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CHAPTER I 
 

INTRODUCTION 
 

The interactive effects associated with the administration of multiple drugs have 

long been a focus of pharmacologic research. When used in combination, drugs can 

interact in an additive, synergistic, or antagonistic manner.  Recently, the potential 

interaction among toxic agents and drugs possessing abuse liability has attracted the 

attention of the scientific community. Consideration of adverse effects caused by co-

exposure of lead (Pb) and cocaine must be an integral part of protecting public health.  

Animal models have indicated that adult dietary Pb exposure, at clinically 

relevant concentrations, produced changes in cocaine-induced behavior (Burkey et al., 

1997). Adult exposure to Pb delayed the development of locomotor sensitization, and 

ultimately, the magnitude of elevated responding to repeated cocaine challenges was less 

in metal-exposed than in control animals (Grover et al., 1993; Nation et al., 1996). 

Sensitization refers to the progressive activation of a pharmacodynamic response at a 

lower dose than the initial dose. Alternatively, sensitization is described as a shift to the 

left in the dose-response curve. The dose-response curve for rodents begins with a mild 

arousal, then hyperactivity with locomotion, then more intense sniffing or oral 

stereotypies gradually leading to extremely constricted stereotypies.  

It was reported that developmental exposure to Pb produces an alteration in 

cocaine sensitization. Perinatal exposure to Pb attenuated the locomotor-activating
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properties of an acute dose of cocaine relative to non-exposed animals. With repeated 

drug administration, perinatally Pb-exposed animals developed greater locomotor 

sensitization than the control animals (Nation et al., 2000), a pattern opposite that 

reported with adult Pb exposure (Nation et al., 1996).  

The most recent literature on Pb/cocaine interactions showed that developmental 

Pb exposure increased sensitivity to the behavioral effects of repeated cocaine 

administration. It produced a displacement to the left in the cocaine dose-response curve 

(Nation et al., 2004; Valles et al., 2005) and increased drug seeking in a reinstatement 

(relapse) paradigm (Nation et al., 2003). In the latest cases, behavioral results in 

developmentally Pb-exposed animals expressed an amplified response to cocaine relative 

to controls. 

 

Significance of the Study 

These behavioral findings associated with metal/drug interactions are significant 

because of their clinical relevance to the human population. Heavy metals may enhance 

the drug-induced behavior of cocaine. It is possible that the interaction of metal exposure 

and drugs may similarly influence drug seeking and use/abuse (Nation et al., 1997). The 

interaction of metal contaminants and drugs of abuse may contribute to the commonly 

reported high levels of drug abuse. Despite the increasing awareness that environmental 

contaminants may increase drug-related risks, the neurochemical mechanisms responsible 

for the observed metal and drug interactive effects remain undetermined.  
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Purpose of the Study 

The purpose of this study was to gain mechanistic insight into the interaction of 

heavy metals and drugs of abuse. It is increasingly apparent that the extracellular 

chemical environment of the nerve synapse may alter drug responsiveness and therein 

influence risk factors associated with drug taking. Pb is known to target the mesolimbic 

dopamine (DA) system, most conspicuously projection neurons from the ventral 

tegmental area to the nucleus accumbens (Cory-Slechta, 1995; Tavakoli-Nezhad et al., 

2001). Since DA activity along this circuit is critically involved in determining cocaine 

responsiveness (Ranaldi & Wise, 2001), functional disturbances in mesolimbic DA 

operations resulting from perinatal/postnatal Pb presence may translate into an enduring 

increased sensitivity to cocaine. Both Pb and cocaine affect the release and uptake of DA. 

There was a need to pursue accounts of other metal/drug interactions, such as mercury 

(Hg) and methamphetamine (MA). This study was the initial step in explaining the 

interaction of metals and drugs. Further studies will need to be performed to associate the 

neurochemical mechanism of the interaction of metals/drugs to the cognitive functions 

and/or behavioral effects of the interaction. 

 

Assumptions 

It was assumed that other prevalent divalent metals and psychostimulants have 

similar effects on the DA system. Therefore, Hg and MA were investigated in addition to 

Pb and cocaine. Most metal/drug interaction studies have been performed in vivo, or a

combination of in vivo and in vitro, with brain tissue slices. Thus far, no in vitro studies 

have investigated metal/drug interactions in neuronal cell lines. In using SK-N-SH, COS-
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7, and Neuro2A cells in this study, it was assumed that the DA activity correlates with the 

metal/drug interaction responses in previous animal models.  

 

Limitations 

There are several limitations to in vitro toxicity testing. The general side effects 

and pharmacokinetic effects of substances cannot be assessed.  Most importantly, chronic 

effects cannot be tested. Thus, the ability to expose cells to heavy metals for long periods 

of time is lacking.  

 

Objective of the Study 

The topic to be investigated is the possible interactive effects of heavy metals (Pb 

and Hg) and psychostimulants (cocaine and MA) on the dopaminergic system in vitro.

Specifically, does low dose heavy metal exposure in combination with psychostimulant 

use alter functionality of the dopamine transporter? Altered function in the presence of 

heavy metals and psychostimulants may indicate interactive effects. The detection of 

interaction is useful in illuminating mechanisms of drug action and in the development of 

new pharmacological theories.
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CHAPTER II 
 

REVIEW OF LITERATURE 
 

II. A. Cell Cultures 

Developed from neuroblastomas, human SK-N-SH and mouse Neuro2A (N2A) 

are two cell lines that were used in this study. Neuroblastomas are malignant tumors that 

develop from nerve cells. Developed by J.L. Biedler, SK-N-SH cells are human 

neuroblastoma cells established from a bone marrow metastasis in a four-year old female 

(www.atcc.org) (Figure 1). The clone N2A was established by R.J. Klebe and F.H. 

Ruddle from a spontaneous neuroblastoma tumor of a strain-A albino mouse (Figure 2). 

Neuroblastoma cells possess neuronal and amoeboid stem cell morphology. Because of 

potential differences in regulation and function between neuronal and non-neuronal cells, 

a non-neuronally derived model system, COS-7, was also evaluated (Figure 3). 

Established in the 1980s by Yakov Gluzman, the COS-7 cell line was developed from the 

standard CV-1 African green monkey kidney line by transforming normal cells with an 

origin defective mutant of simian virus 40 that codes for the wild-type virus T-antigen. 

COS-7 cells exhibit typical fibroblast morphology and are often used in transfection 

experiments with recombinant plasmids. Adherent/semi-adherent monolayer growth to 

both glass and plastic surfaces is characteristic of all three cell cultures used in this study.
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Figure 1. SK-N-SH cells at low and high density (www.atcc.org) 

Figure 2. Neuro2A cells at low and high density (www.atcc.org) 
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Figure 3. COS-7 cells at low and high density (www.atcc.org) 

The Central Nervous System (CNS) consists of two types of cells: neurons and 

glia. The SK-N-SH and N2A cells are neuronal. Neurons communicate with one another 

across synapses (Figure 4). This communication is usually chemically mediated by rapid 

secretion of neurotransmitter molecules. The term neurotransmitter (NT) is used here to 

denote the chemical compound released from the pre-synaptic terminal at a synapse, and 

which produces a direct response in the post-synaptic cell. Pre-synaptic neurons produce 

in the post-synaptic neurons an electrical stimulation which spreads to the axon hillock, 

generating an action potential. Arrival of an action potential at the tip of an axon triggers 

the release of NTs at the synaptic gap. NTs either stimulate or inhibit the electrical 

excitability of a target cell. An action potential will only be triggered in the target cell if 

NT molecules, acting on their post-synaptic receptors, cause the cell to reach its threshold 

potential. 
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Figure 4. A neuron and transmission of a nerve signal by neurotransmitters. 

Immortalized cell lines offer advantages over other model systems in that they 

provide a homogenous population of cells that grow almost indefinitely in culture. Cell 

lines which express neuronal properties are useful model systems for studying the 

nervous system at the single cell and molecular levels. Neuronal cell cultures are widely 

used as a model system to investigate catecholamine metabolism and neurotoxicity. 

Neurons are capable of producing, releasing and taking up catecholamines. 

Catecholamines are NTs that have an aromatic portion (catechol) with an attached amine, 

or nitrogen-containing group.  
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II. B. Dopaminergic System 

Dopamine (DA) is a catecholamine NT found predominately in the CNS. It is 

synthesized from the amino acid tyrosine, which is converted to                                             

L-dihydroxyphenylalanine (L-DOPA) by the enzyme tyrosine hydroxylase (TH) (Figure 

5). L-DOPA is then converted to DA by the enzyme DOPA decarboxylase (AADC), 

which is found in the cytoplasm.  

Figure 5. Synaptic terminal: Dopamine production. 
 

After synthesis, DA is packaged into vesicles, which are then quantally released 

in response to a pre-synaptic action potential. The release of DA is calcium-dependent. 

There is a high concentration of DA in synaptic vesicles and a relatively low 

concentration of DA in the cytosol. There is a normal background leak of DA out of the 

vesicles, but the balance is very much in favor of vesicular storage.  

The inactivation mechanisms of neurotransmission are 1) uptake via a specific 

transporter; 2) enzymatic breakdown; and 3) diffusion. Uptake into the pre-synaptic 
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neuron via the DAT is the major role in the inactivation of DA neurotransmission. The 

recycled DA can face breakdown by enzymes such as dopamine-β-hydroxylase, 

monoamine oxidase and catechol-O-methyltransferase.  Recycled DA can also be re-

packaged into vesicles and reused. 

Figure 6. Dopaminergic Pathways. 

 

DA is the principal NT in three major neural systems in the midbrain : 1) the 

nigrostriatal pathway which originates from DA-synthesizing neurons of the midbrain 

substantia nigra complex and innervates the dorsal striatum (caudate-putamen), and 

whose degeneration leads to Parkinson’s disease; 2) the mesolimbic system which arises 

in the midbrain ventral tegmental area (VTA) and innervates the ventral striatum (nucleus 

accumbens and olfactory tubercle) and part of the limbic system - this system influences 

motivated behavior, including activity related to reward; 3) the VTA also gives rise to the 

smaller mesocortical pathway, which innervates part of the frontal cortex and may be 

involved in certain aspects of learning and memory. The substantia nigra and the VTA 



12

play key roles in the generation of pleasure and in the development of psychological drug 

addiction.  

DA does not directly produce reward or motor activity, but instead modulates 

inputs and adjusts the state of an organism in order to redirect the stimulus response 

output to achieve the most effective behavioral outcome.  

 

II.C. Dopamine Transporter 

The dopamine transporter (DAT) belongs to the Na+/Cl--dependent family of 

neurotransmitter transporters. This family includes the transporters for biogenic amines 

(norepinephrine, serotonin and DA). A 620 (human) or 619 (rat) amino acid DAT 

sequence is predicted from cloned cDNAs (Kilty et al., 1991; Giros et al., 1992) with an 

apparent molecular mass of approximately 80,000 daltons (Patel et al., 1994). DAT is 

composed of 12 transmembrane domains (Figure 7) connected by alternating intracellular 

and extracellular loops, with the N- and C-termini located on the intracellular side of the 

membrane (Edvardsen & Dahl, 1994; Nirenberg et al., 1996; Hersch et al., 1997). It has a 

large second extracellular loop that has potential N-glycosylation sites (Vandenbergh et 

al., 1992; reviewed in Surratt et al., 1993). Stability and plasma membrane trafficking of 

the DAT is strongly influenced by glycosylation (Reith et al., 1997).  
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Figure 7. Topology of the dopamine transporter.  The dopamine transporter has 12 
transmembrane domains with the N- and C-termini located on the intracellular side of the 
membrane. The large second extracellular loop has several sites for glycosylation. 
 

DA nerve terminals possess high-affinity DA uptake sites, which are important in 

terminating NT action and maintaining NT homeostasis. Uptake is accomplished by the 

DAT which can transport DA into and out of the terminal. The DAT utilizes an inward-

directed Na+ ion gradient across the plasma membrane as the driving force for 

intracellular accumulation of NT (Singh et al., 1990). The DAT exhibits ion dependence 

distinct from other transporters with an apparent stoichiometry of transport of 2Na+:1Cl-

:1DA (Figure 8). The DAT is important for neural function because it removes excess 

DA from the synapse, effectively ending the signaling properties of the NT. DA efflux is 

elicited by diminishing or reversing the Na+ gradient. The DAT is a major target for 
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various pharmacologically active drugs and environmental toxins. DAT is densely 

concentrated in the substantia nigra pars compacta and scattered throughout the VTA 

(Freed et al., 1995). 

Figure 8. Dopamine transport via the DAT. The Na+K+-ATPase (pink) generates the Na+ and 
K+ gradients across the plasma membrane by moving three Na+ ions out of, for every two K+ ions 
into, the cell. The resultant transmembrane electric potential (negative inside) leads to Cl-

redistribution. The DAT (green) translocates one dopamine molecule along with two Na+ ions and 
one Cl- ion as co-substrates in one transport cycle.  

 
The DAT seems to be implicated in the etiology of various neurological or 

psychiatric syndromes. Thus, as expected of the marked degeneration of dopaminergic 

neurons, a decrease of DAT is regularly observed in Parkinson’s disease (Boja et al., 

1994; Miller et al., 1997). Aberrant dopaminergic neurotransmission is also associated 

with disorders of the schizophrenic spectrum and Tourette’s syndrome (Pearce et al., 

1990; Singer et al., 1991). 

Because reuptake plays an important role in clearing DA from the extracellular 

fluid, drugs and toxic agents that inhibit reuptake cause increased extracellular DA levels 

and enhance the various functions mediated by these NTs. The administration of heavy 
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metals and psychostimulants in vitro was investigated in this study to gain understanding 

of their neurotoxicity on the dopaminergic system. 

 

II. D. Heavy Metals 

 The molecular mechanisms of the neurotoxicity induced by metals and 

organometals are not well understood. Metals appear to be somewhat nonselective. Yet 

for each metal there are sites or processes which are the most vulnerable and primarily 

affected. Since metals bind to various sites at cell membranes, they are likely to change 

the charges and conformations of surface proteins. This can be expected to alter 

membrane-related functions in the cell. Mercury and lead are toxic metals affecting 

mainly the CNS.  

Being glycoproteins, the receptors for NTs are a possible target for metals. There 

is already some evidence that metals may inhibit or increase the binding of ligands to 

receptors in vitro (Aronstam et al., 1978; Aronstam & Eldefrawi, 1979; Von Burg et al., 

1980; Peterson & Bartfai, 1983; Mizuno et al., 1983). The sensitivity of different 

receptors for metals varies however (Bondy & Agrawal, 1980). 

 

II.D.1. Mercury 

A heavy, silvery, transition metal, mercury (Hg) is one of five elements that are 

liquid at or near room temperature. Hg occurs in the Earth’s crust, mainly in the form of 

sulfides. The red sulfide, cinnabar, is the main component of the Hg ores. Hg is also 

released into the environment by human activities, for example, combustion of fossil 

fuels, waste disposal and industrial activities. If heated, it is a colorless, odorless gas.  
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Hg exists in elemental, ionic, and organic forms, and each of these forms has a 

unique toxicity related to its differential accumulation in sensitive tissues. Hg combines 

with other elements, such as chlorine, sulfur, or oxygen, to form inorganic mercury salts, 

which are usually white powders or crystals. Hg also combines with carbon to make 

organic Hg compounds, such as methylmercury. The predominant source of 

methylmercury is atmospheric Hg deposited on the surfaces of bodies of water that is 

then biomethylated by microorganisms and subsequently biomagnified as it ascends the 

food chain. Metallic Hg is used to produce chlorine gas and caustic soda, and is also used 

in thermometers, dental fillings, and batteries. Hg salts are sometimes used in skin 

lightening creams and as antiseptic creams and ointments. Other products containing Hg 

include auto parts, fluorescent bulbs, medical products, vaccines, and thermostats. There 

are many more sources of Hg that could potentially cause harmful exposure to organisms 

(Table 1). 

Table 1. Sources of Hg exposure. 
 

ELEMENTAL INORGANIC ORGANIC 

Amalgam preparation Disinfectant making Bactericide preparation 

Barometer manufacture Dye making Drug manufacture 

Bronzing Explosive production Embalming/Cremation 

Dentistry Fur processing Insecticide production 

Photography Tannery work Histology 

Hg refining Laboratory research Farming 

Paint manufacture Taxidermy Seed handling 
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The biological half-life for inorganic Hg is about 40 days. For elemental 

mercury or mercury vapor the biological half-life is linear with a range of values from 35 

to 90 days. The biological half-life is different for different organs. A fraction of the 

absorbed Hg will remain in the body for a longer time (e.g. years in the brain and bones; 

International Programme on Chemical Safety, 1991). It is biologically nonessential and 

toxic to all organisms. 

Human exposure to inorganic Hg is mainly occupational, most commonly 

associated with Hg vapor. It is often related to specific working conditions, for example, 

mining, spillage of Hg compounds on work clothes or in the working environment, and 

handling of Hg salts in the chemical industry and laboratories (Bluhm et al., 1992). Due 

to the health effects of Hg exposure, industrial and commercial uses are broadly regulated 

in Western countries. The World Health Organization, Occupational Safety and Health 

Administration, and National Institute for Occupational Safety and Health all agree that 

Hg is an occupational hazard and have established specific occupational exposure limits. 

