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Abstract

This work addresses enhancements to the popular shallow water model, ADCIRC,

ADvanced three-dimensional CIRCulation model. The shallow water equations (SWE) are

based on conservation of mass and momentum and can be used to model the hydrodynamic

behavior of oceans, coastal areas, estuaries and lakes. In this dissertation, four research

areas have been identified in an effort to improve the predictive capabilities of ADCIRC.

1) Propagation analysis is a useful tool to examine the simulation characteristics of

an algorithm. Two analytical tools exist for this analysis: Fourier and dispersion analysis.

Unfortunately, it is not always possible to write an algorithm in the required closed form

for these analyses. Therefore, a numerical analog of these tools was developed for this

study. Three initialization techniques and three wave tracking schemes were examined.

Results show that no single combination of initialization and tracking schemes is able to

predict both the Fourier and dispersion characteristics of an algorithm. However, by

examining several combinations the full behavior can be predicted. Additionally, these

tools now provide a structured mechanism for evaluating slope limiters within the finite

volume and discontinuous Galerkin frameworks.

2) Currently, the ADCIRC model suffers from local mass conservation errors is

regions of high advection. Meanwhile, the discontinuous Galerkin (DG) finite element

method is relatively new to the SWE modeling effort and has several appealing properties

including: local mass conservation, shock capturing without spurious oscillations, and local

h- and p- refinement. The numerical tools that were developed in topic 1 were used to

compare the propagation behavior of the DG algorithm with the ADCIRC model. Results

indicate that the DG algorithm has similar propagation behavior to the ADCIRC model.

Namely, very little dissipation of the physical waves and no spurious oscillations (when
xxiv



higher-order interpolants are used). Additionally, the higher-order approximations have

near second-order spatial convergence rates and smaller errors than the ADCIRC model.

3) However, the higher-order DG algorithm is also computationally costly due to

the extra degrees of freedom. Therefore, multi-algorithmic models, which couple

continuous and discontinuous algorithms in the solution of the SWE, were examined in the

hope of balancing accuracy with computational costs. Three levels of coupling were

examined:  equation, subdomain, and combined coupling. Propagation results indicate that

the low-order versions are over-dissipative in the physical wavelengths. Furthermore, the

equation and combined coupled models allow trailing wiggles if the higher-order

approximations are not limited. Convergence results indicate that the subdomain-coupling

scheme has similar accuracy when compared to the domain-wide DG model; however,

results from an application on the East coast indicate that it does not reduce the CPU usage

for 1D problems. Further work using 2D applications is needed to determine what the CPU

affects of the coupled model would be in practice. Additionally, the coupling mechanism

itself needs to be examined further, and flux coupling should be examined as an alternative

to overlapping elements.

4) Baroclinic models that are used to simulate density driven flows require a mass

conservative transport module in order to determine the new density profile, which is due

to the changing velocity field. In this study, the local DG (LDG) method is applied to the

advective-diffusive transport equation and added to the ADCIRC model as a module. The

LDG transport model was verified with an analytical solution for breakthrough curves, and

was found to be stable and mass conservative from advection-dominated flows to diffusion-

dominated flows. Furthermore, when added as a module to create a baroclinic ADCIRC

model, it remains stable and the DG salinity fields are mass conservative. However, the

interpolation of the DG salinities to the CG gridspace is not mass conservative; and the

communication between the continuous ADCIRC model and the discontinuous transport

module should be examined further.
xxv



CHAPTER  1

Study background and motivation

1.1   Introduction

The overall goal of this study is to improve the state of shallow water modeling in

two broad aspects. The first is to improve the accuracy of the production code, ADCIRC

(ADvanced 3D CIRCulation model Luettich et al. [1992, 2003]), by studying continuous

and discontinuous discretization algorithms and various coupling mechanisms of the two.

The hope is to improve the overall quality of ADCIRC solutions by using multiple

algorithms within their appropriate subdomains in order to maintain computational

efficiency while increasing accuracy. The second is to increase the range of physical

applications that ADCIRC can accurately model by coupling a mass conservative transport

algorithm to the existing hydrodynamics. This will allow the model to handle prognostic

baroclinic simulations, where the salinity and temperature are allowed to advect due to the

hydrodynamics and the pressure gradients for the hydrodynamics are updated accordingly.

1.2   Shallow water modeling

The shallow water equations (SWE) are derived from the depth-averaged Navier-

Stokes equations under the Boussinesq approximation (assumes that the density does not

depart much from a mean value) and also assuming hydrostatic pressure and a vertically

uniform horizontal velocity profile. The SWE describe the motion of water bodies wherein
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the depth is small relative to the scale of the waves propagating on that body. The system

of SWE consists of a continuity equation with either a conservative or non-conservative

form of the momentum equation and is used to model the hydrodynamics of lakes,

estuaries, coastal regions, and other impoundments, as well as deep ocean tides. Numerical

techniques are required to solve the SWE over complex domains, and it is desirable that

these algorithms produce accurate results without introducing numerical noise (spurious

oscillations) into the solution.

The wide range of applications used in shallow water modeling necessitate robust

and computationally-efficient algorithms that maintain a high degree of accuracy. For

example, storm surge predictions require immediate results with a certain degree of

accuracy, while coastal dredging applications require accuracy but not immediate results.

All applications might not be adequately served with a single algorithm, therefore a detailed

understanding of each algorithm’s shortcomings and advantages is important for

determining which should be used for a given application. Meanwhile, numerical models

that incorporate more of the physical processes will increase the valid range of applications.

1.2.1  Shallow water equations in 2D

The primitive 2D (two-dimensional) system of depth-averaged SWE consists of a

continuity equation and a momentum equation. In operator form, the primitive form of the

continuity equation, L, is 

(1.1)

where ζ is surface elevation above a datum, H is the total fluid depth, and V is the 2D depth-

averaged velocity. The conservative form of momentum conservation, Mc, is given by

L t∂
∂ζ ∇• HV( )+≡ 0=

Mc ∂ HV( )
∂t

---------------- ∇• HVV( ) τHV Hf V× H∇
pa
ρ
----- g ζ αη–( )+ –+ + + +≡
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(1.2)

where τ is the bottom friction parameter, f is the Coriolis parameter, pa is the atmospheric

pressure at the surface, α is the effective earth elasticity factor, η is the Newtonian

equilibrium tidal potential,  ρ is the density of water, g is gravity, K is the depth-integrated

horizontal momentum diffusion, D is the momentum dispersion, B is the depth-integrated

baroclinic forcing, Tb is the bottom stress, and Ts is the surface stress. The non-

conservative form of the momentum equation is obtained by subtracting VL from (1.2) and

dividing the result by H to get

(1.3)

The generalized wave continuity (GWC) equation, is formed from the following
operation:

 (1.4)

where G is a numerical parameter. In the ADCIRC model, it is used in lieu of (1.1) to solve

for free surface elevation. Note that the wave continuity equation, as it originally appeared

in Lynch and Gray [1979], is obtained by setting G = τ.

1.2.2  Linearized shallow water equations in 1D

For analysis purposes, the linearized 1D (one-dimensional) form of these equations

are used for most of this study. Note that in one spatial dimension, the conservative and

non-conservative momentum equations are equivalent after linearization. Therefore, in the

remainder of this dissertation, conservation of momentum will be referred to simply as the

momentum equation, instead of qualifying it with conservative or non-conservative, when

K D B
1
ρ
--- Tb Ts–( )––– 0=

M ∂V
∂t
------ V•∇V τV f V× ∇

pa
ρ
----- g ζ αη–( )+ 1

H
---- K D B+ +( )– –+ + + +≡

1
ρH
------- Tb Ts–( ) 0=

t∂
∂L GL ∇•Mc–+ 0=
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the 1D equations are referenced.

The system of SWE in 1D consists of the primitive continuity equation

(1.5)

and the momentum equation

, (1.6)

where u is the depth-averaged velocity, ζ is the surface elevation, τ is the linear bottom

friction factor, g is the acceleration of gravity, h is the bathymetric depth of water (assumed

constant), and the subscripts indicate partial derivatives. The linearized form of the

generalized wave continuity (GWC) equation is given as

(1.7)

where G is a numerical coefficient that determines the balance between primitive (large

values of G) and pure wave (small values of G) forms.

1.2.3  History of shallow water solution algorithms

One of the first successful discretizations of the primitive equations that did not

produce spurious modes was the staggered finite difference (SFD) scheme of Leendertse

[1967]. This approach uses a staggered central difference stencil on a regular grid with the

velocity evaluated at the grid interfaces and elevation centered in the middle of the grid

block. This ensures perfect mass balance at local and global levels.

Early finite element algorithms used to discretize the primitive system of 2D SWE

(depth-averaged, unless indicated otherwise) often resulted in either spurious oscillations

or artificial damping of the solution. Simple linear Galerkin finite element discretizations,

henceforth referred to as the primitive finite element (PFE) method, were plagued by

spurious oscillations. Various methods were introduced to eliminate these oscillations, but

L ζt hux+ 0=≡

M ut τu gζx+ + 0=≡

ζtt Gζt G τ–( )hux ghζxx–+ + 0=
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these often incorporated artificial or numerical damping, thus damping out the physical

solution in addition to the unwanted noise. Mixed finite elements were used by Hood and

Taylor [1974] in an attempt to mimic the success of the SFD scheme, but Walters [1983]

indicates that noise still remains in the velocity solution.

Motivated by the generally poor results from the primitive forms of the SWE,

another technique was developed by Lynch and Gray [1979], which modified the system

of SWE before trying numerical solutions. It was proposed to use the newly-derived wave

continuity equation instead of the primitive continuity in the shallow water model. This

approach was further modified with the addition of a numerical parameter, G, by Kinnmark

[1986] in order to obtain the generalized wave continuity (GWC) equation, which is the

form studied in this dissertation. The resulting GWC equation and the non-conservative

momentum equation are then discretized using piecewise linear Galerkin finite elements in

space. These wave continuity methods have proven to eliminate the presence of spurious

oscillations, as verified by Foreman [1983] and Kolar et al. [1994]. It is also notable that

in the limit, as G approaches infinity, the GWC equation reduces to the primitive continuity

form.

Another finite element technique of the same generation is the selective lumping

finite element (SLFE) scheme of Kawahara et al. [1982]. This is a two-step explicit scheme

in which the mass matrix is selectively lumped by using a lumping parameter with standard

linear Galerkin elements. The parameter can take on values between 0.0 (consistent mass

matrix) and 1.0 (fully lumped mass matrix), where in-between values “selectively” lump

the mass matrix. Kawahara found that the algorithm was free from artificial numerical

damping when the maximum stable time step was used and the lumping parameter took on

values between 0.8 and 0.95. In this current study, the procedure has been further

generalized by adding linear bottom friction to Kawahara’s formulation and introducing an

additional lumping parameter for the mass matrix associated with this term, thus allowing

greater flexibility in the analyses.
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More recently, Alcrudo and Garcia-Navarro [1993] and Chippada et al. [1998]

have applied a Godunov-type finite volume method (FVM) to the system of SWE. The

FVM has enjoyed use in gas dynamics related to mechanical and aerospace engineering

applications, but it has not seen widespread use in hydrodynamic modeling. The method

applies local conservation of mass and momentum by integrating over a discrete volume,

rather than the entire domain, and allows the state values to be discontinuous at volume

interfaces. Due to these discontinuities at the interfaces, the boundary fluxes on each

volume are not uniquely defined, and the Riemann problem must be solved at each

interface. The combined effects of round-off error and computational inefficiency leave

little reason to solve the Riemann problem exactly, and therefore an approximate solver is

often used in practice. The cell-centered solution that results from this method consists of

the average state values located at the center of each discrete volume. Higher-order results

can be obtained by post-processing these average values through slope reconstruction and

limiting steps.

Advantages of the FVM technique include its ability to capture shocks without

introducing spurious oscillations, local and global mass conservation, utilization of the

primitive form of the equations, and the ability to handle irregular meshes. The FVM low-

order schemes use piecewise constant approximations within each volume, and higher-

order schemes use piecewise linear (or higher) approximations. However, unlike finite

element methods, which use polynomial interpolants for the state variables, the higher

orders in FVM approximations are added through post-processing reconstruction of the

volume averages. Additionally, the high-order schemes require a limiting procedure to

control the non-physical oscillations that may be introduced in the solution; the nature of

these limiting schemes (i.e., evolution with the solution at each time step) does not permit

the higher-order FVM to be analyzed using traditional analytical techniques, so numerical

approaches must be used instead.

There are several approximate Riemann solvers available that can be implemented
6



in the FVM solution scheme. However, the most popular is attributed to Roe [1981]. The

basic idea is to solve a system of linear, constant coefficient conservation laws instead of

the original non-linear system. The coefficient matrix is dependent upon the left and right

states at the interface, and the corresponding approximate Riemann solution is a linear

combination of this matrix's eigenvectors.

Additionally, there are various limiting schemes available for piecewise linear high-

order FVM approximations. Sweby [1984] has examined Roe’s minmod and superbee

limiters, as well as vanLeer’s limiter, in the context of flux limiting and found that these

limiters all satisfy the total variation diminishing inequalities, which is a sufficient

condition to ensure that an algorithm is monotonicity preserving (i.e., does not introduce

oscillations into the solution). Leveque [1990] also discusses the minmod and van Leer

limiters. Causon et al. [2000] have used the superbee and van Leer limiter in their cut cell

finite volume solution to the shallow water equations, and Bell and Shubin [1984] have

used the van Leer limiter in reservoir simulation applications. In response to solution

difficulties, other specialized limiting techniques have been developed in the context of

finite volume solutions by Chippada et al. [1998].

Another solution technique that has recently been applied to the system of SWE by

Aizinger and Dawson [2002] and to the compressible Navier-Stokes equations by Bassi and

Rebay [1997], as well as others, is discontinuous Galerkin (DG) finite element spaces.

These algorithms are derived in a similar manner to the finite volume scheme in that the

primitive equations are integrated over individual elements, rather than the entire global

domain, and the state values are allowed to be discontinuous at element interfaces. In fact,

one can think of the DG scheme as being a generalization of earlier Godunov finite volume

algorithms. However, DG methods are more similar to traditional finite element techniques

in that the form of the unknown states are specified beforehand by piecewise discontinuous

basis functions within a weighted residual statement, thus eliminating the need for ad-hoc

post-processing, as in FVM schemes. This framework also allows different orders of
7



approximating spaces to be used in adjacent elements since each element is integrated

independently of its neighbors; thus the algorithm can easily adapt and incorporate higher

resolution (i.e., p-refinement) near shocks in the solution. Other useful features of DG

methods include the ability to handle second-order diffusive terms, which is not possible in

the Godunov FVM framework, and the ability to handle non-conforming grids (i.e., grids

with non-matching faces). As in Godunov-type finite volume schemes, DG methods

require solution of the Riemann problem at the element interfaces and approximate solvers

are employed in practice.

For first-order equations, all DG methods are equivalent, however several

discontinuous techniques have been developed for handling second-order equations. One

of the more popular methods is the local discontinuous Galerkin (LDG) method, as

developed and analyzed by Cockburn and Shu [1998b]. This method is an extension of the

Runge-Kutta DG method for conservation laws that was presented and analyzed in a series

of papers (Cockburn and Shu [1989, 1991, 1998a], Cockburn et al. [1989, 1990]). This is

the form of the method used by Aizinger and Dawson [2002] in their application to the

system of SWE. Bassi and Rebay [1997] use a hybrid combination of the LDG and a mixed

finite element formulation similar to the Raviart-Thomas [1986] formulation. Cockburn et

al. [2002] provide an excellent history of the development of DG methods.

1.3   Current deficiencies in SWE modeling

In this study, two general deficiencies in SWE modeling are examined: simulation

errors, instabilities and efficiency; and over-simplification of physical processes. The first

is an artifact of the numerical algorithm itself, while the second lies in the development of

the model. One specific problem that frequently occurs when using continuous finite

element algorithms to model regions of high advection is mass balance errors. This error

presents itself as a non-physical source or sink of water and affects the validity of the model

results for elevation and velocity profiles, as well as transport processes. Likewise, model
8



instabilities can present themselves as unphysical oscillations in the simulation results and

often lead to the eventual failure of the run.

Additionally, the simplifications made during model development often lead to a

solution that cannot adequately match physical processes. One such area of shallow water

modeling that is in need of further investigation is prognostic baroclinic simulations. The

ability to incorporate the effects of salinity and temperature transport in the ocean, and thus

density differences, would provide a more complete physical representation of the actual

processes that affect circulation. This requires an accurate representation of the salinity and

temperature transport throughout the domain, which is affected both by the quality of the

transport algorithm itself and the accuracy of the hydrodynamic results (velocities) that

drive the transport. Thus, the transport model must be dynamically coupled with the

hydrodynamic model.

Since many model deficiencies are a function of the algorithm, a comparative study

of the mathematical properties of various algorithms is conducted in this study. Several

analytical analysis tools exist for examining the numerical properties of linear algorithms.

Of the available techniques, Fourier, dispersion, and truncation error analyses are used to

examine the propagation behavior, stability and accuracy of linear algorithms. In Chapter

2, numerical counterparts to these tools are developed so that the behavior of algorithms

that evolve with the solution (such as higher-order DG), and thus cannot be written in

closed form, can be examined. In Chapter 3, a combination of analytical and numerical

tools are used to compare several SWE algorithms, as applied to the linear 1D SWE, in

order to determine the strengths and weaknesses of each. The algorithms of interest for this

study are as follows: staggered finite difference, primitive finite element, generalized wave

continuity, selective lumping finite element, finite volume, and discontinuous Galerkin

finite element. In Chapter 4, the properties of subdomain and equation multi-algorithmic

models for the SWE are examined. In subdomain multi-algorithmic models, different

algorithms are employed in unique partitions, or subdomains, of the larger domain in order
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to exploit each algorithm's best features, while minimizing their weaknesses. For equation

multi-algorithmic models, different algorithms are used to discretize the continuity and

momentum equations within the same domain.

Finally, as a first step toward a full three-dimensional baroclinic model, a quasi-3D

(x-z slice) DG transport algorithm is developed and incorporated into an ADCIRC

hydrodynamic model using the same coordinates in Chapter 5. Various test cases are

explored in this laterally-averaged framework to allow for faster testing and comparisons

between different algorithms before proceeding to a full 3D framework.

Each of the remaining chapters in this dissertation present the background and

findings of four individual projects, which culminated in individual papers (proceedings

and/or journal or to be submitted). Therefore, there is some redundancy in the literature

review and background sections within these chapters. However, since many of the

chapters reference the same material, all of the references are collected together at the end

of the dissertation rather than repeating them for each chapter.

1.4   Dissertation “roadmap”

As stated above, this study seeks to address two main issues in the existing

ADCIRC hydrodynamic model: 1) local mass conservation and stability issues in highly

advective regions, and 2) the need for a mass conservative transport module for full

baroclinic (density driven) flows. For the first issue, two possible solutions are examined,

while one possible solution is examined for the last issue. Thus, this dissertation can be

broken up according to the “big picture” as follows:

Issue 1 Local mass conservation and stability issues in highly advective regions

Possible solution 1:  use another algorithm altogether?

Chapter 2 – develop numerical analysis tools to use in one-dimensional 
algorithm comparisons
10



Chapter 3 – analyze and compare several shallow water solution algorithms in 
one dimension

Possible solution 2:  use coupled discontinuous and continuous models?

Chapter 4 – develop and test three coupled models in one spatial dimension in 
order to balance computational costs and accuracy by selectively using 
discontinuous algorithms

Issue 2 Mass conservative transport module for full baroclinic flows

Possible solution: add LDG transport module?

Chapter 5 – develop and test local discontinuous Galerkin transport algorithm 
in laterally averaged x-z and x-σ grid coordinates
11



CHAPTER  2

Numerical Analogs to Fourier and Dispersion 
Analysis: Development, Verification, and 
Application to the Shallow Water Equations

2.1   Introduction

The shallow water equations (SWE), as introduced in Chapter 1, have been

successfully discretized using the staggered finite difference (SFD) method developed by

Leendertse [1967], the selective lumping finite element (SLFE) method of Kawahara et al.

[1982], and the finite volume method (FVM) (Alcrudo and Garcia-Navarro [1993],

Causon et al. [2000], Chippada et al. [1998]). More recently, discontinuous Galerkin (DG)

finite element methods, which can be thought of as a generalization of the FV methods,

have been used by Aizinger and Dawson [2002] and Bassi and Rebay [1997]. In addition,

Galerkin finite element approximations of modified equations, such as the wave continuity

approach developed by Lynch and Gray [1979] and later generalized by Kinnmark [1986],

have been used. Primitive finite element (FE) discretizations of the SWE were not as

successful and often introduced numerical noise into the solution. Accurate solutions

demand that the algorithm not introduce spurious modes or overdamp the system. In an

effort to characterize these features of a successful algorithm, much work has been done to

study the propagation characteristics of the FE and FD discretizations in both 1D and 2D

frameworks (Atkinson et al. [2004], Foreman [1983, 1984], Gray and Lynch [1977],
12



Kinnmark and Gray [1985], Kolar et al. [1994], Leendertse [1967], Lynch and Gray

[1979], Platzman [1981], Walters [1983], Westerink et al. [1994]); but similar studies

cannot be found for the FV, DG and SLFE methods, as applied to the SWE. (Hu et al.

[1999] examine the dispersion properties of the DG method applied to the 1D advection

equation and 2D wave equation.)

Analytical Fourier and dispersion analyses can be used to study the propagation

characteristics of many discretizations of the SWE. Such analyses provide information

about the phasing of the numerical solutions, the damping characteristics and the stability

of the discretization method. This information is valuable for determining whether an

algorithm is suitable for various applications. As model applications become more complex

and simulation domains more refined along the coastlines, many current discretization

algorithms experience instabilities. The FVM and DG class of discretizations are being

examined to determine if they are a suitable method for near-shore applications, where the

more shallow water produces greater instabilities due to the increased importance of the

nonlinear terms in the equations of motion and due to the possibility of shocks forming.

However, some discretization methods are not suitable for closed form analyses. For

example, higher-order FVM discretizations, which use piecewise linear or higher

interpolates, require some type of slope limiting procedure. These algorithms are transient,

due to the slope limiting, and cannot be written in a closed form for all time. Consequently,

numerical analogs to the traditional analysis techniques are developed herein.

With the exception of Kinnmark and Gray’s 2∆x-test [1985], which only focused on

a single wavelength, most of the previous propagation work has focused on the use of

analytical analysis methods. In this study, numerical analogs for generating Fourier and

dispersion plots are developed. Several benefits exist for undertaking a numerical

approach: 1) it is possible to study boundary effects, which are often ignored in analytical

methods; 2) if the algorithm evolves with time, it is not possible to write the closed form

equation required for analytical analysis; and 3) numerical phase results are more closely
13



tied to the algorithm output and thus capture more of the actual simulation behavior relative

to the predicted mathematical behavior (including any unforeseen effects of truncation and

roundoff error).

In the next section, the traditional analytical propagation analysis tools are

presented. The procedure for the numerical analogs to these traditional tools is presented in

§2.3. Finally, the validation results are presented in §2.4 and some closing remarks are

offered in §2.5.

2.2   Analytical Propagation Analysis

Two frequently used tools for analytical propagation analysis exist: Fourier

analysis, which uses the fully discretized equations; and dispersion analysis, which

discretizes only the spatial variables, leaving time continuous via the harmonic form of the

equations. As will be seen in §2.3.2, these two can be related through the phase speed. The

desired propagation characteristics for any algorithm can be found by looking at the

continuum equations, which, in this case, exhibit a monotonic dispersion relationship. It is

also desirable for the algorithm to damp only those waves that propagate with significant

phase error (typically high-frequency components on the order of 2-5∆x).

2.2.1  Fourier analysis

Fourier analysis is a useful tool to analyze the propagation behavior of both

analytical and discrete solutions of homogeneous, linear difference or differential

equations. It utilizes the assumption that separation of variables can be used to express the

solution as periodic in time and space, and thus any solution that is periodic on an infinite

interval or piecewise continuous on a finite interval can be represented by a Fourier series

expansion. A solution (discrete or analytical) that satisfies these minimal constraints can be

represented as a complex Fourier series
14



(2.1)

where, for the SWE, b = u or ζ, ωn is the temporal frequency of the solution, σn = 2π/Ln is

the wave number and Ln is the nth wavelength, An is the Fourier coefficient for component

n and i2 = –1. The key to Fourier analysis is that the linearity of the difference or differential

equation allows one to examine a single Fourier component of the solution at a time. Such

an analysis, also known as von Neumann analysis, results in two related plots: phase error

versus wavelength and damping ratio versus wavelength. Similarly, one can introduce a

complex propagation factor, T, which is the ratio of the discrete wave to the continuum

wave after the time it takes for the continuum wave to propagate one wavelength, as was

done by Gray and Lynch [1977] and Leendertse [1967]. The latter is the approach that will

be taken in this study.

The desired behavior of a solution algorithm is that it propagates all waves in-phase,

but for those waves that are out of phase, sufficient damping should be provided; too much

damping results in an overly-dissipative system, while too little damping (combined with

out-of-phase propagation) results in the introduction of numerical noise in the solution.

Additionally, a damping ratio of magnitude greater than one indicates an unstable solution,

since any noise will be amplified at each time step until the solution eventually becomes

infinite.

The starting point for such an analysis is to determine the wave properties from the

continuum equations. Recognizing that the continuum equations are linear, one can drop

the subscripts n in Equation (2.1) and substitute a single component into the continuum

equations, (1.5) and (1.6), which results in the following system of equations:

 (2.2)

b x t,( ) Ane
iωnt

e
iσnx

n ∞–=

∞

∑=

iωζ0ei ωt σx+( ) iσhu0ei ωt σx+( )+ 0=
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. (2.3)

These can be further simplified by dividing out the exponential factor to get

 and (2.4)

. (2.5)

The eigenvalues of this system can be used to eliminate one equation and solve for

the elevation and velocity as a function of time, thus giving an analytical solution to the

continuum equations. These eigenvalues can be represented as

(2.6)

which allows the solution to be written as 

(2.7)

and

(2.8)

where ζo and uo are the Fourier coefficients An from Equation (2.1).

Computing these solutions for t = t+∆t and dividing out the solution at t, gives the

per-time-step propagation factor, , for the continuum wave as

(2.9)

where the continuum wave speed, or celerity, is expressed as

. (2.10)

iωu0ei ωt σx+( ) τu0ei ωt σx+( ) iσgζ0ei ωt σx+( )+ + 0=

iωζ0 iσhu0+ 0=

iωu0 τu0 iσgζ0+ + 0=

ω 1
2
--- iτ 4σ2gh τ2–±[ ]=

ζ x t,( ) ζoe τt 2⁄– eiσ x t 4σ2gh τ2–±( )=

u x t,( ) uoe τt 2⁄– eiσ x t 4σ2gh τ2–±( )=

λ b x t ∆t+,( ) b x t,( )⁄≡

λ e τ∆t 2⁄– e iσc∆t±=

c gh τ 2σ⁄( )2–=
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From Equation (2.9), one can see that in a single time step the wave will decrease in

amplitude by a factor of e–τ∆t/2 and travel a distance equal to c∆t.

Given the continuum solution, we now turn to the discrete system and present the

Fourier analysis for a general discretization of the SWE. For the fully discretized system, a

single component of the Fourier series, represented as

, (2.11)

where j,k are the spatial and temporal discretization indices, respectively, and b0 is the

amplitude, can be substituted into the discrete representation of Equations (1.5), (1.6), and

(1.7) for each independent variable. The discrete per-time-step propagation factor is

defined as:

(2.12)

where the prime differentiates the discrete propagation factor from the continuum factor.

Definitions (2.11) and (2.12) are substituted into the set of discrete equations for the

algorithm under study and a new system results;

(2.13)

where the form of the matrix coefficients will vary depending upon the spatial and temporal

discretization. A nontrivial solution will exist only when the determinant of the coefficient

matrix is zero, which results in a polynomial in the discrete per-time-step propagation

factor λ', whose complex roots can then be written as a function of the wave number, σ.

The stability of the numerical algorithm can be assessed by computing |λ'| and

verifying that its magnitude is less than or equal to 1 for all desired values of σ. Meanwhile,

bj
k b0eiω k ∆teiσ j∆x=

λ'
bj

k 1+

bj
k

------------≡ eiω∆t=

M11 M12

M21 M22

ζ0

u0

0
0

=
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damping and phase properties of the numerical solution, relative to the continuum solution,

are determined by computing the complex (per-wavelength) propagation factor T, which is

defined as

(2.14)

where Nn is the number of time steps required for the continuum wave to propagate exactly

one wavelength (Nn = Ln/c∆t).

The magnitude of T is the ratio of the amplitude of the discrete wave to the

amplitude of the continuum wave after propagating Nn time steps. If |T| is greater than 1,

the discrete wave has greater amplitude than the analytical wave and the solution is

underdamped, but it is not necessarily unstable, since T is not simply a measure of the

discrete wave itself but is a comparison to the continuum wave. While if |T| is less than 1,

the discrete wave has smaller amplitude than the analytical wave and the solution is

damped.

The argument, or angle, of T is the phase of the discrete wave compared to the

analytical wave, where a positive phase indicates lead and a negative phase indicates lag.

For a numerical algorithm to perfectly match the continuum solution of the model problem,

the magnitude of T should equal 1.0 and the phase of T should equal 0.0 for all components

of the solution.

2.2.2  Dispersion analysis

Again, this analysis tool utilizes the assumption that separation of variables can be

used to express the solution of the differential equations as periodic in time and space.

However, it differs from Fourier analysis in that the time variable remains continuous. The

analysis results in a relationship between the temporal frequency and the wave number,

often referred to as a dispersion relation, as opposed to the propagation factor in Fourier

T λ'
λ
---- 

 
Nn

≡
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analysis. In practice, this dispersion relation can be thought of as an intermediate step in the

continuum solution obtained in Fourier analysis. It is this relation that allows one to write

the per-time-step propagation factor, Equation (2.9), without explicit dependency on ω.

Platzman [1981] was the first to apply dispersion analysis to the shallow water

equations; he demonstrated that a monotonic curve indicates a numerical solution free from

spurious 2∆x oscillations. A folded curve indicates aliasing of wave components, with one

wave corresponding to the long physical wave while the other corresponds to short-

wavelength noise in the solution. Kinnmark [1986] has since demonstrated that for linear

elements, but not for quadratic or other elements, a folded curve is a necessary and

sufficient condition for the appearance of spurious modes in the numerical solution of the

SWE. However, a non-folded curve does not necessarily imply that the solution will be free

from these spurious modes. Atkinson et al. [2004] have shown that a non-folded dispersion

curve in 1D is not always indicative of 2D simulation behavior in that a scheme which

exhibits a non-folded curve in 1D analysis can exhibit a folded curve in 2D analysis. He

also shows that dispersion curves in 2D spaces are highly dependent upon the grid scheme

and the direction that the wave is propagating relative to the grid (i.e., the dispersion surface

in 2D may be monotonic for some wave directions and folded for others). However, his

analysis did verify that a folded dispersion curve in 1D is a necessary and sufficient

condition for a folded dispersion curve in 2D. Therefore, as a first step, it is instructive to

examine the 1D dispersion relationships for new algorithms before proceeding with the

analysis in higher dimensions (i.e., a folded curve in 1D indicates that further study is not

warranted).

The starting point of dispersion analysis is to write the harmonic form of each

equation by substituting the temporal harmonic components expressed as

  and  (2.15)ζ ζ̂eiωt= u ûeiωt=
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into the differential equations. Here  is the spatial harmonic of the elevation and  is the

spatial harmonic of the velocity. The continuum dispersion relation can be derived by

substituting the continuum spatial harmonics (Fourier components)

  and  (2.16)

into the resulting ordinary differential equations. The solution of the resulting system of

equations for the magnitudes u0 and ζ0, which proceeds as in Fourier analysis, determines

the relationship between the temporal frequency, ω, and the spatial frequency, σ. The

magnitude of ω is then plotted against σ to develop the dispersion curve. These plots can

be represented either in physical or dimensionless variables; the former is adopted herein.

For the continuum equations, the above analysis steps result in the following system

of equations

  and (2.17)

(2.18)

which has the dispersion equation

. (2.19)

These equations are exactly the same as those derived in the continuum Fourier analysis,

since the exponential factors divide out in both analyses. Also, note that the dispersion

relationship is nothing more than the eigenvalues of the Fourier analysis given in Equation

(2.6). This connection between Fourier and dispersion analyses in the continuum equations

can be used to relate the numerically generated Fourier and dispersion results, as will be

seen in §2.3.2.

For the discrete equations, the dispersion characteristics can be determined by

ζ̂ û

ζ̂ ζ0eiσx= û u0eiσx=

iωζ0 iσhu0+ 0=

iωu0 τu0 iσgζ0+ + 0=

ω 1
2
--- iτ 4σ2gh τ2–±[ ]=
20



substituting the discrete harmonic spatial solutions, expressed as

 and (2.20)

into the spatially discretized ordinary differential equations, where the temporal component

has already been treated in the same way as for the continuum dispersion relationship. Here

also , j is the spatial node index, σ is the spatial frequency of the solution, ∆x is

the discrete spacing of nodes, ζ0 is the magnitude of the elevation solution, and u0 is the

magnitude of the velocity solution.

Once Equations (2.20) are substituted into the discrete equations, the analysis

proceeds as for the continuum equations. The result is a polynomial expression for the

discrete temporal frequency, ω', as a function of σ, which is then solved for its complex

roots. (As in the Fourier analysis above, the prime notation is introduced to differentiate

between the continuum dispersion relationship and the discrete relationships.) The

magnitude of the roots vs. wave number is plotted as a dispersion curve. For more

background information on dispersion analysis as applied to the SWE see Foreman [1983,

1984], Platzman [1981] and Walters [1983].

2.2.3  Analytical propagation relationships for the SWE

In this section the staggered finite difference (SFD) scheme of Leendertse [1967],

the leap-frog primitive finite element (PLF) method, the selective lumping finite element

(SLFE) method of Kawahara et al. [1982], the generalized wave continuity (GWC)

approach of Kinnmark [1986], the low-order finite volume method (FVM), and the low-

order discontinuous Galerkin (DG) method are examined. (The higher-order FVM and DG

methods are the subject of §3.6.1 and §3.6.2.) A comparison matrix of the discretization

features for these algorithms is provided below in Table 2.1. Unless otherwise noted, the

discretization features apply to both the continuity and momentum equations. Complete

algorithm derivations are provided in Appendices A and B.

ζ̂ ζ0eijσ∆x= û u0eijσ∆x=

i 1–=
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The per-time-step propagation factor λ' and the dispersion relation that result from

the analytical treatment of the discretization schemes, which were presented in §2.2.1 and

§2.2.2, are summarized in Tables 2.2 and 2.3. The complete derivation of each algorithm's

propagation properties are provided in Appendix C. The continuum propagation factor is

as in Equation (2.9), and the continuum dispersion relation is as in Equation (2.19). Recall

that the discrete phase characteristics are distinguished from the continuum characteristics

with the prime notation, e.g., λ' versus λ.

In Table 2.2, note that the GWC formulation results in three roots due to the second

order time derivative. In the one-dimensional context, two of these are physical roots

(backward and forward traveling waves), while the third is a numerical artifact of the time

differentiation. In the interest of brevity, only the cubic polynomial in λ' is reported instead

of the actual roots. For the SFD algorithm, θ is the time weighting parameter, which equals

1/2 for the Crank-Nicolson scheme. Also, for the SLFE algorithm, e is the selective

lumping parameter from Kawahara’s scheme and f is the selective lumping parameter for

the bottom friction term, which has been added to allow independent study of this term.

These parameters take on values between 0, unlumped, and 1, fully lumped.

For the dispersion relationships in Table 2.3, the GWC algorithm again results in

three roots, where only two correspond to physical waves. As in the previous table, only

Table 2.1  Discretization features in time and space for study algorithms.

Temporal discretization Spatial interpolates Spatial Continuity

SFD Crank-Nicolson N/A (centered finite 
difference)

continuous

PLF leap-frog piecewise linear continuous

SLFE two-step explicit piecewise linear continuous

GWC three-level centered for 
Eq.(1.7)
two-level centered for Eq.(1.6)

piecewise linear continuous

Low-order 
FVM or DG

one-step explicit piecewise constant discontinuous
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the cubic polynomial in ω' is reported. Note also that a dispersion relation cannot be derived

for the SLFE algorithm due to the two-step temporal discretization (i.e., it is impossible to

write the algorithm in a time-independent form). The coefficients A and B, which appear in

this table, are the same as reported in Table 2.2.

Table 2.2  Per-time-step propagation factors from analytical Fourier analysis (derivations 
in Appendix C).

Continuum

SFD

PFE

SLFE

GWC

Low-order 
FVM or DG
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2.3   Numerical Propagation Analysis Tools

While the above analytical approaches are widely used in many fields to analyze the

behavior of differential and difference equations, they have not been frequently employed

in numerical analyses for systems that do not allow such an analytical approach. For

instance, the FVM or DG algorithms with a high-order discretization do not lend

themselves to analytical analysis, since the slope limiting schemes result in an algorithm

that evolves in time and cannot be written in a closed-form. Many standard limiters and

hybrid variations on these exist, but currently, there is no clear method for choosing the

“best” slope limiter. Often, this choice is based on a trial-and-error process, where the first

successful limiter is used. In an effort to systematically study the properties of some of the

more popular limiters as applied to the FVM method, numerical analogs to traditional

Fourier and dispersion analyses were developed and will be presented herein.

Past efforts in this area include the work of Kolar [1992] who developed a

numerical analysis technique analogous to the above analytical Fourier analysis for the 1D

Table 2.3  Analytical dispersion relationships for study algorithms (derivations in 
Appendix C).
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SFD

PFE
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linear advection equation. However, some modification is necessary to apply the same

technique to a system of equations, such as the SWE. The work of Vichnevetsky and Shieh

[1972], who applied a related procedure to the scalar transport equations, is also

acknowledged. Kinnmark and Gray [1985] developed a “2∆x-test” for the specific

examination of spurious 2∆x waves, but it is desirable to examine the propagation

characteristics of the full spectrum. Therefore the following procedure was developed.

The general theory behind the following numerical technique is to use the

numerical discretization scheme under study to propagate a single wave with known

amplitude and wavelength exactly one wavelength forward in time and then examine the

final location and amplitude of the wave. This information is then translated into phase and

damping characteristics (for the equivalent Fourier analysis) and dispersion characteristics

(for the equivalent dispersion analysis). The procedure is then repeated for each wavelength

with the final product being numerically generated phase error, damping, and dispersion

curves. In this way, the propagation characteristics of the linear algorithm can be obtained

one wavelength at a time.

As mentioned in the introduction, advantages of such an approach are the ability to

study full discrete schemes, including boundary effects, the generality of working without

a closed-form equation, and a direct relationship between the propagation behavior and

actual simulation output. For simplification only domains of constant bathymetric depth are

considered in this study; the general procedure should be applicable to more complicated

bathymetric domains as well, but the wave celerity would not be constant over the domain

and the formula for calculating the number of time steps to propagate the wave exactly one

wavelength would be more complicated.

A schematic representation of the general procedure is shown below in Figure 2.1,

where the illustrated curves were generated for the low-order FVM algorithm using the

center initialization method and the 4-step procedure that will be explained in the next
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section. The first wave (discrete points) is the initial wave introduced into the center of the

domain at time, t=0, and the second wave (solid line) is the propagated wave after Nn' time

steps of length ∆t. Note that the initial wave has been shifted such that the peak lies directly

on a node point (to facilitate wave identification). Correspondingly, note that the final peak

does not, in general, fall directly on a grid point (a further consequence of discrete

numerical schemes representing continuous waves). In this study, the local maximum value

from the discrete grid points will be used as an approximation for the peak instead of using

interpolation to estimate the peak location. Note also that the trailing portion of the second

wave is not identically zero and that there is some wiggle in the leading portion as well; this

is an indication of the inherent problems in numerical discretizations. For reference, the

notation used in this figure will be carried throughout the following derivations. 

As mentioned above, there is some error introduced by not knowing the exact

location of the final peak, since it most likely lies between grid points. In order to

characterize these errors, two other methods of tracking the wave position; namely, a center

of mass (COM) approach, by which the initial and final waves are numerically integrated
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Figure 2.1 Schematic of peak wave tracking technique used in numerical analogs to 
Fourier and dispersion analyses (Ln /∆x = 75).
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and first moment principles are used to determine the “center” of the wave, and a least

squares harmonic (LSH) analysis are examined. For the LSH analysis the final waveform

is “fit” with a wave of the appropriate wavelength and the amplitude and phase shift are

determined in a least squares sense. These wave tracking methods will be discussed in more

detail in Step 3 of the following section.

2.3.1  Numerical Fourier analysis

Step 1: Initialize with a single wave of known amplitude, wavelength, and position.

In general, there are two initialization options available for introducing the wave

into the domain: 1) an initial value problem (IVP) where one full wavelength is used as the

initial condition at t=0, or 2) a boundary value problem (BVP) where the open ocean

boundary condition is used to force the domain with the appropriate wavelength for one full

period.

In developing the procedure for numerical propagation, it was not clear at the outset

which of these two options for introducing the wave into the domain was best. Thus,

qualitative and quantitative error measures are examined herein to determine the

importance of the initialization procedure and any possible boundary effects on the final

phase results. The error measures will be discussed when the numerical propagation

techniques are validated with analytical propagation results in §2.4. The following methods

for initializing the starting wave are examined:

Method 1.  Initialize wave at the open ocean boundary

Method 2.  Initialize wave near the center of the domain

Method 3.  Use elevation forcing of appropriate wavelength (period) at the open ocean 
boundary to bring the wave into the domain.

For Methods 1 and 2, the elevation and velocity profiles are identically initialized with one

wavelength of the wave at time t=0 and then the waves are allowed to propagate for one
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full period. For Method 3, the open ocean boundary condition is used to force the system

with a wave of the desired wavelength for one full period, then the forcing is turned off and

the wave is allowed to propagate for another full period.

The domain size depends upon the wavelength being simulated and must be large

enough that the wave will not run into the land boundary (and reflect back into the domain).

A domain of 3 wavelengths is sufficient when the wave is initialized at the open boundary,

either through an IVP or a BVP, and 4 wavelengths is sufficient if the wave is initialized

near the center of the domain. For Methods 1 and 2, the wave may be shifted, such that the

initial peak falls on a grid point, for ease of comparison. In this study, one wavelength of a

sine wave represented as,

, (2.21)

where φ is an appropriate shift, is used to define the initial wave for Methods 1 and 2. Only

 grid points are initialized, such that a single wave is within the domain, and the

remaining grid points are set to zero. Notice in Figure 2.1 that with Method 2 the wave is

initialized from x = Ln to x = 2Ln + 1 and the wave does not start at zero, but has been shifted

so that the peak is on a grid point.

For Method 3, the desired wavelength is related to the period by  (where

the period, T, should not be confused with the complex propagation factor, T ) and the

elevation is forced at the open boundary by a sine wave represented as

(2.22)

where t is the current simulation time. The simulation is run for two full periods, the first

with boundary forcing to introduce the wave and the second with no forcing to propagate

the initial wave, for a total of 2Nn time steps. For this initialization method, one of the wave

σ x φ–( )sin 2π x φ–( )
Ln

-----------------------sin=

Ln 1+

T Ln c⁄=

2πt
T

--------sin
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tracking methods discussed in Step 3 must be used to determine the initial location and

amplitude of the wave. For consistency, the same wave tracking method will be used to

analyze the initial wave as is used for the final wave.

Step 2: Execute SWE algorithm and propagate wave for Nn' timesteps.

Once the wave has been introduced to the domain, the next step is to propagate the

wave forward approximately one wavelength by running the SWE solution algorithm for

enough time steps so that the wave would travel one wavelength analytically. From the

analytical Fourier analysis in §2.2.1, it is known that the wave should travel exactly one

wavelength in  time steps where the wave celerity, c, depends upon the

wavelength. Of course, within the framework of any computational procedure, the

computer cannot compute the results for fractional time steps and the mathematical ceiling

(or floor) of Nn must be used for the number of time steps in the actual code. Although this

does not introduce a large error into the numerical phase scheme, it is easily corrected in

the analytical wave solution and should be taken into consideration before computing the

complex propagation factor T.

In order to account for this additional propagation time in the analytical results, the

corrected propagation time is defined as Nn' = ceiling[Nn] such that the analytical solution

predicts a final amplitude of

(2.23)

and a distance travelled of

(2.24)

for an initial wave of amplitude 1. Using Nn' instead of Nn in Equation (2.14) allows an

equal comparison between the numerical and analytical results.

Nn Ln c∆t( )⁄=

λ e
τ Nn′ ∆ t– 2⁄

=

Danalytic Nn'c∆ t=
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Step 3: Compute the final position and amplitude and compare to the initial wave

from Step 1.

For initialization Methods 1 and 2 from Step 1, the exact location and magnitude of

the initial peak are known. However, determining the location of the initial peak for

initialization Method 3 and the final peak for all three methods is somewhat more difficult,

since the peaks will most generally not lie on a grid point. Herein, three “wave tracking”

techniques are examined: peak tracking, center of mass tracking, and least squares

harmonic reconstruction of the discrete data. The determination of the propagation

properties of an algorithm using each of these tracking techniques are described in the next

three subsections. Since the wave has moved forward approximately one wavelength, the

propagation properties from each tracking technique are most naturally reported on a per

wavelength basis, which also allows comparison with the complex propagation factors

computed in §2.2.3.

Peak tracking

In this wave tracking technique the local maximum from the discrete data is used as

an approximation for the peak, rather than using interpolation to determine the exact peak

location and magnitude. For the well-resolved, larger physical wavelengths, little error

arises from not knowing the exact location of the peak. Referring to Figure 2.1, the

propagation properties for each wavelength are then computed as

(2.25)

and

(2.26)

where |λ| is as given in Equation (2.23), bI is the initial peak amplitude, bF is the final peak

amplitude for u or ζ (approximated by the local maximum as discussed above) after the

T bF bI⁄( ) λ⁄=

T∠ Dnumeric Danalytic–( )2π Ln⁄=
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wave travels Nn' time steps,  is the argument or phase of T, and the numeric distance

traveled is quantified as

(2.27)

where xI and xF are the initial and approximate final peak locations. From the expression

for the phase, it is apparent that if the change in peak position is exactly equal to the analytic

distance, then the phase error is zero; and if the peak travels more (less) than the analytic

distance, then there is a phase lead (lag). Similarly, if the final peak amplitude is greater

(less) than that of the analytic wave, then the numeric wave is amplified (damped) relative

to the analytic solution.

Similarly, one can examine the relative wave speed or celerity of the numerically

propagated wave by computing the ratio of distances traveled in Nn' time steps, since the

time is the same for both the numerical and analytical waves. This ratio, represented as

(2.28)

where c' is the numerical wave speed, is also an indicator of the phase properties. When the

numerical wave speed is equal to the analytical wave speed, indicated by a ratio of 1.0, the

wave has propagated at the same speed as predicted analytically, and there will be no phase

error. In the same way, a ratio greater (less) than 1.0 would indicate a phase lead (lag) in the

solution.

Center of mass

For this wave tracking technique, both the initial and final waves are integrated

numerically to determine their respective “mass” and “center of mass.” In comparing the

initial and final waves, the ratio of final to initial mass is taken to be an approximation of

the damping of the algorithm, and the change in position of the center of mass is taken as

T∠

Dnumeric xF xI–=

c'
c
---

Dnumeric
Danalytic
----------------------=
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an indication of the phase. Figure 2.2 gives a general schematic of the notation and

calculation procedures that are used in this tracking technique, as well as the results for a

75∆x wave from the FVM algorithm. 

For the example, notice that the initial wave lies entirely within a single wavelength,

but that the final wave goes outside of the solid vertical lines, which indicate where the final

wave should be located. Although the final wave is symmetric, so that the center of mass

is located correctly, the total mass will be higher than if the wave fit within the solid lines,

and the estimate for the damping ratio will be higher than it should be as a result of this.

The trapezoidal rule for numerical integration is used to calculate the total mass and

first moment for each wave. The total mass is calculated as

(2.29)

where nn is the number of discrete data points in the domain, and the total moment is
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Figure 2.2 Notation for center of mass wave tracking technique and example results 
from 75∆x wave using the FVM algorithm.
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calculated as

(2.30)

where the notation is as in Figure 2.2. The center of mass, xcm, for each wave is then

calculated as

. (2.31)

Notice that the absolute value of the discrete wave data is used for the integrations to avoid

returning a zero mass or moment.

The Fourier propagation properties for each wavelength are then computed as

(2.32)

and

(2.33)

where |λ| is as given in Equation (2.23), massI and massF are the masses of the initial and

final waves (either u or ζ) as calculated by Equation (2.29), and the numeric distance

traveled is quantified as

(2.34)

where  and  are the centers of mass for the final and initial waves, respectively.

As with the peak tracking technique, it is apparent that if the change in center of

mass is exactly equal to the analytic distance, then the phase error is zero; and if the center

of mass travels more (less) than the analytic distance, then there is a phase lead (lag).

moment
xi xi 1++( )
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Similarly, if the final to initial mass ratio is greater (less) than the amplitude of the analytic

wave, then the numeric wave is amplified (damped) relative to the analytic solution.

Least squares harmonic (LSH) fit

For this wave tracking technique, the propagated numerical wave is fit by a general

cosine wave given as

(2.35)

where A0 is the mean value, or the average height above the abscissa, C1 is the amplitude

of the wave, σ is the wave number and is equal to 2π/Ln, and θ is the phase shift relative to

where the cosine wave begins a new cycle. Figure 2.3 shows the LSH fit of the 75∆x wave

for the FVM and gives the general notation of the data points and the fitting wave. The

initial wave has an exact fit with C1 = 1.0, A0 = 0.0 and θ = 0.0, since it is initialized with

a perfect sinusoid, and the fit parameters for the final wave are shown in the figure. 

f x( ) A0 C1 σx θ+( )cos+=

Figure 2.3 Notation for least squares harmonic fit wave tracking technique (Ln = 75∆x).
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The data points, bi, can be either elevation or velocity data and the solid red curves

are the sine waves to which the data is being fit. The wave is fit in a least squares sense,

where the errors between the best-fit sinusoid and the actual data are minimized. For such

a curve fitting application, Equation (2.35) can be rewritten in a more useful form by using

the trigonometric identity

(2.36)

which gives, after substitution,

(2.37)

where

 and . (2.38)

Next, the error at each data point is defined to be

(2.39)

and the square residual is given as

, (2.40)

where i is only summed over the data points which lie within the domain of the assumed

wave; one wavelength or k data points, where  and the data points are equally

spaced. The residual is minimized relative to the coefficients of the assumed cosine wave

to get

(2.41)

C1 σx θ+( )cos C1 σx( )cos θ( )cos σx( )sin θ( )sin–[ ]=

f x( ) A0 A1 σx( )cos B1 σx( )sin+ +=

A1 C1 θcos= B1 C– 1 θsin=

ei bi f xi( )– bi A0– A1 σxi( )cos– B1 σxi( )sin–= =

Sr ei
2

i
∑ bi A0– A1 σxi( )cos– B1 σxi( )sin–[ ]2

i
∑= =
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A0∂
∂Sr 2A0 2bi– 2A1 σxi( )cos 2B1 σxi( )sin+ +[ ]

i
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(2.42)

, (2.43)

which gives the following system of equations to solve for the three coefficients:

(2.44)

where the summations are assumed to be over k data points.

When the sample data is equally spaced, as it is when ∆x is constant, this system can

be simplified to get

(2.45)

(2.46)

(2.47)

Now the relationships in Equation (2.38) are used with Equations (2.46) and (2.47)

to get the best fit amplitude and phase shift of the data points as

(2.48)
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(2.49)

The above derivation assumes that the data is being fit with a cosine wave. Since the initial

wave in Step 1 is generated using a sine wave, it is necessary to convert the phase shift given

by Equation (2.49) to the equivalent shift in a sine wave by adding π/2 which gives

(2.50)

for the final shift.

When the initial wave from Step 1 is generated using Method 1 or 2, the peak

location and amplitude are known and the Fourier propagation characteristics of the

algorithm can be given as

 and (2.51)

where bI is the amplitude of the initial peak, σ in the wavenumber, φ is the shift from the

initialization, and the domain for the curve fitting depends upon the initialization method.

For Method 1, where the wave is initialized at the boundary between  and ,

the final wave should be between  and ; and for Method 2, where the

wave is initialized between  and , the final wave should be between

 and .

When the initial wave is generated using Method 3, the properties of the initial wave

are not known exactly and the amplitude and shift of the initial wave are also calculated

using a least squares harmonic fit, where the domain of interest is between  and

θ
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. Then the magnitude and phase of the final wave are compared to the properties of

the initial wave before comparing it to the continuum wave to get

 and (2.52)

where C1, init and θinit are the amplitude and shift of the initial wave and the domain of

interest for the final wave is from  to .

Step 4: Repeat Steps 1-3 over range of wavelengths to generate plots.

Dynamic allocation of vectors allows several wavelengths to be examined by using

a simple loop. Propagation data is output for each wavelength and discrete plots of phase

and amplitude for the complex propagation factor versus wavelength are generated.

2.3.2  Numerical dispersion analysis

A connection between the propagation phase from Fourier analysis and the

dispersion relationship can be established through the definition for phase speed, given as

c = ω/σ, when one assumes constant bathymetry and bottom friction, and hence constant

phase speed. By rearranging this definition and estimating the phase speed from the wave’s

final position after Nn' time steps, an expression for ω' can be established as

 . (2.53)

Thus, a discrete dispersion plot can be generated one wavelength at a time by using the

discrete distance traveled, Dnumeric = xF - xI, which was determined by either peak wave

tracking or center of mass wave tracking during Step 3 above.

Additionally, the concept of relative wave speed introduced in §2.3.1, can be used

to determine the temporal frequency of the propagated wave as ω' = c'σ, where c' is

calculated using Equation (2.28), to get

i k=

T C1 C1 init,⁄( ) λ⁄= T∠ θ θinit–=
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. (2.54)

From this second expression for ω', it is clear that when c' is equal to c, or Dnumeric

is equal to Danalytic, then the analytical definition for phase speed is recovered. This

expression for the temporal frequency can also be adjusted in order to use the phase shift

from the least squares harmonic fit in Step 3. From the definition for phase shift given in

Equation (2.26), the shift from the LSH fit is related to the distance traveled by

, (2.55)

which can be rearranged to determine the numerical distance traveled in the simulation

results as follows:

(2.56)

where σ = 2π/Ln is the wave number. Substituting this expression into Equation (2.54) gives

the numerical formula for finding the temporal frequency when a least squares harmonic fit

is used to find the wave properties:

. (2.57)

2.4   Validation of Numerical Propagation Analysis Tools

A comparison of the analytical propagation characteristics, as computed in §2.2.3,

to the numerically generated results from §2.3 is essentially a comparison of the theoretical

propagation behavior predicted by the analytical analyses to the actual propagation

behavior one might expect in practice. Hence, one should not expect an exact match

between the numerical analog and the analytical results (e.g., the latter does not consider

boundary effects). Nevertheless, using the methods as described herein, the numerical

ω' σc
Dnumeric
Danalytic
----------------------=

θ σ Dnumeric Danalytic–( )=

Dnumeric
θ
σ
--- Danalytic+=
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--- Danalytic+ 
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analogs are able to predict the general shape of the propagation curves for all of the

discretization schemes under study. The parameter values used in this study are

summarized below in Table 2.4, where θ is the time weighting parameter for the SFD

algorithm and e and f are the selective lumping coefficients for the SLFE algorithm. 

For the SLFE algorithm, the maximum stable time step must be used or the

algorithm is over dissipative. Therefore, a time step of 50.0 seconds was used for this

algorithm and a time step of 1.0 second was used for all other algorithms. (An examination

of the temporal effects for the SLFE will be presented in the next chapter, §3.5.2.) The

length of the simulation domain varies according to the wavelength and initialization

method, as discussed in §2.3, as do the boundary conditions. For all three initialization

methods a “land boundary” is assumed on the right side of the domain, such that

 and u = 0. For initialization methods 1 and 2 (IVP), the left boundary

conditions are given by ζ = 0 and  for all t > 0. Meanwhile, initialization

method 3 uses the left boundary to introduce the wave with on open ocean boundary

condition given by  and  for  and then the boundary elevation

is set to zero from .

To validate the numerical analogs to Fourier and dispersion analysis, which were

presented above in §2.3, the numerical propagation results were rigorously compared to the

analytical characteristics for each of the discretization algorithms in Table 2.1. While the

analytical analyses produce one curve for each algorithm characteristic (damping, phase

shift and dispersion), the numerical propagation tools produce two curves for each

characteristic - one from the elevation data and one from the velocity data. However,

Table 2.4  Parameters used in validation study.

g = 9.81 m/s2 h = 10 m ∆t = 1.0 (50.0) s θ = 0.5

τ = 0.0001 s-1 G = 0.001s-1 ∆x = 1000 m e = f = 0.9

ζ∂ x∂⁄ 0=

u∂ x∂⁄ 0=

ζ ζ̂ t( )= u∂ x∂⁄ 0= t nt<

nt t 2nt< <
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because the elevation and velocity variables are initialized with the same wave (when

initialization Method 1 or 2 is used), the final waves are also similar resulting in comparable

propagation results. For initialization Method 3, the elevation and velocity propagation

results are also nearly identical. Thus, for the purpose of comparison with the analytical

propagation characteristics, the average of the elevation and velocity results will be used.

All of the qualitative graphs and quantitative errors were developed in this way.

For each of the three initialization methods, the damping, phase and dispersion

results were compared for all three wave tracking techniques for a total of 27 comparisons

for each algorithm. Both qualitative and quantitative error measures were used to

summarize this large data set. Algorithm specific recommendations are made following

each algorithm’s qualitative analysis and overall recommendations for all algorithms are

given in the final section, §2.5.

Qualitatively, the numerically generated propagation characteristics (damping,

phase, and dispersion) were compared with plots of the analytical results from §2.2.3 to

determine if any of the initialization methods were grossly in error (i.e., did not capture the

general shape and trend of the analytical plots). Figures 2.4 through 2.7 present the phase,

damping and dispersion plots comparing the initialization and wave tracking methods for

each of the algorithms, except for the SLFE algorithm, which only has analytical Fourier

characteristics so that no dispersion plots are given. In each graph, ten sets of data are

plotted. The analytical propagation characteristic is shown in the solid black line and the

three dashing patterns differentiate between the initialization methods: Method 1) initial

wave at boundary shown by dotted lines, Method 2) initial wave near center shown by dash-

dot lines, and Method 3) boundary forcing to introduce wave shown by dashed lines.

Additionally, the three colors differentiate between the wave tracking techniques: 1) peak

tracking in red, 2) center of mass tracking in green, and 3) least squares harmonic tracking

in blue. Only the quality of the numerically derived propagation characteristics in

comparison to the analytical behavior will be discussed in this chapter; the desired
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propagation characteristics for each algorithm will be discussed in Chapter 3.

2.4.1  Staggered finite difference

Validation plots of Fourier phase errors and damping ratios and dispersion curves

for the SFD algorithm are given in Figure 2.4. For the damping ratio, peak tracking with

either IVP does a reasonably good job of matching the analytical damping curve,

particularly for wavelengths greater than 10∆x. However, the peak tracking for the BVP

oscillates about the analytical curve and is not as good of a fit. The COM wave tracking

technique does not capture the general trend for any of the initialization methods; but the

Figure 2.4 Comparison of analytical and numerical propagation properties for the SFD 
algorithm.
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LSH wave tracking captures the behavior well, particularly for wavelengths greater than

10∆x. Notice that the boundary forcing LSH curve (blue dashed) shoots up at the 2∆x

wavelength; this is due to the best fit of the initial wave. Recall in Equation (2.52) that the

damping ratio is approximated by the ratio of the final amplitude over the initial amplitude

to the analytical amplitude. For boundary forcing, the initial wave for the 2∆x wavelength

has an amplitude close to zero so that the ratio becomes very large even though the final

amplitude is also very small.

For the phase error, all of the peak tracking/initialization combinations do a good

job, but the IVP initializations match better than the BVP, which oscillates somewhat. The

BVP initialization for the COM wave tracking adequately captures the phase behavior, but

neither of the IVP methods match well. All of the LSH wave tracking/initialization

combinations match the analytical phase behavior almost exactly.

For the dispersion curves, all of the initialization/wave tracking combinations

match for the large wavelengths; however, the COM schemes deviate from the analytical

curve most quickly as the wavelengths become smaller and, overall, do not predict the

correct behavior. The boundary forcing/ peak tracking combination (red dash) predicts the

dispersion behavior well, although it lies slightly above the analytical curve for the 2-3∆x

waves. Neither of the IVP peak tracking curves are a good fit since they begin to fold over

while the analytical behavior is monotonic. All of the LSH wave tracking/initialization

combinations predict the correct trend, although the BVP initialization goes well above the

analytical curve for the 2-3∆x waves. Overall, any of the LSH combinations do an adequate

job of predicting the correct propagation characteristics for the SFD algorithm, and the LSH

tracking method is the best choice for this algorithm.

2.4.2  Primitive finite element

Validation plots of Fourier phase errors and damping ratios and dispersion curves

for the PLF algorithm are given in Figure 2.5. For the damping ratio, any of the peak
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tracking/ initialization combinations match the analytical curve adequately for wavelengths

greater than 10∆x, but the IVP initializations oscillate somewhat more than the BVP. None

of the COM combinations match the general trend of the analytical curve, and any of the

LSH are a good match for wavelengths greater than about 7∆x.

For the phase error, any of the peak tracking combinations match the analytical

curve quite well, except for the BVP initialization, which oscillates about the analytical

curve. The LSH wave tracking combinations match the curve well, but do not predict the

correct phase lag in the 2-3∆x wavelengths. The COM tracking schemes match the general

Figure 2.5 Comparison of analytical and numerical propagation properties for the PLF 
algorithm.
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shape of the analytical curve, but the center initialization in particular does not approach

the correct asymptotic value of zero.

For the dispersion curves, only the peak tracking combinations are able to capture

the folding behavior of the analytical curve, with the boundary forcing combination having

the best match. Neither the COM or LSH wave tracking schemes capture the folded

behavior, with the LSH scheme being the most incorrect due to the errors in the phase lags

from the Fourier results. Overall, the peak tracking/ boundary forcing combination matches

the dispersion best, but the LSH tracking does a better job for the Fourier characteristics.

2.4.3  ADCIRC (generalized wave continuity)

Validation plots of Fourier phase errors and damping ratios and dispersion curves

for the ADCIRC model are given in Figure 2.6. For this algorithm, only the boundary

forcing initialization is able to capture the correct propagation behavior for any of the

characteristics. This is due to the three-time-level discretization of the GWC equation,

which requires information at the past and present time levels in order to calculate the next

state. Although the past wave was initialized with the same wave as the present time, but

with a single time step lag, it was impossible to get a single wave to propagate with either

of the IVP initialization methods; there was always two wavelengths of the wave in the

domain, which was impossible for the wave tracking schemes to detect.

For the damping ratio, all three wave tracking schemes capture the analytical

behavior with some error in the wavelengths smaller than 10∆x. However, the LSH and

peak tracking schemes best capture the asymptotic behavior. For the phase error, both the

peak and LSH wave tracking schemes oscillate about the analytical curve for the small

wavelengths, although the magnitude of the LSH oscillations are smaller. The COM

scheme captures the behavior quite well, although it does not capture the “hook” in the 2-

3∆x range. The LSH wave tracking scheme best captures the dispersion behavior, but all

three tracking schemes do an adequate job for this characteristic. Overall, the boundary
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forcing initialization with LSH wave tracking does a good job of matching the analytical

propagation characteristics.

