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CHAPTER I

Literature Review

Proteins are biological molecules that fold into complex conformations depending 

on the physical and chemical properties of their amino acid chains (2). By folding into a 

specific three-dimensional shape or a “native” state, a protein is able to perform its 

biological function (2-4). Generally, protein folding is a spontaneous process, but 

proteins will unfold under denaturing conditions (2). Mis-folded proteins form insoluble 

protein aggregates found in a number of human diseases, such as cancer and 

neurodegenerative diseases including Alzheimer's and Parkinson’s disease (5). 

In the living cell, some proteins require helper proteins to support their correct 

and efficient folding. The helper proteins are called stress proteins or heat shock proteins 

(Hsps) (6, 7). They appear when a cell undergoes various types of environmental stresses 

like heat shock and other cellular stresses. But heat shock proteins are also present in 

cells under normal physiological conditions. 

Heat shock proteins are molecular chaperones for protein molecules. They are 

ubiquitous cellular proteins and one of the life-guards of the living cells. Differencing 

from folding catalysts like protein disulfide isomerases etc, molecular chaperones 

increase the yield of folding reactions by amplifying the number of productive folding 

pathways, but do not increase the rate of folding reactions (8-10). Molecular chaperones 

perform basic and essential cell functions, such as facilitating newly synthesized 
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polypeptides to form properly into their biologically native structure, assisting 

denatured protein to refold, and preventing protein aggregation (8-10). Based primarily 

on their molecular weights and functional mechanisms, there are several different kinds 

of chaperones (2). My research is focused on Hsp90 and its co-chaperones.

Heat Shock Protein 90 (Hsp90)

Hsp90, a highly conserved and ubiquitous chaperone found in eubacteria and all 

branches of eukarya, is involved in the folding of a set of cell regulatory proteins and in 

the re-folding of stress-denatured polypeptides (11). It is the most abundantly expressed 

protein in unstressed cell (12). Unlike Hsp70, Hsp90 seems to serve as a molecular 

chaperone for signal transduction proteins, such as steroid hormone receptors (SHRs) and 

cell-cycle kinases. These proteins are denoted as Hsp90 client proteins. Because many of 

its client proteins are involved in cell signaling, proliferation and survival, Hsp90 has an 

essential function in signal transduction pathways (2, 12). 

Hsp90 plays an important role in cancer because its clients involve in the 

regulation of the cell cycle, cell growth, cell survival, apoptosis, and oncogenesis (13). 

Previous studies show that level of Hsp90 is higher in various malignant cell lines and 

cancer cells compared to normal cells (14). Many Hsp90 client proteins are known to 

participate in oncogenic pathways and processes (15). Therefore Hsp90 is a potential 

target of anti-cancer therapy.

In eukaryotic cytoplasm, two distinct genes encode constitutive and inducible 

isoforms of Hsp90 (Hsp90-α and Hsp90–β). They are closely related and the 

consequences of gene duplication about 500 million years ago (1, 2). They are both 
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induced by stress and no differences in their activities have been identified (16). 

Homologues of Hsp90 are also found in endoplamic reticulum and mitochondia, named 

Grp94 (94 kDa glucose-regulated protein) (17) and Trap1/Hsp75 (type1 tumor necrosis 

factor receptor-associated protein) (18, 19), respectively. In prokaryotic cells, there is 

homologue termed HtpG (high temperature protein G) (20). 

Structure and Function of Hsp90

Biochemical and crystallographic studies have been shown that Hsp90 consists of 

three major domains (21-23): a highly conserved amino-terminal ATPase domain, a 

middle domain and a carboxyl-terminal dimerization domain (Figure 1)

Figure 1: Model for Hsp90 structure and function. ‘CR’ refers to a red charged region which serves as a 

linker between N-terminal domain and middle domain. Green N-terminal domain, yellow middle domain 

and orange C-terminal domain (14). 

 

Three-dimensional crystallization structures suggest that the amino-acid terminal 

domain contains a highly twisted β-sheet exposed on one face, and a set of α-helices 

covering the opposite face (2). At the center of the helical side, a deep pocket forms a 

binding site for ATP/ADP (23). The binding of ATP at the N-terminal site alters the 
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conformational state of Hsp90 and affects its interactions with client proteins and co-

chaperones. This ATP-binding pocket serves as the binding site for the Hsp90 inhibitors 

geldanamycin and radicicol (24). Geldanamycin competes with ATP/ADP in the 

nucleotide binding pocket, resulting in disruption of the Hsp90 function and degradation

of Hsp90 client proteins by the ubiquitin-dependent proteasome pathway (25, 26). Like 

other gyrase, Hsp90, histidine kinase, MutL (GHKL) family members, Hsp90 also 

requires ATP binding and hydrolysis of ATP to regulate the conformational change (27)

(Figure 1 N-terminus). 

In eukaryotic Hsp90, a highly charged and protease-sensitive segment follows the 

amino-terminal nucleotide binding domain and connects the N- terminal and the middle 

domain of Hsp90 (Figure 1: CR) (28). Even though this charged region is lacking in 

prokaryotic HtpG, human Trap1 and Grp94 (2), studies indicate that this charged linker 

region might have a function in regulating Hsp90 chaperone function by increasing 

affinity of Hsp90 binding substrate and regulating ATP binding to the N-terminal domain 

(29). 

The middle domain of Hsp90 also has a key role in the binding of many client 

proteins to Hsp90 (2). Recent studies observe that AHA1, an Hsp90 co-chaperone, 

enhances Hsp90’s ATPase activity by binding to Hsp90 middle domain (30). This 

indicates that the middle domain is also important for modulating ATPase cycle (Figure 1: 

middle domain).

A second nucleotide binding site appears to be present near the Hsp90 carboxyl-

terminal domain, but this is less well characterized (31-33). The C-terminus comprises an 

Hsp90 dimerization site and provides binding site for Hsp90 co-chaperones containing 
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TPR domains (34-36). At the very carboxyl-terminus, all eukaryotic cytosolic Hsp90 

have penta-peptide sequence MEEVD. This peptide sequence is the core of interaction 

between Hsp90 and partner proteins with TPR domain such as immunophilins, Hop/Sti1 

and PP5 (37, 38). Interestingly, the C-terminal residues of Hsp70 (GPTIEEVD) interact 

with TPR domains in a manner similar to that of Hsp90 (37). Binding of drug to the C-

terminal site blocks nucleotide binding to N-terminal site (31, 33). This suggests that 

these two nucleotide-binding sites may interact in coordinated relationship to regulating 

the Hsp90 conformational change.

The Hsp90 ATPase Activity 

ATP binding and hydrolysis are important for Hsp90 function in vivo. This 

conclusion is drawn by the observation that if mutantions inhibit the N-terminal 

dimerization of Hsp90 that is required for efficient hydrolysis of ATP, these mutants do 

not support the Hsp90 function (11, 39). 

 The two state models suggest that ATP binding and hydrolysis results in Hsp90 

conformation changes. The nucleotide-free state, corresponding to the "open" state of 

Hsp90 can capture client proteins, with the two N-terminal domains in the dimer being

separate. In the ATP-bound state, binding of ATP increases the association of the N-

terminal domains putting Hsp90 in the “close” form to clamp the client protein tightly. 

After ATP hydrolysis, Hsp90 will reverse the conformation change from the “close” to 

the “open” form and lead to release of the client protein (Figure 2). Therefore, opening 

and closing of the Hsp90 molecular clamp are coupled to ATPase cycle (40). 
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The antibiotic geldanamycin (GA) is a fungal ansamycin exhibiting anti-tumor 

activity (41). It binds to a conserved ATP-binding pocket in the amino-terminal domain 

of Hsp90 (23). GA binds with higher affinity than the natural nucleotides and prevents 

the nucleotide-mediated Hsp90 switching between its ADP- and ATP-bound 

conformation (14). Thus, Hsp90 cannot bind tightly to its client proteins. If Hsp90 

inhibitor GA binds to Hsp90 in vivo, it will induce the proteasomal degradation of Hsp90 

client proteins. In contrast to geldamycin, molybdate mimics ATP/ ADP·P state of Hsp90 

(Figure 2) and stabilizes the interaction between Hsp90 and client proteins by locking 

Hsp90 in its high-affinity client-binding conformation (42). Therefore, now 

geldanamycin and molybdate are used as good and rapid tools for screening the Hsp90 

client proteins.

Figure 2: The ATPase-coupled N-terminal dimerization of Hsp90, drug and client binding state.

Hsp90 Co-chaperones

Hsp90 collaborates with its co-chaperones to promote many client proteins 

folding, functional maturation and stability (2). Below, several major Hsp90 co-

chaperones will be introduced.
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Cdc37 (p50)

Numerous studies have shown that Cdc37 associates with kinase complexes, and 

then stabilizes and activates many protein kinases by cooperating with Hsp90. Therefore, 

it is also called “kinase-specific” co-chaperone (43, 44). The Cdc37 gene was first 

identified in yeast as temperature-sensitive cell-division cycle mutation (44, 45). 

Cdc37 consists of three domains: an N-terminal domain; a middle domain; and a 

C-terminal domain (43). Client proteins (kinases) bind to the N-terminal Cdc37. Hsp90 

binds to middle domain of Cdc37. The function of C-terminal domain of Cdc37 is 

unknown (46). 

Crystallization of human Cdc37 indicates that Cdc37 blocks the lid of nucleotide 

binding pocket of Hsp90 in an open position, and inhibits the ATPase activity (46). This 

inhibition results in a certain conformation for client loading. Unlike client protein, co-

chaperone Cdc37 binding to Hsp90 does not respond to the effect of geldanamycin and 

molybdate (47). 

 Cdc37 may also have Hsp90-independent molecular chaperon’s activities. In vitro, 

Cdc37 can stabilize inherently unstable kinase (CKII) by keeping unfolded substrates in a 

refolding form for other chaperones, and behaves like “holding chaperone” (48). In 

addition, Chang’s works show that not all of the endogenous Cdc37 is associated with 

Hsp90 in yeast (49). Also it is reported in Hartson et al.’s works (47). 

 

Co-chaperones Containing Tetratricopeptide Repeat (TPR) Domains
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A number of co-chaperones that share a conserved tetratricopeptide repeat (TPR) 

domain have a common binding site on Hsp90. These co-chaperones are immunophilins 

(FKBP51 and FKBP52, Cyclophilin 40), Hsp organization protein (HOP), and protein 

phosphatase 5 (PP5) (50, 51). TPR domains contain multiple copies of a degenerate 34 

amino acid residues that are arranged in tandem repeat (52). Several studies show that the 

primary binding site for TPR domains is the C terminus of Hsp90 with a conserved C-

terminal motif MEEVD (12). The work of Gehring et al. suggests that several receptor 

heterocompexes have a heteromeric structure of 1 receptor : 2 Hsp90 : 1 immunophilin 

(53-55). 