Environmental releases and disposal of Hg is regulated in the U.S. primarily by the 

Environmental Protection Agency. In recent years, governments have issued warnings 

that certain fish in excess quantities are unsafe due to methylmercury levels. Such 

warnings especially target pregnant women because all forms of Hg cross the placenta to 

the fetus. 

The risk of Hg to human health has been the subject of several reviews (Goering 

et al., 1992; Fung & Molvar, 1992; Enwonwu, 1987; Mjor, 1994; Halbach, 1994; 

Aposhian et al., 1992). One of the most important points raised by these reviews is that 

the effect of chronic low dose Hg exposure on humans is not known. There are claims 
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that long-term exposure to low concentrations of Hg vapor either cause or exacerbate 

degenerative diseases such as amyotrophic lateral sclerosis, Alzheimer’s disease (AD), 

multiple sclerosis, and Parkinson’s disease. Speculation has been most intense concerning 

AD after a report that Hg levels were higher in autopsy brains of AD patients than in 

brains of members of a control group (Thompson et al., 1988). 

One of the worst industrial disasters in history was caused by the dumping of Hg 

compounds into Minamata Bay, Japan. The Chisso Corporation, a fertilizer and later 

petrochemical company, was found responsible for polluting the bay from 1932 to 1968. 

It is estimated that over 3,000 people suffered various deformities, severe Hg poisoning 

symptoms, or death from what became known as Minamata disease. The neurotoxic signs 

include ataxia, speech impairment, constriction of visual fields, hypoesthesia, dysarthria, 

hearing impairment, and sensory disturbances. These neurological problems persisted and 

were found in other areas of Japan as the Hg contamination spread (Ninomiya et al., 

1995). Follow-up studies in the Minamata area 40 years after the spill and 30 years since 

a fishing ban was enacted revealed continued problems. In 1995, male residents of 

fishing villages in the area reported significantly higher prevalences than “town-resident-

controls” for the following complaints: stiffness, dysesthesia, hand tremor, dizziness, loss 

of pain sensation, cramping, atrophy of the upper arm musculature, arthralgia, insomnia, 

and lumbago.  

Hg compounds are highly potent, but are non-specific cellular poisons that 

influence many vital processes involving proteins. Hg ions are protein precipitants and, as 

a result, cause severe necrosis on direct contact with tissue. They have affinity for a 

number of cellular components essential for the function and survival of the cell such as 
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enzymes, membrane proteins, antioxidants, nucleic acids and mitotic apparatus. Toxicity 

is related to the covalent binding of Hg to sulfhydryl groups, as well as to carboxy, 

amide, amine, and phosphoryl groups. As a result, specific membrane transport is 

blocked and selective permeability of the membrane is altered. Because Hg-containing 

compounds have a high propensity for interacting with sulfhydryl groups, the cysteine 

residues in the DAT molecule may play an important role in the regulation of 

psychostimulant binding to the uptake complex. It also affects the uptake and release of 

neurotransmitters from presynaptic nerve terminals. This may be due to its ability to 

change the intracellular concentration of calcium (Ca2+) by disrupting regulation of Ca2+ 

from intracellular pools and increasing the permeability of plasma membranes to Ca2+.

There is still undoubtedly much more to learn about the specific mechanisms of Hg-

induced neurotoxicity.  

 

II.D.2. Lead 

Lead (Pb) has a bright luster and is a dense, ductile, very soft, highly malleable, 

bluish-white metal that has poor electrical conductivity. This metal is highly resistant to 

corrosion. Because of this property, it is used to contain corrosive liquids such as sulfuric 

acid.  

The historical use of Pb acetate (also known as sugar of lead) by the Roman 

Empire as a sweetener for wine is considered by some to be the cause of the dementia 

which affected many of the Roman Emperors. Pb is a toxic metal that can damage nerve 

connections and can cause blood and brain disorders in children and in adults. Long term 

exposure to Pb or its salts (especially soluble salts or the strong oxidant PbO2) can cause 
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nephropathy, and colic-like abdominal pains. There are numerous sources by which 

humans can be exposed to Pb (Table 2).  

Table 2. Sources of lead exposure. 
 

OCCUPATIONAL ENVIRONMENTAL ADVOCATIONAL 

Plumbing Lead paint Pottery making 

Auto repairs Lead-painted homes Target shooting 

Glass making Leach from plumbing Soldering of electronics 

Printing Leaded gasoline Fishing sinkers 

Steel welding Ceramics Car repair 

Inhalation and ingestion are the main routes of exposure. Adults are primarily 

exposed occupationally (ATSDR, 2005), and this occurs by inhalation with 35-40% of 

inhaled lead dust or fumes deposited in the lungs with extensive blood absorption 

(Leggett, 1993). Children are primarily exposed by ingestion and absorb 50% of an 

ingested dose through the gastrointestinal tract. Lead also readily crosses the placenta to 

the fetus (Roels et al., 1978). Unlike Hg, Pb is not known to be biologically transformed 

into chemical forms that may enhance its absorption or retention.  

The mechanism by which Pb disrupts normal physiological processes is based on 

the similarity of ionized lead (Pb2+) to calcium (Ca2+). Both are divalent cations; 

however, Pb can disrupt the physiological effects of calcium at concentrations several 

orders of magnitude lower than the concentration of calcium (Silbergeld & Adler, 1978). 

Pb and calcium are used interchangeably by bone. Pb has an affinity for bone and acts by 

replacing calcium. In the developing brain, Pb causes an inappropriate release of NT at 
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rest and competes with calcium to interfere with evoked NT release (Bressler & 

Goldstein, 1991). This increase in basal release and decrease in evoked release may 

interfere with selective pruning of synaptic connections in the brain during the first few 

years of brain development. Overall, Pb is a calcium antagonist that competes with 

calcium-mediated intracellular signaling and activates calcium-mediated synaptic vesicle 

release mechanisms. 

Both biochemical and behavioral studies implicate dopaminergic NT systems in 

the neurotoxicity of Pb. Reported effects are consistent with the hypothesis that Pb 

exposure, by some as yet undetermined mechanism, depletes DA availability. Pb 

exposure decreases DA turnover (Jason & Kellogg, 1981; Lasley et al., 1984), 

synaptosomal DA release (Minnema et al., 1986), and synaptic transmission in peripheral 

nerve (Cooper et al., 1984). It also impairs autoreceptor-mediated regulation of DA 

release, an effect accompanied by decreased levels of DA metabolites (Lasley & Lane, 

1988; Lasley, 1992).  

Both Hg and Pb toxicity will be investigated in this study because both remain a 

significant public health issue because of their global pervasiveness and because of their 

adverse effects on the dopaminergic system. 

 

II.E. Psychostimulants 

Psychostimulants promote increased extracellular DA concentrations. There are 

two primary mechanisms by which these agents affect the DAT. Psychostimulants can be 

separated into “uptake blockers” and “releasers” based on the mechanism of their acute 

effects on NT flux through the DAT. Although uptake blockers can have releasing 
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properties and releasers may also have some uptake blocking ability, the general 

separation of drugs into these two classes helps to functionally distinguish the 

pharmacological profiles of some of the most commonly used psychostimulants. 

The DAT is the principle target for widely abused psychostimulants such as 

cocaine, amphetamine and methamphetamine. The reinforcing properties of these drugs 

(which likely underlie their addictive properties) are strongly correlated with their 

affinities for the DAT (Ritz et al., 1987). Dopamine (DA) release in the nucleus 

accumbens is believed to be the main mediator of the reinforcing and locomotor 

activating properties of psychostimulants (Jones et al., 1998). 

 

II.E.1. Cocaine 

Cocaine is classified as a DA uptake blocker because its primary mechanism of 

action is by directly binding and inhibiting the transport of DA through the DAT (Ritz et 

al., 1987). This DA reuptake, mediated by Na+, Cl-, and ATP-dependent active transport, 

is inhibited when cocaine binds to the Na+ binding site on the transporter and alters the 

Cl- binding site, thus preventing the binding of both ions. Because translocation of DA 

across the membrane of the pre-synaptic neuron is inhibited, increased extracellular DA 

concentrations result in chronic stimulation of the DA receptor in the post-synaptic 

neuron. Clinically, cocaine’s most important mechanism of action lies in its ability to 

block sodium channel conductance and thereby increase the threshold required to 

generate an action potential. Thus, like lidocaine and novocaine, it is used medicinally as 

a local anesthetic.  
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Of interest, blockade of DAT by cocaine leads to a rapid increase in DA uptake in 

synaptosomes prepared from treated rats, a preparation from which the drug has been 

presumably been washed out (Fleckenstein et al., 1999). Perhaps this occurs via enhanced 

recruitment of DATs to the plasma membrane (Daws et al., 2002). These acute increases 

in DA uptake and plasmalemmal surface expression, observed in rodents and cell lines, 

respectively, after cocaine administration likely represent efforts to maintain normal 

synaptic DA functions. In humans who have repeatedly increased synaptic DA levels 

through the use of cocaine, increased DAT function is also observed, as assessed in 

synaptosomes from cryoprotected human brain (Mash et al., 2002). The combination of 

an initial DAT blockade and a subsequent increase in DA uptake could contribute to the 

development and expression of cocaine addiction. It is possible that an overabundance of 

extracellular DA during DAT blockade triggers this compensatory increase in DAT 

activity, which would ultimately produce a deficit in extracellular DA, perhaps 

contributing to drug dependence. 

After cocaine is introduced to the body it travels to reward areas of the brain: the 

VTA, the nucleus accumbens, the amygdala, and the prefrontal cortex (Figure 9). These 

areas are saturated with DA synapses.  
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Figure 9. The main structures that make up the reward pathway are the ventral 
tegmental area, the nucleus accumbens (both shown in purple), the amygdala (in green), and 
the prefrontal cortex (in grey). 

 

Repeated administration of cocaine results in both diminished effects (tolerance) 

and increased effects (sensitization). The initial signs of stimulation are hyperactivity, 

restlessness, increased blood pressure, increased heart rate and euphoria. The euphoria is 

quickly followed by feelings of discomfort and depression and a craving to re-experience 

the drug. Side effects can include twitching and paranoia, which usually increase with 

frequent usage. With excessive dosage the drug can produce hallucinations, paranoid 

delusions, tachycardia, itching, and delusional parasitosis. Toxicity results in seizures, 

followed by respiratory and circulatory depression of medullar origin. This may lead to 

death from respiratory failure, stroke, cerebral hemorrhage, or heart failure.  

 

II.E.2. Methamphetamine 

Methamphetamine (MA) is structurally similar to amphetamine (AMPH), and it 

may be produced from ephedrine or pseudoephedrine by chemical reduction. Most of the 

necessary chemicals are readily available in household products or over-the-counter 
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medicines. This makes MA appear unusually easy to make, unlike cannabis and cocaine, 

which are both harvested directly from plants. 

It is often asked if amphetamine and MA differ in effect. The two drugs show no 

differences in terms of changes in DA release in the striatum, elimination rates, or other 

pharmacokinetic properties (Melega et al., 1995), and equal doses of the two drugs are 

not distinguished in human discrimination studies (Lamb & Henningfield, 1994). There 

is, however, a subtly greater DA release by AMPH than MA in the prefrontal cortex, and 

likely as a result, some subtle differences in effects of the drugs on working memory and 

behavioral tolerance (Shoblock et al., 2003a, 2003b). AMPH can elicit somewhat more 

locomotor activity in rodents than MA, perhaps due to indirect effects (Shoblock et al., 

2003b). The occasional statement in the literature that MA is more addictive, favored by 

drug addicts, a more potent psychostimulant, or has diminished peripheral activity 

appears to be unfounded according to Shoblock (2003a). By tradition, studies on 

mechanisms of action are generally on AMPH, and studies of neurodegeneration on MA. 

This may be because MA is more readily available on the illicit market due to its easier 

synthesis, which uses either a one-step reduction of ephedrine or pseudoephedrine, drugs 

that at this writing remain readily available, or a condensation of phenylacetone and 

methylamine (Cho, 1990).  

 MA is classified as a Schedule II substance by the Drug Enforcement Agency in 

the U.S. meaning that it is illegal to buy, sell, or possess without a prescription. It is 

legally controlled in most countries, although it has medical uses, so it is also available 

by prescription in many places. MA is legally marketed in the U.S. under the trade name 
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Desoxyn, manufactured by Abbott Laboratories. Generic formulations of the drug are 

also available. 

 MA can be swallowed, snorted, smoked, dissolved in water and injected, or 

inserted anally. MA causes significant tolerance, as well as psychological dependence. 

This combination can be particularly bad because the user is likely to have strong 

cravings for more MA, while at the same time being unable to reach a satisfactory high. 

Withdrawal from high doses can produce severe depression. 

MA is commonly abused for its rewarding effects, which are thought to result 

from DA release in the nucleus accumbens (Wise & Hoffman, 1992). Acute 

administration of MA causes release of DA in vivo (O’Dell et al., 1991). Repeated 

administration of MA to laboratory animals causes long-term reduction in DA and in the 

activity of its synthesizing enzyme tyrosine hydroxylase (Kogan et al., 1976; Wagner et 

al., 1980; Cass & Manning, 1999). In findings reminiscent of data seen in chronic cocaine 

users, MA abusers had substantially lower DA and DAT levels (39-55% and 25-53%, 

respectively), as well as slightly (20%) lower TH levels in caudate, putamen and nucleus 

accumbens (Wilson et al., 1996). Another study found reduced (23-25%) striatal DAT 

density in chronic MA abusers abstinent for months to years (McCann et al., 1998). 

Although there are other possible interpretations of the data obtained from chronic 

cocaine and MA abusers, it seems plausible that stimulant-induced down-regulation of 

DAT gene expression underlies the observed changes in DA and TH levels. 

Although the toxic effects of MA on the central dopaminergic systems have been 

well documented in vivo, the exact mechanisms underlying the neurotoxicity have yet to 

be identified. Studies have indicated that increased extracellular DA due to enhanced 
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release or uptake inhibition may become harmful and consequently result in cell death 

(Choi et al., 2002; Gibb et al., 1994). Also, DA may oxidize to form superoxide and 

hydrogen peroxide, which in turn become hydroxyl radicals in the presence of transition 

metals (LaVoie & Hastings, 1999). Therefore, the increase in oxidative stress by MA 

may be due to DA release and subsequent oxidation. Evidence suggests that in vivo free 

radical formation within the dopaminergic neuron may be responsible in the MA-induced 

dopaminergic cell death (Cubells et al., 1994; Hirata et al., 1995; Maragos et al., 2000; 

Imam et al., 2001). In addition, the mechanism of MA may involve excitatory amino acid 

receptors (Sonsalla et al., 1989), glial cell activation (Stadlin et al., 1998) and cytokines 

(Asanuma & Cadet, 1998; Ladenheim et al., 2000). Elucidation of the mechanism 

underlying the MA toxicity would benefit from the availability of in vitro model systems, 

because more controlled and isolated cellular phenomena may be observed. 

 

II.F. Interaction of Heavy Metals and Psychostimulants 

The interaction between two or more compounds can play an important role in 

neurotoxicity. Interaction can result in either an increase or decrease in the toxic effects 

of a compound. A toxic effect is additive if after simultaneous administration of two or 

more substances, it is the sum of the individual effects. Potentiation occurs when a 

compound showing little or no toxicity markedly increase the toxicity of a second 

compound. A synergistic effect will produce more severe symptoms than would be 

expected from the toxicities of the individual compounds. The purpose of this study was 

to gain mechanistic insight into the interaction of heavy metals and drugs of abuse.  
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CHAPTER III 
 

METHODOLOGY 
 

III.A. Cell Cultures 

III.A.1. SK-N-SH, COS-7, and N2A Cells 

Cell lines used were SK-N-SH (human neuroblastoma cells), COS-7 (monkey 

kidney cells) and N2A (mouse neuroblastoma cells). All cells were obtained from 

American Type Culture Collection (ATCC, Manassas, VA). SK-N-SH cells were 

cultured in RPMI 1640 without L-glutamine (Cellgro, MediaTech Inc., Herndon, VA). 

COS-7 cells were cultured in DMEM with 4.5 g/L glucose supplemented with 4 mM L-

glutamine and 1.5 g/L NaHCO3 (Cellgro, MediaTech Inc., Herndon, VA). N2A cells 

were cultured in MEM with Earle’s balanced salt solution, nonessential amino acids, and 

sodium pyruvate. The media was supplemented with 2 mM L-glutamine and 1.5 g/L 

NaHCO3 (Cellgro, MediaTech Inc., Herndon, VA). All media was supplemented with 

10% heat inactivated fetal bovine serum (FBS; Hyclone, Logan, UT) and 1% 

penicillin/streptomycin solution – 10,000 I.U./mL and 10,000 µg/mL (Cellgro, 

MediaTech Inc., Herndon, VA).  All cultures were maintained in vented 25 cm² cell 

culture flasks (Corning Inc., Corning, NY) at 37°C in a 5% CO2 humidified atmosphere. 