2.4.4  Selective lumping finite element

Validation plots of Fourier phase errors and damping ratios for the SLFE algorithm

are given in Figure 2.7. For the damping ratio, any of the initialization methods with peak

or LSH wave tracking match the analytical curve for the long wavelengths. However, all of

the COM wave tracking schemes predict less damping than the analytical relationship.

None of the initialization/wave tracking combinations capture the analytical damping
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Figure 2.6 Comparison of analytical and numerical propagation properties for the 
ADCIRC model.
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behavior for the small wavelengths. For the phase error, none of the initialization/wave

tracking combinations do a great job of matching the analytical behavior, but the COM and

LSH tracking come the closest. From this phase error, it is apparent that the algorithm does

better than was predicted analytically, as the predicted phase error reaches an asymptotic

value of -24 degrees while the actual simulation results have an error near zero for the long,

physical wavelengths.

2.4.5  Low-order finite volume

Validation plots of Fourier phase errors and damping ratios and dispersion curves

for the low-order FVM algorithm are given below in Figure 2.8. Notice that the damping

ratio is not well characterized by the COM wave tracking scheme, as all of the green curves

Figure 2.7 Comparison of analytical and numerical 
Fourier propagation properties for the SLFE 
algorithm.

da
m

pi
ng

 ra
tio

, |
 T

 |

analytical
boundary init
center init
boundary force
peak wave tracking
COM wave tracking
LSH wave tracking

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

-400

-300

-200

-100

0

100

200

Ln /∆xLn /∆x

ph
as

e 
er

ro
r, 

 
T

°
∠

47



lie well above the analytical curve. For peak tracking, the two IVP initialization schemes

come closest to correctly predicting the damping behavior; the dotted and dash-dot red

curves almost overlap each other, except in the very small wavelengths, k < 10. However,

the boundary forcing initialization predicts less damping as the red dashed curve lies above

the analytical curve. Similarly, the LSH tracking for the two IVP initializations are nearly

identical, while the BVP curve lies slightly above them; however, the blue curves from the

LSH wave tracking do not match the analytical damping ratio as closely as the peak

tracking curves. Notice that the boundary forcing LSH curve (blue dashed) shoots up at the

2∆x wavelength; this is due to the best fit of the initial wave. Recall in Equation (2.52) that

0 20 40 60 80 100

-300

-200

-100

0

100

200

Figure 2.8 Comparison of analytical and numerical propagation properties for the low-
order FVM algorithm.
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the damping ratio is approximated by the ratio of the final amplitude over the initial

amplitude to the analytical amplitude. For boundary forcing, the initial wave for the 2∆x

wavelength has an amplitude close to zero so that the ratio becomes very large even though

the final amplitude is also very small.

Meanwhile, the phase error is well characterized by peak tracking for either IVP but

not for the boundary forcing. For the LSH wave tracking, any of the initializations

adequately capture the analytical behavior, although the boundary forcing is not as good of

a match. The COM wave tracking technique adequately captures the phase error when the

boundary IVP or boundary forcing are used, but not when the center IVP is used.

Finally, the analytical dispersion curve is not well captured by any of the peak

tracking or COM wave tracking schemes (for any initialization); but it is well captured by

the LSH wave tracking, particularly for the boundary forcing initialization which almost

exactly matches the analytical behavior. Notice also, that all nine of the initialization/wave

tracking combinations match the analytical dispersion curve for the high wavelengths (the

left-hand end of the curve) even though they do not all approach the analytical phase error

of 0.0 in these wavelengths.

For the low-order FVM, peak tracking IVP methods most accurately capture the

damping behavior; however, the LSH for any initialization method best captures the phase

error and dispersion curves. Therefore, there is not a single combination that stands out for

all three propagation characteristics.

2.4.6  Summary of qualitative validation results

The qualitative comparisons for the three initialization methods and wave tracking

techniques are summarized below in Table 2.5, where the notation good ># indicates that

the propagation results at wavelengths above this limit are almost an exact match. The

overall “best” methods for each algorithm and propagation characteristic are highlighted in

bold.
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Table 2.5  Qualitative errors for numerical propagation initialization methods and wave 
tracking techniques (by SWE algorithm).

peak tracking center of mass least squares harmonic

| T | | ω | | T | | ω | | T | | ω |
SF

D
binit good 

>10
very 
good

good 
>4

bad bad bad good 
>10

very 
good

good 
>2

cinit good good 
>2

good 
>4

very 
bad

bad bad good 
>15

very 
good

good 
>2

bforce bad bad good 
>4

bad bad bad good 
>10

good 
>2

good 
>3

PL
F

binit good good 
>3

good 
>2

very 
bad

bad very 
bad

good 
>5

good 
>3

very 
bad

cinit good very 
good

good 
>4

very 
bad

bad very 
bad

good 
>7

very 
good

very 
bad

bforce bad bad very 
good

very 
bad

bad very 
bad

good 
>4

good very 
bad

G
W

C

binit very 
bad

very 
bad

very 
bad

very 
bad

very 
bad

very 
bad

very 
bad

very 
bad

good 
>4

cinit very 
bad

very 
bad

very 
bad

very 
bad

very 
bad

very 
bad

very 
bad

very 
bad

good 
>5

bforce good good good 
>4

good good good 
>3

good 
>3

good good 
>3

SL
FE

 *

binit good good NA bad good NA good good NA

cinit good good NA bad good NA good good NA

bforce good very 
bad

NA bad good NA good good NA

FV
M

/D
G

(lo
w

-o
rd

er
)

binit good good very 
bad

bad good bad bad good good

cinit good good 
>4

very 
bad

bad bad bad bad good 
>4

good

bforce bad bad bad bad good good bad good very 
good

| T | – magnitude of complex propagation factor
 − phase of complex propagation factor

| ω | – magnitude of temporal frequency
very bad – does not capture general trend of analytical results
bad – general trend is captured but does not match at any data points
good – general trend is captured and matches at many data points
very good – general trend is captured and matches at almost all data points
* There are no combinations that stand out as best for the SLFE algorithm.

T∠ T∠ T∠

T∠
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From the validation plots and the summary in Table 2.5, two generalizations can be

made. First, the COM wave tracking scheme is not a good indicator of the propagation

properties of any of the algorithms. The predicted damping ratio is consistently higher than

the analytical results, indicating that the total “mass” of the wave is not a good indicator of

the amplitude. This is most likely due to the fact that the area under the curve can be

increased significantly if the wave is diffused, even if the amplitude is only decreased

slightly. Also, the phase error is frequently lagged relative to the analytical phase, which

indicates that the center of mass is not a good indicator of wave phasing.

Secondly, the GWC algorithm does not do well with IVPs, and boundary forcing is

the only way to introduce the wave such that the final wave can be analyzed. Although the

boundary forcing propagation results are the most correct, of the three initialization

methods, for the dispersion characteristics, they do not consistently characterize the Fourier

propagation characteristics of the other SWE discretizations as well as Methods 1 and 2.

Figure 2.9 shows the initial and final waves for each algorithm and initialization

method for a 75∆x wave and illustrates the difficulties with the ADCIRC model. Notice

that there is a trailing wave with this model for initialization Methods 1 and 2 (cyan data

points in Figures 2.9a and 2.9b). Due to the second time derivative in the derivation of the

algorithm, it is difficult to satisfy the continuum equations exactly with an initial condition.

In practice, a cold start is employed for this algorithm, such that the elevation and velocity

fields are initialized at zero and the boundary forcing is ramped over an adequate time scale

to prevent instabilities. Also in these two plots, notice that the other algorithms all have

comparable phase and differ only slightly in their damping, with the low-order FVM/DG

being the most dissipative, and notice that there is a slight tail on the other algorithms as

well. For the boundary forcing, the PLF, SFD, SLFE and GWC curves are practically the

same, while the low-order FVM/DG has a lower peak value and is more diffused.
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2.4.7  Quantitative validation of numerical propagation tools

Quantitatively, two error norms were used to characterize the error in the

propagation characteristics of each algorithm. An L2 norm for the relative error in the

damping and dispersion characteristics of waves between 2 and 100 ∆x was calculated as

relative L2 error = (2.58)

where the errors are summed over the dimensionless wavelength (N = Ln/∆x), trueN is the
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Figure 2.9 Initial and final waveforms for a 75∆x wave for all three initialization 
methods: (a) wave at boundary, (b) wave near center, (c) boundary 
forcing to bring in wave.
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known analytical phase characteristic for wavelength Ln, and approxN is the numerically

generated phase characteristic for wavelength Ln. The relative error is a more desirable

measure of error as it provides a comparison of the error in relation to the magnitude of the

true characteristic. For example, if the relative error in the damping ratio for an algorithm

is greater than 1.0, that means that the error is greater in magnitude than the true value itself.

Conversely, if the relative error is smaller than 1.0, then the error is smaller in magnitude

than the true value itself. However, the error could not be calculated in this way for the

phase shift because the analytical phase shift approaches zero, which results in an

undefined error measure. Therefore, an L2 norm for the absolute error was calculated for

the phase shifts as

absolute L2 error = (2.59)

where the variables are the same as for the relative error.

The relative error for the damping and temporal frequency and the absolute error

for the phase shift are presented below in Table 2.6 for all three initialization methods, all

three wave tracking techniques and the five SWE algorithms. The relative errors in the

temporal frequency for the PLF and the damping ratio for low-order FVM/DG algorithms

are only computed for wavelengths N = 3 to 100, since the analytical frequency and

damping ratio are near zero for the 2∆x wave. The minimum error for each propagation

characteristic (damping, phase error and dispersion) and algorithm is denoted by bold

italics. Note that the combinations with the minimum error may not be the same as gave the

best qualitative results. 

From the summary of the qualitative and quantitative error norms in Tables 2.5 and

2.6, it is evident that there is not a single initialization method or wave tracking scheme that

characterizes every algorithm to within acceptable limits. However, the generalizations

trueN approxN–( )2

N 2=

100

∑ 99⁄
 
 
 
  1 2⁄
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from the qualitative analysis are enforced; namely that the COM wave tracking technique

generally results in greater errors for all algorithms and initialization methods, the

analytical phase behavior of the SLFE algorithm is not well captured, and initialization

Methods 1 and 2 result in greater errors for the GWC algorithm.

2.5   Recommendations

It has been shown that numerical analogs to traditional Fourier and dispersion

analyses are able to capture the overall propagation behavior for a variety of shallow water

discretization schemes. They also provide a structured framework in which to study higher-

order algorithms and other schemes that do not lend themselves to traditional analysis

Table 2.6  L2 errors for numerical propagation initialization methods and wave tracking 
techniques (by SWE algorithm).

peak tracking center of mass least squares harmonic

| T | | ω | | T | | ω | | T | | ω |
SF

D

binit 0.051 18.79 0.064 0.134 28.84 0.093 0.051 4.88 0.020

cinit 0.052 23.08 0.086 0.151 64.84 0.190 0.050 4.55 0.019

bforce 0.068 11.60 0.037 0.130 18.17 0.064 0.104 13.44 0.058

PL
F

binit 0.046 32.66 0.044 0.139 19.54 0.061 0.023 34.29 0.054

cinit 0.046 36.31 0.073 0.111 38.46 0.108 0.073 9.28 0.059

bforce 0.043 19.46 0.051 0.074 22.87 0.054 0.077 6.89 0.078

G
W

C

binit 0.283 168.33 0.452 0.133 133.64 0.316 0.306 100.78 0.138

cinit 0.316 193.75 0.518 0.222 246.08 0.652 0.310 112.03 0.146

bforce 0.049 10.78 0.092 0.047 8.80 0.084 0.078 7.08 0.087

SL
FE

binit 0.058 29.98 NA 0.249 16.85 NA 0.085 29.03 NA

cinit 0.071 76.58 NA 0.198 26.47 NA 0.108 39.48 NA

bforce 0.079 97.61 NA 0.174 34.81 NA 0.101 69.34 NA

FV
M

/D
G

(lo
w

-o
rd

er
) binit 1.039 15.79 0.131 2.618 26.02 0.085 0.780 5.21 0.050

cinit 0.322 62.76 0.436 2.727 42.71 0.122 0.517 6.77 0.042

bforce 5.113 43.09 0.157 8.155 8.15 0.035 2.005 14.97 0.006

| T | – relative L2 error in the magnitude of complex propagation factor
 − absolute L2 error in the phase of complex propagation factor

| ω | – relative L2 error in the magnitude of temporal frequency

T∠ ° T∠ ° T∠ °

T∠
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techniques, as will be seen in the next chapter.

Looking at both the smallest and the second smallest errors in Table 2.6,

initialization Method 2 (cinit) produces reliable Fourier propagation results for all

algorithms, except for the GWC algorithm. Also, initialization Method 3 produces reliable

dispersion results for all algorithms. The least squares harmonic wave tracking scheme

produces reliable results for all three propagation characteristics and all algorithms.

However, for the primitive leap-frog algorithm, only the peak tracking scheme is able to

capture the folded dispersion curve.

Therefore, when one is interested in Fourier behavior it is recommended that

initialization Method 2 and least squares harmonic wave tracking be used with all

algorithms except the GWC algorithm, which should use initialization Method 3 and least

squares harmonic wave tracking. For dispersion behavior, initialization Method 3 is

appropriate for all discretization schemes and both least squares harmonic and peak wave

tracking should be examined. All results in Chapter 3 will be generated following these

recommendations.
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CHAPTER  3

Analysis and Comparison of Shallow Water Models 
in One Dimension

3.1   Introduction

Herein, a comparative study of the mathematical properties of six SWE algorithms

is presented. Several analytical analysis tools exist for examining the numerical properties

of linear algorithms. Of the available techniques, Fourier, dispersion, and truncation error

analyses are used to examine the propagation behavior, stability and accuracy of linear

algorithms. Additionally, grid convergence results are compared to the truncation errors for

each of the study algorithms, and the numerical propagation tools developed in Chapter 2

are applied to the FVM, DG and SLFE algorithms, which cannot be studied analytically.

Truncation error analysis is based on a Taylor series expansion of the discrete

equations; it is used to examine the accuracy and rate of convergence of numerical solutions

to linear and nonlinear differential equations. This analysis is a useful tool for examining a

particular solution algorithm when a closed-form discretization can be obtained for the

differential equation. However, several high-order discretizations do not lead to closed-

form discretizations at all times, and numerical techniques must be employed instead. One

such numerical method, as outlined by Celia and Gray [1992], among others, is to do a grid

convergence study comparing the output for various uniformly spaced grids to some known

“true” solution, typically a fine grid solution utilizing small spatial and time steps. The
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resulting output of each grid is compared to the true solution and some measure of error

determined, often using the L2, or other such norm. In this way, a plot of error versus grid

spacing can be used to determine the order of accuracy when truncation error analysis

cannot be performed analytically. Other numerical approaches include the grid

convergence index of Roache [1998].

A good numerical solution must also remain stable over the simulation time.

Stability is often examined analytically by finding the propagation factor, which is the ratio

of the new value of the dependent variable to the old value at a grid point, and determining

the constraints on the time step to ensure a propagation factor with magnitude less than one.

The stability can also be checked numerically by running an algorithm using successively

larger time steps until the solution tends toward infinity and becomes unstable. Some

reasonable decimal multiple of this time step can then be used as an estimate for the

stability constraint of that algorithm.

Accurate solutions also demand that the numerical algorithm does not introduce

spurious modes during the solution process. The presence of such numerical noise is made

evident by high frequency oscillations about the true waveform, where on average the

solution is correct. Such noise limits the predictive capabilities (utility) of the model since

the true solution is not easily obtainable by simple filtering. Two mathematical techniques

available for examining the propagation behavior of an algorithm are Fourier analysis and

dispersion analysis, which were presented in Chapter 2 and briefly reviewed here.

Fourier analysis is a useful tool to analyze the propagation behavior of solutions to

homogeneous, linear difference or differential equations. If the solution is piecewise

continuous on a finite interval or is periodic on an infinite interval, then it can be

represented as a complex Fourier series. The key to Fourier analysis is that the linearity of

the differential (or difference) equation allows one to examine a single Fourier component

at a time. This type of analysis is also referred to as von Neumann analysis. This analysis
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results in two related plots: phase error versus wave number, and damping ratio versus

wave number. The desired behavior of a solution algorithm is that it propagates all waves

in-phase, but for those waves that are out of phase, sufficient damping should be provided;

too much damping results in an overly-dissipative system, while too little damping of the

poorly propagated waves results in the introduction of numerical noise in the solution.

Additionally, a damping ratio of magnitude greater than one indicates an unstable solution,

since any noise will be amplified at each time step until the solution eventually becomes

infinite. Gray and Lynch [1977] have used a similar approach wherein they introduce a

complex propagation factor, which compares the phase and amplitude of the discrete wave

to those of the analytical/continuum solution of the linear SWE.

Dispersion analysis is also based on the assumption that the solution of the

differential or difference equations can be separated and expressed as periodic in time and

space. However, it varies from Fourier analysis in that the time variable remains continuous

by using the harmonic form of the equations. The analysis results in a dispersion curve,

which is a plot of the magnitude of the temporal frequency versus wave number. The

desired behavior for the SWE is a monotonic curve, which indicates a numerical solution

free from spurious oscillations. A folded curve indicates aliasing of wave components, with

one wave corresponding to the long physical wave while the other corresponds to short

wavelength noise in the solution.

The discretizations for each SWE solution algorithm are presented in §3.2, and the

complete derivations are provided in Appendices A and B. Truncation errors for the models

are reported in §3.3 and confirmed with grid convergence studies in §3.4. Analytical

propagation characteristics, where it is possible to derive them, are reported in §3.5, and

numerical propagation results are presented for the remaining models in §3.6. Finally, a

comparison of all of the models' characteristics is presented in §3.7, and some concluding

remarks are given in §3.8.
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3.2   Summary of discrete models for the SWE

Complete derivations for the continuous finite element models are provided in

Appendix A, and those for the staggered finite difference and discontinuous models are

provided in Appendix B; in the interest of brevity, only the final discrete equations are

presented herein. All of the solution algorithms that will be compared in subsequent

sections use the primitive continuity equation (1.5) to solve for elevations and the

momentum equation (1.6) to solve for velocities, with the exception of the ADCIRC model,

which uses the generalized wave continuity (GWC) equation (1.7) to solve for elevations.

3.2.1  Staggered finite difference

The discrete equations for the SFD approximation to the SWE using weighted Euler

time stepping are given as

(3.1)

(3.2)

where θ is the weighting parameter and varies between 0 (fully explicit) and 1 (fully

implicit). A θ value of 0.5 gives the popular Crank-Nicolson scheme.

3.2.2  Primitive finite element

The discrete equations for the PFE approximation to the SWE using leap-frog time

stepping are given as

(3.3)

ζj
k 1+ hθ ∆t

∆x
------ uj 1 2⁄+

k 1+ uj 1 2⁄–
k 1+–( )+ ζj

k h 1 θ–( ) ∆t
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1 τ∆tθ+( )uj 1 2⁄+
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∆x
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1 τ∆t 1 θ–( )–( )uj 1 2⁄+
k g 1 θ–( ) ∆t

∆x
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k ζj
k–( )–

ζ j 1–
k 1+ 4ζ j

k 1+ ζ j 1+
k 1++ + ζ j 1–

k 1– 4ζ j
k 1– ζ j 1+

k 1–+ +( ) 6h ∆t
∆x
------– uj 1+

k uj 1–
k–( )=
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(3.4)

where the leap-frog scheme decouples the continuity and momentum equations.

3.2.3  ADCIRC (generalized wave continuity)

The discrete equations for the linearized one-dimensional ADCIRC (ADvanced

CIRCulation, Luettich et al. [1992, 2003]) model for the SWE, which uses a three-level

temporal scheme centered at level k for continuity and a two-level temporal scheme

centered at k+1/2 for momentum, are given as

(3.5)

 (3.6)

where the temporal weighting parameters, αn, must satisfy α1+α2+α3 =1.0, and they are

usually set equal to 1/3. Rather than solving both equations simultaneously, the GWC

equation is solved for the new elevations, which are then used to calculate the new

velocities using the momentum equation.

3.2.4  Selective lumping finite element

The discrete equations for the SLFE approximation to the SWE, which uses a two-

step temporal discretization, are given as

uj 1–
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(3.7)

(3.8)

where e is the general selective lumping parameter, which varies between fully lumped (e

= 1) and unlumped (e = 0), and f is the selective lumping parameter for the bottom friction

term, which takes on the same range of values as e. These equations were derived by

substituting the first step into the second step in order to get a single equation for analysis

purposes. See Appendix A for the equations for each individual step.

3.2.5  Finite volume

The general discrete equations for the FVM approximation to the SWE using

explicit time stepping are given as

(3.9)

ζj
k 1+ 2 e+

3
------------ µ2gh

4
------------– ζj

k 1 e–
6

----------- ζj 1–
k ζ+ j 1+

k
( ) µ2gh

8
------------ ζj 2–

k ζj 2+
k+( ) –+ +=

µh
2

------ 1 e–
6

----------- τ∆t
2

--------1 f–
6

----------– uj 2+
k uj 2–

k–( ) µh
2

------ 2 e+
3

------------ τ∆t
2

--------2 f+
3

-----------– uj 1+
k uj 1–

k–( )–

uj
k 1+ µ2gh

8
------------ τ∆t1 e–

6
-----------1 f–

6
----------– τ2∆t2

2
------------- 1 f–( )2

36
------------------+ uj 2–

k uj 2+
k+( ) +=

1 e–
6

----------- τ∆t 1 f–
6

----------- 2 e+
3

------------ 2 f+
3

----------- 1 e–
6

------------ τ∆t1 f–
6

---------- 2 f+
3

-----------–+ 
 – uj 1–

k uj 1+
k+( ) +

2 e+
3

------------ µ2gh
4

------------ 2τ∆t1 f–
6

---------- τ∆t
2

--------1 f–
6

---------- 1 e–
6

-----------– 
 +– τ∆t2 f+

3
----------- τ∆t

2
--------2 f+

3
----------- 2 e+

3
------------– 

 + uj
k –

µg
2

------ 1 e–
6

----------- τ∆t
2

--------1 f–
6

----------– ζj 2+
k ζj 2–

k–( ) µg
2

------ 2 e+
3

------------ τ∆t
2

--------2 f+
3

-----------– ζj 1+
k ζj 1–

k–( )–

ζj
k 1+ ζj

k ∆t
2∆x
----------[h uj R,

k uj 1+ L,
k uj 1– R,

k– uj L,
k–+( ) ––=

a ζj 1– R,
k ζj L,

k ζj R,
k–– ζj 1+ L,

k+( ) ]

uj
k 1+ uj

k ∆t
2∆x
----------[g ζ( j R,

k ζ+ j 1+ L,
k

ζj 1– R,
k– ζj L,

k )––=
61



, (3.10)

where the subscripts j, R(L) indicate the rightmost (leftmost) value of u or ζ within volume

j and a is the frictionless wave celerity and is equal to . These equations are valid for

any order of approximation, as the order does not enter in until the left and right states are

calculated.

Looking at Equations (3.9) and (3.10), and noting that for piecewise constants uj,L

= uj,R and ζj, L = ζj, R, the low-order discrete FVM representation can be written as

(3.11)

. (3.12)

For the higher-order FVM with piecewise linear approximations, some limiting

procedure is necessary to maintain stability. In this study, three common limiters (as

presented in various applications of higher-order methods) and their behavior within the

context of the high-order FVM discretization of the SWE have been examined. These are

the minmod limiter used by Sweby [1984] given as

, (3.13)

the Superbee limiter used by Causon et al. [2000] given as

, (3.14)

and the vanLeer limiter used by Bell and Shubin [1984] given as

, (3.15)

where sx is the sign of x and the raw slopes are calculated using standard finite differences:
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, , and (3.16)

where b can be either u or ζ, the subscripts indicate the cell average values for the jth cell,

and constant grid spacing ∆x is assumed. See Appendix B for more details and a discussion

of slope limiting for the higher-order FVM.

3.2.6  Discontinuous Galerkin

The discrete equations for the low-order DG approximation to the SWE using

explicit time stepping are given as

(3.17)

 , (3.18)

which are the same as the low-order FVM.

The discrete equations for the higher-order (piecewise linear) DG approximation to

the SWE using explicit time stepping are given as

(3.19)
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(3.20)

(3.21)

 , (3.22)

where the parenthetical superscripts (0) and (1) represent the two degrees of freedom

(DOF) for each state variable. The zero DOF is the element average for the variable and the

one DOF is the slope within the element. The k superscripts are from the temporal

discretization and indicate at which time level the terms should be evaluated.

As in the higher-order FVM, slope limiters may be necessary for added stability;

however, of the limiters that were used in the FVM, only the minmod limiter will be applied

to the higher-order DG in this study. (The minmod limiter with a total variation bounded

(TVB) correction was used in the original development of the Runge-Kutta DG method by

Cockburn and Shu [1991].) Additionally, some changes are necessary relative to the

limiting procedure used for the FVM: 1) the limiter must compare the calculated DG slopes

to the left and right slopes and 2) the centered slopes C are taken to be the DG state values

times the normalizing factors,  and , rather than calculating

them as a centered difference. With these changes, the minmod limiter in the DG

framework is given as
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(3.23)

where the left and right slopes are calculated using finite differences and element averages

from adjacent elements, as in the FVM. For non-constant grid spacing, the limiter is

expressed as given in Equation (3.23); but the slopes are calculated as

, , and (3.24)

where b can be either state variable, ζ or u. After the slopes are limited, the new value for

the (1) degree of freedom is given as

. (3.25)

See Appendix B for the complete derivation of the DG algorithm and a discussion of slope

limiting.

3.3   Truncation error analysis

Taylor series expansions of the discrete equations presented in §3.2 can be used to

determine the order of the spatial and temporal accuracy for each algorithm that can be

written in a closed form. These expansions can be thought of as the sum of the continuum

equation plus some truncation error, TE. Thus the error for either the continuity or the

momentum approximation can be written as

TE = error = continuum – approximation, (3.26)

where for a consistent approximation, the TE must approach zero as ∆t and ∆x approach

zero. Also, the order of the leading spatial and temporal terms of the TE denote the accuracy

of the approximation.

In the following subsections, the truncation error will be presented for each of the
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algorithms and the accuracy determined. These errors were derived by substituting a Taylor

series approximation in space and time about point x* = (xj, tk) given as

(3.27)

where b(x, t) can be either velocity or elevation and can be evaluated at any location or time,

N is the order of the approximation, and RN+1 is a multidimensional remainder term that is

often written as HOT for higher-order terms. The continuum equations are subtracted from

these approximations and the truncation error simplified to give the final results presented

below. In order to save space, subscript notation is used to indicate partial derivatives, and

it is understood that all of the elevation and velocity derivatives are evaluated at x*. The

accuracy of these approximations, as found in this analysis, are also summarized in the final

algorithm comparison given in Table 3.9. A third order, N = 3, Taylor series approximation

for all terms in the discretizations was sufficient to determine the spatial and temporal

accuracy for all of the algorithms.

3.3.1  Staggered finite difference

The truncation error for the continuity equation, as discretized by the staggered

finite difference algorithm, is

 , (3.28)

which can be further simplified by using the continuity equation and noting that

. Thus, for Crank-Nicolson time weighting with θ = 1/2, one can

eliminate the terms, , to get
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 , (3.29)

which is second-order accurate in both time and space. The truncation error for the

momentum equation discretization for this algorithm is

 , (3.30)

where the Taylor approximations were centered about j =1/2 since that is the node of

interest for the velocity solution. As in the continuity approximation, this expression can be

simplified by using the momentum equation and noting that .

Thus, for Crank-Nicolson time weighting with θ = 1/2, one can eliminate the terms,

, to get

 , (3.31)

which is second-order accurate in both time and space.

3.3.2  Primitive finite element

The truncation error for the continuity equation, as discretized by the primitive

finite element algorithm with leap-frog time stepping, is

 , (3.32)

which is second-order accurate in both time and space. The truncation error for the

momentum equation discretization for this algorithm is
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 , (3.33)

which is first-order accurate in time and second-order accurate in space.

3.3.3  ADCIRC (generalized wave continuity)

The truncation error for the generalized wave continuity equation, as discretized by

the ADCIRC model with α1 = α2 = α3 = 1/3, is

(3.34)

which is second-order accurate in both time and space. This combination of time weighting

parameters gives the optimal accuracy. The truncation error for the momentum equation, as

discretized by this model, is

 , (3.35)

which can be further simplified by using the momentum equation and noting that

. Thus the terms, , can be

eliminated to get

 , (3.36)

which is second-order accurate in both time and space.
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3.3.4  Selective lumping finite element

The truncation error for the continuity equation, as discretized by the selective

lumping finite element algorithm (when the first step is substituted into the second step to

get a single equation), is

 . (3.37)

This approximation is only consistent with the continuum equation when e = 1 and all of

the mass matrices in the continuity approximation are fully lumped. Under these

conditions, it is first-order accurate in time and second-order accurate in space.

The truncation error for the momentum equation discretization for this algorithm is

, (3.38)

Again the momentum discretization is only consistent when the mass matrices are fully

lumped in both steps, e = 1. Under these conditions, it is first-order accurate in time and

second-order accurate in space.

Kawahara et al. [1982] note that in practice a value between 0.8 and 0.95 is used

for the lumping parameter, and the maximum stable time step must be used to reduce the

numerical damping. However, in light of these TE results, the large time step and lumping

parameter values are necessary to reduce the importance of the inconsistent (1 – e)∆x2/∆t

terms in the error expression. This will be discussed further when the spatial and temporal

convergence results are presented for this algorithm in §3.4. Additionally, the effect of the
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lumping parameter and time step on the Fourier propagation behavior of the SLFE

algorithm are examined in §3.5.2.

3.3.5  Low-order finite volume / discontinuous Galerkin

The truncation error for the continuity equation, as discretized by the low-order

finite volume or low-order discontinuous Galerkin algorithm (they are equivalent) with

explicit time-stepping, is

 , (3.39)

which is first-order accurate in time and space. The truncation error for the momentum

equation discretization for these algorithms is

 , (3.40)

which is also first-order accurate in time and space.

It is instructive to compare the discrete FVM equations with their continuum

counterparts. Equations (3.11) and (3.12) for the low-order FVM are repeated here for

convenience

(3.41)

. (3.42)

Note that the low-order FVM is basically a central difference approximation that introduces

a second-order space derivative into the discrete equations, viz. the terms of Equations

(3.41) and (3.42) that are preceded by the parameter a. Kinnmark [1986] and Atkinson et

al. [2004] have noted that a characteristic feature of the generalized wave continuity and
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quasi-bubble algorithms, which produce non-oscillatory solutions, is the presence of a

second-order space derivative. This derivative is correlated with the ability of an algorithm

to successfully propagate or damp out undesirable short wavelength oscillations. Chippada

et al. [1998] note that a centered spatial approximation to the first derivative, which is

derived by using an arithmetic average for the flux approximation, results in an unstable

algorithm, i.e., neglecting the terms preceded by a in Equations (3.41) and (3.42). Thus the

second-order terms generated by the solution to the Riemann problem stabilize the

algorithm.

Unlike the GWC and quasi-bubble algorithms, which manipulate the governing

equations in continuum (GWC) or discrete (quasi-bubble) forms, the Taylor series analysis

on Equations (3.41) and (3.42) reveals that the Godunov type flux approximation, using

Roe’s linearization, introduces the second-order spatial derivative in the leading term of the

truncation error. In other words, the discrete equations are still consistent with the original

continuum equations, since the second-order spatial derivative is introduced to the leading

term of the error instead of in the equations themselves. This additional term has the effect

of reducing the overall accuracy of the approximation to first-order, and it adds diffusion to

both the continuity and momentum equations. It also stabilizes the algorithm despite the

fact that the first-order spatial derivatives come from the arithmetic average of the left and

right states. The overly-dissipative nature of this algorithm will be shown in §3.6.

3.4   Numerical error analysis

For both the spatial and temporal convergence studies, the test case was a 1D

channel with M2 tidal forcing (period = 44712 sec) of amplitude equal to 1m on the ocean

boundary and a land boundary on the other end. The channel dimensions are 50km by 10m.

The initial condition was a cold start, where the elevation and velocity fields are zero at

time t=0; and the simulations were run out for slightly more than two full periods of the

tidal forcing for a total of 90,000 seconds. Since the initial condition for the domain is a
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cold start for both the elevation and velocity fields, only the last time output is used to

compute the errors. This allows the entire domain to spin-up before examining the output.

3.4.1  Spatial accuracy

For the spatial convergence studies, a fine grid solution (1281 nodes) with a time

step of 0.01 seconds from the ADCIRC model was used for the “true” solution. In order to

isolate the spatial errors, a time step of 0.01 seconds was used for all of the other

simulations as well, except for the SLFE, which requires the maximum stable step for

optimal (consistent) results.

Two error norms were computed for the final output at tf = 90,000 seconds: 1) an L2

error norm in space, computed as

; (3.43)

and 2) an  error norm in space, computed as

, (3.44)

where nn is the number of nodes in the approximation, b (B) can be either elevation or

velocity, the bj(tf ) are the simulation results at node j and time tf =90,000 seconds, and the

true solutions B(x, t) are interpolated functions from the fine-grid ADCIRC solution. When

these error norms are plotted against the spatial resolution in log-log space, the slope

represents the accuracy of the algorithm.

The “slopes” are computed for each of the error norms in three ways: 1) a best-fit

line through the linear portion of the log-log convergence plots, 2) the average of the slopes

computed between successive grid resolutions, and 3) the peak (or maximum) of the slopes

computed between successive grid resolutions. Thus, 6 approximations to the spatial
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j 1=

nn

∑
 
 
 
 

nn⁄
 
 
 
  1 2⁄

=

L∞

L∞ error max B xj tf,( ) bj tf( )–( )2[ ]
1 2⁄

=

72



accuracy are computed for each of the state variables, elevation and velocity.

A graphic presentation of the results provides for easier comparison between

algorithms, therefore only the log-log plots will be presented in this section. Each of the

figures will present both of the error norms for the elevation and velocity results, for a total

of 4 curves per plot. The tabular data used to generate these plots, as well as the peak,

average, and best-fit linear convergence rates, are available to the interested reader in

Appendix D. Also, the spatial accuracy of each algorithm, as computed from the best-fit

and peak slopes, is summarized in Table 3.9 on page 109 within the final algorithm

comparison section. For each variable, elevation and velocity, the average of the best-fit

(peak) slopes from the two error norms is taken to be the best-fit (peak) accuracy of that

variable. Plots for each individual algorithm will be shown first, and then all of the

algorithms will be compared.

The error norms for the SFD algorithm are presented in Figure 3.1. With the

exception of the  error for the velocity, notice that the slopes for each state variable are

roughly the same, as expected from the truncation error analysis. The best-fit (peak)

convergence rate for the velocity is 0.914 (1.213), while the elevation rate is 0.983 (1.003). 

L∞

Figure 3.1 Comparison of spatial error norms for the SFD algorithm.
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The error norms for the PLF algorithm are presented in Figure 3.2. Notice that as

the grid spacing is refined, the convergence rate decreases and the errors eventually level

out. Therefore, the best-fit slope is computed using only the linear portion of the curves in

order to determine the convergence rates. The best-fit (peak) convergence rates are 1.006

(1.135) for the velocity and 1.464 (1.831) for the elevation.

The error norms for the ADCIRC model (GWC algorithm) are presented in

Figure 3.3. The entire range of grid resolutions is used to calculate the slopes; the best-fit

(peak) convergence rate for velocity is 1.021 (1.650), while the elevation rate is 1.441

(1.762).  

The error norms for the SLFE algorithm are presented in Figure 3.4. Recall that the

largest stable time step must be used with each of the grid resolutions in order to maintain

a consistent approximation. Table 3.1 summarizes the time step and grid resolution

combinations for each of the simulations. Notice that the maximum elevation errors are not

significantly different from the average elevation errors, thus the elevation error is uniform

over the domain. The best-fit (peak) convergence rate for the velocity is 0.900 (0.960),

while the elevation rate is 0.956 (0.990).  

Figure 3.2 Comparison of spatial error norms for the PLF algorithm.
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Table 3.1  Maximum stable time step combinations for SLFE algorithm.

∆x (m) 39.0625 78.125 156.25 312.5 625 1250 2500 5000

∆t (sec) 1.40625 2.8125 5.625 11.25 22.5 45 90 180

Figure 3.3 Comparison of spatial error norms for the linearized ADCIRC model.
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Figure 3.4 Comparison of spatial error norms for the selective lumping FE algorithm.
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If, instead, the small time step of 0.01 seconds is used, the SLFE algorithm starts

out with a slower convergence rate and then reaches a steady rate as the grid is resolved.

This odd behavior at the coarsest resolutions may be due to the interaction of the spatial and

temporal resolution. Due to the small time step, the ∆x2/∆t terms in the truncation error will

likely dominate at the most coarse resolutions.

Figure 3.5 compares the error norms for the low-order finite volume and

discontinuous Galerkin algorithms, and the higher-order methods with the three limiters

(minmod, superbee, vanLeer). From this graph it is readily apparent that, although the order

of the FVM approximations are roughly equivalent, as evidenced by the similar slopes, the
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Figure 3.5 Comparison of spatial error norms for 
the FVM and DG algorithms: (a) Linf for 
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minmod and Superbee limiters are the most accurate of the four, as they have the lowest

errors for each of the error norms. Note, however, that the Superbee limiter does exhibit a

slightly steeper slope for the L2 velocity error norm, shown in Figure 3.5b. Notice also that

the vanLeer limiter does not provide an improvement in accuracy over the low-order FVM,

as its errors lie at or above the low-order curve for all four error measures. The unlimited

DG algorithm also has a higher convergence rate, as evidenced by the steeper slope; this

algorithm is also the most accurate and has errors significantly lower than the other

discontinuous schemes. Meanwhile, the minmod limited DG scheme has similar errors

(and convergence rates) to the FVM schemes.

The best-fit convergence rates, computed over the linear range of the curves, and

the peak rates for these five algorithms are summarized in Table 3.2. Notice that the

convergence rates computed from the L2 velocity error for the Superbee limited FVM and

all four of the error norms for the DG unlimited algorithm are higher than the remaining

entries in the table. Note also that the unlimited DG scheme has significantly higher

convergence rates than any of the other algorithms, including the minmod DG scheme. 

Although the unlimited DG algorithm is still stable at this time step, it is beginning

to lose accuracy in the elevation results as the grid is refined past ∆x = 156.25m. (At a larger

time step of 0.1 seconds, the unlimited higher-order DG becomes unstable at the finest

resolution.) Also, the unlimited higher-order DG algorithm, which has the linearity of the

Table 3.2  Best-fit linear (peak) convergence rates for discontinuous algorithms.

Figure 3.5 panels (a)  for u (b) L2 for u (c)  for ζ (d) L2 for ζ

low-order FVM/DG 0.965 (0.998) 0.938 (0.970) 0.987 (1.005) 0.994 (1.001)

FVM – minmod 1.016 (1.090) 1.098 (1.277) 0.968 (1.016) 0.947 (0.992)

FVM – Superbee 1.034 (1.118) 1.466 (1.544) 1.032 (1.123) 1.002 (1.013)

FVM – vanLeer 0.943 (0.991) 0.938 (0.978) 0.940 (0.992) 0.951 (0.995)

DG – unlimited 1.651 (1.679) 1.666 (1.921) 1.338 (1.696) 1.682 (2.030)

DG – minmod 1.067 (1.290) 1.012 (1.131) 1.008 (1.028) 1.012 (1.054)

L∞ L∞
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functions built-in to the approximation, has much better accuracy than the various limited

FVM choices, which use ad hoc post-processing to add the higher-order terms. Therefore,

it would appear that the higher-order DG method is more accurate than the equivalent

FVM, although it is also more sensitive to stability limits.

A comparison of the spatial error norms for the SFD, PLF, ADCIRC, SLFE, low-

order FVM/DG, minmod limited FVM, and minmod limited DG algorithms is given in

Figure 3.6. Notice that the PLF and unlimited DG algorithms have the lowest errors, and

also that there convergence plots are very similar. The unlimited DG is more accurate than

the ADCIRC model, although this is more significant for the velocities than the elevations.

Additionally, this reduction in error is only significant enough (to justify the extra

computational effort of the higher-order DG model) at the larger grid resolutions. 

Notice that the minmod limited FVM and the SLFE algorithms have similar error

behavior for the elevation results, but that the velocity results differ significantly. Also,

although the truncation error analysis predicts higher theoretical convergence rates for

some of the algorithms, the figure indicates that most of the algorithms have similar rates

(slopes) in practice. Only the ADCIRC, PLF and unlimited DG have steeper slopes in select

regions of the convergence plots. This will be discussed further when the accuracy is

compared in tabular form in Table 3.9 on page 109.

3.4.2  Temporal accuracy

For the temporal convergence studies, interval halving with a base time step of ∆tb

= 1.6 seconds was used to evaluate the accuracy of the algorithms, such that the errors are

computed for two successive solutions with time steps of ∆tb/m and ∆tb/2m. Each

simulation uses a time step one half as large as the previous simulation (interval halving),

until the ratio of successive error norms converge to a constant. This converged ratio

represents the accuracy of the algorithm. In order to isolate the temporal errors, a fixed

spatial grid with 640 elements was used for all of the simulations.
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A graphical presentation of the results provides for easier comparison between

algorithms, therefore only the log-log plots of error versus m will be presented in this

section. The tabular data used to generate these plots is available to the interested reader in

Appendix D. Also, the average of the converged temporal accuracy for the  and L2 error

norms for each state variable, elevation and velocity, are reported in Table 3.9 on page 109

within the final algorithm comparison section. Plots for each individual algorithm will be

shown first, and then all of the algorithms will be compared.

The error norms for the SFD algorithm are presented in Figure 3.7. Notice that the
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Figure 3.6 Comparison of spatial error norms for all study algorithms: (a) Linf for u, (b) 
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elevation and velocity errors are equivalent. Both error norms for the two state variables

converge toward zero as the time step is cut in half successive times and the order of

accuracy is similar for all four curves. The converged ratio between m=8 and m=16 gives

the accuracy as 1.941 for velocity and 1.950 for elevation.

The error norms for the PLF algorithm are presented in Figure 3.8. Notice that the

elevation errors are slightly higher than the velocity errors. The converged ratio between

Figure 3.7 Comparison of temporal error norms for the SFD algorithm.
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Figure 3.8 Comparison of temporal error norms for the PLF algorithm.
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m=16 and m=32 gives the accuracy as 1.133 for velocity and 1.142 for elevation.

The error norms for the ADCIRC model are presented in Figure 3.9. Notice that the

elevation and velocity errors are similar through m=4, at which point the velocity errors

begin to increase. At m=16, all four error norms begin to increase, such that the solution

appears to be diverging. (If one takes another division of the time step – m = 64, ∆t = 0.0125

seconds – the errors continue to increase.) When a smaller grid spacing is used (∆x =

39.0625m), the errors come back into line; although the slope of the lines for the smaller

time steps are shallower than for the larger time steps. The converged ratio between m=2

and m=4 gives the accuracy as 2.007 for velocity and 1.952 for elevation. 

When looking at the spatial distribution of the temporal errors for the ADCIRC

model between successive simulations, the errors are highest at the boundaries. Since the

elevation BC is enforced at the ocean boundary and the velocity BC is enforced at the land

boundary, the elevation errors are highest at the land boundary and vice versa for the

velocity errors. This same problem was noted in other studies by Dresback and Kolar

[2004a] and Dresback et al. [2005], where the spatial errors converge without incidence but

the temporal errors do not converge as ∆t is refined past a certain point. However, the model

Figure 3.9 Comparison of temporal error norms for the ADCIRC model.
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remains accurate on the interior as ∆t is refined. Intuitively, as more time steps are required

to reach the same simulation time when using smaller values of ∆t, the errors will begin to

accumulate more at the opposite boundaries as the time step is refined further.

The temporal error norms for the SLFE algorithm (e = f = 0.9) are presented in

Figure 3.10. Recall that the base time step is roughly twice as large as for the other

algorithms (2.8125 versus 1.6 seconds); thus to have an equal comparison with the other

algorithms later, m starts at 1/2 for this model.

With the exception of the beginning of the elevation error curves, this algorithm

behaves opposite of what would be expected of a general algorithm in that the errors

increase as the time step is cut in half successive times. Kawahara et al. [1982] note that

the largest stable time step must be used in order to minimize the numerical damping.

However, as discussed in the prior section on truncation error (§3.3.4), the larger ∆t is

needed to keep the algorithm consistent with the continuum equations. The truncation error

analysis showed that for values of e other than 1, the second term of the error is

, which would increase as the time step is decreased. The converged ratio

between m=8 and m=16 gives the accuracy as –0.987 for velocity and –0.683 for elevation,

Figure 3.10 Comparison of temporal error norms for the SLFE algorithm.
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where the negative signs indicate that the slope is opposite of what should be expected.

Figure 3.11 compares the error norms for the low-order finite volume and

discontinuous Galerkin algorithms, and the higher-order versions with the studied limiters

(minmod, superbee, vanLeer). From this graph it is readily apparent that the temporal

convergence rate of the FVM and DG approximations are roughly equivalent, as evidenced

by the similar slopes as the curves converge at higher m values. The superbee limited FVM

and unlimited DG curves begin at m = 16 (∆t = 0.1 sec) because they are unstable for larger

time steps at this grid resolution. Notice, also that the minmod limited FVM and DG models

have nearly equivalent convergence plots and remain stable over the range of time steps
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used in this study, but that they appear to be approaching instability at a time step of ∆t =

1.6 seconds.

Somewhat surprisingly, the low-order FVM/DG algorithm has lower temporal

errors than the higher-order slope limited algorithms. However, the high-order nature of

these algorithms lies in the spatial realm, and the first-order explicit time stepping scheme

does not allow them to outperform the low-order spatial schemes in the temporal realm. In

practice, a temporal scheme on the same order as the spatial approximation is typically

employed with discontinuous algorithms (e.g., second-order Runge-Kutta for linear spatial

approximations).

As noticed in the spatial grid convergence study, the superbee limited FVM and the

unlimited higher-order DG algorithms are more susceptible to stability issues. In addition

these algorithms have the highest errors of all the discontinuous schemes. Also, as was the

case in the spatial convergence study, the vanLeer limited FVM algorithm has the same

error characteristics as the low-order FVM/DG algorithm. For future work, it would be

interesting to re-run the higher-order discontinuous models with second-order Runge-Kutta

time stepping to compare the temporal convergence.

The converged ratios and resulting accuracy values for each of the algorithms are

summarized below in Table 3.3. Note that the rates for the Superbee limited FVM

algorithm may be artificially high, since the ratios may not have converged yet by m=62.

Table 3.3  Temporal convergence rates for discontinuous algorithms.

Figure 3.11 panels (a)  for u (b) L2 for u (c)  for ζ (d) L2 for ζ

low-order FVM/DG 1.001 1.000 1.000 1.001

FVM - minmod 1.086 1.052 1.095 1.060

FVM - Superbee 1.255 1.271 1.272 1.288

FVM - vanLeer 1.000 1.000 1.000 1.001

DG - unlimited 1.078 1.056 1.080 1.059

DG - minmod 0.993 0.979 0.997 0.987

L∞ L∞
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Otherwise, all of the discontinuous schemes have first-order temporal accuracy, as is

expected for a simple forward-Euler temporal discretization.

A comparison of the temporal error norms for the SFD, PLF, ADCIRC, SLFE, low-

order FVM/DG, minmod limited FVM and DG, and unlimited DG algorithms is given in

Figure 3.12. The ADCIRC model has the lowest temporal errors followed closely by the

SFD then by the PLF, low-order FVM/DG, minmod limited FVM and DG, unlimited DG,

and SLFE algorithms. Again, notice that the SLFE convergence curve goes in the opposite

direction of all of the others since the maximum stable time step provides the most accurate
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results for this algorithm. Also, recall from the individual algorithm results, that the

ADCIRC model begins to accumulate error near the boundaries as the time steps are

reduced past m = 16 (∆t = 0.1 sec). The unlimited DG curve begins at m = 16, as the

algorithm is unstable at higher time steps, and goes out to higher m values to get closer to

a converged ratio. From these figures, it appears that the ADCIRC model has a slightly

higher convergence rate than the other algorithms (for the linear converging portion of the

plot from m = 1 through 16). A more precise comparison is made when the numerical

accuracy results are compared with the analytical predictions in Table 3.9 on page 109.

3.5   Analytical propagation behavior for the SWE algorithms

The results of the analytical propagation behavior using Fourier and dispersion

analyses are presented herein. Stability limits are also derived for each algorithm using the

Fourier propagation factors.

3.5.1  Discussion of wave propagation behavior

The Fourier propagation characteristics and the dispersion curves for the SFD, PLF,

ADCIRC, SLFE and low-order FVM/DG algorithms, as derived from the equations

presented in Chapter 2, are shown below in Figure 3.13. The parameter values used to

generate these curves are the same as those used in Chapter 2, which are repeated here for

convenience in Table 3.4. However, the equations for these curves, which were also

presented in Chapter 2, will not be repeated here. Note that an analytical dispersion curve

for the SLFE is not provided since the time stepping is an integral part of the algorithm.

Also, two time steps are examined for the Fourier propagation characteristics of the SLFE

algorithm: ∆t = 0.1 and 50 seconds, since the maximum stable time step must be used in

order to obtain optimal (consistent) results with this algorithm. Additionally, no analytical

results are shown for the higher-order FVM and DG algorithms since it is not possible to

write them in the necessary closed form, when slope limiters are used. 
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Table 3.4  Parameters used in propagation study.

g = 9.81 m/s2 h = 10 m ∆t = 1.0 s

τ = 0.0001 s-1 G = 0.001s-1 ∆x = 1000 m

e = 0.9 f = 0.9 ∆t = 50.0 s
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Figure 3.13 Comparison of propagation characteristics for the study algorithms: (a) 
Fourier damping ratio, (b) Fourier phase error, (c) dispersion relationship, 
(d) zoomed-in view of Fourier phase error.
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For the Fourier propagation characteristics notice that the PLF, SLFE and low-order

FVM/DG algorithms all have a phase lag of 360 degrees for the 2∆x wavelength. Of these

three algorithms, however, the PLF is the only one that does not have any damping ( | T | =

1), which implies that if this wavelength is introduced into a simulation, it will not

propagate or be damped out and will thus overlie the correct solution. This is also evident

in the dispersion plot for this algorithm where the folded curve indicates that for each

temporal frequency there will be two spatial frequencies (high-frequency noise

superimposed on the physical long-wave solution). The low-order FVM/DG algorithm

completely damps this high frequency noise out, as evidenced by the damping ratio of 0.0,

but it is also over-dissipative in the longer, physical wavelengths (the damping ratio never

reaches unity although the phase error approaches zero). The SLFE algorithm is also more

dissipative than the other algorithms, and it reaches an asymptotic value of -24 degrees for

the phase error, so that it is always out of phase even in the physical wavelengths. Notice

also that the phase error for the SLFE algorithm does not differ significantly for the two

different time steps; however, the smaller time step (∆t = 0.1 seconds) results in

considerably more damping.

The SFD algorithm has a phase lag in the low wavelengths (2 - 20∆x) with very little

to no damping, however the lag is not large enough to cause the dispersion curve to fold

completely, so it is still monotonic. Interestingly, the dispersion curve for this algorithm is

identical to that of the low-order FVM/DG algorithms; yet the Fourier propagation

characteristics are quite different. This is due to the similarity of the spatial discretizations

(element-centered elevations) for the two algorithms. As the dispersion behavior is derived

using continuum time, the spatial discretization alone determines the propagation

relationship. However, the Fourier propagation characteristics take into account the

temporal discretization of the algorithms, which results in the difference in Fourier

behavior, despite the identical dispersion curve.

The PLF algorithm has a phase lag for the 2∆x wavelength but then changes to a
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slight phase lead for the next several wavelengths. The GWC algorithm begins with a

noticeable phase lead (+60 degrees) at the small wavelengths, which decays to a slight

phase lead (on the order of 5 degrees) for the remainder; however there is sufficient

damping in the GWC algorithm to avoid wiggles. Notice that the dispersion curves for

these two algorithms lie above the continuum curve for wavenumbers within this range,

where there is a phase lead.

From these plots, it is evident that the PLF algorithm does not have good

propagation properties for the low wavelengths, the SLFE algorithm always exhibits a

significant phase error for even for the physical wavelengths, and the low-order FVM/DG

algorithms are overly dissipative. What is not shown in these plots is that the SLFE

algorithm is extremely sensitive to the time step and lumping parameter, the subject of the

next section.

3.5.2  Parameter study for SLFE algorithm

In this section, a brief parameter study of the SLFE algorithm is presented in the

context of Fourier propagation characteristics. Recall that the SLFE algorithm, as presented

by Kawahara et al. [1982], uses a selective lumping parameter, e, to determine whether the

mass matrices are lumped, unlumped or partially lumped. In this study, we have introduced

a separate lumping parameter, f, for the bottom friction terms. For a fixed time step, ∆t, and

general lumping parameter, e, the following observations are made as the bottom friction

lumping parameter is varied from unlumped (f=0) to fully lumped (f=1):

(i) the phase error is the same over the entire range of values for the bottom friction lumping

parameter (this is true for any combination of e and ∆t, although the results do differ as e

or ∆t are changed);

(ii) when the value of e is near 1.0, the damping ratio is slightly better when the bottom

friction term is unlumped, but as the value of e decreases, the damping ratio is not

significantly altered as f varies over the entire range of values;
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(iii) following from points (i) and (ii), for any fixed value of e (over the entire range 0 to 1)

as ∆t increases, all of the phase error and damping ratio curves for the range of f values

converge to the same value.

From these observations, the differences in the propagation results as f varies from

unlumped to fully lumped are not significant. Therefore, it is recommended that a single

lumping parameter be used by setting f equal to e.

Now, given a fixed value for the lumping parameters with e = f, the following

observations are made as the time step is varied:

(i) in general the damping ratio and phase error improve as ∆t increases until it nears the

maximum stable time step, after which the results begin to deteriorate again;

(ii) for values of the lumping parameter near 0.0, the propagation characteristics are quite

bad for any time step (when e = f = 0.0 and the maximum stable time step is used, phase

errors approach -240 degrees for the long, physical wavelengths and damping ratios

approach 0.8 for these same wavelengths, while the phase error starts out at -360 degrees

but the damping ratio is 0.05);

(iii) for values of the lumping parameter at 1.0 and any stable time step, the propagation

characteristics are similar to the PLF algorithm, namely the phase error starts out at -360

degrees and approaches 0.0 but the damping ratio is always 1.0 so that short wavelength

noise does not propagate nor dissipate;

(iv) values of the lumping parameter near 1.0 (>0.8) minimize the asymptotic phase error

for the physical wavelengths but also reduce the damping of the lagging short wavelength

noise, while lower values of the lumping parameter (<0.5) provide more damping for the

short wavelength noise but also damp out the physical waves, which have greater phase

lags;

(v) for any lumping coefficient, as the time step decreases away from the maximum stable
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value, the damping ratio decreases significantly while the phase error changes only slightly

in the low wavelength range (< 20∆x) and remains unchanged in the physical wavelength

range (> 20∆x).

From these observations, the range of lumping parameter values suggested by

Kawahara et al. [1982], 0.8 < e < 0.95 seems to be a sensible balance of these issues. At

the lower end when e = f = 0.8, the phase error starts at -360 degrees and approaches a value

of -50 degrees while the damping ratio starts at 0.57 and approaches 0.97. At the upper end

when e = f = 0.95, the phase error starts at -360 degrees and approaches a value of -12

degrees while the damping ratio starts at 0.88 and approaches 0.99. Obviously, when the

algorithm nears being fully lumped the phase error decreases; however, so does the

damping, which could lead to spurious oscillations. Additionally, their recommendation

that the largest stable time step be used, in order to reduce the artificial damping, can be

confirmed by these propagation results (and is necessary given the results from the

truncation error study for this algorithm given in §3.3.4), as will be shown in the following

example.

For the value of the lumping parameters used in the previous section (§3.5.1), e = f

= 0.9, plots of the damping ratio and phase error, as the time step is varied, are shown in

Figure 3.14. The smaller time steps are shown in shades of red, while the larger time steps

are shown in blue, where the steps of interest are ∆t = [0.1, 1, 5, 10, 25, 50, 75] seconds.

Notice that the domain of the damping ratio is extended relative to the phase error, since

the phase reaches its asymptotic value at a smaller wavelength. 

As discussed above, notice that despite the large range of values used for the time

step, the phase error is only slightly different in the small wavelength range, Ln from 2 to

20∆x, and exhibits no variation at all for the physical wavelengths. Also, the phase error

never reaches zero, but instead reaches an asymptotic value around -25 degrees. Notice also

that the smaller time steps (red curves) severely overdamp the solution, while the larger
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time steps (blue curves) do not reach unity but are not as overdamping. The time step of 75

seconds is heading towards instability at the 3∆x wavelength, as evidenced by the ridge in

the damping ratio. (As discussed in §2.2.1, the damping ratio, |T |, can be greater than unity

without the algorithm being unstable; however, examination of |λ| indicates that the

algorithm is indeed approaching instability.) In order to avoid this strange behavior at the

3∆x wavelength, a value of ∆t = 50 seconds was chosen as the “maximum stable time step”

Figure 3.14 Fourier propagation results for the SLFE algorithm with 
lumping parameter e = f = 0.9 and ∆t = [0.1 to 75.0] seconds.
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for the propagation study presented above in §3.5.1.

3.5.3  Stability from Fourier propagation factors 

Due to the complexity of the algebraic equations, it was not possible to obtain a

closed-form limit for all of the algorithms from their respective propagation factors. For

those that lent themselves to such a solution, the relationship for the maximum stable time

step is given. For the remaining algorithms, a limit was found numerically by calculating

|λ| for all wavelengths for successively larger time steps until this magnitude reaches or

exceeds unity. Even these computed limits will be referred to as analytical limits since they

are derived from the analytical expressions for the propagation factors and not from

numerical simulations. All of the propagation factors are functions of the wavenumber, σ

= 2π/Ln ; for most algorithms, the most critical wavelength is between Ln = 2∆x and 5∆x.

For the algorithms where a closed expression is obtained, the critical wavelength was first

determined numerically and then the algebraic equations for this wavelength were solved.

These analytical stability limits are compared to those obtained from numerical simulations

in the summary section, §3.7.

Staggered finite difference

For the SFD algorithm, the critical wavelength is Ln = 2∆x, which results in the

following expression for the propagation factor:

. (3.45)

When , this gives the following constraints on ∆t:

. (3.46)

λ
16gh∆t2 1 θ–( )θ ∆x2 4 2τ∆t 2θ 1–( ) 2∆t

∆x
--------- 16gh– τ2∆x2+±+ 

 +

4 4gh∆t2θ2 ∆x2 1 τ∆tθ+( )+( )
--------------------------------------------------------------------------------------------------------------------------------------------------------------------=

λ 1≤

∆t τ∆x2 1 2θ–( ) ∆x 1 2θ–( ) 16gh– τ2∆x2+±

2 2gh 8ghθ– 8ghθ2+( )
------------------------------------------------------------------------------------------------------------->
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For Crank-Nicolson time stepping, θ = 0.5, which results in a single constraint: ∆t > 0.0

seconds. This is always true, and the analysis indicates that the algorithm should be

unconditionally stable. Numerically, the propagation factor was found to be less than or

equal to 1.0 for any time step (and wavelength), verifying that the algorithm is

unconditionally stable for Crank-Nicolson time stepping.

Primitive leap-frog

For the PLF algorithm, the critical wavelength is Ln = 3∆x, which results in the

following expression for the propagation factor:

. (3.47)

From this, the stability constraints are then given as

 and (3.48)

. (3.49)

For the parameter values used in this study (given in Table 3.4), these constraints are

calculated to be  and . The first constraint is always satisfied since

∆t is always greater than zero.

ADCIRC model (GWC)

For the ADCIRC model, the critical wavelength is Ln = 5∆x. The third order

polynomial for the propagation factor produces three roots, all of which are too complicated

to produce a closed-form expression for the propagation factor. Therefore, a numerical

solution of the algebraic equations for the stability limit was computed instead. For 

λ2 1 6gh ∆t
∆x
------ 

  2
– τ∆t– 2i 3gh ∆t
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------ 

  2
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  2 τ∆t
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----------------------------------------------------------------------≥
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the maximum time step is ∆t = 100.08 seconds.

Selective lumping finite element

For the SLFE algorithm, the critical wavelength is Ln = 4∆x. Again, the expression

for the propagation factor is too complicated to present here and a numerical solution of the

algebraic equations for the stability limit was computed instead. For  the maximum

time step is ∆t = 79.23 seconds.

Low-order finite volume / discontinuous Galerkin

For the low-order FVM/DG algorithms, the critical wavelength is Ln = 2∆x, which

results in the following expression for the propagation factor:

. (3.50)

From this result, the stability constraints are then found to be

 for the negative root and (3.51)

 for the positive root. (3.52)

Given the parameter values used in this study (Table 3.4), the constraints are calculated to

be  for the negative root and  for the positive root, where both

constraints are satisfied as long as the most restrictive case for the positive root is satisfied.

3.6   Numerical propagation behavior for the SWE algorithms

The numerical propagation analysis techniques from Chapter 2 are used to analyze

higher-order (piecewise linear) FVM and DG discretizations, wherein the slope limiting

procedures prohibit a traditional analytical  analysis, and the SLFE algorithm, which does

λ 1≤

λ 1
2
--- 2 4a ∆t

∆x
------– τ∆t– τ∆t± 

 =

∆t ∆x
a

------≤

∆t 2∆x
2a τ∆x+
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∆t 100.96≤ ∆t 100.46≤
95



not lend itself to analytical dispersion analysis due to the two-level time stepping scheme.

The numerical propagation techniques that were recommended at the end of Chapter 2 are

carried forward for these analyses. Namely, initialization method 2 (IVP with wave near

center of domain) and least square harmonic (LSH) wave tracking will be used for Fourier

characteristics, while initialization method 3 (BVP with wave introduced through boundary

forcing) and both LSH and peak wave tracking will be used for dispersion behavior.

3.6.1  Higher-order finite volume method

For the FVM, the three slope limiters presented earlier in Section 3.2.5 – minmod,

vanLeer and Superbee – are analyzed. The propagation curves, as generated by the

numerical techniques, are presented in Figure 3.15; notice that all of the phase and
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Figure 3.15 Propagation characteristics of higher-order FVM methods using slope 
limiters: (a) Fourier damping ratio, (b) Fourier phase error, and (c) 
dispersion curve.
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magnitude data are discrete since there are no analytical results to present, but that the

continuum dispersion behavior and low-order results have been plotted for reference.

The minmod slope limiter scheme exhibits a slight phase lag in the low

wavelengths, but these would be damped out, as shown in the magnitude plot. However,

this scheme appears to be overly dissipative, as the magnitude only reaches a maximum

value of approximately 0.9, implying that the long physical waves will also be damped,

despite their correct phase. The vanLeer limiting scheme exhibits an asymptotic phase lag

where the long wavelength, physical waves are approximately 25 degrees out of phase, and

they reach a relative magnitude of only 0.8 of the continuum waves. Thus, this scheme

would not appear to be a good choice in practice. In contrast to these two limiting methods,

the Superbee exhibits good phase behavior and much less damping, as it approaches the

desired magnitude of 1.0 within the first 20∆x wavelengths. This is within the common

range used in application (i.e., in practice waves smaller than 20∆x are not usually

simulated, but rather the grid spacing is adjusted accordingly).

