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CHAPTER I 
 

 

INTRODUCTION 

 

 

 Urinary Tract Infections (UTI) are among the most common diagnoses in primary care, 

hospitals, and extended care facilities.  UTIs account for the use of 6 billon health care dollars in 

treatment and management, and cause 8 million patient visits, ultimately resulting in over 

100,000 hospitalizations per annum (Drekonja, and Johnson. 2008; Stamm 2001).  In over 80% of 

UTIs, the causative agent is a strain of uropathogenic Escherichia coli (UPEC; Chassin et al., 

2006; Mulvey, 2000).  Drug resistant bacterial strains have added to the complications of UTIs, 

resulting in increased frequency of recurrent UTIs (Blanogo, 2010; Drekonja and Johnson, 2008).  

Originating in the colon, these especially virulent uropathogens express adhesive proteins such as 

P pilli, Type 1 pilli, and Dr adhesins which mediate adherence to the epithelial cell surface.  

Specifically, Dr fimbriae are associated with a 2 fold increased risk of recurrent UTIs.  Invasion 

of the cell by UPECs containing Dr fimbriae (Dr+ E. coli) have been shown to cause chronic 

pyelonephritis in the C3H/HeJ mouse model (Kaul et al., 1999; Foxman, et al., 1995; Nowicki et 

al., 2001).  
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 Dr fimbriae bind to uroepithelial cells of the urinary tract through recognition of decay 

acceleration factor (DAF), also known as complement regulatory protein, CD55 (Nowicki 2001).  

DAF, a membrane associated glycoprotein, interacts with Type IV collagen, which is a 

colonization receptor.  This interaction facilitates the invasion of Dr+ E.coli into the cell, causing 

the infection and inflammation observed in UTIs.  Previous experiments in our lab have 

demonstrated that this interaction is hormonally regulated (Selverangan, 2004; Singh et al., 2010)   

 Association with Toll like receptor 4 (TLR) is essential for the initiation of host responses 

due to invasion of the cell by UPECs.  TLR4 binds to lipopolysaccharide (LPS) of the gram 

negative UPECs and is therefore activated to stimulate the production of pro-inflammatory 

cytokines (Vandewalle, 2008).   

 UTIs can affect both men and women; however, they are more prevalent in females.  

Approximately 50% of adult women report experiencing one or more UTI per annum and some 

women develop a history of repeated infections (Drekonja, and Johnson, 2008).  One of the most 

significant clinical issues of UTIs is recurrence, the mechanism of which is only partially 

understood.  The incidence of UTIs in females is contingent upon age and stage of menstrual 

cycle.  In particular, postmenopausal women demonstrate drastic decreases in estrogen and 

maintain high incidences of UTIs.  This observation, coupled with the fact that UTI occurrence 

varies with stage of menstrual cycle, suggests hormonal regulation (Curran et al., 2007, Straub 

2007).  

 Clinical trials using estrogen hormone-replacement therapy have demonstrated decreased 

incidence in UTIs in postmenopausal women and established estrogen-replacement guidelines for 

the prevention of UTI (Dwyer, 2002).  Although, there are studies suggesting that estrogen 

increases the risk of UTI (Orander, 1992; Curran et al., 2007).  It is widely agreed that estrogen 

has a significant role in protection against infection (Styrt, 1991).  Estrogen may act on the host, 
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the pathogen, or the host-pathogen system as a means of mediating immunity.  Estrogen has a 

wide range of action, via estrogen receptor (ER) α or ER β to regulate gene transcription (Straub, 

2007).  In the kidney, the predominant receptor subtype is ERα (Jelinsky et al., 2003).  Although 

it has been established that estrogen exerts both pro-inflammatory and anti-inflammatory effects 

during pathogenesis, one of the crucial ways in which estrogen regulates the immune system is 

via pro-inflammatory proteins (Fahey, 2008).   

 Tumor Necrosis Factor alpha (TNF-α) is an instrumental factor in mounting the innate 

and adaptive immune response and is one of the most important cytokines in resolving UTI 

pathogenesis.  Estrogen effects on TNF-α have been extensively studied.  In vitro studies suggest 

that estrogen suppresses the production of TNF-α in numerous cell types and pathologies 

(Lambert, 2004).  However, estrogen-mediated TNF-α production is increased in acute 

pyelonephritic UTIs (Gϋrgoze et al., 2005).  This speaks to the dichotomous and cell-specific 

action of TNF-α, and demands further inquiry into the mechanism of action.   

 UTIs are a far reaching significant clinical problem for which treatment options are 

poorly understood.  Estrogen-mediated protection against UTIs represents a plausible option for 

patient treatment.  As a result, we have developed an in vitro model of the ascending UTI using 

murine inner medullary collecting duct cells of the kidney (mIMCD-3).  We hypothesize estrogen 

modulates Dr+E.coli invasion in mIMCD3 cells by regulating TNF-α production and affecting 

expression of DAF.  Therefore, the current study was conducted to investigate the role of 

estrogen in modulating TNF-α response during Dr+E.coli infection in mIMCD-3 cells.  The long 

term goal of this study is to identify and characterize the cellular and molecular mechanisms 

through which estrogen or estrogen receptors may be modulating the onset and severity of UTIs.  

This information will contribute to the understanding of UTI pathogenesis and the identification 

of biomarkers with hopes of leading to effective treatment for the incidence of UTIs.  



4 

 

CHAPTER II 
  

REVIEW OF LETERATURE 

Urinary Tract Infections 

 It is estimated that 150 million UTIs occur globally per annum, resulting in more than 6 

million dollars of indirect health care expenditure (Stamm, 2001).  In the United States, UTIs 

account for 8 million patient visits per year, 1 million of which are emergency department visits.  

Collectively, these visits incur billions of dollars for management, and result in over 100,000 

hospitalizations.  The incidence of UTIs occurs predominantly among women, demonstrated by 

the fact that nearly 1 in 3 women will be diagnosed and require antimicrobial therapy by the age 

of 24 years (Foxman, 2003).  Additionally, the prevalence of UTIs in the female population varies 

with age and menstrual cycle, confirming the possibility of hormonal control via estrogen 

(Sobieszczyk, 2008). 

 UTIs may involve either the lower urinary tract, or both upper and lower urinary tract 

(Figure 1).  The term cystitis describes infection in the lower urinary tract and presents as dysuria 

and suprapubic tenderness with urinary frequency and urgency (Nicolle, 2008).  Pyelonephritis 

describes urinary tract infection ascending toward the kidney.  It is a more severe diagnosis, 

presenting with dysuria, abdominal pain and often systemic symptoms including, but not limited 

to, fever, rigors, headache, vomiting and delirium (Ramakrishnan, 2005). 
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Figure 1: Location of upper and lower urinary tract infection.  Adapted from 

Supplementnews.org/progressive health.com.   