As recommended by the ATCC, the culture medium was changed twice a week in a 

sterilized vented hood. To change the media, the old media was decanted; careful not to
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disturb the monolayer of cells. Without creating bubbles, 5 mL of warmed complete 

media (heated in 37°C water bath for 20-30 minutes) was added to the 25 cm2 flasks. 

Upon achieving confluence, within 7 days, the cells were split and subcultured to 

1:4 ratio. Subculturing took place once a week. A solution of 0.25% Trypsin, 1.0 mM 

ethylenediaminetetraacetic acid (EDTA) in Hank’s Balanced Salt Solution (HBSS) 

without calcium and magnesium salts (Atlanta Biologicals, Lawrenceville, GA). 1.5 mL 

of trypsin was added to the flask to allow cells to detach. Typically, cells loosened from 

the culture surface in 10-15 minutes. The flasks were also returned to the incubator if the 

cells began to clump or did not appear to be detaching from the plastic. Gentle agitation 

was used as a last resort. Once the cells were detached from the surface, 3.5 mL of 

complete media was added to each flask to stop the action of the trypsin. Pipetting the 

solution up and down broke up any clumps and dispersed the cells in the suspension. 

Again avoiding bubbles, 1 mL of the cell suspension was transferred to each new sterile 

25 cm2 culture flask. By adding 4 mL of fresh media, each new flask maintained a 5 mL 

final volume. After the splitting procedures were complete, all culture flasks were 

recapped and returned to the incubator. The leftover cell suspension (approximately 1 

mL) was discarded. 

In 24-well plastic cell culture plates (Costar® 3599, Corning, Inc., Corning, NY), 

1 x 105 cells were seeded and maintained in the complete growth medium. After plating, 

the cells were allowed at least 24 h to adhere to the surface of the well before 

experiments were performed. The cells from passages 4 to 14 were used to perform the 

studies. 
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III.A.2. hDAT-Transfected COS-7 Cells 

 Vectors, pCMV6-XL5 with the hDAT-cDNA insert (Origene) and pCMV6-Neo 

(Origene), were transformed into One Shot® Top10 Chemically Competent E. coli 

(Invitrogen). Cells were grown on LB-agar/ampicillin (100µg/ml) plates overnight. The 

following day six independent colonies were selected to inoculate 2 mL LB/ampicillin 

broth overnight. Plasmid DNA was isolated using the Wizard® Plus SV Minipreps DNA 

Purification System kit (Promega). Both plasmids were digested with NotI endonuclease 

(Promega). Fragments were separated by 0.7% agarose gel electrophoresis, cut out of the 

gel, and extracted using the StrataPrep® DNA Gel Extraction kit (Stratagene). DNA was 

quantified by spectrophotometric analysis. The hDAT-cDNA and the pCMV6-Neo were 

ligated with T4 DNA ligase (Promega) at 4ºC overnight. The new subcloned construct 

was transformed in Top10 cells and grown again on LB-agar/ampicillin plates. 

LB/ampicillin broth was inoculated with selected colonies, and the resulting pDNA was 

isolated by Miniprep. Correct insertion was confirmed by XmaI digestion and DNA 

sequencing. Confirmed plasmids were replated for colonies, inoculated in 100 mL 

LB/ampicillin broth, and purified using the Qiagen Plasmid Maxi kit. The cloned plasmid 

pCMV6-Neo(hDAT) was quantified by spectrophotometric analysis, and aliquots were 

frozen back for later use. 
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Figure 10. The pCMV6-XL5 vector (about 4.5 kb in size) with the hDAT cDNA (about 2.7 
kb) inserted within the multiple cloning site. The hDAT insert is flanked by two NotI restriction sites. 
ColE1 is the bacterial origin of replication and SV40 allows for replication in mammalian cells.  The 
CMV promoter is used to express the cloned cDNA. Selection of the plasmid in E. coli is conferred by 
the ampicillin resistance gene. 
 

Figure 11. Plasmids were digested with NotI.  Fragments were separated by 0.7% agarose 
gel electrophoresis.  GeneMate QuantiMarker 1 kb was used as the DNA ladder. Lanes 1, 5, 6, 7, and 
8 show fragments of the approximate size of 5.8 kb and 2.7 kb. These are successful pCMV6-Neo 
with the cloned insert.  
 

One day prior to transfection, cells were split into a 24-well plate at a density of 

1 × 105 cells per well in 500 µl of growth medium without antibiotics. Confluence was 

90–95% at the time of transfection. Cells were transfected with Lipofectamine™ 2000 

(Invitrogen) according to manufacturer’s instructions: volume of culture medium (500 

µl), quantity of pDNA (0.8 µg), volume of Lipofectamine™ 2000 (2 µl) and Opti-MEM 

1 2 3 4 5 6 7 8
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I® Reduced Serum Medium (Invitrogen) as solution to dilute the transfection agent. For 

successful transfection a nucleic acid, which carries a net negative charge under normal 

physiological conditions, must come into contact with a cell membrane that also carries a 

net negative charge. Lipofectamine™ 2000 is a cationic liposome formulation that 

functions by complexing with nucleic acid molecules, allowing them to overcome the 

electrostatic repulsion of the cell membrane and to be taken up by the cell. Cells were 

incubated at 37°C in a 5% CO2 incubator for 24 h prior to testing for transgene 

expression. Medium was changed after 4-6 h. For stable transfection, cells were passed 

1:10 into fresh growth medium 24 h after transfection. The following day Geneticin was 

added to the culture medium to give a final concentration of 500 µg/ml. Selection was 

continued for three weeks.  

 

Figure 12. The pCMV6-Neo vector (about 5.8 kb in size) is similar to pCMV6-XL5 except a 
neomycin resistance gene is added for establishing a stable clone. The hDAT cDNA was subcloned 
into the vector by NotI digestion and ligation. Orientation of the insert was confirmed by XmaI
digestion. The cloned plasmid was transfected into COS-7 cells. 
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Figure 13. Successfully cloned plasmids were digested with XmaI.  Fragments were 
separated by 0.7% agarose gel electrophoresis.  GeneMate Quanti-Marker 1 kb was used as the DNA 
ladder. Lanes 1, 3, 4, 5, and 6 show fragments of the approximate size of 4.8 kb, 2.7 kb, and 1.0 kb. 
These are pCMV6-Neo with the correctly oriented cloned insert.  Lane 7 is the pCMV6-Neo (5.8 kb) 
without insert.  
 

III.A.3. hDAT-Transfected N2A Cells 

The transfected N2A(hDAT) cells were a generous gift from Dr. Karley Little 

(University of Michigan, Ann Arbor, MI). As previously described (Zhang et al., 1998), 

N2A cells were obtained from American Type Culture Collection (Manassas, VA). 

Briefly, the cells were grown in Opti-MEM I (Invitrogen, Carlsbad, CA) supplemented 

with 10% FBS and 1% penicillin/streptomycin in 75 cm2 flasks. After the cells reached 

confluence (about 3 days of growth), they were trypsinized. Cells were then transfected 

with a pcDNA3 plasmid cloned with an hDAT-cDNA insert. cDNA was provided by 

Zdenek Pristupa (University of Toronto, Toronto, ON, Canada). Electroporation 

employing a BTX Electroporation System 600 (Biotechnologies and Experimental 

Research, Inc., San Diego, CA) was used to transfect the cells. Cells were stably selected 

with geneticin (G418) over several weeks. After reaching confluence, cells were seeded 

in 24-well plates and allowed at least 24 h to adhere to the surface of the well before 

experiments were performed. 

 

1 2 3 4 5 6 7 8
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III.B. Lactate Dehydrogenase Assay 

 Lactate dehydrogenase (LDH) is a stable cytoplasmic enzyme which is present in 

most cells. It is released into the cell culture supernatant upon damage of the cytoplasmic 

membrane. The CytoTox 96® Assay is a colorimetric assay that quantitatively measures 

LDH activity released from the damaged cells into the supernatant. SK-N-SH cells were 

exposed to multiple concentrations of metals, drugs and combinations of both. To 

determine which concentrations were optimal to use, lactate dehydrogenase (LDH) 

assays were performed to assess cell viability. The CytoTox 96® Non-Radioactive 

Cytotoxicity Assay kit was performed according to manufacturer’s instructions (CytoTox 

96® Non-Radioactive Cytotoxicity Assay Technical Bulletin No. 163). Released LDH in 

culture supernatants was measured with a 30-minute coupled enzymatic assay, which 

results in the conversion of a tetrazolium salt (INT) into a red formazan product. The 

amount of red color formed is proportional to the number of lysed cells.  
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Damaged Cell

Lactate Dehydrogenase
(LDH)

Diaphorase

NAD+

NADH
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formazan

Figure 14. LDH is a cytoplasmic enzyme that is released into the cytoplasm upon cell lysis. 
The LDH assay, therefore, is a measure of membrane integrity. The basis of the LDH assay: (1) LDH 
oxidizes lactate to pyruvate, (2) Pyruvate reacts with the tetrazolium salt INT to form formazan, and 
(3) the water-soluble formazan dye is detected spectrophotometrically. 

 

The assay was performed as described in the technical bulletin. For determining 

the amount of spontaneous release, 50 µL of each sample supernatant was transferred in 

duplicate into a clear 96-well plate. The remaining media from the 24-well plate was 

aspirated. To each well of the 24-well plate, 150 µL of Lysis Solution was added in order 

to measure the total amount of LDH released. Plates were then placed in the 37ºC

incubator for 45 minutes. Afterward, 900 µL of complete media was added to each well 

to bring the total volume back up to the original volume of 1050 µL. Again, 50 µL of 

each sample supernatant was transferred in duplicate into the 96-well plate.  

Next, 50 µL of Substrate Mix (12 mL of thawed Assay buffer (Tris-buffered 

tetrazolium dye (INT-chloride), and Triton-X-100) mixed with one bottle of Substrate 
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mix (lyophilized diaphorase, lactate, and NAD+)) was added to each of the 96 wells. 

Protected from light with aluminum foil, the plates were placed on a plate shaker for 30 

minutes. 50 µL of Stop Solution (1M acetic acid) was then added to each well.  

Visible wavelength absorbance data were collected using the Synergy HT Multi-

Detection Microplate Reader with KC4 software (Bio-TEK® Instruments, Inc., 

Winkooski, VT) at 490 nm. Data was calculated by dividing the spontaneous release by 

the spontaneous plus total release of LDH. This difference was then subtracted from one 

and multiplied by one hundred to obtain percent cell viability. The LDH assay indicates a 

concentration- and time-dependent agent-induced toxicity. 

 

III.C. Treatments 

III.C.1. Metal Treatments 

Cells were plated as described above and exposed to multiple concentrations (0.1, 

1, and 10.0 µM) of Mercury (II) Chloride (HgCl2; Sigma Aldrich, St. Louis, MO) and 

Lead (II) Chloride (PbCl2; Sigma Aldrich, St. Louis, MO). Cells were exposed to the 

metals over different periods of time (24, 48, 72, and 96 h). 

 Hg was accurately dissolved in RPMI 1640 to make a 1 mM stock solution. Pb 

was accurately dissolved in ddH2O to make a 1 mM stock solution. Then, aliquots of the 

original stock solutions were diluted with RPMI 1640 to make working solution 

concentrations (2.1, 21, and 210 µM) used for the various treatments. A 1:21 in-well to 

working solution ratio was used. 

Once the treatments were added, the LDH assays were performed four separate 

times in triplicate.  
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III.C.2. Psychostimulant Treatments 

Plated cells were exposed to two concentrations (10 nM and 100 nM) of Cocaine 

HCl (Coc; Sigma Aldrich, St. Louis, MO) and Methamphetamine HCl (MA; Sigma 

Aldrich, St. Louis, MO). Cells were exposed to the drugs over different periods of time 

(24, 48, 72, and 96 h). 

 The drugs were accurately dissolved in RPMI 1640 to make stock solutions. 

Then, aliquots of the original stock solution were diluted with RPMI 1640 to make 

working solution concentrations (210 and 2100 nM). A 1:21 in-well to working solution 

ratio was used. 

LDH assays were performed four separate times in triplicate. 

 

III.C.3. Combinations of Metal and Psychostimulant Treatments 

 From the LDH assay results of the individual metal and drug treatments, sub-

lethal concentrations were chosen for combination treatments. A final in-well 

concentration of 10 µM was chosen for both Hg and Pb. And, a final in-well 

concentration of 100 nM was chosen for both cocaine and MA. A single time point of 72 

h was chosen for all subsequent LDH assays. Eleven treatment groups were identified 

and are listed in Figure 15.  
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Figure 15. Treatment groups used in studies. 
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Working solutions of each treatment group were made from aliquots of stock 

solutions of all metals and drugs. Then, these solutions were added to plated cells as done 

previously in the individual metal and drug treatments.  

LDH assays were performed four separate times in triplicate.  

 

III. D. [3H]GBR12935 Binding 

The efficiency of DA clearance from the synaptic space depends on the number of 

DAT in the plasma membrane. Therefore, the next step of this project was to determine if 

the treatment of N2A(hDAT) and COS-7(hDAT) cells with sublethal metal/drug 

concentrations had an effect on the number of DATs. The DAT is selectively inhibited by 

GBR12935. In tritiated form, GBR12935 binding to the DAT can be inhibited by 

unlabeled GBR12909 (Richfield, 1991). Therefore, GBR12909 was used to define non-

specific binding. Non-specific binding is the binding that occurs to any site other than the 

TREATMENT GROUPS 
Control 
Hg + Coc 
Hg + MA 
Hg + Coc + MA 
Pb + Coc 
Pb + MA 
Pb + Coc + MA 
Hg + Pb 
Hg + Pb + Coc 
Hg + Pb + MA 
Hg + Pb + Coc + MA 
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DAT. The values obtained from non-specific binding were subtracted from total binding 

to calculate specific DAT binding.  

Twenty-four hours after subculturing into 24-well plates, cells were treated with 

multiple combinations of metals (10 µM) and drugs (100 nM) for 72 h. At the end of the 

exposure time, the treated media was aspirated. The cells were washed once with 1 mL of 

buffer, and then 200 µL of trypsin/EDTA was added to the flasks to detach the cells. This 

cell suspension was then pipetted into flat top microcentrifuge tubes (Fisher Scientific, 

Pittsburgh, PA) and centrifuged in the Nanofuge (Hoefer Scientific Instruments, San 

Francisco, CA) for 5 minutes to form a cell pellet. The supernatant was aspirated, and the 

cell pellets were resuspended in 1.25 mL Tris-HCl buffer (50 mM Tris-HCl and 120 mM 

NaCl, adjusted to pH 7.7). 400 µL of this cell suspension was transferred into round 

bottom 12x75 mm polypropylene culture test tubes (Fisher Scientific, Pittsburgh, PA). 

Either 50 µL of assay buffer (total binding) or 50 µL of 5 µM GBR12909 (Sigma-RBI, 

St. Louis, MO) (non-specific binding) was then added in duplicate. Next, 50 µL of 500 

nM [3H]GBR12935 (43.0 mCi/mmol; Perkin Elmer, Boston, MA) was added to all tubes 

for a final in-tube concentration of 50 nM. The tubes were vortexed using the Fisher 

Vortex Genie 2 (Fisher Scientific, Pittsburgh, PA) followed by a sixty minute incubation 

period at room temperature to reach equilibrium. Using a Brandel Tissue Harvester 

(Gaithersburg, MD), the binding reaction was terminated by filtration onto a Whatman 

GF/C filter (Whatman Paper Ltd.) that had been pre-soaked in 0.3% polyethyleneimine 

(PEI) (Sigma Aldrich, St. Louis, MO). Filters were washed with ice cold 0.9% NaCl for 

15 seconds and then carefully removed with the filter disks being placed in scintillation 

vials (Daigger, Vernon Hills, IL). 5 mL of ScintiVerse (Fisher Scientific, Pittsburgh, PA) 
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was added to each of the vials, which were then capped and vortexed. The vials were then 

counted for three minutes using the Beckman Coulter LS 1801 scintillation counter 

(Beckman Coulter Inc., Fullerton, CA). Non-specific binding was subtracted from total 

binding to calculate the specific DAT-[3H]GBR12935 binding. Remaining cell lysates 

were placed in -20ºC until protein content could later be measured.  

 

III. E. [3H]Dopamine Uptake 

The DAT is responsible for clearing DA from the synaptic space to maintain 

neurotransmitter homeostasis. Therefore, the next step of this project was to determine if 

the treatment of N2A(hDAT) and COS-7(hDAT) cells with sublethal metal/drug 

concentrations had an effect on the function of DAT. Two different protocols for [3H]DA 

uptake through the DAT were conducted: (1) in a 24-well plastic cell culture plate and (2) 

on a tissue harvester. 