The dispersion results (Figure 3.15c) indicate that all three limiters remain

monotonic but exhibit a slight folding away from the continuum, when LSH wave tracking

is utilized for the propagation analysis. Meanwhile, if peak tracking is used to monitor the

position of the waves, then there is a dip corresponding to the 3∆x wavelength, while the

wavenumber corresponding to the 2∆x wavelength lies above the continuum for the

minmod and Superbee limiters and the vanLeer dispersion curve remains folded. Given the

phase lags seen in Figure 3.15b and the low-order behavior, the LSH dispersion plots seem

more reasonable. Considering both Fourier and dispersion results, the Superbee class of

limiters appears to be the most promising.

Note that even with the higher-order FVM, the additional second-order spatial

derivative introduced via the Riemann problem still exists (see §3.3.5 for discussion).

However, if one is judicious about which slope limiting algorithm is used to reconstruct the
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slopes, only enough diffusion is added to keep the algorithm stable (“controlled” diffusion)

is added. From the results in Figure 3.15, it is apparent that the Superbee class of limiters

is more successful than the other two at controlling the amount of dissipation that is

introduced by the second-order spatial derivative. Thus, with the numerical propagation

results, there now exists a tool to judge slope limiters for their ability to damp noise without

damping the physical waves as well.

Figure 3.16 compares 1D elevation results for the three limiters – minmod,

Superbee and vanLeer – with a fine grid solution from the commonly-used ADCIRC model

(∆x = 39.0625m) and verifies the phase characteristics shown in Figure 3.15. (The velocity

results are similar.) The simulation parameters are the same as in Table 2.4, and the period

of the open-ocean boundary condition was chosen such that the simulated wavelength

satisfied Ln/∆x equal to 30. The amplitude of the forcing function was set equal to 1.0 m.

The period of the boundary condition is calculated as

T = Ln/c =  , (3.53)

which gives T = 3029.79 seconds for the parameters given in Table 2.4. Additionally, the

total domain length was set equal to 100,000m to avoid the waves reflecting at the land

boundary during the simulation. 

Figure 3.16b shows an expanded view of the first peak after three full periods of

simulation time (10000 seconds). The first peak was chosen since it has traveled

approximately one wavelength through the domain, which should result in the best

comparison with the predicted propagation results, as they were calculated on a per-

wavelength basis; and the long simulation time was to allow the domain to spin up from a

cold start before analyzing the results. Notice that the vanLeer limiter is extremely

dissipative and that the wave shape is skewed significantly. Although the wave travels at

the correct speed, as evidenced by the location of the roots, the use of the peak to find the

30∆x gh 0.5τ30∆x
2π

------------- 
  2

–⁄
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phase error results in a significant lag due to this skew. It is beyond the scope of this study,

however, it would be interesting to modify the “peak tracking” propagation routines

presented in Chapter 2 to calculate the phase error based on the location of the roots.

Table 3.5 compares the predicted propagation characteristics, taken from the phase

plots in Figure 3.15 at Ln/∆x = 30, and the measured propagation characteristics (comparing
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Figure 3.16 Comparison of higher-order FVM simulation results with a 
fine grid ADCIRC simulation after three full periods of a 
30∆x wave: (a) full domain, (b) zoomed view of first peak.
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peak location and magnitude – “peak tracking”), taken from the observed simulation

behavior in Figure 3.16b. Notice that, despite the relative coarseness of the higher-order

FVM results compared to the fine grid solution, the actual errors seen in the simulation are

predicted by the numerical propagation tools.

3.6.2  Higher-order discontinuous Galerkin method

Similar to the higher-order FVM algorithm, the higher-order DG method cannot be

analyzed analytically. Herein unlimited, where the computed slope degrees of freedom are

not limited, and minmod limited DG approximations with piecewise linears are examined.

The propagation curves, as generated by the numerical techniques, are presented in

Figure 3.17; notice that the phase and magnitude data are discrete since there are no

analytical results to present, but that the continuum dispersion behavior has been plotted for

reference.

The unlimited DG with piecewise linears exhibits slight phase errors for the small

wavelengths (on the order of ), which are damped out, while the long physical waves

have zero phase error and no damping. Similarly, the minmod limited DG using piecewise

linears starts with a phase lag of  for the 2∆x wave, which is damped out, and it also

exhibits perfect phase behavior for the physical wavelengths. However, the minmod limited

version is slightly more dissipative in the lower wavelengths and has larger phase errors, as

compared to the unlimited version.

Table 3.5  Comparison of predicted and measured propagation characteristics for higher-
order FVM simulations using minmod, Superbee and vanLeer limiters.

Relative to 
ADCIRC

Phase error in degrees
(+ lead, – lag)

Damping ratio

Measured Predicted Measured Predicted

minmod +1.125 –0.025 0.8841 0.8487

Superbee –10.875 –6.025 1.0223 1.0168

vanLeer –46.875 –48.025 0.5894 0.5986

10°±

180°
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The dispersion curves are plotted for both the peak and least squares harmonic wave

tracking techniques for comparison. The peak tracking technique results in a dispersion

curve that overlies the continuum dispersion for all but the 4∆x wavelength for the

unlimited version, while the minmod limited version differs at the 3∆x and 5∆x

wavelengths. Meanwhile, the LSH tracking technique also results in monotonic dispersion

curves, but they do not match the continuum as well.

The DG algorithm is able to produce accurate and stable results without any

limiting procedure, in contrast with the FVM algorithm, which requires a limiter in the

post-processing step in order to remain stable. A comparison of Figures 3.15 and 3.17,

seems to indicate that the unlimited DG has very similar propagation characteristics to the

Superbee limited FVM; namely, slight phase leads in the small wavelengths and minimal
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Figure 3.17 Propagation characteristics of higher-order DG methods using piecewise 
linears with and without slope limiters.
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damping.

The same test case that was used to verify the propagation behavior for the higher-

order FVM in §3.6.1 was also used to examine the predictive capabilities of the higher-

order DG propagation results. A 30∆x wavelength was simulated using the unlimited and

minmod limited DG algorithm, and the first peak was compared to the fine-grid ADCIRC

simulation in order to measure the propagation characteristics. Figure 3.18 shows the

higher-order DG simulation results after three full periods of simulation time (10000

seconds); additionally, the low-order DG results have been plotted for reference. Notice

that the unlimited higher-order DG algorithms are more accurate and that the minmod

limiter in the DG framework behaves similarly to the minmod limited higher-order FVM

results given above in Figure 3.16.

Table 3.6 compares the predicted propagation characteristics, taken from the phase

plots in Figure 3.17 at Ln/∆x = 30, and the measured propagation characteristics (calculated

by comparing the peaks), taken from the observed simulation behavior in Figure 3.18b.

Notice that the damping behavior seen in the simulations is predicted quite closely by the

numerical propagation tools. However, due to the relative coarseness of the DG results

compared to the fine grid solution, the measured phase error for the minmod limited version

does not match the predicted value. Examination of the simulation results in Figure 3.18b

indicates that the minmod peak is wide and flat, such that finer resolution would result in a

more accurate location for the peak. 

Table 3.6  Comparison of predicted and measured propagation characteristics for higher-
order DG simulations with unlimited and minmod limited piecewise linears.

Relative to 
ADCIRC

Phase error in degrees
(+ lead, – lag)

Damping ratio

Measured Predicted Measured Predicted

minmod –10.875 –0.025 0.8208 0.8471

unlimited +1.125 –0.025 1.0112 1.0013
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3.6.3  Selective lumping finite element

The numerical propagation tools can also be used to study the effect of the lumping

parameter in the selective lumping finite element method. After observing the analytical

Fourier behavior of the SLFE discretization scheme, as characterized by the equations in

Table 2.2, it was discovered that the second lumping parameter, f, does not significantly

28000 30000 32000 34000 36000
0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 20000 40000 60000 80000 100000

-1

-0.5

0

0.5

1

1.5

El
ev

at
io

n 
(m

)

x (meters)

Figure 3.18 Comparison of higher-order DG simulation results with a 
fine grid ADCIRC simulation after three full periods of a 
30∆x wave: (a) full domain, (b) zoomed view of first peak.

El
ev

at
io

n 
(m

)

x (meters)

(a)

(b)

low-order
minmod

unlimited
ADCIRC
103



alter the solution. (Recall that f is the lumping parameter for the bottom friction term in

Equation (1.6).) Values of bottom friction ranging from 10-5 to 10-3 sec-1 were examined,

while e was held constant and f was allowed to vary from 0 (unlumped) to 1 (fully lumped).

There was no significant change in phase or amplitude behavior, and e and f were set equal

for all further studies. (Recall that the dispersion behavior of the SLFE discretization

scheme cannot be studied analytically due to the split-level time marching algorithm, thus

an initial study of the analytical propagation behavior was done using Fourier analysis

before proceeding with numerical dispersion analysis.)

Figure 3.19 compares the numerical Fourier propagation results to the analytical

results from Figure 3.14 for a fixed lumping parameter of e = 0.9 and a range of time steps,
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Figure 3.19 Numerically generated propagation characteristics for the SLFE with e = f = 
0.9 and ∆t = [0.1 to 75] seconds compared to the analytical propagation 
results.

| T
 | T
°

∠

Ln /∆x Ln /∆x

σ 

T
°

∠

Ln /∆x

| ω
 | 
104



∆t = [0.1, 1, 5, 10, 25, 50, 75] seconds. A zoomed view of the phase errors for the 2 to 10∆x

wavelength range and numerical dispersion results are also shown. The analytical damping

results are shown with the thick curves, while the numerical damping results are shown

with thin curves. Meanwhile, the analytical phase results are all shown with black curves

since they do not differ significantly and the numerical phase results are shown in color. For

all colored plots, the curves go from small ∆t values in red to large ∆t values in blue.

Notice first that the numerically derived damping results for the two smallest time

steps (∆t = 0.1 and 1.0 seconds) and the two largest time steps (∆t = 50 and 75 seconds) are

slightly better than those derived analytically. Notice also that the phase errors for the

largest time steps, which were derived from the numerical propagation analysis, approach

an asymptotic value of 0.0 while the analytical results only reach a value of –25 degrees.

Also, the analytical phase errors for all of the time step sizes go to –360 degrees at the 2∆x

wavelength; but the numerically generated phase errors start between –720 and –900

degrees. This indicates that the 2∆x wave is not remaining stationary, as predicted

analytically, but is actually propagating in the reverse direction. Despite these large phase

errors, generally enough damping is provided by each of the simulated time steps to either

remove or severely damp these spurious wavelengths. However, only the extremely

dissipative nature of the model using a time step of 0.1 seconds is able to completely

remove the 2∆x noise, as indicated by the red dispersion relationship. Notice that all of the

other time steps have solutions that remain monotonic, however they do fold away from the

continuum dispersion relationship to some extent.

Figure 3.20 presents the numerical propagation results over the entire range of

lumping coefficients, unlumped (e, f = 0.0) to fully lumped (e, f = 1.0). The maximum stable

time step was used for each lumping value and is summarized in Table 3.7; all other

parameters are as in Table 3.4.  

Notice that larger time steps can be taken when the algorithm is unlumped, however
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the model is overly dissipative for the smaller lumping coefficient values. Notice also, that

the phase errors for all values of the lumping coefficient start out around –800 degrees,

indicating, as in the previous example, that the 2∆x wave is propagating in the opposite

direction. All of the values produce monotonic dispersion relations, however as the

algorithm nears being fully lumped (e, f = 0.9 and 1.0) the dispersion relation begins to fold

away from the continuum. Although all of the other lumping values are near the continuum

Table 3.7   Maximum stable time steps for each value of the lumping parameter.

e, f 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

max ∆t 
(sec) 135 135 130 125 120 115 110 100 90 75 45

0 0.001 0.002 0.003
0
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Figure 3.20 Numerically generated propagation characteristics for the SLFE over the 
range of lumping parameters, e = f = [0.0 to 1.0], using the maximum stable 
time step for each lumping value.
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relation, the curves for e, f = 0.5 and 0.7 are an exact match, which may indicate nothing

other than the time steps used for these simulations were closest to the maximum stable.

(The maximum time steps were chosen by increasing the time step in 5 second increments

until instability was reached and then using the previous value.)

Figures 3.19 and 3.20 demonstrate that the SLFE algorithm is extremely dependent

on both the lumping parameter and the time step. In general, each of the values for the

lumping parameter would behave similarly as the time step is decreased from the maximum

stable value. Therefore, for the validation of the propagation behavior, the lumping

coefficient was set to 0.9. The same test case that was used to validate the propagation

behavior for the higher-order FVM in §3.6.1 was also used to examine the predictive

capabilities of the SLFE propagation results. A 30∆x wavelength was simulated using three

of the test time steps ∆t = [0.1, 10.0 and 50.0] and the same grid spacing of ∆x = 1000m,

and the first peak was compared to the fine-grid ADCIRC simulation in order to measure

the propagation characteristics. Figure 3.21 shows the SLFE simulation results after three

full periods of simulation time (10,000 seconds). Notice that the elevation results simulated

using the smallest time step are utter nonsense – the entire solution is essentially damped

out. Obviously, small time steps are not recommended with this algorithm. 

Table 3.8 compares the predicted propagation characteristics, taken from the phase

plots in Figure 3.19 at Ln/∆x = 30, and the measured propagation characteristics (calculated

by comparing the peaks), taken from the observed simulation behavior in Figure 3.21b. No

Table 3.8  Comparison of predicted and measured propagation characteristics for SLFE 
simulations with the lumping coefficient set to 0.9.

Relative to 
ADCIRC

Phase error in degrees
(+ lead, – lag)

Damping ratio

∆t (sec) Measured Predicted Measured Predicted

0.1 — – 294.0 — 0.0319

10.0 – 4.875 – 0.025 0.8957 0.8067

50.0 – 4.875 – 2.401 0.9830 0.9593
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measured propagation results are calculated for the smallest time step, since the results are

completely damped out. Notice that, despite the relative coarseness of the SLFE results

compared to the fine grid solution, the actual errors seen in the simulation are predicted

quite closely by the numerical propagation tools.
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Figure 3.21 Comparison of SLFE simulation results using a lumping 
parameter of 0.9 with a fine grid ADCIRC simulation after 
three full periods of a 30∆x wave: (a) full domain, (b) 
zoomed view of first peak.
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3.7   Summary of model characteristics

Table 3.9 summarizes the spatial and temporal accuracy of each of the algorithms.

For those algorithms that were analyzed above in §3.3 using truncation error analysis, the

grid convergence results from §3.4 are also provided for comparison. See the referenced

sections for more details about these results. 

Notice that the numerically generated spatial convergence results for the SFD and

SLFE algorithms do not live up to the derived second-order rates from truncation error

analysis, while the PLF and ADCIRC best-fit convergence rates are also not exactly

second-order but are closer (the peak convergence rates for the PLF and ADCIRC models

are closer to 2). The lower convergence rate for the SLFE algorithm is likely due to the

Table 3.9  Summary of temporal and spatial accuracy studies for the study algorithms.

Temporal accuracy Spatial accuracy

analytical numericalb analytical best-fit c peak c

SFD 2 (2) a 1.95 (1.94) 2 (2) 0.99 (0.97) 1.00 (1.21)

PLF 2 (1) 1.15 (1.13) 2 (2) 1.46 (1.01) 1.83 (1.13)

ADCIRC (GWC) 2 (2) 1.96 (2.00) 2 (2) 1.44 (1.02) 1.76 (1.65)

SLFE 1 (1) -0.68 (-0.99) d 2 (2) 0.96 (0.90) 0.99 (0.96)

low-order FVM / DG 1 (1) 1.00 (1.00) 1 (1) 0.99 (0.95) 1.00 (0.98)

FVM (minmod) na 1.08 (1.07) na 0.96 (1.06) 1.00 (1.18)

FVM (Superbee) na 1.28 (1.27) na 1.02 (1.25) 1.07 (1.33)

FVM (vanLeer) na 1.00 (1.00) na 0.95 (0.94) 0.99 (0.98)

DG (unlimited) na 1.07 (1.07) na 1.51 (1.66) 1.86 (1.80)

DG (minmod) na 0.99 (0.99) na 1.01 (1.04) 1.04 (1.21)
a The first number indicates the accuracy of the continuity approximation and the number in 
parentheses indicates the accuracy of the momentum approximation.
b The temporal numerical accuracy is calculated by averaging the converged accuracies from the 
L2 and  error norms for each state variable.
c The spatial numerical accuracy is calculated for both the average of the best-fit lines and the peak 
rates for the L2 and  error norms.
d The slope of the temporal convergence plots for the SLFE is negative because the quality of the 
solution decreases as the time step is resolved away from the maximum stable value.

L∞

L∞
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interplay between the temporal and spatial refinement for the SLFE algorithm; recall that a

different (max stable) time step was used for each grid spacing. Additionally, the

numerically generated temporal convergence results for the PLF algorithm do not live up

to the derived second-order rate for the continuity equation. Most importantly, notice that

the spatial convergence rates for the unlimited higher-order DG algorithm are greater than

those for the other higher-order discontinuous algorithms (FVM and DG) and are

comparable to the ADCIRC model.

Table 3.10 summarizes the stability limits for each of the algorithms, using the

parameters given in Table 3.4. Numerically, these limits were determined by running the

algorithms with successively larger time steps (to the nearest second) until the solution

became unstable. For those algorithms that were analyzed above in §3.5.3 using the

propagation factors, the analytical results are also provided for comparison. Notice that the

numerical results agree quite well with the derived limits. Also, note that due to the

dissipative nature, the FVM using piecewise linears and either the minmod or vanLeer

limiters is more stable than the FVM using the Superbee limiter; although the quality of the

solution is decreased at these high time steps. Additionally, the FVM algorithm using

vanLeer limiting has a comparable stability limit to the low-order FVM, which is expected

Table 3.10  Analytical and numerical stability limits for the study algorithms.

maximum stable ∆t (sec) analytical numerical

SFD unconditional unconditional

PLF 58.12 55

ADCIRC (GWC) 109.08 110

SLFE 79.23 65

low-order FVM / DG 100.46 100

FVM (minmod) na 30

FVM (Superbee) na 7

FVM (vanLeer) na 90

high-order DG (unlimited) na 3

high-order DG (minmod) na 30
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since they are both overly dissipative and have similar damping behavior (refer to

Figure 3.15). Finally, notice that the stability limit for the minmod limited DG algorithm is

the same as that for the minmod limited FVM, and is significantly higher than that for the

unlimited DG.

From the propagation results, all of the algorithms except for the PLF model, the

low-order FVM/DG algorithms, the vanLeer limited FVM and the SLFE algorithm with

small ∆t or e, exhibit good phase behavior. The PLF algorithm exhibits a folded dispersion

curve, indicating that spurious oscillations can hinder the solution; the low-order FVM/DG

algorithm is overly-dissipative and damps out the physical waves; the vanLeer limited

FVM has phase errors in the physical wavelengths; and the SLFE with low ∆t or e is overly-

dissipative. Of the discontinuous algorithms, the low-order FVM/DG method is overly

dissipative in the long-wave physical range; and a higher-order approximation is needed to

correct this. The vanLeer limiter for the FVM does not appear to be a good choice, as it is

also overly dissipative and has a phase lag in the physical wavelengths; but any of the other

limiting choices for the FVM or the unlimited and minmod limited DG methods have good

propagation characteristics.

Additionally, a simple test case in 1D with M2 tidal forcing (period = 44,712

seconds, amplitude = 1m) at the ocean boundary is used to compare the CPU times for each

of the study algorithms. For these tests, a Dell Dimension 2400 with a 2.66GHz Pentium®

4 processor and the Lahey-Fujitsu® Fortran compiler for Windows was used. Each of the

algorithms is used in turn to simulate the tidal response for just over three full periods

(135,000 seconds). The maximum stable time step for each algorithm and a grid spacing of

640 elements is used for these simulations, while all other parameters are as in Table 3.4.

The maximum stable time step and resulting CPU times for each algorithm are summarized

below in Table 3.11.  

Remarkably, the SFD algorithm is capable of using a time step as large as 1000.0
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seconds before the quality of the solution begins to degrade. Even larger time steps are

possible since the algorithm is unconditionally stable, however the quality of the solution

declines rapidly past this point. The ADCIRC model requires 1/100th of this time step and

is thus 100 times slower than the SFD model. However, the more flexible finite element

grid scheme of the ADCIRC model makes it more attractive for actual applications, which

most often have rather complicated domains.

The PLF and SLFE algorithms have the same stability limit for this grid spacing,

one-fifth of the allowable time for the ADCIRC model. Since the PLF algorithm uses the

same tridiagonal solver as the ADCIRC model, it scales accordingly and requires

approximately five times the CPU usage of the ADCIRC model. However, although the

SLFE algorithm is explicit in nature, such that no matrix solutions are required, it is a two-

step procedure and thus takes slightly more CPU time than the PLF algorithm.

Meanwhile, the low-order FVM/DG algorithm (recall that the FVM and DG

algorithms are equivalent when piecewise constant approximating spaces are used)

requires one-half of the time step allowed by the ADCIRC model; however, it uses slightly

less CPU time since the algorithm is explicit. The addition of higher-order approximations

Table 3.11  CPU times for three periods of M2 tidal forcing.

Model max stable ∆t 
(sec)

CPU usage 
(sec)

SFD 1000.0 0.0156

PLF 2.0 7.6094

ADCIRC (GWC) 10.0 1.5156

SLFE (e=0.9) 2.0 8.9688

low-order FVM / DG 5.0 1.0781

higher-order FVM (minmod) 0.5 17.672

higher-order FVM (Superbee) 0.1 96.313

higher-order FVM (vanLeer) 5.0 2.1406

higher-order DG (unlimited) 0.05 132.64

higher-order DG (minmod) 0.5 35.953
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and the vanLeer slope limiter does not significantly increase the CPU usage; however, as

seen in §3.4, no spatial or temporal accuracy is gained (relative to the low-order FVM) by

using this model. The addition of higher-order approximations and the minmod limiter

requires a time step equal to one-tenth of that allowed with the low-order version; however,

the CPU usage is approximately sixteen times as large due to the extra computations

required for the limiter. Use of the Superbee limiter instead, requires a time step one-fiftieth

of that allowed with the low-order version; but requires nearly one hundred times as much

CPU usage. Not only is the superbee limiter more limited by stability constraints, but it also

requires more computations in the limiting process itself. From these (and other) results

with the FVM algorithm, it was decided that only the minmod limiter would be examined

for the DG algorithms.

Finally, the unlimited higher-order DG algorithm requires a time step two hundred

times smaller than that allowed by the ADCIRC model and uses about 90 times as much

CPU time. Meanwhile, the minmod limited version requires a time step 20 times smaller

than the ADCIRC model and uses about 24 times as much CPU time. Although the minmod

limited version is more computationally intensive than the unlimited version, the ability to

take larger time steps ultimately makes it worthwhile. The higher-order DG algorithms are

clearly more expensive than the ADCIRC model; although they do provide slightly more

spatial accuracy, as seen in Figure 3.6 in §3.4.

3.8   Conclusions

Herein, the discontinuous class of algorithms has been compared to the more

traditional continuous algorithms for the solution of the shallow water equations and found

to be viable alternatives. The propagation characteristics of the various FVM and DG

implementations are comparable to the popular GWC approach. The stability limits of the

low-order FVM/DG and higher-order FVM with a vanLeer limiter are comparable to the

ADCIRC algorithm. Although the DG class has more restrictive stability limits, from an
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implementation point of view, it is more flexible than the FVM, since it has a finite element

basis and naturally incorporates higher-orders. Additionally, the DG exhibits higher spatial

convergence rates and has comparable rates to the ADCIRC model. However, due to the

more restrictive stability limits, and thus higher CPU times, the DG class of algorithms is

not as computationally efficient as the ADCIRC model. In two- or three-dimensional

applications the number of finite element edges, where much of the extra computational

effort arises in the discontinuous algorithms, can grow quickly, resulting in extremely long

computational times. Thus it might be beneficial to use the DG algorithm in a limited

domain and use the ADCIRC model in the remainder of the domain. Analysis of various

techniques for coupling the DG and ADCIRC models is the topic of the next chapter.
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CHAPTER  4

Coupled Continuous and Discontinuous Finite 
Element Methods for the Shallow Water Equations

4.1   Introduction

Shallow water equations (SWE) are used to model hydrodynamics in lakes,

estuaries, coastal regions, and other impoundments. The system of 2D SWE arises from the

depth-averaged Navier-Stokes equations and consists of a continuity equation with either a

conservative or non-conservative form of the momentum equation. Numerical techniques

are required to solve the SWE over complex domains, and it is desirable that these

algorithms produce accurate results without introducing numerical noise (spurious

oscillations) into the solution. In this study, the linearized 1D versions of the SWE will be

used in order to make use of the propagation tools in Chapter 2. For convenience, these

equations, as well as the linear form of the generalized wave continuity equation (GWC),

will be repeated here, although they are also presented in §1.2.2. The linear form of the

primitive continuity equation is

(4.1)

and the inviscid linear momentum equation is

. (4.2)

ζt hux+ 0=

ut τu gζx+ + 0=
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The linear form of the generalized wave continuity equation is

(4.3)

where ζ is the deviation of the surface elevation from the datum, h is the bathymetry, u is

the velocity in the x coordinate, τ is the linearized bottom friction parameter, g is the

gravitational constant (9.81 m2/s), and G is the generalized wave continuity weighting

parameter. When G approaches infinity, the GWC equation tends toward primitive

continuity, while for small G, it tends toward wave continuity. Note that the non-

conservative and conservative forms of momentum are identical when the equations are

linearized. In the remainder of this chapter, Equations (4.1) and (4.2) together will be

referred to as the primitive SWE, while Equations (4.3) and (4.2) together will be referred

to as the ADCIRC model.

The wide range of applications used in shallow water modeling necessitate robust

and computationally-efficient algorithms that maintain a high degree of accuracy. For

example, storm surge predictions require immediate results with a certain degree of

accuracy, while coastal dredging applications require accuracy but not immediate results.

Additionally, the large and complex simulation domains that are used in practice often have

widely varying bathymetry; therefore, flow regimes from highly advective in the shallow

regions to more diffusive in the deeper regions are encountered within a single simulation.

With such diverse flow regimes coupled with large domains for practical applications, it is

reasonable to assume that a single algorithm may not be able to adequately model the varied

physical processes, while maintaining accuracy and computational efficiency.

In particular, highly advective regions near the shorelines may result in mass

balance errors in the existing GWC algorithm, which is employed in the production code,

ADCIRC (ADvanced 3D CIRCulation model Luettich et al. [1992, 2003]). Historically, the

GWC algorithm was developed for slowly evolving fields in deeper continental shelf and

oceanic regions; it is not as well-suited for highly advective flows. On the other hand,

ζtt Gζt G τ–( )hux ghζxx–+ + 0=
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discontinuous Galerkin (DG) algorithms, which are relatively new in the surface water

literature, are capable of handling such advective flows with sharp fronts and can use the

same triangular meshing scheme (in 2D/3D models) as the ADCIRC model.

DG finite element methods are similar to traditional Galerkin FE methods in that

both solve the weak form of the equations by multiplying by a weight function and

integrating.  As in traditional Galerkin approximations, the weight functions are identical

to the interpolating functions. There are, however, two crucial differences between

traditional continuous Galerkin (CG) approximations and discontinuous approximations.

The first distinction is that DG methods allow discontinuities at the element interfaces,

which in effect disconnects adjacent elements and allows each to be solved

“independently” from the others. (As will be seen, each element does require information

from adjoining elements, but this information enters in explicitly for the explicit time

marching algorithms used in practice and does not couple the elements.) The second

distinction follows from the first in that DG methods integrate over a single element using

local weight and interpolating functions, while continuous methods integrate over the

entire domain and use global weight functions, which are zero outside of the element of

interest. These two differences provide certain advantages to the DG method including:

local p-refinement (i.e., each element has its own basis and weight function allowing higher

order interpolates in known problem areas), local h-refinement (i.e., each element is not

required to match up with its neighbors and hanging nodes do not pose a problem), the

ability to capture discontinuous solutions and handle shock fronts, and local mass

conservation since equations are satisfied on the element level rather than globally.

Experience with the finite volume code (which, as discussed in Chapter 3, is

equivalent to DG for low-order interpolation), UTBEST, which is based on the work of

Chippada et al. [1998], indicates that such shock-capturing algorithms are more

computationally-intensive than the GWC algorithm. Also in deep water regions, they are

no more accurate than the GWC. Thus, there is no “best” algorithm. Rather, an optimal
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solution may be to use the computationally-efficient GWC in deep water and switch to the

DG in shallow, near-shore regions. However this raises two new research issues: how to

couple the two algorithms and where in the domain to switch from one algorithm to the

other. Note that the coupling is further complicated by the fact that in the GWC algorithm,

elevations and velocities are calculated at the node points, while in the DG algorithm, these

quantities are element-centered.

Dawson and Proft have begun examining the first issue, how to couple the two

algorithms. In their first paper [2002b], they examine two approaches for coupling

continuous and discontinuous algorithms. The first approach, denoted by DG/CG, is to

discretize the primitive continuity equation with a local discontinuous Galerkin (LDG)

scheme and the momentum equation with standard continuous Galerkin (CG) finite

elements. In the second approach, denoted by DG/NIPG, they discretize the continuity

equation with the LDG scheme and the momentum equation with a particular DG scheme

for second-order problems, the nonsymmetric interior penalty Galerkin (NIPG) method of

Rivière et al. [1999, 2001]. They derive a priori error estimates and find an optimal

convergence rate of h2, using linear interpolants, for both schemes. In a second paper,

Dawson and Proft [2004] extend the first equation coupling scheme (DG/CG) and further

couple that system to a domain-wide CG discretization, as is done in the GWC algorithm;

thus they have coupled DG and CG algorithms through both equation and subdomain

coupling. In one subdomain the DG/CG algorithm is applied, and in the other subdomain

the ADCIRC model is employed; coupling at the subdomain interface is accomplished

through the boundary fluxes. Although the momentum equation is discretized with CG

elements in each subdomain, the velocity solution at the subdomain interface is allowed to

be discontinuous. This work is explained in further detail by Proft [2002] in her Ph.D.

dissertation.

The study herein seeks to further analyze the first question, how to couple the two

algorithms, and answer the second question, where in the domain to switch from one
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algorithm to the other, by studying the various coupling techniques in a 1D framework and

using the numerical propagation analysis tools developed in Chapter 2. Additionally, the

distortion and phasing errors at the interface are examined in the context of the wave

propagation characteristics.

4.2   Notation and coupling method descriptions

In this study, two types of coupling will be examined. The term “equation coupling”

will be used to refer to coupling techniques where the continuity equation is discretized

using one algorithm and the momentum equation is discretized with another, as in the DG/

CG and DG/NIPG schemes of Dawson and Proft [2002b]. The term “subdomain coupling”

will be used to refer to coupling schemes where the simulation domain is broken into

subdomains with different algorithms used to obtain the solution in each subdomain, as in

Dawson and Proft [2004]. Also, equation coupling will be noted with a slash, where the

left-hand-side of the slash denotes the discretization for the continuity equation and the

right-hand-side denotes the discretization for the momentum equation, e.g. DG/CG.

Subdomain coupling will be noted with a double arrow to indicate that information must be

passed between subdomains, e.g. .

This study will examine three degrees of coupling for the solution of the shallow

water equations in one spatial dimension. In order of complexity these are: Method 1) DG/

CG - equation coupling of DG continuity and CG momentum in a single domain, Method

2)  - subdomain coupling of domain-wide DG to ADCIRC formulation,

and Method 3)  - subdomain coupling of DG/CG equation coupled

scheme to ADCIRC formulation. For the subdomain coupling (Methods 2 and 3), an

overlapping element scheme is used to couple the subdomains to one another, which is

typical of parallel domain decomposition algorithms. Schematic diagrams of these

coupling schemes in 1D are shown below in Figure 4.1, where the subdomain interface is

indicated by a dashed line and overlapping elements by a dotted line for Methods 2 and 3. 

DG ADCIRC↔

DG ADCIRC↔

DG CG⁄ ADCIRC↔
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It was hoped that boundary flux passing, as in Dawson and Proft [2004], could also

be examined as a method for coupling subdomains, but this was not possible. In order to

use the phase analysis tools that were developed in Chapter 2, it is necessary to use the

linear form of the shallow water equations. However, the linear form does not lend itself to

flux coupling because all of the total-flux terms (Q=Hu) are removed in the linearization.

While it would have been instructive to examine the phase properties of the flux coupling

scheme, Dawson and Proft [2004] have already shown that the solution passes through the

coupling interface without distortion. Thus, this flux coupling technique will not be

DG

DG

CG

GWC

CG

DG

CG

GWCDG
elev

CG
vel

elevation
grids

velocity
grids

elevation
grids

velocity
grids

Figure 4.1 Schematic diagrams of coupling methods. Dashed vertical lines indicate 
subdomain interface and dotted vertical lines indicate overlapping 
elements. Red arrows and dots indicate shared information.

Method 3) Same passing as in Method 2 for
the elevation grids and direct passing of
nodal values for the velocity grids, as both
are CG grids. Note that the velocity solution
at the interface can be discontinuous since a
value will be calculated for it within each
subdomain. Interpolation is required within
the DG/CG subdomain, as in Method 1.
Overlapping elements for passing between
subdomains.

Method 1) Requires interpolation (shown
by arrows) to translate DG elevations into
CG elevations before computing the CG
velocities.

Method 2) Computes average of nodal values
to pass from CG to DG and average of DG
interface discontinuities to pass from DG to
CG (passing indicated by arrows) at the
overlapping elements.
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examined in this study; rather an alternative coupling with overlapping nodes and “natural”

treatment of boundary information is used. (Within the DG and DG/CG subdomains, the

algorithm will essentially be unaware of the subdomain interface, since computations will

begin at an interior element.) Each of the three methods will be derived in the following

sections.

Throughout the derivations in the subsequent sections, inner product notation

will denote integration over an element and the notation  will denote

integration over the element boundary, which in one dimension is just a point evaluation.

4.3   Method 1: DG/CG equation coupling

For this coupling method, the primitive continuity equation is discretized using

discontinuous Galerkin (DG) finite elements and the momentum equation is discretized

using continuous Galerkin (CG) finite elements. The CG model for the momentum

equation is derived using standard Galerkin FE with linear approximating functions. For

the DG model of the primitive continuity, piecewise constant and piecewise linear

approximating functions are examined. Grid space notation on an element is shown in

Figure 4.2.

( , )Ωe
,〈 〉Ωe

discontinuous elevations

continuous elevations and velocities

j

j+1/2j-1/2

∆xj xj 1 2⁄+ xj 1 2⁄––=

Figure 4.2 Grid space notation for DG/CG model.

L R L R

j-1 j+1
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The first step is to solve for the new DG elevations using the CG velocities and DG

elevations from the previous time step. Then these new DG elevations are interpolated onto

the CG grid space. The final step is to solve for the new CG velocities using the CG

velocities from the previous time step and the CG elevations from the previous and current

time steps.

4.3.1  DG solution of the primitive continuity equation

The starting point for the DG/CG discretization of the primitive SWE is the “local”

weak form of the continuity equation. Multiply the continuity equation by a discontinuous

weight function, φi (x), and then integrate by parts over an element, Ωe, to get

(4.4)

where ne is the unit outward normal at the element boundary, φi
I indicates that the weight

function should be evaluated internal to the boundary. The explicit functional dependence

of the variables, u(x,t) and ζ(x,t), and the weight function has been left off for brevity.

As in the derivation of the domain-wide DG discretization of the SWE in §B.4 of

Appendix B, Roe’s linearization is used to calculate the numerical flux at the boundary.

There it was shown that the appropriate flux for the continuity equation was

(4.5)

where   is the wave celerity, and the subscripts L and R denote the left and right

states at the boundary. Notice that this approximation adds an additional term to the simple

arithmetic average of the left and right fluxes, hu. This second term basically adds

numerical diffusion for stabilization.

Now observe that in 1D the boundary integrals reduce to point evaluations and

t∂
∂ζ φi( , )

Ωe
hu

x∂
∂φi( , )

Ωe
– hu ne⋅ φi

I,〈 〉∂Ωe
+ 0=

F1
1
2
--- h uL uR+( ) a ζR ζL–( )–[ ]=

a gh=
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replace the boundary term as follows:

(4.6)

where the element notation is as in Figure 4.2 above.

The next step is to approximate the dependent variables with basis functions.

Herein, both piecewise constant and piecewise linear Legendre bases are examined for the

DG elevation approximations, while linear Lagrange bases are used for the CG velocity

approximations (in anticipation of the CG discretization in §4.3.3). The fully discrete DG

equations will be worked out individually for each of these bases in the following

subsections.

Piecewise constant DG approximation

The structure of an element with piecewise constant approximations for the

elevations is shown below in Figure 4.3. Note that the only unknown in each element is the

elevation average. 

The approximations on an element are given as

 and (4.7)

hu ne⋅ φi
I,〈 〉∂Ωe

1
2
--- h uL uR+( ) a ζR ζL–( )–[ ] ne⋅ φi x( )

xj 1 2⁄–

xj 1 2⁄+

=

j-1/2 j+1/2

Figure 4.3 Structure of element j using piecewise constant 
basis functions for DG elevation.

L R

ne ne

L R

j 

ζj 1 2⁄–
L ζj 1–=

ζj 1 2⁄–
R ζj=

ζj 1 2⁄+
L ζj=

ζj 1 2⁄+
R ζj 1+=

ζh ζjφ0=
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(4.8)

where the DG basis function is simply φ0 = 1.0 and the CG basis functions (ω0 and ω1) are

standard linear Lagrange functions.

Now substitute the approximations (4.7) and (4.8) for the state variables and the

boundary integral (4.6) into Equation (4.4) to arrive at

(4.9)

where the second integral term vanishes since the derivative of the basis function is zero,

and the first integral evaluates simply to ∆xj. Also, note that since we are using continuous

approximating functions for the momentum equation, the velocity at the boundary is

constant such that uL = uR . With these substitutions and some simplification, the final

approximation is given as

(4.10)

where the elevation boundary contributions are kept distinct for ease of boundary condition

application.

Explicit time stepping is used for the temporal discretization, such that the fully

discretized approximation for the DG elevations with piecewise constants is given as

(4.11)

where k represents the known information from the previous time step and k+1 represents

uh uj 1 2⁄– ω0 uj 1 2⁄+ ω1+=

t∂
∂ ζjφ0 φ0( , )Ωe

h uj 1 2⁄– ω0 uj 1 2⁄+ ω1+( )
x∂

∂φ0( , )
Ωe

– +

1
2
--- h uL uR+( ) a ζR ζL–( )–[ ] ne⋅ φ x( )

xj 1 2⁄–

xj 1 2⁄+

0=

t∂
∂ ∆xjζj

1
2
--- 2h uj 1 2⁄+ uj 1 2⁄––( ) a ζj 1+ ζj–( ) ζj ζ– j 1–( )–( )–[ ]+ 0=

∆xj
∆t
-------- ζj

k 1+ ζj
k–( ) 1

2
--- 2h uj 1 2⁄+

k uj 1 2⁄–
k–( ) a ζj 1+

k ζj
k–( ) ζj

k ζj 1–
k–( )–( )–[ ]+ 0=
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the unknown values.

Piecewise linear DG approximation

The structure of an element with piecewise linear Legendre approximations for the

elevation is shown below in Figure 4.4. Note that the variables are evaluated at the element

center such that the unknown values for the interpolate in the j th element are the elevation

element average (indicated in the figure with a solid dot) and “slope” given at point j, which

is indicated in the figure with a solid line. The elevation approximation in this basis is

written as

(4.12)

where  and  are the elemental average and “slope” respectively. The basis

functions are given as

φ0=1 and , (4.13)

where 12/∆xj is a normalization factor, such that the slope itself is given as

. (4.14)

j-1/2 j+1/2

L  R

Figure 4.4 Structure of element j using piecewise linear 
Legendre basis functions for DG elevation.
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L ζj 1–

0( ) 6ζj 1–
1( )+=
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The velocity approximation is the same as that given in (4.8).

Now substitute the approximations (4.13) and (4.8) for the state variables and the

boundary integral (4.6) into Equation (4.4) to arrive at

. (4.15)

Note that Legendre bases are orthogonal, such that  evaluates to 0 when , and

integrate Equation (4.15) for each basis function, φ0 and φ1, to generate two equations for

the unknowns (  , ).

 and (4.16)

(4.17)

where the boundary information has been taken from the equations in Figure 4.4, and again

the interfaces are kept distinct for ease of boundary condition implementation. Explicit time

stepping is used for the temporal discretization, such that the fully discretized

approximations for the DG elevations with piecewise linear bases are given as

 and (4.18)

t∂
∂ ζj

0( )φ0 ζj
1( )φ1+( ) φi( , )

Ωe
h uj 1 2⁄– ω0 uj 1 2⁄+ ω1+( )

x∂
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1
2
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 . (4.19)

4.3.2  Interpolation of DG elevations to CG grid space

After the DG elevations have been calculated, they must be interpolated to the CG

grid space so that the velocities can be computed using a continuous elevation field. In this

study, two methods for interpolating the element average DG field to the nodal CG field are

examined: 1) L2 interpolation and 2) interface averaging. Note that when piecewise

constant approximations are used for the DG elevations, the L2 interpolation gives the same

result as simple interface averaging. Refer to Figure 4.2 for grid notation.

L2 interpolation

This type of interpolation uses weighted residuals; the general form is

 or (4.20)

where the weighting functions, ωi, are from the CG approximating space and the

integration is over the entire domain, Ω. The left-hand side (LHS), which represents the

interpolated CG values, is lumped to allow a de-coupled solution. Equation (4.20) can be

rewritten as a sum of element integrals to give

. (4.21)

Piecewise constant DG approximation

The constant approximation for the DG elevation and the linear approximation for

the CG elevation are given as

12∆xj
∆t

-------------- ζj
1( )k 1+ ζj

1( )k–( ) 6h uj 1 2⁄–
k uj 1 2⁄+

k+( )– 3 2huj 1 2⁄+
k[ a ζj 1+

0( )k( 6ζj 1+
1( )k–– –+

ζj
0( )k 6– ζj

1( )k ) ] 3+ 2huj 1 2⁄–
k a ζj

0( )k 6ζj
1( )k– ζj 1–

0( )k– 6ζj 1–
1( )k–( )–[ ] 0=

ζDG ζCG–( ) ωi( , )Ω 0= ζCG ωi( , )Ω ζDG ωi( , )Ω=

ζCG ωi( , )Ωe
ζDG ωi( , )Ωe

=[ ]
e
∑
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 and (4.22)

where the basis functions are the same as those given in §4.3.1. Substituting these

approximations into Equation (4.21) gives

. (4.23)

Integration on a master element produces

(4.24)

where the LHS has already been lumped. Because of the discontinuities on the right-hand

side, the global matrix cannot be formed in the same way as the one on the LHS. In fact,

the CG global matrix will be  with the local element blocks overlapping; but the DG

global matrix on the right will be  since each element is independent of its

neighbors and the local element blocks will not overlap (n is the number of nodes in the

domain and n-1 is the number of elements).

For a general interior node, this gives

, (4.25)

which for constant ∆x becomes

. (4.26)

This final approximation for constant ∆x is the same as the arithmetic average of the

interface values, as will be seen in the next main section. The constant ∆x form will be used

ζDG ζj
0( )φ0= ζCG ζj 1 2⁄– ω0 ζj 1 2⁄+ ω1+=

ζj 1 2⁄– ω0 ζj 1 2⁄+ ω0+( ) ωi( , )Ωe
ζj

0( )φ0 ωi( , )Ωe
=[ ]

e
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0.5 0
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--------ζj
0( )+=

ζj 1 2⁄–
1
2
--- ζj 1–

0( ) ζj
0( )+( )=
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in all subsequent sections, with the exception of the qualitative subdomain interface study

in §4.8, since that application also has variable grid spacing.

Piecewise linear DG approximation

The linear approximations for CG and DG elevations as given in Equations (4.8)

and (4.12) are repeated here:

(4.27)

(4.28)

where the coefficients from the CG velocity approximation have been changed to give a

continuous elevation approximation. Substituting these approximations into Equation

(4.21) gives

 (4.29)

where the basis functions are as given in §4.3.1. Integration on a master element produces

(4.30)

where the LHS has already been lumped. Again the global matrix on the right-hand side

cannot be formed in the same way as the one on the LHS. For a piecewise linear DG

approximation, the CG global matrix will be  with the local element blocks

overlapping; but the DG global matrix on the right will be , where the column

dimension is the product of the number of elements and the number of unknowns per

element.

ζCG ζj 1 2⁄– ω0 ζj 1 2⁄+ ω1+=

ζDG ζj
0( )φ0 ζj

1( )φ1+=
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0( )φ0 ζj
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e
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n n×
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For a general interior node this gives

, (4.31)

which for constant ∆x simplifies to

. (4.32)

The interpolation formula for the first node (the ocean boundary) is taken from the first row

of the matrix in (4.30) and is given as

(4.33)

and the last node at the land boundary is taken from the second row of the matrix in (4.30)

and is given as

. (4.34)

Again, the constant ∆x form is used in all subsequent sections, with the exception of the

subdomain interface study in §4.8.

Interface averaging

This simple scheme uses the average of the DG values at the element interface to

compute a CG nodal value. On the interior nodes, the CG elevation value for a piecewise

constant DG approximation is calculated as

(4.35)

while for a piecewise linear DG approximation the CG nodal value is calculated as

. (4.36)
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At the ocean boundary, the CG nodal value is just the specified boundary condition,

. At the land boundary the nodal value for a piecewise constant DG approximation is

given as

, (4.37)

while for a piecewise linear DG approximation the CG nodal value at the land boundary is

given as

. (4.38)

4.3.3  CG solution of the momentum equation

The final step in the DG/CG discretization of the primitive SWE is to discretize the

momentum equation using continuous Galerkin finite elements. Begin by multiplying the

momentum equation by a continuous weight function, ωi(x), and then integrate over the

domain, Ω, to get

(4.39)

where the explicit functional dependence of the variables, u(x,t) and ζ(x,t), and the weight

function has been left off for brevity. Equation (4.39) can be rewritten as a sum of element

integrals to give

. (4.40)

Now approximate the elevation and velocity by continuous linear functions so that

 and (4.41)
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e
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(4.42)

where the basis functions are standard Lagrange polynomials

 and . (4.43)

Substituting the approximations (4.41) and (4.42) into Equation (4.40) gives

, (4.44)

where shorthand notation can be used to write Equation (4.44) as

. (4.45)

Integration on a master element produces

 and (4.46)

(4.47)

such that on an element the approximation becomes

. (4.48)

Following the derivation of the production code, ADCIRC, a lumped two-level time
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discretization is used for the momentum equation (Crank-Nicolson). This gives

(4.49)

where the lumped mass matrix is given by

 (4.50)

and the temporal terms can be gathered to give

. (4.51)

Standard procedures are used to build the global mass matrix on the LHS, which is

diagonal due to the lumping, as well as the RHS vector. The general equation for an interior

node is found to be

(4.52)

which is valid for variable or constant ∆x since the mass matrix was lumped.

4.3.4  Boundary and initial conditions

For a tidal simulation with open ocean on one end and closed land on the other end,

the boundary and initial conditions are specified as

 and ux = 0 for x = 0, t > 0

ζx = 0 and u = 0 for x = L, t > 0

ζ = 0 and u = 0 for x = [0, L], t=0

where L is the length of the domain and subscripts denote differentiation.
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For the DG discretization, the tidal BC at the open ocean is enforced by setting

 at x=0. In the piecewise constant approximation, this amounts to replacing ζj–1

in Equation (4.10) with the boundary condition; while in the piecewise linear

approximation the term  in Equations (4.16) and (4.17) is replaced with

. The land BC at x=L is enforced in the piecewise constant approximation by setting

(ζj+1 – ζj) = 0 in Equation (4.10) and it is enforced in the linear approximation by setting

 in Equations (4.16) and (4.17).

For the CG discretization, the BC at the open ocean does not require any

modification to the global momentum matrix. The land BC is enforced by replacing the last

row in the global matrix with the equation un = 0, where n is the index of the last node in

the domain.

4.4   Method 2: DG <–> ADCIRC subdomain coupling

In this method, the primitive system of SWE is discretized using DG finite elements

in one subdomain and the ADCIRC formulation is discretized using CG finite elements in

another subdomain. Information is passed between these subdomains by using overlapping

elements. In the DG subdomain, the discrete equations for piecewise constants are as given

by Equations (B.42) and (B.43) in Appendix B, while the equations for piecewise linear

Legendre interpolants are as given by Equations (B.53) through (B.56). In the ADCIRC

subdomain, the discrete equations are as given by Equations (A.24) and (A.25) in Appendix

A. These equations are not repeated here, but instead a brief description of the models is

given. The schematic from Figure 4.1 is repeated here as Figure 4.5 with more detail.

The DG model uses either piecewise discontinuous constants or linear Legendre

approximating functions for both the elevation and velocity in a Galerkin FE discretization.

A minmod slope limiter can be used for added stability with the piecewise linear

approximations. The temporal discretization is a simple explicit scheme so that only

information from the previous time step (time level k) is required to compute the new

ζL ζ̂ t( )=

ζj 1–
0( )– 6ζj 1–

1( )–( )

ζ̂– t( )

ζj 1+
0( ) 6ζj 1+

1( )– ζj
0( )– 6ζj

1( )–( ) 0=
134



elevation and velocity state values. The ADCIRC model uses continuous linear Lagrange

approximating functions for both the elevation and the velocity in a Galerkin FE

discretization. The GWC equation uses a semi-implicit three-level time stepping scheme,

where information from the past two levels is required to compute the new elevation state

values, which are coupled in a tridiagonal matrix in 1D (time levels k–1, k, k+1). The

momentum equation uses a lumped two-level temporal scheme (time level k) so that only

information from the previous time step is required to compute the new velocity state

values.

With this second subdomain coupling method three main questions arise: 1) at

which time levels should the subdomains be coupled?; 2) how can the subdomains be

coupled at these time levels?; and 3) how should information be passed since the grid

spaces are different – CG versus DG?

To answer the first question, note that the DG model presented in Appendix B is

explicit. Therefore, as far as the DG subdomain is concerned, it only needs information to

be passed from the ADCIRC subdomain at the k time level in preparation for the next time

step. However, the ADCIRC model uses a semi-implicit, three-level time scheme for the

DG

DG

CG

GWCelevation
grids

velocity
grids

Figure 4.5 Subdomain grid notation for DG <–> ADCIRC multi-
algorithmic coupling scheme.

overlapping elements 
for subdomains

coupling interface 
between subdomains

information passing at 
overlapping elements

land ocean
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elevations and needs information from the past two time steps in order to calculate the new

state values. Furthermore, with the semi-implicit scheme, the interior node at the

subdomain interface will require information from the overlapping element at the present

time level. Thus, the elevation solution in the ADCIRC subdomain needs information for

the overlapping element at all three time levels (k–1, k, k+1); while the velocity solution

only requires velocity information at the k time level, but requires elevation information at

two time levels (k and k+1).

This brings up the second question, if explicit passing is to be used at the subdomain

interface, how should the semi-implicit solution for the ADCIRC elevations be addressed?

As a first approximation, a combined explicit / implicit passing scheme is utilized. Since

the DG subdomain is completely explicit, the solution can be computed without any

information from the current time level (k+1) at the subdomain interface. Then the

overlapping nodal elevation information can be passed to ADCIRC at all three time levels

(k–1, k, k+1); and the ADCIRC solution can proceed with all of the information that it

requires. Finally, the information for the overlapping element at the subdomain interface is

passed from the ADCIRC subdomain to the DG subdomain in preparation for the next time

step. With this explicit / implicit subdomain passing scheme, the ADCIRC subdomain is

coupled in all three time levels, the DG subdomain is coupled in the past time level, and

both subdomains have all of the information that they need for a solution. Additional care

must be taken to ensure that the elevation information in the DG subdomain is not over-

written before the old levels have been passed into the ADCIRC subdomain.

Finally, to address the third question, note that at the overlapping elements the same

problem that was encountered in the DG/CG equation coupling – namely, grid

communication between CG and DG grid spaces – becomes an issue. For the DG to CG

passing, both L2 interpolation and interface averaging were examined, as in coupling

method 1. This is shown schematically in Figure 4.5 by the red arrows that transfer the

element centered DG information to the element interface and then pass this interface
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information to the CG node.

For the CG to DG passing, element averages are used. This is shown schematically

in Figure 4.5 by the red arrows that use the nodal CG information to pass element centered

information to the DG element. Since both the CG and DG approximating spaces are linear,

an element slope and average can easily be computed from the CG nodal values. The

element average for the overlapping element is simply the average of the nodal values

located at the element edges, while the slope is computed by dividing their difference by

∆x. However, recall that the slope in the DG framework contains a multiplying factor, such

that the slope for the b variable is given as slope = . The resulting equations for

the element centered DOFs are

(4.53)

(4.54)

where b can be either the elevation or velocity state variable and the  points are the

element edge locations, as in coupling method 1.

The basic solution procedure for this coupled model is to initialize the entire domain

and then compute the new elevations and velocities in the DG subdomain. Then the

interface information is passed from the DG subdomain to the ADCIRC subdomain using

overlapping elements (time levels k–1, k, and k+1 for elevations and time level k for

velocity) and the new elevation and velocities are computed in the ADCIRC subdomain.

Finally, the interface information is passed from the ADCIRC subdomain to the DG

subdomain at the overlapping element in preparation for the next time step (time level k for

both elevation and velocity). This subdomain calculation and passing process continues

through all of the time steps.

12bj
1( ) ∆x⁄

bj
0( ) bj 1 2⁄– bj 1 2⁄++( ) 2⁄=

bj
1( ) bj 1 2⁄+ bj 1 2⁄––( ) ∆x⁄[ ] ∆x 12⁄( ) bj 1 2⁄+ bj 1 2⁄––( ) 12⁄= =

j 1 2⁄±
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4.4.1  Boundary and initial conditions

For a tidal simulation with open ocean on one end and closed land on the other end,

the boundary and initial conditions are specified as

 and ux = 0 for x = 0, t > 0

ζx = 0 and u = 0 for x = L, t > 0

ζ = 0 and u = 0 for x = [0, L], t=0

where L is the length of the domain and subscripts indicate differentiation. The initial

conditions are often called a “cold start” since the elevation and velocity fields throughout

the entire domain are set to zero at time, t=0.

The tidal BC at the open ocean is enforced in the ADCIRC model subdomain, since

it is desirable to use the model that is more computationally efficient in the more stable,

deep flow region. Likewise, the land BC is enforced in the DG model subdomain since

discontinuous models are more adept at handling the shocks and highly advective flows of

near-shore regions.

Thus, within the ADCIRC subdomain, the ocean BC is enforced at x=0 by replacing

the first row of the GWC global matrix with . No modifications are required in

the momentum discretization since there are no boundary flux terms in the derivation.

Within the DG subdomain, the land BC is enforced at x=L by setting uR = 0 in the

momentum discretization and ζR = ζL in the continuity discretization.

4.5   Method 3: DG/CG <–> ADCIRC subdomain coupling

In this method, the primitive system of SWE is discretized using the DG/CG

equation coupling method in one subdomain and the ADCIRC formulation is discretized

using CG finite elements in another subdomain. Information is passed between these

subdomains by using overlapping elements. For piecewise linear DG approximations,

ζ ζ̂ t( )=

ζ1 ζ̂ t( )=
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Equations (4.16), (4.17) and (4.51) from §4.3 are used in the DG/CG subdomain, and

Equations (A.24) and (A.25) from Appendix A are used in the ADCIRC subdomain. (For

piecewise constant DG approximations, Equation (4.11) is used instead of (4.16) and

(4.17).) These equations are not repeated here; details can be found in the referenced

sections. The schematic from Figure 4.1 is repeated here as Figure 4.6 with more detail.

The same three questions arise in this coupling method as were discussed for the

second coupling method: 1) at which time levels should the subdomains be coupled?; 2)

how can the subdomains be coupled at these time levels?; and 3) how should information

be passed since the grid spaces are different – CG versus DG?

To address the first question, recall that the ADCIRC model is semi-implicit and

requires information at the new time step (k+1 time level) in order to solve for the new

elevations and velocities. Furthermore, due to the Crank-Nicolson time stepping in the CG

momentum approximation, the DG/CG model also requires elevation data at the new time

step (k+1 time level) in order to solve for the new velocities (notice in Equation (4.51) from

§4.3 that ζk+1 is required on the right hand side). Therefore, both subdomains require

Figure 4.6 Subdomain grid notation for DG/CG <–> ADCIRC 
multi-algorithmic coupling scheme.

overlapping elements 
for subdomains

coupling interface 
between subdomains

information passing at 
overlapping elements

land ocean

CG

DG

CG

GWCelevation
grids

velocity
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information from the current time step at the overlapping element in order to obtain a

solution. This is in contrast to the  model, where the DG subdomain is

completely explicit.

This brings us to the second question; how can we couple the models at the required

time levels? Technically, some sort of predictor-corrector scheme or explicit overlapping

with iterations is required to satisfy both models. However, for this study a simple explicit/

implicit scheme similar to that used for the  model is employed instead.

The reader is referred to §4.4 for more details about this scheme. Briefly, the DG/CG

subdomain is solved using explicit information at the subdomain interface, then

information at all three time levels is passed at the overlap to the ADCIRC subdomain,

which then computes the new elevation and velocity solution with the required information

and passes back to the DG/CG model at the overlap in preparation for the next time step.

Essentially, the data requirements for the ADCIRC model are satisfied, while those for the

velocity solution in the DG/CG model are not.

Finally, to address the third question, note first of all that the velocity

approximations are continuous in both of the subdomains. Within the DG/CG subdomain

itself, the DG elevations are interpolated onto the CG grid using either L2 interpolation or

interface averaging, as was discussed in detail in §4.3.2. The elevation nodal value that is

calculated in this CG interpolation step can also be used to pass the elevation data from the

DG grid to the CG grid at the overlapping element. Passing of elevation from the ADCIRC

subdomain to the DG subdomain at the overlapping element is done as described in §4.4;

briefly, the elevation element average and slope are computed from the CG nodal values

and passed to the DG grid.

For the velocity state values, both subdomains employ continuous approximations;

so it is possible to simply pass the nodal values at the overlapping elements directly from

one model to the other without any additional calculations. This is shown by the red arrows

DG ADCIRC↔

DG ADCIRC↔
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in Figure 4.6, which pass directly along the overlapping element interface for the velocity

grids. Notice that although the velocity approximations at the physical subdomain interface

are continuous, the velocity is allowed to be discontinuous at this point. This is because

each subdomain calculates a new value for this node; these values will not necessarily be

equal. Plots of the interface velocity for an application are presented in §4.8, and show that

these differences are most often small for the cases considered herein.

4.5.1  Boundary and initial conditions

For a tidal simulation with open ocean on one end and closed land on the other end,

the boundary and initial conditions are specified as

 and ux = 0 for x = 0, t > 0

ζx = 0 and u = 0 for x = L, t > 0

ζ = 0 and u = 0 for x = [0, L], t=0

where L is the length of the domain and subscripts denote differentiation. The initial

conditions are often called a “cold start” since the elevation and velocity fields throughout

the entire domain are set to zero at time, t=0.

The tidal BC at the open ocean is enforced in the ADCIRC model subdomain, since

it is desirable to use the model that is more computationally efficient in the more stable,

deep flow region. Likewise, the land BC is enforced in the DG/CG model subdomain since

discontinuous models are more adept at handling the shocks and highly advective flows in

near-shore regions.

Thus, within the ADCIRC subdomain, the ocean BC is enforced at x=0 by replacing

the first row of the GWC global matrix with . No modifications are required in

the momentum discretization, since there are no boundary flux terms in the derivation.

Within the DG/CG subdomain, the land BC is enforced at x=L by replacing the last row of

the global matrix for momentum with un = 0 and setting ζR = ζL in the continuity

ζ ζ̂ t( )=

ζ1 ζ̂ t( )=
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discretization.

4.6   Propagation analysis of coupled schemes

Using the numerical propagation analysis tools developed in Chapter 2, each of the

coupling methods presented above are analyzed to examine wave propagation through the

subdomain interface. A constant bathymetric depth must be used for the numerical tools,

so this part of the study will only determine whether the coupling methods are propagating

the waves correctly. Section 4.8 will examine the location of the coupling interface relative

to the bathymetric depth by qualitatively comparing the simulation results as the interface

is moved.

Since the wave begins in the ADCIRC model domain, the boundary forcing

initialization method is used for the numerical propagation analysis (see discussion in

§2.4.3). Also, as recommended in Chapter 2, the least squares harmonic wave tracking

scheme is used. The parameters for this study are the same as were used for the propagation

studies in Chapters 2 and 3 and are repeated here in Table 4.1 for convenience. For coupling

methods 2 and 3, the subdomain interface is located at exactly one wavelength into the

domain – k∆x. (Recall that there is no subdomain interface for coupling method 1, since it

is an equation coupled scheme.) 

First, individual plots of propagation behavior are presented for each of the three

coupling methods to compare the results for piecewise constant and piecewise linear

interpolants in the DG algorithm. Then a full comparison of propagation behavior for the

best version of each coupling method, the ADCIRC model, and domain-wide low- and

Table 4.1  Parameters used in coupled algorithm study.

g = 9.81 m/s2 h = 10 m ∆t = 1.0 s

τ = 0.0001 s-1 G = 0.001s-1 ∆x = 1000 m
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higher-order DG algorithms are presented.

Figure 4.7 presents the propagation behavior of coupling method 1 (DG

discretization of the continuity equation and CG discretization of the momentum equation)

using piecewise constants and piecewise linears in the DG approximation. These results

were generated using L2 interpolation of the DG elevations to the CG grid, since interface

averaging was found to be unstable. 

As expected, given the results in Chapter 3, the piecewise linear approximations
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result in less damping of the physical wavelengths. Notice that the phase error for all three

approximations approaches an asymptotic value of zero. Meanwhile, the damping ratio for

the low-order (piecewise constants) scheme only approaches a value of 0.92 while the

minmod limited linear approximation approaches a value of 0.96 and the unlimited linear

approximation reaches the desired value of unity. Thus the minmod limited approximation

is less dissipative than the low-order and more dissipative than the unlimited linear

approximation. The dispersion curves for the higher-order approximations match the

continuum relationship well, while the curve for the piecewise constant approximation lies

below the continuum relationship but remains monotonic.

Recall that information from the elevation profiles shown in panel (d), as well as the

velocity results that are not shown, are used to determine the Fourier and dispersion

behavior at the 75∆x wavelength. Each discrete data point in panels (a) through (c) were

derived in a similar manner from the profiles for the corresponding wavelength. (The

elevations shown are from the numerical propagation analysis and are not traditional

simulation results. In each of the propagation figures in this chapter, arrows will indicate

which data point is being shown by the profiles.) For the elevations in Figure 4.7d, notice

that while the low-order model is overly dissipative in nature, it does produce a smooth

solution, while the unlimited higher-order scheme allows some trailing wiggles behind the

wave. However, the minmod limited scheme removes these wiggles, which also disappear

in the unlimited version when higher wavelength to grid spacing ratios (L/∆x) are used.

Figure 4.8 compares 1D elevation results from a simulation for all three

approximations to a fine grid solution from a domain-wide ADCIRC simulation (∆x =

39.0625m) and verifies the phase characteristics shown in Figure 4.7. (The velocity results

are similar.) The simulation parameters are the same as in Table 4.1, and the period of the

open-ocean boundary condition was chosen such that the simulated wavelength satisfied

Ln/∆x equal to 30. The amplitude of the forcing function was set equal to 1.0 m. The period

of the boundary condition is calculated as
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T = Ln/c =  , (4.55)

which gives T = 3029.79 seconds for the parameters given in Table 4.1. Additionally, the

total domain length was set equal to 100,000m to avoid the waves reflecting at the land

boundary during the simulation. Notice that the low-order scheme, using piecewise

constants, significantly damps the solution as the waves progress further into the domain.