 

Uropathogenic E.coli 

 Organisms that cause UTIs are derived primarily from the aerobic members of the fecal 

flora.  95% of uncomplicated cases of cystitis are caused by a single organism.  In contrast, 

infections among hospitalized patients or those with structural abnormalities of the urinary tract 

derive from polymicrobial infections (Sobieszczyk, 2008).  
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 The most common causative agent of UTIs are gram negative rods, 80% of which are 

members of  the especially virulent family of Uropathogenic E.coli (UPEC)  The majority of 

these uropathogens originate in the colon, invade the urethra, ascend to the bladder and then to 

the kidney.  As UPECs invade the upper urinary tract in an ascending infection, they first come 

into contact with the cells of the inner medullary collecting duct (IMCD) in the kidney (Chassin 

et al., 2006, Mulvey, 2002).  Despite the fact that most all strains of E.coli can result in UTI, 

UPEC’s are particularly virulent because of their ability to produce adhesive proteins on their cell 

surfaces called pilli, fimbriae, or adhesins.  These proteins include P pilli, Type 1 pilli, and Dr 

adhesins, which mediate the adherence of bacterium to the cell lining of the bladder and upper 

urinary tract.  P fimbriae (Figure 2) are associated with acute pyelonephritis, and initiate ceramide 

release and activation of signaling pathways (Wult et al.,2000).  They require toll like receptor-4 

(TLR-4) for binding and function, and elicit a strong proinflamatory response to 

lipopolysaccharide (LPS) challenge.  (Hellund, 2001; Johnson, 1991).  E.coli Type 1 fimbriae are 

associated with cystitis and mediate bladder cell invasion.  Type 1 fimbriae require cluster of 

differentiation 14/ TLR4 (CD14/TLR4) interaction and signaling and cause the production of 

interleukin 6 (IL-6) via a LPS- dependent pathway (Curran, 2007).  Of particular interest, E.coli 

Dr fimbriae are associated with increased risk of recurrent UTI and have been proven to cause 

experimental chronic pyelonephhritis (Goluszko et al., 1997; Goluszko et al., 2001; Nowicki et 

al., 2001).  The E.coli Dr fimbriae adhesin was originally cloned from the clinical pyelonephritis 

strain, E. coli IH11128. Biogenesis of Dr fimbriae requires the draA gene as well as three others 

(draC, draD, draE) (Norwicki, 2001).  Dr adhesins of Dr+ E.coli have been shown to be essential 

for the induction of chronic pyelonephritis in the C3H/HeJ mouse model (Goluszko et al., 1997; 

Nowicki et al 2001) They invade the uroepithelium using lipid rafts and microtubule networks 

and subsequently bind to the cells of the uroepithelium via recognition of type IV collagen and 

decay-accelerating factor (DAF), also known as CD55 (Curran, 2007).  
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Figure 2: Escherichia coli demonstrating fimbriae  Image adapted from Dennis 
Kunkel Microscopy, Inc. 
  

   

 

 

 

 

 

 



8 

 

 DAF is a glycosyl-phosphatidyl-inositol protein bound to the cell membrane by a region 

of four consecutive extracellular short consensus repeats (SCR).  The physiological function of 

DAF is to protect the host cell from the cytotoxic effects of complement activation.  DAF has a 

wide tissue distribution, which includes epithelial surfaces of the gastrointestinal mucosa, 

exocrine glands, renal pelvis, ureter, bladder, cervix, and uterine mucosa.  In the human 

endometrial epithelium, DAF expression is dynamically regulated through the reproductive cycle, 

demonstrated by an increase in expression during pregnancy (Hasan, 2002; Fang, 2004; 

Selvarangan, 2004, Nowicki, et al., 1990, Nowicki et al., 1993; Lui, 2004, Mulvey, 2002).  Dr+ 

E. coli recognizes DAF to adhere, invade, and colonize the kidney epithelium, and further binds 

to type IV collagen in the epithelial basement membrane (Selvarangan, 2004).    

 Interaction of Dr+ E.coli with DAF and type IV collagen in the kidney leads to bacterial 

infection, inducing inflammation in renal tubules.  Type IV collagen is found on the basement 

membrane of the renal interstitial cells and is a specialized form of extracellular matrix that 

underlies all epithelia and compartmentalized tissues.  The adherence of bacteria to type IV 

collagen in the basement membrane of the epithelium facilitates renal persistence of Dr+ E.coli 

and the development of pyelonephritis (Selverangan, 2004).   

 The adherence of UPECs to the uroepithelium induces an inflammatory response via 

pathogen-specific virulence factors.  The uroepithelium forms a physical barrier against 

microorganisms, which complements the passive shield of antimicrobial proteins.  These proteins 

respond to invasion by activating immune cascades (Jahnukainen, 2003).  Briefly, the 

inflammatory response progresses in three steps.  First, bacteria simulate uroepithelial cells to 

produce pro-inflammatory mediators.  Second, these chemokines and their chemokine receptors 

direct inflammatory cells to the site of infection.  Third, the local inflammatory response 

determines the bacterial clearance or the extent of tissue damage that will result (Savanborg, 

2001) 



9 

 

 

 

 

Figure 3: Mechanism of UPEC invasion in host cells during Dr+ E.coli uropathogenesis.      

I.  Attachment of  Dr+ E. coli to DAF receptors on the apical surface of the epithelial membrane, 

resulting in bacterial colonization; II.   DAF receptor clustering on the membrane and 

internalization by the phagocytic pathway due to the redistribution of cytoskeleton-associated 

factors and microtubules; initiation of internalization; III .  Bacterial internalization into a vacuole 

within the host cell and attachment to type IV collagen in the basement membrane.  Image 

adapted and modified from Singh et al 2010, information based on Mulvey, 2002. 
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UTI and Inflammation 

 Activation of the innate immune response in the urinary tract is dependent on the 

recognition of the UPEC pathogen-associated molecular patterns by pattern recognition receptors.  

UPEC pathogen-associated molecular pattern includes LPS, flagella, type 1 pilli, and  P pilli that 

can act through TLR and nucleotide binding and oligomerization domain-like receptors (Rudick 

et al., 2010; Zhang et al., 2004; Fahey, 2008).  The recognition of molecular patterns displayed 

on the surface of UPEC microorganisms by TLRs, and their subsequent activation, leads to the 

transcription of appropriate host-defense genes (Zhang et al., 2004).  TLRs play a vital part in the 

recognition of bacterial machinery.  The renal tubule and epithelial cells express TLR 1, 2, 3, 4, 6 

and 11.  TLR 4 recognizes LPS, the main constituent of Gram-negative E.coli, and is a crucial 

interaction in mounting an immune response.  TLR 11, expressed in mouse kidney and bladder 

epithelial cells (not in humans), is thought to aid in the recognition of UPEC pathogens 

(Vandewalle, 2008).  Studies have demonstrated that UPECs invading the kidney specifically 

bind to the apical surface of collecting duct cells.  The signaling pathways that are activated by 

UPECs in the collecting duct cells of LPS-sensitive C3H/HeOuJ and LPS-defective C3H/HeJ 

mice show that UPECs stimulate expression of pro-inflammatory mediators in the medullary 

collecting ducts via TLR4 pathways as a result of the activation of TNF (Vandewalle, 2008, 

Chassin et al., 2007).    

 The UPEC-induced inflammatory response is a result of tissue damage caused by cell 

apoptosis, as well as neutrophil and macrophage activation.  As reported by Rudick et al., (2010),  

the local production of inflammatory chemokines results in the rapid recruitment of neutrophils 

into the bladder lumen, which in turn mediates bacterial clearance. The most potent of the local 

pro-inflammatory chemokines and cytokines implicated in the elicited response include, Il-6, IL-

1β, IL-8, TNF-α, Nf-κB and others (Gϋrgoze, 2005) 
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UTI and pro-inflammatory cytokine, TNF- α 

 Of the pro-inflammatory cytokines that control the response to UPECs, TNF-α is 

particularly important (Figure 4).  Originally described as an agent of death in relation to tumor 

cells (Georgiadou, 2009), TNF-α is a cytokine with a host of actions.  TNF-α is produced 

primarily by macrophages and other mononuclear phagocytes in the kidney (Ferreri, 2007).  