 

III. E.1. [3H]Dopamine Uptake: 24-well Plate Protocol 

In 24-well plastic cell culture plates (Costar® 3599, Corning, Inc., Corning, NY), 

1 x 105 cells were seeded and maintained in the complete growth medium. After plating, 

the cells were allowed at least 24 h to adhere to the surface of the well before treatments 

were added. After 72 h of exposure in an incubator, the growth medium/assay buffer/ 

treatment was aspirated from all wells. Cells were washed with 1 mL Krebs-HEPES 

uptake buffer. Then 400 µL of uptake buffer was added to the control and treatment 

wells. Made to a pH of 7.4, the uptake buffer consisted of 25 mM HEPES, 120 mM 

NaCl, 5 mM KCl, 2.5 mM CaCl2, 1.2 mM MgSO4, 300 µM ascorbic acid, 1 µM 
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pargyline and 2 mg/mL D-(+) glucose, as done previously (Johnson et al., 1998). For 

total binding, an additional 50 µL of uptake buffer was added to half of wells. For 

nonspecific binding, 50 µL of 50 µM GBR12909 (5 µM, final concentration; Sigma 

Aldrich, St. Louis, MO) solution was added to the other half of the wells. Tritium (³H) is 

the radioactive form of hydrogen and is used to trace dopamine. The [³H]DA (48.0 

Ci/mmol; Amersham Biosciences, UK) required for this portion of the experiment was 

prepared by making 1.2X concentration solution diluted with the assay buffer, yielding a 

final in-well concentration of 20 nM. Uptake was initiated by the addition of 50 µL of the 

[³H]DA solution to all wells. The plate was incubated for ten minutes at room 

temperature, and occasionally rotated by hand. DA uptake was terminated by aspirating 

the [³H]DA solution and washing the cells twice with ice cold 0.9% NaCl. Cells were 

detached from the plate upon addition of 150 µL Trypsin-EDTA. Protein content of cell 

lysates was measured using a 50 µL aliquot from each well (Bio-Rad, Hercules, CA). The 

remaining trypsinized cells were transferred to scintillation vials (Fisher Scientific, 

Pittsburgh, PA), and 5 mL scintillation cocktail (ScintiVerse®, Fisher Scientific, 

Pittsburgh, PA) was added to each vial. Each vial was then capped and vortexed. Uptake 

was determined by liquid scintillation spectrometry using a Beckman Coulter LS 1801 

(Beckman Coulter, Inc., Fullerton, CA). The number of counts per minute (cpm) was 

measured in order to determine the concentration of [3H]DA in each sample. Non-

specific binding was subtracted from total binding to calculate specific [3H]DA uptake 

through the DAT. Remaining cell lysates were placed in -20ºC until protein content could 

later be measured. 
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III. E.2. [3H]Dopamine Uptake: Tissue Harvester Protocol 

 Twenty-four hours after subculturing into 24-well plates, cells were treated with 

multiple combinations of metals (10 µM) and drugs (100 nM) for 72 h. At the end of the 

exposure time, the treated media was aspirated. Cells were washed with 1 mL Krebs-

HEPES uptake buffer. Made to a pH of 7.4, the uptake buffer consisted of 25 mM 

HEPES, 120 mM NaCl, 5 mM KCl, 2.5 mM CaCl2, 1.2 mM MgSO4, 300 µM Ascorbic 

Acid, 1 µM pargyline and 2 mg/mL D-(+) glucose, as done previously (Johnson et al., 

1998). The cells were then detached upon addition of 200 µL trypsin/EDTA. This cell 

suspension was then transferred into flat top microcentrifuge tubes (Fisher Scientific, 

Pittsburgh, PA) and centrifuged in the Nanofuge (Hoefer Scientific Instruments, San 

Francisco, CA) for 5 minutes to form a cell pellet. The supernatant was aspirated, and the 

cell pellets were resuspended in 1.25 mL uptake buffer. 400 µL of this cell suspension 

was transferred into round bottom 12x75 mm polypropylene culture test tubes (Fisher 

Scientific, Pittsburgh, PA). For total binding, 50 µL of uptake buffer (total binding) was 

added to test tubes. For nonspecific binding, 50 µL of 50 µM GBR12909 (5 µM, final 

concentration; Sigma Aldrich, St. Louis, MO) solution was added to parallel tubes. 

Tritium ([³H]) is the radioactive form of hydrogen and is used to trace dopamine. The 

[³H]DA (48.0 Ci/mmol; Amersham Biosciences, UK) required for this portion of the 

experiment was prepared by making 1.2X concentration solution diluted with the assay 

buffer, yielding a final in-well concentration of 100 nM. Uptake was initiated by the 

addition of 50 µL of the [³H]DA solution to all tubes. The tubes were vortexed using the 

Fisher Vortex Genie 2 (Fisher Scientific, Pittsburgh, PA) followed by a ten minute 

incubation period at room temperature to reach saturation. Using a Brandel Tissue 
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Harvester (Gaithersburg, MD), the reaction was terminated by filtration onto a Whatman 

GF/C filter (Whatman Paper Ltd.) that had been pre-soaked in 0.3% polyethyleneimine 

(PEI) (Sigma Aldrich, St. Louis, MO). Filters were washed with ice cold 0.9% NaCl for 

15 seconds and then carefully removed with the filter disks being placed in scintillation 

vials (Daigger, Vernon Hills, IL). 5 mL of ScintiVerse (Fisher Scientific, Pittsburgh, PA) 

was added to each of the vials, which were then capped and vortexed. The vials were then 

counted for three minutes using the Beckman Coulter LS 1801 scintillation counter 

(Beckman Coulter Inc., Fullerton, CA). Non-specific binding was subtracted from total 

binding to calculate specific [3H]DA uptake. Unused cell lysates were placed in -20ºC

until protein content could later be measured.  

 

III.G. Bradford Protein Assay 

The Bradford Protein Assay is a spectroscopic analytical procedure used to 

measure the concentration of protein in a solution. The Bradford assay is based on an 

absorbance shift in the dye Coomassie when bound to arginine and hydrophobic amino 

acid residues present in protein. 

The anionic (bound) form of the dye is blue and has an absorption spectrum 

maximum at 595 nm. The cationic (unbound) forms are green and red. The increase of 

absorbance at 595 nm is proportional to the amount of bound dye, and thus to the amount 

(concentration) of protein present in the sample. 

Using the Bradford protein assay method, protein concentrations for each 

remaining sample from the above studies were measured. Dye Reagent Concentrate (40 

µL; Bio-Rad, Hercules, CA), containing Coomassie blue dye, was added to each well of a 
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clear 96-well plate. Then, 160 µL of the samples were then mixed in duplicate with the 

concentrated dye. Using serial dilutions, the plate also contained eight known 

concentrations of a bovine serum albumin (Bio-Rad, Hercules, CA) protein standard and 

a blank sample that was used to generate a standard curve. The standard curve was then 

used to interpolate the protein content of the unknown samples. The plate was incubated 

at room temperature for five minutes and then read with the plate reader at an absorbance 

of 595 nm. Based on specific activity of [3H]GBR12935 and [3H]DA, the calculations for 

fmol/mg and fmol/mg/min, respectively, were performed. 

 

III.H. Data Analysis and Statistics 

For LDH assays, data was collected as means of absorbance values read at 490 

nm. Data was calculated by dividing the spontaneous release by the spontaneous plus 

total release of LDH. This difference was then subtracted from one and multiplied by one 

hundred to obtain percent viability. 

Binding of [3H]GBR12935 and uptake of [3H]DA was calculated using total and 

non-specific results of liquid scintillation counting and protein determination to be 

expressed as cpm/mg protein. The mean of the results of the two duplicate tubes for each 

treatment were used for calculations. Specific binding (or uptake) was calculated as the 

difference between binding (or uptake) in the absence and presence of the specific 

binding (or uptake) inhibitor of DAT. The specific cpm/mg protein was then divided by 

the specific activity of the radioligand. The results were then expressed as fmol/mg 

protein for binding. For uptake, the fmol/mg protein was then divided by the ten minute 

incubation period. The results for uptake were expressed as fmol/mg/min. 
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LDH assays involving multiple conditions, both concentration and time of 

treatment, were analyzed with two-way analysis of variance (ANOVA), followed by 

Bonferroni’s correction for multiple comparisons as appropriate. LDH assays, 

[3H]GBR12935 binding assays, and [3H]DA uptake assays involving one treatment time 

with multiple treatments were analyzed using one-way analysis of variance (ANOVA), 

followed by Bonferroni’s correction for multiple comparisons as appropriate.  

All computer analyses of data were performed using Prism v5.0 (GraphPAD 

Software, San Diego, CA). Statistical significance for all experiments was considered if p

≤ 0.05. The number of repetitive experiments (n) is stated in figure captions.
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CHAPTER IV 
 

RESULTS 
 

IV.A. LDH Assay 

Effects of metals on cell viability To evaluate cytotoxicity, LDH activity was 

measured at 24, 48, 72, and 96 h in SK-N-SH cells treated with a range of HgCl2 and 

PbCl2 concentrations (0-10 µM).  Promega’s CytoTox 96® Non-Radioactive 

Cytotoxicity Assay, a colorimetric assay, was performed to quantitate the amount of 

released lactate dehydrogenase in each of the samples. The amount of LDH present is 

directly proportional to the amount of lysed cells. LDH increased significantly in a 

concentration-dependent manner following exposure to HgCl2 [F3,48=14.04; p<0.0001] or 

PbCl2 [F3,47=4.29; p=0.0093].  LDH activity was significantly increased in a time-

dependent manner following exposure to HgCl2 [F3,48=7.24; p=0.0004] or PbCl2

[F3,47=19.89; p<0.0001].  LDH activity was significantly higher in 10 µM HgCl2

treatments compared to control at 48 h (p<0.05) and 96 h (p<0.01) (Figure 16). LDH 

activity was significantly enhanced following 10 µM PbCl2 exposure at 96 h compared to 

that of untreated control cells (p<0.05) (Figure 17). 
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Figure 16. LDH activity was measured at 24, 48, 72, and 96 h in SK-N-SH cells treated with 
a range of HgCl2 concentrations (0-10 µM). Percent viability was calculated by subtracting from 1, 
spontaneous release divided by spontaneous plus total release, and then multiplying this value by 
100%. Data were analyzed with two-way ANOVA, followed by Bonferroni’s correction for multiple 
comparisons. LDH increased significantly in a concentration-dependent (p<0.0001) and time-
dependent (p=0.0004) manner following exposure to HgCl2. LDH activity significantly increased at 10 
µM HgCl2 at timepoints 48 h and 96 h compared to control cells.  Results are expressed as means ± 
S.E.M. (n=4), +p<0.05, *p<0.01. 
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Figure 17. LDH activity was measured at 24, 48, 72, and 96 h in SK-N-SH cells treated with 
a range of PbCl2 concentrations (0-10 µM). Percent viability was calculated by subtracting from 1, 
spontaneous release divided by spontaneous plus total release, and then multiplying this value by 
100%. Data were analyzed with two-way ANOVA, followed by Bonferroni’s correction for multiple 
comparisons. LDH increased significantly in a concentration-dependent (p=0.0093) and time-
dependent (p<0.0001) manner following exposure to PbCl2. LDH significantly increased at 10 µM
PbCl2 at 96 h compared to control cells.  Results are expressed as means ± S.E.M. (n=4), *p<0.05. 

Effects of psychostimulants on cell viability To assess cytotoxicity of 

psychostimulants, LDH activity was measured again at 24, 48, 72, and 96 h, however, 

different concentrations (0-100 nM) of cocaine or MA were used. LDH increased 

significantly in a concentration-dependent manner following exposure to cocaine 

[F3,33=3.34; p=0.0477], but not to MA. LDH activity was significant increased in a time-

dependent manner following exposure of cocaine [F3,33=7.1; p=0.0008] or MA 

[F3,33=8.36; p=0.0003]. LDH activity was significantly higher following 100 nM cocaine 

treatment at 96 h compared to that of untreated control cells (p<0.05). No significant 

LDH activity was observed for MA treated cells compared to untreated control cells.   
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Figure 18. LDH was measured at 24, 48, 72, and 96 h in SK-N-SH cells treated with a range 
of cocaine concentrations (0-100 nM). Percent viability was calculated by subtracting from 1, 
spontaneous release divided by spontaneous plus total release, and then multiplying this value by 
100%. Data were analyzed with two-way ANOVA, followed by Bonferroni’s correction for multiple 
comparisons. LDH increased significantly in a concentration-dependent (p=0.0477) and time-
dependent (p=0.0008) manner following exposure to cocaine. LDH activity was significantly higher 
following 100 nM cocaine treatment at 96 h compared to that of control cells.  Results are expressed 
as means ± S.E.M. (n=4), *p<0.05. 
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Figure 19. LDH was measured at 24, 48, 72, and 96 h in SK-N-SH cells treated with a range 
of methamphetamine concentrations (0-100 nM). Percent viability was calculated by subtracting 
from 1, spontaneous release divided by spontaneous plus total release, and then multiplying this 
value by 100%. Data were analyzed with two-way ANOVA, followed by Bonferroni’s correction for 
multiple comparisons. LDH increased significantly in only a time-dependent (p=0.0003) manner 
following exposure to methamphetamine. There was no significant increase in LDH activity after 
methamphetamine treatments. Results are expressed as means ± S.E.M. (n=4). 
 

Combined effects of metals and psychostimulants on cell viability After 

analyzing the LDH assay results of the individual metal and drug treatments, sublethal 

concentrations were chosen for combination treatments. A concentration of 10 µM was 

chosen for both Hg and Pb, and a concentration of 100 nM was chosen for both cocaine 

and MA. A single time point of 72 h was chosen for all subsequent LDH assays. After 

performing LDH assays four separate times, no significance was observed in any of the 

combined treatment groups.  
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Figure 20. The effect of the combination of metals and psychostimulants on LDH activity 
was studied. LDH was measured at 72 h in SK-N-SH cells treated with various combinations of Hg 
(10 µM), Pb (10 µM), cocaine (100 nM), and methamphetamine (100 nM). Percent viability was 
calculated by subtracting from 1, spontaneous release divided by spontaneous plus total release, and 
then multiplying this value by 100%. Using one-way ANOVA, no significance was observed in any 
treatment group compared with the untreated control. Data represents means ± S.E.M. (n=4). 

IV.B. Preliminary studies 

Initial studies focused on fractional DA release on a superfusion. A superfusion 

chamber is used to provide a temperature-controlled environment for the tissue 

preparation, a constant superfusion flow rate, a system for chemical or electrical 

stimulation of the tissue and a fraction collector for superfusates. The first release studies 

used SK-N-SH cells exposed to vehicle, metals and drugs for 72 h. A consistent washout 

of [3H]DA with no KCl-stimulated release was observed. Monoamine oxidases, present 

in the serum of the media, could have prematurely degraded DA. The protocol was 
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modified to include incubation with non-serum RPMI vehicle. Also, pargyline was added 

to the release buffer to inhibit monoamine oxidases present intracellularly. Yet, no KCl-

stimulated release was detected (data not shown). The SK-N-SH cell line used was at 

passage number fourteen and fifteen, respectively, for these studies. Perhaps the cells had 

been passed too many times, and the DAT was less functional. A new batch of SK-N-SH 

cells was used. Studies were repeated at passage four of the new batch. An inconsistent 

washout of [3H]DA occurred with KCl-evoked release between 0.04 - 12.97% among 

treatment groups. Perhaps not enough [3H]DA uptake was occurring, accounting for the 

rather low release percentages. The protocol was modified again to include incubation 

with 200 nM [3H]DA, instead of 50 nM. However, no increase in DA release was 

observed (data not shown). [3H]DA uptake and release was occurring, but at very low 

levels. It was possible that SK-N-SH cells expressed DAT levels that were too low for 

our interests. 

Because SK-N-SH cells were not a good model of dopaminergic neurons, a new 

homogenous cell population was sought. The search was narrowed with these parameters: 

(1) continuous, (2) neuronal-like, (3) biogenic monoamine transport, and (4) 

adherent/semi-adherent growth. Cath.a cells possessed these parameters with semi-

adherent growth properties. With the new cell line, it was important to know if the DAT 

was functioning first, before studying DA release. Thus, [3H]DA studies were performed 

on the Cath.a cells. Very low levels of DAT were observed. Studies showed [3H]DA was 

transporting through norepinephrine transporters. Nisoxetine, an inhibitor of 

norepinephrine transporters, was used to represent non-specific uptake of [3H]DA. It was 

concluded that Cath.a cells had extremely low levels of DAT expression. Thus, these 
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cells were not a good model for studying treatment effects on DAT expression and 

function.  

A literature review suggested transfecting a cell line with cDNA of a gene of 

interest. This would allow an abundant amount of DAT to be expressed in a cellular 

population. Several journal articles showed high levels of DAT expression when cDNA 

of the human DAT was transfected into COS-7 cells (Bryan-Lluka et al., 1999; Pristupa 

et al., 1998; Lee et al., 1997; Dar et al., 2006). This project embarked on a new journey. 