Figure 4.8b shows an expanded view of the first peak after three full periods of

simulation time (10,000 seconds). The first peak was chosen since it has traveled

approximately one wavelength through the domain, which should result in the best

comparison with the predicted propagation results, as they were calculated on a per-

wavelength basis; and the long simulation time was to allow the domain to spin up from a

cold start before analyzing the results.

Table 4.2 compares the predicted propagation characteristics, taken from the phase

plots in Figure 4.7 at Ln/∆x = 30, and the measured propagation characteristics, taken from

the observed simulation behavior in Figure 4.8b. Notice that, despite the relative coarseness

of the coupled model compared to the fine grid solution, the actual damping errors seen in

the simulation are predicted quite closely by the numerical propagation tools. However, the

coarseness of the simulation results (∆x = 1000m) does affect the phase error, particularly

Table 4.2  Comparison of predicted and measured propagation characteristics for DG/CG 
equation coupled model with various DG interpolants.

Relative to 
ADCIRC

Phase error in degrees
(+ lead, – lag)

Damping ratio

Measured Predicted Measured Predicted

constants +1.125 –5.442 0.722 0.767

unlimited linears –10.875 –3.008 1.020 0.997

minmod linears +1.125 –1.031 0.929 0.866

30∆x gh 0.5τ30∆x
2π

------------- 
  2

–⁄
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for the unlimited linear version.

Figure 4.9 presents the propagation behavior of the  model with

three different spatial approximations in the DG domain. In the simulation output, Figure

4.9d, the vertical dashed line indicates the location of the subdomain interface.

For the damping ratios, notice that the minmod limited and unlimited results are less

dissipative than the low-order and are nearly the same for wavelengths greater than 50∆x.
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Meanwhile, the phase errors for both of the higher-order versions are nearly equivalent and

all three versions exhibit phase leads in the low wavelengths, which are damped out.

However, the low-order version over-damps the longer wavelengths, even though the phase

errors are similar to the higher-order versions and are near zero. The dispersion curves for

all three are monotonic, although they are slightly higher than the continuum relationship,

which is to be expected give the phase lead in the phase errors. There is a slight tail in the

ADCIRC subdomain even after the wave has passed through the interface, particularly for
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the low-order version. This artifact disappears as the wavelength to grid spacing ratio (L/

∆x) increases and may be due to the sudden removal of the boundary forcing, since it does

not exist when the waves are continually introduced at the boundary.

Figure 4.10 compares 1D elevation results from simulations using each of the three

discontinuous spatial approximations to a fine grid solution from the commonly-used

ADCIRC model (∆x = 39.0625m). The simulation parameters are the same as were used in

the previous verification for the DG/CG model. The vertical dashed line indicates the

location of the subdomain interface; notice that the waves pass through this interface

without significant distortion. 

Table 4.3 compares the predicted propagation characteristics, taken from the phase

plots in Figure 4.9 at Ln/∆x = 30, and the measured propagation characteristics, taken from

the observed simulation behavior in Figure 4.10b. Since the first peak lies at the subdomain

interface, the second peak is used for the comparison, and the damping is adjusted to

include the two wavelength travel distance. This is a more valid comparison to the

numerical propagation results, since in that analysis the wave was allowed to travel exactly

one wavelength in each subdomain. Notice that the damping effects of the low-order

approximation becomes more evident as the waves travel further into the domain, such that

the measured damping is more significant than was predicted. Also note that the phase

errors are affected by the coarseness of the coupled model’s grid resolution.  

Table 4.3  Comparison of predicted and measured propagation characteristics for the  
DG <–> ADCIRC model with various DG interpolants.

Relative to 
ADCIRC

Phase error in degrees
(+ lead, – lag)

Damping ratio

Measured Predicted Measured Predicted

constants + 1.125 + 4.442 0.514 0.656

unlimited linears + 1.125 + 6.650 1.014 1.007

minmod linears + 1.125 + 6.453 0.862 0.875
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Figure 4.11 presents the propagation behavior of the  model

using piecewise constants and piecewise linears in the DG approximation. In the simulation

output, Figure 4.11d, the vertical dashed line indicates the subdomain interface. For this

model, the phase errors and dispersion curves are comparable for both the low- and higher-

order DG approximations. The phase error at the 100∆x wavelength ranges from 0.9

degrees for the low-order approximation to 0.7 degrees for the higher-order
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Figure 4.10 Comparison of DG <–> ADCIRC model results with a fine 
grid ADCIRC simulation after three full periods of a 30∆x 
wave: (a) full domain, (b) zoomed view of second peak.
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approximations. However, the low-order approximation is slightly more dissipative and

damps the physical wavelengths, even though they have minimal phase error.

Figure 4.12 compares 1D elevation results (the velocity results are similar) from

simulations using each of the three discontinuous spatial approximations to a fine grid

solution from the commonly-used ADCIRC model (∆x = 39.0625m). The simulation

parameters are the same as were used to verify the previous models, and the vertical dashed

line indicates the location of the subdomain interface. Notice that the waves do incur some
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distortion as they pass through the interface, which is smoothed out as they travel through

the domain. Note also that the low-order version significantly damps the solution as the

wave progresses through the domain.

Table 4.4 compares the predicted propagation characteristics, taken from the phase

plots in Figure 4.11 at Ln/∆x = 30, and the measured propagation characteristics, taken from
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Figure 4.12 Comparison of DG/CG <–> ADCIRC subdomain coupled 
model results with a fine grid ADCIRC simulation after 
three full periods of a 30∆x wave: (a) full domain, (b) 
zoomed view of second peak.
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the observed simulation behavior in Figure 4.12b. Since the first peak lies at the subdomain

interface, the second peak is used for this comparison, and the damping is adjusted for the

extra wavelength. This is a more valid comparison to the numerical propagation results,

since in that analysis the wave was allowed to travel exactly one wavelength in each

subdomain. Notice that, despite the relative coarseness of the coupled model compared to

the fine grid solution, the actual errors seen in the simulation are predicted quite closely by

the numerical propagation tools, with the exception of the phase error for the minmod

limited version. 

Figure 4.13 compares all three coupling models with a domain-wide DG algorithm

and a domain-wide ADCIRC model. Based upon the overly dissipative behavior of the low-

order schemes and the similar behavior of the unlimited and minmod limited higher-order

schemes, unlimited piecewise linear approximations were used for all of the coupling

models as well as the domain-wide DG simulation for this comparison. Notice that the

simulation results are very close for the five models.  

For the Fourier propagation results, the damping behavior of coupled models 1 and

3 more closely resemble the domain-wide DG model, although they are not an exact match,

while the behavior for coupled model 2 more closely resembles the ADCIRC model.

Meanwhile, the phase error for coupled model 3 nearly overlies that of the ADCIRC model,

while coupled model 2 has similar behavior to the domain-wide DG model but is not an

Table 4.4  Comparison of predicted and measured propagation characteristics for the  
DG/CG <–> ADCIRC model with various DG interpolants.

Relative to 
ADCIRC

Phase error in degrees
(+ lead, – lag)

Damping ratio

Measured Predicted Measured Predicted

constants + 1.125 + 2.453 0.706 0.859

unlimited linears + 1.125 + 2.010 0.991 0.999

minmod linears + 13.125 + 2.512 0.918 0.948
152



exact match to either. The phase error for coupled model 1 displays a phase lag in the low

wavelengths, while all of the other four models exhibit a phase lead.

The dispersion curve for coupled model 1 most closely matches the continuum

dispersion relationship, while coupled model 3 more closely matches the domain-wide DG

model. The dispersion curve for coupled model 2 lies above both the ADCIRC and domain-

wide DG models for all but the last data point, where it matches the DG model. In general,

all five models are monotonic and exhibit acceptable dispersion behavior. From the
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propagation results, any of the coupling schemes appear to be promising for the linear

model problem. However, coupled model 2 may be the most promising, as it has the

smoothest transition at the interface without introducing oscillations in either subdomain.

Further comparison of these five models will be made in the next section, where

convergence rates are presented for a tidal application.

4.7   Numerical error analysis

4.7.1  Spatial accuracy

For the spatial convergence study, the test case was a 1D channel with M2 tidal

forcing (period = 44,712 sec.) of amplitude equal to 1m on the ocean boundary and a land

boundary on the other end. The channel dimensions are 50km by 10m. The initial condition

was a cold start, where the elevation and velocity fields are zero at time t=0; and the

simulations were run out for slightly more than two full periods of the tidal forcing for a

total of 90,000 seconds. Since the initial condition for the domain is a cold start for both the

elevation and velocity fields, only the last time output is used to compute the errors. This

allows the entire domain to spin-up before examining the output.

A fine grid solution (1281 nodes, λ/∆x = 442.85) from the ADCIRC model was used

for the “true” solution. In order to isolate the spatial errors, a time step of 0.01 seconds was

used for all of the simulations, including the fine grid. Two error norms were computed for

the final output at tf = 90,000 seconds: 1) an L2 error norm in space, computed as

; (4.56)

and 2) an  error norm in space, computed as

, (4.57)

L2 error B xj tf,( ) bj tf( )–( )2

j 1=

nn

∑
 
 
 
 
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 
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 
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where nn is the number of nodes in the approximation, b (B) can be either elevation or

velocity, the bj(tf ) are the simulation results at node j and time tf =90,000 seconds, and the

true solutions B(x, t) are interpolated functions from the fine-grid ADCIRC solution. When

these error norms are plotted against the spatial resolution in log-log space, the slope

represents the accuracy (asymptotic convergence rate) of the algorithm.

A graphical presentation of the results provides for easier comparison between

algorithms, therefore only the log-log plots will be presented in this section. Each of the

figures will present both of the error norms for the elevation and velocity results for all three

DG approximations – piecewise constant, piecewise linear with minmod limiting and

piecewise linear with no limiting. The tabular data used to generate these plots is available

to the interested reader in Appendix E. Also, the spatial accuracy of each algorithm, as

computed from the slope of the log-log plots, is summarized in Table 4.5 on page 166 at the

end of this section. Plots for each individual algorithm will be shown first, and then all of

the coupled algorithms will be compared with the domain-wide DG and ADCIRC model

results.

Spatial convergence results for the equation coupled DG/CG model, are presented

in Figure 4.14. As was seen in the previous chapter, the higher-order DG approximations

are more sensitive to stability constraints; and for the smallest grid spacing (∆x =

39.0625m) the error plots for the unlimited version begin to diverge as the model tends

toward instability (use of a smaller time step brings these errors back into line). However,

the minmod limited higher-order version keeps the algorithm stable at this grid spacing.

Additionally, note that the error norms for the higher-order schemes are lower in magnitude

than those for the low-order scheme. Actual convergence rates will be compared below in

Table 4.5. 

Spatial convergence results for coupling method 2, , are

presented in Figure 4.15. Notice that the unlimited higher-order scheme has smaller errors

DG ADCIRC↔
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than the minmod limited scheme; although, the minmod version has smoother

convergence. Meanwhile, the low-order version has higher errors than either of the higher-

order versions. Convergence rates derived from the linear portion of the curves are

presented below in Table 4.5.

Spatial convergence results for coupling method 3, , are

presented in Figure 4.16. Notice that the errors for the low-order and minmod schemes are

nearly equivalent, while the unlimited higher-order version is unstable. Convergence rates

derived from the linear portion of the low-order and minmod curves are presented below in

Table 4.5, while no rates are computed for the unlimited scheme, since it is unstable.

Spatial convergence results for all three coupling methods compared with the

domain-wide DG and ADCIRC models are presented in Figure 4.17. The results for the 
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Figure 4.14 Spatial grid convergence for DG/CG model: (a) piecewise constants, (b) 
piecewise linear with no limiting, (c) piecewise linear with minmod 
limiter.
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error norms are not shown, since they exhibit the same trends as the L2 error norms. Starting

with the solid lines, one notices that the domain-wide DG model with piecewise linear

unlimited approximations produces lower errors than either the minmod limited or low-

order versions. This model also produces slightly lower errors than the ADCIRC model,

although it has much more stringent stability constraints. Additionally, notice that the errors

for the minmod limited version are closer to the low-order in both magnitude and rate than

they are to the unlimited; the use of limiting stabilizes the algorithm but reduces the

accuracy. Note that the convergence curve for the ADCIRC model does not extend to ∆x =

39.0625m because this resolution was used as the “true” solution, and thus no error

computation is available.

Now, looking at the various coupling schemes in relation to these results, one
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Figure 4.15 Spatial grid convergence for DG <–> ADCIRC model: (a) piecewise 
constants, (b) piecewise linear with no limiting, (c) piecewise linear with 
minmod limiter.
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notices that the unlimited versions have the lowest errors of the coupling schemes.

Additionally, the errors for the unlimited  model are similar to those of

the domain-wide ADCIRC model. Otherwise, the higher-order DG/CG versions are the

most accurate of the coupled models. Meanwhile, the errors for most of the remaining

coupling schemes are larger than those for the domain-wide DG and ADCIRC models,

indicating that some accuracy is lost with these coupling schemes. The errors for the two

subdomain coupling schemes are similar in magnitude and are higher than all of the other

models, with the exception of the domain-wide DG model using piecewise constants or

minmod linears, which exhibit higher errors in the elevation data. These higher errors are

likely due to the explicit overlapping element used to couple the two subdomains. Although

the linear form of the equations used herein did not allow this, flux coupling at the
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Figure 4.16 Spatial grid convergence for DG/CG <–> ADCIRC model: (a) piecewise 
constants, (b) piecewise linear with no limiting, (c) piecewise linear with 
minmod limiter.
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Figure 4.17 Comparison of spatial convergence results for the three coupling models 
with a domain-wide DG model and the ADCIRC model: (a) L2 error in ζ, 
(b) L2 error in u.
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subdomain, as done by Dawson and Proft [2002b, 2002c], may be more appropriate.

Additionally, in practice the order of the time stepping routine typically matches the order

of the spatial approximation, such that for piecewise linear spatial interpolants, a second-

order Runge Kutta scheme is used in time. Finally, notice that the errors for the minmod

limited  model are nearly identical to those of the low-order, which

indicates that the higher-order versions are unstable, such that the limiter stabilizes the

algorithm by setting all of the slopes to zero.

4.7.2  Temporal accuracy

For the temporal convergence study, the test problem and error norms are the same

as were used for the spatial convergence. However, instead of using a “true” solution to

compare with the various coupled results, interval halving with a base time step of ∆tb =

1.6 seconds was used to evaluate the accuracy of the algorithms, such that the errors are

computed for two successive solutions with time steps of ∆tb/m and ∆tb/2m. Each

simulation uses a time step one half as large as the previous simulation (interval halving),

until the ratio of successive errors converges to a constant. This converged ratio represents

the accuracy of the algorithm. In order to isolate the temporal errors, a fixed spatial grid

with 640 elements was used for all of the simulations.

A graphic presentation of the results provides for easier comparison between

algorithms, therefore only the log-log plots of error versus m will be presented in this

section. The tabular data used to generate these plots is available to the interested reader in

Appendix E. Also, the average of the converged temporal accuracy for the  and L2 error

norms for each state variable, elevation and velocity, are reported in Table 4.5 on page 166

within the summary section. Plots for each individual model will be shown first, and then

all of the models will be compared.

Temporal convergence results for coupling method 1, equation coupled DG/CG, are

presented in Figure 4.18. Notice that the higher-order unlimited approximation is unstable

DG CG⁄ ADCIRC→

L∞
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at the larger timesteps, while the minmod limited version remains stable for all time steps.

As expected, given the explicit nature of the temporal scheme, all three spatial

approximations result in first-order temporal accuracy.

Temporal convergence results for coupling method 2, subdomain coupled DG to

ADCIRC, are presented in Figure 4.19. Notice that the unlimited higher-order version is

unstable for time steps larger than ∆t = 0.2 seconds ( ), while the minmod limited

version remains stable through all time steps. For all three versions, notice that as the time

step is decreased past m = 64 (∆t = 0.0125 seconds), the errors begin to increase again due

to the boundary conditions in the ADCIRC subdomain. Just before this point, the

converged accuracy for all three spatial approximations is around first order.
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Figure 4.18 Temporal convergence for DG/CG model: (a) piecewise constants, (b) 
piecewise linear with no limiting, (c) piecewise linear with minmod 
limiter.
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Temporal convergence results for coupling method 3, combined equation and

subdomain coupled DG/CG to ADCIRC, are presented in Figure 4.20. Note that the

unlimited higher-order version is unstable at all of the time steps that were tried – from 0.8

to 0.0015625 seconds – furthermore, the convergence plot does not indicate that the model

will become stable at smaller time steps. Meanwhile, the minmod limited higher-order

version remains stable for all time steps, but has higher errors than the low-order version.

Both stable versions are first-order accurate in time.

Temporal elevation convergence results for all three coupling methods compared

with the domain-wide DG and ADCIRC models are presented in Figure 4.21. The results

for the  error norms are not shown since they exhibit the same behavior as the L2 error

norms. Additionally, the velocity convergence results are nearly identical to the elevation
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Figure 4.19 Temporal convergence for DG <–> ADCIRC model: (a) piecewise 
constants, (b) piecewise linear with no limiting, (c) piecewise linear with 
minmod limiter.
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results, and are not shown herein.

Starting with the solid curves, one notices that the domain-wide ADCIRC model

has the lowest temporal errors and one of the highest convergence rates until it begins to

diverge at m = 16 (∆t = 0.05 sec.). As noted in Chapter 3, the errors for the ADCIRC model

begin to accumulate near the boundaries as the time step is resolved past this point.

Meanwhile, the domain-wide DG model with piecewise constant approximations has lower

temporal errors than its higher-order counterparts, although the higher-order versions have

slightly higher initial convergence rates.

Moving to the coupled models, notice that the  and

 models eventually begin to diverge just like the pure ADCIRC
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Figure 4.20 Temporal convergence for DG/CG <–> ADCIRC combined coupling 
scheme: (a) piecewise constants, (b) piecewise linear with no limiting, 
(c) piecewise linear with minmod limiter.

 error in ζ

L2 error in ζ

 error in u

L2 error in u

L∞

L∞

(a) (b)

(c)

m m

m

DG ADCIRC→

DG CG⁄ ADCIRC→
163



model; although they begin to diverge at a larger m value. Additionally, the error norms for

these two coupled models all approach the same diverging solution. Recall also that the

unlimited version of the  model is unstable at all time steps and is

not shown here. 

Finally, notice that the low-order versions of the domain-wide DG model and the
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Figure 4.21 Comparison of L2 temporal convergence results for the elevation state 
variable for the three coupling models, a domain-wide DG model and the 
ADCIRC model.
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various coupling schemes have the lowest temporal errors, followed by the minmod limited

versions, and lastly the unlimited versions; with the unlimited DG/CG having the highest

temporal errors. The higher-order versions are less accurate than the low-order versions due

to the mismatch in the spatial and temporal discretizations. In practice a higher-order

Runge-Kutta temporal discretization would be used for the higher-order discontinuous

models.

4.7.3  Summary of convergence results

Table 4.5 summarizes the spatial and temporal accuracy of each of the algorithms.

The first number in each cell indicates the accuracy of the continuity approximation while

the number in parentheses indicates the accuracy of the momentum approximation. These

convergence rates are computed from the average of the rates for the two error norms (only

the linear range of the spatial convergence data and the converged temporal ratio before any

divergence are used), given for the various models in Appendices D and E. 

Looking first at the spatial data, one notices that the domain-wide ADCIRC and

higher-order DG models have similar convergence rates (between 1.5 and 2.0), while the

low-order DG is only first-order accurate. Moving on to the various coupled schemes, one

notices that the higher-order versions have somewhat higher convergence rates than the

low-order versions; although none of the coupled schemes have convergence rates as high

as the domain-wide DG model. However, from Figure 4.17, we recall that coupled model

1 was the only coupled scheme whose errors were of the same magnitude as the domain-

wide models. Therefore, the higher-order DG/CG models appear to have the best spatial

properties of the coupled models.

Moving now to the temporal convergence, notice that the domain-wide ADCIRC

model is second-order accurate, while the temporal accuracy of the various DG and coupled

models is roughly first-order. From a strictly temporal point of view, any of the low-order

or minmod limited coupled models have acceptable errors. However, in practice a second-
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order Runge-Kutta time stepping scheme would be used for the higher-order models, so it

is difficult to base a recommendation solely on these explicit results.

4.7.4  Comparison of simulation results

The simulation output from the various models for the convergence test case (M2

tidal forcing on a 50km by 10m channel) are shown in Figure 4.22. The first panel in each

row shows the results over the entire domain for the final time (t=90,000 seconds) and the

second panel shows the time series at the interface (x=25,000m). A grid spacing of ∆x =

78.125m and a time step of ∆t = 0.01sec were used to generate these plots. The three

domain-wide DG versions (low-order, unlimited linears, minmod linears) plot over the

ADCIRC curves (as expected from the error results at ∆x = 78.125m in Figure 4.17), so

these are not shown explicitly. 

Table 4.5  Accuracy of the coupled continuous and discontinuous algorithms compared to 
domain-wide ADCIRC and DG models.

Model name Spatial Spatial accuracy Temporal

approximations best-fit peak accuracy

ADCIRC linears 1.44 (1.02) 1.76 (1.65) 1.96 (2.01)

domain-wide DG

constants 0.99 (0.95) 1.00 (0.98) 1.00 (1.00)

unlimited 1.51 (1.66) 1.70 (1.80) 1.15 (1.15)

minmod 1.62 (1.67) 2.04 (1.79) 0.99 (0.99)

Coupled model 1:
DG/CG

constants 0.70 (0.94) 1.31 (1.00) 1.00 (1.00)

unlimited 1.13 (1.02) 1.86 (1.22) 1.17 (1.19)

minmod 1.26 (1.40) 1.55 (1.58) 0.96 (0.95)

Coupled model 2:
constants 0.99 (0.98) 1.02 (0.99) 1.01 (0.96)

unlimited 1.41 (1.41) 2.06 (2.44) 1.26 (1.11)

minmod 1.05 (0.94) 1.22 (0.99) 1.09 (1.07)

Coupled model 3:
constants 1.04 (1.03) 1.89 (1.16) 1.01 (0.97)

unlimited — — —

minmod 1.06 (1.01) 1.71 (1.19) 1.11 (1.09)

First number is for the continuity approximation and number in parentheses is for the 
momentum approximation.
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DG CG⁄ ADCIRC→
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Figure 4.22 Simulation output at t = 90,000 seconds (left) and time series at x = 25,000m 
(right): (a) DG/CG equation coupling, (b) DG <–> ADCIRC subdomain 
coupling, and (c) DG/CG <–> ADCIRC combined coupling.
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Notice that both the domain and time series results for all three coupled models (and

spatial approximations) are indistinguishable from the fine-grid ADCIRC results.

However, the unlimited version of coupled model 3 is unstable and results are not shown

for it. Finally, notice that both of the subdomain coupled models are able to pass the wave

through the subdomain interface without distortion (at this fine resolution), as evidenced by

the domain and time series plots. The next section will examine the solution quality relative

to the location of the subdomain interface for a variable bathymetry test case.

4.8   Qualitative analysis of subdomain interface

This study also seeks to determine the effects of moving the subdomain interface

relative to the bathymetric depth. To do this, a one-dimensional slice of the bathymetry off

the eastern United States coast is examined, and the quality of the solution monitored as the

interface is moved relative to the bathymetry. Figure 4.23 shows the bathymetry for this 1D

slice. Notice that this bathymetric profile provides three natural “breaks” in bathymetry –

the toe of the slope, the middle where there is a slight change in slope, and the shelf break

Figure 4.23 Bathymetry profile for subdomain interface tests – 1D slice 
perpendicular to the eastern United States coast.
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at the top of the slope. These natural breaks are indicated in the figure and will serve as the

test locations for the subdomain interface.

A fine-grid ADCIRC solution using a constant grid spacing and 8193 nodes is used

for the “true” solution. For the comparisons with the coupled models and the domain-wide

DG and ADCIRC models, two levels of grid refinement using a constant wavelength to ∆x

ratio are used: L/∆x = 60 and L/∆x = 300. These ratios are typical of those used in practice

for coarse and fine grid solutions (see ADCIRC manual, Luettich et al. [1992]). The M2

tidal component is used as the wave of interest, such that the wavelength is calculated as L

= 44712.0 . The grid spacing must change, as the depth varies, in order to keep the ratio

constant. The smallest grid spacings will be in the shallow depths where the wavelength is

shorter and more refinement is needed. Conversely, the grid spacing is largest in the deep

water where the wavelength is longer and less resolution is needed. The specific details for

each of these grids are given in Table 4.6 and the bathymetric profiles of each compared to

the fine-grid ADCIRC grid are shown in Figure 4.24.  

Notice that the bathymetry with a grid ratio of 60 just provides enough resolution

gh

Figure 4.24 Comparison of 1D Eastern United States bathymetry profiles 
for the three grid resolutions: fine-grid, L/dx = 60, L/dx = 300.
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to capture the features themselves, but does not have any intermediate nodes along the

slopes between the toe and top. Meanwhile, the higher ratio of 300 provides good resolution

of the slopes themselves while significantly reducing the number of nodes relative to the

fine grid. One drawback of a constant L/∆x grid is that refining the grid requires the addition

of several unnecessary nodes to the flat, deep portion of the domain, as well as the desired

nodes along the slopes. Alternate meshing algorithms have been developed that avoid this

problem, but L/∆x is still commonly-used, so it is chosen for this study.

For each of the three coupled models, as well as the domain-wide ADCIRC and DG

models, approximately two periods of the M2 tide (90,000 seconds) are simulated on each

of the coarser grids. A time series of the model output at each of the three test locations –

toe, mid, top – are compared against the fine-grid ADCIRC solution. Since the features of

the coarser grids do not fall at the same x location, as shown in Table 4.6, the fine-grid

results are interpolated to the coarse locations. Recall that coupling method 1 is only an

equation coupling scheme, thus there is no subdomain interface. Meanwhile, for coupling

methods 2 and 3, results will be shown with the subdomain interface at each of the three

locations – toe, middle and top of the slope. Additionally, where appropriate, the

discontinuous results are shown at each location. A time step of 0.01 seconds was used for

all of the subsequent simulations, including the fine-grid ADCIRC solution.

Table 4.6  Grid details for East coast coupled model simulations.

Grid
type

Number
of nodes

Range of ∆x values 
(meters)

Location of features, x (meters)

toe mid top

fine-grid 8193 244.14 1,516,200.0 1,670,200.0 1,779,000.0

L / ∆x = 60 21 12,320.8 to 165,041.2 1,485,370.7 1,650,411.9 1,800,381.5

L / ∆x = 300 108 765.9 to 33,008.2 1,518,379.0 1,676,032.1 1,778,096.5
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4.8.1  Simulation results for grid ratio of 60

ADCIRC model

For each of the three bathymetry features, the time series for the domain-wide

ADCIRC model at the L/∆x = 60 resolution are shown in Figure 4.25. Notice that the results

with the coarser resolution do a fairly good job of capturing the peaks in the elevation data

at the toe and middle of the slope, but do not capture the peaks at the top of the slope.

Furthermore, this coarse solution does not capture the peaks in the velocity results at any

of the stations. Consequently, one would not expect the various coupled models to match

perfectly at this resolution either. The global results for the ADCIRC model are presented

with those of the domain-wide DG model below in Figure 4.27.

Domain-wide DG model

The time series for the domain-wide DG model, at each of the three bathymetry

features, are shown in Figure 4.26. The plus and minus symbols indicate the discontinuous

results from the DG model, where the plus symbol indicates the value to the right of the

element boundary and the minus symbol indicates the value to the left.

For the station at the toe, notice that all of the appoximating spaces do an adequate

job of capturing the peaks. At the middle station, the right state value for all three

approximating spaces captures the peak behavior, while the left state value for the two

higher-order approximations deviate significantly from the fine-grid solution. Finally for

the station at the top of the slope, the left state value does the best job of capturing the peak

behavior. At this station, the right state value for the low-order and unlimited high-order

schemes deviate a great deal from the fine-grid solution, while the minmod limiter

generally reduces the deviation in left and right state values.

Figure 4.27 compares the model results over the entire domain for the final output

at t = 90,000 seconds. The vertical dashed lines indicate the location of the bathymetry

features – toe, middle and top of slope – for the grid ratio of 60, as given in Table 4.6. Notice
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Figure 4.25 Time series at bathymetry stations for domain-wide ADCIRC model 
simulated on a grid ratio of 60: a) toe of slope, b) middle of slope, c) top of 
slope.
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a grid ratio of 60: a) toe of slope, b) middle of slope, c) top of slope.

––– fine-grid ADCIRC + right value – left value

––– low-order ––– minmod limited ––– unlimited linears
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Figure 4.27 Final output at t = 90,000 seconds for domain-wide DG model simulated on 
a grid ratio of 60: (a) elevations and (b) velocities.
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that none of the DG approximations are able to capture all of the global behavior; although

the unlimited higher-order version captures the general behavior. The minmod limited

version is slightly better than the low-order version, but is not as good as the unlimited

version. Notice also that the coarse ADCIRC solution has some oscillations on the shelf for

the velocity solution and lies slightly above the fine-grid elevation solution.

The elevation and velocity errors were computed for each time series by using the

most accurate state value (left or right) for all comparisons that involve discontinuous data.

For both state variables, the maximum and L2 average errors over the entire time series

were calculated and are summarized for all of the versions in Table 4.7. Additionally, the

average and maximum errors over the entire domain are computed for the last temporal

output and included in the table, denoted by the word “global” in the station column. The

minimum errors for each station and the minimum over the entire domain are indicated by

bold-italics in each column.

Notice that the unlimited higher-order version has the lowest errors locally (for all

stations) and globally for the domain-wide DG model. Notice also that the coarser

ADCIRC model has slightly lower errors for the elevation results; but that the domain-wide

DG model has lower errors for the velocity, particularly on the shelf.

Coupled model 1

The time series for coupled model 1, at each of the three bathymetry features, are

shown in Figure 4.28. The plus and minus symbols indicate the results from the coupled

model, where for discontinuous results the plus symbol indicates the value to the right of

the element boundary and the minus symbol indicates the value to the left. The elevations

are discontinuous with this coupled model while the velocity results are continuous.

For the station at the toe of the slope, notice that the low-order and minmod limited

versions capture the behavior of the elevation and velocity, while the unlimited version

overshoots all of the local maxima and minima. The same behavior is noted for the station
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at the middle of the slope, although the velocity solutions are not as good of a match. For

the station at the top of the slope, the low-order and minmod limited elevations are correct

on average, while the unlimited version overshoots the peaks. Meanwhile, none of the

approximations capture the velocity behavior at this station.

Figure 4.29 compares the model results over the entire domain for the final output

at t = 90,000 seconds. The vertical dashed lines indicate the location of the bathymetry

features – toe, middle and top of slope – for the grid ratio of 60, as given in Table 4.6. Notice

that the unlimited approximation oscillates about the true solution, while all three spatial

Table 4.7  Spatial errors for domain-wide models simulated on a grid ratio of 60.

Spatial
approximation

Station
location

L2 errors  errors

elevation velocity elevation velocity

domain-wide ADCIRC model

continuous
linears

toe 0.0125 0.0016 0.0254 0.0025

mid 0.0273 0.0035 0.0524 0.0060

top 0.0183 0.1031 0.0343 0.1758

global 0.0649 0.0191 0.1571 0.0814

domain-wide DG model

piecewise
constants

toe 0.1799 R 0.0018 R 0.3161 R 0.0035 R

mid 0.1579 L 0.0010 L 0.2794 L 0.0031 L

top 0.1799 R 0.0534 R 0.3198 R 0.0918 R

global 0.1541 0.0500 0.2421 0.0826

unlimited
linears

toe 0.0365 R 0.0009 R 0.0679 R 0.0016 R

mid 0.0404 L 0.0010 L 0.0733 L 0.0020 L

top 0.0879 R 0.0186 R 0.1576 R 0.0353 R

global 0.0659 0.0167 0.1028 0.0282

minmod
linears

toe 0.0761 L 0.0010 R 0.1474 L 0.0034 R

mid 0.0767 L 0.0024 L 0.1529 L 0.0042 L

top 0.1128 R 0.0322 R 0.2311 R 0.0693 R

global 0.1393 0.0184 0.2003 0.0394

The bold-italics type face indicates the minimum error for each station and globally.
The superscripts denote which discontinuous value was used to compute the errors for 
the domain-wide DG model: L left or R right.
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Figure 4.29 Final output at t = 90,000 seconds for DG/CG model simulated on a grid 
ratio of 60: (a) elevations and (b) velocities.
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approximations have oscillations on the shelf. None of the approximations match the fine-

grid solution over the entire domain at this resolution.

The elevation and velocity errors were computed for each time series by using the

most accurate state value (left or right) for all comparisons that involve discontinuous data.

For both state variables, the maximum and L2 average errors over the entire time series

were calculated and are summarized for all of the versions in Table 4.8. Additionally, the

average and maximum errors over the entire domain are computed for the last temporal

output and included in the table, denoted by the word “global” in the station column. The

minimum errors are indicated by the bold-italics typeface in each column. From these

results alone, it is unclear whether the piecewise constant or minmod limited results are best

overall. Further comparisons will be done with a finer grid in §4.8.2.

Table 4.8  Spatial errors for coupled model 1 simulated on a grid ratio of 60.

Spatial
approximation

Station
location

L2 errors  errors

elevation velocity elevation velocity

piecewise
constants

toe 0.0715 R 0.0037 0.1335 R 0.0065

mid 0.1111 L 0.0014 0.1972 L 0.0024

top 0.2976 L 0.1006 0.5043 L 0.1712

global 0.1960 0.0261 0.3534 0.0883

unlimited
linears

toe 1.5699 L 0.0167 2.7873 L 0.0279

mid 1.8657 L 0.0162 3.2193 L 0.0271

top 1.1013 R 0.1722 1.9266 R 0.2927

global 0.4697 0.0956 1.0257 0.2887

minmod
linears

toe 0.0467 R 0.0028 0.0943 R 0.0053

mid 0.0590 L 0.0023 0.1129 L 0.0040

top 0.2396 L 0.0985 0.4141 L 0.1658

global 0.1094 0.0313 0.2236 0.0943

The superscripts indicate which discontinuous state was used to compute the errors: 
L left or R right.

The minimum errors are denoted by bold-italics.
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Coupled model 2

As with the previous model, the plus and minus symbols in the following three

figures indicate the results from the coupled model, where for discontinuous results the plus

symbol indicates the state value to the right of the element boundary and the minus symbol

indicates the value to the left. Both the elevations and velocities are discontinuous in the

DG subdomain, while both variables in the ADCIRC subdomain are continuous. Three

figures will be presented for this model, one for each location of the subdomain interface.

The time series for coupled model 2 with the subdomain interface located at the toe

of the slope are shown in Figure 4.30. Since the bathymetry features are to the right of the

subdomain interface, all of the time series are located in the DG subdomain and are

discontinuous.

For the station at the toe of the slope, where the interface is located, the higher-order

approximations do a better job of capturing the elevation behavior than the low-order

version. However, the right state value from the low-order solution follows the general

trends. For the velocity data, the left state values from the unlimited higher-order

approximation and the right state values from the low-order approximation do the best job

of capturing the local maxima and minima. For the station at the middle of the slope, the

left state from all three spatial approximations is able to capture the elevation behavior. The

right state value from all three approximations overshoot the peaks for the velocity at this

station, while the left states for the low-order and minmod limited versions are able to

capture the correct behavior. For the station at the top of the slope, the right state values of

all three approximations come closest to capturing the correct behavior for both elevation

and velocity.

The time series for coupled model 2 with the subdomain interface located at the

middle of the slope are shown in Figure 4.31. The time series at the toe is continuous since

it lies in the ADCIRC subdomain and the other two time series are discontinuous.
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Figure 4.30 Time series at bathymetry stations for DG <–> ADCIRC model with the 
subdomain interface located at the toe of the slope and simulated on a grid 
ratio of 60: a) toe of slope, b) middle of slope, c) top of slope.
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Figure 4.31 Time series at bathymetry stations for DG <–> ADCIRC model with the 
subdomain interface located at the middle of the slope; simulated on a grid 
ratio of 60: a) toe of slope, b) middle of slope, c) top of slope.
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For the station at the toe of the slope, all of the data is continuous and the unlimited

higher-order approximation does the best job of capturing the elevation behavior, while

none of the approximations are able to capture the velocity behavior. For the station at the

middle of the slope, the low-order and minmod approximations overshoot the peaks for the

elevation, while the unlimited higher-order version captures the general trends. Meanwhile,

the left state of the minmod limited version comes closest to matching the velocity

behavior. Finally, for the station at the top of the slope, the right state values for all three

approximations capture the general behavior of the elevation and velocity, with the

unlimited version being the closest; but none of the three are a match at all of the peaks.

The time series for coupled model 2 with the subdomain interface located at the top

of the slope are shown in Figure 4.32. The time series for the toe and middle of the slope

are continuous since they are located in the ADCIRC subdomain and the time series at the

top is discontinuous. None of the approximating spaces are able to capture the peaks at any

of the stations when the interface is located at the top of the slope; however, the general

elevation and velocity behavior is captured by any of the approximations.

Global elevation and velocity results for all three interface locations are presented

in Figure 4.33. The vertical dashed lines indicate the location of the bathymetry features –

toe, middle and top of slope – for the grid ratio of 60, as given in Table 4.6. Notice that as

the subdomain interface moves up the slope and away from the toe, the quality of the global

solution degrades quickly. Although, it was not as obvious, this is also evident in the station

output in Figures 4.30 through 4.32.

To confirm this, the elevation and velocity errors were computed for each time

series by using the most accurate value (left or right) for all comparisons that involve

discontinuous data. For both state variables, the maximum and L2 average errors over the

entire time series were calculated for all of the spatial approximations and interface

locations. The station errors are summarized in Table 4.9. Additionally, the average and
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Figure 4.32 Time series at bathymetry stations for DG <–> ADCIRC model with the 
subdomain interface located at the top of the slope and simulated on a grid 
ratio of 60:  a) toe of slope, b) middle of slope, c) top of slope.
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Table 4.9  Station errors for DG <–> ADCIRC model simulated on a grid ratio of 60.

Spatial
approximation

Interface
location

Station
location

L2 errors  errors

elevation velocity elevation velocity

piecewise
constants

toe 0.1195 R 0.0041 R 0.2491 R 0.0085 R

toe mid 0.1371 L 0.0055 L 0.2984 L 0.0101 L

top 0.1584 R 0.0241 R 0.3412 R 0.0501 R

unlimited
linears

toe 0.0395 L 0.0021 L 0.0700 L 0.0033 L

toe mid 0.0444 R 0.0249 L 0.0811 R 0.0396 L

top 0.0987 R 0.0922 R 0.1708 R 0.1653 R

minmod
linears

toe 0.0631 R 0.0168 L 0.1362 R 0.0297 L

toe mid 0.0892 L 0.0171 L 0.1900 L 0.0485 L

top 0.0786 R 0.0661 R 0.1405 R 0.1405 R

piecewise
constants

toe 0.8075 0.0167 1.6110 0.0321

mid mid 0.8144 L 0.0354 L 1.6275 L 0.0653 L

top 0.3649 R 0.0673 R 0.8280 R 0.1548 R

unlimited
linears

toe 0.3193 0.0080 0.5839 0.0146

mid mid 0.1430 R 0.0113 L 0.2968 R 0.0198 L

top 0.2349 R 0.1242 R 0.4802 R 0.2070 R

minmod
linears

toe 0.4878 0.0108 0.9452 0.0206

mid mid 0.4945 L 0.0215 L 0.9714 L 0.0388 L

top 0.2124 R 0.1009 R 0.4516 R 0.2188 R

piecewise
constants

toe 0.1306 0.0035 0.2601 0.0068

top mid 0.1424 0.0056 0.2795 0.0099

top 0.2295 L 0.0941 R 0.4246 L 0.1645 R

unlimited
linears

toe 0.1324 0.0034 0.2613 0.0067

top mid 0.1432 0.0060 0.2803 0.0105

top 0.2272 L 0.3089 R 0.4171 L 0.0743 R

minmod
linears

toe 0.1320 0.0034 0.2616 0.0066

top mid 0.1431 0.0059 0.2811 0.0104

top 0.2277 L 0.0536 R 0.4189 L 0.1097 R

The superscripts indicate which state value was used to compute the errors for the discontinuous 
data: L - left or R - right.
The minimum errors for each station location are indicated by the bold-italics type.

L∞
186



maximum errors over the entire domain were calculated and are summarized for the last

temporal output in Table 4.10. In each table, the minimum errors for each station or over

the entire domain are indicated by bold-italics in each column.  

From the graphical output, the station errors and the global errors, the unlimited

version with the interface at the toe appears to provide the best match to the fine-grid

ADCIRC results.

Coupled model 3

As for the previous models, the plus and minus symbols indicate the results from

the coupled model, where the plus symbol indicates the state value to the right of the

element boundary and the minus symbol indicates the value to the left. The continuous

colored lines indicate the average of the discontinuous data from the domain-wide DG

model. Only the elevations are discontinuous in the DG/CG subdomain. Meanwhile, both

the elevation and velocity results in the ADCIRC subdomain are continuous and the

velocity over the entire domain is discontinuous only at the subdomain interface. Three

Table 4.10  Global errors for DG <–> ADCIRC model simulated on a grid ratio of 60.

Spatial
approximation

Interface
location

L2 errors  errors

elevation velocity elevation velocity

piecewise
constants

toe 0.3283 0.0602 0.8634 0.1051

mid 0.6431 0.1416 1.6073 0.2487

top 0.5623 0.0956 0.9979 0.2328

unlimited
linears

toe 0.0752 0.0214 0.1152 0.0379

mid 0.3307 0.0558 0.4393 0.0991

top 0.5148 0.0882 0.8854 0.2345

minmod
linears

toe 0.0969 0.0520 0.2864 0.1430

mid 0.3038 0.0572 0.5869 0.1209

top 0.5119 0.0875 0.8835 0.2349

This table summarizes the global errors for the last output at t = 90,000 seconds.
The minimum errors for each column are indicated by bold-italics.
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figures will be presented for this model, one for each location of the subdomain interface.

The time series for coupled model 3 with the subdomain interface located at the toe

of the slope are shown in Figure 4.34. Since the bathymetry features are to the right of the

subdomain interface, all of the elevation time series are located in the DG subdomain and

are discontinuous. The unlimited linear version of the coupled model is unstable when the

interface is located at the toe, so no results are shown for this version.

Both of the remaining stable approximations completely miss the velocity behavior

at all three stations. Meanwhile, for the elevation behavior, the coupled solutions start out

matching the fine-grid time series and begin to deviate significantly as time progresses.

Additionally, as you move from the station at the toe of the slope to the top of the slope, the

differences in discontinuous state values (left and right) grow considerably.

The time series for coupled model 3 with the subdomain interface located at the

middle of the slope are shown in Figure 4.35. The elevation time series at the toe is

continuous, since it lies in the ADCIRC subdomain and the other two elevation series are

discontinuous. Again, the unlimited linear version of the coupled model is unstable when

the interface is located at the middle of the slope, so no results are shown for this version.

Starting with the station at the toe of the slope, neither approximation captures the

elevation or velocity behavior, although they are closer than when the subdomain interface

was located at the toe. For the station at the middle of the slope, neither approximation

captures the elevation behavior; but the left states, which are computed in the ADCIRC

subdomain, are able to capture the velocity behavior. Again at the top of the slope, neither

approximation matches the fine-grid behavior. As noted above, the errors become larger as

time progresses.

The time series for coupled model 3 with the subdomain interface located at the top

of the slope are shown in Figure 4.36. The elevation series for the toe and middle of the

slope are continuous, since they are located in the ADCIRC subdomain and the elevation
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Figure 4.34 Time series at bathymetry stations for DG/CG <–> ADCIRC model with the 
subdomain interface located at the toe of the slope and simulated on a grid 
ratio of 60: a) toe of slope, b) middle of slope, c) top of slope.
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Figure 4.35 Time series at bathymetry stations for DG/CG <–>ADCIRC model with the 
subdomain interface located at the middle of the slope; simulated on a grid 
ratio of 60: a) toe of slope, b) middle of slope, c) top of slope.
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Figure 4.36 Time series at bathymetry stations for DG/CG <–> ADCIRC model with the 
subdomain interface located at the top of the slope; simulated on a grid ratio 
of 60: a) toe of slope, b) middle of slope, c) top of slope.
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series at the top is discontinuous. The unlimited version is only stable at this interface

location. However, none of the approximations match the fine-grid solution at any of the

stations and the solutions get worse as time progresses.

Global elevation and velocity results for all three interface locations are presented

in Figure 4.37. The vertical dashed lines indicate the location of the bathymetry features –

toe, middle and top of slope – for the grid ratio of 60, as given in Table 4.6. Recall that the

unlimited version is unstable when the interface is located at the toe or middle of the slope;

and the corresponding results are missing from the global figures. As seen in the station

time series, this coupling scheme is not capable of capturing the fine-grid solution at this

resolution.

The elevation and velocity errors were computed for each time series by using the

most accurate state value (left or right) for all comparisons that involve discontinuous data.

For both state variables, the average and maximum error over the entire domain is

computed for the last temporal output and summarized in Table 4.11. Additionally, the

maximum and L2 average errors over the entire time series were calculated and are

summarized for all of the spatial approximations and interface locations in Table 4.12. In

each table, the minimum errors for each station or over the entire domain are indicated by

bold-italics in each column. Since the unlimited version is unstable for two of the interface

locations, some of the corresponding table entries will be missing. Overall, this model does

not perform well at this resolution.  

Summary of 60∆x grid ratio results

In general, one notes that since the domain-wide ADCIRC and DG models have

problems at this coarse resolution, the coupled models cannot be expected to perform well

either. In the future, it would be interesting to examine other types of grids, such as the

LTEA (local truncation error analysis), which would place more nodes near the subdomain

interfaces and other areas where errors are concentrated. The minimum global errors from
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Table 4.12  Station errors for DG/CG <–> ADCIRC model on a grid ratio of 60.

Spatial
approximation

Interface
location

Station
location

L2 errors  errors

elevation velocity elevation velocity

piecewise
constants

toe 0.2181 R 0.0315 R 0.4617 R 0.0596 R

toe mid 0.2077 L 0.1428 0.4420 L 0.2665

top 0.3143 R 0.1197 0.6611 R 0.2120

unlimited
linears

toe all unstable unstable unstable unstable

minmod
linears

toe 0.2247 R 0.0321 R 0.4831 R 0.0626 R

toe mid 0.2186 L 0.1615 0.4604 L 0.3011

top 0.2836 R 0.1487 0.6926 R 0.2600

piecewise
constants

toe 0.1987 0.0048 0.3411 0.0087

mid mid 0.2135 L 0.0056 L 0.3660 L 0.0094 L

top 0.3648 R 0.1108 0.6875 R 0.1881

unlimited
linears

mid all unstable unstable unstable unstable

minmod
linears

toe 0.2109 0.0050 0.3551 0.0092

mid mid 0.2260 L 0.0060 L 0.3816 L 0.0099 L

top 0.3118 R 0.1067 0.5865 R 0.1791

piecewise
constants

toe 0.3400 0.0082 0.6318 0.0155

top mid 0.3581 0.0139 0.6660 0.0234

top 0.4823 L 0.1543 R 0.8833 L 0.2776 R

unlimited
linears

toe 0.4938 0.0120 0.8765 0.0211

top mid 0.5189 0.0198 0.9213 0.0331

top 0.6324 R 0.2021 R 1.1206 R 0.3478 R

minmod
linears

toe 0.3508 0.0085 0.6490 0.0160

top mid 0.3694 0.0143 0.6840 0.0240

top 0.4956 L 0.1530 R 0.9055L 0.2764 R

The superscripts indicate which discontinuous state value was used at the interface to compute the 
errors: L left or R right.
The minimum errors are denoted by bold-italics.

L∞
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each of the coupled models are summarized below in Table 4.13. Overall, coupled model

2 has the lowest errors of the three coupled models and has slightly higher errors than the

domain-wide DG model. In the next section, similar comparisons will be made for all of

the coupled models using a finer grid before conclusions are drawn about the ideal

combination of spatial approximations and interface locations.

Table 4.11  Global errors for DG/CG <–> ADCIRC model simulated on a grid ratio of 60.

Spatial
approximation

Interface
location

L2 errors  errors

elevation velocity elevation velocity

piecewise
constants

toe 0.6980 0.0530 1.2266 0.1764

mid 0.3585 0.0826 0.5856 0.1749

top 1.1598 0.0961 1.9746 0.3349

unlimited
linears

toe unstable unstable unstable unstable

mid unstable unstable unstable unstable

top 1.5927 0.1043 2.6658 0.4154

minmod
linears

toe 0.8611 0.0525 1.5320 0.1520

mid 0.3299 0.0903 0.5120 0.1791

top 1.1791 0.0983 1.9907 0.3402

This table summarizes the global errors for the last output at t = 90,000 seconds.
The minimum errors for each column are indicated by the bold-italics type.

Table 4.13  Comparison of global errors for all coupled models and a grid ratio of 60.

Coupled
model

Spatial
approximation

Interface
location

L2 errors  errors

elevation velocity elevation velocity

domain-
wide DG unlimited na 0.0659 0.0167 0.1028 0.0282

1
constants na — 0.0261 — 0.0883

minmod na 0.1094 — 0.2236 —

2 unlimited toe 0.0752 0.0214 0.1152 0.0379

3
constants toe — 0.0525 — 0.1520

minmod mid 0.3299 — 0.5120 —

This table summarizes the minimum global errors for all three of the coupled models for the last 
temporal output at t = 90,000 seconds.
More than one row may be used for a particular model when the minimum errors were not uniform 
over all spatial approximations or interface locations.

L∞

L∞
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4.8.2  Simulation results for grid ratio of 300

ADCIRC model

For each of the three bathymetry features, the time series for the domain-wide

ADCIRC model at the L/∆x = 300 resolution are shown in Figure 4.38. Notice that the

solution obtained with the coarser resolution is able to capture all of the elevation and

velocity behavior, with the exception of the velocity at the top of the slope. At that station,

the peaks from the coarser simulation are somewhat damped relative to the fine-grid

simulation. Given these ADCIRC results, it is expected that the coupled models should be

able to capture most of the fine-grid behavior using this grid resolution. The global results

for the ADCIRC model at this coarser grid are presented with those of the domain-wide DG

model below in Figure 4.40.

Domain-wide DG model

For each of the three bathymetry features, the time series for the domain-wide DG

model are shown in Figure 4.39. The plus and minus symbols indicate the discontinuous

results, where the plus symbol indicates the value to the right of the element boundary and

the minus symbol indicates the value to the left.

For the station at the toe of the slope, notice that all three approximations capture

the elevation and velocity behavior quite well. Similarly, for the station at the middle of the

slope, all three approximations capture the behavior of both the elevation and velocity.

However, the right state value for the low-order and minmod versions overshoot the

velocity peaks somewhat. Finally, for the station located at the top of the slope, the right

state value of all three approximations is able to capture both the elevation and velocity

behavior.

Figure 4.40 compares the model results over the entire domain for the final output

at t = 90,000 seconds. The vertical dashed lines indicate the location of the bathymetry

features – toe, middle and top of slope – for the grid ratio of 300, as given in Table 4.6. The
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higher-order approximations capture the global behavior better than the lower-order
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Figure 4.38 Time series at bathymetry stations for ADCIRC model simulated with a grid 
ratio of 300: a) toe of slope, b) middle of slope, c) top of slope.
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Figure 4.39 Time series at bathymetry stations for domain-wide DG model simulated 
with a grid ratio of 300: a) toe of slope, b) middle of slope, c) top of slope.
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Figure 4.40 Final output at t = 90,000 seconds for domain-wide DG and ADCIRC 
models simulated on a grid ratio of 300: (a) elevations and (b) velocities.
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version, with the unlimited version being the best.

The elevation and velocity errors were computed for each time series by using the

most accurate state value (left or right) for all comparisons that involve discontinuous data.

For both state variables, elevation and velocity, the maximum and L2 average errors over

the entire time series were calculated and are summarized for all of the versions in

Table 4.15. Additionally, the average and maximum errors over the entire domain are

computed for the last temporal output and included in the table, denoted by the word

“global” in the station column. The minimum errors for each station and over the entire

Table 4.14  Spatial errors for domain-wide models simulated on a grid ratio of 300.

Spatial
approximation

Station
location

L2 errors  errors

elevation velocity elevation velocity

domain-wide ADCIRC model

continuous
linears

toe 0.0012 0.0001 0.0046 0.0002

mid 0.0013 0.0002 0.0041 0.0004

top 0.0027 0.0298 0.0060 0.0505

global 0.0010 0.0024 0.0050 0.0234

domain-wide DG model

piecewise
constants

toe 0.0323 R 0.0003 L 0.0570 R 0.0008 L

mid 0.0093 R 0.0006 L 0.0280 R 0.0011 L

top 0.0349 R 0.0090 R 0.0650 R 0.0170 R

global 0.0345 0.0105 0.1097 0.0216

unlimited
linears

toe 0.0016 R 0.0000 L 0.0031 R 0.0001 L

mid 0.0019 L 0.0001 L 0.0036 L 0.0001 L

top 0.0037 R 0.0071 R 0.0065 R 0.0120 R

global 0.0028 0.0009 0.0044 0.0052

minmod
linears

toe 0.0058 L 0.0001 R 0.0104 L 0.0003 R

mid 0.0054 L 0.0002 L 0.0100 L 0.0004 L

top 0.0279 R 0.0024 R 0.0472 R 0.0069 R

global 0.0053 0.0020 0.0226 0.0078

The superscripts indicate which discontinuous state value was used to compute the 
errors for the domain-wide DG model: L left or R right.
The minimum errors are indicated by the bold-italics typeface.

L∞
200



domain are indicated by bold-italics typeface in each column. 

Notice that the unlimited higher-order version minimizes the errors both locally and

globally for the various domain-wide DG versions. Meanwhile, the ADCIRC model has

slightly lower errors for the elevation results, although the unlimited higher-order domain-

wide DG performs better for the velocity profile. Thus, the domain-wide DG model does a

slightly better job, than the coarse ADCIRC model, of capturing the correct velocity

behavior for the highly advective region on the shelf.

Coupled model 1

The time series for coupled model 1, at each of the three bathymetry features, are

shown in Figure 4.41. The plus and minus symbols indicate the results from the coupled

model, where for discontinuous results the plus symbol indicates the value to the right of

the element boundary and the minus symbol indicates the value to the left. The elevations

are discontinuous with this coupled model while the velocity results are continuous. The

higher-order version without limiting becomes unstable as time progresses, and the results

for this version are not shown.

For the stations at the toe and middle of the station, notice that both of the

approximations are able to capture the elevation and velocity behavior. However, the

higher-order minmod version does a slightly better job of capturing the peaks. For the

station at the top of the slope, both approximations are able to capture the elevation

behavior; but neither is able to capture the peaks in the velocity time series.

Figure 4.42 compares the model results over the entire domain for the final output

at t = 90,000 seconds. The vertical dashed lines indicate the location of the bathymetry

features – toe, middle and top of slope – for the grid ratio of 300, as given in Table 4.6.

Since the unlimited linear version is unstable, no results are shown for this version. Both of

the approximations are able to capture the global elevation results, although the minmod

version is more accurate. Meanwhile, for the velocity, both versions are able to capture the
201
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Figure 4.41 Time series at bathymetry stations for DG/CG model simulated with a grid 
ratio of 300: a) toe of slope, b) middle of slope, c) top of slope.
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Figure 4.42 Final output at t = 90,000 seconds for DG/CG model simulated on a grid 
ratio of 300: (a) elevations and (b) velocities.
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reflected wave, but both also introduce slight oscillations at the shelf break. This is likely

due to the continuous velocity field being unable to handle the sharp front.

The elevation and velocity errors were computed for each time series by using the

most accurate state value (left or right) for all comparisons that involve discontinuous data.

For both state variables, the maximum and L2 average errors over the entire time series

were calculated and are summarized for all of the versions in Table 4.15. Additionally, the

average and maximum errors over the entire domain are computed for the last temporal

output and included in the table, denoted by the word “global” in the station column. The

minimum errors for each station and over the entire domain are indicated by bold-italics.

Globally, the low-order version does slightly better for the velocities, while the

minmod version does significantly better for the elevations. Additionally, the minmod

version performs best for all of the stations, and appears to be the best choice for this model.

Table 4.15  Spatial errors for DG/CG model simulated on a grid ratio of 300.

Spatial
approximation

Station
location

L2 errors  errors

elevation velocity elevation velocity

piecewise
constants

toe 0.0131 R 0.0004 0.0246 R 0.0008

mid 0.0177 R 0.0002 0.0327 R 0.0006

top 0.0395 R 0.0169 0.0665 R 0.0294

global 0.0403 0.0018 0.0640 0.0100

unlimited
linears

all unstable unstable unstable unstable

minmod
linears

toe 0.0022 R 0.0001 0.0052 R 0.0003

mid 0.0043 L 0.0002 0.0090 L 0.0004

top 0.0375 L 0.0150 0.0637 L 0.0254

global 0.0077 0.0022 0.0382 0.0122

The superscripts indicate which discontinuous state value was used to compute the 
errors for the coupled model: L left or R right.
The minimum errors are indicated by the bold-italics typeface.

L∞
204



Coupled model 2

As for the previous model, the plus and minus symbols indicate the results from the

coupled model, where for discontinuous results the plus symbol indicates the state value to

the right of the element boundary and the minus symbol indicates the value to the left. Both

the elevations and velocities are discontinuous in the DG subdomain, while both variables

in the ADCIRC subdomain are continuous. Three figures will be presented for this model,

one for each location of the subdomain interface.

The time series for coupled model 2 with the subdomain interface located at the toe

of the slope are shown in Figure 4.43. Since the bathymetry features are to the right of the

subdomain interface, all of the time series are located in the DG subdomain and are

discontinuous.

For the station at the toe of the slope, notice that all three approximations are able

to capture the elevation and velocity behavior. However, the right states of the higher-order

versions overshoot the velocity peaks. Meanwhile, for the station at the middle of the slope,

all three approximations are able to capture the elevation behavior; but only the left state of

the low-order and minmod approximations are really able to capture the velocity behavior.

Finally, for the station at the top of the slope, the right state values for all three

approximations are able to capture the elevation behavior; but the left state of the low-order

version has a slight shift and overshoots the peaks. The right states of all three

approximations do a reasonable job of capturing the velocity behavior at this station,

although they do overshoot the peaks slightly.

The time series for coupled model 2 with the subdomain interface located at the

middle of the slope are shown in Figure 4.44. The time series at the toe is continuous since

it lies in the ADCIRC subdomain and the other two time series are discontinuous.

For the station at the toe of the slope, notice that all three approximations are able

to capture the elevation and velocity behavior; although the higher-order versions do a
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Figure 4.43 Time series at bathymetry stations for DG <–> ADCIRC model with the 
subdomain interface located at the toe of the slope and simulated on a grid 
ratio of 300: a) toe of slope, b) middle of slope, c) top of slope.
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Figure 4.44 Time series at bathymetry stations for DG <–> ADCIRC model with the 
subdomain interface located at the middle of the slope; simulated on a grid 
ratio of 300: a) toe of slope, b) middle of slope, c) top of slope.
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slightly better job of matching at the peaks. For the station at the middle of the slope, all

three approximations are able to capture the elevation behavior; but the low-order version

overshoots the peaks slightly. Meanwhile, for the velocity at this station, the left state

values for the higher-order versions are able to capture the correct behavior, with the

minmod version doing the best job of matching at the peaks. Finally, for the station at the

top of the slope, all three approximations are able to capture the elevation behavior; but the

left state values for the low-order version are shifted relative to the fine-grid solution. The

right state values for all three approximations are also able to capture the velocity behavior,

although the peaks are magnified slightly.

The time series for coupled model 2 with the subdomain interface located at the top

of the slope are shown in Figure 4.45. The time series for the toe and middle of the slope

are continuous since they are located in the ADCIRC subdomain and the time series at the

top is discontinuous. None of the approximations are able to capture the elevation or

velocity behavior at the toe and middle stations. The elevation series generally have a phase

lag and the peaks are slightly damped, while the velocity series generally have a phase lag

and the peaks are amplified. The right state values for all three approximations do a

reasonable job of capturing the elevation and velocity behavior at the top of the slope.

Global elevation and velocity results for all three interface locations are presented

in Figure 4.46. The vertical dashed lines indicate the location of the bathymetry features –

toe, middle and top of slope – for the grid ratio of 300, as given in Table 4.6. As was seen

from the station time series presented above, the global results are best when the subdomain

interface is located near the toe or middle of the slope. When the interface is too near to the

highly advective behavior, the coupled model is not able to capture the correct velocity

behavior on the shelf, and the velocity errors propagate into the entire domain.

The elevation and velocity errors were computed for each time series by using the

most accurate state value (left or right) for all comparisons that involve discontinuous data.
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Figure 4.45 Time series at bathymetry stations for DG <–> ADCIRC model with the 
subdomain interface located at the top of the slope and simulated on a grid 
ratio of 300:  a) toe of slope, b) middle of slope, c) top of slope.
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For both state variables, the maximum and L2 average errors over the entire time series

were calculated and are summarized for all of the spatial approximations and interface

locations in Table 4.16. Additionally, the average and maximum errors over the entire

domain are summarized for the last temporal output in Table 4.17.In each table, the

minimum errors for each station or over the entire domain are indicated by the bold-italics

typeface for each column.

For the station errors, note that, in general, the elevation and velocity errors are

minimized when the subdomain interface is located at the middle of the slope and higher-

order spatial approximations are used. However, the most accurate elevation data at the top

station is when the interface is located at the toe of the slope. Globally, the maximum errors

are minimized when the unlimited version with the subdomain interface located at the

middle of the slope is used. The average errors are minimized when piecewise constants are

used, but there is no consistent subdomain interface location suggested by these error

norms.

Table 4.17  Global errors for DG <–> ADCIRC model simulated on a grid ratio of 300.

Spatial
approximation

Interface
location

L2 errors  errors

elevation velocity elevation velocity

piecewise
constants

toe 0.0161 0.0011 0.1414 0.0061

mid 0.0208 0.0052 0.0299 0.0091

top 0.0120 0.0036 0.0864 0.0090

unlimited
linears

toe 0.0423 0.0025 0.1803 0.0077

mid 0.0204 0.0015 0.0299 0.0045

top 0.0162 0.0011 0.0830 0.0062

minmod
linears

toe 0.0899 0.0411 0.1856 0.0785

mid 0.0554 0.0380 0.1196 0.0813

top 0.0648 0.0382 0.1372 0.0803

This table summarizes the global errors for the last output at t = 90,000 seconds.
The minimum errors for each column are indicated by the bold-italics type.
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Table 4.16  Station errors for DG <–> ADCIRC model simulated on a grid ratio of 300.