Although monocytes and macrophages are the main source of TNF-α, the local production of the 

cytokine stimulated by intrinsic renal cells is of greater significance in renal inflammation 

(Ernandez, 2009).  TNF-α is known to stimulate chemokines and adhesion molecules, induce 

apoptosis, and activate the microbial system of phagocytes.  TNF-α is implicated in renal 

inflammation and glomerular damage induced by immune complex deposition, as renal 

expression of  TNF-α is up-regulated in both mice and human kidney infection (Ernandez, 2009) .  
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Figure 4: Intracellular signaling pathways induced by TNF-α.  TNF-α induces the 

trimerization of the TNF receptor on the cell surface which causes the recruitment of adapter 

molecules to the receptor.  The adaptor molecule-receptor complex pathways leads to activation 

of caspase 8 and apoptosis (the death pathway) or the activation of gene transcription factors AP-

1via JNK and NF-κB (the survival pathway) (Ernandez, 2009).  
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 Additionally, TNF-α activates the transcription factor NF-κB, which has been described 

as the master switch of the immune system (Male, 2006).  Metcalfe et al. states that TNF-α is 

capable of up-regulating its own expression, in addition to that of other inflammatory mediators, 

as it induces renal fibrosis and apoptosis (Figure 4).  Gene polymorphisms influence TNF-α 

production and inflammatory responses of the uroepithelium to UPEC challenge.  Polymorphisms 

of the TLR gene are responsible for the delayed clearance of bacteria from the urinary tract, as 

well as the hyporesponsiveness to LPS and the resulting predisposition to septic shock 

(Jahnukainen 2005).  

 The excessive release of TNF-α may cause tissue damage as seen in LPS-induced renal 

failure due to TLR-4 mediated production of TNF-α.  In contrast, blocking TNF-α improves renal 

function, while simultaneously aggravating the renal bacterial burden in experimental mouse 

models of renal failure.  These findings speak further to the role of pro-inflammatory cytokines 

such as TNF-α in an immune response (Vandewalle, 2008).  Importantly, levels of pro-

inflammatory cytokines including TNF-α were increased in acute pyelonephritic UTIs, compared 

to levels in lower UTIs (Gϋrgoze et al., 2005).   

 In kidney disease, experimental data suggest that TNF-α exhibits both pro-inflammatory 

and immunosuppressive functions.  These roles are relayed by two structurally distinct receptors, 

TNF-receptor 1(R1) and TNFR2.  These receptors are only 28% homologous in their extracellular 

domain, and share no homology of intracellular regions (MacEwan, 2002).  TNFR2 has a higher 

affinity for membrane bound TNF.  Studies conducted by Ernandez in 2009  implicated TNFR2 

in mediating inflammation in renal injury.  Finally, considering that the collecting duct is the 

main site of adhesion for UPECs it is likely that hormones involved in controlling sodium and 

water reabsorption, particularly those that act in the collecting duct, could be involved in 

controlling the inflammatory response stimulated in the IMCD (Vandewalle, 2008).  
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Estrogen the immunomodulator 

 Sex steroids play an important role during the inflammatory response by influenceing 

injury-induced cytokine production (Metcalfe, 2006).  Estrogen is a steroid hormone which plays 

a vital role in reproduction, growth, development, and maintenance of numerous tissues.  The 

physiological effects of estrogens are mediated through one of two estrogen receptors (ER), ERα 

and ERβ, both of which belong to the superfamily of nuclear receptors.  ERs integrate multiple 

signals from ligands and intracellular signaling pathways to perform functions in the nucleus and 

cytosol (Moggs, 2001).  ERα and ERβ are products of different genes and elicit tissue and cell 

type specific estrogen-mediated activity.  Additionally, each receptor has different transcriptional 

activities in certain ligand, cell type, or promoter contexts (Mathews, 2003). The ligand binding 

domains of each receptor exhibit an affinity for endogenous estrogen, 17β-estradiol (E2).  

However, ERα and ERβ demonstrate different affinities for some natural compounds, as well as 

for novel subtype-specific ligands, demonstrating that the ERs are similar, but  maintain unique 

roles in estrogen actions (Kuiper, 1997, Mathews, 2003).  ERα localizes on the uterus, liver, 

kidney and heart, while ERβ is expressed primarily on the ovary, prostate, lung, gastrointestinal 

tract, bladder, and hematopoietic and central nervous system.  Both receptor subtypes are co-

expressed in numerous tissues; however, both may not be expressed in the same cell type 

(Kuiper, 1997)  

 ER complexes affect gene expression through two main pathways, the classic genomic 

pathway and the non-genomic pathway.  The classic pathway depends on direct interaction of 

estrogen with its receptor in the nucleus.  These ER complexes then can directly mediate gene 

transcription.  The action of ERα and ERβ are mediated by two transcription activation functions 

(AFs).  AF-1 is the N-terminal ligand-independent activation function and AF-2 is the C-terminal 
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ligand-dependent activation function.  These AFs mediate transcription and cell-promoter 

specificity (Nilssson et al., 2001).  The non-classical, non-genomic pathway is a rapid interaction 

that is dependent on the ability of estrogen to interact with steroid or non-steroid hormone 

receptors in the membrane (Lorenzo, 2003).   

 

 

 

Estrogen mediated regulation of inflammation and inflammatory markers 

 Sex steroids in both in vivo and in vitro experimental models have been shown to 

influence immune function and inflammatory processes, although the mechanisms are poorly 

understood (Czlonkowska, 2005).  Estrogens have both anti-inflammatory and pro-inflammatory 

functions.  For instance, E2 enhances the production of proinflamatory interferon-γ and anti-

inflammatory IL-10 in T cells (Fahey, JV 2008, Correale, 1998, Calabrese, 2001, Straub, 2007) 

ER-bound up or down-regulates the transcription of various genes by binding to estrogen 

response elements (EREs) of genes, or through interaction with transcription factors (Beato, 

1989, Paech, et al 1997, Straub 2007).  There is well documented evidence that post-menopausal 

women experience an increase in pro-inflammatory cytokines, as estrogen decreases (Kovas, 

2005).  However, estrogen has paradoxical effects on the immune system.  The paradoxical 

immunomodulatory effect of estrogen is contingent on a number of factors.  These factors include 

the source of immune stimulus, cell type involved during various phases of disease, the target 

organ, the stage of menstral cycle, the physiological concentration of estrogen, the variability of 

ER expression (which, in turn, varies with microenvironment and cell type), intracellular 

metabolism of estrogens, pro-inflammatory function, and the influence of sensory and 

sympathetic nervous systems (Straub, 2007). 
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 The contention that estrogen regulates the immune system is supported by in vivo studies, 

in which protective functions fluctuate with the stage of the menstrual cycle (Straub, 2007).  

Additionally, numerous cytokines, chemokines and antimicrobials present in cervical-vaginal 

lavage vary with stage of menstrual cycle, whether measurements were taken during the early 

proliferative or late secretory phase of the menstrual cycle (Figure 5).  Pro-inflammatory cytokine 

production varies with circulating levels of estrogen in females during pregnancy and menopause.  

For instance, the concentration of IL-8 and defensins are lowest at mid-cycle when ovulation 

occurs and E2 levels are elevated (Fahey, 2008).  Studies have shown that high-dose estrogen 

treatment of C3H/HeJ mice resulted in increased bacterial infection rates in the kidney, regardless 

of the adhesin type ( Stamm, 2007).  Further studies have shown that estrogen can enhance the 

attachment of UPECs, challenging the claim that estrogen treatment is always protective (Curran, 

2007).  

 Estrogen also functions as an immunomodulator by regulating the levels of IgG and IgA 

antibodies, which also are altered by the stage of the menstrual cycle.  Immunoglobulins in 

human cervical mucus increase over the days leading up to ovulation and then decline to their 

lowest levels at other stages in the cycle (Beagley, 2003)  Similarly, estrogen diminishes cell-

mediated immunity in humans and rodents, demonstrated by the decrease in levels of natural 

killer (NK) cell activity in females compared to males.  The activity of NK cells also decreases 

from the first to third trimester of pregnancy as estrogen levels demonstrate drastic concentration 

changes (Styrt 1991).     

 Finally, estrogen regulates immunity by suppressing or enhancing the expression of pro-

inflammatory mediators; however, estrogen-mediated inflammatory disease is as a result of 

numerous factors (Straub 2007; Fahey, 2008).   
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Figure 5: Demonstration of the pro-inflammatory and anti-inflammatory effects of estrogen 

on varying immune cell types throughout reproductive life.  Various cell types demonstrate 

that at pregnancy levels, E2 effects on important pro-inflammatory pathways are inhibited.  The 

orange color demonstrates the inhibition of TNF, IL-1β, IL-6, MCP-1, iNOS, production of 

MMPs, and the activity of natural killer cells.  E2 at the same concentration stimulates anti-

inflammatory effects such as Il-4, IL-10, TGFβ, TIMP and osteoprotegrin delineated by green.  