 

HOP (Hsp70-Hsp90 organizing protein, p60)

The function of HOP is to facilitate the transfer by binding to both Hsp90 and the 

substrate-bound Hsp70, forming a physical link between them (56). HOP which was 

identified as a 60 kDa protein (p60), has a yeast homolog which is called Sti1 (57). HOP 

consists of three different TPR domains. TPR1 binds Hsp70, while TPR2a and TPR2b 

bind to Hsp90 (58). 

HOP inhibits intrinsic ATPase activity of Hsp90 in vitro. The study of Hsp70-

Hop-Hsp90 interaction suggests that Hop is not only a physical linker and seems to 

enhance the activities of these two chaperones, but also blocks ATPase activity by 

inhibiting the binding of p23 to Hsp90 (59). This is due to its inhibition of ATP binding 

to the N-terminal nucleotide binding pocket of Hsp90 (59). Consistent with the above 

mechanism, HOP binds to the ADP-bound but not ATP-bound form of Hsp90 (36). Thus, 

HOP blocks Hsp90’s change to the p23-binding conformation. HOP has also been found 
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to enhance the ATPase activity of Hsp70 (60). This suggests that HOP functions to 

modulate the ATP cycle of proteins when bringing them together. The interaction 

between HOP and Hsp90 is enhanced by geldanamycin and is prevented by molybdate 

(47). 

 

Protein Phosphatase 5 (PP5)

PP5 is member of the serine/threonine (Ser/Thr) phosphoprotein phosphatase 

family (61). PP5 has three TPR motifs at its N-terminus and a peptidyl-prolyl isomerase 

(PPIase) homology domain (62). The three TPR domains serve both targeting and 

regulatory functions. 

PP5 associates with steroid hormone receptor (SHR). It binds to Hsp90 via its 

TPR domain (63) and it is a major component of SHR  and Hsp90 heterocomplexes (64). 

PP5’s phosphatase activity may be important for cytoplasmic-nuclear tracking. 

Immunophilins

Like PP5, the three high molecular weight immunophilins with TPR domains-

FKBP51, FKBP52, CyP40 bind to steroid receptors and Hsp90 complexes. According to 

binding to different immunosuppressant drugs (FK506 or cyclosporine), they generally 

can be characterized into two groups: the FKBPs binding with FK506 and rapamycin, 

and the cyclophilins (CyPs) binding with cyclosporine A (51). Immunophilins also have a 

role in helping SHR maturation and trans-activation for the chaperone activity of Hsp90 

(65). Like Cdc37, immunophilins binding to Hsp90 also do not respond to the effect of 

geldanamycin and molybdate (47). 
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p23

p23 stabilizes protein-Hsp90 hetero-complex ATP-dependent interaction. It is the 

smallest protein in the Hsp90 machine (Mr = 23 kDa). p23 is a ubiquitous and highly 

conserved protein from yeast to humans. It plays a role in facilitating the adenosine 

triphosphate–driven cycle of Hsp90 binding to client proteins. It enters at a late stage of 

the Hsp90 cycle (66) and stabilizes steroid receptor together with Hsp90. And it also 

enhances the client complexes in maturation state. Biochemical studies indicate that ATP 

and p23 cause rearrangements in Hsp90 heterocomplexes which are important for the 

progression of the chaperone cycle (67, 68). The interaction between p23 and Hsp90 is 

dependent on ATP binding (69), i.e., p23 binds to the ATP-bound form of Hsp90 when 

Hsp90 achieves the ATP-bound conformation (67). Geldanamycin, a specific inhibitor of 

Hsp90 that competes with ATP for binding, can disrupt the Hsp90-p23 complex (23, 24). 

But the molybdate intensifies the association of Hsp90 and p23 (47). 

Activator of Hsp90 ATPase 1 (AHA1)

Aha1 is a newly described Hsp90 co-chaperone. It binds to the middle domains of 

Hsp90 (30). Thus, Aha1 does not compete for binding C-terminal domains of Hsp90 (70). 

Instead it only competes with the early cofactors Hop and p50, but can bind to Hsp90 in 

the presence of cyclophilins, suggesting that Aha1 acts as a late cofactor of Hsp90 (71). 

Panaretou’s studies demonstrate that in vivo Aha1 is not only specific for kinase 

activation, but also regulates the maturation of hormone receptors, and has a function in 

the activation of Hsp90-dependent client proteins (67). 
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Hsp90-Substrate Interaction

The function of Hsp90 is to facilitate proper folding of substrate proteins. 

However, Hsp90 cannot support the function of biologic substrates such as steroid 

receptors on its own and requires the assistance of co-chaperones (3). Studies suggest that 

the jobs of some co-chaperones are specifically linked to substrate protein processing. To 

date, Hsp90 substrates include steroid hormone receptors, transcription factors, tyrosine 

and serine/threonine kinases and other signal transduction proteins(2). Generally, co-

chaperone immunophilins are typically characterized as participants of steroid-receptor-

Hsp90 complex assembly, and Cdc37 is most commonly found in kinase-Hsp90 complex.

The exact mechanism how Hsp90 recognizes and assembles all the client proteins 

properly folding is still unclear. However, extensive studies on steroid hormone receptors 

indicate that co-chaperones interact with Hsp90 in a sequence-ordered fashion and form a 

cyclic chaperone pathway. According to this model, Hsp70 binds the client (steroid 

hormone receptor) first on its own. Subsequently, Hsp70 and client are delivered to 

Hsp90 and the scaffold protein Hop. They fold into an “intermediate chaperone complex”. 

After ATP hydrolysis, chaperone Hsp70 and Hop components dissociate. At this time, 

p23 and immunophilins enter the complex and form a final complex. Then the client 

protein is released from this cycle (Figure 3) (2). After release, the protein may become

independent, or it may re-enter a reiterative cycle.
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Figure 3: Basic chaperone cycle for activation of steroid hormone receptors (2).
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CHAPTER II

Armadillo Repeat Chaperone Binding Protein 2 (ARCBP2), A Novel 

Hsp90-Partner Protein 

2.1 Introduction

Hsp90 assembles into large multi-protein complex including many co-chaperones, 

partners and clients (14). Hsp70, one of the major chaperones, helps fold newly 

synthesized polypeptide chains and participates in assembly of many multiproteins (2). 

Chaperone Hsp40 stimulates Hsp70 ATPase activity, while activator of the Hsp90 

ATPase (AHA1) stimulates Hsp90 ATPase activity (71). The function of Hsp70-Hsp90 

organizing proteins (HOP) is to mediate association between Hsp90 and Hsp70 (58). 

HOP acts like adapters. CDC37/p50 interacts with kinase (72), immunophillin modulates 

association with hormone receptors (38). p23 stabilizes interaction of Hsp90 and clients 

(3). 

Geldanamycin, a nature product antibiotic, inhibits the chaperone activity of 

Hsp90 by binding N-terminal ATP-binding pocket of Hsp90. Geldanamycin binding to 

Hsp90 has higher affinity than the natural nucleotide, so it stabilizes drug binding and 

prevents Hsp90 conformational switching during its normal ADP- to ATP-bound cycle. 

Geldanamycin inhibits client binding to target, and causes client degradation in vivo. Due 
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to its physiological and biochemical effects, geldanamycin is used as a good tool 

for the study of Hsp90 complexes (23, 24). 

A novel protein strongly associates with anti-Hsp90 antibody immunoadsorption 

from the lysates in Jurkat T-cell (Hartson and Te, in preparation; Figure 4).  Based on the 

result of mass spectrometry and database search at the NCBI or SwissProt, Hartson and 

Te identified this protein as Human Brain Protein 16 (HBP16, Gene ID: 51236, NCBI: 

AAH09915.1). Until now, nothing has been published on Human Brain Protein 16. 

Because the name “Human Brain Protein 16” only simply describes cDNA library source 

from RNA isolation, and is not informative, as well as other reasons shown in section 2.3, 

we propose to change the name “Human Brain Protein 16” to Armadillo Repeat 

Chaperone Binding Protein 2 (ARCBP2). The data from Hartson and Te’s Hsp90 co-

immunoadsorption suggest that ARCBP2 physically interacts with Hsp90. 

In this report, we confirm identify of ARCBP2 and also present evidence that 

ARCBP2 acts as a novel Hsp90 co-chaperone partner. 

Figure 4: Hsp90-associated proteins displayed on 2-D Gels. Jurkat T-cells were lysed. Lysates were 

immunoadsorbed with mouse monoclonal anti-Hsp90 antibody (8D3). The proteins were displayed on 2-D 

Gel. “X’s” are proteins bound to non-immune control antibody resins. Small glutamine-rich 
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tetratricopeptide repeat protein 1B (Sgt1B) and nuclear distribution protein C (NudC) were recently 

described as Hsp90 partners by our lab. PIH1 was identified as an Hsp90 partner in Yeast. AHA and HIP 

are known co-chaperones. Figure courtesy of Hartson and Te.

2.2 Materials and Methods

Reagents. Cell culture medium and supplements were from Invitrogen 

Corporation. Fetal bovine serum (FBS) was from Atlanta Biologicals. His-select nickel 

affinity gel was obtained from Sigma. NHS-activated sepharose TM 4 fast flow was 

purchased from Amersham Biosciences. 8D3 monoclonal IgM antibody to Hsp90 was 

provided by Dr. Gary H. Perdew. Mouse monoclonal IgM antibody against Hsp90 (3G3) 

was purchased from Affinity BioReagents (catalog MA3-011). The anti-Flag M2 

antibody was purchased from Stratagene (catalog 200472). Control antibodies, mouse 

IgM (TEPC 183) and mouse IgG1 (MOPC21) were obtained from Sigma. His-tag 

antibody was from Qiagen. Alkaline phosphatase-conjugated affinity rabbit anti-mouse 

IgG antibodies were from Jackson ImmunoResearch. 

Immunoresin wash buffer contains: 10 mM PIPES pH 7.0, 150 mM NaCl and 

0.1% Tween 20 (P150T); 10 mM PIPES pH 7.0, 500 mM NaCl and 0.1% Tween 20 

(P500T); 10 mM PIPES pH 7.0, 1000 mM NaCl (P1000); 10 mM PIPES pH 7.0, 20 mM 

NaCl (P20): and 10 mM PIPES pH 7.0, 100 mM NaCl and 0.1% Tween 20 (P100T).