COS-7 cells were transfected with hDAT (all obtained commercially) to develop a good 

DAT-expressing model system. Midway through development, another cell line, 

N2A(hDAT), was obtained as a gift through collaboration with Dr. Karley Little of the 

University of Michigan. Dr. Little has published a study characterizing N2A(hDAT) cells 

(2002). Most importantly the study has revealed high DAT expression levels in the cell 

line. This project conducted parallel studies in both cell lines, COS-7(hDAT) and 

N2A(hDAT). 

 

IV.C. [3H]GBR12935 Binding 

 [3H]GBR12935 binding to the DAT was utilized to determine if the different 

metal/drug treatments would affect the cell surface expression of the dopamine 

transporter. Studies by Andersen have shown that GBR12935 binds with high affinity 

(5.5 nM as determined in rat striatal membranes) and specificity, therefore making it an 

appropriate drug to label the DAT (1987). [3H]GBR12935 binding was performed in 

COS-7(hDAT) and N2A(hDAT) cells following 72 h exposure to metals (Hg, Pb; 10 

µM), drugs (Coc, MA; 100 nM), and combinations thereof. The cells were then 
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trypsinized, and centrifuged into a pellet. The pellet was resuspended in Tris-HCl buffer 

and incubated at room temperature to equilibrium with either buffer (total binding) or 

GBR12909 (non-specific binding) along with the [3H]GBR12935. Samples were then 

harvested on a GF/C filter followed by placement into a vial. Once scintillation cocktail 

was added, the amount of radioligand binding was measured by liquid scintillation 

spectrophotometry. A protein assay was then conducted on the unused portion of the 

sample using the Bradford method. Data was then calculated and reported as 

fmol/mg/min. 

The control group means were lower in COS-7(hDAT) cells (848.9 ± 114.0) than 

N2A(hDAT) cells (1066.5 ± 789.1). 

 

Effect of [3H]GBR12935 binding in COS-7(hDAT) cells A one-way ANOVA 

was performed on data from both COS-7(hDAT) and N2A(hDAT) cells to determine if 

there was a significant treatment effect on the amount of DAT expression as compared to 

control groups. No significant effect of treatment exposure on the binding of 

[3H]GBR12935 to the DAT was observed in COS-7(hDAT) cells (Figure 21).  

The individual Hg and Pb groups had the highest increases (48.6% and 48.3%, 

respectively) in specific [3H]GBR12935 binding. The MA group showed a 31.4% 

decrease in specific binding. Treatment groups containing MA caused a negative binding 

effect: Hg+MA (-27.1%) and Pb+MA (-6.5%).  
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Figure 21. Specific binding of [3H]GBR12935 to DAT in COS-7(hDAT) cells. Data represents 
means ± S.E.M. (n=4).  Control group (848.9 ± 114.0). Using one-way ANOVA, these treatment 
groups did not have a significant effect on [3H]GBR12935 binding to the DAT over 72 hours. 

 

Effect of [3H]GBR12935 binding in N2A(hDAT) cells For all treatment groups, 

an increase in binding was observed. However, statistical analysis of the effect on 

binding of [3H]GBR12935 to the DAT in N2A(hDAT) cells revealed no significance. All 

but one treatment group means resided outside the standard error of measurement of the 

control group (Figure 22). The individual treatment groups (Hg, Pb, Coc, or MA) had 

very high increases over control (146%, 175%, 115%, and 131%, respectively). When 

treatments were combined, some binding increased while others showed very little 

change. Interestingly, the Hg+MA group increased in binding by 161% over the control. 

Also, the Hg+Pb+Coc+MA treatment group mean showed an increase in binding 

exceeding 227% compared to control. In addition, the Hg+Pb treatment group mean 
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showed a 288% increase in binding over the control mean. These noted Hg-containing 

groups appear to have an additive treatment effect on binding. Because these percentages 

were robust, an unpaired t-test was run on each treatment group compared to the control 

group. A t-test compares two data sets, whereas a one-way ANOVA compares three or 

more groups. Analysis revealed that these treatment groups, all containing Hg, were 

significantly different from control values. A p<0.05 was deemed to be statistically 

significant. 
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Figure 22. Specific binding of [3H]GBR12935 to DAT in N2A(hDAT) cells. Data represents 
means ± S.E.M. (n=4).  Control group (1066.5 ± 789.1). Using one-way ANOVA, these treatment 
groups did not have a significant effect on [3H]GBR12935 binding to the DAT over 72 hours. 
 

IV.D. [3H]Dopamine Uptake  

[3H]DA uptake studies were conducted on COS-7 and N2A cells expressing the 

human DAT (hDAT) to establish the effects of sublethal metal/drug concentrations on 
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DAT functioning.  First, [3H]DA uptake assays were conducted in 24-well plates. 

However, specific [3H]DA uptake values were low and variable (data not shown). Thus, 

the protocol was modified to be performed on the tissue harvester. Much higher values 

were observed. The low uptake seen with the 24-well plates protocol was attributed to a 

decreased number of cells. Both cell lines are semi-adherent, and through the washing 

steps, cells were being aspirated out of the wells. Therefore, when the protocol was 

changed to washing cells through a filter on the tissue harvester, an increase in specific 

[3H]DA uptake was observed.  

The control group means were much higher in N2A(hDAT) cells (470.2 ± 141.34) 

than COS-7(hDAT) cells (-4 ± 152.9). 

 

Effect of [3H]DA uptake in COS-7(hDAT) cells A one-way ANOVA was 

performed on data from both COS-7(hDAT) and N2A(hDAT) cells to determine if there 

was a significant treatment effect on the amount of DAT expression as compared to 

control groups. No significant effect on the uptake of [3H]DA was observed in COS-

7(hDAT) cells. All treatment group means fell within the standard error of measurement 

of the control group (Figure 23). Virtually no uptake was observed. 
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Figure 23. Specific [3H]DA uptake in COS-7(hDAT) cells. Data represents means ± S.E.M. 
(n=4). Control group (-4 ± 152.9). Using one-way ANOVA, these treatment groups did not have a 
significant effect on [3H]DA uptake through the DAT over 72 hours. 

 

Effect of [3H]DA uptake in N2A(hDAT) cells Statistical analysis of the effect on 

[3H]DA uptake in N2A(hDAT) cells revealed no significance. However, most of the 

treatment group means resided outside the standard error of measurement of the control 

group (Figure 24). The cocaine treatment group mean showed a decrease in uptake of 

17% compared to control. The Hg+Coc group also showed a decrease of 20%. 

Interestingly, [³H]DA uptake studies showed the largest shift in treatment groups 

containing MA. Mean values in MA groups were increased 35-81% compared to control 

values.  
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Figure 24. Specific [3H]DA uptake in N2A(hDAT) cells. Data represents means ± S.E.M. 
(n=4).  Control group (470.2 ± 141.34). Using one-way ANOVA, these treatment groups did not have 
a significant effect on [3H]DA uptake through the DAT over 72 hours. 

 

IV.E. Comparison of [3H]GBR12935 Binding and [3H]Dopamine Uptake  

 Data means collected from the above [3H]GBR12935 binding and [3H]DA uptake 

studies were combined and plotted on the same graph. Linear regression was performed 

to find the best-fit slope of the data. 

Linear regression in COS-7(hDAT) cells The theoretical control line was 

established near y=0. Linear regression generated a best-fit line that had a slightly 

decreased slope compared to the theoretical control line (Figure 25). No [3H]DA uptake 

was observed.  
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Figure 25. [3H]GBR12935 binding versus [3H]DA uptake in COS-7(hDAT) cells. Data 
collected from [3H]GBR12935 binding and [3H]DA uptake studies were plotted together. Using linear 
regression analysis, the best-fit line (y=-0.0217 ± 0.01811) did not significantly deviate from zero. The 
graph shows the 95% confidence interval band (y=-0.0605 and y=-0.0172).  The line (y=0) through 
the untreated control group represents the theoretical binding v. uptake relationship.  
 

Linear regression in N2A(hDAT) cells Linear regression generated a best-fit 

line shifted to the right compared to the theoretical control line (Figure 26). The shift 

indicates that the treatment exposure increases [3H]GBR12935 binding. The flattening 

slope suggests that the treatment exposure reduces [3H]DA uptake. 
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Figure 26.  [3H]GBR12935 binding versus [3H]DA uptake in N2A(hDAT) cells. Data 
collected from [3H]GBR12935 binding and [3H]DA uptake studies were plotted together. Using linear 
regression analysis, the best-fit line (y=0.2231 ± 0.0232) significantly deviated from zero (p<0.0001). 
The graph shows the 95% confidence interval band (y=0.1733 and y=0.2728).  The line (y=0.4409) 
through the untreated control group represents the theoretical binding v. uptake relationship. Data 
shows a shift to the right and downward for treated cells compared to control.  

 

The MA groups appear to be concentrated in the upper half of the graph. There is 

an increase in specific [3H]GBR12935 binding, and more [3H]DA was taken up into the 

cell. This is what is expected because MA is a DA releaser. The presence of MA could 
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stimulate a compensatory mechanism for the up-regulation of DAT and for more DA to 

be taken up into the cell.  

The Coc treatments are concentrated in the lower half of the graph. An increase in 

specific [3H]GBR12935 binding; however, less [3H]DA was taken up into the cell. 

Because cocaine is a DAT inhibitor, [3H]DA uptake is blocked.  

The groups containing Pb are located nearest to the theoretical control line. Only 

slight increases in [3H]GBR12935 binding and [3H]DA uptake are seen.  

Located between 2000 to 3000 fmol/mg [3H]GBR12935 binding, primarily Hg 

containing groups are seen with variability in [3H]DA uptake.
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CHAPTER V 
 

DISCUSSION 
 

The objective of this study was to investigate interactions between heavy metal 

exposure and psychostimulant drug action at DAT. This is an especially pertinent issue 

given that Hg and Pb uniquely threaten sub-populations where drug abuse is more 

common, i.e., urban minorities (Brody et al., 1994). Clearly, experiential elements, 

availability, drug history, poverty, etc., must be considered in the list of dispositional 

factors that determine drug habits in humans. But it also must be considered that other 

types of environmental events may contribute to the abuse potential of selective drugs. 

That is, to the extent that Hg, Pb, or any other xenobiotic chemical alters the impact of a 

set delivery of a drug, motivational features related to drug seeking and taking may be 

redefined and therein influence maintenance responding and/or the effectiveness of 

certain pharmacotherapies for drug abuse (Mello et al., 1995). 

The purpose of this study was to determine what effects low dose heavy metal 

treatment exposure, in combination with psychostimulants, have on the DAT 

functionality in vitro. Initial studies were aimed at finding the greatest concentration of 

metals/drugs that did not result in a reduction in cell viability. Subsequent assays were 

then more focused on the specific effects of metals and psychostimulants on the 

dopamine transporter. These studies measured cell expression and uptake as specifically 

related to DAT function.
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The overall findings from this study are as follows: sub-lethal concentrations for 

mercury, lead, cocaine, and methamphetamine in the SK-N-SH cell line were identified 

that did not reduce viability at 72 hour time point. COS-7(hDAT) cells revealed high 

expression of DAT, but no DA uptake through the DAT. N2A(hDAT) cells showed high 

expression of functioning DAT, thus making it a better dopaminergic model for future 

studies. In COS-7(hDAT) cells, the heavy metal exposure resulted in an increase in mean 

DAT density, while methamphetamine exposure caused a decrease in mean DAT density. 

Expression studies in N2A(hDAT) revealed that DAT density increased when exposed to 

individual (Hg, Pb, cocaine, or methamphetamine) treatments.  Interestingly, an additive 

effect on the binding of [3H]GBR12935 to the DAT is suggested in treatment groups 

containing Hg.  Functional studies in N2A(hDAT) showed the largest increase in [3H]DA 

uptake through the DAT when exposed to treatment groups containing methamphetamine, 

whereas cocaine groups inhibited uptake.  

 

V.A. LDH Assay 

In order to determine how long term exposure to low concentrations of heavy 

metals and psychostimulants affects the dopamine transporter, it was first necessary to 

determine the threshold concentrations that would not reduce viability in the 

SK-N-SH cells when treatment times were increased up to 96 hours. The initial 

concentrations chosen were selected from a review of the literature, and overt toxicity 

was determined using a lactate dehydrogenase (LDH) assay.  

LDH is a cytoplasmic enzyme that is released when cellular membranes are 

damaged. The assay detects the presence of LDH as indicated by a color change that is 
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proportional to the amount of cell death that occurred in the sample. From the LDH assay 

performed on the cells treated with mercuric chloride, an effect on cell viability was 

found that is dependent on concentration and time. Other studies have observed a 

concentration effect on cell viability (Lee et al., 2006; Walther et al., 2002).  Very few 

studies have reported the effects of mercuric chloride on viability at time points 

extending beyond 48 h. Three studies were found reporting viability effects after 48 h 

exposure times (Ben-Ozer et al., 2000; Kim & Sharma, 2004; Aleo et al., 2005). The two 

studies reporting results up to 72 h had different findings. In the study by Ben-Ozer et al. 

(2000) with U-937 human monocyte-like cells, concentrations of 0.1-100 µM mercuric 

chloride over 24-72 h were examined. A concentration-dependent decrease in viability 

was observed, and a trend of decreased viability over time at 1 µM was pointed out, 

however this later observation was slight and not statistically significant. The other study 

examining varying concentrations (3, 10 and 30 µM) of mercuric chloride up to 72 h 

reported no effect on cell viability in Madin-Darby canine kidney cells at any of the 

concentrations or times tested (Aleo et al., 2005). The third study reported no effect on 

viability after 96 h exposure times with concentrations up to 20 µM in macrophages (Kim 

& Sharma, 2004). These different effects of mercury on cell viability emphasize the point 

that the physiological response to exposure depends on several factors, including the cell 

line being used. 

 For the viability assays using lead chloride, concentrations of 0.1, 1, and 10 µM 

were chosen for their effects on the SK-N-SH cell line. A significant effect of Pb 

concentration or exposure duration was observed. LDH activity was significantly 
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increased at 10 µM PbCl2 at 96 h compared to control cells. Few studies examined long 

term exposure of 48 h or more. Incubation of C6 glioma cells with Pb(II) for 

48 h decreased metabolic cell viability. The reduction was by 10 and by 25% with 1 and 

10 µM Pb(II) treatments, respectively (Posser et al., 2007). In another study, a rat liver-

derived cell line was exposed to increasing concentrations of Pb(II) (0.1-100 µM) for 24, 

48 and 72 h (Aleo et al., 2006). At 10 µM Pb(II), a significant decrease in cell density 

(70–75% of control values) was observed, being this effect maximal already after 48 h of 

treatments. In the case of 10 or 100 µM Pb-treatments, the number of cells did not change 

significantly from 24 to 72 h of treatment (cytostatic effect). Pb(II) intoxication is closely 

associated with low doses and long periods of exposure and 10 µg of Pb(II) per 100 ml of 

blood (0.48 µM) has been considered harmful in humans (Silbergeld, 1997; Bellinger, 

2004). In the present study, the effects observed in vitro using the nominal concentration 

of Pb(II) (1–10 µM) may be considered toxicologically relevant, since it was applied in 

the presence of fetal bovine serum (FBS; 10%). FBS is a factor that may chelate the 

metal (Qian et al., 2000), thus decreasing the concentration of free Pb(II) in the 

incubation medium. In PC12 cells the free Pb(II) concentration is approximately 0.1% of 

the total Pb(II) in the presence of 10% FBS (Tiffany-Castiglioni & Qian, 2001).  

 To assess cytotoxicity of psychostimulants, LDH activity was measured again at 

24, 48, 72, and 96 h, however, different concentrations (0-100 nM) of cocaine or MA 

were used. The LDH assay showed a concentration- and time-dependent effect of cocaine 

on SK-N-SH viability. LDH activity was significantly higher following 100 nM cocaine 

treatment at 96 h compared to that of untreated control cells. A study was performed in a 

similar neuroblastoma cell line, SK-N-AS (Feng et al., 2006). Cells were treated with 
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cocaine for 24 h at the concentrations of 0, 5, 25, 50, 100, and 500 µM, respectively. 

Cocaine concentrations higher than 5 µM all caused significant reductions in the number 

of living neuroblastoma cells as compared with the control group. No other studies were 

uncovered that conducted low-level, chronic exposure in vitro. Our results show that 

duration of exposure is as important as the concentration. 

For the cytotoxicity assays using methamphetamine, concentrations of 10 and 100 

nM were chosen for their effects on the SK-N-SH cell line. Our study demonstrated that 

the duration of exposure was important for MA toxicity. No significant LDH activity was 

observed for MA treated cells compared to untreated control cells.  One study was found 

that looked at the effects of methamphetamine in SK-N-SH cells, but used much higher 

MA concentrations. MA dose-dependently decreased cell viability in SK-N-SH cells after 

exposure for 24 h (Ajjimaporn et al., 2005). The cell viability was decreased to 80, 68, 60 

and 47% at 10, 100, 500 µM and 1 mM of MA, respectively. A time-dependent effect of 

MA on cell viability was observed when cells were treated with 1 mM of MA for 24, 48 

and 72 h. Another study showed a time- and dose-dependent decrease in cell viability in 

Cath.a cells exposed to MA. The cells were treated with various concentrations (0.5 mM 

– 4 mM) of MA for 2 to 48 hours (Choi et al., 2002). At 48 h, MA exposure 1 mM and 

higher caused cell viability to be significantly decreased. 