At lower E2 concentrations, E2 stimulates of TNF, IFN-γ, IL-1β and natural killer cell activity.  

Adapted from Straub, 2007. 
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 TNF-α participates in innate immunity and adaptive immune responses. As a result of 

receptors present on virtually all cells, TNF-α is able to elicit diverse effects, including activating 

a variety of genes (Ferreri, 2006)  Although TNF-α production is tightly regulated, this cytokine 

is widely reported to be elevated in postmenopausal women and ovariectomized (OVX) rats.  

This finding is consistent with in vitro experiments, and demonstrates the possibility of hormonal 

control of TNF-α production (Arenas, 2005; Kamada, 2001; Sites, 2002; Ferreri 2007; Metcalfe, 

2006; Xing 2007; Huang, 2008).   

 The estrogen regulation of TNF-α has been extensively studied in numerous tissue types 

and pathologies.  Estrogen demonstrates both up-regulation and down-regulation of TNF-α 

expression in various tissues in response to various agents of injury.  For instance, E2 treatment 

causes profound up-regulation of TNF-α expression in the small intestine following trauma-

hemorrhage (Chen, 2008), in human uterine epithelial cells following challenge by TLR3 agonist 

Poly(I:C) (Schaefer, 2005), in three week old mice challenged with oxazolone (OXA), a chemical 

allergen to the flank (Sakazaki, 2008), and in a renal ischemia/reperfusion model in rats (Wolfs, 

2002).  In contrast, E2 treatment also causes profound down-regulation of TNF-α expression as 

seen in vascular smooth muscle cells (Xing, 2007), in glial cells as a result of Alzheimer’s disease 

pathology (Valles, 2009), in the dura due to spinal injury (Cuzzocrea, 2007), and in periodontal 

ligaments following LPS challenge.    

  Epidemiological and immunological evidence suggest that estrogen plays an important 

role in modulating bacterial invasion, susceptibility, and inflammation by mediating TNF-α 

expression and bacterial adherence (Ernandez and Mayadas, 2009, Mulvey, 2002).  However, 

increased estrogen levels in pregnancy and decreased estrogen levels at menopause both enhance 

susceptibility to UTIs.  Moreover, young women capable of reproducing have physiological 

levels of estrogen which play a vital role in decreased susceptibility to UTIs.  Long term 

treatment with estrogen causes adverse effects in some groups (Straub, 2007).  Additionally, 

TNF-α demonstrates pro-inflammatory and anti-inflammatory function in response to infection 
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(Ernandez and Mayadas, 2009).  These conflicting findings make it difficult to predict the 

immunosuppressive effect of treatment with TNF- α or anti- TNF-α (which may lead to sepsis or 

autoimmunity).  Therefore, it is necessary to further investigate the effects of estrogen on UTI 

susceptibility, invasion, and cytokine modulation at physiological levels.  A better understanding 

of the role of E2 in regulating TNF-α during UTI pathogenesis may lead to novel means of 

treatment for the numbers who suffer from it.   
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CHAPTER III 
 

 

RESEARCH DESIGN AND METHODOLOGY 

Experimental cell line 

  The terminal inner medullary collecting duct (IMCD) serves a crucial role in the 

pathophysiological progression of a Urinary Tract Infection (UTI).  The present study makes use 

of polarized epithelial murine IMCD-3 cell line ( mIMCD-3) (ATCC CRL-2123TM).  This cell 

line was derived from the individual tubules of the terminal IMCD of mice transgenic for the 

early region of SV40 [Tg(SV40E)bri/7] (Rauchman et al., 1993).  This cell line, a gift from Dr. 

Hari Koul (University of Colorado at Denver and Health Science Center, Denver, CO), retains 

numerous characteristics of the terminal nephron segment.  These characteristic include, but are 

not restricted to, high transepithelial resistance, inhibition of apical-to- basal sodium flux by 

amiloride, as well as the ability to grow in hypertonic medium common to the kidney medulla 

and lethal to most cell types (Rauchman et al., 1993).  The collecting duct system is the main site 

of adhesion of UPECs and, therefore, ideal for the investigation of experimental UTI 

(Vandewalle, 2008)   

 In the current experiments, Dr+ Escherichia coli strain IH11128 (O75;K5;H-) was 

utilized to generate a model of an inflammatory UTI in mIMCD-3 cells  to investigate the 

resulting uropathogenesis and the  immunomodulatory effects of estrogen on TNF-α.  
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mIMCD-3 Cell Culture 

 mIMCD-3 cells were cultured in Dulbecco’s modified Eagle Medium nutrient mixture  F-

12 (DMEM-F12; Invitrogen/Gibco) and supplemented with 10% fetal bovine serum (FBS; 

Atlanta Biologicals).  Additionally, 100 U/ml penicillin and 100 µg/ml streptomycin (Invitrogen) 

were added.  The resulting confluent outgrowth of cells was observed on the surface of a T-25 

cm2 or T-75 cm2 cell culture flask.  Cells were then subcultured at a 1:4 ratio via trypsinization 

with 0.05% Trypsin, 0.053 mM EDTA (1X; Trypsin/EDTA) to attain 80-90% confluent 

monolayer.  The culture monolayer was maintained in a 37°C humidified atmosphere (95%) 

containing 5% CO2.  

 Initially, the mIMCD-3 cells were washed with 3-5 ml (depending on flask size) Ca+ and 

Mg+ free phosphate buffered saline (PBS) by gently rocking the flask for 30 seconds.  The media 

was discarded and replaced with 2-3 ml of Trypsin/EDTA, and rocking was resumed for another 

10 seconds.  The trypsin-EDTA solution was discarded and the flask returned to the humidified 

atmosphere within the incubator as described above, for 10 minutes.  DMEM-F12 media 

supplemented with 10% FBS and antibiotics (3 ml to 6 ml) was added to the culture flasks.  After 

gentle agitation via pipette, the cell mixture was divided into two flasks.  An additional 4.5 ml or 

9.0 ml of DMEM-F12 media supplemented with 10% FBS and antibiotics was added to each T-

25 cm2 and T-75 cm2 flask respectively.   
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Drug treatment of mIMCD-3 cells prior to bacterial invasion 

 In preparation for drug treatment, mIMCD-3 cells were washed with PBS.  Surviving 

cells were counted via a haemocytometer and plated in 12-well plates at a density of 0.6 x 106  

cells/ml/well.  mIMCD-3 cells were cultured in medium containing DMEM-F12, 100 U/ml 

penicillin, 100 µg/ml streptomycin, and 5% charcoal stripped  FBS (VWR).  The cells were 

returned to incubation for 18 to 24 hours to allow for growth and adherence to the plate surface, 

after which the cell monolayer was treated with various drugs.  Specifically, the mIMCD-3 cell 

monolayer was treated with 10 nM E2 (Sigma-Aldrich) or co-treated with 10 nM E2 and 10 µM 

ICI 182,780 (Tocris Bioscience).  Drug compounds were diluted to desired concentrations by 

adding serum free media.  In the same vein, control conditions were established by adding serum 

free media and omitting drugs.  The cells were then returned to a 37°C humidified atmosphere 

containing 5% CO2 for 24 hours prior to the introduction of Dr + E. coli strain IH11128  

Induction of UTI in mIMCD-3 cells 

Dr + E. coli strain IH11128 (O75;K5;H-) was received from Dr. Bogdan Nowicki (University of 

Texas Medical Branch at Galveston, Texas).  The pure culture was maintained in our laboratory 

under cryoprotective conditions at -80 ° C.  Dr + E. coli strain IH11128 is a clinical isolate 

obtained from a female patient diagnosed with asymptomatic pyelonephritis (Nowicki, 1996) and 

has previously been used to induce uropathogenic inflammation (Kaul et al., 1999; Curran, 2007).  