Plasmid Construction. A full length ARCBP2 cDNA clone was obtained from 

Open Biosystems (catalog number MHS 1011-60159; Genbank#: BC003035.1). The 

ARCBP2 ORF was amplified and engineered by standard PCR cloning techniques. For 

expression in Escherichia coli, the PCR products were digested with Bsmb1 and Xho1
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and ligated complementary ends of Nco1- and Xho1- digested bacterial expression vector 

pET-30a (+). The PCR primer established the reading frame to match the sequence of the 

His-tag. Open reading frame integrity was checked by DNA sequencing. Thus, the 

resulting plasmid, pETARCBP2, contains the full-length ARCBP2 with an epitope 

tagged open reading frame in an orientation that transcription with T7 RNA polymerase 

yields a sense RNA. The resulting protein had the predicated sequence 

MHHHHHHSSGLYPRGSGMKETAAAKFERQHMDSPDLGTDDDDKAM1, with the 

underlined residues indicating the tag and final methionine being the authentic ARCBP2 

start codon (made by Te, Lab accession#: H104). 

For in vitro translation, expression constructs encoding epitope-tagged (His-) 

ARCBP2 were created by PCR. The PCR products cut with Bsmb1 and Xho1 and ligated 

into complementary ends of Nco1- and Sal1- digested pSP64THlck vector. So the 

construct, pSPARCBP2, has a full length ARCBP2 open reading frame in an orientation 

such that SP6 RNA polymerase yields a sense RNA. This resulting protein had the 

predicated sequence MRGSHHHHHHGSM1, with the underlined residues indicate the 

tag, and the final methionine being the authentic ARCBP2 start codon (made by Te, Lab 

accession#: H101).

For in vivo transfection, the PCR templates using Flag-ARCBP2 in pSP64T 

vector (Lab accession#: H102), were trapped into TOPO vector, digested by HindIII 

(mimic Bsmb1) and ApaI, and then ligated into mammalian expression vector (pcDNA). 

The plasmid ARCBP2, has the full-length ARCBP2 with an epitope-tagged open reading 

frame in an orientation such that T7 RNA polymerase with CMV promoter. The resulting 

protein had the sequence MDYKDDDDKTSM1, with the underlined residues indicating 
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the Flag tag, and final Met being the authentic ARCBP2 start codon (made by letong, Lab 

accession#: H132).

Protein Purification of His6-ARCBP2 from E. coli. Procedure for ARCBP2 

protein purification is that described by Qiagen. pET- His6-ARCBP2 was expressed in E. 

coli DH5-alpha strain. Cells were harvested, lysed and sonicated in NaH2PO4 buffer (PH 

8.0) containing 300 mM NaCl and 10 mM imidazole. Cell lysate was mixed with small 

pinch DNase at room temperature for 30 min. Supernatant was mixed with 4 ml (pact 

volume) His-select nickel affinity resin (Qiagen) for 3 hours at 4 °C, then the mixture 

was poured into a column and washed with 400 ml wash buffer containing 50 mM 

NaH2PO4, 15 mM imidazole and 0.3 M NaCl. His6-ARCBP2 protein was eluted from this 

resin with this same buffer containing 250 mM imidazole. After elution, peak fractions 

were pooled and dialyzed against HEPES buffer containing 20mM HEPES pH 8.0, 5mM 

MgCl2, 500mM KCl and 0.1% Tween. Then aliquots were stored in -20 °C or liquid 

nitrogen until further use. 

Western Blot. Western blotting of whole T-cell lysates (TCL) was performed by 

standard techniques. After separation by SDS-polyacrylamide electrophoresis (SDS-

PAGE) gel, immune complexes were transferred to a polyvinylidene difluoride (PVDF) 

membrane and visualized by staining with coommassie blue R-250 and/or exposed to X-

ray film. Then the membrane was probed with primary antibody, washed with TBS 

buffer and probed with appropriate secondary antibody (alkaline phosphatase-conjugated 

secondary antibody) at room temperature for 2 hours. Finally the membrane was 

developed with 5-bromo-4-chloro-3-indonly-phosphate (BCIP) and nitroblue tetrazolium 
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(NBT). The results were digitized using a scanning densitometer, and quantified by 

“BioRad MultiAnalyst” program.

Generation of [35S]ARCBP2 Protein in RRL. To examine the interaction of newly 

synthesized ARCBP2 with Hsp90, ARCBP2 was synthesized by coupled transcription-

translation in vitro. The plasmids of Flag- and no-tag ARCBP2 were used to program 30-

50 µl nuclease-treated rabbit reticulocyte lysates in [35S]Met for 30 min at 30 °C. For 

samples treated with drugs, geldanamycin (GA, final concentration of 0.02 µg/µl) or an 

equal volume of dimethyl sulfoxide (DMSO) for control were added into above reactions. 

DNA template was omitted for a negative control reaction.

Co-Immunoadsorptions of Protein Complex. Anti-mouse IgG immunoresin was 

coupled to anti-Flag antibody. Anti-rabbit IgG immunoresin was coupled to rabbit anti-

ARCBP2 antibody for 2 hours at 4 °C. Then the immunoresins were washed once with 

P150T, once with P500T, once with P1000, and two times with P20. Immunoadsorptions 

always were performed on ice. Before doing co-immunoadsorption, immunoadsorptions 

were clarified by centrifugation for 10 min at 10krpm. After that, immunoresins were 

mixed with 50 µl translation reactions stirred on ice for 2 hours. Or immunoresins with 

300 µl K562 cell lysates were rocked at 4 °C for 2 hours. Then immunocomplexes were 

washed 5 times with P100T. Finally, the samples were boiled in sodium dodecyl sulfate 

(SDS) sample buffer. As negative control, RRL without DNA templates was also 

assessed in adsorptions at the same time. 

Complexes were separated on 8% SDS-PAGE gel. Proteins were then transferred 

to a polyvinylidene difluoride (PVDF) membrane, stained with coommassie blue R-250, 

analyzed by autoradiography and probed by Western blotting as indicated. 
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Analysis of the Effect of GA on ARCBP2 Levels in Human Cell Line. Human 

K562 erythroleukemia cells were grown in six-well plates for 20 hours at 37 °C in RPMI 

1640 medium containing 10% fetal bovine serum and 1% antibiotics to approximately 

1×107 cells/ml. Cells were treated with either DMSO or 0.1 µM geldanamycin for 24 

hours. After cell pellets were washed once with Hanks buffer, they were then boiled in 

SDS-sample buffer, diluted and separated on 10% SDS-PAGE gels. Membranes were 

blotted with anti-ARCBP2.

Human Jurkat cells were similarly treated with 0.1 µM geldanamycin or same 

volume of drug vehicle (DMSO) for 20 hours. Cell pellets were washed with PBS and 

boiled in SDS sample buffer. The samples were loaded and separated on SDS-PAGE gel. 

After that the membrane was probed with anti-ARCBP2. The Hsp90-dependent kinase 

Lck was used for a positive control to show that GA has an effect on Hsp90 and function. 

Preparation of Cell Lysates. K562 cells were grown in RPMI 1640 media 

containing FBS and were transfected with DMRIE-C following the manufacturer’s 

instructions. After 48 hours, cells were harvested. Cell pellets were washed once in 

Hank’s buffer, and then lysed in 0.5% Igepal, 20mM Hepes (pH 7.4), 100mM NaCl, 

2mM EGTA, 1 mM DTT, 10% glycerol, 1mM NaVO4, and 2x mammalian protease 

inhibitor cocktail (Sigma). Lysates were clarified by centrifugation at 13,000×g for 10 

min at 4 °C.

In-Gel Trypsin Digestion. The SDS-PAGE gel of ARCBP2 complexes was 

destained in 50% methanol/10% acetic acid for several hours until the gel background 

was clear. This gel then was soaked in clean water. The acrylamide bands containing the 

proteins of interest were excised. Gel fragments were washed three times with 50% 
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acetonitrile (ACN)/25mM ammonium bicarbonate (pH 8.0), mixed by rocking 2 hours 

each, then dehydrated by soaking in 300 µl 100% ACN. Gel pieces were dried 

completely in a speed vacuum centrifuge, rehydrated in 30 µl of 12.5ng/µl trypsin 

prepared in 50 mM ammonium bicarbonate (pH 8.0). After incubation at 37 °C overnight, 

the digested fragments were extracted from the gel with 30 µl of 0.1% trifluoroacetic 

Acid (TFA). The samples were extracted twice for 1 hour at room temperature. The 

extracted supernatant was pooled together and subsequently concentrated in a speed 

vacuum centrifuge to a final volume of 5-10 µl.

MALDI-TOF Mass Spectrometry Analysis. Saturated α-cyano-4-hydroxycinnamic 

acid (matrix) was prepared in 50% acetonitrile/0.1% TFA. 0.7 µl aliquot of the 

concentrated peptide mixture was spotted onto the MALDI plate, which was immediately 

covered by the same volume of 1/2 matrix working solution (50% saturated matrix: 50% 

ACN/0.1% TFA). Peptide mass standards were also spotted nearby. After being dried 

completely, peptide samples were analyzed using matrix-assisted laser desorption-

ionization time-of-flight mass spectrometer (MALDI-TOF). Proteins were identified by 

Mascot search in MSDB20050701 Data Base. Search were carbamidomethyl (C), 

oxidation (M), propionamide (C), and pyro-glu (N-term Q) modifications; Unrestricted 

protein mass; +/- 100 ppm peptide mass tolerance; 1 max missed cleavage.

2.3 Results

 ARCBP2 From Other Species. Since the function of ARCBP2 is unknown, we 

tried to predict the possible function of ARCBP2 by searching for other similar proteins. 

The BLAST search showed that proteins similar to ARCBP2 were present in many 
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species: mouse (E value: 3e-138), fish (E value: 3e-92), and Arabidopsis (E Value: 3e-

15). High E value had highly conserved sequences. These conserved sequences mean that 

they might have an essential conserved function in these species. Among these conserved 

sequences, there are no known functions. 

The NCBI Conserved Domain database search (Figure 5) identified two 

conserved domains of unknown Function (DUF) on C-terminal of ARCBP2. Because 

DUF383 and DUF 384 domains were only shown on ARCBP2 protein, they were not 

seen in other domain architectures. Therefore protein architecture searches suggested that 

DUF 383 and DUF 384 were not widely distributed among different proteins family.

