomonas spp., including the recently isolated Halomonas 

organivorans, have been implicated in the degradation of aromatic compounds at high 

salt concentrations (Garcia et al. 2004).  The moderately halophilic bacterium 

Novosphingobium pentaromativorans was isolated from a saline habitat, has been shown 

to degrade aromatic compounds (Sohn et al. 2004) and was used as an out group on the 

phylogenetic tree.  Overall, this analysis indicates that biodegradation potential appears to 

be widely distributed among phylogenetically different halophiles and halotolerant 

microorganisms. 
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Figure 13.  Scanning electron microscopy of the pure culture obtained from the Sem 2 
enrichment.  Cells were grown on agar plates prepared with MSM amended with 1 M 
NaCl and 0.1x LB.

Figure 14.  Phylogenetic tree based on 16S rDNA sequences showing the relationship of 
Arhodomonas sp. Stain Seminole to other halophilic/halotolerant organisms.  Accession 
numbers of the sequences used in this study are shown in parentheses after the strain 
designation.  Numbers at nodes are estimated confidence levels in percentages and were 
determined by bootstrap analysis with 1000 replicates.  Bar denotes 2 % sequence 
divergence.   
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BTEX Degradation

Unlike the Sem 2 enrichment which was able to degrade each of the BTEX 

compounds (Chapter 3), Arhodomonas sp. strain Seminole could only degrade benzene 

and toluene.  The isolate did not degrade ethylbenzene or xylenes (Table 6).  Therefore, 

the degradation of each of these compounds in the original enrichment culture must have 

been due to other salt-tolerant organisms.  Analysis with radiolabeled compounds showed 

that 40-60% of the added 14C-benzene was converted to 14CO2 in 3 weeks, suggesting 

complete mineralization potential of the isolate (data not shown).  As shown in Figure 15, 

degradation of benzene by the isolate was associated with a corresponding increase in 

cell protein indicating that the isolate was able to use benzene as the sole source of 

carbon and energy.  Biodegradation of benzene was also tested in the presence of nitrate 

as an alternative electron acceptor.  No degradation of benzene occurred in the presence 

of nitrate thus suggesting that the isolate is a strict aerobe.  

Results in Figure 16 show that the Arhodomonas sp. is capable of degrading 

benzene at different concentrations ranging from 6 to 50 µmole/bottle with an apparent 

lag of 3 days. Although the exact reason for the observed lag time is not known, it is 

reasonable to assume that 3 days may be required for the induction of degradation 

enzymes.  Corseuil and Weber (1994) found that a sufficient number of cells must be 

present to immediately initiate biodegradation of added benzene by non-saline organisms.  

Consequently, a larger inoculum size may be necessary to decrease the lag time before 

degradation begins.     
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TABLE 6
AROMATIC COMPOUNDS DEGRADED BY 

ARHODOMONAS SP. STRAIN SEMINOLE

Compound      Degradation*

Benzene  +

Toluene  +

Ethylbenzene ―

Xylenes ―

* “+” denotes degradation by Arhodomonas sp. strain Seminole, “―” denotes no 
degradation

0

5

10

15

20

25

0 5 10 15

Days

B
en

ze
n

e 
( µµ µµm

o
le

/b
o

tt
le

)

0.00

0.20

0.40

0.60

0.80

1.00

P
ro

te
in

 (m
g

/b
o

tt
le

)

Figure 15.  Biodegradation of benzene coupled to growth.  As benzene ( ) is degraded, 
total protein (■) is accumulated.  
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Figure 16.  Biodegradation of various concentrations of benzene by Arhodomonas sp. 
strain Seminole.  Symbols: 6 µmoles ( ); 12 µmoles (■); 25 µmoles (▲); 35 µmoles 
( ); 50 µmoles (●). Autoclaved control bottles with 50 µmoles of benzene (○).
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Optimization Studies

Several studies were performed with Arhodomonas sp. Seminole to evaluate 

benzene degradation under various growth conditions.  Results showed that benzene was 

not degraded in MSM devoid of added NaCl suggesting that the isolate is a true halophile 

that requires salt for benzene degradation (Figure 17).  This is not surprising since the 

Arhodomonas sp. was isolated from the Sem 2 enrichment.  However, the isolate has a 

greater minimum requirement for salt than the enrichment since benzene was not 

degraded in the presence of 0.5 M NaCl (see Figure 5 in Chapter 3 for comparison).  