 

V.B. Preliminary studies 

Initial studies focused on treatment effect on DA release. After protocol 

modifications, consistent [3H]DA release was not obtained. It was determined that SK-N-

SH expressed DAT too low for this study’s interests and as such were taking up too little 
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[3H]DA. A recent study looked at the in vivo effects of inorganic mercury on striatal DA 

release using brain microdialysis (Vidal et al., 2007). Administration of 100 µM and 1 

mM mercuric chloride produced a concentration-related increase in striatal DA output. In 

contrast, the dose of 10 µM was without any effect on the extracellular levels of DA and 

metabolites. Vidal’s study supports that the concentration chosen in the present study was 

below a level to cause significant alterations in DA release. This study also supports that 

treatment effects are initially a DAT-mediated event. At 10 µM mercuric chloride, 

changes in DAT function are known to occur. As concentrations of mercury build in an 

organism, changes are seen in DAT first, followed by changes in DA release. Future 

studies could focus on administering mercuric chloride in vivo for three or four weeks 

and measuring DAT changes two months later.  

The present study attempted using another dopaminergic cellular model, Cath.a, 

to investigate DAT function. Cath.a is a clonal cell line of the central nervous system that 

produces primarily DA and, to a lesser extent, norepinephrine (Suri et al., 1993). RT-PCR 

analysis showed the expected PCR product size of DA transporter cDNA in Cath.a cells 

(Higashi et al., 2000). In another study, Bundey et al. loaded Cath.a cells with 10 nM 

[3H]DA (2000). The investigation demonstrated that no substantial [3H]DA uptake was 

occurring. Perhaps the Cath.a cell line does not express a functional plasma membrane 

DA transporter. The study also revealed that neither [3H]norepinephrine nor [3H]choline 

was taken up by the Cath.a cells. The study suggests that the cell line is of an alternative 

neuronal phenotype, e.g. GABA-releasing or 5-hydroxytryptamine-releasing. Thus, this 

model is not appropriate for studying treatment effects on DAT expression and function. 
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Because of these problems, a model system was developed involving transfection 

with DAT cDNA. Previous investigators have characterized hDAT function after 

expression in several types of non-neuronal cells (Eshleman et al., 1995; Giros et al., 

1992; Pristupa et al., 1994; Shimada et al., 1991). This study developed a transfected 

non-neuronal cell line, COS-7, with hDAT. Because of potential differences in regulation 

and function between neuronal and non-neuronal cells, we further evaluated a neuronally-

derived model system, N2A. 

 

V.C. Expression and Function Studies 

 The selectivity of [3H]GBR12935 binding to the DAT makes it a useful tool for 

labeling and studying the presence of the transporter at the plasma membrane.  

[3H]GBR12935 binding to the DAT was utilized to determine if the different metal/drug 

treatments would affect the cell surface expression of the DAT. [3H]GBR12935 binding 

was performed in COS-7(hDAT) and N2A(hDAT) cells following exposure to metals, 

drugs, and combinations thereof. Statistical analysis of the effect on binding of 

[3H]GBR12935 to the DAT revealed no significance in either COS-7(hDAT) or 

N2A(hDAT) cell lines. However, treatment groups showed shifts in binding compared to 

controls in both cell lines. 

[3H]DA uptake studies were conducted on hDAT-transfected COS-7 and N2A 

cells to establish the effects of sublethal metal/drug concentrations on DAT functioning. 

The control group means were much higher in N2A(hDAT) cells than COS-7(hDAT) 

cells suggesting higher expression levels. When statistical analysis of the effect on 

[3H]DA uptake was performed, neither COS-7(hDAT) nor N2A(hDAT) cells revealed 
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significant differences compared to control values. In COS-7(hDAT) cells, uptake in 

treatment groups was not different from control. In N2A(hDAT) cells, treatment groups 

showed both increases and decreases in uptake over controls. 

 

V.C.1. Expression and Function Studies: COS-7(hDAT) 

In COS-7(hDAT) cells, the individual Hg and Pb groups (48.6% and 48.3%, 

respectively) showed a trend where specific [3H]GBR12935 binding to the DAT 

increased. This suggests that heavy metals are causing an up-regulation of the DAT. Hg 

exerts its toxic effect by binding to the thiol groups on proteins, including the DAT. The 

neuron attempts to compensate for the defective DAT by inserting more at the plasma 

membrane. Pb competes with calcium-mediated synaptic vesicle release resulting in an 

increased DA release from the synapse.  The neuron strives to maintain DA clearance by 

increasing the density of DAT at the plasma membrane. Also seen in the COS-7(hDAT) 

cells was a decrease in specific [3H]GBR12935 binding. The MA group and groups 

containing MA showed a reduction in binding compared to control. MA is known to 

stimulate DA to be released from vesicles. In a cell line with a fully functioning DAT, an 

increase in DAT density would be expected. However, since the COS-7 cells did not 

effectively take up [3H]DA, the DAT was not functioning properly. Overall, it is difficult 

to speculate whether these treatments increased or decreased binding when the functional 

integrity of the DAT is questioned. 

Studies in COS-7(hDAT) cells, revealed that no [3H]DA uptake was observed; 

yet, there was a trend towards elevated [3H]GBR12935 binding. This indicates that the 

COS-7(hDAT) cells are expressing high levels of DAT, but they are not fully functional. 
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Perhaps the glycosylation sites usually found on the DAT are missing. This could affect 

the binding of ligands and neurotransmitters to the transporter. It has been shown that 

glycosylation of the DAT differs between different brain regions (Lew et al., 1991; Patel 

et al., 1993) which may be related to regional differences in function (Garris & 

Wightman, 1994). Glycosylation patterns and other post-translational phenomena also 

likely vary between different types of cell cultures. Post-translational events can 

markedly influence binding and functional characteristics of receptors (Kobilka, 1990; 

O’Dowd et al., 1989) and recent experiments have demonstrated that protein kinase C 

(PKC)-mediated regulation of uptake by a related monoamine transporter—the serotonin 

transporter, involves changes in plasma membrane insertion (Qian et al., 1997). 

Specialized compartmental trafficking may depend on post translational modifications 

which could be critical in understanding DAT plasticity. Although it is not clear if post 

translational mechanisms are involved in regulating expression and function of the DAT 

in these cells, studies with glycosidases comparing hDAT-expressing N2A neurons and 

COS-7 cells might prove interesting. 

 

V.C.2. Expression and Function Studies: N2A(hDAT) 

 In N2A(hDAT) cells, a trend towards elevated [3H]GBR12935 binding was 

observed for all treatment groups. The individual treatment groups (Hg, Pb, Coc, or MA) 

had increase binding over control values (146%, 175%, 115%, and 131%, respectively), 

although these values were not statistically significant. When treatments were combined, 

binding results were variable. Interestingly, groups containing Hg had the greatest 

binding increases. This may suggest that Hg causes an up-regulation of the DAT, similar 
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to that seen in the COS-7 cells. An additive treatment effect on binding is also suggested 

in the Hg-containing groups. A treatment effect is additive if after simultaneous exposure 

of two or more substances, it is the sum of the individual effects. Additional studies are 

needed to increase our sample size greater than 7 to determine if these changes are 

significantly different. Power analysis was performed on mean treatment effect (mean = 

2479; SD = 1153) observed in the present study. Based on the parameters observed, a 

sample size in excess of 7 in each treatment group has a 95% power to detect a 

significance level (alpha) of 0.05 (two-tailed). 

In N2A(hDAT) cells, the cocaine treatment group and the Hg + Cocaine treatment 

group means showed a trend towards decreased uptake compared to control. Yet, binding 

was elevated in cocaine treated N2A(hDAT). Because cocaine is a DAT inhibitor, 

[3H]DA uptake is blocked. With the dopaminergic system in a compromised state during 

cocaine exposure, the up-regulation of the DAT could reflect a homeostatic response 

whereby increased capacity for DA reuptake would maintain neurotransmission at more 

normal levels. Thus, these data suggest that the DAT might actively participate in 

modulating the behavioral consequences of chronic cocaine. There are conflicting 

reports, however, concerning changes in DAT function as a mechanism contributing to 

addiction. Some studies have found changes consistent with reduced activity of DAT, 

including reduced DA uptake (Izenwasser & Cox, 1990), down-regulation of DAT 

(Sharpe et al., 1991) and elevated extracellular fluid (ECF) concentrations of DA 

(Kalivas & Duffy, 1990). In contrast, other groups have reported changes consistent with 

increased activity of DAT, including increased DA uptake (David et al., 1998; 

Fleckenstein et al., 1999; Ho & Segre, 2001) and an attenuation of cocaine-induced 
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increases in ECF levels of DA (Segal & Kuczenski, 1992). The variable effect of cocaine 

on uptake likely reflects the use of different dosing regimes, routes of administration, 

brain regions, ECF concentration of DA at the time of cocaine administration, as well as 

the techniques to quantify DAT function (David et al., 1998; Cass et al., 1993; Zahniser 

et al., 1999). 

Interestingly, [3H]DA uptake studies showed the largest shift in treatment groups 

containing MA. MA exposure in N2A(hDAT) elicited a marked up-regulation of DAT 

binding and uptake, which was not present in COS-7 cells. This is what is expected since 

MA promotes DA release. The presence of MA may initiate a compensatory mechanism 

whereby DAT density is increased to enhance removal of DA from the synaptic cleft.  

Under normal conditions, the majority of DAT protein is found at the cell surface. 

The translocation of DAT from the membrane to the cytosolic space is a fundamental 

mechanism in the regulation of DAT homeostasis and functioning. Cell cultures 

expressing cloned DAT demonstrate that treatment with psychostimulants regulate DAT 

expression in the plasma membrane (Daniels & Amara, 1999; Saunders et al., 2000; 

Zhang et al., 1998; Little et al., 2002). Psychostimulants may act by promoting exocytosis 

of internalized DAT and/or by decreasing constitutive internalization of DAT and thus 

increasing plasma membrane DAT by altering the balance of internalization and 

recycling to the surface. Cell surface redistribution of DAT is a mechanism that 

contributes to the enhancement of extracellular DA levels in response to 

psychostimulants. Of note is that [3H]GBR12935 binding is not directly reflective of the 

functional DA uptake process. Therefore, [3H]DA uptake studies are performed to check 

the functional status of the DAT.  



74

V.E. Comparison of COS-7(hDAT) and N2A(hDAT) cells  

COS-7(hDAT) cells revealed high expression of DAT, but no DA uptake through 

the DAT. N2A(hDAT) cells showed high expression of functioning DAT, thus making it 

a better dopaminergic model for future studies.  

Zhang et al. compared [3H]DA uptake in hDAT-transfected N2A and COS-7 cells 

(1998). Uptake in N2A cells was of high affinity (Km = 0.43 µM). DA uptake was also 

examined in COS-7 cells, which displayed a higher Km of 1.6 µM. Thus the affinity for 

DA uptake was somewhat higher in the N2A system. Zhang et al.’s DA uptake findings 

were similar to Giros et al. (1992) determined a Km of 1.2 µM in Ltk-fibroblasts. Two 

studies performed in COS-7 cells reported a Km = 1.8 µM (Pristupa et al., 1994) and a Km

= 1.2 µM (Eshleman et al., 1995). These studies provide further evidence that the N2A 

cells may be a better dopaminergic model for our proposed studies. 

When working with hDAT-transfected COS-7 cells again, stable selection will be 

modified. Surviving cells after G418 selection need to be put into 96-well plates so that a 

single cell colony is present in each well. The clonal cell lines from each well then need 

to be tested for their DA transport activity. One of the clones that exhibits the highest 

activity would then be selected for extensive studies. Future studies also include 

sequencing the entire hDAT-cDNA insert. The size of the insert from NotI digestion is 

2.7 kilobases. In this study, the first 1.25 kilobases were sequenced and were confirmed a 

match to the validated SLC6A3 sequence (the official name of the dopamine transporter) 

in Genbank’s database. The other 1.45 kilobases of the insert need to be sequenced to 

verify that the cDNA is in fact the entire hDAT gene. A point mutation could have 
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occurred in a critical site of the hDAT gene used in this study, resulting in a 

dysfunctional DAT seen in the COS-7 cells. 

 

V.F. Conclusion  

This study posed the question: does low dose heavy metal exposure in 

combination with psychostimulant use alter functionality of the dopamine transporter? 

N2A(hDAT) cells revealed a trend where the metal/drug-treatment exposures increased 

the density of DAT, but reduced [3H]DA uptake. This study shows that metal/drug 

treatments could increase the cell surface distribution of DAT and that this redistribution 

of DAT could be associated with increases in extracellular DA. Because changes in DA 

neurotransmission are thought to play an important role in the addictive properties of 

psychostimulants, drug-related trafficking of DAT may be an important mechanism in the 

development of its abuse. Increased GBR binding with no change or decreased DA 

uptake may suggest decreased function of DAT. In turn, this will result in decreased DA 

uptake leading to increased synaptic DA. If not cleared properly, high levels of synaptic 

DA may lead to cell damage over time and further changes in DAT density and function. 



76

REFERENCES 

Ajjimaporn, A., Swinscoe, J., Shavali, S., Govitrapong, P., & Ebadi, M. (2005). 
Metallothionein provides zinc-mediated protective effects against methamphetamine 
toxicity in SK-N-SH cells. Brain Research Bulletin, 67(6), 466-475.  

Aleo, M. F., Morandini, F., Bettoni, F., Giuliani, R., Rovetta, F., Steimberg, N., et al. 
(2005). Endogenous thiols and MRP transporters contribute to Hg2+ efflux in 
HgCl2-treated tubular MDCK cells. Toxicology, 206(1), 137-151.  

American Type Culture Collection. (2005). Retrieved September 7, 2006, from 
www.atcc.org

Andersen, P. H. (1987). Biochemical and pharmacological characterization of [3H]GBR 
12935 binding in vitro to rat striatal membranes: labeling of the dopamine uptake 
complex. Journal of Neurochemistry, 48(6), 1887-1896.  

Aposhian, H. V., Maiorino, R. M., Rivera, M., Bruce, D. C., Dart, R. C., Hurlbut, K. M., 
et al. (1992). Human studies with the chelating agents, DMPS and DMSA. Journal 
of Toxicology. Clinical Toxicology, 30(4), 505-528.  

Aronstam, R. S., Abood, L. G., & Hoss, W. (1978). Influence of sulfhydryl reagents and 
heavy metals on the functional state of the muscarinic acetylcholine receptor in rat 
brain. Molecular Pharmacology, 14(4), 575-586.  

Aronstam, R. S., & Elderfrawi, M. E. (1979). Transition and heavy metal inhibition of 
ligand binding to muscarinic acetylcholine receptors from rat brain. Toxicology and 
Applied Pharmacology, 48(3), 489-496.  

Asanuma, M., & Cadet, J. L. (1998). Methamphetamine-induced increase in striatal NF-
kappaB DNA-binding activity is attenuated in superoxide dismutase transgenic 
mice. Brain Research. Molecular Brain Research, 60(2), 305-309.  

ATSDR (Agency for Toxic Substances and Disease Registry). (2005). Toxicological 
Profile for Lead (Draft for Public Comment). Atlanta, GA: U.S. Department of 
Health and Human Services, Public Health Service.  

Bellinger, D. C. (2004). Lead. Pediatrics, 113(4 Suppl), 1016-1022.  

 



77

Ben-Ozer, E. Y., Rosenspire, A. J., McCabe, M. J.,Jr, Worth, R. G., Kindzelskii, A. L., 
Warra, N. S., et al. (2000). Mercuric chloride damages cellular DNA by a non-
apoptotic mechanism. Mutation Research, 470(1), 19-27.  

Bluhm, R. E., Bobbitt, R. G., Welch, L. W., Wood, A. J., Bonfiglio, J. F., Sarzen, C., et 
al. (1992). Elemental mercury vapour toxicity, treatment, and prognosis after acute, 
intensive exposure in chloralkali plant workers. Part I: History, neuropsychological 
findings and chelator effects. Human & Experimental Toxicology, 11(3), 201-210.  

Boja, J. W., Kuhar, M. J., Kopajtic, T., Yang, E., Abraham, P., Lewin, A. H., et al. 
(1994). Secondary amine analogues of 3 beta-(4’-substituted phenyl)tropane-2 beta-
carboxylic acid esters and N-norcocaine exhibit enhanced affinity for serotonin and 
norepinephrine transporters. Journal of Medicinal Chemistry, 37(8), 1220-1223.  

Bondy, S. C., & Agrawal, A. K. (1980). The inhibition of cerebral high affinity receptor 
sites by lead and mercury compounds. Archives of Toxicology, 46(3-4), 249-256.  

Bressler, J. P., & Goldstein, G. W. (1991). Mechanisms of lead neurotoxicity. 
Biochemical Pharmacology, 41(4), 479-484.  