Another conserved domain is found in N-terminal of ARCBP2. This domain 

contains Armadillo/beta-catenin-like repeat (ARM) motif (E value: 7e-05). ARM motif 

exists in many different proteins and consists of 40 amino acids long tandemly repeated 

sequences. These tandem repeats form a super-helix of helices to mediate protein-protein 

interaction. This is one reason that we changed the name of Human Brain Protein 16 to 

Armadillo Repeat Chaperone Binding Protein 2 (ARCBP2). 

Figure 5: Conserved domain structure of Armadillo Repeat Chaperone Binding Protein 2 (ARCBP2).

BLAST conserved domain searches used to analyze the sequence of ARCBP2.

In order to find conserved motifs, six putative ARCBP2 sequences from mouse, 

yeast, zebra fish, fly, human and Arabidopsis were used to do alignments (Figure 6). 

Clustal W alignments illustrate that ARCBP2 had highly conserved sequence on C-
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terminus and less conserved sequence on N-terminus. The sequence in human was almost 

identical to that in mouse. The ARCBP2 sequence was approximately 40% conserved 

among these different species, especially at C-terminus. This sequence construct suggests 

that the N-terminal function of ARCBP2 is to bind protein, but the c-terminal function of 

ARCBP2 is totally unknown.

Identification of Protein Associated with ARCBP2. Since the function of 

ARCBP2 is wholly novel, we attempted to find and identify associated proteins by 

protease digestion technique with MALDI-TOF mass spectrometry analysis. As shown in 

Figure 7, the result indicated that the molecular weight of bands were about 55-60 kDa. 

Peptide mass fingerprinting identified that these proteins were subunits of the eukaryotic 

chaperonins containing T-complex protein 1 (CCT, S43062), T-complex protein 1-theta 

subunit (TCP-1-theta, P50990) and TCP1 ring complex protein (TRiC5, A38983). These 

results are only preliminary data report from MASCOT search. Because these mass 

spectrums should be carefully compared to peptide-peptide by protein sequences and 

database search, these data need to be further confirmed again. Three associated proteins 

are eukaryotic cytoplasmic “chaperonin” chaperones that facilitate folding of tubulins and 

actin. ARCBP2’s interaction with chaperone subunits is another reason that we changed 

HBP16 to Armadillo Repeat Chaperone Binding Protein 2 (ARCBP2).   
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Figure 6: Clustal W Alignment of six different ARCBP2 homologs: human (AAH09915), yeast 

(AAA77038), mouse (AAH61251), zebra fish (NP001002522), fly (EAL28299) and Arabidopsis 

(BAC42050).

Figure 7: ARCBP2-associated proteins displayed on 1-D Gels. K562 Cells transfected with plasmid 

encoding Flag-ARCBP2, lysed and immunoadsorbed on SDS-PAGE Gel. These bands were identified by 

mass spectrometry and NCBI database search.

The Physical Interaction between ARCBP2 and Hsp90.  Anti-Hsp90 antibody 

(8D3) immunoadsorbs a protein identified as ARCBP2 from cell lysates (Hartson and Te, 

in preparation). This might result from direct recognition of ARCBP2 by the monoclonal 

anti-Hsp90 antibody, or from the physical association between ARCBP2 and Hsp90. To 

differentate these possibilities, two kinds of monoclonal anti-Hsp90 antibodies (8D3 and 

3G3) that recognize different Hsp90 epitopes, were used to co-immunoadsorb Hsp90. 

Hsp90 heterocomplexes were isolated by immunoadsorption with 8D3 antibody 

and blotted with anti-ARCBP2. The data showed that when endogenous Hsp90 

heterocomplexes adsorbed from lysates of Jurket T-cell, associated ARCBP2 protein was 

detected by Western blot. The co-adsorped ARCBP2 protein was specific relative to 



25

control antibody co-immunoadsorption (lane 1 versus lane 2&3). This result is not only 

consistent with previous study that ARCBP2 and Hsp90 were in same complexes, but 

also confirms that identify of Hsp90 protein is ARCBP2. 

Again, immunoadsorption with 3G3 antibody showed that ARCBP2 was 

immunospecifically detectable in the Hsp90 complex. Moreover, the amount of ARCBP2 

that adsorbs with Hsp90 is proportional to the amount of Hsp90 recovery and repetition. 

Because both 8D3 and 3G3 antibodies can adsorb ARCBP2, this result confirms that the 

association between Hsp90 and ACRBP2 is not epitope cross-reaction or antibody 

artifact.

Figure 8: Complex formation between Hsp90 and ARCBP2 in Jurkat cell lysates. The mouse 

monoclonal anti-Hsp90 antibodies 8D3 and 3G3 (lanes 2&3) or irrelevant non-immune antibody as control 

(lane 1) were used to immunoprecitate protein heterocomplexes from Jurkat T cell. Washed 

immunoadsorptions were Western blotted with anti-Hsp90 (top panel) or anti-ARCBP2 antibody (bottom 

panel).

To confirm that ARCBP2 is present in Hsp90 heterocomplexes, we performed the 

reciprocal analysis. Anti-ARCBP2 antibody was used to immunoadsorb ARCBP2 and 

immunopellets were Western blotted for co-immunoadsorption of anti-Hsp90. Results 

showed that Hsp90 was immuno-specifically associated with ARCBP2 complexes 

(Figure 9)
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Figure 9: Co-adsorption of Hsp90 with anti-ARCBP2 Antibodies. Rabbit antibodies were used to 

immunoadsorb lysates of Jurkat cells, and adsorptions were analyzed by Western blotting with anti-Hsp90 

(top panel) or anti-ARCBP2 (bottom panel). Hsp90, antibody heavy chains (ab hc), ARCBP2, and 

migrations of molecular weight markers are indicated. Lane 1, immmunoadsorption with pre-immune 

antibodies (p sera); lane 2, immunadsorption with antibodies from rabbits immunized with recombinant 

ARCBP2 (i sera).

To further confirm the interaction between ARCBP2 and Hsp90, ARCBP2 was 

translated in vitro. Co-immunoadsorption with affinity Flag-tagged antibody via using 

DNA encoding epitope-tagged (Flag-) was performed in rabbit reticulocyte lystate. The 

result showed that Hsp90 was detected specifically (Figure 10A). 

Consistent with above result, antiARCBP2 antibody also co-immunoabsorbed 

Hsp90 with untagged ARCBP2 in RRL (Figure 10B). Hsp90 is immunospecific 

compared to control. Since Hsp90 is very sticky protein, there is a non-specific band on 

the control lane. 
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             A             B

Figure 10: Immunoadsorption of ARCBP2 associated with Hsp90. Tagged or untagged ARCBP2 were 

synthesized in rabbit reticulocyte lysate using transcription-translation, and immunoadsorbed with antibody 

against the affinity tag (α-Flag, A) or ARCBP2 (B). (+) indicated sample programmed with ARCBP2 

plasmid. The control for non-specific binding was native reticulocyte containing no DNA template (-). 

Immunoadsorptions were Western blotted with anti-Hsp90 and anti-ARCBP2 antibodies, as indicated.

We extended our analysis by immunoadsorbing ARCBP2 and its associated 

proteins from the human cell line K562. K562 cells were transfected with a construct 

encoding Flag-tagged ARCBP, ARCBP2 complexes were isolated by anti-flag antibody 

immunoadsorption, and adsorptions were probed for the presence of Hsp90. The result 

showed that Hsp90 was specifically recovered with ARCBP2. Compared with negative 

control, this absorption is specific and valid (Figure 11). This experiment again 

demonstrated that ARCBP2 physically interacts with Hsp90 in both human and 

mammalian cell lysates.                                                      



28

Figure 11: Co-immunoadsorption of Hsp90 and ARCBP2 from transfected K562 cells. K562 cells 

were transfected with plasmid encoding affinity-tagged ARCBP2 (Flag-ARCBP2). (+) Indicated sample 

programmed with Flag-ARCBP2 plasmid. (-) indicated a negative control from cells that were no DNA 

template. Cells were harvested, lysed and immunoadsorbed with antibodies directed against the affinity tag 

(anti-Flag). Immunopellets were probed with anti-Hsp90 (top panel) and anti-ARCBP2 (bottom panel). The 

antibody heavy chain is indicated as ab hc.

Characterization of the Effect of Geldanamycin (GA) and Molybdate (MoO4) on 

ARCBP2 protein in RRL. To determine whether ARCBP2 is an Hsp90 client or partner, 

we tested the effect of GA and molybdate on the association of Hsp90 and ARCBP2. 

Geldanamycin (GA) is a specific anti-cancer Hsp90 inhibitor, which blocks ATP binding 

in Hsp90’s nucleotide-binding pocket. This binding prevents nucleotide-mediated 

switching of Hsp90 conformation. Thus, Hsp90 cannot bind tightly to its client protein. In 

contrast to geldanamycin, molybdate stabilizes interaction of Hsp90 with the client 

proteins and with the p23 co-chaperone by locking Hsp90 in its high-affinity client-

binding conformation. Thus, we treated the RRL with GA and molybdate. ARCBP2 

complexes were isolated by immunoadsorptions with antibody directed against epitope-

tagged ARCBP2. The data showed that the density of Hsp90 band on GA treated lane 

was weaker than that on DMSO treated lane. However, in the presence of molybdate, the 

density of Hsp90 band was stronger than control (Figure 12). Therefore GA inhibited the 

association of ARHBP and Hsp90, but the molybdate enhanced this interaction. This 
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result indicates that biochemical association of ARCBP2 with Hsp90 complexes behaves 

like an Hsp90 : client interaction or like a p23 : Hsp90 chaperone interaction. 

Figure 12: Effect of GA and MoO4 on ARCBP2 : Hsp90 complexes. Flag-ARCBP2 was synthesized in 

rabbit reticulocyte lysates in presence of 0.1 µM GA (lane 4) or an equal volume of DMSO (lane 3) for 30 

min at 30 °C. Lane 5 was treated with 20 mM sodium molybdate for another 5 min. Reactions were then 

chilled, immunoadsorbed with anti-Flag antibody. The immunoadsorptions (lane 1, 2, 3 & 4) were washed 

five times with buffer containing 100 mM NaCl, and the immunoadsorptions (lane 5) were washed five 

times with buffer containing 80 mM NaCl and 20 mM sodium molybdate. Washed immunopellets were 

subjected to Western blotting with anti-Hsp90 and anti-ARCBP2 antibodies. The control for non-specific 

binding was native reticulocyte lysate with no DNA template (Lane 1). Lysate treated with no drug (lane 2) 

was used to be a negative control.