Spatial
approximation

Interface
location

Station
location

L2 errors  errors

elevation velocity elevation velocity

piecewise
constants

toe 0.0145 L 0.0003R 0.0273 L 0.0006 R

toe mid 0.0218 L 0.0006 L 0.0434 L 0.0011 L

top 0.0805 R 0.0079 R 0.1401 R 0.0156 R

unlimited
linears

toe 0.0153R 0.0007 L 0.0295 R 0.0013 L

toe mid 0.0141 R 0.0040 L 0.0275 R 0.0068 L

top 0.0037 R 0.0181 R 0.0089 R 0.0280 R

minmod
linears

toe 0.0109 R 0.0005 L 0.0211 R 0.0010 L

toe mid 0.0211 L 0.0017 L 0.0402 L 0.0050 L

top 0.0308 R 0.0173 R 0.0543 R 0.0295 R

piecewise
constants

toe 0.0579 0.0015 0.1056 0.0028

mid mid 0.0547 R 0.0018 R 0.1007 R 0.0031 R

top 0.0832 R 0.0073 R 0.1492 R 0.0152 R

unlimited
linears

toe 0.0076 0.0001 0.0131 0.0002

mid mid 0.0051 R 0.0002 L 0.0097 R 0.0005 L

top 0.0170 R 0.0150 R 0.0289 R 0.0260 R

minmod
linears

toe 0.0105 0.0002 0.0196 0.0004

mid mid 0.0037 R 0.0004 L 0.0071 R 0.0007 L

top 0.0175 R 0.0151 R 0.0295 R 0.0250 R

piecewise
constants

toe 0.0903 0.0025 0.1764 0.0048

top mid 0.0965 0.0033 0.1894 0.0060

top 0.1052 R 0.0315 R 0.2098 R 0.0603 R

unlimited
linears

toe 0.1113 0.0031 0.2161 0.0058

top mid 0.1188 0.0040 0.2315 0.0073

top 0.1299 L 0.0192 R 0.2534 L 0.0387 R

minmod
linears

toe 0.1036 0.0029 0.2012 0.0054

top mid 0.1106 0.0037 0.2157 0.0068

top 0.1209 L 0.0231 R 0.2367 L 0.0509 R

The superscripts indicate which discontinuous state value was used to compute the error for the dis-
continuous data: L left or R right.
The minimum errors for each station are indicated by the bold-italics type.
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Coupled model 3

As for the previous models, the plus and minus symbols indicate the results from

the coupled model, where the plus symbol indicates the state value to the right of the

element boundary and the minus symbol indicates the value to the left. Only the elevations

are discontinuous in the DG/CG subdomain. Meanwhile, both the elevation and velocity

results in the ADCIRC subdomain are continuous and the velocity over the entire domain

is discontinuous only at the subdomain interface. The higher-order versions, unlimited and

minmod limited, are both unstable for this grid ratio and no results are presented for these

versions at any of the interface locations. (Time steps as small as ∆t = 10-4 seconds were

attempted without any success.) Therefore, only one figure will be presented for this model,

which will compare the location of the subdomain interface for the low-order version.

The time series for coupled model 3 using low-order DG approximating spaces and

various locations for the subdomain interface are shown in Figure 4.47. When the interface

is located at the toe, the bathymetry features are to the right of the subdomain interface; and

all of the elevation time series are discontinuous. Meanwhile, when the interface is located

at the middle of the slope, the elevation time series at the toe is continuous since it lies in

the ADCIRC subdomain and the other two elevation series are discontinuous. Finally, when

the interface is located at the top of the slope, the elevation time series for the toe and

middle of the slope are continuous since they are located in the ADCIRC subdomain and

the elevation series at the top is discontinuous. In this figure, the different colors represent

subdomain interface locations, not spatial approximations, as in all of the other figures thus

far.

For the station at the toe of the slope, notice that the elevation and velocity behavior

are captured when the subdomain interface is located at the toe or middle of the slope, but

not when it is located at the top. Meanwhile, for the station at the middle of the slope, notice

that the elevation behavior is captured when the subdomain interface is located at the toe
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Figure 4.47 Time series at bathymetry stations for DG/CG <–> ADCIRC model using 
low-order spatial approximations with various subdomain interface 
locations and simulated on a grid ratio of 300: a) toe of slope, b) middle of 
slope, c) top of slope.
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or middle, but not when it is located at the top. Furthermore, at this station, the velocity

behavior is captured only when the subdomain interface is located at the middle of the

slope. Finally, for the station at the top of the slope, the elevation behavior is captured when

the subdomain interface is located at either the toe or middle of the slope, but not when it

is at the top of the slope. However, even with the subdomain interface located at the toe or

middle, the velocity behavior is not adequately captured – the peaks are amplified relative

to the fine-grid solution.

Global elevation and velocity results for all three interface locations are presented

in Figure 4.48. The vertical dashed lines indicate the location of the bathymetry features –

toe, middle and top of slope – for the grid ratio of 300, as given in Table 4.6. Recall that the

higher-order versions are unstable for this grid resolution, such that the corresponding

results are missing from the figures. Notice that the global results with the subdomain

interface located at the toe of the slope are a pretty good match to the fine-grid ADCIRC

solution, while the results with the interface located at the top do not capture the correct

behavior for either variable. 

The elevation and velocity errors were computed for each time series by using the

most accurate state value (left or right) for all comparisons that involve discontinuous data.

For both state variables, the maximum and L2 average errors over the entire time series

were calculated and are summarized for the low-order spatial approximations and all three

interface locations in Table 4.18. Additionally, the average and maximum errors over the

entire domain are computed for the last temporal output and included in this table. The

minimum errors for each station or over the entire domain are indicated by bold-italics in

each column.  

Graphically, it appears that this model is most accurate for the elevations when the

subdomain interface is located at the middle of the slope, while the velocity solution is

optimized with the subdomain interface located at the toe of the slope. Numerically, the
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errors seem to indicate that the interface should be located at the middle of the slope in order

to reduce most of the station and global errors.

Summary of 300∆x grid ratio results

The minimum global errors from each of the coupled models are summarized below

in Table 4.19. The upper portion of the table repeats the results from the L/∆x = 60 grid

resolution that were presented in Table 4.13 in the previous section. For each portion of the

table, the overall minimum results for each column are indicated by bold-italics, while the

minimum results from the coupled models alone are indicated with italics. 

Notice that the errors for the domain-wide DG and ADCIRC models are

significantly reduced when comparing the results for the 60∆x and 300∆x grid ratios. This

improved accuracy also carries over to the coupled models. In general, coupled model 2 has

the minimum global errors relative to the other coupled models. However, the domain-wide

Table 4.18  Spatial errors for DG/CG <–> ADCIRC model on a grid ratio of 300.

Spatial
approximation

Interface
location

Station
location

L2 errors  errors

elevation velocity elevation velocity

piecewise
constants toe

toe 0.0494 R 0.0003 R 0.0853 R 0.0007 R

mid 0.0546 L 0.0033 0.0940 L 0.0056

top 0.0292 R 0.0314 0.0557 R 0.0540

global 0.0360 0.0047 0.0912 0.0390

piecewise
constants mid

toe 0.0213 0.0005 0.0383 0.0010

mid 0.0225 L 0.0018 L 0.0399 L 0.0030 L

top 0.0548 L 0.0287 0.0866 L 0.0497

global 0.0187 0.0105 0.0537 0.0229

piecewise
constants top

toe 0.3378 0.0094 0.6356 0.0174

mid 0.3620 0.0120 0.6800 0.0214

top 0.4073 L 0.0727 R 0.7633 L 0.1343 R

global 0.4965 0.0863 0.8710 0.2931

The superscripts indicate which state value was used to compute the errors for the discontinuous 
data: L left or R right.
The minimum errors for each column are indicated by the bold-italics type.
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models have lower errors than this coupled model, indicating that some accuracy is lost

with the coupling procedure. The magnitude of these differences is very small, however,

and the coupled model essentially performs as well as the domain-wide models. The

following section will compare the CPU times for the coupled models and domain-wide

ADCIRC and DG models.

4.8.3  CPU times for East coast simulations

Using the maximum stable time step, the CPU usage for each of the variations

Table 4.19  Comparison of minimum global errors for all three coupled models.

Coupled
model

Spatial
approximation

Interface
location

L2 errors  errors

elevation velocity elevation velocity

Grid ratio of 60

ADCIRC continuous linear na 0.0649 0.0191 0.1571 0.0814

DG unlimited na 0.0659 0.0167 0.1028 0.0282

1
constants na — 0.0261 — 0.0883

minmod na 0.1094 — 0.2236 —

2 unlimited toe 0.0752 0.0214 0.1152 0.0379

3 minmod
toe — 0.0525 — 0.1520

mid 0.3299 — 0.5120 —

Grid ratio of 300

ADCIRC continuous linear na 0.0010 0.0024 0.0050 0.0234

DG unlimited na 0.0028 0.0009 0.0044 0.0052

1
constants na — 0.0018 — 0.0100

minmod na 0.0077 — 0.0382 —

2
constants

toe — 0.0011 — —

top 0.0120 — — —

unlimited mid — — 0.0299 0.0045

3 constants
toe — 0.0047 — —

mid 0.0187 — 0.0537 0.0229

More than one row is used for a particular model when the minimum errors were not uniform over 
all spatial approximations or interface locations.
The minimum errors comparing the coupled and domain-wide models are indicated in bold-italics, 
while the minimum errors comparing only the coupled models are indicated by italics.
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(spatial approximation, grid ratio, and subdomain interface location) were computed for

approximately three tidal cycles – 135,000 seconds of simulation time – and are

summarized below in Table 4.20. Recall that the higher-order versions of coupled model 3

were unstable for the grid ratio of 300, therefore only the CPU usage for the low-order

version is presented for this model and grid ratio.  

As expected, the CPU usage is increased as the DG workload increases due to

higher order interpolants and slope limiting; i.e., for most of the coupled or domain-wide

DG models with a fixed grid ratio and interface location, the CPU usage increases as you

move from piecewise constants to unlimited linears to minmod limited linears. For the

domain-wide DG model, the workload is approximately doubled for each of these

transitions when the same time step is used for all three interpolants. This trend is not

realized for all of the coupled model combinations, since the unlimited version often

requires a much smaller time step than the low-order and minmod limited versions; and

therefore requires more CPU time than either of the other two spatial approximations.

However, for all of the coupled model combinations, it is always true that the higher-order

versions require more CPU time than the low-order versions.

Theoretically, one would also expect that as the subdomain interface moves towards

the top of the slope, the CPU usage should be reduced since the DG subdomain contains

fewer elements. However, since the maximum stable time steps also change with the

interface location, this is not easily discerned from the data in the above table. Due to the

complicated interplay between the subdomains, this will not always be true. For example,

the maximum stable time step allowed for the DG or DG/CG subdomain in coupled models

2 and 3 may be significantly smaller than that allowed for the domain-wide ADCIRC

model. This means that the ADCIRC subdomain will be performing suboptimally and that

the CPU usage may actually increase as the interface moves towards the top of the slope,

since more matrix computations will be required in the now larger ADCIRC subdomain.
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Table 4.20  Comparison of CPU usage for east coast simulations.

Spatial
approximation

Interface
location

max stable ∆t (sec) CPU usage (sec)

grid ratio 60 grid ratio 300 grid ratio 60 grid ratio 300

ADCIRC model

linears na 500.0 100.0 < 0.00001 0.0625

domain-wide DG model

constants na 500.0 100.0 < 0.00001 0.0156

unlimited na 20.0 5.0 0.0156 0.3906

minmod na 20.0 5.0 0.0469 0.7813

coupled model 1: DG/CG

constants na 500.0 100.0 < 0.00001 0.0313

unlimited na 1.0 — 0.4063 —

minmod na 100.0 1.0 0.0156 3.2031

coupled model 2: 

piecewise
constants

toe 100.0 100.0 < 0.00001 0.0313

mid 200.0 100.0 < 0.00001 0.0313

top 200.0 100.0 0.0156 0.0313

unlimited
linears

toe 50.0 10.0 0.0313 0.3906

mid 50.0 10.0 0.0313 0.4063

top 10.0 10.0 0.1406 0.4219

minmod
linears

toe 100.0 10.0 0.0156 1.3125

mid 500.0 10.0 < 0.00001 1.1719

top 200.0 10.0 0.0156 1.0000

coupled model 3: 

piecewise
constants

toe 500.0 100.0 < 0.00001 0.0313

mid 500.0 100.0 < 0.00001 0.0469

top 500.0 100.0 < 0.00001 0.0469

unlimited
linears

toe — — — —

mid — — — —

top 0.001 — 1562.98 —

minmod
linears

toe 10.0 — 0.1719 —

mid 100.0 — 0.0156 —

top 10.0 — 0.1719 —

fine-grid ADCIRC – 8192 elements grid ratio 60 – 20 elements grid ratio 300 – 107 elements
(For the fine-grid ADCIRC solution: max stable ∆t = 0.1 sec, CPU usage = 501.625 sec.)

DG ADCIRC→

DG CG⁄ ADCIRC→
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For coupled model 2 with a grid ratio of 300, notice that the same time step is used

for all of the interface locations for a given spatial approximation. For piecewise constants,

the CPU time does not change at all as the interface is moved from the toe of the slope to

the top. Meanwhile, for the unlimited linear version the CPU time actually increases as the

interface makes this transition. The work being shifted to the ADCIRC subdomain at the

suboptimal time step (∆t max is one-tenth of that allowed for the domain-wide ADCIRC

model) is increasing more than the work in the DG subdomain is reduced. Finally, for the

minmod limited version, one notes that there is a slight decrease in CPU time for the

interface transitions, as expected. This indicates that the minmod limiter is more costly than

running ADCIRC at a suboptimal time step.

For coupled model 3 with a grid ratio of 300 and piecewise constant

approximations, notice that the maximum stable time step is the same as that allowed for

the domain-wide ADCIRC and low-order DG models, namely 100.0 seconds. This allows

for an interesting comparison of workloads. At this time step, the ADCIRC model uses

0.0625 seconds of CPU time while the low-order domain-wide DG model uses 0.0156

seconds. Meanwhile, as might be expected, the coupled model use some value in between

these. For coupled model 3 the workload goes from 0.0313 seconds to 0.0469 seconds as

the interface moves. As more work is transferred to the more costly ADCIRC subdomain,

the CPU times increase slightly. However, notice that the domain-wide DG model is only

computationally less expensive for piecewise constants. For higher-order spatial

approximations, the time step is much more limited and the workload increases

significantly.

In general, notice that due to the reduction in time step required for the coupled

models to remain stable, the CPU usage is increased relative to the domain-wide DG model.

This defeats the purpose of using the coupled models, namely to reduce computational

costs, while maintaining accuracy. Although the CPU times for the best coupled scheme,

coupled model 2, are only slightly higher than those for the domain-wide DG. Further
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studies using full non-linear models with flux coupling, and perhaps having different time

steps in each subdomain, would be required to see if there is combination of workloads that

would minimize the CPU times while maintaining accuracy. Most importantly, the DG

workloads will increase significantly in 2D and 3D applications as the number of edges,

which is where the extra computations from the discontinuities arise, grows faster than the

number of elements.

4.9   Conclusions and recommendations

Each of the coupled models was ranked for seven specific characteristics: 1)

Propagation behavior weighted at 10%, 2) spatial accuracy weighted at 10%, 3) temporal

accuracy weighted at 10%, 4) flat bottom simulations weighted at 10%, 5) variable

bathymetry simulations weighted at 20%, 6) CPU usage weighted at 20% and 7) stability

weighted at 20%. The last three characteristics exhibit the robustness of the model in actual

applications and were thus weighted more heavily. The rankings go from 1 to 9 with 1 being

the worst and 9 being the best. The rank for each characteristic is multiplied by its

weighting factor and summed over all 7 characteristics in order to reach a final score for

each model (maximum possible score = 9.0). The model with the highest score is deemed

to have the “best” behavior over all of the characteristics. Table 4.21 summarizes the

ranking and final score of each coupled model.

From this table, coupled model 2 using piecewise constants has the best score

overall, followed closely by the unlimited higher-order version of this model. Coupled

model 1 using piecewise constants has the next best score, followed by the minmod version

of coupled model 2. The remaining models have significantly lower scores, with the

unlimited version of coupled model 3 being the worst. 

Although the coupled models using the linear system of SWE and explicit

overlapping subdomain coupling are simplified, several conclusions can be drawn from

this study: 1) the subdomain coupling methods results in higher spatial and temporal errors,
222



Table 4.21  Q
ualitative sum

m
ary of coupled m

odel behavior.

Spatial
approxim

ation
Propagation

behavior
Spatial
error

Tem
poral

error
Flat bottom
sim

ulations
East coast

sim
ulations

C
PU

tim
es

Stability
Final
score

w
eighting
factors

10%
10%

10%
10%

20%
20%

20%
(m

ax = 9)

C
oupled m

odel 1 —
 D

G
/C

G

constants
1

7
9

7
6

8
6

6.4

unlim
ited

8
8

3
8

3
2

3
4.3

m
inm

od
9

9
4

9
5

4
4

5.7

C
oupled m

odel 2 —
 

constants
5

4
8

5
7

9
9

7.2

unlim
ited

6
6

5
6

9
6

8
6.9

m
inm

od
7

5
6

4
8

5
7

6.2

C
oupled m

odel 3 —
 

constants
2

3
7

1
4

7
5

4.5

unlim
ited

3
1

1
2

1
1

1
1.3

m
inm

od
4

2
2

3
2

3
2

2.5

D
G

A
D

C
IR

C
→

D
G

C
G

⁄
A

D
C

IR
C

→

223



which is most likely due to the explicit overlapping coupling at the interface; 2) the

subdomain interface should be located below the shelf break to minimize errors, namely at

or below the middle of the slope; 3) for equation coupling, as used in the DG/CG and

 models, use of interface averaging to interpolate to the CG grid

space results in an unstable algorithm, while L2 interpolation remains stable; and 4) the

higher-order versions of the equation coupled schemes (DG/CG and

) have severe stability restrictions, and in some cases it was not

possible to obtain a stable solution with them.

From these observations, and due to its promising behavior with the simplified

explicit overlapping element coupling, it is recommended that coupled model 2,

, be examined further in a full non-linear scheme with flux coupling at

the subdomain interface. Additionally, a second-order Runge-Kutta temporal discretization

should be examined for the higher-order linear DG approximations.

DG CG⁄ ADCIRC→

DG CG⁄ ADCIRC→

DG ADCIRC→
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CHAPTER  5

Local Discontinuous Galerkin Finite Element 
Discretization of the Transport Equation in Quasi-
Three-Dimensional Domains

5.1   Introduction

Transport of a dissolved species in groundwater or surface water is governed by the

advection-dispersion equation. A mass conservative discretization of this equation is

essential for accurate prediction of contaminant transport in water quality applications, and

for salinity and temperature transport in prognostic baroclinic hydrodynamic applications.

Such problems are often advection-dominated and solution techniques must be able to

model sharp fronts while retaining stability and mass conservation.

This study seeks to explore the interaction of discontinuous discretizations for the

advection-dispersion equation within the continuous hydrodynamic model, ADCIRC

(ADvanced 3D CIRCulation model Luettich et al. [1992, 2003]). Traditionally, the

ADCIRC model uses a mode splitting technique with a continuous finite element

discretization to solve for the elevations and velocities independently rather than solving a

completely coupled system. In this framework, the 2D depth-averaged GWC equation is

solved to obtain the new elevations, which are then fed into the 3D momentum equation to

obtain the new horizontal velocities at all depths. Finally, these horizontal results are used

in the 3D continuity equation to obtain the new vertical velocities. For testing purposes, a
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2D x-z ADCIRC model is implemented in this study (for development details see Dresback

and Kolar [2004a]). The same mode splitting technique is utilized, but now the 1D GWC

equation is solved to obtain the changes in elevation and then the 2D x-z momentum

equation is used to determine the horizontal velocities. Finally, these results are utilized

within an x-z continuity equation to obtain the vertical velocities. For more details about the

ADCIRC hydrodynamic model see the referenced reports.

Hench and Luettich [1997] found that continuous Galerkin (CG) discretizations of

the transport equation coupled with the two-dimensional depth-integrated (2DDI)

ADCIRC hydrodynamic model did not conserve species mass and that the time scale was

severely restricted in order to maintain stability. In contrast, discontinuous methods are

known to be conservative in their formulation and are capable of handling sharp fronts.

Discontinuous Galerkin (DG) algorithms differ from traditional CG finite element methods

in that the primitive equations are integrated over individual elements, rather than the entire

global domain, and the state values are allowed to be discontinuous at element interfaces.

This framework allows different orders of approximating spaces to be used in adjacent

elements (local p refinement) without the use of mortar spaces since each element is

integrated independently of its neighbors; thus the algorithm can easily adapt and

incorporate higher resolution (i.e., higher-order basis functions) near shocks in the solution.

With these favorable properties in mind, namely conservation and shock capturing without

oscillations, DG methods look promising for incorporating a transport algorithm within the

ADCIRC hydrodynamic model.

All DG schemes for first-order equations are equivalent; however, special

techniques must be used to handle second-order diffusive terms within DG algorithms, and

several schemes have been developed over the years. The technique that we will use herein

is a modification of the local discontinuous Galerkin (LDG) method, as developed by

Cockburn and Shu [1998b]. The main idea of the LDG method is to rewrite the second-

order equation into a system of first-order equations and then discretize the resulting system
226



using the Runge-Kutta Discontinuous Galerkin (RKDG) method. The RKDG

discretization for non-linear hyperbolic problems was developed and analyzed in a series

of papers (Cockburn and Shu [1989, 1991, 1998a], Cockburn et al. [1989, 1990]) and gets

its name because it uses a Runge-Kutta time-stepping scheme, with built-in projection

limiting, for the temporal discretization. Aizinger et al. [2001] applied the LDG approach

to contaminant transport in porous medium for a variety of 1D and 2D test problems,

including two-component contaminant transport and non-linear adsorption. They showed

that the method performs well for smooth solutions as well as sharp fronts and remains

stable for higher degree polynomials.

Other discontinuous methods for diffusive problems include various penalty

formulations and mixed finite element methods. Siegel et al. [1997], solved the advection-

dispersion equation using a combination of discontinuous and mixed finite elements. They

discretize the advection terms using discontinuous finite elements with slope limiters and

use approximate Riemann solvers for the flux discontinuities and then use a mixed hybrid

finite element method for the diffusive terms. With their method they are able to preserve

sharp fronts, while avoiding excessive numerical diffusion and oscillations. They test their

method over a range of Peclet numbers (1 to 10000) to verify its ability to handle diffusive

and advective flows.

Oden et al. [1998] developed a discontinuous Galerkin method for diffusion

operators, in which the solution and its derivatives are discontinuous across element

boundaries. Their scheme is element wise conservative and supports h-, p- and hp-

refinement. They impose weak continuity requirements on the interelement interfaces

instead of using auxiliary variables. Although their formulation resembles mixed and

interior penalty methods, no penalty terms or Lagrange multipliers are required.

Rivière et al. [1999] analyze the DG method for diffusion, as presented by Oden et

al. [1998], as well as a nonsymmetric interior penalty Galerkin (NIPG) formulation and a
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nonsymmetric constrained Galerkin (NCG) formulation. The NIPG formulation is a

modification of earlier work, such that the penalty term is only required to be positive rather

than bounded below by a problem-dependent constant. The NCG formulation requires that

the jumps on each edge of the triangulation must have an integral average of zero. They

derive a priori hp error estimates for each formulation. In a second paper [2001], they

examine higher dimensions and present some numerical convergence results in addition to

the a priori estimates.

Dawson and Proft [2001] applied interior penalty versions of the LDG method to

transport equations. They examined two penalty formulations, one which penalizes only

the jumps in the primary variable and another that penalizes the jumps in both the primary

variable and the flux. When only the jumps in the primary variable are penalized, they show

that one can obtain an estimate of order hk+1/2 for a penalty parameter of order one and an

estimate of order hk+1 for a penalty parameter of order h-1, where k is the minimal degree

polynomial used in the approximating functions. 

Dawson and Proft [2002a] also examined coupled continuous and discontinuous

methods for transport problems. In that work they apply the LDG method in one region and

use a standard CG method in the other region, with suitable transmission conditions

specified at the interface. They applied the resulting coupled scheme to 1D test cases with

smooth solutions and sharp fronts. In each case they found that the coupled algorithm

transmits the solution through the coupling interface and performs better than a pure CG

method.

5.2   Transport model in an x-z domain

In order to study three-dimensional transport processes without large scale

computational efforts, this study uses a quasi 3D domain, namely a laterally averaged slice

in x-z coordinates where the x coordinate is the horizontal direction and the z coordinate is

along the depth of the water column. The resulting 2D x-z transport equation in
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conservative form without reactions, sources or sinks is given as

(5.1)

where C(x, z, t) is the concentration of solute in moles per unit volume in the fluid phase

(or for salinity, grams of salt per kilogram of seawater denoted as ), u(x, z, t) and w(x,

z, t) are the x and z components of the fluid velocity vector, and Nx and Nz are the x and z

diffusion coefficients, which are assumed to be constant for this study. As the ultimate goal

is to couple the DG discretization of the transport equation with the existing ADCIRC

hydrodynamic model, which uses CG approximations, the velocity fields for the transport

algorithm (u and w) will be approximated with continuous functions. Equation (5.1) is

solved on a domain Ω for t > 0 with the initial condition

. (5.2)

Three different types of boundary conditions are discussed below in §5.3.3.

Following the framework of the 3D ADCIRC hydrodynamic model, where the

horizontal and vertical discretizations are treated separately, this study assumes that the

horizontal and vertical dependencies within the transport equation are also separable. Thus,

the concentration and velocity vectors can be written as 

C(x, z, t) = C(t) ϕ(x) ψ(z), (5.3)

u(x, z, t) = u(t) φ(x) ζ(z), and (5.4)

w(x, z, t) = w(t) φ(x) ζ(z) (5.5)

where ϕ(x) and ψ(z) are allowed to be discontinuous approximating spaces and φ(x) and

ζ(z) are continuous spaces. In keeping with the derivation of the ADCIRC model, whose

velocities will be used within the transport model, linear Lagrange functions are used for

t∂
∂C

x∂
∂ uC Nx x∂

∂C–
z∂

∂ wC Nz z∂
∂C–+ + 0=

0 00⁄

C x z 0, ,( ) C0 x z,( ) x z, Ω∈,=
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the velocity bases in the transport model. The choice of discontinuous functions will be

treated in §5.3 and options for boundary conditions will be treated in §5.3.3. In summary,

the complete spatial discretization consists of a 1D integration in the x direction ignoring

the z dependencies of the variables and then another 1D integration in the z direction on the

resulting semi-discrete equations. Finally, a forward Euler temporal discretization is

applied.

5.3   LDG discretization of x-z transport

The discontinuous discretization technique that is examined in this study is a

modified LDG scheme. The spatial discretization follows the work of Cockburn and Shu

[1998b], but as a first step, a simple forward Euler scheme is used instead of the original

Runge-Kutta at the temporal discretization. Working from the above separable assumption,

we first discretize Equation (5.1) in the x direction.

5.3.1  Integration in the x direction

In preparation for the x integrations, the second-order equation is written as a

system of first-order equations in x:

(5.6)

(5.7)

(5.8)

where  and  are auxiliary variables. 

Before proceeding with the derivation, some notation is introduced. On any spatial

domain R let ( , )R denote the L2(R) inner product and  denote integration over

t∂
∂C

x∂
∂ uC ϒ+[ ]

z∂
∂ wC Nz z∂

∂C–+ + 0=

ϒ
˜

x∂
∂C+ 0=

ϒ Nxϒ
˜

=

ϒ ϒ
˜

,〈 〉R
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boundaries. Let {Th}h>0 denote a family of finite element partitions of the domain such that

no element Ωe crosses the domain boundaries, where h is the maximal element diameter.

Let

Wh,e = {ϕ : ϕ is a polynomial of  on each element Ωe in Th}. (5.9)

Note that the degree ke can vary from one element to the next. Let ne denote the unit

outward normal to . Then, for  define

(5.10)

and

. (5.11)

Thus, ϕ− is the value of ϕ to the “left” of the boundary, assuming the normal ne points from

“left” to “right”. Then approximations c, γ,  are sought for C, ,  on each

element Ωe. 

Next each equation is multiplied by a test function and integrated over an element

to get, after integrating by parts, 

(5.12)

(5.13)

. (5.14)

An element Ωe is defined from xi-1/2 to xi+1/2, where ∆xi = xi+1/2 - xi-1/2. Note that in general

the test functions, ϕ, in Equations (5.12)-(5.14) can be different for each equation, but for

degree ke≤

∂Ωe x ∂Ωe∈

ϕ– x( ) ϕ x sne+( )
s 0–→
lim=

ϕ + x( ) ϕ x sne+( )
s 0 +→

lim=

γ̃ Wh e,∈ ϒ ϒ
˜

t∂
∂c ϕ( , )

Ωe
uc γ+

xd
dϕ( , )

Ωe
– uc γ+( ) ne⋅ ϕ–,〈 〉 Ωe∂ z∂

∂ wc Nz z∂
∂c– ϕ( , )

Ωe
0=+ +

γ̃ ϕ( , )Ωe
c

xd
dϕ( , )

Ωe
– c ne⋅ ϕ–,〈 〉∂Ωe

+ 0=

γ ϕ( , )Ωe
Nxγ̃ ϕ( , )Ωe

=
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simplicity equal order spaces are used herein for the entire system of first-order equations.

Since the approximations are allowed to be discontinuous at the boundaries, the

boundary integrals must be defined. Following Aizinger et al. [2001], upwinding is used for

c in the advection term and averaging is used for c and γ in the other boundary integrals.

The upwind value is defined as

(5.15)

and the average value is defined as 

(5.16)

where c- and c+ are as defined by Equations (5.10) and (5.11). Also note that since the same

approximating spaces are used in Equations (5.13) and (5.14), Equation (5.14) can be

substituted directly into (5.13) to eliminate one of the equations before solving the system.

With these changes, the semi-discrete equations in the x direction given by the LDG method

are defined to be the solution of the following weak formulation:

(5.17)

. (5.18)

For each element integration, the integration limits are transformed to

dimensionless ξ coordinates and the basis functions are defined in these coordinates. At this

point, hat notation is introduced to indicate that the coefficients are still functions of z and

t and the separable approximations for c, γ, u and w are substituted into Equations (5.17)

cu c–       if  u ne⋅ 0≥

c +    if  u ne⋅ 0<






=

ca 1
2
--- c– c++( )=

t∂
∂c ϕ( , )

Ωe
uc γ+

xd
dϕ( , )

Ωe
– ucu γa+( ) ne⋅ ϕ–,〈 〉 Ωe∂ z∂

∂ wc Nz z∂
∂c– ϕ( , )

Ωe
0=+ +

1
Nx
------ γ ϕ( , )Ωe

c
xd

dϕ( , )
Ωe

– ca ne⋅ ϕ–,〈 〉∂Ωe
+ 0=
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and (5.18). The discontinuous approximations are defined to be polynomials of degree K,

while the continuous approximations are linear Lagrange, as defined in the hydrodynamics.

The approximations are given as

where the ϕl are discontinuous Legendre polynomials whose coefficients are evaluated at

the center of element Ωe in the discrete grid and the m degrees of freedom will be defined

during the z integration. Index notation for the continuous velocity fields and discontinuous

transport species on an x-z element are shown in Figure 5.1, and notation for linear

approximating functions in the transformed coordinate space is shown in Figure 5.2.  

After making these approximations for the velocities and transport solute, the weak

form for the x direction approximation is given as

c x z t, ,( ) ĉi k,
l m,( )ϕl ξ( )

l 0=

K

∑=

γ x z t, ,( ) γ̂i k,
l m,( )

ϕl ξ( )

l 0=

K

∑=

u x z t, ,( ) ûi 1 2⁄– k, φ0 ξ( ) ûi 1 2⁄+ k, φ1 ξ( )+=

w x z t, ,( ) ŵi 1 2⁄– k, φ0 ξ( ) ŵi 1 2⁄+ k, φ1 ξ( )+=

i, k

k + 1/2

k - 1/2
i - 1/2 i + 1/2

z

x

Figure 5.1 Grid notation for element (i, k).

Discontinuous grid space
Discontinuous interfaces (upwind/average)
Continuous grid space
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(5.19)

(5.20)

where for brevity the explicit functional dependence of the bases is not shown. After

integration, the resulting system of equations for each degree of freedom j = 0,...,K ,where

K is the order of the approximation, is the semi-discrete approximation in the x direction.

In this study, only linear test functions (K=1) have been examined, which gives

ci k,
0 m,( )

xi-1/2 xi xi+1/2

ξ = −1 ξ = 0 ξ = 1

LL R R

ci k,
1 m,( )

Figure 5.2 Transformed coordinate space in x direction with linear basis 
functions for element (i, k).

dx ∂x
∂ξ
------dξ ∆x

2
------dξ= =

φ0 ξ( ) ξ 1–
2–

-----------=

φ1 ξ( ) ξ 1+
2

------------=

ϕ0 ξ( ) 1=

ϕ1 ξ( ) ξ=

td
d ĉi k,

l m,( )ϕl ϕj,( )Ωe



l 0=

K

∑ γ̂i k,
l m,( )

ϕl
dϕj
dx
--------, 

 
Ωe

– –

ûi 1 2⁄– k, φ0 ûi 1 2⁄+ k, φ1+( )ĉi k,
l m,( )ϕl xd

dϕj( , )
Ωe

+

ûi 1 2⁄+ k, ĉi 1 2⁄+ k,
u m,( ) γ̂i 1 2⁄+ k,

a m,( )+( )ϕj
– ûi 1 2⁄– k, ĉi 1 2⁄– k,

u m,( ) γ̂i 1 2⁄– k,
a m,( )+( )ϕj

– +–

z∂
∂ ŵi 1 2⁄– k, φ0 ŵi 1 2⁄+ k, φ1+( )ĉi k,

l m,( )ϕl[ ] ϕj( , )
Ωe z∂

∂ Nz z∂
∂ ĉi k,

l m,( )ϕl– ϕj( , )
Ωe

0=




+

1
Nx
------ γ̂i k,

l m,( )
ϕl ϕj( , )Ωe

ĉi k,
l m,( )ϕl xd

dϕj( , )
Ωe

– ĉi 1 2⁄+ k,
a m,( ) ϕj

– ĉi 1 2⁄– k,
a m,( ) ϕj

–– 0=+
 
 
 

l 0=

K

∑
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j = 0

(5.21)

(5.22)

j = 1

(5.23)

(5.24)

The first entry in the superscripts denote the degrees of freedom in the x direction, or the

unknowns, for the discontinuous solution and can take on values of 0 or 1, indicating the

degree of freedom (DOF), and a or u, indicating that either the average or upwind value

should be used at the element interface discontinuity. The m degrees of freedom will be

determined in the following discretization for the z direction.

∆xi td
d ĉi k,

0 m,( ) ûi 1 2⁄+ k, ĉi 1 2⁄+ k,
u m,( ) γ̂i 1 2⁄+ k,

a m,( )+( ) ûi 1 2⁄– k, ĉi 1 2⁄– k,
u m,( ) γ̂i 1 2⁄– k,

a m,( )+( ) +–+

∆xi
2

--------
z∂

∂ ŵi 1 2⁄– k, ĉi k,
0 m,( ) 1

3
--- ĉi k,

1 m,( )– 
  ŵi 1 2⁄+ k, ĉi k,

0 m,( ) 1
3
--- ĉi k,

1 m,( )+ 
 + –

∆xi
2

--------
z∂

∂ Nz z∂
∂ 2ĉi k,

0 m,( )( ) 0=

∆xi
Nx
-------- γ̂i k,

0 m,( ) ĉi 1 2⁄+ k,
a m,( ) ĉi 1 2⁄– k,

a m,( )–+ 0=

∆xi
3

--------
td

d ĉi k,
1 m,( ) ûi 1 2⁄– k, ĉi k,

0 m,( ) 1
3
--- ĉi k,

1 m,( )– 
  ûi 1 2⁄+ k, ĉi k,

0 m,( ) 1
3
--- ĉi k,

1 m,( )+ 
  2γ̂i k,

0 m,( )+ +– +

ûi 1 2⁄+ k, ĉi 1 2⁄+ k,
u m,( ) γ̂i 1 2⁄+ k,

a m,( )+( ) ûi 1 2⁄– k, ĉi 1 2⁄– k,
u m,( ) γ̂i 1 2⁄– k,

a m,( )+( )+ +

∆xi
2

--------
z∂

∂ 1
3
---ŵi 1 2⁄– k, ĉi k,

0 m,( )– ĉi k,
1 m,( )+( ) 1

3
---ŵi 1 2⁄+ k, ĉi k,

0 m,( ) ĉi k,
1 m,( )+( )+ –

∆xi
2

--------
z∂

∂ Nz z∂
∂ 2

3
--- ĉi k,

1 m,( )
 
  0=

∆xi
3Nx
---------γ̂i k,

1 m,( ) 2ĉi k,
0 m,( )– ĉi 1 2⁄+ k,

a m,( ) ĉi 1 2⁄– k,
a m,( )+ + 0=
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5.3.2  Integration in the z direction

To proceed with the z direction discretization, Equations (5.21) and (5.23) are now

written as a system of first-order equations in z, as was done in the x direction. This results

in the introduction of two new equations for each j

 and (5.25)

(5.26)

where again, since subsequently the same test functions will be used for the entire system,

Equation (5.26) can be substituted directly into Equation (5.25) and there is only one

additional equation for each j, given as

. (5.27)

To complete the transformation to a system of equations in z, the following replacements

must be made in Equations (5.21) and (5.23) respectively:

 and

.

Next, each equation is multiplied by the z weight function and integrated over an element.

An element Ωe is now defined from zk-1/2 to zk+1/2, with ∆zk = zk+1/2 - zk-1/2 and again the

integration limits are transformed to dimensionless ξ coordinates.

At this point, the hat notation is removed to indicate that the coefficients are

functions of t only. Again the discontinuous bases are defined to be polynomials of degree

K and the continuous bases are linear Lagrange functions such that the approximations are

χ̃ i k,
j m,( )

z∂
∂ĉi k,

j m,( )

+ 0=

χ i k,
j m,( ) Nzχ̃ i k,

j m,( )
=

1
Nz
-----χ i k,

j m,( )

z∂
∂ĉi k,

j m,( )

+ 0=

Nz– z∂
∂ 2ĉi k,

0 m,( )( ) 2χ i k,
0 m,( )=

Nz z∂
∂ 2

3
--- ĉi k,

1 m,( )
 
 – 2

3
---χ i k,

1 m,( )=
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given as

where the ψl are discontinuous Legendre polynomials whose coefficients are evaluated at

the center of element Ωe in the discrete grid (refer to Figure 5.1 on page 233). Notation for

linear approximating functions in the transformed coordinate space is shown below in

Figure 5.3.

ĉi k,
j m,( ) z t,( ) ci k,

j l,( )ψl ξ( )

l 0=

K

∑=

γ̂i k,
j m,( ) z t,( ) γi k,

j l,( )ψl ξ( )

l 0=

K

∑=

χi k,
j m,( ) z t,( ) χi k,

j l,( )ψl ξ( )

l 0=

K

∑=

u z t,( ) ui k 1 2⁄–, ζ0 ξ( ) ui k 1 2⁄+, ζ1 ξ( )+=

w z t,( ) wi k 1 2⁄–, ζ0 ξ( ) wi k 1 2⁄+, ζ1 ξ( )+=

ci k,
j 0,( )

zk+1/2

zk

zk-1/2

ξ = 1

ξ = 0

ξ = −1
T

T

B

B

ci k,
j 1,( )

Figure 5.3 Transformed coordinate space in z direction with 
linear basis functions for element (i, k).

dz ∂z
∂ξ
------dξ ∆z

2
------dξ= =

ζ0 ξ( ) ξ 1–
2–

-----------=

ζ1 ξ( ) ξ 1+
2

------------=

ψ0 ξ( ) 1=

ψ1 ξ( ) ξ=
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The same conventions are used for the discontinuities at the z interfaces (upwinding

and averaging) as were used in the x discretization. The resulting system of weak equations

in z for each j degree of freedom is given in Table 5.1, where again for brevity the explicit

functional dependence of the bases are not shown.

Table 5.1  Weak equations for the z direction semi-discretization

j = 0

(5.28)

(5.29)

(5.30)

∆xi td
d ci k,

0 l,( )ψl ψm,( )Ωe



l 0=

K

∑ +

ui 1 2⁄+ k 1 2⁄–, ζ0 ui 1 2⁄+ k 1 2⁄+, ζ1+( )ci 1 2⁄+ k,
u l,( ) ψl ψm,( )Ωe

γi 1 2⁄+ k,
a l,( ) ψl ψm,( )Ωe

–+

ui 1 2⁄– k 1 2⁄–, ζ0 ui 1 2⁄– k 1 2⁄+, ζ1+( )ci 1 2⁄– k,
u l,( ) ψl ψm,( )Ωe

γi 1 2⁄– k,
a l,( ) ψl ψm,( )Ωe

– –

∆xi
2

-------- wi 1 2⁄– k 1 2⁄–, ζ0 wi 1 2⁄– k 1 2⁄+, ζ1+( ) ci k,
0 l,( ) 1

3
---ci k,

1 l,( )– 
  ψl zd

dψm,
 
 
 

Ωe

–

∆xi
2

-------- wi 1 2⁄+ k 1 2⁄–, ζ0 wi 1 2⁄+ k 1 2⁄+, ζ1+( ) ci k,
0 l,( ) 1

3
---ci k,

1 l,( )+ 
  ψl 2χi k,

0 l,( )ψl+ zd
dψm,

 
 
 

Ωe

+

∆xi
2

-------- wi 1 2⁄– k 1 2⁄+, ci k 1 2⁄+,
0 u,( ) 1

3
---ci k 1 2⁄+,

1 u,( )– 
  wi 1 2⁄+ k 1 2⁄+, ci k 1 2⁄+,

0 u,( ) 1
3
---ci k 1 2⁄+,

1 u,( )+ 
 + ψl

– –

∆xi
2

-------- wi 1 2⁄– k 1 2⁄–, ci k 1 2⁄–,
0 u,( ) 1

3
---ci k 1 2⁄–,

1 u,( )– 
  wi 1 2⁄+ k 1 2⁄–, ci k 1 2⁄–,

0 u,( ) 1
3
---ci k 1 2⁄–,

1 u,( )+ 
 + ψl

– +

∆xi
2

-------- 2χi k 1 2⁄+,
0 a,( ) ψl

– 2χi k 1 2⁄–,
0 a,( ) ψl

––( )




0=

∆xi
Nx
-------- γi k,

0 l, ψl ψm,( )Ωe
ci 1 2⁄+ k,

a l,( ) ci 1 2⁄– k,
a l,( )–( )ψl ψm,( )Ωe

+ 0=
 
 
 

l 0=

K

∑

1
Nz
----- χi k,

0 l,( )ψl ψm,( )Ωe
ci k,

0 l, ψl zd
dψm, 

 
Ωe

– ci k 1 2⁄+,
0 a,( ) ψl

– ci k 1 2⁄–,
0 a,( ) ψl

––+ 0=
 
 
 

l 0=

K

∑
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j = 1

(5.31)

(5.32)

(5.33)

Table 5.1  Weak equations for the z direction semi-discretization

∆xi
3

--------
td

d ci k,
1 l,( )ψl ψm,( )Ωe

–




l 0=

K

∑

ui 1 2⁄– k 1 2⁄–, φ0 ui 1 2⁄– k 1 2⁄+, φ1+( ) ci k,
0 l, 1

3
---ci k,

1 l,– 
  ψl ψm, 

 
Ωe

–

ui 1 2⁄+ k 1 2⁄–, φ0 ui 1 2⁄+ k 1 2⁄+, φ1+( ) ci k,
0 l,( ) 1

3
---ci k,

1 l,( )+ 
  ψl ψm, 

 
Ωe

2γi k,
0 l,( )ψl ψm,( )Ωe

– +

ui 1 2⁄+ k 1 2⁄–, φ0 ui 1 2⁄+ k 1 2⁄+, φ1+( )ci 1 2⁄+ k,
u l,( ) ψl γi 1 2⁄+ k,

a l,( ) ψl+ ψm,( )Ωe
+

ui 1 2⁄– k 1 2⁄–, φ0 ui 1 2⁄– k 1 2⁄+, φ1+( )ci 1 2⁄– k,
u l,( ) ψl γi 1 2⁄– k,

a l,( ) ψl+ ψm,( )Ωe
–

∆xi
2

-------- 1
3
--- wi 1 2⁄– k 1 2⁄–, φ0 wi 1 2⁄– k 1 2⁄+, φ1+( ) ci k,

0 l,( )– ci k,
1 l,( )+( )ψl zd

dψm, 
 

Ωe
–

∆xi
2

-------- 1
3
--- wi 1 2⁄+ k 1 2⁄–, φ0 wi 1 2⁄+ k 1 2⁄+, φ1+( ) ci k,

0 l,( ) ci k,
1 l,( )+( )ψl zd

dψm, 
 

Ωe
+

∆xi
2

-------- 1
3
---wi 1 2⁄– k 1 2⁄+, ci k 1 2⁄+,

0 u,( )– ci k 1 2⁄+,
1 u,( )+( ) 1

3
---wi 1 2⁄+ k 1 2⁄+, ci k 1 2⁄+,

0 u,( ) ci k 1 2⁄+,
1 u,( )+( )+ ψl

– –

∆xi
2

-------- 1
3
---wi 1 2⁄– k 1 2⁄–, ci k 1 2⁄–,

0 u,( )– ci k 1 2⁄–,
1 u,( )+( ) 1

3
---wi 1 2⁄+ k 1 2⁄–, ci k 1 2⁄–,

0 u,( ) ci k 1 2⁄–,
1 u,( )+( )+ ψl

– +

∆xi
2

-------- 2
3
---χi k,

1 l,( )ψl zd
dψm, 

 
Ωe

2
3
--- χi k 1 2⁄+,

1 a,( ) ψl
– χi k 1 2⁄–,

1 a,( ) ψl
––( )+





0=

∆xi
3Nx
--------- γi k,

1 l,( )ψl ψm,( )Ωe
2– ci k,

0 l,( ) ci 1 2⁄+ k,
a l,( ) ci 1 2⁄– k,

a l,( )+ +( )ψl ψm,( )Ωe
+ 0=

 
 
 

l 0=

K

∑

1
Nz
----- χi k,

1 l,( )ψl ψm,( )Ωe
ci k,

1 l, ψl zd
dψm, 

 
Ωe

– ci k 1 2⁄+,
1 a,( ) ψl

– ci k 1 2⁄–,
1 a,( ) ψl

––+ 0=
 
 
 

l 0=

K

∑
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If linear test functions (K=1) are used in the z direction, then the resulting semi-

discrete equations for the four unknowns in each element are given in Table 5.2. The four

Table 5.2  Spatial discretization of the x-z transport equation for an interior element (using 
linear approximating functions).

(j = 0, m = 0)

(5.34)

(5.35)

(5.36)

(j = 0, m = 1)

∆xi∆zk td
d ci k,

0 0,( ) ∆zk
2

-------- 2γi 1 2⁄+ k,
a 0,( ) 2γi 1 2⁄– k,

a 0,( )–[ ]
∆xi
2

-------- 2χi k 1 2⁄+,
0 a,( ) 2χi k 1 2⁄–,

0 a,( )–[ ]+ + +

∆zk
2

-------- ui 1 2⁄+ k 1 2⁄–, ci 1 2⁄+ k,
u 0,( ) 1

3
---ci 1 2⁄+ k,

u 1,( )– 
  ui 1 2⁄+ k 1 2⁄+, ci 1 2⁄+ k,

u 0,( ) 1
3
---ci 1 2⁄+ k,

u 1,( )+ 
 + –

∆zk
2

-------- ui 1 2⁄– k 1 2⁄–, ci 1 2⁄– k,
u 0,( ) 1

3
---ci 1 2⁄– k,

u 1,( )– 
  ui 1 2⁄– k 1 2⁄+, ci 1 2⁄– k,

u 0,( ) 1
3
---ci 1 2⁄– k,

u 1,( )+ 
 + +

∆xi
2

-------- wi 1 2⁄– k 1 2⁄+, ci k 1 2⁄+,
0 u,( ) 1

3
---ci k 1 2⁄+,

1 u,( )– 
  wi 1 2⁄+ k 1 2⁄+, ci k 1 2⁄+,

0 u,( ) 1
3
---ci k 1 2⁄+,

1 u,( )+ 
 + –

∆xi
2

-------- wi 1 2⁄– k 1 2⁄–, ci k 1 2⁄–,
0 u,( ) 1

3
---ci k 1 2⁄–,

1 u,( )– 
  wi 1 2⁄+ k 1 2⁄–, ci k 1 2⁄–,

0 u,( ) 1
3
---ci k 1 2⁄–,

1 u,( )+ 
 + 0=

∆xi
Nx
--------γi k,

0 0,( ) ci 1 2⁄+ k,
a 0,( ) ci 1 2⁄– k,

a 0,( )–+ 0=

∆zk
Nz
--------χi k,

0 0,( ) ci k 1 2⁄+,
0 a,( ) ci k 1 2⁄–,

0 a,( )–+ 0=

∆xi
∆zk
3

--------
td

d ci k,
0 1,( ) ∆zk

2
-------- 2

3
---γi 1 2⁄+ k,

a 1,( ) 2
3
---γi 1 2⁄– k,

a 1,( )+
∆xi
2

-------- 2χi k 1 2⁄+,
0 a,( ) 2χi k 1 2⁄–,

0 a,( ) 4χi k,
0 0,( )–+[ ]+ + +

∆zk
6

-------- ui 1 2⁄+ k 1 2⁄–, c– i 1 2⁄+ k,
u 0,( ) ci 1 2⁄+ k,

u 1,( )+( ) ui 1 2⁄+ k 1 2⁄+, ci 1 2⁄+ k,
u 0,( ) ci 1 2⁄+ k,

u 1,( )+( )+[ ] –

∆zk
6

-------- ui 1 2⁄– k 1 2⁄–, c– i 1 2⁄– k,
u 0,( ) ci 1 2⁄– k,

u 1,( )+( ) ui 1 2⁄– k 1 2⁄+, ci 1 2⁄– k,
u 0,( ) ci 1 2⁄– k,

u 1,( )+( )+ ][ –

∆xi
2

-------- wi 1 2⁄– k 1 2⁄–, ci k,
0 0,( ) 1

3
---ci k,

0 1,( )– 1
3
---ci k,

1 0,( )– 1
9
---ci k,

1 1,( )+ 
  –

∆xi
2

-------- wi 1 2⁄– k 1 2⁄+, ci k,
0 0,( ) 1

3
---ci k,

0 1,( ) 1
3
---ci k,

1 0,( )– 1
9
---ci k,

1 1,( )–+ 
  –
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(5.37)

(5.38)

(5.39)

(j = 1, m = 0)

Table 5.2  Spatial discretization of the x-z transport equation for an interior element (using 
linear approximating functions).

∆xi
2

-------- wi 1 2⁄+ k 1 2⁄–, ci k,
0 0,( ) 1

3
---ci k,

0 1,( )– 1
3
---ci k,

1 0,( ) 1
9
---ci k,

1 1,( )–+ 
  –

∆xi
2

-------- wi 1 2⁄+ k 1 2⁄+, ci k,
0 0,( ) 1

3
---ci k,

0 1,( ) 1
3
---ci k,

1 0,( ) 1
9
---ci k,

1 1,( )+ + + 
  +

∆xi
2

-------- wi 1 2⁄– k 1 2⁄+, ci k 1 2⁄+,
0 u,( ) 1

3
---ci k 1 2⁄+,

1 u,( )– 
  wi 1 2⁄+ k 1 2⁄+, ci k 1 2⁄+,

0 u,( ) 1
3
---ci k 1 2⁄+,

1 u,( )+ 
 + +

∆xi
2

-------- wi 1 2⁄– k 1 2⁄–, ci k 1 2⁄–,
0 u,( ) 1

3
---ci k 1 2⁄–,

1 u,( )– 
  wi 1 2⁄+ k 1 2⁄–, ci k 1 2⁄–,

0 u,( ) 1
3
---ci k 1 2⁄–,

1 u,( )+ 
 + 0=

∆xi
Nx
--------γi k,

0 1,( ) ci 1 2⁄+ k,
a 1,( ) ci 1 2⁄– k,

a 1,( )–+ 0=

∆zk
3Nz
---------χi k,

0 1,( ) 2ci k,
0 0,( )– ci k 1 2⁄+,

0 a,( ) ci k 1 2⁄–,
0 a,( )+ + 0=

∆xi
3

--------∆zk td
d ci k,

1 0,( ) ∆zk
2

-------- 2γi 1 2⁄+ k,
a 0,( ) 2γi 1 2⁄– k,

a 0,( ) 4γi k,
0 0,( )–+[ ]

∆xi
2

-------- 2
3
---χi k 1 2⁄+,

1 a,( ) 2
3
---χi k 1 2⁄–,

1 a,( )+ –+ +

∆zk
2

-------- ui 1 2⁄– k 1 2⁄–, ci k,
0 0,( ) 1

3
---ci k,

0 1,( )– 1
3
---ci k,

1 0,( )– 1
9
---ci k,

1 1,( )+ 
  –

∆zk
2

-------- ui 1 2⁄– k 1 2⁄+, ci k,
0 0,( ) 1

3
---ci k,

0 1,( ) 1
3
---ci k,

1 0,( )– 1
9
---ci k,

1 1,( )–+ 
  –

∆zk
2

-------- ui 1 2⁄+ k 1 2⁄–, ci k,
0 0,( ) 1

3
---ci k,

0 1,( )– 1
3
---ci k,

1 0,( ) 1
9
---ci k,

1 1,( )–+ 
  –

∆zk
2

-------- ui 1 2⁄+ k 1 2⁄+, ci k,
0 0,( ) 1

3
---ci k,

0 1,( ) 1
3
---ci k,

1 0,( ) 1
9
---ci k,

1 1,( )+ + + 
  +

∆zk
2

-------- ui 1 2⁄+ k 1 2⁄–, ci 1 2⁄+ k,
u 0,( ) 1

3
---ci 1 2⁄+ k,

u 1,( )– 
  ui 1 2⁄+ k 1 2⁄+, ci 1 2⁄+ k,

u 0,( ) 1
3
---ci 1 2⁄+ k,

u 1,( )+ 
 + +

∆zk
2

-------- ui 1 2⁄– k 1 2⁄–, ci 1 2⁄– k,
u 0,( ) 1

3
---ci 1 2⁄– k,

u 1,( )– 
  ui 1 2⁄– k 1 2⁄+, ci 1 2⁄– k,

u 0,( ) 1
3
---ci 1 2⁄– k,

u 1,( )+ 
 + +

∆xi
6

-------- wi 1 2⁄– k 1 2⁄+, c– i k 1 2⁄+,
0 u,( ) ci k 1 2⁄+,

1 u,( )+( ) wi 1 2⁄+ k 1 2⁄+, ci k 1 2⁄+,
0 u,( ) ci k 1 2⁄+,

1 u,( )+( )+[ ] –
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(5.40)

(5.41)

(5.42)

(j = 1, m = 1)

Table 5.2  Spatial discretization of the x-z transport equation for an interior element (using 
linear approximating functions).

∆xi
6

-------- wi 1 2⁄– k 1 2⁄–, ci k 1 2⁄–,
0 u,( )– ci k 1 2⁄–,

1 u,( )+( ) wi 1 2⁄+ k 1 2⁄–, ci k 1 2⁄–,
0 u,( ) ci k 1 2⁄–,

1 u,( )+( )+[ ] 0=

∆xi
3Nx
---------γi k,

1 0,( ) 2ci k,
0 0,( )– ci 1 2⁄+ k,

a 0,( ) ci 1 2⁄– k,
a 0,( )+ + 0=

∆zk
Nz
--------χi k,

1 0,( ) ci k 1 2⁄+,
1 a,( ) ci k 1 2⁄–,

1 a,( )–+ 0=

∆xi
3

--------
∆zk
3

--------
td

d ci k,
1 1,( ) ∆zk

2
-------- 2

3
---γi 1 2⁄+ k,

a 1,( ) 2
3
---γi 1 2⁄– k,

a 1,( ) 4
3
---γi k,

0 1,( )–++ +

∆xi
2

-------- 2
3
---χi k 1 2⁄+,

1 a,( ) 2
3
---χi k 1 2⁄–,

1 a,( ) 4
3
---χi k,

1 0,( )–+ –

∆zk
6

-------- ui 1 2⁄– k 1 2⁄–, ci k,
0 0,( )– ci k,

0 1,( ) 1
3
---ci k,

1 0,( ) 1
3
---ci k,

1 1,( )–+ + 
  –

∆zk
6

-------- ui 1 2⁄– k 1 2⁄+, ci k,
0 0,( ) ci k,

0 1,( ) 1
3
---ci k,

1 0,( )– 1
3
---ci k,

1 1,( )–+ 
  –

∆zk
6

-------- ui 1 2⁄+ k 1 2⁄–, c– i k,
0 0,( ) ci k,

0 1,( ) 1
3
---ci k,

1 0,( )– 1
3
---ci k,

1 1,( )+ + 
  –

∆zk
6

-------- ui 1 2⁄+ k 1 2⁄+, ci k,
0 0,( ) ci k,

0 1,( ) 1
3
---ci k,

1 0,( ) 1
3
---ci k,

1 1,( )+ + + 
  +

∆zk
6

-------- ui 1 2⁄+ k 1 2⁄–, c– i 1 2⁄+ k,
u 0,( ) ci 1 2⁄+ k,

u 1,( )+( ) ui 1 2⁄+ k 1 2⁄+, ci 1 2⁄+ k,
u 0,( ) ci 1 2⁄+ k,

u 1,( )+( )+[ ] +

∆zk
6

-------- ui 1 2⁄– k 1 2⁄–, c– i 1 2⁄– k,
u 0,( ) ci 1 2⁄– k,

u 1,( )+( ) ui 1 2⁄– k 1 2⁄+, ci 1 2⁄– k,
u 0,( ) ci 1 2⁄– k,

u 1,( )+( )+ ][ +

∆xi
6

-------- wi 1 2⁄– k 1 2⁄+, c– i k 1 2⁄+,
0 u,( ) ci k 1 2⁄+,

1 u,( )+( ) wi 1 2⁄+ k 1 2⁄+, ci k 1 2⁄+,
0 u,( ) ci k 1 2⁄+,

1 u,( )+( )+[ ] +

∆xi
6

-------- wi 1 2⁄– k 1 2⁄–, ci k 1 2⁄–,
0 u,( )– ci k 1 2⁄–,

1 u,( )+( ) wi 1 2⁄+ k 1 2⁄–, ci k 1 2⁄–,
0 u,( ) ci k 1 2⁄–,

1 u,( )+( )+[ ] –

∆xi
6

-------- wi 1 2⁄– k 1 2⁄–, c– i k,
0 0,( ) 1

3
---ci k,

0 1,( ) ci k,
1 0,( ) 1

3
---ci k,

1 1,( )–+ + 
  –
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degrees of freedom can be interpreted as the element average, the z slope, the x slope and

the x-z slope, respectively. Note that these differ from the standard bi-linear forms since we

are not solving Equation (5.1) in a traditional 2D sense, but as a series of 1D discretizations.

Equations (5.34), (5.37), (5.40), and (5.43) are then discretized in time to solve for

the four unknowns ci,k
(0,0), ci,k

(0,1), ci,k
(1,0) and ci,k

(1,1). For this study, a simple explicit or

forward Euler time discretization is used, which allows the four equations to be solved

independently of each other. Note that the auxiliary variables γi,k
(j,m) and χi,k

(j,m) can be

eliminated by directly substituting Equations (5.35), (5.36), (5.38), (5.39), (5.41), (5.42),

(5.44) and (5.45) into Equations (5.34), (5.37), (5.40), and (5.43).

Note also that due to the averaging in the auxiliary variables, the solution on each

interior element depends upon its neighbors and their neighbors; thus creating a nine

element stencil, as shown in Figure 5.4. On the boundaries, this is reduced according to the

replacements discussed in the next section; but this rather large stencil requires that the

neighbors of the boundary elements will also be affected by the BCs, requiring special care

on these elements as well. However, as long as an “average” value is defined on all of the

(5.43)

(5.44)

(5.45)

Table 5.2  Spatial discretization of the x-z transport equation for an interior element (using 
linear approximating functions).

∆xi
6

-------- wi 1 2⁄– k 1 2⁄+, c– i k,
0 0,( ) 1

3
---ci k,

0 1,( )– ci k,
1 0,( ) 1

3
---ci k,

1 1,( )+ + 
  –

∆xi
6

-------- wi 1 2⁄+ k 1 2⁄–, ci k,
0 0,( ) 1

3
---ci k,

0 1,( )– ci k,
1 0,( ) 1

3
---ci k,

1 1,( )–+ 
  –

∆xi
6

-------- wi 1 2⁄+ k 1 2⁄+, ci k,
0 0,( ) 1

3
---ci k,

0 1,( ) ci k,
1 0,( ) 1

3
---ci k,

1 1,( )+ + + 
  0=

∆xi
3Nx
---------γi k,

1 1,( ) 2ci k,
0 1,( )– ci 1 2⁄+ k,

a 1,( ) ci 1 2⁄– k,
a 1,( )+ + 0=

∆zk
3Nz
---------χi k,

1 1,( ) 2ci k,
1 0,( )– ci k 1 2⁄+,

1 a,( ) ci k 1 2⁄–,
1 a,( )+ + 0=
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external boundary interfaces, the neighbors of the boundary elements will be well-defined.

Note also that since only a single value exists at these interfaces, the average value is the

same as the upwind value.

5.3.3  Boundary conditions

Herein, three types of boundary conditions (BCs) are examined for the above LDG

transport algorithm: (I) Dirichlet, (II) natural or inflow/outflow, and (III) no total flux.

Below, the basis for each of these boundary types is presented. For brevity, it is easier to

explain each method in the framework of the x direction equations (5.17-5.18) rather than

the full x-z equations presented in Tables 5.1 and 5.2. However, the same premises apply to

the z direction boundaries.

Type I: Dirichlet

Specification of the dependent variable at the boundary is referred to as a first-type

or Dirichlet boundary condition. Dirichlet boundary conditions are often used for algorithm

testing and take the form  on the boundary. This can be enforced by setting 

in Equation (5.17) and  in Equation (5.18) when integrating over the boundary.

Additionally, in the definition of cu in Equation (5.15), set .

i i+1 i+2i–1i–2

k

k–1

k–2

k+1

k+2

Figure 5.4 Discretization stencil for element (i, k).

c c̃= γa γ–=

ca c̃=

c + c̃=
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Type II: natural or inflow/outflow

What is referred to as a type II, or natural BC, in this work is not strictly a

mathematical Type II BC, since inflow conditions also place a restriction on the

concentration itself (i.e., for outflow conditions it is a traditional Type II BC, but for inflow

conditions it is a Type III BC). In practice, flux or inflow/outflow conditions are most

natural to use for actual applications. An inflow condition is imposed on the boundary when

u•ne < 0 and an outflow condition is specified otherwise. On the inflow boundaries set

(5.46)

in Equation (5.17), where cI(t) is the imposed inflow concentration and u is the specified or

computed boundary velocity from the hydrodynamics. On the outflow boundaries we set

(5.47)

in Equation (5.17) and set ca = c– in Equation (5.18).

Type III: no total flux (Robin)

Specification of a linear combination of the dependent variable and its normal

gradient along a boundary is referred to as a third-type or Robin boundary condition. A no

total flux boundary condition is required in applications where no advective or diffusive

flux is desired across the external boundaries, i.e., a completely closed domain. This is

taken care of naturally with Type II BCs in the x direction when land boundaries are

specified on both ends of the domain for the hydrodynamics. This locks the normal

boundary velocity to 0.0 m/s and automatically removes the advective flux in the transport.

(When u•ne = 0 Type II normal boundaries automatically become no-flow boundaries since

the diffusive flux has already been removed.) Thus, the combination of land boundaries for

the hydrodynamics and Type II BCs for the transport will ensure a Type III transport

boundary condition for the horizontal boundaries.

ucu γa+( ) ne⋅ ϕI,〈 〉 Ωe∂ ucI t( ) ne⋅ ϕI,〈 〉 Ωe∂=

γa ne⋅ ϕI,〈 〉 Ωe∂ 0=
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However, the vertical velocities, w, are most often not equivalently zero at the sea

surface where the top of the domain is constantly moving. Here, additional restraints must

be made within the transport algorithm to ensure a no total flux boundary condition. The

above modifications made for Type II BCs applied to the z boundaries will remove the

diffusive flux, but further care must be taken to ensure that the advective flux is also zero.