Maximum benzene degradation occurred at 2 M NaCl, with 1 M and 2.5 M behaving 

similarly.  Degradation proceeded slowly at 3 M NaCl resulting in only 60 % degradation 

of the added benzene after 60 days.  No degradation occurred at 4 M NaCl.  A recently 

isolated hydrocarbon degrading Halomonas organivorans is shown to grow in salinities 

ranging from 0.25 to 5 M NaCl and also shows optimal growth around 2 M NaCl (Garcia 

et al. 2004).  

Previous studies with the Sem 2 enrichment found that benzene degradation could 

be stimulated with the addition of low concentrations of YE (Figure 4 in Chapter 3).  

However, studies with the pure culture showed no such stimulation.  Instead, degradation 

of benzene was inhibited in bottles containing >0.03 % YE (Figure 18).  Estimation of 

cell protein in bottles amended with different concentrations of YE did not result in 

increased cell protein.  This indicates that YE was not used as a source of carbon (data 

not shown).
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Figure 17.  Effect of salt concentration on benzene biodegradation by Arhodomonas sp. 
strain Seminole.  Symbols: 0 M (●); 0.5 M (■); 1 M (▲); 2 M (×); 2.5 M ( ); 3 M (○); 4 
M (∆) NaCl.  No benzene degradation occurred at 0, 0.5, or 4 M NaCl.  Maximum 
benzene degradation occurred in the presence of 2 M NaCl.  Bottles amended with 3 M 
NaCl showed > 60% degradation of benzene after 60 days (data not shown).  
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Figure 18.  Benzene degradation in the presence of various concentrations of YE.  
Symbols:  0 % (♦); 0.01 % (□); 0.02 % (▲); 0.03 % (×); 0.04 % ( ); 0.05 % (●).  There 
was no difference in benzene degradation in bottles with no YE and bottles containing 
0.01% YE. Addition of 0.02% YE slowed benzene degradation and no degradation 
occurred in the presence of >0.03% YE.  
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Degradation of Chlorinated Compounds 

Industrial sites are often contaminated with a mixture of compounds.  It is not 

uncommon for chlorinated compounds and hydrocarbons to be co-contaminants.  Just as 

aromatic hydrocarbons can use monooxygenases for degradation; these enzymes are also 

used in the degradation of chlorinated alkenes.  Oxygenases have broad substrate 

specificity, oxidizing halogenated aliphatics, aromatics, and cyclic compounds.  Bouwer 

and Zehnder (1993) reported that chlorinated solvents, such as TCE can be aerobically 

co-metabolized with oxygenases.  Studies were carried out to evaluate the impact of 

chloroethenes such as VC, cis-DCE, or TCE on benzene degradation. In addition, the 

ability of Arhodomonas sp. strain Seminole to degrade the chloroethenes in the presence 

and absence of benzene was also evaluated.  As shown in Figure 19, benzene degradation 

was not affected in the presence of 20-25 µmoles of VC.  However, the addition of higher 

chlorinated ethenes such as cis-DCE or TCE resulted in a reduced rate of benzene 

degradation.  Although the reason for this inhibition is not known, high concentrations of 

chloroethenes have been shown to be toxic to microorganisms (Yu and Semprini 2004).  

Results also showed that the Arhodomonas sp. was able to degrade cis-DCE in bottles 

amended with benzene (Figure 20).  No cis-DCE was degraded in bottles devoid of added 

benzene (data not shown). These results suggest that the isolate is capable of degrading 

cis-DCE co-metabolically in the presence of benzene as the carbon source.  However, VC 

and TCE were not degraded in the presence or in the absence of benzene.  Such co-

metabolic degradation of chloroethenes has been seen in many non-halophilic bacteria 

that degrade aromatic hydrocarbons (Vogel et al. 1987, Bouwer and Zehnder 1993). 
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Figure 19.  Degradation of benzene by the isolate in the presence of VC (■); cis-DCE (×); 
TCE (○).  Degradation rate of benzene was unchanged in the presence of VC, while   
benzene was degraded at reduced rates in the presence of cis-DCE or TCE.  Since all 
controls behaved similarly, only the control bottles with benzene and cis-DCE (▲) is 
shown.
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Figure 20.  Biodegradation of cis-DCE in the presence of benzene (♦); biodegradation of 
benzene in the presence of cis-DCE (■).  Autoclaved control showed no degradation of 
benzene (○) or cis-DCE (∆).  
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Halophilic organisms have been shown to have the ability to degrade chlorinated 

compounds such as 2, 4-dichlorophenoxyacetic acid (2, 4-D) (Maltseva et al. 1996).