 Characterization of the Impact of GA on ARCBP2 Levels in Living Cells. To 

determine the interpretation that ARCBP2 is an Hsp90 client or p23-like Hsp90 

chaperone, we characterized the impact of geldanamycin on ARCBP2 levels in living 

cells. GA inhibits the function of Hsp90 and causes known Hsp90 clients to degrade in 

vivo. If ARCBP2 is Hsp90 client, the stability of ARCBP2 in K562 cells was predicted to 

require its interaction with Hsp90 and its co-chaperones, and thus to be degraded in GA 
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treated cells. As shown in Figure 13, ARCBP2 levels had no significant differences 

between DMSO versus GA treatments. This stability was inconsistent with the hypothesis 

that ARCBP2 behaves as an Hsp90 client. 

A                            B

Figure 13: Effects of GA on ARHBP2 levels in living cells. (A) Jurkat cultures were treated with 0.2 µM 

geldanamycin (GA) or equal volume of drug vehicle (DMSO) for 18 hours. Cells were lysed in SDS 

sample buffer and immunoblotted with anti-ARCBP2 and anti-lck (positive control). (B) Flag-ARCBP2 

plasmids were transfected into K562 cell. The cells were then cultured in the presence of 0.2 µM GA and 

equal volume of DMSO for 20 hours and directed against ARCBP2 antibody. 

2.4 Discussion

The results from characterizations indicate that ARCBP2 is an Hsp90 binding 

protein. There are five evidences: (1) Two different anti-Hsp90 monoclonal antibodies 

specifically co-adsorb ARCBP2 from extract of endogenous T-cell. (2) The amount of 

ARCBP2 that absorbs with Hsp90 is directly proportional to the amount of Hsp90 

recovery. (3) Reciprocal co-immunoadsorption with the ARCBP2 antibody co-adsorbs 

Hsp90 endogenous complexes. (4) Antibody against the Flag affinity tag co-

immunoadsorbs Hsp90 from the cell lysates containing Flag-ARCBP2, but not from 

control lysates lacking. (5) Both antibodies against the Flag affinity tag and directly 

against ARCBP2 can specifically co-immunoadsorb Hsp90 from rabbit reticulocyte 

lysates. These data build strong and convincing argument for the association between 
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ARCBP2 and Hsp90 in mammalian cell lysates. This interaction also indicates there is an 

association in vivo.

Functionally, our results do not support designating ARCBP2 as an Hsp90 client. 

Up to date, all classical Hsp90 clients are degraded in response to Hsp90 inhibition by 

geldanamycin in vivo. Moreover, Hsp90 inhibitor geldanamycin prevents association of 

clients with Hsp90 (73), while molybdate strengthens this interaction in vitro (42). Unlike 

clients, the level of ARCBP2 protein in the living cells (K562 & Jurket cell) did not 

change significantly in the presence and absence of geldanamycin compared to the 

positive control Lck kinase, a known Hsp90 client (Figure 13). This result indicates that 

ARCBP2 is not an Hsp90 client, i.e., Hsp90 is not required for the proper folding for 

newly synthesized ARCBP2 or for maintaining the stability of ARCBP2 protein. 

Consistent with it, all the captured proteins displayed in 2 D gel (Figure 4) are Hsp90 

partners (Hartson and Te, in preparartion), and there are no Hsp90 clients seen. 

Furthermore the amount of the ARCBP2’s band is similar to the amount of other co-

chaperones, such as FKBP52 (Figure 4). 

Because ARCBP2 did not undergo geldanamycin-induced degradation in vivo, 

ARCBP2 instead acts like an Hsp90 co-chaperone protein. Generally, Hsp90 co-

chaperones can be divided into three groups according to response to the effect of 

geldanamycin and molybdate, One group is “the early co-chaperone” HOP and Hsp70. 

The interaction of these two chaperones with Hsp90 is enhanced by geldanamycin and is 

prevented by molybdate. In contrast, “late co-chaperone” p23 belongs to a second group. 

Geldanamycin poisons the formation of high-affinity interaction within Hsp90 and p23. 
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Molybdate intensifies this association. As a third group, CDC37/p50 and immunophilin 

do not respond to geldanamycin or molybdate (47). 

Just like p23 co-chaperone, Hsp90 function or the interaction between Hsp90 and 

ARCBP2 protein is inhibited by geldanamycin, while this association is enhanced by 

molybdate. However, in vivo ARCBP2 protein is not degraded by Hsp90 inhibitor 

geldanamycin (Figure 14). Thus, the results in this report demonstrate that ARCBP2 

physically interacts with Hsp90 via pull-down assays and subsequently ARCBP2 is 

verified to be a novel Hsp90 partner - p23 like co-chaperone. 

ARCBP2 has three major domains: DUF 384, DUF 383 and ARM domains 

(Figure 5). Even though the function of DUF 383 and DUF 384 is unknown, we found 

ARCBP2 homolog in yeast HGH1p (function unknown protein). This is consistent with 

Dr. Houry’s work that HGH1p had been identified to be an interacting partner of yeast 

Hsp90 (74). HGH1p is similar to human high mobility group proteins 1 and 2 (HMG1 & 

HMG2) based on the NCBI database search. Chromatin non-Histone HMG1 and HMG2 

are 27 and 25 kDa members of a family of proteins containing multiple HMG boxes. The 

multiple HMG boxes are conserved domains of 80 amino acids that mediate DNA 

binding of many proteins. HMG box domains recognize DNA structure, such as four-way 

junction DNA and non-specific DNA sequences. Both HMG1 and HMG2 contain an N 

terminal HMG box, a central HMG box, and an acidic carboxyl terminus. The acidic tails 

of these proteins contain multiple serine residues that match the phosphorylation 

consensus sites of casein kinase II, and phosphorylation of this domain appears to be 

important for proper functioning of these proteins. HMG1/2 has been shown to facilitate 

the binding of various sequence-specific transcription factors to their respective DNA 
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binding sites. HMG1/2 may serve as architectural factors that recognize and mediate 

DNA structural changes that accompany various events such as DNA repair, transcription 

and replication (data not shown). This information suggests that possible function of 

ARCBP2 is to mediate binding of different protein to Hsp90 clients, which also bind to 

DNA, such as hormone receptors.

Arm domains consist of 40 amino acid Armadillo (ARM) repeat, which was first 

identified in the Drosophila segment gene product Armadillo. Armadillo is homolog of 

mammalian β-catenin. The ARM repeat has a common origin with the HEAT repeat. 

Both ARM and HEAT repeats have seven highly conserved hydrophobic residues. ARM 

domain appears to function in binding with target proteins. Animal Arm-repeat protein 

performs various processes including intracellar signaling and cytoskeletal regulation. In 

addition, there is another Armadillo repeat chaperone called Human Hsp70 binding 

protein 1 (HspBP1) (75). Shomura’s work suggests that the HspBP1 protein with 

armadillo domain bind to Hsp70 chaperone machinery, as well as it responds to Hsp70 

ATP conformational change (76). ARCBP2 also has armadillo domain, but it binds to 

another chaperone Hsp90 and responds to the specific Hsp90 conformation. 

The primary structure and the protein association of ARCBP2 suggest that 

ARCBP2 acts as an adaptor subunit to help protein-protein interaction. Although the 

function of ARCBP2 is unclear, from the data shown here we can speculate that 

ARCBP2 behaves as an Hsp90 adapter analogous to HOP. ARCBP2 might mediate 

association between Hsp90 and the mammalian chaperonin TriC/CCT (Figure 7). Studies 

of cooperation between different chaperones are critically important in protein folding 

pathway. TRiC (TCP1-ring complex, also called CCT) is chaperonin in the eukaryotic 
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cytosol. Different from Hsp70, the function of TRiC is to bind nonnative polypeptide in 

its central pocket and facilitate their folding in an ATP-dependent manner (77). Recent 

studies of protein interactions in S. cerevisiae suggested that TRiC/CCT associates with a 

large number of proteins containing oligomeric complexes (77). The chaperone helps 

oligomer assembly. Recent studies show that steroid receptor is a hetero oligomeric 

complex, which needs Hsp90 assistance. ARCBP2 is found to associate with both Hsp90 

and chaperonin TRiC/CCT (Figure 7), indicating that ARCBP2 may act like an adaptor 

and may have a role in supporting the chaperones to maintain the correct folding and 

stability of client protein. 

According to our results, I speculate that ARCBP2 not only is a simple Hsp90 

adaptor like HOP, but also it behaves as Hsp90 co-chaperone like p23. ARCBP2 binds to 

Hsp90 in a certain conformation, which is inhibited by GA and enhanced by molybdate. 

That means that ARCBP2 probably has a role in the binding of Hsp90-bound client 

protein. Alternatively, association of Hsp90 and TRiC with ARCBP2 might require a 

defined order of chaperone interactions. We need to test the sequence order of ARCBP2 

binding to Hsp90 and TRiC chaperone system, or what kind of a client binds to ARCBP2, 

the relationship between Hsp90, client and ARCBP2, and the function of TRiC. These 

mechanisms need to be done in future. 

In summary, our results demonstrate that ARCBP2 physically interacts with 

Hsp90 and recognizes specific Hsp90 conformations. This novel chaperone partnership 

may link Hsp90 and TRiC in a pathway of chaperone-assisted protein proper folding.
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CHAPTER III

Is 15-Lipoxygenase-1 A Novel Hsp90 Binding Protein?

3.1 Introduction

Lipoxygenase (LOX) is an enzyme that plays a pivotal role in the synthesis of 

inflammatory mediators known as leukotrienes. It belongs to a family of non-heme iron 

containing dioxygenases that induce peroxidation of polyunsaturated fatty acids. LOX 

exhibits regiospecificity during interaction with substrates and on this basis have been 

designated as arachidonate 5-, 8-, 12-, 15-lipoxygenase. Four different enzymes insert 

oxygen at carbon 5, 8, 12 or 15 of aracidonate acid.

 Of particular interest is 15-lipoxygenase (15-LOX) since it has been implicated in 

the pathogenesis of atherosclerosis, as well as it is an important enzyme during erythroid 

cell differentiation. There are two 15-LOX isoenzymes, 15-LOX-1 and 15-LOX-2. The 

preferred substrate for 15-LOX-1 is linoleic acid and for 15-LOX-2 is arachidonic acid 

(78). 

15-LOX-1 participates in the break-down of internal membranes by peroxidizing 

esterified polyunsaturated fatty acids in membranes, thus modifying the structure and 

function of lipid-protein complexes(79). This is why RRL has a lot of 15-LOX-1. 