This can be accomplished by temporarily setting w = 0.0 (only within the transport

subroutine - does not change hydrodynamic values) on the boundaries in order to remove

the advective fluxes.

5.3.4  Post-processing

For added stability in the algorithm, slope limiting is employed on the three slope

degrees of freedom, c(1,0), c(0,1) and c(1,1). After calculating the unknowns for all of the

elements in the domain, the slope values are compared and limited as needed. Based on

experience from other DG applications, the minmod limiter, which is defined as

(5.48)

where m1 is the computed slope  ( ) for the x (z) direction, m2 is the left (bottom)

slope, m3 is the right (top) slope and s1, s2, s3 are the signs of their respective slopes, is used

in this study. The comparison slopes, m2 and m3, are calculated as

(5.49)

(5.50)

(5.51)

minmod m1 m2 m3, ,( )

s1MIN m1 m2 m3, ,( ),

when s1 s2 s3= =

else                    0.0





=

ci k,
1 0,( ) ci k,

0 1,( )

left ci k,
0 0,( ) ci 1– k,

0 0,( )–=

right ci 1+ k,
0 0,( ) ci k,

0 0,( )–=

bottom ci k,
0 0,( ) ci k 1–,

0 0,( )–=
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. (5.52)

On the domain boundaries, the comparison is made only between the computed slope value

and the nearest neighbor in the coordinate direction. Thus, for the left and bottom

boundaries the limiter is called with m1 and m3 as inputs, while for the right and top

boundaries the limiter is called with m1 and m2 as inputs. After limiting the x and z slopes,

the x-z slope is then limited on each element according to the following rule:

IF(  = 0.0 or  = 0.0) THEN = 0.0 (5.53)

which sets the x-z slope equal to zero if either of the x or z slopes are zero. As will be seen

in §5.5, the x-z slope can be interpreted as the z slope of the x slope or vice versa. Therefore,

if either slope is zero, then the slope of that slope is also zero.

With the new limited slope values, the interface values are then calculated for each

element, the upwind value is determined, and the average value is calculated in preparation

for the next time step. On each element, the interior interface values for the two degrees of

freedom (0/1) are calculated as

(5.54)

(5.55)

(5.56)

, (5.57)

where R, L, T, B represent right, left, top and bottom, respectively. Then the upwind and

average values are calculated according to Equations (5.15) and (5.16) using these interface

values. The interface notation for an interior element is shown in Figure 5.5. On the domain

top ci k 1+,
0 0,( ) ci k,

0 0,( )–=

ci k,
1 0,( ) ci k,

0 1,( ) ci k,
1 1,( )

Ri 0 1⁄( ) ci k,
0 0 1⁄,( ) ci k,

1 0 1⁄,( )–=

Li 0 1⁄( ) ci k,
0 0 1⁄,( ) ci k,

1 0 1⁄,( )+=

Tk 0 1⁄( ) ci k,
0 1⁄ 0,( ) ci k,

0 1⁄ 1,( )–=

Bk 0 1⁄( ) ci k,
0 1⁄ 0,( ) ci k,

0 1⁄ 1,( )+=
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boundaries, the exterior state values do not exist and the equations are modified as

described in §5.3.3. 

5.4   Interpolation to CG grid space

Now it is necessary to return to the larger framework in which the transport equation

is being used. In order to update the density field for a prognostic baroclinic simulation, the

discontinuous transport variables must be communicated to the continuous hydrodynamic

grid space. (The above derivations are valid for transport of any “dissolved” species and

can be used to transport both the salinity and potential temperature needed in a full

prognostic algorithm. Herein, only the transport of the salinity variable is examined, but the

same premise is valid for the potential temperature.)

In this study, two options for interpolating the DG salinity values to the CG grid

have been examined. The basic premise of each of these is presented below. But first the

grid notation that will be used for each of the interpolation methods is summarized. Note

that each interior CG node is surrounded by four DG elements, as shown in Figure 5.6, and

each boundary (corner) CG node is surrounded by two (one) DG element(s).

i, k
Li

Bk

Tk

RiL i -1

Tk+1

Bk-1

Ri+1

Figure 5.5 Interface notation for interior 
element (i,k).
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5.4.1  L2 interpolation

The first attempt to translate the DG state variables to a CG grid space was to use

an L2 integration technique. Following the derivation of the discrete transport equation, this

derivation is also separated into two one-dimensional steps; first integrating in the x

direction and then integrating the resulting equations in the z direction. The following

notation will be used in the derivation:

= element centered DG solution

 = projected CG solution

ω = continuous linear Lagrange basis functions

Ωx = x domain

Ωz = z domain

The interpolated CG values in the x direction are defined to be the solution of the following

weak formulation

i, k

i, k-1i-1, k-1

i-1, k

Discontinuous grid space
Discontinuous interfaces (upwind/average)
Continuous grid space

Figure 5.6 Grid space notation for interpolation of CG 
nodal values from DG element values.

ci k,
j m,( )

ci k,
CG
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(5.58)

where the hat notation indicates that the coefficients are still functions of z and the domain

integration can be broken into a sum of element integrations over the entire domain.

If linear Lagrange bases are used for the CG variables and the same linear Legendre

bases described in §5.3.1 are used for the DG values, then the approximation becomes

(5.59)

where nx is the number of elements in the x direction. After lumping the left-hand side of

the equation to avoid solving simultaneous equations, the master element becomes

(5.60)

When element contributions are summed this gives a rectangular matrix on the right-hand

side, which is due to the discontinuities at the boundaries. Based on location, there are three

equations to carry forward from the x direction L2 interpolation to the z direction

integrations.

Left boundary:

(5.61)

ĉi k,
CGωi xd

Ωx

∫ ĉi k,
j m,( )ωi xd

Ωx

∫=

ĉi 1 2⁄– k,
CG ω0 ĉi 1 2⁄+ k,

CG ω1+( )ωj∂x( )Ωe

e 1=

nx

∑ =

ĉi k,
0 m,( )ϕ0 ĉi k,

1 m,( )ϕ1+( )ωj∂x( )Ωe

e 1=

nx

∑

∆xi
0.5 0
0 0.5

ĉi 1 2⁄– k,
CG

ĉi 1 2⁄+ k,
CG

∆xi
0.5 1–
0.5 1

ĉi k,
0 m,( )

ĉi k,
1 m,( )

=

∆x1
2

--------- ĉ1 2⁄ k,
CG ∆x1

1
2
--- ĉ1 k,

0 m,( ) ĉ1 k,
1 m,( )– 

 =
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Interior nodes:

(5.62)

Right boundary:

(5.63)

To complete the L2 interpolation, each of these must now be integrated in the z direction.

The general weak form follows the x integrations and is

(5.64)

where the hat notation has been removed to indicate that the coefficients are now functions

of z alone. Again, these domain integrations can be broken into a sum of element

integrations over the entire domain. Linear Lagrange bases are used for the CG variables

and the linear Legendre bases described in §5.3.2 are used for the DG variables.

Continuing from Equation (5.61), the integration in the z direction for the left

boundary becomes

(5.65)

where nz is the number of elements in the z direction. After lumping the left-hand side, the

master element for the left boundary is

1
2
--- ∆xi 1– ∆xi+( )ĉi 1 2⁄– k,

CG ∆xi 1–
1
2
--- ĉi 1– k,

0 m,( ) ĉi 1– k,
1 m,( )+ 

  ∆xi
1
2
--- ĉi k,

0 m,( ) ĉi k,
1 m,( )– 

 +=

∆xnx
2

----------- ĉnx 1 2⁄+ k,
CG ∆xnx

2
----------- ĉnx k,

0 m,( ) ∆xnxĉnx k,
1 m,( )–=

ci k,
CGωk zd

Ωz

∫ ci k,
j m,( )ωk zd

Ωz

∫=

1
2
--- c1 2⁄ k 1 2⁄–,

CG ω0 c1 2⁄ k 1 2⁄+,
CG ω1+( )ωk dz( )Ωe




e 1=

nz

∑ =

1
2
--- c1 k,

0 0,( )ψ0 c1 k,
0 1,( )ψ1+( )ωk dz( )Ωe

c1 k,
1 0,( )ψ0 c1 k,

1 1,( )ψ1+( )ωk dz( )Ωe
–




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(5.66)

When the element contributions are summed up, there are three formulations for the

interpolated CG nodal values along the left boundary.

Left-bottom corner:

(5.67)

Left-interior boundary:

(5.68)

Left-top corner:

(5.69)

Continuing from Equation (5.62), the integration in the z direction for the interior

nodes gives

∆zk
0.25 0

0 0.25
c1 2⁄ k 1 2⁄–,

CG

c1 2⁄ k 1 2⁄+,
CG

∆zk
0.25 0.5– 0.5– 1
0.25 0.5 0.5– 1–

c1 k,
0 0,( )

c1 k,
0 1,( )

c1 k,
1 0,( )

c1 k,
1 1,( )

=

1
4
---c1 2⁄ 1 2⁄,

CG 1
4
---c1 1,

0 0,( ) 1
2
---c1 1,

0 1,( )– 1
2
---c1 1,

1 0,( )– c1 1,
1 1,( )+=

1
4
--- ∆zk 1– ∆zk+( )c1 2⁄ k 1 2⁄–,

CG ∆zk 1–
1
4
---c1 k 1–,

0 0,( ) 1
2
---c1 k 1–,

0 1,( ) 1
2
---c1 k 1–,

1 0,( )– c1 k 1–,
1 1,( )–+ 

  +=

∆zk
1
4
---c1 k,

0 0,( ) 1
2
---c1 k,

0 1,( )– 1
2
---c1 k,

1 0,( )– c1 k,
1 1,( )+ 

 

1
4
---c1 2⁄ nz 1 2⁄+,

CG 1
4
---c1 nz,

0 0,( ) 1
2
---c1 nz,

0 1,( )– 1
2
---c1 nz,

1 0,( ) c1 nz,
1 1,( )+ 

 –=

1
2
--- ∆xi 1– ∆xi+( ) ci 1 2⁄– k 1 2⁄–,

CG ω0 ci 1 2⁄– k 1 2⁄+,
CG ω1 )ωkdz )Ωe

=+((




e 1=

nz

∑

∆xi 1–
2

------------- ci 1– k,
0 0,( ) ψ0 ci 1– k,

0 1,( ) ψ1+( )ωkdz( )Ωe
∆xi 1– ci 1– k,

1 0,( ) ψ0 ci 1– k,
1 1,( ) ψ1+( )ωkdz( )Ωe

+ +
252



(5.70)

When the left-hand side is lumped, the master element for interior nodes is given as

(5.71)

where

 

Again summing the element contributions gives three formulations for the interpolated CG

nodal values in the interior (away from the left and right boundaries). 

Bottom-interior boundary:

(5.72)

∆xi
2

-------- ci k,
0 0,( )ψ0 ci k,

0 1,( )ψ1+( )ωkdz( )Ωe
∆xi ci k,

1 0,( )ψ0 ci k,
1 1,( )ψ1+( )ωkdz( )Ωe

–




∆xi 1– ∆xi+( )
∆zk
2

-------- 0.5 0
0 0.5

ci 1 2⁄– k 1 2⁄–,
CG

ci 1 2⁄– k 1 2⁄+,
CG

=

∆zk
0.25 0.5– 0.5 1– 0.25 0.5– 0.5– 1
0.25 0.5 0.5 1 0.25 0.5 0.5– 1–

C∆x

C∆x

∆xi 1– ci 1– k,
0 0,( )

∆xi 1– ci 1– k,
0 1,( )

∆xi 1– ci 1– k,
1 0,( )

∆xi 1– ci 1– k,
1 1,( )

∆xi ci k,
0 0,( )

∆xi ci k,
0 1,( )

∆xi ci k,
1 0,( )

∆xi ci k,
1 1,( )

=

∆xi 1– ∆xi+
4

---------------------------ci 1 2⁄– 1 2⁄,
CG ∆xi 1–

1
4
---ci 1– 1,

0 0,( ) 1
2
---ci 1– 1,

0 1,( )– 1
2
---ci 1– 1,

1 0,( ) ci 1– 1,
1 1,( )–+ 

  +=

∆xi
1
4
---ci 1,

0 0,( ) 1
2
---ci 1,

0 1,( )– 1
2
---ci 1,

1 0,( )– ci 1,
1 1,( )+ 

 
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Interior nodes:

(5.73)

Top-interior boundary:

(5.74)

Continuing from Equation (5.63), the integration in the z direction for the right

boundary is given as

(5.75)

After lumping, the master element for the right boundary is

∆xi 1– ∆xi+
4

--------------------------- ∆zk 1– ∆zk+( )ci 1 2⁄– k 1 2⁄–,
CG =

∆zk 1– ∆xi 1–
1
4
---ci 1– k 1–,

0 0,( ) 1
2
---ci 1– k 1–,

0 1,( )+
 1

2
---ci 1– k 1–,

1 0,( ) ci 1– k 1–,
1 1,( )+ 

+ +


∆xi
1
4
---ci k 1–,

0 0,( ) 1
2
---ci k 1–,

0 1,( ) 1
2
---ci k 1–,

1 0,( ) ci k 1–,
1 1,( )– 



–+

 ∆zk ∆xi 1–
1
4
---ci 1– k,

0 0,( ) –



+

1
2
---ci 1– k,

0 1,( ) 1
2
---ci 1– k,

1 0,( ) ci 1– k,
1 1,( )–+ 

 ∆xi+ 1
4
---ci k,

0 0,( ) 1
2
---ci k,

0 1,( ) 1
2
---ci k,

1 0,( )– ci k,
1 1,( )+ 



–



∆xi 1– ∆xi+
4

---------------------------ci 1 2⁄– nz 1 2⁄+,
CG ∆xi 1–

1
4
---ci 1– nz,

0 0,( ) 1
2
---ci 1– nz,

0 1,( ) 1
2
---ci 1– nz,

1 0,( ) ci 1– nz,
1 1,( )+ + + 

  +=

∆xi
1
4
---ci nz,

0 0,( ) 1
2
---ci nz,

0 1,( ) 1
2
---ci nz,

1 0,( )– ci nz,
1 1,( )–+ 

 

1
2
--- cnx 1 2⁄+ k 1 2⁄–,

CG ω0 cnx 1 2⁄+ k 1 2⁄+,
CG ω0 )ωk dz )Ωe

=+((




e 1–

nz

∑

1
2
--- cnx k,

0 0,( )ψ0 cnx k,
0 1,( )ψ1+( )ωk dz( )Ωe

cnx k,
1 0,( )ψ0 cnx k,

1 1,( )ψ1+( )ωk dz( )Ωe
–




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(5.76)

After summing the element contributions, there are three formulas for the interpolated CG

nodal values along the right boundary.

Right-bottom corner:

(5.77)

Right-interior boundary:

(5.78)

Right-top corner:

(5.79)

5.4.2  Averaging from adjacent interfaces

In order to minimize the computational effort of the algorithm, another method,

which uses the DG interface data was examined. This interface information is already

computed during the DG calculations, and its use to translate to the CG grid would

eliminate a costly series of integrations over the entire domain, as is done in the L2

∆zk
0.25 0

0 0.25
cnx 1 2⁄+ k 1 2⁄–,

CG

cnx 1 2⁄+ k 1 2⁄+,
CG

∆zk
0.25 0.5– 0.5 1–
0.25 0.5 0.5 1

cnx k,
0 0,( )

cnx k,
0 1,( )

cnx k,
1 0,( )

cnx k,
1 1,( )

=

1
4
---cnx 1 2⁄+ 1 2⁄,

CG 1
4
---cnx 1,

0 0,( ) 1
2
---cnx 1,

0 1,( )– 1
2
---cnx 1,

1 0,( ) cnx 1,
1 1,( )–+=

1
4
--- ∆zk 1– ∆zk+( )cnx 1 2⁄+ k 1 2⁄–,

CG ∆zk 1–
1
4
---cnx k 1–,

0 0,( ) 1
2
---cnx k 1–,

0 1,( ) 1
2
---cnx k 1–,

1 0,( ) cnx k 1–,
1 1,( )+ + + 

  +=

∆zk
1
4
---cnx k,

0 0,( ) 1
2
---cnx k,

0 1,( )– 1
2
---cnx k,

1 0,( ) cnx k,
1 1,( )–+ 

 

1
4
---cnx 1 2⁄+ nz 1 2⁄+,

CG 1
4
---cnx nz,

0 0,( ) 1
2
---cnx nz,

0 1,( ) 1
2
---cnx nz,

1 0,( ) cnx nz,
1 1,( )+ + +=
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interpolation. This averaging technique will be referred to as interface averaging in all

subsequent discussions.

As part of the DG calculations, upwind and average values are assigned to each

element interface throughout the domain (refer to red dots in Figure 5.6). Each interior CG

node is surrounded by four elements and thus four interfaces, while each CG boundary

(corner) node is surrounded by two (one) element(s) with three (two) adjacent interfaces.

For the interior and corner CG nodes, information from all adjacent interfaces is averaged

to arrive at the translated CG value. However, for the non-corner boundary CG nodes, only

the interfaces that are located on the boundary are averaged to determine the translated CG

value (perpendicular interfaces are not used). This results in interface averaging formulas

for the various CG node locations.

Left-bottom corner:

(5.80)

Left-interior boundary:

(5.81)

Left-top corner:

(5.82)

Bottom-interior boundary:

(5.83)

c1 2⁄ 1 2⁄,
CG 1

2
--- c1 2⁄ 1,

a 0,( ) c1 1 2⁄,
0 a,( )+( )=

c1 2⁄ k 1 2⁄–,
CG 1

2
--- c1 2⁄ k 1–,

a 0,( ) c1 2⁄ k,
a 0,( )+( )=

c1 2⁄ nz 1 2⁄+,
CG 1

2
--- c1 2⁄ nz,

a 0,( ) c1 nz 1 2⁄+,
0 a,( )+( )=

ci 1 2⁄– 1 2⁄,
CG 1

2
--- ci 1– 1 2⁄,

0 a,( ) ci 1 2⁄,
0 a,( )+( )=
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Interior nodes:

(5.84)

Top-interior boundary:

(5.85)

Right-bottom corner:

(5.86)

Right-interior boundary:

(5.87)

Right-top corner:

(5.88)

Again nx is the number of elements in the x direction, nz is the number of elements in the z

direction, and the superscript notation is as in §5.3.1. There is a choice between using the

upwind or the average value at the DG interfaces. However, since the adjacent interfaces

are already being averaged in this method, it seems natural to use the average value at the

element interfaces as well.

5.4.3  Updating the continuous density field

After the CG salinity field has been established using one of the methods outlined

ci 1 2⁄– k 1 2⁄–,
CG 1

4
--- ci 1 2⁄– k,

a 0,( ) ci 1 2⁄– k 1–,
a 0,( )+ +(=

ci k 1 2⁄–,
0 a,( ) ci 1– k 1 2⁄–,

0 a,( )+ )

ci 1 2⁄– nz 1 2⁄+,
CG 1

2
--- ci 1– nz 1 2⁄+,

0 a,( ) ci nz 1 2⁄+,
0 a,( )+( )=

cnx 1 2⁄+ 1 2⁄,
CG 1

2
--- cnx 1 2⁄+ 1,

a 0,( ) cnx 1 2⁄,
0 a,( )+( )=

cnx 1 2⁄+ k, 1 2⁄–
CG 1

2
--- cnx 1+ 2⁄ k 1–,

a 0,( ) cnx 1+ 2⁄ k,
a 0,( )+( )=

cnx 1 2⁄+ nz 1 2⁄+,
CG 1

2
--- cnx 1 2⁄+ nz,

a 0,( ) cnx nz 1 2⁄+,
0 a,( )+( )=
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above, the density field is then updated according to the following simplified equation of

state:

(5.89)

where the reference salinity, Sref , is equal to 35.0  and Sβ = 0.00076 is the coefficient

of saline contraction [Cushman-Roisin, 1994]. A more complicated equation can be used

when the density field is also dependent upon potential temperature, however, in this study

only salinity dependence is examined.

A flow-diagram showing the transport algorithm solution process within the

hydrodynamic framework is shown in Figure 5.7. Essentially, the hydrodynamic velocity

field is updated, this field is fed into the transport algorithm to determine the new salinity

distribution, which is then fed back into the hydrodynamics as a new density field, and the

Si k, 1028.0 1.0 Sβ si k, Sref–( )+( ) 1000.0–=

0 00⁄

Initialize transport and 
hydrodynamic variables:

velocity field and elevations

salinity field density field→

Calculate 
new DOFs

Post-processing

Slope limiting

Interface computations

Upwind & average

Figure 5.7 Flow diagram of the transport algorithm within the hydrodynamic 
framework.
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next velocity field is established. Thus the most recently calculated hydrodynamic values

are used as input in the transport algorithm.

5.5   Interpolation from CG grid space

The LDG discretization of the transport equation described herein was also

compared to various CG discretizations for transport as part of another study [Atkinson, et.

al, 2004]. Details of this study will not be given here, however the initialization of the

various algorithms can shed some insight on the LDG discretization itself and will be

discussed briefly herein.

In order to ensure a direct comparison between the various discretizations, it was

necessary to have the same initial condition for the density field. This required that the

initial salinity profile be defined in the CG grid space and then interpolated onto the DG

grid. From the separation of variables approach that was taken for the LDG discretization

in §5.3, the DG solution is approximated as 

. (5.90)

When the basis functions are substituted for an element, this approximation becomes

(5.91)

where , ,  and , ,  in

the dimensionless coordinates introduced earlier. Using these definitions along with

Equation (5.91), an expression can be written for each of the CG corner nodes on the

element (i,k) in terms of the four DG degrees of freedom:

c x z t, ,( ) ĉ z t,( )ϕ x( ) c t( )ϕ x( )ψ z( )= =

c x z t, ,( ) ĉi k,
0 m,( )ϕ0 ĉi k,

1 m,( )ϕ1+=

ci k,
0 0,( )ψ0 ci k,

0 1,( )ψ1+( )ϕ0 ci k,
1 0,( )ψ0 ci k,

1 1,( )ψ1+( )ϕ1+=

ci k,
0 0, ci k,

0 1, ψ1+ ci k,
1 0,( )ϕ1 ci k,

1 1,( )ψ1+ ϕ1+=

ϕ0 1= ϕ1 ξ= ξ xi 1 2⁄±( ) 1±= ψ0 1= ψ1 ξ= ξ zk 1 2⁄±( ) 1±=
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(4.92a)

(4.92b)

(4.92c)

(4.92d)

where the grid notation is as in Figure 5.1 on page 233. These equations can be combined

in such a way that all of the other variables are eliminated; the resulting relationships

provide a formula for each of the DG degrees of freedom in terms of the CG corner nodes. 

Take (4.92a) + (4.92b) + (4.92c) + (4.92d) to get

 . (5.93)

Take –(4.92a) – (4.92b) + (4.92c) + (4.92d) to get

 . (5.94)

Take –(4.92a) + (4.92b) – (4.92c) + (4.92d) to get

 . (5.95)

Take (4.92a) – (4.92b) – (4.92c) + (4.92d) to get

 . (5.96)

Equations (5.93) through (5.96) can then be used to transform a CG data field to the DG

grid space.

A better understanding of the DG degrees of freedom can be gleaned from the four

previous equations. The element average for the DG solution is simply the average of the

ci 1 2⁄– k 1 2⁄–, ci k,
0 0,( ) ci k,

0 1,( )– ci k,
1 0,( ) ci k,

1 1,( )–( )–=

ci 1 2⁄– k 1 2⁄+, ci k,
0 0,( ) ci k,

0 1,( ) ci k,
1 0,( ) ci k,

1 1,( )+( )–+=

ci 1 2⁄+ k 1 2⁄–, ci k,
0 0,( ) ci k,

0 1,( )– ci k,
1 0,( ) ci k,

1 1,( )–( )+=

ci 1 2⁄+ k 1 2⁄+, ci k,
0 0,( ) ci k,

0 1,( ) ci k,
1 0,( ) ci k,

1 1,( )+( )+ +=

ci 1 2⁄– k 1 2⁄–, ci 1 2⁄– k 1 2⁄+, ci 1 2⁄+ k 1 2⁄–, ci 1 2⁄+ k 1 2⁄+,+ + + 4ci k,
0 0,( )=

c– i 1 2⁄– k 1 2⁄–, ci 1 2⁄– k 1 2⁄+,– ci 1 2⁄+ k 1 2⁄–, ci 1 2⁄+ k 1 2⁄+,+ + 4ci k,
1 0,( )=

c– i 1 2⁄– k 1 2⁄–, ci 1 2⁄– k 1 2⁄+, ci 1 2⁄+ k 1 2⁄–,– ci 1 2⁄+ k 1 2⁄+,+ + 4ci k,
0 1,( )=

ci 1 2⁄– k 1 2⁄–, ci 1 2⁄– k 1 2⁄+,– ci 1 2⁄+ k 1 2⁄–,– ci 1 2⁄+ k 1 2⁄+,+ 4ci k,
1 1,( )=
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CG corner nodes, which is easily seen from Equation (5.93). The x slope for an element is

the average of the x slopes calculated from the CG nodal values along the top and bottom

interfaces of the element. This can be seen more clearly if Equation (5.94) is rewritten as

(5.97)

where the factors of 1/2 within the square brackets come from the coordinate

transformation – the length (and depth) of each dimensionless element is equal to 2.0 – and

transform the differences of the CG nodal values to a slope in the x direction. Similarly, the

z slope for an element is the average of the z slopes calculated from the CG nodal values

along the left and right interfaces of the element, which is clear when Equation (5.95) is

rewritten as

. (5.98)

The element average, x slope and z slope could also be derived intuitively from a geometric

perspective. However, it is not clear from the outset what the interpretation of the x-z slope

would be geometrically, and the algebraic definition given in Equation (5.96) can be helpful

here. If the formula for the x-z slope is rewritten as

(5.99)

then the proper geometric interpretation is that the x-z slope for an element (i,k) is the z

slope of the x slopes along the top and bottom interfaces. Or conversely, it could be thought

of as the x slope of the z slopes along the left and right interfaces (if the equation was

rewritten differently). In either case, all three factors of 1/2 should be viewed as

transformation coefficients, as discussed for the x slope, rather than averages.

ci k,
1 0,( ) 1

2
--- 1

2
--- ci 1 2⁄+ k 1 2⁄–, ci 1 2⁄– k 1 2⁄–,–( ) 1

2
--- ci 1 2⁄+ k 1 2⁄+, ci 1 2⁄– k 1 2⁄+,–( )+=

ci k,
0 1,( ) 1

2
--- 1

2
--- ci 1 2⁄– k 1 2⁄+, ci 1 2⁄– k 1 2⁄–,–( ) 1

2
--- ci 1 2⁄+ k 1 2⁄+, ci 1 2⁄+ k 1 2⁄–,–( )+=

ci k,
1 1,( ) 1

2
--- 1

2
--- ci 1 2⁄+ k 1 2⁄+, ci 1 2⁄– k 1 2⁄+,–( ) 1

2
--- ci 1 2⁄+ k 1 2⁄–, ci 1 2⁄– k 1 2⁄–,–( )–=
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5.6   Transport model in an x-σ domain

When the bathymetry is not constant, it is often desirable to map the (x, z) domain

to the so-called sigma coordinates (x,σ). Here σ varies between σ = a at the free surface, z

= ζ (x, t), and σ = b at the bottom, z = –h(x), where h(x) is the bathymetric depth along the

channel and a and b are constants. The bathymetry definitions are shown in Figure 5.8.

The coordinate transformation is

(5.100)

and the inverse mapping is

(5.101)

where H(x,t) = h(x) + ζ (x, t) is the total depth. This implies that the z coordinate is a

function of σ, x and t. Thus the x and t partial derivatives of z, as given in Equation (5.101)

are

σ = a

σ = b

Datum

z = ζ

z = 0

z = −h

Figure 5.8 Definition of bathymetry terms.

H = h + ζ

σ a a b–
H

------------ 
  z ζ–( )+=

z σ a–
a b–
------------ 

  H x t,( ) ζ x t,( )+=

∂z
∂x
----- ∂

∂x
----- σ a–

a b–
------------ 

  h x( ) ζ x t,( )+( ) ζ x t,( )+=

σ a–
a b–
------------ 

  ∂h
∂x
------ σ a–

a b–
------------ 

  ∂ζ
∂x
------ ∂ζ

∂x
------+ +=
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(5.102)

and

 . (5.103)

For any function, f, the derivative in the z direction makes use of the chain rule as

follows:

 . (5.104)

Then the derivatives in Equations (5.102) to (5.104) are used to transform the terms of the

transport equation, given here again for convenience:

 . (5.105)

The effect of this transformation is that gradients in z space may be expressed as a gradient

in σ space with an additional term to express how z changes as σ changes. Noting that f =

f(x, z, σ, t) and σ = σ(x, z, t), the chain rule can be employed to express gradients in x and t

as follows:

σ a–
a b–
------------ 

  ∂h
∂x
------ σ a–

a b–
------------ 

  a b–
a b–
------------ 

 + ∂ζ
∂x
------+=

σ a–
a b–
------------ 

  ∂h
∂x
------ σ b–

a b–
------------ 

  ∂ζ
∂x
------+=

∂z
∂t
----- ∂

∂t
---- σ a–

a b–
------------ 

  h x( ) ζ x t,( )+( ) ζ x t,( )+=

σ a–
a b–
------------ 

  a b–
a b–
------------ 

 + ∂ζ
∂t
------=

σ b–
a b–
------------ 

  ∂ζ
∂t
------=

∂f
∂z
----- ∂f

∂σ
------∂σ

∂z
------ ∂

∂z
----- a a b–

H
------------ 

  z ζ–( )+ ∂f
∂σ
------= =

a b–
H

------------ 
  ∂f

∂σ
------=

t∂
∂c

x∂
∂ uc Nx x∂

∂c–
z∂

∂ wc Nz z∂
∂c–+ + 0=
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(5.106)

and

 . (5.107)

Since Equation (5.105) is written in terms of gradients in z space, we transform each of the

terms according to the previous formulas. The temporal term becomes

 . (5.108)

The x advection term becomes

(5.109)

and the z advection term becomes

 . (5.110)

The z diffusion term becomes

 . (5.111)

The same type of transformation could also be done to the x diffusion term, but the

expression is quite cumbersome. Instead, the diffusion coefficient, Nx, is replaced with an

effective diffusion coefficient, Nxσ. This is justified by considering that the value of the

diffusion parameterization is not known with confidence and is empirically derived; due to

this uncertainty, the Nxσ value may be changed to account for the effect of leaving the

∂f
∂t
----

σ

∂f
∂t
----

z

∂f
∂z
-----∂z

∂t
-----+ ∂f

∂t
----

z

∂f
∂σ
------∂σ

∂z
------∂z

∂t
-----+= =

∂f
∂x
-----

σ

∂f
∂x
-----

z

∂f
∂z
----- ∂z

∂x
-----+ ∂f

∂x
-----

z

∂f
∂σ
------∂σ

∂z
------∂z

∂x
-----+= =

∂c
∂t
-----

z

∂c
∂t
-----

σ

σ a–
a b–
------------ 

  ∂ζ
∂t
------ a b–

H
------------ 

  ∂c
∂σ
------–=

∂uc
∂x

---------
z

∂uc
∂x

---------
σ

σ a–
a b–
------------ 

  ∂h
∂x
------ σ b–

a b–
------------ 

  ∂ζ
∂x
------+ a b–

H
------------ 

  ∂uc
∂σ
---------–=

∂wc
∂z

----------
z

a b–
H

------------ 
  ∂wc

∂σ
----------=

∂
∂z
----- Nz

∂c
∂z
----- 

 
z

a b–
H

------------ 
  2 ∂

∂σ
------ Nz

∂c
∂σ
------ 

 =
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derivatives in their z space form. Thus, the x diffusion in σ coordinates is simply

 . (5.112)

Therefore, the transformed transport equation is given as

(5.113)

where Γ1 and Γ2 are curvature terms, which arise from the coordinate transformation on the

temporal and x direction terms. The Γ1 term comes from the transformation of the temporal

term and is calculated as

(5.114)

while the Γ2 term comes from the transformation of the x advection term and is calculated

as

 . (5.115)

The two curvature terms are combined into a single term, Γ = –Γ1 – Γ2, and evaluated

explicitly. In this way, Γ becomes a known, scalar function.

5.6.1  Finite difference approximations for the curvature terms

As in the ADCIRC hydrodynamics, the various derivatives within the curvature

correction terms, Γ1 and Γ2, are approximated with simple finite differences. For interior

locations, a centered finite difference is used, while one-sided differences are used for the

∂
∂x
----- Nx

∂c
∂x
----- 

 
z

∂
∂xσ
-------- Nxσ

∂c
∂xσ
-------- 

 =

∂c
∂tσ
------- ∂

∂xσ
-------- uc( ) a b–

H
------------ 

  ∂
∂σ
------ wc( ) ∂

∂xσ
-------- Nxσ

∂c
∂xσ
-------- 

 – –+ +

a b–
H

------------ 
  2 ∂

∂σ
------ Nz

∂c
∂σ
------ 

  Γ1– Γ2– 0=

Γ1
σ a–
a b–
------------ 

  ∂ζ
∂t
------ a b–

H
------------ 

  ∂c
∂σ
------=

Γ2
σ a–
a b–
------------ 

  ∂h
∂x
------ σ b–

a b–
------------ 

  ∂ζ
∂x
------+ a b–

H
------------ 

  ∂uc
∂σ
---------=
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boundary locations. Meanwhile, a forward Euler scheme is used for the temporal

derivative. Where possible, the most recent information is used, since each hydrodynamic

and transport variable is calculated in sequence rather than simultaneously. Using these

approximations, the derivatives in Γ1 are given as follows:

 and (5.116)

 . (5.117)

Meanwhile, the derivatives in the Γ2 term are approximated by the following:

 , (5.118)

which is independent of z and t since the bathymetry remains fixed in time and varies only

with the horizontal position. Furthermore, the deviation of the water surface is also

independent of the vertical position, varying only with time and the horizontal position, so

that its derivative is given as

∂ζ
∂t
------

ζi k,
n 1+ ζi k,

n–
∆t

---------------------------=

∂c
∂σ
------

ci k 1+,
n ci k,

n–
∆σk

-----------------------------     k = 1

ci k,
n ci k 1–,

n–
∆σk 1–

-----------------------------      k = nz

ci k 1+,
n ci k 1–,

n–
∆σk 1– ∆σk+

------------------------------------     otherwise














=

∂h
∂x
------

hi 1+ hi–
∆xi

----------------------          i = 1     

hi hi 1––
∆xi 1–

---------------------           i = nx    

hi 1+ hi 1––
∆xi 1– ∆xi+
-----------------------------       otherwise













=
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 , (5.119)

where the most recent elevation data is used. Finally, the derivative of the transport

advection terms, u c, are based on the continuous grid space using the most recent velocity

calculations, such that the approximations are given as

 . (5.120)

5.6.2  LDG discretization of x-σ transport

Discretization of Equation (5.113) using the LDG method follows the same

procedure as was used in §5.3 for Equation (5.1). The only changes are the addition of the

multiplying factor (or stretching factor) on the z advection and diffusion terms, a change

from ∆z to ∆σ, and the addition of the curvature correction terms, Γ. Therefore, the

discretization will not be repeated here; instead the alterations will be described in words

and the final equations given.

As given in Equation (5.113), a constant stretching factor equal to (a–b) / Hi, where

the i index indicates the ith element in the x direction, will multiply each discrete z advection

∂ζ
∂x
------

ζi 1+
n 1+ ζi

n 1+–
∆xi

------------------------------      i = 1      

ζi
n 1+ ζi 1–

n 1+–
∆xi 1–

------------------------------       i = nx    

ζi 1+
n 1+ ζi 1–

n 1+–
∆xi 1– ∆xi+
------------------------------       otherwise















=

∂uc
∂σ
---------

ui k 1+,
n 1+ ci k 1+,

n
ui k,

n 1+ ci k,
n

–
∆σk

----------------------------------------------------------     k = 1

ui k,
n 1+ ci k,

n
ui k 1–,

n 1+ ci k 1–,
n

–
∆σk 1–

----------------------------------------------------------      k = nz

ui k 1+,
n 1+ ci k 1+,

n
ui k 1–,

n 1+ ci k 1–,
n

–
∆σk 1– ∆σk+

--------------------------------------------------------------------     otherwise














=
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term and the square of this factor will multiply each discrete z diffusion term. Also, Hi is

defined to be the average value for the element since linear approximating functions are

used for ζ(x). This factor is constant with depth and varies only according to the x position,

as the total depth changes along the channel length. Also, the differentials must be changed

to the σ coordinate system, such that ∆σk = σk+1 – σk, as was the case for ∆z.

The final step, to complete the transformation to σ coordinates, is to discretize the

curvature correction terms, Γ. Since these terms are dependent upon the bathymetry, sea

surface elevation, horizontal velocity (u), and the concentration (c), a choice must be made

as to whether they should be continuous or discontinuous variables. Concentration is the

only dependent variable that is assumed to be discontinuous, so it would be difficult to

define the entire correction term as discontinuous. Additionally, the DG concentration

values have already been interpolated to the CG grid in order to update the density field.

Therefore, it seems most natural to treat the curvature correction terms, Γ, as continuous

variables.

With this assumption, the curvature correction terms are approximated in the x

direction with continuous linear Lagrange functions giving

(5.121)

where the hat notation indicates that the coefficients are still functions of z. The weighted

residual over an element, with discontinuous weight function ϕ, then becomes

(5.122)

where the continuous and discontinuous bases, are as in §5.3.1. This results in two

equations for the j degrees of freedom 0 and 1:

 for j = 0 (5.123)

Γ
ˆ

i k, Γ
ˆ

i 1 2⁄– k, φ0 Γ
ˆ

i 1 2⁄+ k, φ1+=

Γ
ˆ

i 1 2⁄– k, φ0 Γ
ˆ

i 1 2⁄+ k, φ1+( ) ϕj( , )Ωe

∆xi
2

-------- Γ
ˆ

i 1 2⁄– k, Γ
ˆ

i 1 2⁄+ k,+( )
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and

 for j = 1. (5.124)

Now the j equations are approximated in the σ direction with linear Lagrange functions

such that

(5.125)

where the hat notation has been removed to indicate that the coefficients are functions of

time alone. After making this substitution, each of the j equations are integrated in the σ

direction. For j=0 this gives

(5.126)

where the continuous bases and discontinuous weighting functions are as in §5.3.2 and the

integrations result in two equations:

(j=0, m=0)

(5.127)

(j=0, m=1)

(5.128)

For j=1 this gives

∆xi
2

--------1
3
--- Γ–̂ i 1 2⁄– k, Γ

ˆ
i 1 2⁄+ k,+( )

Γi k, Γi k 1 2⁄–, ζ0 Γi k 1 2⁄+, ζ1+=

∆xi
2

-------- Γi 1 2⁄– k 1 2⁄–, ζ0 Γi 1 2⁄– k 1 2⁄+, ζ1+( )ψm( )Ωe
[ +

Γi 1 2⁄+ k 1 2⁄–, ζ0 Γi 1 2⁄+ k 1 2⁄+, ζ1+( )ψm( )Ωe
]

∆xi
2

--------
∆σk

2
--------- Γi 1 2⁄– k 1 2⁄–, Γi 1 2⁄– k 1 2⁄+, Γi 1 2⁄+ k 1 2⁄–, Γi 1 2⁄+ k 1 2⁄+,+ )+ +(

∆xi
2

--------
∆σk

6
--------- Γi 1 2⁄– k 1 2⁄–,– Γi 1 2⁄– k 1 2⁄+, Γi 1 2⁄+ k 1 2⁄–, Γi 1 2⁄+ k 1 2⁄+,+ )–+(
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(5.129)

where again the continuous bases and discontinuous weighting functions are as in §5.3.2

and the integrations result in two equations:

(j=1, m=0)

(5.130)

(j=1, m=1)

. (5.131)

Equations (5.127), (5.128), (5.130) and (5.131), respectively, are added to the left-hand side

of Equations (5.34), (5.37), (5.40), and (5.43) in Table 5.2. These curvature correction

terms are evaluated using the approximations given above in §5.6.1.

This completes the transformation from z coordinates to σ coordinates. The

boundary conditions and post-processing from the previous derivation in §5.3.3 and §5.3.4

are still valid for these transformed equations. The interpolations to the CG grid space

described in §5.4 remain the same, except that ∆z is replaced by ∆σ. The discrete equations

for an interior element in (x,σ) space are given below in Table 5.3. 

Table 5.3  Spatial discretization of the x-σ transport equation for an interior element (using 
linear approximating spaces).

(j = 0, m = 0)

∆xi
6

-------- Γi 1 2⁄– k 1 2⁄–, ζ0 Γi 1 2⁄– k 1 2⁄+, ζ1+( )– ψm( )Ωe
[ +

Γi 1 2⁄+ k 1 2⁄–, ζ0 Γi 1 2⁄+ k 1 2⁄+, ζ1+( )ψm( )Ωe
]

∆xi
6

--------
∆σk

2
--------- Γi 1 2⁄– k 1 2⁄–,– Γi 1 2⁄– k 1 2⁄+,– Γi 1 2⁄+ k 1 2⁄–, Γi 1 2⁄+ k 1 2⁄+,+ )+(

∆xi
6

--------
∆σk

6
--------- Γi 1 2⁄– k 1 2⁄–, Γi 1 2⁄– k 1 2⁄+,–( Γi 1 2⁄+ k 1 2⁄–, Γi 1 2⁄+ k 1 2⁄+,+ )–

∆xi∆σk td
d ci k,

0 0,( ) ∆σk
2

--------- 2γi 1 2⁄+ k,
a 0,( ) 2γi 1 2⁄– k,

a 0,( )–[ ]
∆xi
2

-------- a b–
Hi

------------ 
  2

2χi k 1 2⁄+,
0 a,( ) 2χi k 1 2⁄–,

0 a,( )–[ ]+ + +
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(5.132)

(5.133)

(5.134)

(j = 0, m = 1)

Table 5.3  Spatial discretization of the x-σ transport equation for an interior element (using 
linear approximating spaces).

∆σk
2

--------- ui 1 2⁄+ k 1 2⁄–, ci 1 2⁄+ k,
u 0,( ) 1

3
---ci 1 2⁄+ k,

u 1,( )– 
  ui 1 2⁄+ k 1 2⁄+, ci 1 2⁄+ k,

u 0,( ) 1
3
---ci 1 2⁄+ k,

u 1,( )+ 
 + –

∆σk
2

--------- ui 1 2⁄– k 1 2⁄–, ci 1 2⁄– k,
u 0,( ) 1

3
---ci 1 2⁄– k,

u 1,( )– 
  ui 1 2⁄– k 1 2⁄+, ci 1 2⁄– k,

u 0,( ) 1
3
---ci 1 2⁄– k,

u 1,( )+ 
 + +

∆xi
2

-------- a b–
Hi

------------ 
  wi 1 2⁄– k 1 2⁄+, ci k 1 2⁄+,

0 u,( ) 1
3
---ci k 1 2⁄+,

1 u,( )– 
  +

∆xi
2

-------- a b–
Hi

------------ 
  wi 1 2⁄+ k 1 2⁄+, ci k 1 2⁄+,

0 u,( ) 1
3
---ci k 1 2⁄+,

1 u,( )+ 
  –

∆xi
2

-------- a b–
Hi

------------ 
  wi 1 2⁄– k 1 2⁄–, ci k 1 2⁄–,

0 u,( ) 1
3
---ci k 1 2⁄–,

1 u,( )– 
  –

∆xi
2

-------- a b–
Hi

------------ 
  wi 1 2⁄+ k 1 2⁄–, ci k 1 2⁄–,

0 u,( ) 1
3
---ci k 1 2⁄–,

1 u,( )+ 
  +

∆xi
2

--------
∆σk

2
--------- Γi 1 2⁄– k 1 2⁄–, Γi 1 2⁄– k 1 2⁄+, Γi 1 2⁄+ k 1 2⁄–, Γi 1 2⁄+ k 1 2⁄+,+ + +[ ] 0=

∆xi
Nxσ
---------γi k,

0 0,( ) ci 1 2⁄+ k,
a 0,( ) ci 1 2⁄– k,

a 0,( )–+ 0=

∆σk
Nz

---------χi k,
0 0,( ) ci k 1 2⁄+,

0 a,( ) ci k 1 2⁄–,
0 a,( )–+ 0=

∆xi
∆σk

3
---------

td
d ci k,

0 1,( ) ∆σk
2

--------- 2
3
---γi 1 2⁄+ k,

a 1,( ) 2
3
---γi 1 2⁄– k,

a 1,( )++ +

∆xi
2

-------- a b–
Hi

------------ 
  2

2χi k 1 2⁄+,
0 a,( ) 2χi k 1 2⁄–,

0 a,( ) 4χi k,
0 0,( )–+[ ] +

∆σk
6

--------- ui 1 2⁄+ k 1 2⁄–, c– i 1 2⁄+ k,
u 0,( ) ci 1 2⁄+ k,

u 1,( )+( ) ui 1 2⁄+ k 1 2⁄+, ci 1 2⁄+ k,
u 0,( ) ci 1 2⁄+ k,

u 1,( )+( )+[ ] –

∆σk
6

--------- ui 1 2⁄– k 1 2⁄–, c– i 1 2⁄– k,
u 0,( ) ci 1 2⁄– k,

u 1,( )+( ) ui 1 2⁄– k 1 2⁄+, ci 1 2⁄– k,
u 0,( ) ci 1 2⁄– k,

u 1,( )+( )+ ][ –
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(5.135)

(5.136)

(5.137)

(j = 1, m = 0)

Table 5.3  Spatial discretization of the x-σ transport equation for an interior element (using 
linear approximating spaces).

∆xi
2

-------- a b–
Hi

------------ 
  wi 1 2⁄– k 1 2⁄–, ci k,

0 0,( ) 1
3
---ci k,

0 1,( )– 1
3
---ci k,

1 0,( )– 1
9
---ci k,

1 1,( )+ 
  –

∆xi
2

-------- a b–
Hi

------------ 
  wi 1 2⁄– k 1 2⁄+, ci k,

0 0,( ) 1
3
---ci k,

0 1,( ) 1
3
---ci k,

1 0,( )– 1
9
---ci k,

1 1,( )–+ 
  –

∆xi
2

-------- a b–
Hi

------------ 
  wi 1 2⁄+ k 1 2⁄–, ci k,

0 0,( ) 1
3
---ci k,

0 1,( )– 1
3
---ci k,

1 0,( ) 1
9
---ci k,

1 1,( )–+ 
  –

∆xi
2

-------- a b–
Hi

------------ 
  wi 1 2⁄+ k 1 2⁄+, ci k,

0 0,( ) 1
3
---ci k,

0 1,( ) 1
3
---ci k,

1 0,( ) 1
9
---ci k,

1 1,( )+ + + 
  +

∆xi
2

-------- a b–
Hi

------------ 
  wi 1 2⁄– k 1 2⁄+, ci k 1 2⁄+,

0 u,( ) 1
3
---ci k 1 2⁄+,

1 u,( )– 
  +

∆xi
2

-------- a b–
Hi

------------ 
  wi 1 2⁄+ k 1 2⁄+, ci k 1 2⁄+,

0 u,( ) 1
3
---ci k 1 2⁄+,

1 u,( )+ 
  +

∆xi
2

-------- a b–
Hi

------------ 
  wi 1 2⁄– k 1 2⁄–, ci k 1 2⁄–,

0 u,( ) 1
3
---ci k 1 2⁄–,

1 u,( )– 
  +

∆xi
2

-------- a b–
Hi

------------ 
  wi 1 2⁄+ k 1 2⁄–, ci k 1 2⁄–,

0 u,( ) 1
3
---ci k 1 2⁄–,

1 u,( )+ 
  +

∆xi
6

--------
∆σk

2
--------- Γi 1 2⁄– k 1 2⁄–,– Γi 1 2⁄– k 1 2⁄+, Γi 1 2⁄+ k 1 2⁄–,– Γi 1 2⁄+ k 1 2⁄+,+ +[ ] 0=

∆xi
Nxσ
---------γi k,

0 1,( ) ci 1 2⁄+ k,
a 1,( ) ci 1 2⁄– k,

a 1,( )–+ 0=

∆σk
3Nz
---------χi k,

0 1,( ) 2ci k,
0 0,( )– ci k 1 2⁄+,

0 a,( ) ci k 1 2⁄–,
0 a,( )+ + 0=

∆xi
3

--------∆σk td
d ci k,

1 0,( ) ∆σk
2

--------- 2γi 1 2⁄+ k,
a 0,( ) 2γi 1 2⁄– k,

a 0,( ) 4γi k,
0 0,( )–+[ ]+ +

∆xi
2

-------- a b–
Hi

------------ 
  2 2

3
---χi k 1 2⁄+,

1 a,( ) 2
3
---χi k 1 2⁄–,

1 a,( )+ –
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(5.138)

(5.139)

(5.140)

Table 5.3  Spatial discretization of the x-σ transport equation for an interior element (using 
linear approximating spaces).

∆σk
2

--------- ui 1 2⁄– k 1 2⁄–, ci k,
0 0,( ) 1

3
---ci k,

0 1,( )– 1
3
---ci k,

1 0,( )– 1
9
---ci k,

1 1,( )+ 
  –

∆σk
2

--------- ui 1 2⁄– k 1 2⁄+, ci k,
0 0,( ) 1

3
---ci k,

0 1,( ) 1
3
---ci k,

1 0,( )– 1
9
---ci k,

1 1,( )–+ 
  –

∆σk
2

--------- ui 1 2⁄+ k 1 2⁄–, ci k,
0 0,( ) 1

3
---ci k,

0 1,( )– 1
3
---ci k,

1 0,( ) 1
9
---ci k,

1 1,( )–+ 
  –

∆σk
2

--------- ui 1 2⁄+ k 1 2⁄+, ci k,
0 0,( ) 1

3
---ci k,

0 1,( ) 1
3
---ci k,

1 0,( ) 1
9
---ci k,

1 1,( )+ + + 
  +

∆σk
2

--------- ui 1 2⁄+ k 1 2⁄–, ci 1 2⁄+ k,
u 0,( ) 1

3
---ci 1 2⁄+ k,

u 1,( )– 
  ui 1 2⁄+ k 1 2⁄+, ci 1 2⁄+ k,

u 0,( ) 1
3
---ci 1 2⁄+ k,

u 1,( )+ 
 + +

∆σk
2

--------- ui 1 2⁄– k 1 2⁄–, ci 1 2⁄– k,
u 0,( ) 1

3
---ci 1 2⁄– k,

u 1,( )– 
  ui 1 2⁄– k 1 2⁄+, ci 1 2⁄– k,

u 0,( ) 1
3
---ci 1 2⁄– k,

u 1,( )+ 
 + +

∆xi
6

-------- a b–
Hi

------------ 
  wi 1 2⁄– k 1 2⁄+, c– i k 1 2⁄+,

0 u,( ) ci k 1 2⁄+,
1 u,( )+( )[ ] +

∆xi
6

-------- a b–
Hi

------------ 
  wi 1 2⁄+ k 1 2⁄+, ci k 1 2⁄+,

0 u,( ) ci k 1 2⁄+,
1 u,( )+( )[ ] –

∆xi
6

-------- a b–
Hi

------------ 
  wi 1 2⁄– k 1 2⁄–, ci k 1 2⁄–,

0 u,( )– ci k 1 2⁄–,
1 u,( )+( )[ ] –

∆xi
6

-------- a b–
Hi

------------ 
  wi 1 2⁄+ k 1 2⁄–, ci k 1 2⁄–,

0 u,( ) ci k 1 2⁄–,
1 u,( )+( )[ ] +

∆xi
2

--------
∆σk

6
--------- Γi 1 2⁄– k 1 2⁄–,– Γi 1 2⁄– k 1 2⁄+,– Γi 1 2⁄+ k 1 2⁄–, Γi 1 2⁄+ k 1 2⁄+,+ +[ ] 0=

∆xi
3Nxσ
------------γi k,

1 0,( ) 2ci k,
0 0,( )– ci 1 2⁄+ k,

a 0,( ) ci 1 2⁄– k,
a 0,( )+ + 0=

∆σk
Nz

---------χi k,
1 0,( ) ci k 1 2⁄+,

1 a,( ) ci k 1 2⁄–,
1 a,( )–+ 0=
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(j = 1, m = 1)

Table 5.3  Spatial discretization of the x-σ transport equation for an interior element (using 
linear approximating spaces).

∆xi
3

--------
∆σk

3
---------

td
d ci k,

1 1,( ) ∆σk
2

--------- 2
3
---γi 1 2⁄+ k,

a 1,( ) 2
3
---γi 1 2⁄– k,

a 1,( ) 4
3
---γi k,

0 1,( )–++ +

∆xi
2

-------- a b–
Hi

------------ 
  2 2

3
---χi k 1 2⁄+,

1 a,( ) 2
3
---χi k 1 2⁄–,

1 a,( ) 4
3
---χi k,

1 0,( )–+ –

∆σk
6

--------- ui 1 2⁄– k 1 2⁄–, ci k,
0 0,( )– ci k,

0 1,( ) 1
3
---ci k,

1 0,( ) 1
3
---ci k,

1 1,( )–+ + 
  –

∆σk
6

--------- ui 1 2⁄– k 1 2⁄+, ci k,
0 0,( ) ci k,

0 1,( ) 1
3
---ci k,

1 0,( )– 1
3
---ci k,

1 1,( )–+ 
  –

∆σk
6

--------- ui 1 2⁄+ k 1 2⁄–, c– i k,
0 0,( ) ci k,

0 1,( ) 1
3
---ci k,

1 0,( )– 1
3
---ci k,

1 1,( )+ + 
  –

∆σk
6

--------- ui 1 2⁄+ k 1 2⁄+, ci k,
0 0,( ) ci k,

0 1,( ) 1
3
---ci k,

1 0,( ) 1
3
---ci k,

1 1,( )+ + + 
  +

∆σk
6

--------- ui 1 2⁄+ k 1 2⁄–, c– i 1 2⁄+ k,
u 0,( ) ci 1 2⁄+ k,

u 1,( )+( ) ui 1 2⁄+ k 1 2⁄+, ci 1 2⁄+ k,
u 0,( ) ci 1 2⁄+ k,

u 1,( )+( )+[ ] +

∆σk
6

--------- ui 1 2⁄– k 1 2⁄–, c– i 1 2⁄– k,
u 0,( ) ci 1 2⁄– k,

u 1,( )+( ) ui 1 2⁄– k 1 2⁄+, ci 1 2⁄– k,
u 0,( ) ci 1 2⁄– k,

u 1,( )+( )+ ][ –

∆xi
6

-------- a b–
Hi

------------ 
  wi 1 2⁄– k 1 2⁄–, c– i k,

0 0,( ) 1
3
---ci k,

0 1,( ) ci k,
1 0,( ) 1

3
---ci k,

1 1,( )–+ + 
  –

∆xi
6

-------- a b–
Hi

------------ 
  wi 1 2⁄– k 1 2⁄+, c– i k,

0 0,( ) 1
3
---ci k,

0 1,( )– ci k,
1 0,( ) 1

3
---ci k,

1 1,( )+ + 
  –

∆xi
6

-------- a b–
Hi

------------ 
  wi 1 2⁄+ k 1 2⁄–, ci k,

0 0,( ) 1
3
---ci k,

0 1,( )– ci k,
1 0,( ) 1

3
---ci k,

1 1,( )–+ 
  –

∆xi
6

-------- a b–
Hi

------------ 
  wi 1 2⁄+ k 1 2⁄+, ci k,

0 0,( ) 1
3
---ci k,

0 1,( ) ci k,
1 0,( ) 1

3
---ci k,

1 1,( )+ + + 
  +

∆xi
6

-------- a b–
Hi

------------ 
  wi 1 2⁄– k 1 2⁄+, c– i k 1 2⁄+,

0 u,( ) ci k 1 2⁄+,
1 u,( )+( )[ ] +
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5.7   Select results with the x-z transport model

5.7.1  Verification with 1D analytical solution

The LDG transport algorithm in x-z coordinates, as described above in §5.3, is

verified with an analytical solution for breakthrough plumes with advection and diffusion

in one spatial direction. A rectangular domain with constant grid spacing in the x and z

coordinates is used. For each coordinate space, a 1D problem is set up by setting the

velocity and diffusion coefficient for the cross-stream coordinate direction equal to zero.

For the coordinate of interest, Type I boundary conditions with  are used; Type II

conditions with an inflow concentration of 0.0 are used for the cross-stream coordinate.

A domain with horizontal dimension of 1000m and constant depth of 20m was used

as the test domain for the grid convergence studies. The domain was discretized with

uniform horizontal and vertical grid spacing. For the x coordinate study, the vertical grid

spacing was held constant at a value of ∆z = 2.0 m, while the horizontal grid was resolved;

(5.141)

(5.142)

(5.143)

Table 5.3  Spatial discretization of the x-σ transport equation for an interior element (using 
linear approximating spaces).

∆xi
6

-------- a b–
Hi

------------ 
  wi 1 2⁄+ k 1 2⁄+, ci k 1 2⁄+,

0 u,( ) ci k 1 2⁄+,
1 u,( )+( )[ ] +

∆xi
6

-------- a b–
Hi

------------ 
  wi 1 2⁄– k 1 2⁄–, ci k 1 2⁄–,

0 u,( )– ci k 1 2⁄–,
1 u,( )+( )[ ] +

∆xi
6

-------- a b–
Hi

------------ 
  wi 1 2⁄+ k 1 2⁄–, ci k 1 2⁄–,

0 u,( ) ci k 1 2⁄–,
1 u,( )+( )[ ] +

∆xi
6

--------
∆σk

6
--------- Γi 1 2⁄– k 1 2⁄–, Γi 1 2⁄– k 1 2⁄+,– Γi 1 2⁄+ k 1 2⁄–,– Γi 1 2⁄+ k 1 2⁄+,+[ ] 0=

∆xi
3Nxσ
------------γi k,

1 1,( ) 2ci k,
0 1,( )– ci 1 2⁄+ k,

a 1,( ) ci 1 2⁄– k,
a 1,( )+ + 0=

∆σk
3Nz
---------χi k,

1 1,( ) 2ci k,
1 0,( )– ci k 1 2⁄+,

1 a,( ) ci k 1 2⁄–,
1 a,( )+ + 0=

c̃ 1.0=
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and for the z coordinate study, the horizontal grid spacing was held constant at a value of

∆x = 100.0 m, while the vertical grid was resolved. The mid-depth (or mid-channel for the

z coordinate study) solution was compared to the exact solution and L2 and  error norms

were recorded as the grid was refined. The L2 error is computed over space and time as

(5.144)

and the  error is taken to be the maximum error over all space and time given as

(5.145)

where nt is the number of temporal outputs from the simulation and squared errors are used

in the  norm to eliminate the signs. The analytical solution C(x or z, t) for a one-

dimensional solute breakthrough, as presented by Knox et al. [1993], in the x or z coordinate

direction is given by Equation (5.148) or (5.149), respectively. The convergence of the error

norms, as the grids are refined, are presented in tabular form and in graphical log-log plots.

Two dimensionless numbers are used to characterize the simulations: the Courant

number, given for the x and z-coordinate directions as

 and , (5.146)

and the Peclet number, given for the x and z-coordinate directions as

 and  . (5.147)

The Courant number is often used as a measure of the temporal stability limit and for these

tests it was kept low by choosing ∆t = 0.01 seconds for all simulations. Tests were run with

smaller ∆t values for select diffusivities and grid spacings, but the magnitudes of the error

L∞

L2 error C x z t, ,( ) ci k,–( )2

k 1=

nz

∑
i 1=

nx

∑
 
 
 
 

nx nz( )⁄
 
 
 
 

t 1=

nt

∑
 
 
 
 

nt⁄=

L∞

L∞ Max C x z t, ,( ) ci k,–( )2[ ] i k t, ,( )∀=

L∞

Crx u∆t ∆x⁄= Crz w∆t ∆z⁄=

Pex u∆x Nx⁄= Pez w∆z Nz⁄=
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norms did not change significantly. Temporal convergence is discussed in §5.7.3.

Meanwhile, the Peclet number is often used as a measure of whether the transport is

advection (high Pe) or diffusion dominated (low Pe).

Verification of x-coordinate direction

To set up a test case for the x coordinate, the vertical velocity and diffusion

coefficient, w and Nz, are set equal to zero and the horizontal velocity, u, is set equal to

unity. The solution along the mid-depth is plotted after a simulated 500 sec. and compared

to the analytical solution given by,

(5.148)

where erfc represents the complementary error function, co is the strength of the boundary

condition, Nx is the diffusivity, x is the position along the channel length, and t is the time.

For this study, four diffusivities ranging from advection-dominated flows (Nx = 0.001 m2/

sec) to diffusion-dominated flows (Nx = 25.0 m2/sec) are examined. For each diffusivity,

grid convergence results are generated from simulation output at 20 second intervals over

the length of the 500 second simulation, such that nt = 25 for the L2 error norm.

The analytical solutions for the study diffusivities Nx= 0.001, 1.0, 10.0, and 25.0

m2/sec at t = 500 seconds are plotted in Figure 5.9. Notice that as the diffusion coefficient

is increased the breakthrough curve is not only more dispersed (wider spread), but also that

higher concentrations are progressing further into the channel. Thus, the curves are no

longer symmetric as the diffusion increases.

The maximum cross-stream variation for the domain was also monitored for each

run and additional runs were made with increased resolution in the cross-stream (z)

direction. As expected, the cross-stream variation was zero and no significant change was

noticed in the error norms for this increased resolution, indicating that the solution is indeed

C x t,( )
co
2
----- erfc x ut–( )

2 Nxt
------------------ ux

Nx
------exp erfc x ut+( )

2 Nxt
------------------+=
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one-dimensional in the x direction and the errors are dominated by the x grid resolution. For

each diffusivity, the simulated results for various grid spacings are compared to the

analytical solution (plotted with solid black line), log-log plots of the error norms are

presented, and a summary table of the convergence results is given.

Nx = 0.001 m2/sec

Figures 5.10 and 5.11 show the simulation results and log-log plots of error norms

for the advection-dominated test case (Peclet numbers from 2,500 to 200,000). The

simulation results at resolutions of ∆x = 5m and 10m are not shown as they lie close to the

analytical curve and make the graph too crowded. Table 5.4 presents a summary of the error

norms.   

Notice that the  errors do not change significantly as the grid is refined. This is

due to the sharpness of the front. As the grid is refined, the simulated results lie along the

analytical curve at all points graphically (the red curve in Figure 5.10). However, at the

Figure 5.9 Analytical solution for advection-dispersion 
breakthrough curves in the x coordinate for Nx = 
0.001, 1.0, 10.0 and 25.0 m2/sec at t = 500 seconds.
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jump itself, the simulated results have many data points along the jump while the analytical

solution is an instantaneous discontinuity. Therefore, the maximum error over the domain

will always be located at the jump discontinuity.

Figure 5.10 Simulation results for advection-dominated test case 
(Nx = 0.001 m2/sec) at time t = 500 seconds. Grid 
resolution, ∆x [100m to 2.5m].

0 200 400 600 800 1000
x, meters

0

0.2

0.4

0.6

0.8

1

n
o
i

t
a

r
t

n
e

c
n

o
C

Figure 5.11 Log-log plot of spatial error norms for Nx = 0.001 m2/sec : (a) L2 errors and 
(b) Linf errors.
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The peak convergence rate is the largest change between successive grid resolutions

and theoretically should reach a value of 2.0 for linear interpolating functions in space.