 

 Induction of experimental UTI  in mIMCD-3 cells was accomplished by the introducing 

fresh Dr+ E.coli  isolates in suspension as previously described (Kaul et al., 1999).  Several loops 

of bacterial inocula grown overnight at 37°C on Luria agar  (LA) plates were suspended in sterile, 
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serum-free, antibiotic-free DMEM-F12 media; the optical density of the bacterial suspension was 

0.5 at 600 nm.  

 The mIMCD-3cell monolayer was overlaid with 100 µl of Dr+ E. coli in suspension, and 

an equal volume of treated (10nM E2, 10nM E2 and 10µM ICI 182 780) or untreated medium 

added to each well.  The simulated cell invasion and infection was allowed to proceed by 

incubating for 2 or 8 hours, in the previous humidified environment.  External bacteria were then 

removed by two washes with sterile PBS. 

Two hour infection bacterial invasion   

 After 2 hours, plates were removed from the humidified environment.  The supernatant 

was collected for ELISA studies and stored in a cryo-protective environment at -80°C.  The cell 

monolayer was harvested for RNA isolation and subsequent quantitative real time reverse 

transcriptase-polymerase chain reaction (RT-PCR).   

8 hour bacterial infection invasion   

 A second group of plates was removed from the humidified environment after 2 hours.  

Supernatant containing extracellular Dr+ E. coli bacteria was removed and collected for ELISA 

studies, this was done to minimize the possibility of increase in bacterial cell division that could 

artificially increase the bacterial count of the supernatant at 8 hours.  These plates were then 

returned to humidified incubation for an additional 6 hours.  Collected supernatant, harvested 2 

hours and 8 hours post infection were stored in a cryo-protective environment at -80°C and used 

for ELISA studies.  The cell monolayer was harvested for RNA isolation and subsequent 

quantitative RT-PCR.   
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.  RNA isolation and cDNA synthesis 

 i) Homogenization of cell extracts 

 Total RNA isolation was accomplished via the use of Trizol reagent (Invitrogen) as 

instructed by the manufacturer.  The cells were lysed directly in the 12 well culture plate by 

adding of 333 µl of Trizol reagent and passing the cell lysate through a pipette tip repeatedly. 

Finally, the lysate was added to separate labeled sample tubes.  

 ii) Phase separation of cell lysate 

 Homogenized mIMCD-3 cells were incubated for 5 minutes at room temperature to 

disassociate nuclear proteins, after which 200 µl of chloroform was added to the cells.  The 

sample tubes were then agitated vigorously for 15 seconds followed by centrifugation at a 

maximum of 12,000 g for 15 minutes at 4° C.  After centrifugation, the homogenized cell lysate 

separates into two layers, an upper colorless aqueous phase and a lower red phenol chloroform 

phase.  The aqueous phase retains RNA and was transferred 100 µl at a time into separate RNAse 

free tubes until the entire volume from each sample tube was transferred.      

 iii)RNA precipitation 

 700µL of isopropyl alcohol was added to each RNAse free aqueous phase-containing  

tube.  The samples were incubated at 30°C for 10 minutes, then centrifuged at 12,000 g (4° C) for 

10 minute  until a jelly-like pellet was seen in the sample tube.  
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 iv) RNA washing and re-dissolving   

 The isopropyl alcohol-containing supernatant was removed and the pellet then was 

washed with 75% ethanol (12.5 ml of RNase-free water and 37.5 ml of ethanol).  Up to 1000 µl 

of 75% ethanol was added to the pellet and mixed by way of vortex and centrifugation at 8,000 

Xg for 5 minutes at 4° C, after which the supernatant was discarded.  1000 µl of 75% ethanol was 

again added to the pellet and mixed by way of vortex and centrifugation at 8,000 Xg for 7 

minutes at 4° C.  Ultimately, final remnants of supernatant were carefully removed by pipetting.   

  After washing, the pellet was allowed to dry completely for 20-30 minutes by ventilating 

and inverting sample tubes.   

 RNA was re-dissolved in 50 µl of RNase-free.  Solution was passed through a pipette tip 

multiple times followed by a 10 minute incubation period at 55° C – 60° C.   
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vi) RNA quantization and Integrity verification 

   RNA was quantified using NanoDrop spectrophotometer technology as per the 

manufacturer’s instructions (ND-1000 V 3.3.1).  The ratio of absorbance at 260 nm and 280 nm is 

used to assess the purity of DNA and RNA. Additionally, the 260 nm : 230 nm ratio of 

absorbance is a secondary measure of nucleic purity.  Values for the 260/280 ratio and 260/230 

ratio should be approximately 2.00, with values of 1.8-2.0 accepted for either ratio Values outside 

of the acceptable range suggested protein contamination were corrected by RNA purification with 

RNAeasy Mini Kit (Qiagen).     

 RNA integrity was verified on 1% Agarose (Invitrogen) denaturing gel.  NorthernMax 

Gly 10X gel prep/ running buffer (Ambicon), Millenium marker and Glyoxal Sample load Dye 

(Ambicon) were used.  1µg quantities of RNA were loaded onto the agarose gel to ensure proper 

visualization.   

 

 vii) DNase Treatment and cDNA Synthesis 

  DNase treatment was performed on 10 µg of RNA with 2U of enzyme in a 50 µl system 

following kit instructions (Ambicon).  EDTA was employed to stop the reaction via the chelation 

of metals. 

 cDNA synthesis employed the total RNA from each sample, which underwent reverse 

transcription.  Our lab makes use of high capacity cDNA kit.  Manufacturer provided 2X reverse 

transcription master mix was constituted from the contents of the high capacity cDNA kit.   RNA 

samples were then added, and the mixture placed in a thermal cycle (Table1) to perform cDNA 

synthesis, as per the instructions from Applied Biosystem.   
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Quantitative real-time Reverse Transcriptase–polymerase chain reaction (real-time RT-

PCR) 

  Quantitative RT-PCR is a technique that provides amplified DNA for the detection of 

relative or absolute DNA content.  RT-PCR is driven by a polymerase enzyme and is dependent 

on thermal cycling which, in turn, controls primer binding and polymerase activity 

(http://www.primerdesign.co.uk).  Fluorescing dyes that bind to double stranded DNA are used to 

monitor PCR in real time.  In our lab, fluorescing SYBR green serves as a detector for cycle 

threshold (Ct).  SYBR green is a fluorogenic minor groove binding dye which binds to double 

stranded DNA formed in PCR, thereby quantifying it.      

 An ABI StepOne Real Time PCR System (Applied Biosystems) was used to perform real 

time PCR.  PCR was conducted using the following cycle parameters: holding stage- 95° C for 10 

min (1 cycle), then 95 ° C for15 sec, 60° C for 1minute ( 40 cycles); Melt curve- 95°C  for15 sec, 

60 ° C , 95° C for 15 sec (1 cycle).  SYBR green chemistry was used to obtain data from the 

cDNA samples introduced into the system using Power SYBR green master mix (Promega), Go 

Taq qPCR  master mix (Promega) and cDNA templates.  TNF-α and DAF gene expression were 

measured (Table 1).  Primers were received from realtimeprimes.com in 50 µM concentrations 

and were then reconstituted to a working dilution of 1 µM.  Primers contained forward and 

reverse primers in each sample.  The internal control was an endogenous primer, Peptidylprolyl 

Isomerase A (PPIA), which allowed us to normalize the mRNA target to total RNA, thereby 

correcting for differences in the amount of total RNA.       