Previous studies suggest that over-expression of 15-LOX-1 had been found in human 

tumors (80). 15-LOX-1, a fat-metabolizing enzyme, correlates with the cancer 

progression and tumorigenesis (80, 81). 
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15-LOX-1 was recently identified in protein complexes containing Hsp90 (Shao, Hartson 

& Matts, unpublished). In this report, I characterize 15-LOX-1 interaction with Hsp90.

3.2 Materials and Methods

Reagents.  K562 and Jurkat cells were obtained from ATCC. Rabbit polyclonal 

15-Lipoxygenase-1 (15-LOX-1) antibody was purchased from Cayman Chemical 

(catalog No. 160704). Antibody recognizing poly-His epitope tags was from QIAGEN 

(catalog 34660). Polyclonal mouse antibody to Hsp90 was previously described (82). 

Protein G sepharose resin was from Sigma. Alkaline phosphatase-conjugated anti-mouse 

IgG antibodies were from Jackson ImmunoResearch. 

Immunoresin wash buffer contained: 150 mM NaCl, 0.1% Tween 20 and 10 mM 

PIPES pH 7.0, (P150T); or 500 mM NaCl, 0.1% Tween 20 and 10 mM PIPES pH 7.0

(P500T); or 1000 mM NaCl and 10 mM PIPES pH 7.0 (P1000); or 20 mM NaCl and 10 

mM PIPES pH 7.0 (P20) and 100 mM NaCl, 0.1% Tween 20 and 10 mM PIPES pH 7.0

(P100T).

Plasmids. Full-length 15-lipoxygenase type 1 cDNA clones were obtained from 

ATCC (catalog # ATCC7262911; Genbank # BC029032). DNA encoding 15-LOX-1 was 

amplified and engineered by standard PCR cloning techniques. Constructs were cloned 

via BspmI and EcoRI into a modified pSP64T plasmid encoding a C-terminal His6 tag for 

in vitro translation as previously described. Thus, the resulting plasmid, pSP64TLOX 

(made by Te, Lab accession#: H151), contains the full-length 15-LOX-1 with an epitope-

tagged open reading frame in an orientation such that SP6 RNA polymerase yields a 

sense RNA. This produced DNA coding for recombinant 15-LOX-1 sequence 
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MRGSHHHHHHGSM1, with the underlined residues indicate the His tag and the final 

Met indicates the authentic LOX start codon. Forward priming sequence showed that 

His-LOX-1 was perfect in frame. 

For expression in mammalian cell, the full-length 15-LOX1 PCR products were 

amplified. The product was digested with HindIII and EcoRI and ligated into expression 

pcDNA3.0 vector. This generated the construct, pCDNALOX, having the full-length 

untagged LOX in an orientation that transcription with T7 polymerase from the CMV 

promoter yields a sense RNA.  Integrity of the whole sequence was checked by DNA 

sequencing (made by letong, Lab accession#: H149).

Cell culture and Transfection. K562 cells were grown in RPMI 1640 media 

supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin at 37 °C to 

approximately 1×107 cells/mL. Plasmid 15-LOX1 was transfected into K562 cells in 6-

well plates using DMRIE-C transfection reagent according to manufacturer’s instructions. 

For the controls, DNA was omitted from transfections. After 48 hours cells were 

harvested, and washed once in Hanks buffer, then lysed as described in Chapter II. The 

samples were clarified in a micro-centrifuge at 14,000×g for 10 minutes. 

Co-Immunoadsorptions of Chaperone with His-tagged LOX-1. The construct of 

His-LOX1 was used to program nuclease-treated rabbit reticulocyte lysate (TnT) 

containing [35S]Met via coupled transcription/translation for 30 min at 30 °C. After 

synthesis the samples were treated with 20 mM molybdate for another 5 min. DNA 

template was omitted for a negative control reaction. 

Before immunoadsorption, all immunoprecipitation samples were clarified by 

centrifugation and chilled on ice. Anti-mouse immunoresin was coupled to anti-His 
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antibody for 2 hours at 4 °C, then the immunoresins were washed once with P150T, 

P500T and P1000, then twice with P20 buffer. Washed immunoresins were mixed with 

30-50 µl RRL reaction and stirred on ice for 1.5 hours. Alternatively, immunoresins were 

mixed with 300 µl from transfected cell lysate and rocked at 4 °C for same time. Then the 

immunopellets were washed 5 times with buffer containing 10 mM PIPES (pH 7.0), 0.1% 

Tween-20, and indicated concentration of NaCl. Finally, samples were boiled in sodium 

dodecyl sulfate (SDS) sample buffer, separated by 8% SDS-polyacrylamide gel 

electrophoresis (SDS-PAGE), transferred to polyvinylidene difluoride (PVDF), and 

Western blotted as indicated.

3.3 Results

The Physical Interaction between 15-Lipoxygenase-1 (15-LOX-1) and Hsp90. 

Previous pulldown assays with Hsp90 and Cdc37 antibodies suggested that 15-LOX-1 

strongly associates with Hsp90 (Shao, Hartson and Matts, unpublished). To confirm this 

observation that 15-LOX-1 is an Hsp90-binding protein, His-LOX-1 was expressed in 

RRL, was immunoadsorbed and immunoadsorptions were Western blotted with an anti-

Hsp90 antibody and analyzed by autoradiography. As shown in Figure 14, endogenous 

rabbit Hsp90 co-immunoadsorbed with human His-LOX-1. The Hsp90 is co-adsorbed 

immunospecifically compared to the control with the same anti-His co-

immunoadsorption, but lacking His-LOX-1 DNA (Figure 14).
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Figure 14: Interaction of endogenous Hsp90 with newly synthesized 15-LOX-1. His-tagged LOX-1 was 

synthesized in rabbit reticulocyte lysate and immunoadsorbed with anti-His antibody, as described in 

Materials and Methods. The adsorption was analyzed by Western blotting with anti-Hsp90 (top panel), and 

auto-radiography (bottom panel). (+) Indicated sample programmed with His-LOX-1 plasmid.  The control 

for non-specific binding was native reticulocyte lysate containing no DNA template (-). 

To validate the interaction between Hsp90 and LOX1, another experiment was 

performed in a human cell line by using transfection. Un-tagged full length 15-LOX-1 

plasmid was transfected into K562 myeloid leukemia cells. The cell lysates were 

immunoadsorbed. The immunoadsorptions were analyzed by SDS-PAGE and Western 

blot. Again, the result showed that Hsp90 was present in co-immunoadsorption of 15-

LOX-1 (Figure 15). This co-adsorption of Hsp90 with His-LOX-1 was specific because 

Hsp90 was not detected in control lysates from cells that were missing 15-LOX-1 DNA 

template. This supported our hypothesis that 15-LOX-1 physically associates with Hsp90



40

Figure 15: Complex formation between His-LOX-1 and Hsp90 via transfection. Plasmid with no-

tagged 15-LOX-1 (+) was transfected into K562 cells. The cells were cultured after 48 hours and the cell 

pellets were lysed as described in Materials and Methods. Equal amounts of lysates were immunoadsorbed. 

The immunoadsorptions were then separated by SDS-PAGE. Hsp90 as identified by blotting with anti-

Hsp90. (+) Indicated sample programmed with no-tagged LOX-1 plasmid. (-) indicated a negative control 

from cells that were not transfected. Migrations of molecular weight markers (STD) were indicated (left).

.

The Effect of Molybdate on the Hsp90 and 15-LOX-1 Complex in RRL. The 

biochemical properties of molybdate-bound Hsp90 suggest that Hsp90 is in its “closed” 

conformation in the presence of molybdate, i.e., molybdate stabilizes interaction of 

Hsp90 with the client proteins by locking Hsp90 in its clamped conformation (72). This 

high-affinity conformation is created by ATP hydrolysis, and causes Hsp90 and client 

proteins to form a highly salt-resistant complex (72). However, the native complexes 

between Hsp90 and its chaperones are generally salt-labile (47). To characterize whether 

the relationship between LOX1 and Hsp90 is a client versus chaperone, we tested the 

effect of molybdate on the association between Hsp90 and 15-LOX-1. His-LOX-1 was 

synthesized in rabbit reticulocyte lysate. And the lysates were immunoadsorbed. As 

shown in Figure 16, Hsp90 band was stronger in the presence of molybdate than in the 

absence of molybdate. This result suggested that Hsp90 and 15-LOX-1 bound in a salt–

stable high-affinity complex (Figure 16). This conclusion indicates that in vitro 15-LOX-

1 behaves like an Hsp90 client, not a partner.
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Figure 16: Effect of molybdate on 15-LOX-1. His-tagged LOX-1 protein was synthesized in rabbit 

reticulocyte lysate via coupled transcription-translation for 30 min at 30 °C. Half of reactions then were 

treated with 20 mM sodium molybdate for another 5 min. Reactions were chilled, clarified and 

immunoadsorbed with antibody against affinity tag (anti-His). Immunoadsorptions were washed three 

times with buffer containing 500 mM NaCl and 20 mM sodium molybdate, and twice with buffer 

containing 50 mM NaCl and 20 mM molybdate. Washed immunopellets were Western blotted with anti-

Hsp90 (top panel, Hsp90) and analyzed by radiography (bottom panel, [35S]-LOX). (+) Indicated sample 

programmed with His-LOX-1 plasmid. No DNA template as control for non-specific binding (-).

Impact of Geldanamycin on 15-LOX-1 Level in vivo. Hsp90-dependent client 

proteins become structurally and functionally unstable in the presence of geldanamycin. 

Thus, geldanamycin causes client protein degradation in vivo via many proteolytic 

pathways. Since our results suggested that 15-LOX-1 was an Hsp90 client protein in vitro, 

we hypothesized that inhibition of Hsp90 function with geldanamycin would impact the 

15-LOX-1 level in vivo. To test this hypothesis, K562 cells were treated with 

geldanamycin, and 15-LOX-1 level was analysed via Western blotting. Contrary to our 

prediction, there was no major difference in the presence or absence of geldanamycin: 

15-LOX-1 levels remained stable (Figure 17). This data suggest that 15-LOX-1 is not an 

Hsp90 client protein. 
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Figure 17: Impact of GA on 15-LOX-1 level in living cells. 15-LOX-1 was transfected into K562 cells. 

K562 cells were cultured in the presence of 0.1 µM GA and equal volume of DMSO for 24 hours and 

probed with anti-LOX-1.