Conclusions

Although limited BTEX degradation by cultures of Pseudomonas sp. isolated 

from anoxic brine from a marine environment has been reported (Brusa et al. 2001), this 

is the first report of a halophile isolated from an oil brine soil that is able to completely 

oxidize benzene to CO2.  Additionally, the isolate could degrade toluene but not 

ethylbenzene and xylenes.  The isolate also degraded cis-DCE co-metabolically in the 

presence of benzene as the sole carbon source.  Phylogenetic analysis showed >95 % 

sequence similarity with Arhodomonas aquaeolei which was isolated from an oil brine 

environment.  The isolate degraded benzene optimally in the presence of 2 M NaCl, 

while no degradation occurred in the absence of added NaCl.  
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CHAPTER VI

OVERALL CONCLUSIONS

Hypersaline areas may be found across the earth.  They may occur naturally or as 

a result of anthropogenic activities.  Organisms that live in such areas are able to tolerate 

the harsh conditions found at these sites or may even require them for survival.  

Halotolerant and halophilic microorganisms have the potential to degrade aliphatic, 

aromatic, and chlorinated compounds and may therefore be useful in bioremediation 

technologies to clean up contaminated hypersaline areas.  Little information exists on the 

biodegradation of BTEX compounds under these conditions. Hypersaline soils obtained 

from oil production facilities as well as from naturally occurring uncontaminated saline 

environments in Oklahoma were used to assess the ability of indigenous microorganisms 

to degrade BTEX compounds.

Oil brine contaminated soils from oil production sites were used to assess the 

ability of microorganisms to degrade BTEX compounds under hypersaline conditions.  

Aerobic and anaerobic soils showed the ability to completely mineralize 14C-benzene to 

14CO2.  An aerobic halophilic enrichment was developed that could degrade each of the 

BTEX compounds separately.  The enrichment converted 46 % of added 14C-benzene to 

14CO2 in 4 weeks.  Benzene degradation was stimulated by the addition of low 

concentrations of YE, trace elements, and vitamins.  Microbial community analysis using 

DGGE showed Marinobacter spp. as the dominate members of the enrichment.  

Naturally hypersaline soils from the Salt Plains National Wildlife Refuge were 

used to assess the potential of organisms in a pristine environment to degrade BTEX.  An 
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aerobic halotolerant enrichment was developed that could degrade benzene in up to 4 M 

NaCl.  This enrichment could degrade benzene and toluene but not ethylbenzene and 

xylenes.  The enrichment was able to completely mineralize 33 % of the added 14C-

benzene to 14CO2 in 4 weeks.  Efforts to stimulate benzene degradation with the addition 

of low concentrations of YE, trace elements, peptone, casamino acids, and vitamins 

proved unsuccessful.  Although the enrichment was maintained at 30 °C, maximum rates 

of benzene degradation were observed at 37 and 45 °C.  This can be attributed to high 

surface temperatures at the Salt Plains during the summer months.  Microbial community 

analysis with DGGE showed the bacterial diversity was impacted when the enrichment 

was exposed to various salt concentrations.  

An aerobic halophilic bacterium was isolated from the enrichment developed 

from oil brine contaminated soil.  Phylogenetic analysis with the nearly full length 

sequence of 16S rDNA indicated the isolate contained > 95 % sequence similarity to 

Arhodomonas aquaeolei, an halophilic bacterium isolated from oil brine that has shown 

the ability to utilize a number of organics as a carbon source, although it is not known if 

it can degrade BTEX.  The isolate is tentatively referred to as Arhodomonas sp. strain 

Seminole.  The isolate is halophilic and could degrade benzene in the presence of 1 to 3 

M NaCl.  Radiolabled assays indicated 40 to 60 % of added 14C-benzene to 14CO2 in 3 

weeks.  This bacterium could also degrade toluene but not ethylbenzene or xylenes.  

Additionally, the isolate showed the ability to co-metabolically degrade cis-DCE in the 

presence of benzene.  