 Samples were run in duplicate with a hot start.  A melt curve was performed and each 

sample was quantified using SYBR green quantitative PCR machines and chemistry.  The total 

content of double stranded DNA in each well at each cycle produced the Ct value.   
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 PCR data from each treatment group was analyzed based on values normalized to the 

measured expression of PPIA.  Ct values were calculated based on the normalized values.  Values 

were calculated as ∆Ct= Ct target-Ct PPIA and via interpretation of relative gene expression data 

(RQ) calculated as follows; 2-∆CT.  Mean RQ values for each sample group were used for 

statistical analysis.  
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Table 1: Primers for real-time RT-PCR (realtimeprimers.com) 

Primer Primer Sequence Gene 

accession 

Amplicon 

Size 

Recognition 

region 

genome 

DAF/CD55 Fp:TTCTCCCTTTGCTACGTCAC 

Rp: TCGCTTTGTCAACGACTTC 

NM_010016 247bp 246-492 

PPIA Fp:AGCTCTGAGCACTGGAGAGA 

Rp: GCCAGGACCTGTATGCTTTA 

AK028210 178bp 155-332 

TNF-α Fp: CCCACTCTGACCCCTTTACT 

Rp:TTTGAGTCCTTGATGGTGGT 

NM_013693 201bp 899-1-099 
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Quantitative Enzyme Linked Immunosorbent Assay (ELISA) 

 TNF-α protein present in each treatment group was detected and quantified using mouse 

TNF-α ELISA Ready-SET-Go! Kits from eBiosicence.  Kits contain capture antibody, polyclonal 

detection antibody, Avidin enzyme, assay diluent, substrate,  ELISPOT coating buffer,  and 

standard in the form of Recombinant TNF-α (1 ug/ml).  The standard curve range was 8-1000 

pg/ml. Plates were read via spectrophotometer and recorded with softmaxPro software.   

Statistical Analysis 

 The data collected from all experiments were analyzed with GraphPad Prism 4 software.    

One way ANOVAs was followed by Tukey’s post hoc testing when significant effects were 

found.  P-values less than 0.05 were taken as indicative of statistical significance.  

   

. 
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CHAPTER IV 
 

FINDINGS 

 

TNF-α mRNA expression in β-estradiol (E2) treated mIMCD-3 cells after 2 hours of 

infection with Dr+ E. coli   

 These experiments were conducted to determine the role of E2 in the regulation of TNF-α 

mRNA expression during Dr+ E.coli bacterial infection in mIMCD-3 cells 2 hours post infection 

(Figure 6).  One way ANOVA revealed a significant effects  [F (4,29) = 97.44, p < 0.001].  TNF-

α expression in uninfected cells with E2 treatment was not different from uninfected control cells 

that received vehicle-treatment alone.  Dr+ E.coli infection in mIMCD-3 cells for 2 hours induced 

TNF-α mRNA levels that were significantly increased when compared with uninfected untreated 

control cells as well as uninfected E2 treated cells.  Further, Dr+ E.coli infected mIMCD-3 cells 

that received E2 treatment showed enhanced TNF-α mRNA expression.  We observed 

specifically, cytokine mRNA levels were significantly increased when compared with both 

untreated or E2 treated cells without infection, as well as with untreated Dr+ E. coli infected cells 

(Figure 6).  Dr+ E.coli infected mIMCD-3 cells that were co-treated with E2 and the ER 

antagonist ICI 182, 780, showed significant reduction in TNF-α mRNA, and thus, reversal of 

TNF-α mRNA increase that was observed in infected cells treated with E2 alone.  However, 

TNF-α mRNA levels were comparable in E2 and ICI co-treated cells and in cells with Dr+ E.coli 

infection alone.  
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Figure 6: TNF-α mRNA expression in mIMCD-3 cells treated with E2 or with E2 and ICI 

followed by infection with Dr+ E. coli for 2 hours.  TNF-α mRNA levels were analyzed by 

quantitative SYBR green real-time RT-PCR and expressed relative to the housekeeping gene, 

PPIA.  Uninfected and infected mIMCD-3 cells were treated with either 10 nM E2 or co-treated 

with 10 nM E2 and 10 µM ICI.  Untreated cells and 10 nM E2 treated cells without infection 

served as controls.  Error bars are representative of data from 3 experiments, performed in 

quadruplicate.  One-way ANOVA revealed a significant main effect [F(4,29) = 97.44, p < 0.001]; 

this was further examined using Tukey’s post hoc testing.  ##, indicates significant difference 

relative to untreated control (Control), ■  indicates significant difference relative to  E2–treated, 

uninfected control (E2), ∆ indicates significant difference relative to untreated infected cells (Dr+ 

E.coli) × indicates significant difference relative to infected, E2-treated cells (Dr+ E.coli + E2).    
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TNF-α mRNA expression in E2 treated mIMCD-3 cells after 8 hours of infection with Dr+ 

E. coli   

 These experiments were conducted to determine the role of E2 in the regulation of TNF-α 

mRNA expression during Dr+ E.coli bacterial infection in mIMCD-3 cells at 8 hours post 

infection (Figure 7). One way ANOVA revealed significant main effects [F(4,33) = 11.41, p < 

0.001].  TNF-α expression in uninfected cells with E2 treatment was not different from 

uninfected control cells that received vehicle-treatment alone.  Dr+ E.coli infection in mIMCD-3 

cells for 8 hours increased in cytokine mRNA levels; however, TNF-α mRNA was not 

significantly different when compared with control or E2-treated cells without infection.  E2 

treatment enhanced TNF-α mRNA expression in infected cells.  Specifically, cytokine mRNA 

levels were significantly increased when compared with control or E2 treated cells without 

infection, and cells with Dr+ E. coli infection alone (Figure 7).  Co-treatment with E2 and ICI in 

infected cells also increased TNF-α mRNA levels when compared to control cells receiving either 

vehicle treatment or E2 treatment alone, as well as, to those infected with Dr+ E.coli.  However, 

levels were not different from Dr+ E.coli infected cells that were treated with E2.  
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Figure 7: TNF-α mRNA expression in mIMCD-3 cells treated with E2 or with E2 and ICI 

followed by infection with Dr+ E. coli for 8 hours.  TNF-α mRNA levels were analyzed by 

quantitative SYBR green real-time RT-PCR and expressed relative to PPIA.  Uninfected and 

infected mIMCD-3 cells were treated with either 10 nM E2 or co-treated with 10 nM E2 and 10 

µM ICI.  Untreated cells and 10 nM E2 treated cells without infection served as controls.  Error 

bars are representative of data from 3 experiments, performed in quadruplicate.  One-way 

ANOVA revealed significant main effects [F (4,33) = 11.41, p < 0.001].  This was further 

examined using Tukey’s post hoc testing.  ##  indicates significant difference relative to untreated 

control (Control),  ■  indicates significant difference relative to E2–treated, uninfected control 

(E2), ∆ indicates significant difference relative to untreated infected cells (Dr+ E.coli). 
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TNF-α protein expression in E2 treated mIMCD-3 cells after 2 hours of infection with Dr+ 

E. coli 

 These experiments were conducted to determine the role of E2 in the regulation of TNF-α 

protein expression during Dr+ E.coli bacterial infection in mIMCD-3 cells after 2 hours (Figure 

8).  One way ANOVA revealed significant main effects [F(4,14) = 8.022, p < 0.01].  TNF-α 

expression in uninfected cells pretreated with E2 did not differ from uninfected control cells that 

received vehicle-treatment alone.  Dr+ E.coli infection in mIMCD-3 cells for 2 hours induced 

protein levels that were significantly increased when compared with untreated control and with 

E2-treated control cells without infection.  E2 treatment of Dr+ E.coli infected cells tended to 

decrease TNF-α protein levels when compared to Dr+ E.coli infected cells without treatment; 

however, the groups were not statistically different.  TNF-α protein levels in E2-treated infected 

cells were increased when compared with E2-treated cells without infection (Figure 8)    

Dr+ E.coli infected mIMCD-3 cells that received E2 and ICI co-treatment showed a decrease in 

TNF-α protein levels when compared with infected cells with or without E2 treatment.  