3.4 Discussion

The results presented here from these characterizations suggest that 15-

Lipoxygenase-1 is a novel Hsp90-binding protein. Physically, 15-LOX-1 strongly 

associates with Hsp90. 15-LOX-1 strongly co-immunoadsorbs endogenous Hsp90 from 

rabbit reticulocyte lysate containing His-LOX-1 (Figure 14).  Transfection assays (Figure 

15) showed that antibody against 15-LOX-1 also co-immunoadsorbs Hsp90 from K562 

cell lysates in vivo. These data show evidence that the interaction between 15-LOX-1 and 

Hsp90 is in mammalian cell lysates. 

Functionally, however, the data presented here do not support designating 15-

LOX-1 as an Hsp90 client. Classic Hsp90 client proteins are degraded in vivo via 

inhibition of Hsp90 by geldanamycin (2). In contrast, 15-LOX-1 is strongly stable in 

molybdate-treated cells (Figure 16). This result demonstrates that 15-LOX-1 does not act 

like an Hsp90 client in vivo, i.e. maturation of nascent 15-LOX-1 or maintaining the 
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stability of mature 15-LOX-1 protein does not require the Hsp90 help. This conclusion 

should have a positive control to compare it. Even though we tried to use several known 

client’s antibodies such as Cdk2 and c-Ab1, the experiments did not detect these proteins 

in untreated cells. I also tried to transfect LOX in Jurket cell and use Lck to be control, 

but no LOX was expressed. The possible reason is that LOX is toxic, so it is difficult to 

transfect in Jurkat cell. 

Interestingly, even though geldanamycin has no significant effect on 15-LOX-1 in 

vivo, 15-LOX-1 behaves as a client protein in a binding assay (Figure 16). Previous 

studies show that molybdate causes very strong and highly salt-resistant binding between 

Hsp90 and client (47), Thus, molybdate locks Hsp90 conformation. For 15-LOX-1, 

molybdate enhances the association between Hsp90 and 15-LOX-1. Thus, the effect of 

molybdate indicates that 15-LOX-1 acts like a client protein in vitro. 

 Taken together, these data suggest that 15-LOX-1 binding to Hsp90 is novel. 

That Hsp90 binding responded to the effect of molybdate suggests that 15-LOX-1 

behaves as a client, but the fact that LOX was not degraded by geldanamycin treatment in 

vivo indicates that 15-LOX-1 acts as a co-chaperone. So far, no Hsp90 client protein has 

been described that behaves like 15-LOX-1. 

If 15-LOX-1 is an Hsp90 client protein in vivo, there may be two explanations. 

One is that 15-LOX is a novel Hsp90 client which responses differently to molybdate 

compared to classic clients. 15-LOX-1 might not follow the known clients’ rule that 

response to the effect of molybdate. Another is that 15-LOX-1 is an Hsp90 client and it 

degrades in geldanamycin-treated cell. However the rate of 15-LOX-1’s degradation may 

be insignificant. Unlike Lck kinase, 15-LOX-1 might show no dramatic effect in GA-
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treated cell in vivo, instead only have subtle alteration. This needs pulse-chase experiment 

to further confirm.

15-LOX-1 might be not an Hsp90 client. Probably it is only an Hsp90-binding 

protein, i.e., 15-LOX-1 is not an Hsp90 client or Hsp90 co-chaperone. 15-LOX-1 binding 

to Hsp90 may result from an antibody artifact. But this possibility is unlike since my data 

do not support.

15-LOX-1 also might be an Hsp90 co-chaperone, but this possibility is unlikely. 

15-LOX-1 has no similar structure of known co-chaperone, such as TPR domain. And its 

behavior also does not act like a co-chaperone.
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CHAPTER IV

VCP Interaction With Cdc37 

4.1 Introduction

Hsp90 collaborates with co-chaperones to promote folding, functional maturation 

and stability of client proteins (2). Cdc37 is an Hsp90 co-chaperone and was first 

identified as a 58-kDa product in a mutant strain of S. cerevisiae with cell cycle 

phenotype (44). Subsequently Cdc37 has been revealed to play a critical role in the 

targeting of Hsp90 to client protein kinase. Hence it is called “kinase specific co-

chaperone” (83). Furthermore, Cdc37 may also be a chaperone independent of Hsp90 and 

may facilitate folding and stabilization of protein kinases (48). 

 Valosin-containing protein (VCP) is an AAA+ (ATPase associated with diverse 

cellular activities) protein, and one of the most abundant intracellular proteins. It plays a 

critical function in assisting membrane tracking, organelle biogenesis and protein 

degradation (84-86). Prince et al. showed that VCP, a novel Hsp90 co-chaperone, might 

be in the same heterocomplexes as Hsp90, and might facilitate them to fold kinase 

protein properly (87). The data presented in this report suggest that the interaction 

between VCP and Cdc37 is uncertain.
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4.2 Materials and Methods

Reagents.  K562 and Jurkat cells were obtained from ATCC. Mouse VCP 

antibody was purchased from Affinity BioReagents (catalog#: MA3-004). Monoclonal 

mouse Cdc37 antibody was also from Affinity BioReagents (catalog#: MA3-029). The 

JJ3 monoclonal antibody against p23 was a gift from Dr. David Toft (Mayo Clinic, 

Rochester, MN)). Polyclonal mouse antibody to Hsp90 and Cdc37 were described 

previously (47). Irrelevant control antibody (MOPC-21) was purchased from Sigma 

(M7894). Nuclease-treated rabbit reticulocyte lysate (RRL) was from Promega. NHS-

activated SepharoseTM 4 Fast Flow was purchased from Amersham Biosciences. Alkaline 

phosphatase-conjugated affinity rabbit anti-mouse IgG antibodies were from Jackson 

ImmunoResearch.

4.3 Results

In the immunoadsorptions using polyclonal and monoclonal anti-Cdc37 antibody, 

a protein that migrates more slowly than Hsp90 is observed on one-dimensional 

electrophoresis gels. Peptide mass figureprinting identified that this protein is VCP, an 

AAA+ protein (Shao, Matts and Hartson, unpublished). Consistent with this observation, 

the work of Prince et al. suggests that VCP might be an Hsp90 co-chaperone partner (87). 

Thus, we hypothesized that VCP might interact with Cdc37 and might play a role in 

recognizing tyrosine kinases for kinase regulation or localization.

Co-immunoadsorption with Endogenous Complexes in Lysate of Cultured Jurkat 

T-cell. To test our hypothesis, three different kinds of anti-Cdc37 antibodies were utilized 

to co-immunoadsorb VCP. Polyclonal Cdc37 antibody specifically co-adsorbed VCP 
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compared to the control lysate from the Jurkat cells but lacking the DNA template 

(Figure 18A). In contrast, monoclonal Cdc37 antibody only could capture a small amount 

of VCP. It was not significant if compared to the control. Even though the amount of 

monoclonal Cdc37 was less than that of polyclonal Cdc37, the amount of VCP adsorbed 

with Cdc37 was not proportional to the amount of Cdc37 (Figure 18A). The third 

antibody: rabbit Cdc37 also could not immuno-specifically capture VCP (Figure 18B). 

This result suggests that association between VCP and Cdc37 might be caused by cross-

reaction or that immuno-adsorption might be prevented by epitope masking or steric 

hinderence.

To further test the hypothesis that VCP interacts with Hsp90 partner, p23. JJ3 

antibody was used to co-immunoadsorb VCP. The JJ3 antibody could catch VCP, but the 

association between p23 and VCP was weak (Figure 18A). From this result, it is difficult 

to draw the conclusion that Hsp90 partner, p23 or Cdc37, interacts with VCP.

A B

Figure 18: Hsp90 co-chaperone Cdc37 and p23 co-immunoadsorptions from T-cell lysate. (A) 

Polyclonal Cdc37 (Cdc37pAb), monoclonal Cdc37 (Cdc37mAb) and JJ3 or irrelevant non-immune 

antibody (NI) were used to immunoadsorb lysates of Jurkat cell. Immunoadsorptions were washed once 
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with buffer containing 50mM NaCl and three times with buffer containing 100mM NaCl. Adsorptions were 

analyzed by SDS-PAGE, and Western blotting with anti-VCP (top panel) and anti-Cdc37 (bottom panel). 

(B) Immunoadsorption with rabbit polyclonal Cdc37 antibody was also probed with anti-VCP and anti-

Cdc37. Migrations of molecular weight markers are indicated.

Co-immunoadsorption with VCP in Rabbit Reticulocyte Lysates. To further 

determinate if the VCP and Cdc37 are in the same complex, immunoadsorptions with 

monoclonal and polyclonal anti-Cdc37 and JJ3 were performed in rabbit reticulocyte 

lystate. Again, VCP was readily recovered only in the immunoadsorption with polyclonal 

anti-Cdc37, but not in the immunoadsorptions with the other two anti-Cdc37 antibodies 

(Figure 19).  

Figure 19: Co-immunoadsorption with anti-Cdc37 and anti-p23 in rabbit reticulocyte lystate. Cdc37 

and JJ3 antibodies immunoadsorbed in RRL. The adsorptions were analyzed by Western blotting with anti-

VCP (top panel) and anti-Cdc37 (bottom panel). NI denotes immunoadsorption with mouse non-immune 

antibody. Raw RRL indicates lysates directly from rabbit reticulocyte for positive control. Migrations of 

molecular weight markers are indicated.

Co-immunoadsorption with Epitope-tagged Complexes in K562 Cell and RRL. 

According to the above results that only polyclonal Cdc37 can capture VCP, it is possible 
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that the recognition of VCP is result from Cdc37 antibody cross-reaction. To address this 

possibility, antibody against His affinity-tag was used to immunoadsorb via coupled 

transcription-translation in RRL. Affinity His tagged antibody was also used in control 

lysates from cells that were lacking DNA template. Consistent with hypothesis that the 

association between VCP and Cdc37 is antibody cross-reaction, the result showed that 

immunoadsorption with anti-His can capture His-tag Cdc37, but it did not co-adsorb VCP 

(Figure 20). This suggests that VCP and Cdc37 might not be in the same complex.  

Figure 20: Immunoadsorption epitope-tagged Cdc37 in RRL. His-tagged Cdc37 was synthesized in 

rabbit reticulocyte lysate using coupled transcription-translation.  The immunoadsorption with anti-His 

antibody was described in Chapter II. The adsorptions were analyzed by Western blotting with anti-VCP 

(top panel) or anti-Cdc37 (bottom panel). The control for non-specific binding was native reticulocyte 

lysate containing no DNA template (-). A standard marker for migrations of molecular weight is indicated.