However, due to the severity of this problem (a sharp front), this theoretical value was not

attained. The average convergence rate is computed as the arithmetic average of the rates

between successive grid resolutions, and the best-fit convergence rate is the slope of a best-

fit linear regression through the log-log plots.

Nx = 1.0 m2/sec

Figures 5.12 and 5.13 show the simulation results and error norms for a slightly

more diffusive test case (Peclet numbers from 2.5 to 200). Table 5.5 presents a summary of

the error norms. Notice that less resolution is required to get a more accurate simulation

when some diffusion is added. For example, with Nx = 0.001 m2/sec the L2 error at ∆x =

2.5m is 0.0229, but for Nx = 1.0 m2/sec the L2 error at ∆x = 10m is 0.0035 – an order of

magnitude improvement in error with one-fourth the number of elements. The errors are

converging to zero and the convergence rates approach the theoretical value of 2.0 for linear

interpolants as the grid is refined further, and the peak convergence rates are near 2.0.

Table 5.4  Grid convergence results for Nx = 0.001 m2/sec.

∆x
(m)

Pex Crx L2

200 200,000 0.0005 0.131661 0.459661

100 100,000 0.0001 0.112492 0.491039

50 50,000 0.0002 0.087171 0.502629

20 20,000 0.0005 0.055514 0.353272

10 10,000 0.001 0.043693 0.372653

5 5,000 0.002 0.033719 0.381199

2.5 2,500 0.004 0.022933 0.363765

Peak convergence rate: 0.556 0.385

Average convergence rate: 0.394 0.115

Best fit convergence rate: 0.402 0.075

L∞
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Figure 5.12 Simulation results for diffusive advection-dominated 
test case (Nx = 1.0 m2/sec) at time t = 500 seconds. 
Grid resolution, dx [200 m to 10.0 m].
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Figure 5.13 Log-log plot of spatial error norms for Nx = 1.0 m2/sec : (a) L2 errors and 
(b) Linf errors.
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Nx = 10.0 m2/sec

Figures 5.14 and 5.15 show the simulation results and log-log plots of error for a

more diffusive test case (Peclet numbers from 0.25 to 20). Table 5.6 presents a summary of

the error norms. Notice that for the same resolution, this more diffusive test case has smaller

Table 5.5  Grid convergence results for Nx = 1.0 m2/sec.

∆x
(m)

Pex Crx L2

200 200 0.0005 0.111453 0.341258

100 100 0.0001 0.071440 0.263432

50 50 0.0002 0.038416 0.216620

20 20 0.0005 0.012427 0.140579

10 10 0.001 0.003452 0.060299

5 5 0.002 0.000756 0.019279

2.5 2.5 0.004 0.000153 0.005450

Peak convergence rate: 2.302 1.823

Average convergence rate: 1.893 1.563

Best fit convergence rate: 1.863 1.571

L∞

Figure 5.14 Simulation results for more diffusive test case (Nx = 
10.0 m2/sec) at time t = 500 seconds. Grid resolution, 
dx [200m to 20m].
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errors than the previous test case, e.g., at ∆x = 20m the L2 error for Nx = 1.0 m2/sec is 0.0124

while the L2 error for Nx = 10.0 m2/sec is 0.0013. Also, the errors are converging to zero

and the convergence rates are approaching the theoretical value of 2.0.
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Figure 5.15 Log-log plot of spatial error norms for Nx = 10.0 m2/sec : (a) L2 errors and 
(b) Linf errors.
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Table 5.6  Convergence results for Nx = 10.0 m2/sec.

∆x
(m)

Pex Crx L2

200 20 0.0005 0.057080 0.214512

100 10 0.0001 0.023620 0.173952

50 5 0.0002 0.006881 0.060593

20 2 0.0005 0.001316 0.016845

10 1 0.001 0.000346 0.006499

5 0.5 0.002 0.000088 0.001567

2.5 0.25 0.004 0.000027 0.000407

Peak convergence rate: 1.982 2.052

Average convergence rate: 1.837 1.658

Best fit convergence rate: 1.853 1.615

L∞
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Nx = 25.0 m2/sec

Figures 5.16 and 5.17 show the simulation results and log-log plots of error norms

for a diffusion-dominated test case (Peclet numbers from 0.1 to 8). Table 5.7 presents a

summary of the error norms. Notice that the smallest resolutions are not plotted in Figure

Figure 5.16 Simulation results for diffusion-dominated test case 
(Nx = 25.0 m2/sec) at time t = 500 sec. Grid 
resolution, dx [200 m to 50 m].
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Figure 5.17 Log-log plot of spatial error norms for Nx = 25.0 m2/sec : (a) L2 errors and 
(b) Linf errors.
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5.16 since they lie on top of the red curve and make the plot too crowded. The peak

convergence rates are near the theoretical value of 2.0 while the average and best-fit slopes

are near the theoretical value.

Verification of z-coordinate direction

To set up a test case for the z coordinate, the horizontal velocity and diffusion

coefficient, u and Nx, are set equal to zero and the vertical velocity, w, is set equal to 0.01.

The solution at the middle of the channel is plotted after a simulated 1000 sec (when the

plume has reached mid-depth) and then compared to the analytical solution given by,

(5.149)

where erfc represents the complementary error function, co is the strength of the boundary

condition, Nz is the diffusivity, z is the position along the channel depth, and t is the time.

For this study, four diffusivities ranging from advection-dominated flows (Nz = 10-6 m2/

sec) to diffusion-dominated flows (Nz = 0.004 m2/sec) are examined. The analytical

solutions for the study diffusivities are shown in Figure 5.18. 

Table 5.7  Grid convergence results for Nx = 25.0 m2/sec.

∆x
(m)

Pex Crx L2

200 8 0.00005 0.033998 0.154232

100 4 0.0001 0.011297 0.091014

50 2 0.0002 0.003122 0.026359

20 0.8 0.0005 0.000609 0.009585

10 0.4 0.001 0.000158 0.002340

5 0.2 0.002 0.000045 0.000675

2.5 0.1 0.004 0.000023 0.000846

Peak convergence rate: 1.950 2.035

Average convergence rate: 1.800 1.680

Best fit convergence rate: 1.814 1.602

L∞

C z t,( )
co
2
----- erfc z wt–( )

2 Nzt
------------------- wz

Nz
------exp erfc z wt+( )

2 Nzt
-------------------+=
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Again, the maximum cross-stream variation for the domain was monitored for each

run and additional runs were made with increased resolution in the cross-stream (x)

direction. As expected, the cross-stream variation was zero and no significant change was

noticed in the error norms for this increased resolution, indicating that the solution is

essentially one-dimensional in the z direction and the errors are dominated by the z grid

resolution. For each diffusivity, plots of the simulated results for various grid spacings

compared to the analytical solution and log-log plots of the error norms are presented, as

well as a summary table of the convergence results.

Nz= 10 -6 m2/sec

Figures 5.19 and 5.20 show the simulation results and error norms for the

advection-dominated test case (Peclet numbers from 625 to 40,000) and Table 5.8 presents

a summary of the error norms. The simulation results for grid resolutions of ∆z = 0.125m

and 0.0625m are not shown since they lie between the two red curves and crowd the graph.

Notice that the simulated results converge to the analytical solution as the grid is resolved.

Figure 5.18 Analytical solution for advection-dispersion 
breakthrough curves in the z coordinate for Nz = 10-6, 
0.0001, 0.001 and 0.004 m2/sec at t = 1000 seconds.

0 5 10 15 20
z, meters

0

0.2

0.4

0.6

0.8

1

n
o

i
t

a
r

t
n

e
c

n
o

c

286



However, as was the case with the advection-dominated test case in the x coordinate, the

 error does not approach zero because of the sharp front. As more data points are added

to the portion of the curve where the front is located, the error will not decrease past a

certain point due to the instantaneous jump of the analytical curve being approximated by

discrete points. Also, the convergence rates are quite similar to those for the advection-

Figure 5.19 Simulation results for advection-dominated test case 
(Nz = 10-6 m2/sec) at time t = 1000 sec. Grid 
resolution, dz [4.0 m to 0.03125 m].
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Figure 5.20 Log-log plot of spatial error norms for Nz = 10-6 m2/sec: (a) L2 error, 
(b) Linf error.
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dominated test case in the x-coordinate direction, given in parentheses in Table 5.8. Finally,

due to the nature of the sharp front, the convergence rates are well below the theoretical

value of 2.0 for linear interpolants on smooth solutions.

Nz= 0.0001 m2/sec

Figures 5.21 and 5.22 show the simulation results and log-log plots of error norms

for a more diffusive advection-dominated test case (Peclet numbers from 6.25 to 400) and

Table 5.9 presents a summary of the error norms. As the grid is resolved, the model results

converge to the analytical solution. The simulation results for the finest resolution are not

shown since they overlie the red curve and crowd the graph. The peak convergence rate for

the L2 error norm is near the theoretical value of 2.0 for linear interpolants, but the rates for

the  error norm are somewhat lower. The convergence rates in the z coordinate are also

similar to the coordinating test case in the x coordinate (Nx = 1.0 m2/sec), shown in

parentheses in Table 5.9.

Table 5.8  Grid convergence results for Nz = 10-6 m2/sec.

∆z
(m)

Pez Crz L2

4.0 40000 0.000025 0.13166755 0.45968364

2.0 20000 0.00005 0.11250578 0.49106329

1.0 10000 0.0001 0.08694574 0.49701228

0.5 5000 0.0002 0.06409106 0.47541374

0.25 2500 0.0004 0.04489673 0.42970364

0.125 1250 0.0008 0.02997586 0.37999885

0.0625 625. 0.0016 0.01821482 0.31020307

0.03125 312.5 0.0032 0.00889667 0.24381869

Peak convergence rate: 1.034 (0.556)* 0.347 (0.385)

Average convergence rate: 0.555 (0.394) 0.205 (0.115)

Best fit convergence rate: 0.541 (0.402) 0.205 (0.075)

* Numbers in parentheses are the x convergence rates from Table 5.4.
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Figure 5.21 Simulation results for slightly diffusive advection-
dominated test case (Nz = 0.0001 m2/sec) at time t = 
1000 sec. Grid resolution, ∆z [4.0 m to 0.125 m].
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Figure 5.22 Log-log plot of spatial error norms for Nz = 0.0001 m2/sec: (a) L2 error, 
(b) Linf error.
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Nz= 0.001 m2/sec

Figures 5.24 and 5.23 show the log-log plots of error norms and the simulation

results for a more diffusive test case (Peclet numbers from 0.3125 to 40). Table 5.10

presents a summary of the error norms. Breakthrough curves for resolutions smaller than

Table 5.9  Grid convergence results for Nz = 0.0001 m2/sec.

∆z
(m)

Pez Crz L2

4.0 400 0.000025 0.12098928 0.38867371

2.0 200 0.00005 0.08355729 0.34125833

1.0 100 0.0001 0.05026854 0.26343150

0.5 50 0.0002 0.02469958 0.21662041

0.25 25 0.0004 0.00940659 0.10147721

0.125 12.5 0.0008 0.00278536 0.04774518

0.0625 6.25 0.0016 0.00060743 0.02109214

Peak convergence rate: 2.197 (2.302)* 1.179 (1.823)

Average convergence rate: 1.782 (1.893) 1.120 (1.563)

Best fit convergence rate: 1.779 (1.863) 1.117 (1.571)

* Numbers in parentheses are the x convergence rates from Table 5.5.
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Figure 5.23 Log-log plot of spatial error norms for Nz = 0.001 m2/sec: (a) L2 error, (b) 
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∆z = 0.25m are not shown in Figure 5.24 since they lie on top of the red curve. Notice that

the model results converge to the analytical solution. The peak and best-fit convergence

rates are near the theoretical value of 2.0 for both error norms; and the rates are similar to

Table 5.10  Grid convergence results for Nz = 0.001 m2/sec.

∆z
(m)

Pez Crz L2

4.0 40 0.000025 0.07626821 0.26002591

2.0 20 0.00005 0.03710528 0.21451225

1.0 10 0.0001 0.01295931 0.08672942

0.5 5 0.0002 0.00410147 0.06059333

0.25 2.5 0.0004 0.00098905 0.01936984

0.125 1.25 0.0008 0.00025323 0.00511611

0.0625 0.625 0.0016 0.00006376 0.00132384

Peak convergence rate: 2.052 (1.982)* 1.950 (2.052)

Average convergence rate: 1.917 (1.837) 1.839 (1.658)

Best fit convergence rate: 1.935 (1.853) 1.847 (1.615)

* Numbers in parentheses are the x convergence rates from Table 5.6.

Figure 5.24 Simulation results for diffusive test case (Nz = 0.001 
m2/sec) at time t = 1000 sec. Grid resolution, dz [4.0 
m to 0.25 m].
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the corresponding x coordinate test case with Nx = 10.0 m2/sec, given in parentheses.

Nz= 0.004 m2/sec

Figures 5.25 through 5.26 show the simulation results and log-log plots of error

norms for the most diffusive test case (Peclet numbers from 0.15625 to 10) and Table 5.11

presents a summary of the error norms. Breakthrough curves for resolution smaller than ∆z

Figure 5.25 Simulation results for diffusion-dominated test case 
(Nz = 0.004 m2/sec) at time t = 1000 sec. Grid 
resolution, dz [4.0 m to 1.0 m].
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Figure 5.26 Log-log plot of error norms for Nz = 0.004 m2/sec: (a) L2 error and 
(b) Linf error.
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= 1.0m are not shown in Figure 5.25 since they lie nearly over the red curve and make the

graph too crowded. For this diffusion dominated test case, the transport model converges

to the analytical solution. The peak convergence rates for both the error norms are near the

theoretical value of 2.0; and all of the rates are similar to the convergence rates for the

diffusion dominated test case in the x-direction (Nx = 25.0 m2/sec), given in parentheses.

The LDG method presented herein performs quite well over the range of test cases

in both spatial directions: from advection dominated to diffusion dominated. Temporal

convergence results for the validation test cases will be presented in §5.7.3 and mass

balance tests for a simple Gauss plume are presented in the next section.

5.7.2  Examination of mass balance

To evaluate this algorithm's ability to preserve mass, a test case was run with a

known initial mass. The total mass in the domain was computed and compared to this initial

mass as the simulation progressed. The initial condition was a Gaussian distribution in

either the x or z coordinate. Constant grid spacing and velocity fields were used, and the

cross-stream diffusion and velocity were set to zero to simulate 1D transport in the direction

Table 5.11  Grid convergence results for Nz = 0.004 m2/sec.

∆z
(m)

Pez Crz L2

4.0 10 0.000025 0.03897427 0.17394397

2.0 5 0.00005 0.01365194 0.11037563

1.0 2.5 0.0001 0.00372179 0.03296036

0.5 1.25 0.0002 0.00113126 0.01642067

0.25 0.625 0.0004 0.00029712 0.00475637

0.125 0.3125 0.0008 0.00008002 0.00107441

0.0625 0.15625 0.0016 0.00002246 0.00027431

Peak convergence rate: 1.929 (1.950)* 2.146 (2.035)

Average convergence rate: 1.794 (1.800) 1.551 (1.680)

Best fit convergence rate: 1.813 (1.814) 1.574 (1.602)

* Numbers in parentheses are the x convergence rates from Table 5.7.
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of interest. The simulations were run long enough to transport the distribution a significant

distance without any of the plume leaving the domain. Also, the dimension for the

coordinate of interest was doubled, relative to the verification test cases of §5.7.1, to ensure

that the plume remains inside the domain of interest. Type II boundary conditions with an

inflow concentration of 0.0 were used for both the x and z coordinate directions. Total mass

was calculated by multiplying each elemental average concentration by the corresponding

elemental area and summing these quantities over the entire domain.

Grid convergence results were generated for all of the diffusivity values used in the

1D validation studies. As in the validation studies, the L2 and  error norms were

calculated for the total mass over space and time. Graphs of the total mass to initial mass

ratio, which should equal 1.0 for all time if the algorithm is conservative, are presented for

select grid resolutions. Log-log plots are given only for the L2 error norm, as the  error

norms have similar behavior and differ only in magnitude. Both error norms are

summarized in tabular form.

Analysis of the x-coordinate direction

The domain of interest was a 2000m channel with constant 20m bathymetry. The

vertical grid spacing was held constant at ∆z = 2.0m. The Gaussian distribution was

initialized in the x coordinate and was constant with depth. The initial plume was centered

at x=100.0m and the simulation was run for 1000sec with a velocity of u=1.0 m/s. Thus, the

final distribution should be centered at x=1100.0m. The Gaussian spread was σ=19.9471,

which gives an integrated area of 50.0 moles/m2 over the length of the channel. When

multiplied by the bathymetry (and a unit width), this yields a total initial mass of exactly

1000.0 moles. This test case was run for the four values of diffusivity presented above in

the 1D validation, Nx = 0.001, 1.0, 10.0 and 25.0 m2/s. To ensure that any errors in mass are

dominated by the spatial resolution, a time step of ∆t = 0.001 was used for all of the mass

balance runs in the x coordinate. Temporal resolution for accuracy and mass balance will
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be discussed further in §5.7.3.

The effect of boundary conditions on mass balance was examined for two of the

diffusivities, Nx = 1.0 and 25.0 m2/s. For each of these test cases, all three boundary types

were examined for the x coordinate while the BCs for the z coordinate remained fixed at

Type II (since w=0.0, this results in Type III BCs in z). For Type I BCs the condition was

set as  so that no new mass was added to the system. For all boundary conditions,

the time step was 0.001 sec.

Nx= 0.001 m2/s

Figure 5.27 shows the mass to initial mass ratios, the L2 error norm, and the Gauss

plumes for the advection-dominated test case. Table 5.12 presents a summary of the error

norms. From the tabulated errors, note that the odd behavior for the coarsest grid is in the

sixth decimal place. For all but the coarsest grid resolution, the mass balance for this
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Figure 5.27  Mass balance graphics 
for Nx = 0.001 m2/sec. (a) Mass ratios 
at grid resolutions, dx [200m to 5m],  
(b) log-log plot of L2 mass error versus 
grid resolution, (c) Gauss plumes at 
resolutions, dx [200m to 5m].
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advective test case is quite good. Note that for the most coarse resolutions, the initial Gauss

plume is not well represented with so few data points and the peak may not be captured,

such that the initial mass is not equal to exactly 1000 moles. Despite this difference in initial

mass, however, the algorithm is able to conserve the total mass in the domain with any

spatial resolution.

Nx= 1.0 m2/sec

Figures 5.28 through 5.30 compare the mass ratios, the initial and final Gauss

plumes, and the L2 mass errors for a more diffusive advection-dominated test case with all

three types of boundary conditions. Table 5.13 presents a summary of the error norms. Note

that the oscillatory nature of the mass ratio for Type III BCs is on a scale of 10-12. For both

the natural, or Type II, and no-flux Type III boundary conditions, the total mass in the

system is conserved as the grid is resolved. Again, the coarsest resolutions do not accurately

capture the initial Gaussian distribution, but mass balance is not too bad at any of the spatial

resolutions. For this slightly diffusive test case, perfect mass balance can be achieved with

almost any resolution with Type II or III BCs. However, for Type I BCs only the fine spatial

resolutions have acceptable mass errors, and even then perfect mass balance cannot be

achieved. This will be discussed further when the results for the diffusion dominated test

case are presented below. Notice also that for the three boundary types the final Gauss

plumes themselves are only visibly different at the coarsest resolutions.

Table 5.12  Spatial errors in mass balance for Nx = 0.001 m2/s.

∆x
(m)

Pex Crx L2

200 200000 0.000005 8.3768E-06 3.8770E-05

100 100000 0.00001 6.7287E-12 9.8339E-12

40 40000 0.000025 1.7995E-11 3.4220E-11

20 20000 0.00005 8.3099E-12 2.1259E-11

10 10000 0.0001 9.7435E-12 1.9895E-11

5 5000 0.0002 1.1241E-11 2.1487E-11
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Figure 5.28 Mass ratio versus time for Nx 
= 1.0 m2/sec with: (a) Type I, (b) Type II, 
and (c) Type III BCs. Grid resolutions, dx 
[200m to 5m].
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Figure 5.29 Gauss plumes for Nx = 1.0 m2/sec with grid resolutions, dx [200m to 5m].
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Nx= 10.0 m2/sec

Figure 5.31 shows the mass ratios, the L2 mass errors and the Gauss plumes for a

diffusion-dominated test case. Table 5.14 presents a summary of the error norms. As the

Table 5.13  Spatial errors in mass balance for Nx = 1.0 m2/s.

Type I BCs Type II BCs Type III BCs

∆x
(m)

Pex Crx L2 L2 L2

200 200 0.000005 53.56460 59.44260 0.008205 0.046605 4.4261e-11 1.0914e-10

100 100 0.00001 0.860520 1.188620 5.2653e-8 2.7574e-7 1.9160e-12 4.4906e-12

40 40 0.000025 0.654976 0.663270 1.2311e-11 2.1146e-8 9.4109e-12 2.0464e-11

20 20 0.00005 0.016647 0.016689 3.7624e-11 5.5024e-11 3.2056e-11 4.9113e-11

10 10 0.0001 0.000309 0.000310 1.0059e-11 1.6939e-11 1.3607e-11 2.1828e-11

5 5 0.0002 0.000108 0.000110 1.3522e-11 2.2055e-11 2.0246e-11 2.8422e-11
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grid is resolved, the total mass in the system is conserved and the mass ratio approaches

unity. This is evident in the mass ratio plots and the error norms. With enough resolution,

near perfect mass balance can be achieved for this diffusion-dominated case.

Table 5.14  Spatial errors in mass balance for Nx = 10.0 m2/s.

∆x
(m)

Pex Crx L2

200 20 0.000005 0.182358 0.730626

100 10 0.00001 2.1258E-5 9.0626E-5

40 4 0.000025 2.4902E-10 1.2193E-9

20 2 0.00005 5.0137E-9 2.5058E-8

10 1 0.0001 1.9285E-8 9.6275E-8

5 0.5 0.0002 2.4657E-8 1.2305E-7
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Figure 5.31  Mass balance graphics 
for Nx = 10.0 m2/sec. (a) Mass ratios 
at grid resolutions, dx [200m to 5m], 
(b) log-log plot of L2 mass error 
versus grid resolution, (c) Gauss 
plumes at resolutions, dx [200m to 
5m].
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Nx= 25.0 m2/sec

Figures 5.32 through 5.34 compare the initial and final Gauss plumes, the mass to

initial mass ratios, and L2 mass errors for the most diffusive test case with all three types of

boundary conditions. Table 5.15 presents a summary of the error norms. Note that the scale

for the oscillations in mass ratio for Type III BCs is on the order of 10-12.

For this highly diffusive test case, mass balance is not achieved with Type I

boundary conditions. In fact, as the grid is resolved, the average error in the domain

converges to a value of about 25 moles, meaning that the total mass in the system is

approaching 975 instead of 1000. This error is significant enough that it is evident in the

mass ratio as well. However, by using Type II boundary conditions much better mass

balance can be achieved. The average error converges to a value around 0.005, which is

significantly better than the previous error of 24 but is not as good as can be achieved with

lower values of the diffusion coefficient. This error in mass can be explained by noticing

that there is a decline in the mass ratio as the final time is approached. Due to the large value

of diffusion, the outer edge of the plume has reached the right boundary by t=1000 sec.

With Type II BCs, the plume is allowed to leave the domain and therefore mass is leaving

the system. With Type III BCs, the boundary is closed so that mass cannot escape and

Table 5.15  Spatial errors in mass balance for Nx = 25.0 m2/s.

Type I BCs Type II BCs Type III BCs

∆x
(m)

Pex Crx L2 L2 L2

200 8 0.00005 927.546 982.25 0.406721 1.43226 1.6670e-10 2.2146e-10

100 4 0.0001 22.9499 23.3934 6.9206E-5 3.3421E-4 1.6612e-12 3.1264e-12

40 1.6 0.00025 22.0599 23.4249 0.004178 0.020108 8.3451e-12 1.6371e-11

20 0.8 0.0005 22.8584 24.2385 0.005359 0.025555 5.0720e-12 1.1141e-11

10 0.4 0.001 23.5706 24.9878 0.005652 0.026895 5.4143e-12 1.3074e-11

5 0.2 0.002 23.7049 25.1323 0.005727 0.027239 6.1926e-12 1.3188e-11
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Figure 5.32 Gauss plumes for Nx = 25.0 m2/sec with grid resolutions, dx [200m to 5m].
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Figure 5.33 Mass ratio versus time for Nx 
= 25.0 m2/sec with: (a) Type 
I, (b) Type II and (c) Type III 
BCs. Grid resolution, dx 
[200m to 5m].
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perfect mass balance is achievable at any resolution. Notice also that for the three boundary

types the final Gauss plumes themselves are only visibly different at the coarsest

resolutions. Mass balance and boundary conditions are discussed further in §5.7.3 when the

temporal resolution is examined more closely.

Analysis of the z-coordinate direction

The domain of interest was a 1000m channel with constant 40m bathymetry. The

horizontal grid spacing was held constant at ∆x = 100.0m. The Gaussian distribution was

initialized in the z coordinate and was constant along the channel. The initial plume was

centered at z=10.0m and the simulation was run for 1000sec with a velocity of w=0.01 m/

s. Thus, the final distribution should be centered at z=20.0m. A time step of ∆t = 0.01sec

was sufficient to maintain mass balance, and no significant change was noticed when a

smaller time step was used. The Gaussian spread was σ=1.196845, which gives an
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integrated area of 3.0 moles/m2 over the depth of the channel. When multiplied by the

channel length (and a unit width), this yields a total initial mass of 3000.0 moles. This test

case was run for the four values of diffusivity presented above in the 1D validation, Nz =

0.000001, 0.0001, 0.001 and 0.005 m2/s. Only Type II boundary conditions were tested in

the z coordinate, since the results with Type I or III would be similar to what was found in

the x coordinate.

Nz= 10 -6 m2/sec

Figure 5.35 shows the mass to initial mass ratios, the L2 mass errors, and the initial

and final Gauss plumes for the advection-dominated test case and Table 5.16 presents a

summary of the error norms. Note that the differences in the scale for Figure 5.35a are in

the eleventh decimal place, such that all of the mass ratios are essentially equal to one. For

this advection-dominated test case, perfect mass balance can be achieved with nearly all of

the resolutions. As in the x coordinate test cases, the coarsest resolutions do not capture the

peak of the Gaussian distribution, so the initial mass is not equal to exactly 3000 moles;

however, the initial mass is still conserved. This is evident in the plot of mass ratios and in

the convergence results. 

Table 5.16  Spatial errors in mass balance for Nz = 0.000001 m2/s.

∆z
(m)

Pez Crz L2

4 40000 0.000025 4.0898E-6 0.00001473

2 20000 0.00005 1.5464E-11 3.8654E-11

1 10000 0.0001 2.1243E-11 3.3651E-11

0.5 5000 0.0002 9.0054E-12 1.8645E-11

0.25 2500 0.0004 1.9038E-11 2.8649E-11

0.125 1250 0.0008 5.9327E-12 1.2733E-11
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Nz= 0.0001 m2/sec

Figure 5.36 shows the mass ratios, the L2 mass errors, and the initial and final Gauss

plumes for a more diffusive advection-dominated test case, and Table 5.17 presents a

summary of the error norms. For this more diffusive advection-dominated test case, perfect

Table 5.17  Spatial errors in mass balance for Nz = 0.0001 m2/s.

∆z
(m)

Pez Crz L2

4 400 0.000025 0.00040817 0.00190551

2 200 0.00005 1.2259E-8 4.7407E-8

1 100 0.0001 2.0488E-11 3.7289E-11

0.5 50 0.0002 1.5217E-11 2.6830E-11

0.25 25 0.0004 8.9607E-12 1.9554E-11

0.125 12.5 0.0008 5.5397E-12 1.2278E-11
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Figure 5.35 Mass balance graphics for 
Nz = 10-6 m2/sec. (a) Mass ratios at grid 
resolutions, dz [4m to 0.125m], (b) log-
log plot of L2 mass error versus grid 
resolution, (c) Gauss plumes at 
resolutions, dz [4m to 0.125m].
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mass balance can be achieved as the grid is resolved. As before, the coarsest resolutions do

not capture the peak of the Gaussian distribution, so the initial mass is not equal to exactly

3000 moles; however, the initial mass is conserved. This is evident in the plot of mass ratio

and in the convergence results. For grid resolutions less than ∆z = 2.0m, mass balance is

near perfect. Notice that the peaks of the final plumes are decreased relative to those for the

lower diffusion coefficient in the previous test case.

Nz= 0.001 m2/sec

Figure 5.37 shows the mass to initial mass ratios, the L2 errors, and the initial and

final Gauss plumes for a diffusion-dominated test case, and Table 5.18 presents a summary

of the error norms. For this diffusion-dominated test case, perfect mass balance can be

achieved as the grid is resolved, and all resolutions less than or equal to ∆z = 2m provide
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Figure 5.36 Mass balance graphics 
for Nz = 0.0001 m2/sec. (a) Mass 
ratios at grid resolutions, dz [4m to 
0.125m], (b) log-log plot of L2 mass 
error versus grid resolution, (c) Gauss 
plumes at resolutions, dz [4m to 
0.125m].
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adequate results. Notice that the peak of the final plumes continue to decrease and the

plumes become more dispersed, relative to the previous test cases, as the diffusion

coefficient is increased.

Table 5.18  Spatial errors in mass balance for Nz = 0.001 m2/s.

∆z
(m)

Pe Cr L2

4 40 0.000025 0.00774373 0.03253454

2 20 0.00005 3.4922E-7 1.4580E-6

1 10 0.0001 1.0331E-11 2.5921E-11

0.5 5 0.0002 1.1889E-11 2.0009E-11

0.25 2.5 0.0004 9.7905E-12 2.1828E-11

0.125 1.25 0.0008 7.9699E-12 1.8190E-11

0 10 20 30 40
z, meters

0

0.2

0.4

0.6

0.8

1

n
o

i
t

a
r
t

n
e

c
n
o

C

200 400 600 800 1000
Time, sec

0.999992

0.999994

0.999996

0.999998

1

s
s
a

M
o
i
t
a

r

0.2 0.5 1. 2. 4.
dz

1. ´ 10- 11

1. ´ 10-9

1. ´ 10-7

0.00001

0.001

2
L

s
s
a

m
r

o
r

r
e

Figure 5.37 Mass balance graphics 
for Nz = 0.001 m2/sec. (a) Mass ratios 
at grid resolutions, dz [4m to 0.125m], 
(b) log-log plot of L2 mass error versus 
grid resolution, (c) Gauss plumes at 
resolutions, dz [4m to 0.125m].
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Nz= 0.004 m2/sec

Figure 5.38 shows the mass ratios, the L2 errors, and the initial and final Gauss

plumes for the most diffusive test case. Table 5.19 presents a summary of the error norms.

For this most diffusive test case, near perfect mass balance can be achieved as the grid is

Table 5.19  Spatial errors in mass balance for Nz = 0.004 m2/s.

∆z
(m)

Pez Crz L2

4 10 0.000025 0.03184391 0.08394053

2 5 0.00005 0.00004997 0.00020058

1 2.5 0.0001 9.9966E-9 4.7490E-8

0.5 1.25 0.0002 3.2383E-9 1.5856E-8

0.25 0.625 0.0004 1.1062E-8 5.4536E-8

0.125 0.3125 0.0008 1.5807E-8 7.7731E-8
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Figure 5.38 Mass balance graphics 
for Nz = 0.004 m2/sec. (a) Mass ratios 
at grid resolutions, dz [4m to 0.125m], 
(b) log-log plot of L2 mass error versus 
grid resolution, (c) Gauss plumes at 
resolutions, dz [4m to 0.125m]. 0 10 20 30 40
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resolved; the error is in the eighth decimal place. Resolutions at or below ∆z = 1.0m are

required for a good solution, but resolutions up to ∆z = 2.0m are also acceptable. Notice

that the peaks are decreased and the plumes themselves are more diffused, relative to the

lower diffusion coefficients in the previous test cases. As in the x-direction mass balance

study, with the higher diffusion some of the mass is allowed to escape at the right boundary

when Type II BCs are used.

5.7.3  Temporal stability and accuracy for 1D test cases

Stability results

A numerical stability analysis was performed for the 1D analytical verification test

cases; simulations were run at increasingly larger time steps until instability was reached.

For each value of diffusivity, coarse, intermediate and fine grid resolutions were tested. The

accuracy and stability of the algorithm were found to depend upon the Peclet number. In

general, for highly diffusive flows (small Pe) the errors were greater and the stability

constraint was more restrictive, while for advection-dominated flows (large Pe) the errors

were reasonable, given the sharp nature of the front, and the stability constraint was less

restrictive. Stability results for the 1D x-coordinate verification test cases are presented in

Table 5.20 and results for the z-coordinate are presented in Table 5.21.   

In general, it was found that for Peclet numbers greater than 5, a Courant number

less than 0.5 was needed for stability, while for Peclet numbers less than 5, a Courant

number less than approximately 0.1*Pe was needed for stability.

Temporal convergence in the x-coordinate direction

Temporal convergence tests were done for selected spatial resolutions and

diffusivities for both the analytical verification and mass balance test cases. For the x

coordinate, temporal convergence was done for Nx = 1.0 and 25.0 m2/s with a spatial

resolution of ∆x = 10m for the verification test case and ∆x = 20m for the mass balance test
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case. For the slightly diffusive test case of Nx = 1.0 m2/s, these resolutions give Peclet

numbers of 10 and 20, respectively, while for the diffusion-dominated test case, the Peclet

Table 5.20  Stability constraints for x coordinate tests.

Nx

(m2/s)

∆x
(m)

max ∆t
(sec)

Pex Crx

0.001 200 100 200,000 0.50

0.001 20 10 20,000 0.50

0.001 2.5 1.25 2,500 0.50

1.0 200 100 200 0.50

1.0 20 10 20 0.50

1.0 2.5 0.7 2.5 0.28

10.0 200 100 20 0.50

10.0 20 5.0 2.0 0.25

10.0 2.5 0.1 0.25 0.04

25.0 200 100 8.0 0.50

25.0 20 2.4 0.8 0.12

25.0 2.5 0.025 0.1 0.01

Table 5.21  Stability constraints for z coordinate tests.

Nz

(m2/s)

∆z
(m)

max ∆t
(sec)

Pez Crz

0.000001 4 200 40,000 0.50

0.000001 0.5 25 5,000 0.50

0.000001 0.25 12.5 2,500 0.50

0.0001 4 200 400 0.50

0.0001 0.5 25 50 0.50

0.0001 0.25 12.5 25 0.50

0.001 4 200 40 0.50

0.001 0.5 22.5 5 0.45

0.001 0.25 7.0 2.5 0.28

0.004 4 200 10 0.50

0.004 0.5 8.5 1.25 0.17

0.004 0.25 2 0.625 0.08
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numbers are 0.4 and 0.8, respectively. For the mass balance test cases, temporal

convergence studies were done with all three boundary condition types, as was done for the

spatial convergence tests for these two values of diffusivity. For each convergence study,

only the L2 error norms are plotted, but both error norms are presented in tabular form.

Figure 5.39 shows the L2 error norms and Table 5.22 summarizes the convergence

Table 5.22  Temporal convergence for x verification test cases.

Nx = 1.0 m2/sec (Pex = 10) Nx = 25.0 m2/sec (Pex = 0.4)

∆t
(sec)

Crx L2 L2

5 0.5 0.03826555 0.37479877 unstable

2 0.2 0.02056503 0.15639614 unstable

1 0.1 0.00821162 0.05599851 unstable

0.5 0.05 0.00389862 0.05627594 0.00318000 0.01823136

0.1 0.01 0.00383753 0.05960612 0.00024145 0.00291052

0.01 0.001 0.00430232 0.06029930 0.00015764 0.00233952

0.001 0.0001 0.00435393 0.06036653 0.00022944 0.00228256

0.0005 0.00005 na 0.00022984 0.00227940

Peak rate: 1.324 1.482 1.602 1.140

Average rate: 1.026 1.218 0.893 0.617

Best-fit linear rate: 1.013 1.169 0.728 0.495

Figure 5.39 L2 error versus time step for the 1D x verification test cases: (a) Nx = 1.0 
and (b) Nx = 25.0 m2/sec.
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results for the verification test cases. The average and best fit rates are computed for the

linear portion of the curves before they level off. Notice that for Nx = 1.0 m2/sec the

solutions have converged by ∆t = 0.5 seconds, while for Nx = 25.0 m2/sec the solutions have

converged by ∆t = 0.1 seconds. Therefore, the time step of 0.001 seconds that was used for

the verification test cases is sufficient over the range of diffusion values. However, even at

the smallest time step, there will be some error relative to the analytical solution. Also note

that all of the convergence rates for both values of diffusivity are near the theoretical value

of 1.0 for an explicit time discretization.

Mass ratio plots at a diffusivity of Nx = 1.0 m2/sec comparing the boundary types

are given in Figure 5.40; convergence results are given in Figure 5.41 and Table 5.23. Note

that although the mass ratios with Type II and III BCs appear to be very erratic, the scale of

the plots is around the twelfth decimal place, as is evident in the convergence results. For

Type I BCs with this low value of diffusivity, the mass builds up to a value slightly higher

than the original mass in the domain and then levels out within 100 seconds. Although, this

is not a huge error, compared to the other two boundary condition types, mass balance is

not achieved with Dirichlet conditions.   

Table 5.23  Temporal errors in mass balance for Nx=1.0 m2/s (Pex = 20).

Type I BCs Type II BCs Type III BCs

∆t
(sec)

Crx L2 L2 L2

10 0.5 0.039815 0.039922 1.7637e-12 4.0927e-12 1.5804e-12 3.9790e-12

5 0.25 0.023445 0.023479 1.4633e-12 4.0927e-12 1.5820e-12 4.3201e-12

2 0.1 0.018671 0.018711 2.0623e-12 5.6843e-12 1.7085e-12 3.6380e-12

1 0.05 0.017660 0.017701 2.7454e-12 6.0254e-12 1.8576e-12 5.0022e-12

0.1 0.005 0.016740 0.016782 2.1774e-12 5.1159e-12 2.6682e-12 5.5707e-12

0.01 0.0005 0.016655 0.016697 1.9842e-12 5.0022e-12 2.9646e-12 6.1391e-12

0.001 0.00005 0.016647 0.016689 3.7624e-11 5.5024e-11 3.2056e-11 4.9113e-11
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Figure 5.40 Mass ratios versus time for Nx 

= 1.0 m2/sec at temporal resolutions dt 
[0.001 to 10.0 sec]: (a) Type I , (b) Type II 
and (c) Type III BCs.
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Figure 5.41 L2 mass error versus time 
step for Nx = 1.0 m2/sec with: (a) Type I, 
(b) Type II and (c) Type III BCs.
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Mass ratio plots at a diffusivity of Nx = 25.0 m2/sec comparing the boundary types

are given in Figure 5.42; convergence results are given in Figure 5.43 and Table 5.24. Note

that mass balance with Type I BCs at this high value of diffusion is quite poor; the mass in

the domain drops off sharply and levels off after about 500 seconds. By this time, a

significant amount of mass has been lost. 

Table 5.24  Temporal errors in mass balance for Nx=25.0 m2/s (Pex = 0.8).

Type I BCs Type II BCs Type III BCs

∆t
(sec)

Crx L2 L2 L2

2 0.1 28.5906 30.3907 0.004009 0.023870 3.0171e-12 6.8212e-12

1 0.05 22.8072 24.1638 0.002926 0.017515 2.8848e-12 7.8444e-12

0.1 0.005 22.8529 24.2308 0.004179 0.024662 3.2255e-12 6.9349e-12

0.01 0.0005 22.8584 24.2385 0.004322 0.025473 3.0215e-12 8.7539e-12

0.001 0.00005 22.8590 24.2393 0.004337 0.025555 5.0720e-11 1.1141e-11
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Figure 5.42 Mass ratio versus time for 
Nx = 25.0 m2/sec at 
resolutions dt [0.001 to 2.0 
sec]: (a) Type I, (b) Type II 
and (c) Type III BCs.
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For Type II BCs with high diffusion, the mass begins to decline sharply after about

800 sec. A zoomed in view of Figure 5.42(b) would show that the drop off actually becomes

significant somewhat after t=600sec. Due to the highly diffusive nature of this test case,

mass is leaving the domain at the right boundary as the plume has dispersed enough that it

has reached the boundary at this time. Error analysis of only the first 600 seconds when the

entire plume is within the domain, reveals that the errors are of the same magnitude as those

for the less diffusive test case with Nx = 1.0 m2/sec. Table 5.25 shows the mass convergence

results for this shorter time frame. This is more indicative of the algorithm's capability since

the larger time allows mass to escape through the right boundary.

Both the spatial and temporal convergence results indicate that Type I BCs

somehow lose mass over the simulations. This is more evident with the higher values of

diffusion, which allow the plume to spread further through the domain. This “loss” of mass
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Figure 5.43 L2 mass error versus time 
step for Nx = 25.0 m2/sec: (a) 
Type I, (b) Type II and (c) 
Type III BCs.
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is due to the fact that Type I BCs create an artificial sink at the boundaries. By forcing the

boundary value to be always equal to zero, mass is lost that would have otherwise “piled”

up at the boundary as the plume reaches the end of the domain. Thus, the transport

algorithm itself is still conservative; although the BCs add a sink term to the solution. In

practice, it is best to avoid such artificial boundary conditions, instead using more natural

flux-type conditions.

Temporal convergence in the z-coordinate direction

Temporal resolution convergence tests were done for select spatial resolutions and

diffusivities for both the analytical verification and mass balance test cases in the z

coordinate. Specifically, temporal convergence was done for Nz = 0.0001 and 0.004 m2/sec

with a spatial resolution of ∆z = 0.25m for the verification test case and ∆z = 0.5m for the

mass balance test case. For the slightly diffusive test case of Nz = 0.0001 m2/sec, these

resolutions give Peclet numbers of 25 and 50, respectively, while for the diffusion-

dominated test case, the Peclet numbers are 0.625 and 1.25.

Figure 5.44 shows the L2 error norm versus time step and Table 5.26 summarizes

the convergence results for the z verification test cases. The average and best fit rates are

computed for the linear portion of the curves before they level off. Note that for both values

of diffusivity, a time step of 0.1 sec is sufficient as there is no significant improvement for

Table 5.25  Temporal errors in mass balance for Nx=25 m2/s at an endtime of 600 seconds 
using Type II boundary conditions.

Nx = 25.0 (Pe = 0.8)

∆t
(sec)

Cr L2

2 0.1 2.67937e-12 6.25278e-12

1 0.05 2.58988e-12 5.34328e-12

0.1 0.005 3.67012e-12 7.27596e-12

0.01 0.0005 3.2179e-12 6.82121e-12

0.001 0.00005 5.21509e-12 1.03455e-11

L∞
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smaller steps. Also, the convergence rates for both diffusion coefficients are near the

theoretical value of unity; the rates for the higher diffusion coefficient are slightly higher

than first-order.

Table 5.26  Temporal convergence for z verification test cases.

Nz = 0.0001 m2/sec (Pez = 25) Nz = 0.004 m2/sec (Pez = 0.625)

∆t
(sec)

Crz L2 L2

10 0.4 0.03904122 0.35260673 unstable

5 0.2 0.02791950 0.25693617 unstable

2 0.08 0.01243569 0.09858941 0.00359913 0.03280950

1 0.04 0.00660316 0.09381649 0.00077437 0.00884746

0.1 0.004 0.00892983 0.09995581 0.00027988 0.00502378

0.01 0.0004 0.00940659 0.10147721 0.00029712 0.00475637

0.001 0.00004 0.00945514 0.10162741 0.00029982 0.00472988

Peak rate: 0.913 1.045 2.217 1.891

Average rate: 0.760 0.751 1.329 1.068

Best-fit linear rate: 0.787 0.805 0.749 0.531
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Figure 5.44 Log-log plot of L2 error versus time step for the 1D z verification test 
cases: (a) Nz= 0.0001 and (b) Nz = 0.004 m2/sec.
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Plots of the mass ratios versus time and L2 mass errors versus time step for the z

coordinate mass balance tests are given in Figure 5.45, and Table 5.27 summarizes the

convergence results for both values of diffusivity. Note that the scale of the erratic behavior

for Nz = 0.0001 m2/sec is 10-12 and mass is conserved for any temporal resolution with this

problem. The downward trend of the mass ratio for both test cases, but particularly the

diffusion-dominated test case, suggests that some mass is being lost through the right

boundary. Examination of the simulation results indicate that the plume has reached the

right boundary (the boundary values are no longer zero) and mass is escaping the system
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Figure 5.45 Mass balance temporal resolution results for the z-coordinate: (a) and (b) Nz 

= 0.0001 m2/sec for ∆t [0.001 to 20.0 sec], (c) and (d) Nz = 0.004 m2/sec for 
∆t [0.001 to 5.0 sec]. 
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with the Type II BCs. As was seen in the x- direction test case, Type III BCs are the only

way to ensure that the system is completely closed. The increase in the mass error as the

time step is resolved is indicative of slight differences in the boundary values due to more

time steps in the simulation.

When a completely closed system is desired, it would be best to use Type III BCs

to enforce a no-flow condition rather than using specified boundary concentrations with

Type I BCs. In practice, Type I BCs are used only for algorithm testing since flux conditions

(Type II or III) are more natural for actual applications; therefore, for simulations when

mass balance is critical, it is advisable to use natural rather than enforced boundary

conditions. Furthermore, only Type III BCs are guaranteed to conserve mass since Type II

conditions, as specified herein, allow the plume to leave the domain. However, if a small

enough grid resolution is used, this can be alleviated. Mass balance with the fully coupled

ADCIRC hydrodynamics and LDG transport model is examined in the following section.

Table 5.27  Temporal errors in mass balance for z coordinate.

Nz = 0.0001 m2/sec (Pez = 50) Nz = 0.004 m2/sec (Pez = 1.25)

∆t
(sec)

Crz L2 L2

20 0.4 3.1308e-12 9.0950e-12 unstable

10 0.2 2.7885e-12 5.9117e-12 unstable

5 0.1 3.9477e-12 9.5497e-12 5.5562e-6 7.9438e-6

2 0.04 3.2968e-12 9.0950e-12 5.6266e-6 8.0394e-6

1 0.02 3.4465e-12 7.2760e-12 5.6420e-6 8.0631e-6

0.1 0.002 2.6957e-12 9.5497e-12 5.6532e-6 8.0823e-6

0.01 0.0002 6.4640e-12 1.4097e-11 5.6543e-6 8.0843e-6

0.001 0.00002 1.5603e-11 3.0013e-11 5.6544e-6 8.0845e-6

L∞ L∞
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5.8   Select results with the x-σ transport model

Although all of the following test cases incorporate a flat-bottom bathymetry and

technically can be solved using x-z coordinates, the ADCIRC hydrodynamics model is

solved in the x-σ coordinate system. Therefore, in order to communicate between the two

models, the transport is also solved in the x-σ coordinate system.

5.8.1  Constant velocity tests

For these simple tests, the domain of interest is a 200m by 100m box. The boundary

conditions are all set to Type III, such that the box is completely closed. On the interior of

the box, the horizontal velocity is set to u = 1.0 m/s, while the vertical velocity is set to w

= 0.01 m/s. The grid spacing is equal to ∆x = 5.0 m in the horizontal direction and ∆z = 4.0

m in the vertical direction, and the diffusivities are set to Nx = 0.5 m2/sec and Nz = 0.01 m2/

sec. For all simulations, a time step of ∆t = 0.1 seconds was used, and the final simulation

time was 1000 seconds.

Two different initial conditions are examined: 1) a smooth 2D Gauss plume

centered at (x0 = 40m, z0 = 25m) and defined as

, (5.150)

where the Gaussian spreads are σx = 20 and σz = 10; and 2) a sharp step centered at (x =

30m, z = 37.5m); each of which has a maximum magnitude of 35.0 moles/m3. These test

cases were devised to test the mass balance properties of the LDG transport model in x-σ

coordinates and to verify that the transport model can handle a sharp gradient between

saltwater (35 ) and freshwater (typically 4 ). The initial conditions are shown

in Figure 5.46.

For the smooth Gaussian distribution, the results are shown in Figure 5.47. Notice

g x z,( ) 35Exp
x x0–( )2

2σx
2

--------------------- Exp
z z0–( )2

2σz
2

--------------------=

0 00⁄ 0 00⁄
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Figure 5.46 Initial salinity profiles for 2D constant velocity test cases: a) Gauss plume 
and b) sharp step.
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Figure 5.47 Salinity profiles for smooth Gauss plume and constant velocities.
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that the plume propagates smoothly without any distortion and slowly diffuses out. As the

plume reaches the right boundary, the concentrations begin to “pile” up along the boundary

since the domain is closed. A plot of the total mass in the box is shown below in Figure

5.49. Notice that the mass is conserved; the errors are in the twelfth decimal place.

Meanwhile, the simulation results for the sharp step are shown in Figure 5.48. In

contrast with the previous example, notice that there are small “wiggles” around the step as

it begins to propagate through the domain. However, as the plume is diffused out more, the

profile becomes smooth. Although the solution with the sharp IC is not initially smooth, the

Figure 5.48 Salinity profiles for sharp step initial condition and constant velocities.
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total mass in the box is conserved throughout the simulation as is shown in Figure 5.49,

where again the errors are in the twelfth decimal place. 

These results verify that the LDG transport model itself is mass conservative even

when a sharp front is encountered. They also verify that the transport model is capable of

handling large gradients without becoming unstable. The next section examines the

behavior of the LDG transport model coupled with the ADCIRC hydrodynamic model in

x-σ coordinates.

5.8.2  Mixing in a box

This test case consists of an initial salinity gradient in the x coordinate that is

constant with depth, a “dam break” of salinity, and was adopted from the tests in Haidvogel

[1999] in order to examine the mass balance properties and simulation characteristics of the

full 2D coupled transport/hydrodynamic model. The simulation domain is a 200m by 100m

box. For the hydrodynamics, land boundaries are specified in the x coordinate and

kinematic boundary conditions in the σ coordinate; while for the transport model, Type III

BCs are specified in both the x and σ coordinates. This combination of boundary conditions

results in a completely closed domain, so that mass should be conserved. Furthermore,

Figure 5.49 Total mass versus time for constant velocity test cases: (a) smooth Gauss 
plume and (b) sharp step.
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since a flat-bottom bathymetric profile is used, the Γ terms of the sigma coordinate

transformation are neglected for these test cases. These terms would have to be

incorporated for variable bathymetry test cases.

The hydrodynamic model is initialized with zero velocity and elevation everywhere

in the domain, such that the system is at rest until the “barrier” between contrasting

salinities is removed at time t=0 (see Figure 5.50 below). A total simulation time of 3000

seconds is sufficient to observe the behavior of the system. Two initial gradient profiles are

tested: a sharp front, where the change in salinity happens over one element, and a more

gradual gradient, where the change occurs linearly over a length of 10m. The magnitude of

the gradient was varied to examine the quality of the solution and find the model’s

limitations. A total of four initial conditions were examined: (1) a gradual gradient from 1.0

to 0.0 – “1grad0”, (2) a sharp gradient from 1.0 to 0.0 – “1sharp0”, (3) a gradual gradient

from 10.0 to 0.0 – “10grad0”, and (4) a sharp gradient from 10.0 to 0.0 – “10sharp0”. Figure

5.50 shows the initial salinity conditions in the DG grid space with the sharp and gradual

gradient profiles when a total gradient of 1.0 is used.

Although there is no analytical solution to verify these test cases, physics dictates

that the box will come to a stable solution where the heavier, more dense water will sink to
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Figure 5.50 Initial salinity profiles for mixing in a box test case: (a) sharp front, 
(b) gradual linear drop.
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the bottom, displacing the lighter water, which will rise to the top to replace it. Due to the

mixing and diffusion that will occur during this displacement, it is not likely that the steady

state will be two layers of constant concentration as in the initialization, but rather that

several layers will develop. With non-zero diffusion, as time goes to infinity, the salt

concentration will approach some equilibrium profile where the diffusion effects are

balanced by the gravity effects. As the simulation domain is closed on all four boundaries,

it is expected that the initial mass should be conserved.

Base test case

The set of parameter values that were used for the base test case are taken from

another study where the LDG transport model described herein was compared to a

continuous Galerkin model (see Atkinson et al. [2004]) and are given in Table 5.28. A

selection of the global salinity profiles from the 3000 second time period are shown below

in Figure 5.51. Additionally, a time series of the total mass in the domain is shown in Figure

5.52. Looking first at the salinity profiles, one notices that the front propagates smoothly

and maintains the sharp leading edge as it moves toward the right boundary. After it reaches

the boundary (around t = 300 seconds) it begins to stratify and “sloshes” back and forth

across the box until it reaches “near-equilibrium” at t = 3000 seconds.

Now looking at the mass ratios, one notices that the mass ratio computed from the

DG salinity field oscillates about 1.0 during the most turbulent mixing in the first ~800

Table 5.28  Model parameters for mixing in a box base test case.

nx 51 Nx (m2/sec) 0.5 ∆t (sec) 0.1

nz 21 Nz (m2/sec) 0.01 End time (sec) 3000

∆x (m) 4.0 evis 2.0 substeps 1

∆z (m) 5.0 evisvert 1.5 skipsteps 1

gradient 1grad0 interpolation
method

 2 spatial
approximation

minmod
linears
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Figure 5.51 Global salinity profiles for “mixing in a box” base test case.

0.0 1.0

t = 2250. sec t = 2500. sec t = 3000. sec

t = 1500. sec t = 1750. sec t = 2000. sec

t = 1200. sec t = 1300. sec t = 1400. sec

t = 900. sec t = 1000. sec t = 1100. sec

t = 600. sec t = 700. sec t = 800. sec

t = 300. sec t = 400. sec t = 500. sec

t = 0sec t = 100. sec t = 200. sec
325



seconds, but then the ratio settles down at unity. Meanwhile, the mass computed from the

interpolated CG salinity field (dashed line in Figure 5.52) is significantly lower than that

computed from the DG salinity field, which indicates that the interpolation process is not

mass conservative. This will be examined further in the parameter studies section.

Additionally, note that the coupled transport/hydrodynamic model is no longer perfectly

mass conservative despite the conservation properties of the transport algorithm itself. This

can be explained by examining the sigma coordinate transformation. Although the Γ terms

are neglected for these flat-bottom simulations, the stretching factor, (a–b)/H, depends

upon the total depth. This depth changes due to the deviations in the sea surface elevation,

ζ; and these changes are most significant during the turbulent mixing when the front is

propagating across the “box”. However, note that the DG mass is still conserved in an

“average” sense, as the ratio oscillates about unity even during this turbulent stage.
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Figure 5.52 Ratio of mass to initial mass versus time for the base test case.
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Stability limits and temporal convergence

For the stability analysis, all of the parameters from the base test case, as given in

Table 5.28, remained constant with the exception of the time step. For this test case, the

solution remained stable for any time step smaller than 2 seconds. To examine the temporal

convergence of the baroclinic model, four time steps were examined, as are summarized in

Table 5.29.

In order to verify that the simulations were converging to the same solution, the 0.5

salinity contour was tracked along the bottom of the domain. This information was used to

plot the location of the 0.5 contour versus time for each of the temporal tests. Figure 5.53

shows these contours for the base case and the three tests. Note that the three smallest time

Table 5.29  Time steps for temporal convergence and stability.

base test1 test2 test3

∆t 0.1 1.0 0.01 0.001

Figure 5.53 Location of 0.5 salinity contour along the bottom of the 
domain for temporal interplay tests: base (purple), test1 (blue), 
test2 (maroon), test3 (red).
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steps all plot under the red curve, and that the solution with the largest stable time step does

not differ significantly. From this metric, it appears that the solutions are converging as the

time step is resolved.

Next the mass conservation properties for the four different time steps were

examined. Figure 5.54 shows the mass ratio for each of the time steps. Notice that use of

the maximum stable time step (∆t = 1.0 seconds) results in the greatest mass oscillations,

while use of smaller time steps reduces the mass oscillations. The percent mass errors at the

end of the simulation, t = 3000 seconds, for each time step are summarized in Table 5.30.

Notice that the mass errors decrease slightly as the time step is reduced, however this

reduction in final mass error is not significant.

Table 5.30  Mass errors for temporal convergence.

∆t 1.0 0.1 0.01 0.001

mass error (%) 6.78E-5 6.17E-5 5.56E-5 5.53E-5

Figure 5.54 Mass ratio for temporal convergence: ∆t [1.0 to 0.001] seconds.
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Finally, for the maximum stable time step of ∆t = 1.0 seconds, the Peclet and

Courant numbers, as defined in (5.146) and (5.147), were computed over the entire domain.

The global Peclet and Courant numbers for the first output at t = 100 seconds are shown in

Figure 5.55. Although the dimensionless numbers are typically reported as an absolute

value, they have been graphed with sign in order to show the velocity profile, as well as the

magnitude of the dimensionless numbers. The top two panels with the x-coordinate

dimensionless numbers, indicate that the horizontal velocity, u, is positive in the bottom

half of the box and negative in the upper half of the box. Meanwhile, the bottom two panels

indicate that the vertical velocity, w, is positive for the right half of the box and negative for
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Figure 5.55 Global dimensionless numbers at time, t = 100 seconds, 
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the left half of the box. This is consistent with the flow, where the heavier water is sinking

and replacing the light water in the bottom, while the light water is rising and replacing the

heavy water from the top.

From a stability point of view, it is easier to look at a plot of the maximum Peclet

and Courant numbers over the duration of the simulation. Thus, the minimum and

maximum values of these dimensionless numbers are plotted versus time in Figure 5.56.

Again, these numbers are shown with sign to illustrate the symmetric nature of the flow;

i.e., the positive and negative velocities on opposite sides of the box are of similar

magnitude. Notice that the Courant numbers for the x- and z-coordinate directions are very

similar, while the Peclet numbers for the x-direction are two orders of magnitude smaller

than those in the z-direction. Thus the flow in the x-coordinate direction is diffusion
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dominated, while the flow in the z-direction is more advection dominated, initially. From

the definitions, note that the Peclet numbers do not depend on the time step, therefore the

Peclet numbers shown in Figure 5.56 do not change for the four different test cases.

From the 1D stability analysis, it was found that for Peclet numbers greater than 5,

a Courant number less than 0.5 was needed for stability; while for Peclet numbers less than

5, a Courant number less than approximately 0.1*Pe was needed for stability. From these

results, it appears that the flow in the x-coordinate direction is limiting the transport module

for this set of parameters. Additionally, the Peclet numbers in both coordinate directions

become more indicative of diffusion-dominated flow as the simulation progresses,

particularly after the most turbulent mixing ends around t = 1000 seconds. However, it is

difficult to determine whether the stability requirements of the full baroclinic ADCIRC/

LDG transport combined model will be most limited by the transport, the hydrodynamics,

or due to the complicated interplay between the models; and further testing with more

realistic gradients and bathymetries is recommended.

Spatial convergence

For the spatial convergence studies, the set of base parameters given in Table 5.28

was used, with the exception of the grid spacings in the horizontal and vertical directions,

∆x and ∆z. Three levels of refinement were examined: (1) refine ∆x and leave ∆z constant

at 5.0m, (2) refine ∆z and leave ∆x constant at 4.0m, and (3) refine both spatial dimensions

as a unit. The grid resolutions are summarized in Table 5.31. For each of the three series of

refinement, the coarsest resolutions are plotted in shades of blue and the finest resolutions

are shown in shades of red.

Table 5.31  Grid resolution combinations for spatial convergence studies.

Refine x coordinate (∆z = 5.0m) ∆x (m) 20 10 4 2 1

Refine z coordinate (∆x = 4.0m) ∆z (m) 20 10 5 2.5 1.25

Refine both coordinate directions ∆x/∆z (m) 20/20 10/10 4/5 2/2.5 1/1.25
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Plots of the mass ratio computed from the DG salinity field and the location of the

0.5 contour, as the x coordinate is resolved, are shown in Figure 5.57. Notice that the finer

resolutions have smaller oscillations in the mass ratio as time progresses; but that all of the

resolutions conserve mass in an “average” sense. (As discussed for the base test case

above.) Note also, that the location of the 0.5 contour along the bottom of the box converges

as the grid is refined.
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Figure 5.57 Results from the x-coordinate spatial convergence study: (a) mass ratios 
computed from DG salinity field, (b) location of 0.5 contour along bottom 
of box. Grid resolutions, ∆x [20m – 1m].
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Plots of the mass ratio computed from the DG salinity field and the location of the

0.5 contour, as the z coordinate is resolved, are shown in Figure 5.58. Notice that the finer

resolutions have smaller oscillations in the mass ratio as time progresses; but that all of the

resolutions conserve mass in an “average” sense. Note also, that the location of the 0.5

contour along the bottom of the box converges as the grid is refined. Although the

differences for each resolution are not as significant, as those seen for the x-coordinate

Figure 5.58 Results from the z-coordinate spatial convergence study: (a) mass ratios 
computed from DG salinity field, (b) location of 0.5 contour along bottom 
of box. Grid resolutions, ∆z [20m – 1.25m].
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study, which is to be expected since the x direction is unchanged by the z refinement.

Finally, plots of the mass ratio computed from both the DG and interpolated CG

salinity fields and the location of the 0.5 contour, as both coordinate directions are resolved,

are shown in Figure 5.59. Notice that the scale of the DG oscillations are too fine to appear

in panel (a), although they are similar to those shown in the preceding figures. Also, notice

Figure 5.59 Results from spatial convergence in both directions: (a) mass ratios 
computed from DG (solid) and interpolated CG (dashed) salinity fields, 
(b) location of 0.5 contour along bottom of box. Grid resolutions, ∆x 
[20m – 1m] and ∆z [20m – 1.25m].
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that the mass computed from the interpolated CG salinity field improves significantly as

the grid is refined. And the location of the 0.5 contour along the bottom of the box

converges as the grid is refined and is dominated by the x-coordinate grid resolution, as

expected.

Parameter studies

A series of parameter studies was also conducted for the lateral and vertical

diffusion coefficients and eddy viscosities, the DG to CG interpolation methods, the spatial

approximations, and the temporal feedback (substeps and skipsteps) for each of the

gradients in order to determine the role of these parameters on mass balance. The results

from the base test case examined above will be included in the plots for each of the

parameter studies.

For each of the studies, the mass ratio versus time is plotted over the range of

parameter values. The results for the lower parameter values are plotted in shades of blue,

with a gradual transition in colors to the higher values in red. The results from the base test

case are shown in black. The line thickness and dashing patterns correlate with the gradient

type (thick – gradual, thin – sharp) and whether the mass results are from the computed DG

(solid) or interpolated CG (dashed) salinities. To keep the problem tractable, the relative

magnitudes of the lateral and vertical diffusion and viscosity parameters were kept

constant, such that both parameters were varied together as a unit. Four such combinations

were examined for the diffusion coefficients, where Nx and Nz are as given in Table 5.32

and the remaining parameters are as in Table 5.28. 

Table 5.32  Diffusion coefficient combinations for parameter studies.

Nx (m2/sec) 0.01 Nx (m2/sec) 1.0

Nz (m2/sec) 0.001 Nz (m2/sec) 0.1

Nx (m2/sec) 5.0 Nx (m2/sec) 10.0

Nz (m2/sec) 0.5 Nz (m2/sec) 1.0
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The mass ratios for the diffusion coefficient parameter study are shown in Figure

5.60. Note that the scales on the two panels are not identical, but that they are similar. In

general, as the diffusion coefficients increase, the mass error decreases for all gradient

strengths and types. This trend is most significant for the larger gradients. Note also, that

as the diffusion coefficients increase, the DG and interpolated CG mass ratios converge to

unity as time progresses.