Moreover, in TNF-α protein levels were significantly less than those in infected cells.   
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Figure 8: TNF-α protein expression in mIMCD-3 cells treated with E2 or with E2 and ICI 

followed by infection with Dr+ E. coli for 2 hours.  TNF-α protein levels were analyzed by 

ELISA.  Uninfected and infected mIMCD-3 cells were treated with either 10 nM E2 or co-treated 

with 10 nM E2and 10 µM ICI.  Untreated cells and 10 nM E2-treated cells without infection 

served as controls.  Error bars are representative of data from 3 experiments, performed in 

quadruplicate.  One-way ANOVA revealed significant main effects[F(4,14) = 8.022, p < 0.01]. 

This was further examined using Tukey’s post hoc testing.  ## indicates difference relative to 

untreated control, ■ indicates significant difference relative to E2-treated, uninfected control 

(p<0.05), ∆ indicates significant difference relative to untreated infected cells.  
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TNF-α protein expression in mIMCD-3 cells after 8 hours infection with Dr+  

E. coli 

 These experiments were conducted to determine the role of E2 in the regulation of TNF-α 

protein expression. 

 In mIMCD-3 cells infected with Dr+ E.coli for 8 hours there were no differences among 

the various treatment groups (Figure 9).  Thus, the levels of TNF-α protein were comparable in 

all experimental groups at this time point.  
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Figure 9: TNF-α protein expression in mIMCD-3 cells treated with E2 or with E2 and ICI 

followed by infection with Dr+ E. coli for 8 hours.  TNF-α protein levels were analyzed by 

ELISA.  Uninfected and infected mIMCD-3 cells were treated with either 10 nM E2 or co-treated 

with 10 nM E2 and 10 µM ICI.  Untreated cells and 10 nM E2 treated cells infected with Dr+ 

E.coli served as controls.  Error bars are representative of data from 3 experiments, performed in 

quadruplicate.  One-way ANOVA reveled no significant differences overall.    
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DAF mRNA expression in E2 treated mIMCD-3 cells after 2 hour infection with Dr+ E. coli.  

 These experiments were conducted to determine the role of E2 in the regulation of DAF 

mRNA expression during Dr+ E.coli bacterial infection in mIMCD-3 cells 2 hours after infection 

(Figure 10).  DAF mRNA expression was somewhat variable 2 hours post infection with Dr+ 

E.coli.  Infected cells pretreated with E2 appeared to reduced DAF mRNA expression even 

though there was no significant difference.  
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Figure 10: DAF mRNA expression in mIMCD-3 cells treated with E2 or with E2 and ICI 

followed by infection with Dr+ E. coli for 2 hours.  DAF mRNA levels were analyzed by 

quantitative SYBR green real-time RT-PCR and expressed relative to housekeeping gene, PPIA.  

Uninfected and infected mIMCD-3 cells were treated with either 10 nM E2 or co-treated with 10 

nM E2 and 10 µM ICI.  Untreated cells and 10 nM E2 treated cells without infection served as 

controls.  Error bars are representative of data from 2 experiments, performed in quadruplicate.  

One-way ANOVA revealed no significant difference overall.   
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DAF mRNA expression in E2 treated mIMCD-3 cells after 8 hour infection with Dr+ E. coli.  

 These experiments were conducted to determine the role of E2 in the regulation of DAF 

mRNA expression during Dr+ E.coli bacterial infection in mIMCD-3 cells at 8 hours post 

infection (Figure 11).  One way ANOVA reveled significant main events [F(4,18) = 0. 4954].  

DAF expression in infected cells pretreated with E2 showed reduction in DAF when compared to 

uninfected control cells that received vehicle treatment alone and infected cells co-treated with E2 

and ICI but not significantly when compared with untreated infected cells.  Thus, E2 and ICI co-

treatment significantly reversed the reduction of DAF mRNA levels seen in E2 treated Dr+ E.coli 

infected cells.   
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Figure 11: DAF mRNA expression in mIMCD-3 cells treated with E2 or with E2 and ICI 

followed by infection with Dr+ E. coli for 8 hours.  DAF mRNA levels were analyzed by 

quantitative SYBR green real-time RT-PCR and expressed relative to housekeeping gene, PPIA.  

Uninfected and infected mIMCD-3 cells were treated with either 10 nM E2 or co-treated with 10 

nM E2 and 10 µM ICI.  Untreated cells and 10 nM E2 treated cells without infection served as 

controls.  Error bars are representative of data from 2 experiments, performed in quadruplicate.  

One-way ANOVA revealed a significant main effects [F(4,18) = 0. 4954] that were further 

examined using Tukey’s post hoc testing.  ## indicates significant difference relative to untreated 

control (Control), ×:  indicates significant difference relative to infected, E2-treated cells (Dr+ 

E.coli + E2).    
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CHAPTER V 

 

 

SUMMARY AND CONCLUSIONS 

  

 The underlying mechanism of UTI pathogenesis is only partially understood.  Despite 

numerous studies in humans and experimental animals which demonstrate the importance of 

UPEC virulence factors, host defense mechanisms, and the likelihood of hormonal control, the 

exact mechanism of UTI pathogenesis remains elusive.  From a clinical perspective, the 

recommended use of estrogen in the prevention of UTI has been only for postmenopausal women 

who are not receiving oral estrogen and have > 3 recurring UTIs per year (Stamm, 2007).  This 

negates a large population of patients who suffer from UTI.  This untreated population, mostly 

comprised of women, includes pregnant women, of whom 27% have been found to undergo 

premature labor attributed to inflammation with Dr+ E.coli (Kaul et al., 1991; Millar, 1997).  

This pathological condition, due to its far reaching effects in the population, demands 

investigation into estradiol’s effects during UTI pathogenesis.   

 In recent studies conducted in an established model of UTI in mIMCD-3 cells, we 

observed that E2 differentially modulates Dr+ E.coli invasion of mIMCD-3 cells in a dose 

dependent manner (Singh, et al, 2010).  Specifically, physiological doses of E2 (10nM) 

significantly decreased bacterial invasion, compared to the cells treated with pharmacological 

doses of E2 (100nM) or to cells receiving vehicle treatment (Singh et al, 2010) .   
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 Additionally, this in vitro model of UTI also demonstrated that co-treatment of mIMCD-

3 cells with E2 and ICI reversed the E2 protection against of Dr+ E.coli invasion in mIMCD-3 

cells, suggesting ER involvement.   

 Based on these findings, the current experiments were conducted in this established in 

vitro model of UTI using 10nm E2 as a means of studying E2 effects on TNF-α production and 

DAF expression in kidney inner medullary collecting duct cells.   

 At the onset of infection due to UPEC in the bladder or kidney, epithelial cells stimulate 

the production of pro-inflammatory cytokines and chemokines such as IL-6, IL-8, IL-1β, and 

TNF-α, NF-κB and others.  Of these cytokines, TNF-α is a key player in mounting a response to 

infection and is largely implicated in renal inflammation and glomerular damage.  TNF-α is 

known to activate chemokines and adhesion molecules, induce apoptosis, and activate the 

microbial system of phagocytes (Ernandez, 2009).  The E2 mediated regulation of TNF-α has 

been studied in numerous tissues types and pathologies.  It is shown to be up-regulated in both 

mouse and human kidney infections (Ernandez, 2009; Fahey, 2008).   

 Under the current experimental conditions, E2 treatment in uninfected mIMCD-3 cells 

did not give any conclusive data at mRNA or protein levels for TNF-α.  This may be attributed to 

our research design.  Uninfected mIMCD-3 cells require additional incubation time points or 

testing with varying E2 doses to reveal E2 modulation of TNF-α expression.  Alternately, absent 

infection with E2 may not affect TNF-α levels.  