To confirm the above results, we repeated the co-immunoadsorption via 

transfection. K562 cells were transfected with plasmid DNA encoding affinity tagged 

Cdc37 (Flag-Cdc37). Then the antibody against the Flag affinity-tag was used for 

immunoadsorption. After Western blotting the adsorptions, VCP was not detected (Figure 
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21A). We also performed reciprocal analysis: antibody against the Flag affinity-tag could 

not co-immunoadsorb Cdc37 from cell lysates containing Flag-VCP (Figure 21B).

A B

Figure 21: Immunoadsorption of epitope-tagged Cdc37 and VCP in K562. (A) K562 cells were 

transfected with plasmid encoding affinity-tagged Cdc37 (Flag-Cdc37) or with no DNA template and 

cultured 40 hours. After culture, lysates were prepared as described in Chapter II, and immunoadsorbed 

with anti-Flag antibody. Immunoadsorptions were Western blotted with anti-VCP (top panel) and anti-

Cdc37 (bottom panel). (B) Reciprocal analysis: plasmid encoding Flag-VCP was transfected into K562 

cells, cell pellets were lysed and analyzed by immunoadsorption and Western Blotting.

4.4 Discussion

The results presented above indicate our hypothesis that VCP might interact with 

Cdc37 is not well supported. The evidence is that only polyclonal Cdc37 can co-absorb 

the abundant amount of VCP, but the other techniques cannot. Thus, the explanation is 

that the interaction between VCP and Cdc37 is not real; instead that it is an antibody 
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cross-reaction which polyclonal Cdc37 antibody recognized VCP and co-

immunoadsorbed it directly during pull down assay. Based on the weak data, I made the 

decision to stop this project.
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CHAPTER V

Mini-Chromosome Maintenance (MCM) Interaction With Cdc37 

5.1 Introduction

Co-chaperone Cdc37 and Hsp90 associate with kinase proteins to help their 

proper folding and stabilize their structure (2). Hence, Cdc37 is termed as the “kinase 

specific co-chaperone” (83). Cdc37 may also play an important role in acting as a 

chaperone independent of Hsp90. Recent studies suggest that some endogenous Cdc37 

does not associate with Hsp90 (49). 

Mini-chromosome maintenance (MCM) proteins belong to AAA (associated with 

various cellular activities) family and display ATPase activity (88). They are eukaryotic 

replication factors required for the initiation of DNA replication (89). MCM 2-7 are 

evolutionally conserved in all eukaryotes (88, 90). These MCM proteins form a 

hexameric complex. This complex is an important element of the prereplication complex. 

MCM proteins are regulated in conjunction with cell cycle (91). 

 Monoclonal anti-Cdc37 antibody pull-down assay shows that several associated 

proteins are on one-dimensional electrophoresis gel (Hartson and Te, unpublished). 

Peptide mass fingerprinting identified these proteins as MCMs. This result raises our 

hypothesis that Cdc37 might regulate the functions of MCM protein. In this report, the 
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data presented here imply that MCM does not interact with Cdc37. The association 

between MCM and Cdc37 is conditionally false. 

5.2 Materials and Methods

Reagents. Mouse monoclonal MCM7 antibody (catalog#: sc-9966), rabbit 

polyclonal Mcm7 (catalog#: sc-22782) and goat polyclonal MCM3 (catalog#: sc-9850) 

were purchased from Santa Cruz Biotechnology. Rabbit polyclonal Cdc37 antibody was 

from NeoMarkers (catalog#: RB-039). The JJ3 monoclonal antibody against p23 was a 

gift from Dr. David Toft (Mayo Clinic, Rochester, MN)). Polyclonal mouse antibody to 

Hsp90 and Cdc37 were described previously (47). Irrelevant control antibody (MOPC-21) 

was purchased from Sigma (M7894). FKBP52 antibody was a gift from Dr. David Smith. 

Antibody recognizing poly-His epitope tags was from QIAGEN (catalog 34660). NHS-

activated SepharoseTM 4 Fast Flow was purchased from Amersham Biosciences. Alkaline 

phosphatase-conjugated affinity rabbit anti-mouse, anti-rabbit and anti-goat IgG 

antibodies were purchased from Jackson ImmunoResearch. K562 and Jurkat cells were 

obtained from ATCC.

5.3 Results

Co-immunoadsorption with Endogenouse Complexes in T-cell Lysate. To test 

whether Cdc37 has a physical interaction with MCM proteins, three different kinds of 

Cdc37 antibodies were used to immunoadsorb Cdc37 and the Cdc37 complexes. 

Subsequently, MCMs were detected by Western blotting. MCM was readily detectable in 

immunoadsorptions using mouse monoclonal Cdc37 antibody (Figure 22A) and was 
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weakly detectable in immunoadsorption using polyclonal Cdc37 (Figure 22B). In contrast 

to these mouse antibodies, the rabbit polyclonal Cdc37 could not capture MCM (Figure 

22C). All three anti-Cdc37 antibodies caught almost equal amount of Cdc37, but they did 

not co-adsorb similar amount of MCM. This result suggested that the association between 

MCM and Cdc37 was possibly a monoclonal antibody cross-reaction. Alternatively, this 

co-immunoadsorption was prevented by epitope masking or steric hindrence.

A B

+
C

Figure 22: Co-immunoadsorptions with different kinds of Cdc37 antibodies in T-cell lysate. 

Antibodies against Cdc37 and non-immune antibody were used to immunoadsorb MCM. 

Immunoadsorptions were washed once with buffer containing 50 mM NaCl and four times with buffer 

containing 20 mM NaCl. Membranes were probed with anti-MCM (top panel) and anti-Cdc37 (bottom 

panel). Migrations of molecular weight markers are indicated. (A) Adsorptions with mouse monoclonal 
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Cdc37 antibody. (B) Adsorptions with mouse polyclonal Cdc37 antibody. (C) Adsorption with rabbit 

polyclonal Cdc37 antibody.  

To further assess the interaction between MCM and Cdc37, we performed the 

reciprocal analysis: immunoadsorptions using the different antibodies against MCM 

proteins were subjected to Western blot analysis for co-adsorption of Cdc37. Opposite to 

our hypothesis, both rabbit and goat anti-MCM did not capture Cdc37 (Figure 23A&B). 

Thus, reciprocal immunoadsorptions demonstrated that co-immunoadsorptions with two 

anti-MCM antibodies are not efficient to adsorb Cdc37. Alternatively the recovery of 

MCM in immunoadsorptions of monoclonal Cdc37 probably was an immunological 

artifact.

A B

Figure 23: Co-immunoadsorptions with two different anti-MCM antibodies. Antibodies against MCM 

and non-immune antibodies were used to adsorb. Immunoadsorptions were washed once with buffer 

containing 50mM NaCl and four times with buffer containing 20mM NaCl and then were identified by 

probing with anti-MCM (top panel) and anti-Cdc37 (bottom panel). Migrations of molecular weight 

markers are indicated.  (A) Adsorption with rabbit polyclonal MCM antibody. (B) Immunoadsorption with 

goat polyclonal MCM antibody. 
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To test whether MCM interacts with other Hsp90 co-chaperones, two other Hsp90 

partner antibodies (anti-FKBP52 and JJ3) were used to immunoadsorb lysates of cultured 

Jurkat T-cell. Again, immunoadsorption with anti-FKBP52 antibody did not catch MCM, 

but it could catch small amount of Cdc37 (Figure 24A). Similar to FKBP52, absorption 

with JJ3 antibody could capture cdc37, but not MCM (Figure 24B). This result indicated 

that MCM did not interact with Hsp90 co-chaperones (FKBP52 and p23).

                             A B

Figure 24: Co-immunoadsorptions with Hsp90 co-chaperones (FKBP52 and JJ3). T-cell lysates were 

subjected to co-immunoadsorption with antibodies and non-immune antibody (NI). Immunoasorptions 

were washed four times with buffer containing 50 mM NaCl and then probed with anti-MCM (top panel) 

and anti-Cdc37 (bottom panel). Migrations of molecular weight markers are indicated. (A) Adsorptions 

with anti-FKBP52 antibody (FKBP52 rabbit). (B) Adsorptions with JJ3 antibody (p23).

Co-immunoadsorption with Epitope-tagged Complexes in K562 Cell and RRL. To 

further assess the hypothetical interaction of MCM and Cdc37, His-tagged Cdc37 was 

translated in RRL, adsorbed, and adsorptions were assayed by Western blotting for anti-

MCM. The data suggested that MCM weakly associated with Cdc37 in RRL (Figure 25).
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Figure 25: Co-immunoadsorption with epitope-tagged Cdc37 in RRL. His-tagged Cdc37 was 

synthesized in rabbit reticulocyte lysate and adsorbed with anti-His antibody. The immunoadsorptions were 

analyzed by Western blotting with anti-MCM (top panel) or anti-Cdc37 (bottom panel). The control for 

non-specific binding was immunoadsorbed native reticulocyte lysate containing no DNA template (-). 

Migrations of molecular weight standards are indicated. RRL w/+ indicates RRL containing translated His-

tagged Cdc37. 

We also performed co-adsorption with anti-MCM antibody using in vivo

transfection. K562 cells were transfected with plasmid DNA encoding Flag-tagged 

Cdc37. Flag-Cdc37 was adsorbed using antibody against the Flag affinity tag. Similar as 

before, MCM was not detected to co-adsorb with Flag-Cdc37 (data not shown).

5.4 Discussion

According to above summary, our hypothesis that Cdc37 interacts with MCM is 

conditionally false. In all experiments, only mouse monoclonal Cdc37 antibody could 

strongly and reproducibly capture MCM. Mouse polyclonal Cdc37 and His-Cdc37 could 

capture a little bit of MCM, but the rabbit polyclonal Cdc37 could not catch MCM. 

Furthermore, neither of two different kinds of MCM antibody (rabbit and goat) nor Flag-
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Cdc37 could co-immunoadsorb MCM at all. Therefore, monoclonal Cdc37 antibody may 

cross-react with MCM. Another possibility is epitope masking. This explanation is 

unlikely because MCM also could not be caught by co-immunoadsorptions with several 

different epitope’s antibodies. Compared to co-adsorptions between monoclonal, 

polyclonal and rabbit Cdc37, almost equal amount of Cdc37 can be caught, but Cdc37 

cannot co-adsorb equal amount of MCM. Thus, it is impossible to draw the conclusion 

that difficultly catching MCM might result from low amount of Cdc37 recovery.

However recent studies indicate that MCM has been identified to be an Hsp90 co-

chaperone in yeast (74). Therefore, the interaction between Cdc37 and MCM could be 

real. Nonetheless, the data demonstrate that interaction between MCM and CDC37 is 

uncertain.  
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