More studies are needed to assess the ability of Arhodomonas sp. strain Seminole 

to degrade BTEX compounds under optimal conditions such as temperature, pH, and in 
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the presence of osmolytes.  Using the isolated strain, the mechanisms and pathways for 

benzene biodegradation under saline conditions should be elucidated.  Such studies are 

important for understanding if the genes and enzymes involved in degradation of 

aromatic compounds in halophilic bacteria are similar to those found in non-saline 

degraders.  Also, using the isolated pure culture, phylogenetic probes can be developed to 

detect the presence and distribution of similar phylotypes in different hypersaline habitats 

(Crocetti et al. 2000). Furthermore, phylogenic probes can be used to monitor the 

persistence of this bacterium in the environment if it is found suitable for projects.  
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APPENDIX A

SEQUENCE OF ISOLATE FROM SEM 2 ENRICHMENT

   1 ACGCTGGCGG CATGCCTAAC ACATGCAAGT CGAGCGGCAG CAGCTCCTTC                                       
0051 GGGAGGCTGG CGAGCGGCGG ACGGGTGAGT AACGCGTGGG AATCTGCCCT 
0101 TCGGTGGGGG ATAGCCCGGG GAAACTCGGA TTAATACCGC ATACGCCCTG 
0151 CGGGGCAAAG TGGCCCTCTG TTTCATGGTC ACGCCGAAGG ATGAGCTCGC 
0201 AGTCCGATTA GCTAGTTGGT GAGGTAATGG CTCACCGAGG CGACGATCGG 
0251 TAGCTGGTCT TAGCGGACGA TCAGCCACAC CGGGACTGAG ACACGGCCCG  
0301 GACTCCTACG GGAGGCAGCA GTGGGGAATA TTGGACAATG GGCGAAAGCC 
0351 TGATCCAGCA ATGCCGCGTG GGTGAAGAAG GCTTGCGGGT TGTAAAGCCC 
0401 TTTCAGCCGG GAGGAAAAGC GTTCGGTTAA TACCCGGACG TCTTGACGTT 
0451 ACCGGCAGAA GAAGCACCGG CTAACTCCGT GCCAGCAGCC GCGGTAATAC 
0501 GGAGGGTGCA AGCGTTAATC GGAATTACTG GGCGTAAAGC GCGCGTAGGC 
0551 GGTCGGATAA GTCGGGTGTG AAAGCCCCGG GCTCAACCTG GGAACAGCAT 
0601 TCGATACTGT TCGGCTAGAG TCTGGCAGAG GGAGGTGGAA TTTCCGGTGT 
0651 AGCGGTGAAA TGCGTAGATA TCGGAAGGAA CACCAGTGGC GAAGGCGACC 
0701 TCCTGGGCCA AGACTGACGC TGAGGTGCGA AAGCGTGGGG AGCAAACAGG 
0751 ATTAGATACC CTGGTAGTCC ACGCCGTAAA CGATGAGAAC TAGCCGTTGG 
0801 CCTCATTTAA GAGGTTCGTG GCGCAGCTAA CGCGATAAGT TCTCCGCCTG 
0851 GGGAGTACGG CCGCAAGGTT AAAACTCAAA GGAATTGACG GGGGCCCGCA  
0901 CAAGCGGTGG AGCATGTGGT TTAATTCGAT GCAACGCGAA GAACCTTACC    
0951 TGCCCTTGAC ATCCTGGGAA CTTGGCAGAG ATGCCTTGGT GCCTTCGGGA 
1001 GCCCAGTGAC AGGTGCTGCA TGGCTGTCGT CAGCTCGTGT CGTGAGATGT 
1051 TGGGTTAAGT CCCGCAACGA GCGCAACCCT TGTCCCTGGT TGCCAGCGGT 
1101 TCGGCCGGGA ACTCCAGGGA GACTGCCGGT GACAAACCGG AGGAAGGTGG 
1151 GGATGACGTC AAGTCATCAT GGCCCTCATG GGCAGGGCTA CACACGTGCT 
1201 ACAATGGCTG GTACAACCGG TTGCCAACCC GCGAGGGGGC GCTAATCCGA 
1251 TAAAGCCAGT CCCAGTCCGG ATTGGAGTCT GCAACTCGAC TCCATGAAGT 
1301 CGGAATCGCT AGTAATCGCG GATCAGCATT GCCGCGGTGA ATACGTTCCC 
1351 GGGCCTTGTA CACACCGCCC GTCACACCAT GGGAGTCGGC TGCACCAGAA 
1401 GTCGGTAGTC TAACTTCGGG AGGACGCCGC CCACGGTGTG GTCGAGACNG
1451 GGG
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