 In Dr+ E. coli infected mIMCD-3 cells with or without E2 treatment, we observed 

increased TNF-α production at mRNA levels 2 hour after infection.  In fact, TNF-α mRNA levels 

in untreated mIMCD-3 cells infected with Dr+ E. coli tended to be increased at both time points.  

E2 treated, Dr+ E.coli infected mIMCD-3 cells, further increased TNF-α mRNA levels.  Based on 

these data, our findings suggest that E2 provides protection against bacterial invasion by up-
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regulating TNF-α expression at the message level during the course of infection at 2 hour as well 

as at 8 hour post infection.  Czlonkowska et al report that mRNA levels of pro-inflammatory 

cytokines are regulated by natural changes in estrogen concentration; however, this ability may 

vary with tissue.  Studies by Agace (1993) using an in vitro model of UTI in kidney and bladder 

cells, reported that challenge with E.coli bacteria, activates pro-inflammatory cytokine 

production.  Their studies showed that there is a selective cytokine production by epithelial cells 

following exposure to E.coli 

 To confirm ER involvement in E2 modulation of TNF-α mRNA, mIMCD-3 cells were 

co-treated with E2 and ICI.  E2 co-treatment with ICI inhibited the up-regulation of TNF-α 

mRNA 2 hours after infection with Dr+ E.coli; suggesting that E2-mediated protective effects 

against Dr+ E.coli invasion in mIMCD-3 cells occurs via ER activity.  This finding of ER 

involvement in the protection against invasion agrees with our previous in vitro UTI studies 

(Singh et al., 2010).  ICI is a pure ER antagonist and may down-regulate ERα which is the major 

ER in the kidney.  This strongly suggests that E2-mediated modulation of TNF-α in mIMCD-3 

cells infected with Dr+ E.coli is ER dependent and possibly occurs through ERα (Kuiper et al 

1997).    

 It is unclear why the ICI effect occurred primarily at the 2 hour time point.  One 

possibility is that the continued increase in TNF-α mRNA occurs by a different mechanism that 

may be independent of ERs.  Alternatively, it may be that the ICI concentration we used was 

insufficient to prevent the E2 effect 8 hours after infection.  

 Under the experimental conditions of the current study, TNF-α protein levels displayed 

much variability in infected mIMCD-3 cells, both 2 hours and 8 hours post infection.  Dr+ E. coli 

infected cells showed increased TNF-α protein levels only after 2 hours of infection.  By 8 hours, 

TNF-α protein levels were comparable in all treatment groups.  
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 Surprisingly, E2 treatment tended to decrease TNF-α protein levels in cells infected with 

Dr+ E.coli for 2 hours compared to Dr+ E.coli infected cells without E2.  Additionally, co-

treatment of mIMCD-3 cells with E2 and ICI further enhanced the decrease.  mIMCD-3 cells 

infected with Dr+ E.coli for 8 hours showed no differences among treatment groups in these 

experimental conditions, which may suggest that secreted TNF-α protein levels may have peaked  

just prior to the 8 hour infection time point.  However, the fact that TNF-α was elevated 8 hours 

after infection argues against this interpretation.   

 The variability seen in TNF-α protein data was seen in 7 replicate experiments, only 3 of 

which are reported here.  This variability in TNF-α protein data may be attributed to a number of 

experimental or technical factors which require further refinement to allow for firm conclusions.  

Firstly, consideration of the multiplicity of infection (MOI); that is the ratio infectious agents 

adjusted to number of seeded cells.  Secondly, the sensitivity and loss of receptor function in 

mIMCD-3 cells sub cultured more than 4 times (note: mIMCD-3 cells were received at passages 

15-20) and additional E2 dose and infection time point need further testing.  Finally, one 

important consideration is that the TNF-α protein measured represents secreted protein.  

Verification using techniques other than ELISA are therefore critical.  The examination of protein 

levels using techniques such as FACS analysis, immunocytochemistry, Western blotting, and 

confocal microscopy will allow us to assess TNF-α protein localized in the cell.   

 DAF functions as a major player in host defense against bacterial invasion by regulating 

the complement system on the membrane.  Interaction of UPECs with DAF is the primary 

method of adherence, invasion, and colonization of kidney epithelium (Selvarangan, 2004). In 

previous studies, our lab, and others observed that DAF expression is hormonally regulated in 

uroepithelial cells.  (Hasan, 2002; Fang, L. 2004; Selvarangan, 2004, Nowicki et al., 1993; Lui, 

2004, Mulvey, 2002). 
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 We evaluated infected mIMCD-3 cells at 2 and 8 hour time points to observe the effect of 

E2 treatment at physiological levels and to ascertain its effects on DAF mRNA in mIMCD-3 

cells.  Treatment of Dr+ E.coli infected mIMCD-3 cells with physiological levels of E2 decreased 

DAF mRNA expression only after 8 hours.  The apparent decrease after 2 hours was not 

significant suggesting further refinement of experimental parameters may be advantageous.  In 

any case, TNF-α mRNA levels appeared to be inversely regulated in relation to DAF mRNA 

levels.  These findings are consistent with previous studies in which physiological levels of E2 

were observed to down-regulate DAF expression in mIMCD-3 cells and to decrease bacterial 

invasion (Singh et al., 2010).  To confirm ER involvement in E2 modulation of DAF, mIMCD-3 

cells were co-treated with E2 and ICI.  Our findings demonstrate that co-treatment of Dr+ E.coli 

infected mIMCD-3 cells with E2 and ICI significantly reversed the decrease in DAF mRNA 

levels observed at 8 hours post infection, suggesting ER involvement.   

 In summary, these data suggest that E2-mediated protective effects against Dr+ E.coli 

invasion in mIMCD-3 cells, occurs via up-regulation of TNF-α and simultaneous down-

regulation of DAF mRNA.  In vitro models show that Dr + E.coli adhesion factors recognize and 

adhere to DAF in order to invade and colonize the kidney epithelium which leads to inflammation 

(Selvarangan et al, 2004; Mulvey, 2002).  Our studies suggest that E2 treatment elicits protective 

effects in Dr+ E.coli infected mIMCD-3 cells by reducing DAF expression on cells, and thereby 

reducing bacterial invasion.   

 As per our hypothesis ,estrogen modulates Dr+E.coli invasion in mIMCD3 cells by 

regulating TNF-α production and affecting expression of DAF.  Our current observations of TNF-

α mRNA production at 2 and 8 hour time points, as well as DAF mRNA at the 8 hour time point 

support our hypothesis 
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 Finally, our observations also suggest that E2-affects TNF-α and DAF mRNA expression 

via ER pathways.  This finding is supported by Straub (2007) who suggested that that estrogen 

levels up-regulate or down-regulate TNF-α expression in a cell type specific manner.  

 Detailed studies are required, to clarify the modulatory effects of E2 in Dr+ E. coli UTI  

uropathogenesis in kidney IMDCs, and its influence on TNF-α and DAF expression.  This would 

require experiments directly investigating the effects of recombinant TNF-α in mIMCD-3 cells 

and a further understanding the role of TNF and well as TNF-receptors in E2 modulation of UTIs.  

Similarly, blocking action of TNF-α by using antibodies in in vitro models, or alternatively, using 

TNF-α knock-out mice will provide further insight into the mechanisms of E2 control of TNF-α 

during UTIs.  The information gained by these studies will lead to the identification of novel 

biomarkers for the treatment of UTIs.  

 Further studies are needed to confirm our observations by utilizing additional techniques.  

These studies will allow us to better understand the mechanism of interaction between host 

receptor and bacterial ligand, and will aid in the development of novel therapeutics to treat the 

incidence of UTIs.  Recent studies demonstrate implications of TNF-α in UTIs.  TNF-α 

polymorphisms in children with UTIs show renal scarring, demonstrating the effect of TNF-α in 

the kidney (Savvidou, 2010).  Thus, pre-clinical studies are needed to explore the possible 

benefits of TNF-α therapy in chronic UTIs. 

    

  

 . 
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