Brody, D. J., Pirkle, J. L., Kramer, R. A., Flegal, K. M., Matte, T. D., Gunter, E. W., et al. 
(1994). Blood lead levels in the US population. Phase 1 of the Third National Health 
and Nutrition Examination Survey (NHANES III, 1988 to 1991). JAMA: the 
Journal of the American Medical Association, 272(4), 277-283.  

Bryan-Lluka, L. J., Siebert, G. A., & Pond, S. M. (1999). Potencies of haloperidol 
metabolites as inhibitors of the human noradrenaline, dopamine and serotonin 
transporters in transfected COS-7 cells. Naunyn-Schmiedeberg’s Archives of 
Pharmacology, 360(2), 109-115.  

Burkey, R. T., Nation, J. R., Grover, C. A., & Bratton, G. R. (1997). Effects of chronic 
lead exposure on cocaine-induced disturbance of fixed-interval behavior. 
Pharmacology, Biochemistry, and Behavior, 56(1), 117-121.  

Cass, W. A., Gerhardt, G. A., Gillespie, K., Curella, P., Mayfield, R. D., & Zahniser, N. 
R. (1993). Reduced clearance of exogenous dopamine in rat nucleus accumbens, but 
not in dorsal striatum, following cocaine challenge in rats withdrawn from repeated 
cocaine administration. Journal of Neurochemistry, 61(1), 273-283.  

Cass, W. A., & Manning, M. W. (1999). Recovery of presynaptic dopaminergic 
functioning in rats treated with neurotoxic doses of methamphetamine. The Journal 
of Neuroscience : the Official Journal of the Society for Neuroscience, 19(17), 
7653-7660.  

Cho, A. K. (1990). Ice: A New Dosage Form of an Old Drug. [Electronic version]. 
Science, 249(4969), 631-634. Retrieved 5/22/06, from ProQuest database.  



78

Choi, H. J., Yoo, T. M., Chung, S. Y., Yang, J. S., Kim, J. I., Ha, E. S., et al. (2002). 
Methamphetamine-induced apoptosis in a CNS-derived catecholaminergic cell line. 
Molecules and Cells, 13(2), 221-227.  

Cooper, G. P., Suszkiw, J. B., & Manalis, R. S. (1984). Heavy metals: effects on synaptic 
transmission. Neurotoxicology, 5(3), 247-266.  

Cory-Slechta, D. A. (1995). Relationships between lead-induced learning impairments 
and changes in dopaminergic, cholinergic, and glutamatergic neurotransmitter 
system functions. Annual Review of Pharmacology and Toxicology, 35, 391-415.  

Cubells, J. F., Rayport, S., Rajendran, G., & Sulzer, D. (1994). Methamphetamine 
neurotoxicity involves vacuolation of endocytic organelles and dopamine-dependent 
intracellular oxidative stress. The Journal of Neuroscience: the Official Journal of 
the Society for Neuroscience, 14(4), 2260-2271.  

Daniels, G. M., & Amara, S. G. (1999). Regulated trafficking of the human dopamine 
transporter. Clathrin-mediated internalization and lysosomal degradation in response 
to phorbol esters. The Journal of Biological Chemistry, 274(50), 35794-35801.  

Dar, D. E., Metzger, T. G., Vandenbergh, D. J., & Uhl, G. R. (2006). Dopamine uptake 
and cocaine binding mechanisms: the involvement of charged amino acids from the 
transmembrane domains of the human dopamine transporter. European Journal of 
Pharmacology, 538(1-3), 43-47.  

David, D. J., Zahniser, N. R., Hoffer, B. J., & Gerhardt, G. A. (1998). In vivo 
electrochemical studies of dopamine clearance in subregions of rat nucleus 
accumbens: differential properties of the core and shell. Experimental Neurology, 
153(2), 277-286.  

 Daws, L. C., Callaghan, P. D., Moron, J. A., Kahlig, K. M., Shippenberg, T. S., Javitch, 
J. A., et al. (2002). Cocaine increases dopamine uptake and cell surface expression 
of dopamine transporters. Biochemical and Biophysical Research Communications, 
290(5), 1545-1550.  

Edvardsen, O., & Dahl, S. G. (1994). A putative model of the dopamine transporter. 
Brain Research. Molecular Brain Research, 27(2), 265-274.  

Enwonwu, C. O. (1987). Potential health hazard of use of mercury in dentistry: critical 
review of the literature. Environmental Research, 42(1), 257-274.  

Eshleman, A. J., Neve, R. L., Janowsky, A., & Neve, K. A. (1995). Characterization of a 
recombinant human dopamine transporter in multiple cell lines. The Journal of 
Pharmacology and Experimental Therapeutics, 274(1), 276-283.  



79

Feng, M. J., Yan, S. E., & Yan, Q. S. (2006). Cocaine exposure at a sublethal 
concentration downregulates CREB functions in cultured neuroblastoma cells. 
Brain Research, 1077(1), 59-66.  

Fleckenstein, A. E., Haughey, H. M., Metzger, R. R., Kokoshka, J. M., Riddle, E. L., 
Hanson, J. E., et al. (1999). Differential effects of psychostimulants and related 
agents on dopaminergic and serotonergic transporter function. European Journal of 
Pharmacology, 382(1), 45-49.  

Freed, C., Revay, R., Vaughan, R. A., Kriek, E., Grant, S., Uhl, G. R., et al. (1995). 
Dopamine transporter immunoreactivity in rat brain. The Journal of Comparative 
Neurology, 359(2), 340-349.  

Fung, Y. K., & Molvar, M. P. (1992). Toxicity of mercury from dental environment and 
from amalgam restorations. Journal of Toxicology. Clinical Toxicology, 30(1), 49-
61.  

Garris, P. A., & Wightman, R. M. (1994). Different kinetics govern dopaminergic 
transmission in the amygdala, prefrontal cortex, and striatum: an in vivo 
voltammetric study. The Journal of Neuroscience: the Official Journal of the 
Society for Neuroscience, 14(1), 442-450.  

Gibb, J. W., Hanson, G. R., & and Johnson, M. (1994). Neurochemical mechanisms of 
toxicity. In A. K. Cho, & D. S. Segal (Eds.), Amphetamine and Its Analogs: 
Psychopharmacology, Toxicology, and Abuse (pp. 269-295). San Diego: Academic 
Press.  

Giros, B., el Mestikawy, S., Godinot, N., Zheng, K., Han, H., Yang-Feng, T., et al. 
(1992). Cloning, pharmacological characterization, and chromosome assignment of 
the human dopamine transporter. Molecular Pharmacology, 42(3), 383-390.  

Giros, B., Jaber, M., Jones, S. R., Wightman, R. M., & Caron, M. G. (1996). 
Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the 
dopamine transporter. Nature, 379(6566), 606-612.  

Goering, P. L., Galloway, W. D., Clarkson, T. W., Lorscheider, F. L., Berlin, M., & 
Rowland, A. S. (1992). Toxicity assessment of mercury vapor from dental 
amalgams. Fundamental and Applied Toxicology: Official Journal of the Society of 
Toxicology, 19(3), 319-329.  

Grover, C. A., Nation, J. R., & Bratton, G. R. (1993). Chronic exposure to lead attenuates 
cocaine-induced behavioral activation. Pharmacology, Biochemistry, and Behavior, 
44(1), 221-225.  

Halbach, S. (1994). Amalgam tooth fillings and man’s mercury burden. Human & 
Experimental Toxicology, 13(7), 496-501.  



80

Hersch, S. M., Yi, H., Heilman, C. J., Edwards, R. H., & Levey, A. I. (1997). Subcellular 
localization and molecular topology of the dopamine transporter in the striatum and 
substantia nigra. The Journal of Comparative Neurology, 388(2), 211-227.  

Higashi, Y., Asanuma, M., Miyazaki, I., & Ogawa, N. (2000). Inhibition of tyrosinase 
reduces cell viability in catecholaminergic neuronal cells. Journal of 
Neurochemistry, 75(4), 1771-1774.  

Hirata, H., Ladenheim, B., Rothman, R. B., Epstein, C., & Cadet, J. L. (1995). 
Methamphetamine-induced serotonin neurotoxicity is mediated by superoxide 
radicals. Brain Research, 677(2), 345-347.  

Ho, M., & Segre, M. (2001). Individual and combined effects of ethanol and cocaine on 
the human dopamine transporter in neuronal cell lines. Neuroscience Letters, 299(3), 
229-233.  

 Imam, S. Z., el-Yazal, J., Newport, G. D., Itzhak, Y., Cadet, J. L., Slikker, W.,Jr, et al. 
(2001). Methamphetamine-induced dopaminergic neurotoxicity: role of 
peroxynitrite and neuroprotective role of antioxidants and peroxynitrite 
decomposition catalysts. Annals of the New York Academy of Sciences, 939, 366-
380.  

International Programme on Chemical Safety. (1991). Environmental Health Criteria 
118: Inorganic Mercury. Geneva, Switzerland: World Health Organization. 
Retrieved 5/23/06, from http://www.inchem.org/documents/ehc/ehc/ehc118.htm

Izenwasser, S., & Cox, B. M. (1990). Daily cocaine treatment produces a persistent 
reduction of [3H]dopamine uptake in vitro in rat nucleus accumbens but not in 
striatum. Brain Research, 531(1-2), 338-341.  

 Jason, K. M., & Kellogg, C. K. (1981). Neonatal lead exposure: effects on development 
of behavior and striatal dopamine neurons. Pharmacology, Biochemistry, and 
Behavior, 15(4), 641-649.  

Johnson, R. A., Eshleman, A. J., Meyers, T., Neve, K. A., & Janowsky, A. (1998). 
[3H]substrate- and cell-specific effects of uptake inhibitors on human dopamine and 
serotonin transporter-mediated efflux. Synapse (New York, N.Y.), 30(1), 97-106.  

Jones, S. R., Gainetdinov, R. R., Wightman, R. M., & Caron, M. G. (1998). Mechanisms 
of amphetamine action revealed in mice lacking the dopamine transporter. The 
Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 
18(6), 1979-1986.  

Kalivas, P. W., & Duffy, P. (1990). Effect of acute and daily cocaine treatment on 
extracellular dopamine in the nucleus accumbens. Synapse (New York, N.Y.), 5(1), 
48-58.  



81

Kilty, J. E., Lorang, D., & Amara, S. G. (1991). Cloning and expression of a cocaine-
sensitive rat dopamine transporter. Science (New York, N.Y.), 254(5031), 578-579.  

Kim, S. H., & Sharma, R. P. (2004). Mercury-induced apoptosis and necrosis in murine 
macrophages: role of calcium-induced reactive oxygen species and p38 mitogen-
activated protein kinase signaling. Toxicology and Applied Pharmacology, 196(1), 
47-57.  

Kitayama, S., Shimada, S., Xu, H., Markham, L., Donovan, D. M., & Uhl, G. R. (1992). 
Dopamine transporter site-directed mutations differentially alter substrate transport 
and cocaine binding. Proceedings of the National Academy of Sciences of the United 
States of America, 89(16), 7782-7785.  

Kobilka, B. K. (1990). The role of cytosolic and membrane factors in processing of the 
human beta-2 adrenergic receptor following translocation and glycosylation in a 
cell-free system. The Journal of Biological Chemistry, 265(13), 7610-7618.  

Kogan, F. J., Nichols, W. K., & Gibb, J. W. (1976). Influence of methamphetamine on 
nigral and striatal tyrosine hydroxylase activity and on striatal dopamine levels. 
European Journal of Pharmacology, 36(2), 363-371.  

Ladenheim, B., Krasnova, I. N., Deng, X., Oyler, J. M., Polettini, A., Moran, T. H., et al. 
(2000). Methamphetamine-induced neurotoxicity is attenuated in transgenic mice 
with a null mutation for interleukin-6. Molecular Pharmacology, 58(6), 1247-1256.  

Lamb, R. J., & Henningfield, J. E. (1994). Human d-amphetamine drug discrimination: 
methamphetamine and hydromorphone. Journal of the Experimental Analysis of 
Behavior, 61(2), 169-180.  

Lasley, S. M. (1992). Regulation of dopaminergic activity, but not tyrosine hydroxylase, 
is diminished after chronic inorganic lead exposure. Neurotoxicology, 13(3), 625-
635.  

Lasley, S. M., Greenland, R. D., Minnema, D. J., & Michaelson, I. A. (1984). Influence 
of chronic inorganic lead exposure on regional dopamine and 5-hydroxytryptamine 
turnover in rat brain. Neurochemical Research, 9(12), 1675-1688.  

Lasley, S. M., & Lane, J. D. (1988). Diminished regulation of mesolimbic dopaminergic 
activity in rat after chronic inorganic lead exposure. Toxicology and Applied 
Pharmacology, 95(3), 474-483.  

LaVoie, M. J., & Hastings, T. G. (1999). Dopamine quinone formation and protein 
modification associated with the striatal neurotoxicity of methamphetamine: 
evidence against a role for extracellular dopamine. The Journal of Neuroscience: the 
Official Journal of the Society for Neuroscience, 19(4), 1484-1491.  



82

Lee, C. W., Srivastava, R. K., Ghorishi, S. B., Karwowski, J., Hastings, T. W., & Hirschi, 
J. C. (2006). Pilot-scale study of the effect of selective catalytic reduction catalyst 
on mercury speciation in Illinois and Powder River Basin coal combustion flue 
gases. Journal of the Air & Waste Management Association (1995), 56(5), 643-649.  

Lee, S. H., Cho, H. K., Son, H., & Lee, Y. S. (1997). Substrate transport and cocaine 
binding of human dopamine transporter is reduced by substitution of carboxyl tail 
with that of bovine dopamine transporter. Neuroreport, 8(11), 2591-2594.  

Leggett, R. W. (1993). An age-specific kinetic model of lead metabolism in humans. 
Environmental Health Perspectives, 101(7), 598-616.  

Lew, R., Vaughan, R., Simantov, R., Wilson, A., & Kuhar, M. J. (1991). Dopamine 
transporters in the nucleus accumbens and the striatum have different apparent 
molecular weights. Synapse (New York, N.Y.), 8(2), 152-153.  

Little, K. Y., Elmer, L. W., Zhong, H., Scheys, J. O., & Zhang, L. (2002). Cocaine 
induction of dopamine transporter trafficking to the plasma membrane. Molecular 
Pharmacology, 61(2), 436-445.  

Maragos, W. F., Jakel, R., Chesnut, D., Pocernich, C. B., Butterfield, D. A., St Clair, D., 
et al. (2000). Methamphetamine toxicity is attenuated in mice that overexpress 
human manganese superoxide dismutase. Brain Research, 878(1-2), 218-222.  

Mash, D. C., Pablo, J., Ouyang, Q., Hearn, W. L., & Izenwasser, S. (2002). Dopamine 
transport function is elevated in cocaine users. Journal of Neurochemistry, 81(2), 
292-300.  

McCann, U. D., Wong, D. F., Yokoi, F., Villemagne, V., Dannals, R. F., & Ricaurte, G. 
A. (1998). Reduced striatal dopamine transporter density in abstinent 
methamphetamine and methcathinone users: evidence from positron emission 
tomography studies with [11C]WIN-35,428. The Journal of Neuroscience: the 
Official Journal of the Society for Neuroscience, 18(20), 8417-8422.  

Melega, W. P., Williams, A. E., Schmitz, D. A., DiStefano, E. W., & Cho, A. K. (1995). 
Pharmacokinetic and pharmacodynamic analysis of the actions of D-amphetamine 
and D-methamphetamine on the dopamine terminal. The Journal of Pharmacology 
and Experimental Therapeutics, 274(1), 90-96.  

Mello, N. K., Negus, S. S., Lukas, S. E., Mendelson, J. H., Sholar, J. W., & Drieze, J. 
(1995). A primate model of polydrug abuse: cocaine and heroin combinations. The 
Journal of Pharmacology and Experimental Therapeutics, 274(3), 1325-1337.  

Miller, G. W., Staley, J. K., Heilman, C. J., Perez, J. T., Mash, D. C., Rye, D. B., et al. 
(1997). Immunochemical analysis of dopamine transporter protein in Parkinson’s 
disease. Annals of Neurology, 41(4), 530-539.  



83

Minnema, D. J., Greenland, R. D., & Michaelson, I. A. (1986). Effect of in vitro 
inorganic lead on dopamine release from superfused rat striatal synaptosomes. 
Toxicology and Applied Pharmacology, 84(2), 400-411.  

Mizuno, S., Ogawa, N., & Mori, A. (1983). Differential effects of some transition metal 
cations on the binding of beta-carboline-3-carboxylate and diazepam. 
Neurochemical Research, 8(7), 873-880.  

Mjor, I. A. (1994). Side effects of dental materials. BMJ (Clinical research ed.), 
309(6955), 621-622.  

Nation, J. R., Cardon, A. L., Heard, H. M., Valles, R., & Bratton, G. R. (2003). Perinatal 
lead exposure and relapse to drug-seeking behavior in the rat: a cocaine 
reinstatement study. Psychopharmacology, 168(1-2), 236-243.  

Nation, J. R., Livermore, C. L., & Burkey, R. T. (1996). Chronic lead exposure attenuates 
sensitization to the locomotor-stimulating effects of cocaine. Drug and Alcohol 
Dependence, 41(2), 143-149.  

Nation, J. R., Miller, D. K., & Bratton, G. R. (2000). Developmental lead exposure alters 
the stimulatory properties of cocaine at PND 30 and PND 90 in the rat. 
Neuropsychopharmacology : Official Publication of the American College of 
Neuropsychopharmacology, 23(4), 444-454.  

Nation, J. R., Smith, K. R., & Bratton, G. R. (2004). Early developmental lead exposure 
increases sensitivity to cocaine in a self-administration paradigm. Pharmacology, 
Biochemistry, and Behavior, 77(1), 127-135.  

Nation, J. R., Wellman, P. J., Livermore, C. L., Miller, D. K., & Bratton, G. R. (1997). 
Brain and plasma levels of cocaine and benzoylecgonine in lead-expose and 
cadmium-exposed rats following acute or chronic intraperitoneal administration of 
cocaine. Toxicology Letters, 92(1), 47-57.  

Ninomiya, T., Ohmori, H., Hashimoto, K., Tsuruta, K., & Ekino, S. (1995). Expansion of 
methylmercury poisoning outside of Minamata: an epidemiological study on 
chronic methylmercury poisoning outside of Minamata. Environmental Research, 
70(1), 47-50.  

Nirenberg, M. J., Vaughan, R. A., Uhl, G. R., Kuhar, M. J., & Pickel, V. M. (1996). The 
dopamine transporter is localized to dendritic and axonal plasma membranes of 
nigrostriatal dopaminergic neurons. The Journal of Neuroscience: the Official 
Journal of the Society for Neuroscience, 16(2), 436-447.  

O’Dell, S. J., Weihmuller, F. B., & Marshall, J. F. (1991). Multiple methamphetamine 
injections induce marked increases in extracellular striatal dopamine which correlate 
with subsequent neurotoxicity. Brain Research, 564(2), 256-260.  



84

O’Dowd, B. F., Hnatowich, M., Caron, M. G., Lefkowitz, R. J., & Bouvier, M. (1989). 
Palmitoylation of the human beta 2-adrenergic receptor. Mutation of Cys341 in the 
carboxyl tail leads to an uncoupled nonpalmitoylated form of the receptor. The 
Journal of Biological Chemistry, 264(13), 7564-7569.  

Patel, A., Uhl, G., & Kuhar, M. J. (1993). Species differences in dopamine transporters: 
postmortem changes and glycosylation differences. Journal of Neurochemistry, 
61(2), 496-500.  

Patel, A. P., Cerruti, C., Vaughan, R. A., & Kuhar, M. J. (1994). Developmentally 
regulated glycosylation of dopamine transporter. Brain Research. Developmental 
Brain Research, 83(1), 53-58.  

Pearce, R. K., Seeman, P., Jellinger, K., & Tourtellotte, W. W. (1990). Dopamine uptake 
sites and dopamine receptors in Parkinson’s disease and schizophrenia. European 
Neurology, 30 Suppl 1, 9-14.  

Peterson, L. L., & Bartfai, T. (1983). In vitro and in vivo inhibition of [3H]imipramine 
binding by cadmium. European Journal of Pharmacology, 90(2-3), 289-292.  

Posser, T., de Aguiar, C. B., Garcez, R. C., Rossi, F. M., Oliveira, C. S., Trentin, A. G., et 
al. (2007). Exposure of C6 glioma cells to Pb(II) increases the phosphorylation of 
p38(MAPK) and JNK1/2 but not of ERK1/2. Archives of Toxicology, 81(6), 407-
414.  

Pristupa, Z. B., Wilson, J. M., Hoffman, B. J., Kish, S. J., & Niznik, H. B. (1994). 
Pharmacological heterogeneity of the cloned and native human dopamine 
transporter: disassociation of [3H]WIN 35,428 and [3H]GBR 12,935 binding. 
Molecular Pharmacology, 45(1), 125-135.  

Qian, Y., Galli, A., Ramamoorthy, S., Risso, S., DeFelice, L. J., & Blakely, R. D. (1997). 
Protein kinase C activation regulates human serotonin transporters in HEK-293 cells 
via altered cell surface expression. The Journal of Neuroscience: the Official 
Journal of the Society for Neuroscience, 17(1), 45-57.  

Qian, Y., Harris, E. D., Zheng, Y., & Tiffany-Castiglioni, E. (2000). Lead targets GRP78, 
a molecular chaperone, in C6 rat glioma cells. Toxicology and Applied 
Pharmacology, 163(3), 260-266.  

Ranaldi, R., & Wise, R. A. (2001). Blockade of D1 dopamine receptors in the ventral 
tegmental area decreases cocaine reward: possible role for dendritically released 
dopamine. The Journal of Neuroscience: the Official Journal of the Society for 
Neuroscience, 21(15), 5841-5846.  

Reith, M. E., Xu, C., & Chen, N. H. (1997). Pharmacology and regulation of the neuronal 
dopamine transporter. European Journal of Pharmacology, 324(1), 1-10.  



85

Richfield, E. K. (1991). Quantitative autoradiography of the dopamine uptake complex in 
rat brain using [3H]GBR 12935: binding characteristics. Brain Research, 540(1-2), 
1-13.  

Ritz, M. C., Lamb, R. J., Goldberg, S. R., & Kuhar, M. J. (1987). Cocaine receptors on 
dopamine transporters are related to self-administration of cocaine. Science, 
237(4819), 1219-1223.  

Roels, H., Hubermont, G., Buchet, J. P., & Lauwerys, R. (1978). Placental transfer of 
lead, mercury, cadmium, and carbon monoxide in women. III. Factors influencing 
the accumulation of heavy metals in the placenta and the relationship between metal 
concentration in the placenta and in maternal and cord blood. Environmental 
Research, 16(1-3), 236-247.  

Saunders, C., Ferrer, J. V., Shi, L., Chen, J., Merrill, G., Lamb, M. E., et al. (2000). 
Amphetamine-induced loss of human dopamine transporter activity: an 
internalization-dependent and cocaine-sensitive mechanism. Proceedings of the 
National Academy of Sciences of the United States of America, 97(12), 6850-6855.  

Segal, D. S., & Kuczenski, R. (1992). Repeated cocaine administration induces 
behavioral sensitization and corresponding decreased extracellular dopamine 
responses in caudate and accumbens. Brain Research, 577(2), 351-355.  

Sharpe, L. G., Pilotte, N. S., Mitchell, W. M., & De Souza, E. B. (1991). Withdrawal of 
repeated cocaine decreases autoradiographic [3H]mazindol-labelling of dopamine 
transporter in rat nucleus accumbens. European Journal of Pharmacology, 203(1), 
141-144.  

Shimada, S., Kitayama, S., Lin, C. L., Patel, A., Nanthakumar, E., Gregor, P., et al. 
(1991). Cloning and expression of a cocaine-sensitive dopamine transporter 
complementary DNA. Science (New York, N.Y.), 254(5031), 576-578.  

Shoblock, J. R., Maisonneuve, I. M., & Glick, S. D. (2003). Differences between d-
methamphetamine and d-amphetamine in rats: working memory, tolerance, and 
extinction. Psychopharmacology, 170(2), 150-156.  

Shoblock, J. R., Sullivan, E. B., Maisonneuve, I. M., & Glick, S. D. (2003). 
Neurochemical and behavioral differences between d-methamphetamine and d-
amphetamine in rats. Psychopharmacology, 165(4), 359-369.  

Silbergeld, E. K. (1997). Preventing lead poisoning in children. Annual Review of Public 
Health, 18, 187-210.  

Silbergeld, E. K., & Adler, H. S. (1978). Subcellular mechanisms of lead neurotoxicity. 
Brain Research, 148(2), 451-467.  



86

Singer, H. S., Hahn, I. H., & Moran, T. H. (1991). Abnormal dopamine uptake sites in 
postmortem striatum from patients with Tourette’s syndrome. Annals of Neurology, 
30(4), 558-562.  

Sonsalla, P. K., Nicklas, W. J., & Heikkila, R. E. (1989). Role for excitatory amino acids 
in methamphetamine-induced nigrostriatal dopaminergic toxicity. Science, 
243(4889), 398-400.  

Stadlin, A., Lau, J. W., & Szeto, Y. K. (1998). A selective regional response of cultured 
astrocytes to methamphetamine. Annals of the New York Academy of Sciences, 844,
108-121.  

Suri, C., Fung, B. P., Tischler, A. S., & Chikaraishi, D. M. (1993). Catecholaminergic 
cell lines from the brain and adrenal glands of tyrosine hydroxylase-SV40 T antigen 
transgenic mice. The Journal of Neuroscience: the Official Journal of the Society for 
Neuroscience, 13(3), 1280-1291.  

Surratt, C. K., Persico, A. M., Yang, X. D., Edgar, S. R., Bird, G. S., Hawkins, A. L., et 
al. (1993). A human synaptic vesicle monoamine transporter cDNA predicts 
posttranslational modifications, reveals chromosome 10 gene localization and 
identifies TaqI RFLPs. FEBS letters, 318(3), 325-330.  

Tavakoli-Nezhad, M., Barron, A. J., & Pitts, D. K. (2001). Postnatal inorganic lead 
exposure decreases the number of spontaneously active midbrain dopamine neurons 
in the rat. Neurotoxicology, 22(2), 259-269.  

Thompson, C. M., Markesbery, W. R., Ehmann, W. D., Mao, Y. X., & Vance, D. E. 
(1988). Regional brain trace-element studies in Alzheimer’s disease. 
Neurotoxicology, 9(1), 1-7.  

Tiffany-Castiglioni, E., Guerri, C., Aschner, M., Matsushima, G. K., O’Callaghan, J. P., 
& Streit, W. J. (2001). Roles of glia in developmental neurotoxicity: session VI 
summary and research needs. Neurotoxicology, 22(5), 567-573.  

United States. National Drug Intelligence Center. (2003). National drug threat 
assessment 2003. Johnstown, PA: U.S. Dept. of Justice, National Drug Intelligence 
Center.  

Valles, R., Rocha, A., Cardon, A., Bratton, G. R., & Nation, J. R. (2005). The effects of 
the GABAA antagonist bicuculline on cocaine self-administration in rats exposed to 
lead during gestation/lactation. Pharmacology, Biochemistry, and Behavior, 80(4), 
611-619.  

Vandenburgh, H. H. (1992). Mechanical forces and their second messengers in 
stimulating cell growth in vitro. The American Journal of Physiology, 262(3 Pt 2), 
R350-5.  



87

Vidal, L., Alfonso, M., Faro, L. F., Campos, F., Cervantes, R., & Duran, R. (2007). 
Evaluation of the effects and mechanisms of action of mercuric chloride on striatal 
dopamine release by using in vivo microdialysis in freely moving rats. Toxicology, 
236(1-2), 42-49.  

Von Burg, R., Northington, F. K., & Shamoo, A. (1980). Methylmercury inhibition of rat 
brain muscarinic receptors. Toxicology and Applied Pharmacology, 53(2), 285-292.  

Wagner, G. C., Ricaurte, G. A., Seiden, L. S., Schuster, C. R., Miller, R. J., & Westley, J. 
(1980). Long-lasting depletions of striatal dopamine and loss of dopamine uptake 
sites following repeated administration of methamphetamine. Brain Research, 
181(1), 151-160.  

Walther, U. I., Walther, S. C., Liebl, B., Reichl, F. X., Kehe, K., Nilius, M., et al. (2002). 
Cytotoxicity of ingredients of various dental materials and related compounds in L2- 
and A549 cells. Journal of Biomedical Materials Research, 63(5), 643-649.  

Wise, R. A., & Hoffman, D. C. (1992). Localization of drug reward mechanisms by 
intracranial injections. Synapse (New York, N.Y.), 10(3), 247-263.  

World Health Organization, Food and Agricultural Organization of the United Nations, & 
International Atomic Energy Agency. (1996). Trace Elements in Human Nutrition 
and Health. Geneva: World Health Organization.  

Zahniser, N. R., Larson, G. A., & Gerhardt, G. A. (1999). In vivo dopamine clearance 
rate in rat striatum: regulation by extracellular dopamine concentration and 
dopamine transporter inhibitors. The Journal of Pharmacology and Experimental 
Therapeutics, 289(1), 266-277.  

 Zhang, J., Price, J. O., Graham, D. G., & Montine, T. J. (1998). Secondary excitotoxicity 
contributes to dopamine-induced apoptosis of dopaminergic neuronal cultures. 
Biochemical and Biophysical Research Communications, 248(3), 812-816.  

Zhang, L., Elmer, L. W., & Little, K. Y. (1998). Expression and regulation of the human 
dopamine transporter in a neuronal cell line. Brain Research. Molecular Brain 
Research, 59(1), 66-73.  

Zimanyi, I., Lajtha, A., & Reith, M. E. (1989). Comparison of characteristics of 
dopamine uptake and mazindol binding in mouse striatum. Naunyn-Schmiedeberg’s 
Archives of Pharmacology, 340(6), 626-632. 

 



VITA 
 

Amber Nicole Hood 
 

Candidate for the Degree of 
 

Master of Science 
 

Thesis:  EFFECTS OF HEAVY METALS AND PSYCHOSTIMULANTS ON 

DOPAMINE TRANSPORTER FUNCTION 

 

Major Field:  Forensic Science 
 
Biographical: 
 

Education:   High School Diploma - Honors 
Texas Academy of Mathematics and Science 
University of North Texas, Denton, TX 
Aug 2000-May 2002 
 
Bachelor of Science in Biology  

 University of North Texas, Denton, TX 
 May 2002-May 2004 
 

Master of Science in Forensic Science, emphasis in Toxicology 
 Oklahoma State University–Center for Health Sciences, Tulsa, OK 
 Aug 2004-July 2007 
 
Publications:  

Hood, A.N., Little, K.Y., & Wallace, D.R. (2007). Combined 
effects of heavy metals and drugs of abuse on dopamine 
transporter function. Int. Society for Neurochemistry, Abstract No. 
10510, Cancun, Mexico. 

 
Professional Memberships:   

American Society for Neurochemistry 
 



Name: Amber Nicole Hood                                                 Date of Degree: July, 2007 
 
Institution: Oklahoma State University-CHS                             Location: Tulsa, Oklahoma 
 
Title of Study: EFFECTS OF HEAVY METALS AND PSYCHOSTIMULANTS ON 

DOPAMINE TRANSPORTER FUNCTION  
 

Pages in Study: 75                       Candidate for the Degree of Master of Science 

Major Field: Forensic Science 
 
Scope and Method of Study: Heavy metals may alter the abuse liability of drugs due to 

actions on the dopamine transporter (DAT).  This study examined the effects of 
extended, low-level heavy metal and psychostimulant co-exposure on DAT 
function.  SK-N-SH cells, incubated in the presence of multiple concentrations of 
lead (Pb), mercury (Hg), cocaine (COC) and methamphetamine (MA), were used 
to measure LDH activity to determine optimum time/concentration for sublethal 
exposure assays. Parallel studies were conducted on non-neuronal vs. neuronal 
cell lines, COS-7(hDAT) and N2A(hDAT) respectively. [3H]GBR12935 binding 
assays were performed to determine DAT expression at the plasma membrane. 
[3H]Dopamine (DA) uptake assays were conducted to establish effects on DAT 
functioning.   

 
Findings and Conclusions: LDH activity significantly increased in both a concentration- 

(Hg [p<0.0001], Pb [p=0.0093], COC [p=0.0477]) and time-dependent (Hg 
[p=0.0004], Pb [p<0.0001], COC [p=0.0008], MA [p=0.0003]) 
manner.  Sublethal concentrations of drugs/metals were chosen for further studies 
(10 µM for HgCl2 and PbCl2; 100 nM for COC and MA), using a 72 h 
exposure.  COS-7(hDAT) cells revealed expression of DAT, but no DA uptake. 
N2A(hDAT) cells showed higher expression of functioning DAT. Statistical 
analysis of the treatment effect on DAT density or DA uptake through the DAT 
revealed no significance in either cell line. Studies in N2A(hDAT) revealed that 
DAT density increased when exposed to individual treatment groups [Hg (146%), 
Pb (175%), COC (115%), or MA(131%)]. When treatments were combined, DAT 
density increased in: Hg+MA (161%), Hg+Pb+Coc+MA (227%), and Hg+Pb 
(288%). An interactive effect on DAT density is suggested in treatment groups 
containing Hg.  Studies in N2A(hDAT) showed the largest increase in DA uptake 
when exposed to treatment groups containing MA (35-81%), whereas COC 
groups inhibited uptake (17-20%). Overall, a trend was observed where DAT 
density was increased, but cause functional decreases in DA clearance were 
observed. Individuals exposed to low-levels of Hg, may be at risk for increased 
DA neurotransmission/ turnover following psychostimulant use, resulting in an 
elevated addictive, or toxic, potential of these already addictive drugs. 
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