Notice that for the smaller gradient (Figure 5.60a) there is not a discernible

difference between the DG results for the two types of gradient, gradual versus sharp, over

the entire range of diffusion values. However, the mass ratios computed from the

interpolated CG concentrations are slightly different for the two gradient types at the

smaller diffusion combinations, with the sharp gradient having slightly better mass

properties, but begin to converge as the diffusion increases. Meanwhile, for the larger

gradient (Figure 5.60b), the DG results are still not noticeably different for the two gradient

types, while the interpolated CG results follow the same trend as for the smaller gradient.

Three additional combinations were examined for the eddy viscosities, where evis

and evisvert are as given in Table 5.33, and the remaining parameters are as in Table 5.28.

The mass ratios for these combinations are shown in Figure 5.61.  

In general, as the eddy viscosities are increased, the mass error decreases for the DG

mass ratios and increases for the CG mass ratios. The actual error change is not that

significant for the smaller gradients, as the final mass ratios differ by only 0.0002 when the

eddy viscosities are ten times larger than the base values. Meanwhile, for the larger

gradients, the error increase for the CG results is more significant. Note that the final mass

Table 5.33  Eddy viscosity combinations for parameter studies.

evis 5.0 evis 10.0 evis 20.0

evisvert 3.75 evisvert 7.5 evisvert 15.0
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Figure 5.60 Mass ratios versus time for diffusion coefficient parameter study: 
(a) gradient of 1.0, (b) gradient of 10.0. Diffusion combinations: 
base (Nx = 0.5 m2/sec / Nz = 0.01 m2/sec), 0.01/0.001 (blue), 1.0/
0.1 (purple), 5.0/0.5 (magenta), 10.0/1.0 (red).
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ratios from the interpolated CG results are closer for the small gradient, while they do not

converge at all for the larger gradient. Note that unlike the previous graph for the diffusion

coefficients, the mass ratios computed from the interpolated CG results do not converge to

those computed from the DG results as the eddy viscosity parameters are increased. Notice

also that for both gradient strengths, the DG results do not differ for either the gradual or

sharp gradient. However, the mass ratios computed from the interpolated CG

concentrations are significantly lower for the sharp gradient, when compared to the gradual

gradient.

The mass balance behavior of the two interpolation methods are also compared for

both gradient strengths. For these tests, the methods for the DG to CG interpolations are

numbered as follows: 1) L2 interpolation over the entire domain and 2) interface averages

as computed for the DG solution. The other parameters are as in Table 5.28; while the

interpolation method is varied between 1 and 2. The mass ratios for the DG to CG

interpolation parameter study are shown in Figure 5.62. 

Both interpolation methods have comparable mass behavior for the DG results, as

well as for the interpolated CG results for the small gradient. However, there are noticeable

differences in the interpolated CG mass results for the higher gradient strength, with the

interface average (Method 2) results being better. Notice also that the mass ratios computed

from the interpolated CG concentrations have the same general shape for both the sharp and

gradual gradients, however, the sharp gradients result in somewhat reduced mass. Again,

the mass ratios from both gradient strengths, which are computed from the interpolated CG

concentrations, are not conservative. The interface averaging technique was chosen for the

base test case, since it has slightly better mass properties than the L2 interpolation method.

However, further work could be done to examine the mass conservation properties of other

interpolation methods.

The mass balance behavior of the three spatial approximations, piecewise
339



0 500 1000 1500 2000 2500 3000
0.995

1

1.005

1.01

1.015

0 500 1000 1500 2000 2500 3000

0.997

0.998

0.999

1

Figure 5.62 Mass ratios versus time for interpolation parameter study: (a) 
gradient of 1.0 and (b) gradient of 10.0.

gradual gradients sharp gradients

DG results interpolated CG results

Method 1 Method 2

(a)

(b)
time (seconds)

time (seconds)
340



constants, unlimited linears, and minmod linears, are also compared for the smaller

gradients. The other parameters are as in Table 5.28; while the spatial approximation is

varied. The mass ratios for the spatial approximation parameter study are shown in Figure

5.63. Note that both of the higher-order approximations plot under the red curves and that

the piecewise constant approximation has slightly better mass properties for the

interpolated CG results.

Finally, the role of time scales for the coupling between the transport algorithm and

the hydrodynamic model was explored by using two temporal scale parameters: substeps,

which is the number of transport time steps for each hydrodynamic time step, and skipsteps,

which is the number of hydrodynamic time steps that should be run before the transport

model is updated again. Thus, substeps results in a smaller time scale for the transport
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Figure 5.63 Mass ratios versus time for spatial approximation parameter study 
with a gradient of 1.0.
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routine relative to the hydrodynamics and skipsteps results in a larger time scale. For the

temporal feedback, the time step remained constant at ∆t = 0.1 seconds while the number

of times that the transport subroutine was updated varied. Table 5.34 summarizes the

combinations of the two temporal parameters, substeps and skipsteps and the mass ratios

for these are shown in Figure 5.64.  

For the base diffusion / eddy viscosity combination, the higher gradient of 10.0

could not be simulated when 5 skipsteps were used, therefore the red curve is missing from

Figure 5.64b. For the smaller gradient, no significant change is noted in either the DG or

interpolated CG mass results, as substeps and skipsteps are varied. Meanwhile, for the

larger gradient, a slight difference is visible in the various interpolated CG results, but not

in the DG results. This parameter does not appear to have a significant impact on mass

conservation.

Summary of parameter studies

For all of the parameter studies, the DG mass results are conservative for all

parameter values, gradient strengths, and gradient type. Meanwhile, increasing the

diffusion coefficients had the greatest impact and subsequent improvement in the

interpolated CG mass results. For higher values of diffusion, acceptable mass ratios can be

achieved for even the high gradients. Meanwhile, increasing the eddy viscosities does not

significantly improve the mass balance of the model. The mass balance properties of the

two interpolation methods did not vary significantly, however the interface average

interpolation method has slightly better mass properties for the higher gradients. The low-

Table 5.34  Temporal combinations for parameter studies.

substeps 5 substeps 2 substeps 1 substeps 1

skipsteps 1 skipsteps 1 skipsteps 2 skipsteps 5

∆teff (sec) 0.02 ∆teff (sec) 0.05 ∆teff (sec) 0.2 ∆teff (sec) 0.5
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order spatial approximations have slightly better mass properties than the higher-order

approximations; and the temporal parameters, substeps and skipsteps, do not have any

impact on mass conservation.

5.9   Conclusions and recommendations

5.9.1  1D results

In general, for both the x and z coordinates, near perfect mass balance can be

achieved over the entire range of diffusion coefficients (advection-dominated to diffusion-

dominated) when Type II or III boundary conditions are used. However, for a completely

closed domain, Type III BCs are recommended since Type II BCs allow mass to escape

when the plume reaches the boundary. Neither spatial nor temporal resolution appears to

play a significant role in mass conservation, as any reasonable spatial or temporal

resolution will provide good mass conservation. This verifies the local conservation

property of the LDG algorithm. Additionally, for the verification test cases in the x and z

coordinates, the algorithm converges to the analytical solution as the grid is refined. The

spatial convergence rates for all of the test cases are summarized in Table 5.35. 

Table 5.35  Spatial convergence rates for 1D verification test cases in the x- and z-
coordinate directions.

Convergence rates

peak average best-fit

Advection dominated L2 0.556 (1.034) 0.394 (0.555) 0.402 (0.541)

0.385 (0.347) 0.115 (0.205) 0.075 (0.205)

Diffusive advection dominated L2 2.302 (2.197) 1.893 (1.782) 1.863 (1.779)

1.823 (1.179) 1.563 (1.120) 1.571 (1.117)

Diffusive transition L2 1.982 (2.052) 1.837 (1.917) 1.853 (1.935)

2.052 (1.950) 1.658 (1.839) 1.615 (1.846)

Diffusion dominated L2 1.950 (1.929) 1.800 (1.794) 1.814 (1.813)

2.035 (2.146) 1.680 (1.551) 1.602 (1.574)

*First number is the x-coordinate rate and the number in parentheses is the z-coordinate rate.

L∞

L∞

L∞

L∞
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These rates were computed from the linear portion of the convergence plots given

in §5.7.1. Notice that for both the x- and z-coordinate directions, most of the convergence

rates are near the theoretical value of 2 for linear approximating functions. The advection-

dominated rates are reduced due to the sharpness of the front and the unavoidable fact that

an instantaneous jump is being approximated with several data points. Furthermore, notice

that for each row in the table, which corresponds to a certain type of simulation, i.e.,

advection dominated to diffusion dominated, the x- and z-coordinate convergence rates are

similar; indicating that the transport algorithm itself converges uniformly in both spatial

coordinates. Furthermore, no additional temporal accuracy is gained when the time step is

reduced past ∆t = 0.1 seconds.

Finally, for diffusion dominated problems, the stability of the algorithm was found

to depend upon the Peclet number and was reduced significantly from the maximum stable

Courant number of 0.5, such that the maximum stable Courant number was approximately

equal to one tenth of the Peclet number.

5.9.2  2D results

From the constant velocity tests, it is apparent that the transport model is capable of

handling sharp fronts and large gradients while retaining mass conservation. Furthermore,

the mass results from the full baroclinic model, which were computed from the DG salinity

fields, are also conservative in an “average” sense; where “average” is used to indicate that

the mass ratio oscillates about 1.0 due to the changes in the sea surface elevation. However,

the DG to CG interpolation is not conservative, and the mass computed from the

interpolated CG salinity fields is not conserved. Therefore, the interpolation method should

be examined further. Most importantly, it is obvious that the LDG salinity results from the

coupled transport/hydrodynamic baroclinic model are conserving mass.
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5.9.3  General recommendations

The LDG discretization of the advection-dispersion equation adds the required

mass conservative transport capabilities to the existing ADCIRC hydrodynamic model in

order to create a full baroclinic model. Additionally, the LDG transport model is capable of

modeling both advective and diffusive flows, while retaining mass conservation, and is a

promising addition to the ADCIRC model. The traditional continuous discretizations that

were compared to the LDG discretization in another study (Atkinson et al. [2004]) are not

capable of handling highly advective flows and conserving mass.

However, the interpolation from the DG gridspace to the CG gridspace is not

conservative, and should be examined further for stability and conservation properties.

Furthermore, the extra interpolation computations that are necessary for grid

communication between the two models introduce additional mechanisms whereby errors

in the CG gridspace can build up over time. Finally, the temporal interplay between the

ADCIRC hydrodynamics and the LDG transport module should be examined with more

realistic gradients and physical bathymetry profiles, which will require the reintroduction

of the Γ terms from the sigma coordinate transformation. These terms introduce more

communication between the gridspaces and temporal interplay at several time levels, which

further complicates the stability analysis of the combined model. Proper application of

these terms is an area of continuing work.
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CHAPTER  6

Summary of Important Findings and Unresolved 
Issues

6.1   Numerical propagation analysis tools

In Chapter 2, numerical approximations to dispersion and Fourier analysis were

developed and verified against their analytical counterparts. Although limited to constant

bathymetry, these tools are able to predict the correct analytical behavior, and can be used

to study algorithms that otherwise could not be studied analytically for various reasons.

Such algorithms include higher-order discontinuous methods with slope limiting and

coupled continuous and discontinuous models. Unfortunately, no single combination of

wave initialization and wave tracking techniques was able to correctly match both the

dispersion and Fourier behavior for all of the algorithms; a combination of these techniques

must be used. These tools provide a method for evaluating slope limiters within the finite

volume and discontinuous Galerkin algorithms; namely, to examine the wave propagation

properties of the limiters rather than simply choosing the first one that works. They also

provide a mechanism for evaluating multi-algorithmic models.

6.2   Comparison of SWE solution algorithms

In Chapter 3, the staggered finite difference, primitive finite element, generalized

wave continuity (ADCIRC model), selective lumping finite element, finite volume, and
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discontinuous Galerkin (DG) finite element discretizations for the 1D linear SWE were

compared. It was found that the relatively new DG methods have similar error and

propagation properties, when compared to the often used ADCIRC model. Namely, near

second-order spatial convergence and very little numerical dissipation of physical waves

when higher-order interpolates are used. Additionally, the DG class of algorithms have

many attractive properties, such as shock capturing without oscillations, variable h and p

refinement, and easily modified grid spaces without hanging nodes and mortar spaces;

although, they also require more computational effort. Thus a study of various coupling

mechanisms for discontinuous and continuous finite element algorithms was undertaken.

6.3   Coupled continuous and discontinuous models

In Chapter 4, the properties of subdomain and equation multi-algorithmic models

for the SWE were examined. In subdomain multi-algorithmic models, different algorithms

are employed in unique partitions, or subdomains, of the larger domain in order to exploit

each algorithm's best features, while minimizing their weaknesses. For equation multi-

algorithmic models, different algorithms are used to discretize the continuity and

momentum equations within the same domain. Propagation analysis of the three coupling

schemes indicate that all three are capable of propagating a wave with minimal distortion;

however, the low-order versions overdamp the physical waves and the unlimited higher-

order versions of the equation coupled schemes allow wiggles in the solutions.

Furthermore, it was found that the equation coupling was often unstable and not well suited

for actual applications. Additionally, results from this simplified study indicate that the

subdomain interface must be located a suitable distance away from the shelf break, where

the highly advective behavior resides. Meanwhile, the subdomain coupled

 model shows promise, but flux coupling with a full non-linear model

should be examined for the interface coupling rather than overlapping elements. Additional

work could be done using mass balance to examine the optimal location of the subdomain

DG ADCIRC↔
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interface, as well as exploring the optimal load balance due to temporal constraints within

each subdomain. Finally, a second-order Runge-Kutta temporal scheme should be used for

the second-order spatial approximations (piecewise linears), such that the spatial and

temporal discretizations are of the same order.

6.4   LDG transport module for baroclinic ADCIRC model

In Chapter 5, as a first step toward a full three dimensional baroclinic model, a

quasi-3D (x-z slice) DG transport algorithm was developed and incorporated into a

baroclinic ADCIRC hydrodynamic model using the same coordinates. The LDG transport

algorithm was verified by comparing the model results to the analytical solution for 1D

breakthrough curves. Additionally, the mass conservation properties of the model were

examined by simulating Gauss plumes in each coordinate direction. From these verification

tests, the algorithm was found to be stable and mass conservative over the range of

advection-dominated to diffusion-dominated flow regimes. Furthermore, 2D salinity “dam

break” tests of the full baroclinic ADCIRC/LDG transport model revealed that the model

is stable and mass conservative (for the DG salinity field) for this difficult test case.

However, the interpolation method that is used to translate the DG salinity field into the CG

gridspace, which is required by the ADCIRC model, is not mass conservative. Therefore,

more work needs to be done to improve the conservation properties of the interpolation

step. Additionally, a second-order Runge-Kutta temporal scheme should be used when

linear spatial interpolants are utilized. Finally, for applications with non-constant

bathymetry, the Γ terms from the sigma coordinate transformation will have to be

introduced. Preliminary tests show that these terms introduce stability issues and eliminate

the mass conservation properties of the LDG transport module. Therefore, further work

needs to be done in order to determine the proper implementation of these terms.
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APPENDIX A

Derivation of Continuous Finite Element 
Discretizations of the Shallow Water Equations

A.1   Linearized shallow water equations in 1D

The system of linear SWE in 1D consists of the primitive continuity equation

(A.1)

and the inviscid momentum equation

, (A.2)

where u is the depth-averaged velocity, ζ is the surface elevation, τ is the linear bottom

friction factor, g is the acceleration of gravity, h is the bathymetric depth of water (assumed

constant), and the subscripts indicate partial derivatives. The linearized form of the

generalized wave continuity (GWC) equation is given as

(A.3)

where G is a numerical coefficient that determines the balance between primitive (large

values of G) and pure wave (small values of G) forms. The above equations are also

presented in Chapter 1 (§1.2.2). All of the algorithms presented in the following sections

use the same grid scheme, which is shown below in Figure A.1.

ζt hux+ 0=

ut τu gζx+ + 0=

ζtt Gζt G τ–( )hux ghζxx–+ + 0=
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A.2   Primitive finite element (leap-frog)

The starting point of a traditional finite element discretization to the SWE is to

multiply Equations (A.1) and (A.2) by a weight function, φi, and integrate over the domain,

Ω. This gives the weighted residual form as

(A.4)

(A.5)

where the inner product notation, ( , )Ω, denotes integration over the domain.

Next, the variables are approximated by some known function; in a Galerkin finite

element discretization, the approximating functions are the same as the weight functions.

For linear Lagrange functions, the approximations are given as

(A.6)

(A.7)

Figure A.1 Discrete grid representation 
for continuous finite 
element algorithms.

j j+1j–1

∆xj ∆xj+1

ζ t φi( , )Ω hux φi( , )Ω+ 0=

ut φi( , )Ω τu φi( , )Ω gζx φi( , )Ω+ + 0=

ζh ζj t( )φj x( )

j 1=

M

∑=

uh uj t( )φj x( )

j 1=

M

∑=
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where M is the number of nodes in the domain and the φj(x) are standard linear chapeau

functions defined for node j as

(A.8)

 . (A.9)

Substitution of these approximations gives a system of 2M equations for 2M

unknowns:

(A.10)

 . (A.11)

On a master element, this gives

(A.12)

(A.13)

where

 .

φj x( ) x xj 1––( ) xj xj 1––( )⁄             xj 1– x xj≤ ≤=

φj x( ) xj 1+ x–( ) xj 1+ xj–( )⁄             xj x xj 1+≤ ≤=

t∂
∂ ζjφj φi( , )

Ω
huj x∂

∂φj φi( , )
Ω

+ 0=
j 1=

M

∑

t∂
∂ ujφj φi( , )Ω τujφj φi( , )Ω gζj x∂

∂φj φi( , )
Ω

+ + 0=
j 1=

M

∑

Mi j, t∂
∂ζj hBi j, uj+ 0=

Mi j, t∂
∂uj τMi j, uj gBi j, ζj+ + 0=

Mi j, φj φi,( )Ωe
∆xj

1 3⁄ 1 6⁄
1 3⁄ 1 6⁄

= =

Bi j, x∂
∂φj φi, 

 
Ωe
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For a uniform grid, this results in the following representations at an interior node j:

(A.14)

 . (A.15)

In a leap-frog temporal discretization, the temporal derivatives are approximated by

centered differences at time levels k+1 and k–1. Meanwhile the spatial derivatives are

evaluated at level k and the bottom friction is evaluated at level k–1 to improve stability

(Gray and Lynch, [1977]). After multiplying through by 2∆t, this gives the final

discretization as

(A.16)

, (A.17)

where it is evident that this temporal discretization serves to decouple the continuity and

momentum equations. The general equations for an interior node that are presented above

are needed for the analysis in Chapter 3; however, in practice global matrices are built up

from the master elements and the entire system is solved at once. This would result in two

tridiagonal systems; one for the elevations and one for the velocities.

A.3   Generalized wave continuity (ADCIRC model)

For the GWC (or ADCIRC) model, the generalized wave continuity equation (A.3)

is solved with the momentum equation (A.2) instead of solving the primitive continuity

equation (A.1). As in the primitive finite element model, this first step is to multiply by a

weight function φi, and integrate over the domain, Ω to get

1
6
---

td
d ζj 1– 4ζj ζj 1++ +[ ] h

2∆x
---------- uj 1+ uj 1––[ ]+ 0=

1
6
---

td
d uj 1– 4uj uj 1++ +[ ] g

2∆x
---------- ζj 1+ ζj 1––[ ] τ

6
--- uj 1– 4uj uj 1++ +[ ]+ + 0=

ζ j 1–
k 1+ 4ζ j

k 1+ ζ j 1+
k 1++ + ζ j 1–

k 1– 4ζ j
k 1– ζ j 1+

k 1–+ +( ) 6h ∆t
∆x
------– uj 1+

k uj 1–
k–( )=

uj 1–
k 1+ 4u j

k 1+ u j 1+
k 1++ + 1 2τ∆t–( ) u j 1–

k 1– 4u j
k 1– uj 1+

k 1–+ +( ) 6g ∆t
∆x
------– ζj 1+

k ζj 1–
k–( )=
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(A.18)

(A.19)

where the GWC equation has been integrated by parts and [x0, xL] are the limits of the

domain.

Next substitute the approximations for ζ and u, given by Equations (A.6) and (A.7),

to get

(A.20)

(A.21)

where the boundary term, B, is equal to  .

On a master element this gives

(A.22)

(A.23)

where the mass matrix for the momentum equation is lumped to decouple the velocity

unknowns and the boundary terms, B, only enter in on the boundary elements. Matrices Mi,j

and Bi, j are as given above for the primitive scheme, and the remaining matrices are given

as

ζtt φi( , )Ω Gζt φi( , )Ω G τ–( )hux φi( , )Ω ghζx x∂
∂φi( , )

Ω
ghζx x0

xL–+ + + 0=

ut φi( , )Ω τu φi( , )Ω gζx φi( , )Ω+ + 0=

t2

2

∂

∂ ζjφj φi( , )Ω t∂
∂ Gζjφj φi( , )Ω G τ–( )huj x∂

∂φj φi( , )
Ω

ghζj x∂
∂φj

x∂
∂φi( , )

Ω
+ + +

j 1=

M

∑ B=

t∂
∂ ujφj φi( , )Ω τujφj φi( , )Ω gζj x∂

∂φj φi( , )
Ω

+ + 0=
j 1=

M

∑

ghζx x0

xL

Mi j,
t2

2

∂

∂ ζj GMi j, t∂
∂ζj G τ–( )hBi j, uj ghSi j, ζj+ + + B=

Mi j,
L

t∂
∂uj τMi j,

L uj gBi j, ζj+ + 0=
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 .

Following the ADCIRC model (Luettich et al. [1992, 2003]), the temporal

discretization utilizes a two-level scheme centered at k +1/2 for the momentum and a three-

level scheme centered at k for the GWC as follows:

(A.24)

(A.25)

where the time weighting parameters, αn, in the GWC equation must satisfy α1 + α2 + α3

= 1.0, and typically all three values are set equal to 1/3. Equation (A.24) is solved for the

new elevation values and then these are used in Equation (A.25) to find the new velocity

values. For an interior node, j, the discrete equations are

(A.26)

Mi j,
L φj φi,( )Ωe

L ∆xj
1 2⁄ 0

0 1 2⁄
= =

Si j, x∂
∂φj

x∂
∂φi( , )

Ωe

1
∆xj
-------- 1 1–

1– 1
= =

1
∆t2
--------Mi j, ζj

k 1+ 2ζj
k– ζj

k 1–+( ) G
2∆t
---------Mi j, ζj

k 1+ ζj
k 1––( ) G τ–( )Bi j, huj

k+ + +

ghSi j, α1ζj
k 1+ α2ζj

k α3ζj
k 1–+ +( ) Bk=

1
∆t
----- Mi j,

L uj
k 1+ uj

k–( ) τ
2
---Mi j,

L uj
k 1+ uj

k+( )
g
2
---Bi j, ζj

k 1+ ζj
k+( )+ + 0=

1
∆t2
-------- G

2∆t
---------+ 

  ∆x
6

------ ζj 1–
k 1+ 4ζj

k 1+ ζj 1+
k 1++ +( )

α1gh
∆x

------------ ζ– j 1–
k 1+ 2ζj

k 1+ ζj 1+
k 1+–+( )+ =

2∆x
6∆t2
----------- ζj 1–

k 4ζj
k ζj 1+

k+ +( ) 1
∆t2
--------– G

2∆t
---------+ 

 + ∆x
6

------ ζj 1–
k 1– 4ζj

k 1– ζj 1+
k 1–+ +( ) –

G τ–( )h
2
--- uj 1+

k uj 1–
k–( )

α2gh
∆x

------------ ζ– j 1–
k 2ζj

k ζj 1+
k–+( )– –

α3gh
∆x

------------ ζj 1–
k 1–– 2ζj

k 1– ζj 1+
k 1––+( )
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. (A.27)

The general interior node equations presented above are needed for the analysis in

Chapter 3. However, in practice a global matrix is built up using the master elements and

the entire system is solved at once. Notice that the momentum discretization is uncoupled

due to the lumping and that the GWC discretization results in a tridiagonal system, which

can easily be solved without using a full matrix solver.

A.4   Selective lumping finite element

The SLFE scheme follows the primitive finite element scheme for the spatial

discretization – through Equations (A.12) and (A.13) for a master element, which are

repeated here for convenience

(A.28)

 . (A.29)

At the point of the temporal discretization, the SLFE scheme departs from the PFE. Rather

than a single step with leap-frog time stepping to decouple the elevation and velocity

solutions, the SLFE uses an explicit two-step scheme wherein the mass matrices are

selectively lumped.

The scheme can take one of two forms, depending upon whether the “viscous”

terms are included. The inclusion of these terms at the k time level serves to stabilize the

algorithm, and when they are excluded, the mass matrices at the k time level in the

momentum equation must be selectively lumped, as is done in the continuity equation, in

order to maintain stability. In this study, the selective lumping has been further generalized

∆x 1 τ∆t
2

--------+ 
  uj

k 1+ ∆x 1 τ∆t
2

--------– 
  uj

k g∆t
4

--------- ζj 1+
k 1+ ζj 1+

k ζj 1–
k 1+ ζj 1–

k+( )–+( )–=

Mi j, t∂
∂ζj hBi j, uj+ 0=

Mi j, t∂
∂uj τMi j, uj gBi j, ζj+ + 0=
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by adding a separate lumping parameter for the bottom friction term, since the second-order

viscous terms are lost in the linearization.

In this form, all of the mass matrices at time level k are selectively lumped, with the

bottom friction remaining separate, such that the selective lumping scheme can be

expressed as follows for the first half step:

(A.30)

(A.31)

and for the second half step

(A.32)

(A.33)

where  is fully lumped and  and  are selectively lumped. The selectively

lumped matrices are derived from a linear combination of the lumped and unlumped

matrices and are given as

(A.34)

where e is the selective lumping parameter and expresses the ratio of the lumping from fully

lumped (e = 1) to unlumped (e = 0). For the bottom friction term, , simply replace e

with f to get the selectively lumped matrix. The selective lumping technique was found by

Kawahara et al. [1982] to stabilize the algorithm in time and reduce the numerical damping

effect.

For an interior node, j, the discrete equations for the first half step are given as

Mi j,
L ζj

k 1 2⁄+ Mi j,
e ζj

k ∆t
2
-----hBi j, uj

k–=

Mi j,
L uj

k 1 2⁄+ Mi j,
e uj

k ∆t
2
----- gBi j, ζj

k τMi j,
f uj

k+( )–=

Mi j,
L ζj

k 1+ Mi j,
e ζj

k ∆thBi j, uj
k 1 2⁄+–=

Mi j,
L uj

k 1+ Mi j,
e uj

k ∆t gBi j, ζj
k 1 2⁄+ τMi j,

f uj
k 1 2⁄++( )–=

Mi j,
L Mi j,

e Mi j,
f

Mi j,
e eMi j,

L 1 e–( )Mi j,+
∆xj
6

-------- 2 e+ 1 e–
1 e– 2 e+

= =

Mi j,
f
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(A.35)

(A.36)

and for the second half step

(A.37)

. (A.38)

If the first step is substituted into the second step and like terms are gathered, a

closed form for the interior nodes can be written as

(A.39)

ζj
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6
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k 2 e+
3
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6
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(A.40)

where µ = ∆t/∆x and Equations (A.39) and (A.40) are not solved in practice, but are only

given as a closed form herein for the analytical analyses in Chapter 3.

Note that when e = f = 1 and the solution is fully lumped, the general equations for

an interior node simplify to

(A.41)

 . (A.42)

µg
2

------ 1 e–
6

----------- τ∆t
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--------1 f–
6
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APPENDIX B

Derivation of Staggered Finite Difference and 
Discontinuous Discretizations of the Shallow Water 
Equations

B.1   Linearized shallow water equations in 1D

The system of linear SWE in 1D consists of the primitive continuity equation

(B.1)

and the inviscid momentum equation

, (B.2)

where u is the depth-averaged velocity, ζ is the surface elevation, τ is the linear bottom

friction factor, g is the acceleration of gravity, h is the bathymetric depth of water (assumed

constant), and the subscripts indicate partial derivatives.

B.2   Staggered finite difference

Leendertse’s [1967] staggered finite difference (SFD) algorithm for the SWE differs

from traditional finite difference schemes in that the velocity and elevation grids are

staggered relative to one another. This essentially results in the velocities being evaluated

at the “edges” while the elevations are evaluated at the “center” of a grid block. Figure B.1

ζt hux+ 0=

ut τu gζx+ + 0=
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illustrates the grid scheme for the SFD algorithm.

To derive the SFD discretization for the SWE, centered differences on the staggered

grid are used to approximate the spatial derivatives. For Equation (B.1) this gives

(B.3)

and for Equation (B.2) this gives

, (B.4)

where the grid spacing is constant. The temporal discretization utilizes a weighted Euler

scheme, giving the final approximations as

(B.5)

Figure B.1 Grid scheme for the SFD algorithm 
applied to the SWE.

jj – 1 j + 1

j – 1/2 j + 1/2

elevations velocities

t∂
∂ζj h

uj 1 2⁄+ uj 1 2⁄––( )
∆x

--------------------------------------------+ 0=

t∂
∂ uj 1 2⁄+ τuj 1 2⁄+ g

ζj 1+ ζj–( )
∆x

--------------------------+ + 0=

ζj
k 1+ hθ ∆t

∆x
------ uj 1 2⁄+

k 1+ uj 1 2⁄–
k 1+–( )+ ζj

k h 1 θ–( ) ∆t
∆x
------ uj 1 2⁄+

k uj 1 2⁄–
k–( )–=

1 τ∆tθ+( )uj 1 2⁄+
k 1+ gθ ∆t

∆x
------ ζj 1+

k 1+ ζj
k 1+–( )+ =
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(B.6)

where θ is the weighting parameter and varies between 0 (fully explicit) and 1 (fully

implicit). A θ value of 0.5 gives the second-order Crank-Nicolson scheme.

B.3   Finite volume method

The FVM can utilize any order of interpolate within each discrete cell, allowing for

local p-refinement, however piecewise constants (low-order) and piecewise linear

interpolates are most common. Figure B.2 shows a schematic of a typical FVM

discretization with piecewise linear interpolates, wherein each cell contains information

about the cell-average value and the functional form of the slope for each variable. The

arrows indicate the outward normal flux across the interfaces for cell j; notice that the

interpolates need not be continuous across the interfaces.

The starting point of the FVM discretization is to rewrite Equations (B.1) and (B.2)

as a system given as

(B.7)

where  is the vector of unknowns,  is the flux, and . Next,

1 τ∆t 1 θ–( )–( )uj 1 2⁄+
k g 1 θ–( ) ∆t

∆x
------ ζj 1+

k ζj
k–( )–

Figure B.2 Typical FVM discretization 
for control volume j.

j – 1 j j + 1

nL nR

t∂
∂c

x∂
∂f+ h=

c ζ
u 

 = f hu
gζ 

 = h 0
τu– 

 =
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after applying the divergence theorem, the weak integral form of the system is given as

(B.8)

where Ωe is the element area or volume, Γe is the element boundary, ne is the unit outward

normal and fn is the normal flux across the boundary. In one spatial dimension, the

boundary integrations are nothing more than point evaluations, such that for each volume

the approximation is

(B.9)

where an explicit temporal discretization has been used.

Since the variables are allowed to be discontinuous across the element interfaces,

the fluxes, fL and fR, are not well defined. At each element interface, the Riemann problem

must be solved. Note that it is generally not worthwhile to get an exact solution to the

Riemann problem since roundoff and truncation will introduce more error into the solution

than an approximate Riemann solver. Herein Roe’s approximation is used to solve the

Riemann problem for Equations (B.1) and (B.2), where the normal Jacobian matrix is

defined by using the chain rule to rewrite the flux term in Equation (B.7) in an equivalent

form

 (B.10)

where, in general, A will be a function of the left and right states of c. However, for the

linearized system of equations, A is independent of c as is shown here

t∂
∂ c Ωed

Ωe

∫ fn ne⋅ Γed

Γe

∫+ h Ωed

Ωe

∫=

∆xj
∆t
-------- cj

k 1+ cj
k–( ) fL

k nL⋅ fR
k nR⋅+ + ∆xjhj

k=

x∂
∂f

c∂
∂f

x∂
∂c A cL cR,( ) x∂

∂c= =
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  . (B.11)

Note that since c does not appear in A for the linear SWE, this is the same matrix as the Roe

linearized matrix in Leveque [1990], and it is not necessary to compute the Roe averaged

variables. Next the eigenvalues and eigenvectors of A are calculated to obtain

 ,  ,  , and (B.12)

where  is the frictionless wave celerity, or the speed at which the wave would

travel analytically in the absence of friction.

Now the Riemann problem can be solved using Roe’s approximation, which relates

the variable states at a shock. For linear hyperbolic systems, an initial state that is

discontinuous across an interface will evolve in time such that the discontinuities propagate

with the characteristic speeds given by the eigenvalues. Figure B.3 illustrates the evolution

of the Riemann problem in time.

These three states are related by the following equations:

(B.13)

A c∂
∂f 0 h

g 0
= =

λ1 a–= λ2 a= v1
1

a h⁄–
= v2

1
a h⁄

=

a gh=

t

Figure B.3 Evolution of the 
discontinuity in time.

λ1 λ2

cL
cm cRt=0

cm cL α1v1+=
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, (B.14)

which are simply a linear combination of the eigenvectors. Now use Equation (B.14) to

solve for α1 and α2 in terms of the state variables, ζ and u:

(B.15)

The first equation can be used to solve for α1 in terms of the variables and α2

(B.16)

then substitute α1 into the second equation to get

, (B.17)

which gives α2 as

(B.18)

so that the final values can be written as

 and (B.19)

. (B.20)

Then the Roe numerical flux, using the left state and summing over the p

eigenstates, is given by

cR cm α2v2+ cL α1v1 α2v2+ += =

ζR

uR

ζL

uL

α1
1

a h⁄–
α2

1
a h⁄

+ +=

ζR ζL α1 α2+ += α1⇒ ζR ζL α2––=

uR uL
a
h
--- α1 α2+–( )+ uL

a
h
--- ζR– ζL α2 α2+ + +( )+= =

h
a
--- uR uL–( ) ζR ζL–+ 2α2=

α1
1
2
--- ζR ζL–( ) h

a
--- uR uL–( )–=

α2
1
2
--- ζR ζL–( ) h

a
--- uR uL–( )+=
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 where (B.21)

or using the right state

 where  . (B.22)

For this study, the left state is used and the numerical flux is computed as

(B.23)

since .

Substituting the definition for f and Equations (B.12) and (B.19) gives the numerical flux

 , (B.24)

which can be simplified to give

 . (B.25)

Now return to Equation (B.9) and substitute the numerical flux F for the boundary

fluxes fL and fR to arrive at the general form of the discrete FVM equations

(B.26)
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k ζj L,
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k
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, (B.27)

where again a is the frictionless wave celerity (or the speed at which the wave would travel

analytically in the absence of friction) and is equal to , the grid spacing ∆x is assumed

to be constant, and the subscripts j, R(L) indicate the rightmost (leftmost) value of u or ζ

within the jth cell. These values are calculated from the known cell-centered average and

the assumed functional form of the interpolates within the cell. Herein, only piecewise

constant and piecewise linear approximations are considered, where the raw slopes are

calculated using values from neighboring cells (explicit slope reconstruction after the

computation of the cell average quantities). These general equations are valid for both low-

and high-order FVM approximations, since the assumed form of the interpolates do not

enter in until the left and right cell values are determined.

Looking at Equations (B.26) and (B.27), and noting that for piecewise constants uj,L

= uj,R and ζj, L = ζj, R, the low-order discrete FVM representation can be written as

(B.28)

. (B.29)

For stability, some limiting procedure must be applied to the raw slopes when linear

interpolates are used; this is so that two adjacent cells do not have slopes of opposite sign.

(Refer to Figure B.2 for a discretization where the linear interpolates have been limited.

Notice that the jth cell has a slope of zero.) These limiting procedures are also known as

total-variation diminishing (TVD) and essentially non-oscillatory (ENO) schemes. They

prohibit expressing the high-order FVM algorithm in a completely closed-form equation,

since the slopes evolve with the solution. For this study, three common limiters (as

presented in various applications of higher-order methods) and their behavior within the

a uj 1– R,
k uj L,

k uj R,
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context of the high-order FVM discretization of the SWE have been examined. These are

the minmod limiter used by Sweby [1984], given as

, (B.30)

the Superbee limiter used by Causon et al. [2000], given as

, (B.31)

and the vanLeer limiter used by Bell and Shubin [1984], given as

, (B.32)

where sx is the sign of x and the raw slopes are calculated using standard finite differences:

, , and (B.33)

where b can be either u or ζ, the subscripts indicate the cell average values for the jth cell,

and the grid spacing ∆x is assumed constant. Although mathematically each of these

limiters takes on a slightly different form, they are essentially performing the same tasks:

1) to ensure a monotonic increase or decrease in the function values by prohibiting slopes

of opposite sign in adjacent cells (i.e., sLsR > 0 tests that slopes have the same sign) and 2)

to limit the magnitude of the boundary cell’s slope to prevent overshoot and undershoot of

the boundary conditions.

B.4   Discontinuous Galerkin finite element

Discontinuous Galerkin finite element methods are similar to traditional Galerkin

FE methods in that both solve the weak form of the equations by multiplying by a weight

function and integrating.  As in traditional Galerkin approximations, the weight functions

are identical to the interpolating functions. There are, however, two crucial differences

minmod slope sLMin L R,( )   if sLsR > 0,   else slope = 0=

Superbee slope sLMax 0 Min 2 L sL R,( ) Min L 2sL R,( ), ,[ ]=

vanLeer slope 0.5sCMin 0.5C Minmod L R,( ),( )=

L
bj bj 1––

∆x
---------------------= R

bj 1+ bj–
∆x

----------------------= C
bj 1+ bj 1––

2∆x
----------------------------=
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between continuous Galerkin (CG) approximations and discontinuous approximations.

The first distinction is that DG methods allow discontinuities at the element interfaces,

which in effect disconnects adjacent elements and allows each to be solved independently

from the others. (As will be seen, each element does require information from adjoining

elements, but this information enters in explicitly (for explicit time stepping) and does not

couple the elements.) The second distinction follows from the first in that DG methods

integrate over a single element using local weight and interpolating functions, while

continuous methods integrate over the entire domain and use global weight functions,

which are zero outside of the element of interest. These two differences provide certain

advantages to the DG method including: local p-refinement (i.e., each element has its own

basis and weight function allowing higher order interpolates in known problem areas), local

h-refinement (i.e., each element is not required to match up with its neighbors and hanging

nodes do not pose a problem), ability to capture discontinuous solutions and handle shocks,

and local mass conservation since equations are satisfied on the element level rather than

globally.

Additionally, the DG method can be thought of as a generalization of the FVM.

Although both solve the equations in a weak sense, they differ in how they apply the

interpolates. FVM schemes use explicit post-processing to incorporate the higher-order

terms, while DG methods assume the form of the interpolate from the beginning and use

finite element techniques; both the higher-order DG and FVM can require slope limiting

for stability. Herein piecewise constant (low-order) and piecewise linear (high-order)

approximations will be derived. It will be shown that the low-order FVM and low-order DG

algorithms are equivalent. The grid structure of the DG method is the same as the FVM

with unknowns centered on an element; see Figure B.2.

The starting point for the DG discretization of the shallow water equations is the

“local” weak form of the equations. Multiply each equation by a weight function, φi(x), and
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integrate by parts on an element to get

 and (B.34)

, (B.35)

where ne is the unit outward normal,  is the boundary of element e, and  indicates

that the weight function is evaluated internal to the element at the boundary discontinuity.

The allowed discontinuities in ζ and u become a problem when you try to evaluate

the boundary fluxes (hu and gζ), and an appropriate numerical flux, F, must be substituted

for these terms. This requires solving the Riemann problem at each element interface. See

§B.3 for a complete derivation of Roe’s approximation applied to the shallow water

equations, where it was shown in Equation (B.25) that the appropriate numerical fluxes are

(B.36)

where   is the wave celerity, and the subscripts L and R denote the left and right

states at the boundary. Notice that these approximations add an additional term to the

simple arithmetic average of the left and right flux terms (hu and gζ).

The next step is to approximate the dependent variables ζ and u with some basis

function. Herein piecewise constant and piecewise linear Legendre bases are examined.

Although Lagrange bases can be more intuitive to work with, since the unknowns are

located at the node points, as in continuous schemes, rather than at the element center,

Legendre bases are orthogonal and more easily accommodate higher-order terms, as higher

terms are simply added to the existing approximation rather than requiring a complete

rederivation of the bases. The fully discrete DG equations will be worked out individually

t∂
∂ζ φi( , )

Ωe
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∂φi( , )

Ωe
– hu ne⋅ φ, i

–〈 〉∂Ωe
+ 0=
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+ + 0=
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–

F 1
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g ζL ζR+( ) a uR uL–( )–
=
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for each of these bases in the following subsections.

Piecewise constant

The structure of an element with piecewise constant interpolates is shown below in

Figure B.4. Note that there is only one unknown per element and the values at the element

boundaries are simply equal to the element average value at the center. 

The approximations on an element are given as

 and (B.37)

where the basis function is simply φ0 = 1.0. Now substitute ζh and uh for the state variables

and the approximate flux for the boundary terms in Equations (B.34) and (B.35) to arrive at

(B.38)

j j +1
L  R

Figure B.4 Structure of element j with 
piecewise constant basis 
functions.
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. . (B.39)

The second integral term in each equation vanishes since  and the first integral

evaluates simply to xj+1/2 – xj-1/2 = ∆xj. Also, note that the interface values are simply

, , , and , where b is

either ζ or u, to get after simplification

(B.40)

. (B.41)

With an explicit temporal discretization, the low-order DG algorithm for the

linearized SWE is given as:

 and (B.42)

 . (B.43)

Looking back at Equations (B.28) and (B.29), these are exactly the same equations as were

derived for the low-order FVM using piecewise constant data. Cockburn et al. [2002] note

in their DG history that the DG method can be thought of as a generalization of the FVM.

Piecewise-linear Legendre

The structure of an element in the Legendre basis is shown below in Figure B.5.

Note that the variables are evaluated at the element center, such that the unknown values

for the interpolate in element j are the elevation and velocity element averages and

“slopes”, which are indicated in the figure with a solid dot. 
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The approximations in this basis are written as

 and (B.44)

where ζ(u)j
(0) and ζ(u)j

(1) are the element average and “slope” respectively, and φ0 and φ1

are the standard linear Legendre interpolates presented in numerical methods texts:

 and  . (B.45)

Note that the factor 12/∆xj is required to normalize the basis (see Cockburn and Shu [1989]

for more details), such that the actual slope in the element is given as,

. (B.46)

Now substitute ζh and uh for the state variables and the numerical flux F into

Equations (B.34) and (B.35) to arrive at

L  R

Figure B.5 Structure of element j for 
piecewise linear Legendre 
basis functions.
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(B.47)

(B.48)

Integrate with each basis function, φi , successively to generate 4 equations for the 4

unknowns (ζj
(0), ζj

(1), uj
(0), uj

(1)). Evaluation of the integral combinations gives the

following:

and substitution of these into the integral equations results (after some simplification) in the

following four equations:

i = 0

(B.49)
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(B.50)

i = 1

(B.51)

(B.52)

where the boundary terms need to be evaluated at j–1/2 and j+1/2 and the basis functions

at the boundary have already been evaluated. 

The evaluations at the boundary require that the form of the basis functions be used

to write the boundary values in terms of the element average and slope. From the

approximations, the following are derived:

where the same expressions can also be written for the elevation, ζ. Substitution of these

expressions into Equations (B.49) through (B.52) and use of an explicit temporal
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discretization gives the high-order DG algorithm for the linearized SWE as:

(B.53)

(B.54)

(B.55)

 , (B.56)

where the parenthetical superscripts (0) and (1) represent the two degrees of freedom

(DOF) for each state variable. The zero DOF is the element average for the variable and the

one DOF is the slope within the element. The k superscripts are from the temporal

discretization and indicate at which time level the terms should be evaluated. Notice that
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although the number of unknowns has only doubled relative to the low-order DG (4 versus

2), the number of computations has more than doubled.

As in the high-order FVM, slope limiters may be necessary for added stability;

however, of the limiters that were used in the FVM, only the minmod limiter will be applied

to the high-order DG in this study. (The minmod limiter with a total variation bounded

(TVB) correction was used in the original development of the Runge-Kutta DG method by

Cockburn and Shu [1991].) Additionally, some changes are necessary relative to the

limiting procedure used for the FVM: 1) the limiter must compare the calculated DG slopes

to the left and right slopes and 2) the centered slopes C are taken to be the DG state values

times the normalization factor,  and , rather than calculating

them as a centered difference. With these changes, the limiter in the DG framework is given

as

(B.57)

where the left and right slopes are calculated using the element averages from adjacent

elements, as in the FVM (see Equation ). For the DG algorithm, slope limiting is applied as

a post-processing step; that is, after the new slope values have been computed they are

limited, and the calculated values replaced by the limited values, in preparation for the next

time step.

For non-constant grid spacing, the limiter is expressed as given in Equation (B.57);

but the slopes are calculated as

, , and (B.58)

where b can be either state variable, ζ or u. After the slopes are limited, the new value for

the (1) degree of freedom is given as
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APPENDIX C

Derivation of Analytical Fourier and Dispersion 
Relationships for the SWE Study Algorithms

C.1   Fourier analysis

C.1.1  Theory

The Fourier analysis for a general discretization of the SWE is presented herein, for

more detail about the theory see Chapter 2. For a fully discretized system, a single

component of the Fourier series, represented as

, (C.1)

where j, k are the spatial and temporal discretization indices, respectively, b can represent

either ζ or u, and b0 is the amplitude, can be substituted into the discrete representation of

Equations (1.5), (1.6), and (1.7) for each independent variable. The discrete per-time-step

propagation factor is defined as:

(C.2)

where the prime differentiates the discrete propagation factor from the continuum factor.

Definitions (C.1) and (C.2) are substituted into the set of discrete equations for the

bj
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bj
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bj
k

------------≡ eiω∆t=
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algorithm under study and a new system results;

(C.3)

where the form of the matrix coefficients will vary depending upon the spatial and temporal

discretization. A nontrivial solution will exist only when the determinant of the coefficient

matrix is zero, which results in a polynomial in the discrete per-time-step propagation

factor λ', whose complex roots can then be written as a function of the wave number, σ.

In the following sections, the Fourier propagation factor will be derived for each of

the SWE study algorithms. A complete derivation will be given for the first algorithm

(SFD) to illustrate the procedure, after which a more abbreviated derivation will be used

for the remaining algorithms.

C.1.2  Staggered finite difference

The discrete equations for the staggered finite difference approximation to the SWE

using weighted Euler time stepping are given as

(C.4)

(C.5)

where θ is the time weighting parameter, which varies between 0 (explicit) and 1 (implicit),

and the equations are as derived in Appendix B.

Now substitute a single Fourier component for each variable, given as
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 and , (C.6)

into the discrete equations to get

(C.7)

. (C.8)

Next divide through by the common factor, , in each equation and

gather like terms to get

(C.9)

. (C.10)

Now note the definition for the propagation factor given in Equation (C.2) as

 , define µ = ∆t/∆x and use the identity

(C.11)
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to get

(C.12)

. (C.13)

Then write the equations as a system for ζ0, u0 to get

(C.14)

and set the determinant equal to zero to get a polynomial expression for λ':

, (C.15)

which gives, after gathering like powers of λ'

. (C.16)

Now for simplicity, define two new parameters
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(C.18)

so that the polynomial expression becomes
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T eiσ∆x 2⁄=
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. (C.19)

Finally, the roots of this quadratic polynomial in λ' can be simplified to give

(C.20)

where the roots are complex conjugates and give the Fourier propagation behavior of the

SFD algorithm.

C.1.3  Primitive leap-frog finite element

The discrete equations for the PFE approximation to the SWE using leap-frog time

stepping are given as

(C.21)

(C.22)

where the leap-frog scheme decouples the continuity and momentum equations.

Now substitute a single Fourier component for each variable, given as

 and (C.23)

divide through by the common factor, , substitute the following propagation

factor definitions:

 and (C.24)

T 1 τ∆tθ+( ) Sθ2–[ ]λ '2 T 2– τ∆t 1 2θ–( )+( ) 2θ 1 θ–( )S–[ ]λ '+ +

T 1 τ∆t 1 θ–( )–( ) S 1 θ–( )2–[ ] 0=

λ' 1 2Sθ τ∆ t T– τ∆ t T( )2 4ST+±

2 T 1 τ∆ tθ+( ) Sθ2–( )
----------------------------------------------------------------------------+=

ζ j 1–
k 1+ 4ζ j

k 1+ ζ j 1+
k 1++ + ζ j 1–

k 1– 4ζ j
k 1– ζ j 1+

k 1–+ +( ) 6h ∆t
∆x
------– uj 1+

k uj 1–
k–( )=

uj 1–
k 1+ 4u j

k 1+ u j 1+
k 1++ + 1 2τ∆t–( ) u j 1–

k 1– 4u j
k 1– uj 1+

k 1–+ +( ) 6g ∆t
∆x
------– ζj 1+

k ζj 1–
k–( )=

ζj
k ζ0eiω k ∆teiσ j∆x= uj

k u0eiω k ∆teiσ j∆x=

eiω k ∆teiσ j∆x

λ' eiω∆t= 1
λ'
---- e i– ω∆t=
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and gather like terms to get

(C.25)

where

(C.26)

(C.27)

and µ = ∆t/∆x, as defined for the SFD algorithm.

Now set the determinant equal to zero and gather like terms to get

(C.28)

then multiply by λ'2 and divide by (A+4)2 to arrive at

. (C.29)

Note that the leap-frog time-stepping scheme results in a quartic polynomial. The roots of

this polynomial can be simplified to give the Fourier propagation factor as

(C.30)

where  and each set of roots are complex conjugates having

A 4+( ) λ' 1
λ'
----– 

  6hµB

6gµB A 4+( ) λ' 1 2τ∆t–( ) 1
λ'
----– 

 

ζ0

u0

0
0

=

A eiσ∆x e i– σ∆x+ 2 σ∆xcos= =

B eiσ∆x e i– σ∆x– 2i σ∆xsin= =

A 4+( )2[ ]λ'2 A 4+( )2 2– 2τ∆t+( ) 36ghµ2B2–[ ]+ +

A 4+( )2 1 2τ∆t–( )[ ] 1
λ'2
------ 0=

λ'4 2– 2τ∆t+( ) 36ghµ2B2

A 4+( )2
-------------------------– λ'2 1 2τ∆t–[ ] 0=+ +

λ' 1 τ∆t–( ) K
2
---- 9µ2B2

A 4+( )2
--------------------K τ∆t 1–( )K– τ∆t( )2+±+=

K 36ghµ2B2( ) A 4+( )2⁄=
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the same magnitude and opposite phase.

C.1.4  ADCIRC model (generalized wave continuity)

The discrete equations for the ADCIRC model for the SWE, which uses a three-

level temporal scheme centered at level k for continuity and a two-level temporal scheme

for momentum, are given as

(C.31)

 (C.32)

where the temporal weighting parameters, αn, must satisfy α1+α2+α3 =1.0 and are usually

set equal to 1/3.

Now substitute a single Fourier component for each variable, given as

 and , (C.33)

divide through by the common factor, , substitute the following propagation

factor definitions:

 and (C.34)

and gather like terms to get

1
∆t2
-------- G

2∆t
---------+ 

  ∆x
6

------ ζj 1–
k 1+ 4ζj

k 1+ ζj 1+
k 1++ +( )

α1gh
∆x

------------ ζ– j 1–
k 1+ 2ζj

k 1+ ζj 1+
k 1+–+( )+ =

2∆x
6∆t2
----------- ζj 1–

k 4ζj
k ζj 1+

k+ +( ) 1
∆t2
--------– G

2∆t
---------+ 

 + ∆x
6

------ ζj 1–
k 1– 4ζj

k 1– ζj 1+
k 1–+ +( ) –

G τ–( )h
2
--- uj 1+

k uj 1–
k–( )

α2gh
∆x

------------ ζ– j 1–
k 2ζj

k ζj 1+
k–+( )– –

α3gh
∆x

------------ ζj 1–
k 1–– 2ζj

k 1– ζj 1+
k 1––+( ) Bk+

∆x 1 τ∆t
2

--------+ 
  uj

k 1+ ∆x 1 τ∆t
2

--------– 
  uj

k g∆t
4

--------- ζj 1+
k 1+ ζj 1+

k ζj 1–
k 1+ ζj 1–

k+( )–+( )–=

ζj
k ζ0eiω k ∆teiσ j∆x= uj

k u0eiω k ∆teiσ j∆x=

eiω k ∆teiσ j∆x

λ' eiω∆t= 1
λ'
---- e i– ω∆t=
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(C.35)

(C.36)

where A and B are as defined for previous algorithms.

To write this as a system of equations, first define the following:

so that the system becomes

. (C.37)

When the determinant is set equal to zero, a cubic polynomial in λ' results

(C.38)

where the third root is an artifact of the wave equation form of the continuity equation and

∆x
6∆t2
----------- λ' 2– 1

λ'
----+ 

  G∆x
12∆t
------------ λ' 1

λ'
----– 

 + 
  A 4+( )ζ0 G τ–( )h

2
---Bu0+ +

gh
∆x
------ 2 A–( ) α1λ′ α2 α3

1
λ′
-----+ + 

  ζ0 0=

∆x
∆t
------ λ′ 1–( ) τ∆x

2
--------- λ′ 1+( )+ u0

g
4
---B λ′ 1+( )ζ0+ 0=

c1
∆x

6∆t2
----------- λ' 2– 1

λ'
----+ 

  G∆x
12∆t
------------ λ' 1

λ'
----– 

 + 
  A 4+( )=

c2
gh
∆x
------ 2 A–( ) α1λ′ α2 α3

1
λ′
-----+ + 

 =

c3 G τ–( )h
2
---B=

m1
g
4
---B λ′ 1+( )=

m2
∆x
∆t
------ λ′ 1–( ) τ∆x

2
--------- λ′ 1+( )+=

c1 c2+ c3

m1 m2

ζ0

u0

0
0

=

P3λ'3 P2λ'2 P1λ' P0+ + + 0=
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has zero phase and the coefficients are given as

(C.39)

(C.40)

(C.41)

(C.42)

and

, , .

For brevity, only the cubic polynomial in λ' is given, as the expressions for the roots are

tedious. Any software package, such as Mathematica®, can be used to find the roots

themselves.

C.1.5  Selective lumping finite element

When the first step is substituted into the second step and like terms are gathered,

the discrete equations for the selective lumping finite element (SLFE) discretization of the

SWE can be written as

P0 K– 3 2 A
2
---+ K2 G τ+( ) K1Gτ–( ) 1 A

4
---+ α3gh 1 A

2
---– τ 2

∆t
-----–+ +=

P1 3K3 2 A
2
---+ K2 G τ+( ) K1Gτ+( ) 1 A

4
---+– +=

gh 1 A
2
---– 2

∆t
----- α3 α2–( ) τ α3 α2+( )+ gh

8
------B2 G τ–( )–

P2 3– K3 2 A
2
---+ K2 G τ+( ) K1Gτ–( )– 1 A

4
---+ +=

gh 1 A
2
---– 2

∆t
----- α2 α1–( ) τ α2 α1+( )+ gh

8
------B2 G τ–( )–

P3 K3 2 A
2
---+ K2 G τ+( ) K1Gτ+( ) 1 A

4
---+ α1gh 1 A

2
---– τ 2

∆t
-----++ +=

K1
∆x2

6∆t
---------= K2

∆x2

3∆t2
-----------= K3

∆x2

3∆t3
-----------=
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(C.43)

(C.44)

where µ = ∆t/∆x and Equations (C.43) and (C.44) are not solved in practice, but are only

given as a closed form herein for the analytical Fourier analyses.

Now substitute a single Fourier component for each variable, given as

 and , (C.45)

divide through by the common factor, , and write as a system to get

(C.46)

where λ' and µ are as defined in the previous algorithms and the remaining definitions are

as follows:

(C.47)

ζj
k 1+ 2 e+

3
------------ µ2gh

4
------------– ζj

k 1 e–
6

----------- ζj 1–
k ζ+ j 1+

k
( ) µ2gh

8
------------ ζj 2–

k ζj 2+
k+( ) –+ +=

µh
2

------ 1 e–
6

----------- τ∆t
2

--------1 f–
6

----------– uj 2+
k uj 2–

k–( ) µh
2

------ 2 e+
3

------------ τ∆t
2

--------2 f+
3

-----------– uj 1+
k uj 1–

k–( )–

uj
k 1+ µ2gh

8
------------ τ∆t1 e–

6
-----------1 f–

6
----------– τ2∆t2

2
------------- 1 f–( )2

36
------------------+ uj 2–

k uj 2+
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6
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6
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3
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3
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6
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6
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3
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3

------------ µ2gh
4
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6
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2

--------1 f–
6
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6
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 +– τ∆t2 f+

3
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2
--------2 f+

3
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3
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 + uj
k –

µg
2
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6
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2

--------1 f–
6
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k ζj 2–

k–( ) µg
2
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3
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2

--------2 f+
3
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k ζj 1–

k–( )–

ζj
k ζ0eiω k ∆teiσ j∆x= uj
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eiω k ∆teiσ j∆x

λ' E– µhF
2

----------

µgF
2

---------- λ' E– τ∆tJ+
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u0

0
0

=
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391



(C.48)

(C.49)

(C.50)

(C.51)

(C.52)

(C.53)

Now set the determinant equal to zero and gather like terms to get the polynomial

expression for the Fourier propagation factor,

, (C.54)

where after simplification, the roots are found to be

. (C.55)

C.1.6  Low-order finite volume / discontinuous Galerkin FE

The discrete equations for the low-order FVM and DG approximations to the SWE

using explicit time stepping are given as

B eiσ∆x e i– σ∆x– 2i σ∆x( )sin= =

C ei2σ∆x e i– 2σ∆x+ 2 2σ∆x( )cos= =

D ei2σ∆x e i– 2σ∆x– 2i 2σ∆x( )sin= =

E 2 e+
3

------------ 1 e–
6

-----------A µ2gh
8

------------ C 2–( )+ +=

F 2 e+
3

------------B 1 e–
6

-----------D τ∆t
2

-------- 2 f+
3

-----------B 1 f–
6

----------D+ 
 –+=

J 1 e–
6

----------- 1 f–( )
6

--------------- C 2+( ) 2 f+
3

-----------A+ 2 e+
3

------------ 1 f–
6

----------A 2 f+
3

-----------+ –+=

τ∆t 1 f–
6

---------- 
  2

1 C
2
----+ 

  1 f–
6

---------- 2 f+
3

-----------A 1
2
--- 2 f+

3
----------- 

  2
+ +

λ'2 τ∆tJ 2E–[ ]λ' E2 τ∆tEJ– µ2gh
4

------------F2–+ + 0=

λ' 1
2
--- 2E τ∆ tJ– τ∆ tJ( )2 gh µF( )2+±[ ]=
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(C.56)

(C.57)

where a2 =gh is the wave celerity.

Now substitute a single Fourier component for each variable, given as

 and , (C.58)

divide through by the common factor, , and write as a system to get

(C.59)

where λ', µ, A and B are as defined in the previous algorithms.

Now set the determinant equal to zero and gather like terms to get the polynomial

expression for the Fourier propagation factor

(C.60)

where after simplification, the roots are found to be

. (C.61)

ζj
k 1+ ζj

k ∆t
2∆x
---------- h uj 1+

k uj 1–
k–( ) a ζj 1–

k 2ζj
k– ζj 1+

k+( )–[ ]–=

uj
k 1+ 1 τ∆t–( )uj

k ∆t
2∆x
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k ζj 1–
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k 2uj
k– uj 1+
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k ζ0eiω k ∆teiσ j∆x= uj

k u0eiω k ∆teiσ j∆x=

eiω k ∆teiσ j∆x

λ' 1– µa A 2–( ) 2⁄– µhB 2⁄
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u0

0
0

=

λ'2 2– µa A 2–( )– τ∆t+[ ]λ'+ +

1 µa A 2–( )
2

-----------------+ 
  2

τ∆t 1 µa A 2–( )
2

-----------------+ 
 – gh µB

2
------- 

  2
– 0=

λ' 1
2
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C.2   Dispersion analysis

C.2.1  Theory

Dispersion analysis is similar to Fourier analysis, except that the time domain

remains continuous. The starting point of dispersion analysis is to write the harmonic form

of each equation by substituting the temporal harmonic components expressed as

  and  , (C.62)

where ω is the temporal frequency, into the differential equations and divide through by the

common factor, eiωt. Here  is the spatial harmonic of the elevation and  is the spatial

harmonic of the velocity. This gives

(C.63)

(C.64)

(C.65)

for the continuity, momentum and generalized wave continuity equations, respectively.

For the discrete equations, the dispersion characteristics can then be determined by

substituting the discrete harmonic spatial solutions, expressed as

 and (C.66)

into the spatial discretizations of Equations (C.63) through (C.65). As in Fourier analysis

, j is the spatial node index, σ is the spatial frequency of the solution, ∆x is the

discrete spacing of nodes, ζ0 is the magnitude of the elevation solution, and u0 is the

magnitude of the velocity solution.

ζ ζ̂eiωt= u ûeiωt=

ζ̂ û

iωζ̂ h
x∂

∂ û+ 0=

iωû τû g
x∂

∂ ζ̂+ + 0=

iω( )2ζ̂ Giωζ̂ G τ–( )h
x∂

∂ û gh
x2

2

∂

∂ ζ̂–+ + 0=

ζ̂ ζ0eijσ∆x= û u0eijσ∆x=

i 1–=
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The solution of the resulting system of equations for the magnitudes u0 and ζ0,

which proceeds as in Fourier analysis, determines the relationship between the temporal

frequency, ω, and the spatial frequency, σ. The magnitude of ω is then plotted against σ to

develop the dispersion curve. As in the Fourier derivations presented above, the full

derivation will be given only for the SFD algorithm to show the process and then

subsequent derivations will be more abbreviated.

C.2.2  Staggered finite difference

The staggered finite difference discretization of the harmonic equations presented

in §C.2.1 is given as

(C.67)

. (C.68)

Now substitute the definitions given in Equation (C.66) for the spatial harmonics to get

(C.69)

(C.70)

and divide through by the common factor, eijσ∆x, to get

(C.71)

. (C.72)

Now write as a system of equations in ζ0 and u0

iωζ̂j
h

∆x
------ ûj 1 2⁄+ ûj 1 2⁄––( )+ 0=

iω τ+( )ûj 1 2⁄+
g

∆x
------ ζ̂j 1+ ζ̂j–( )+ 0=

iωζ0eijσ∆x h
∆x
------u0 ei j 1 2⁄+( )σ∆x ei j 1 2⁄–( )σ∆x–( )+ 0=

iω τ+( )u0ei j 1 2⁄+( )σ∆x g
∆x
------ζ0 ei j 1+( )σ∆x eijσ∆x–( )+ 0=

iωζ0
h

∆x
------u0 eiσ∆x 2⁄ e iσ∆x– 2⁄–( )+ 0=

iω τ+( )u0eiσ∆x 2⁄ g
∆x
------ζ0 eiσ∆x 1–( )+ 0=
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(C.73)

and set the determinant equal to zero to get

, (C.74)

which, after gathering like powers of ω, gives the quadratic polynomial in ω to be

. (C.75)

This can be further simplified by dividing through by the leading coefficient to get

, (C.76)

which has as its roots

(C.77)

where, as in Fourier analysis, , and the prime notation has

been used to differentiate from the continuum dispersion relationship.

C.2.3  Primitive finite element

The primitive finite element discretization of the harmonic equations presented in

§C.2.1 is given as

(C.78)

iω h
∆x
------ eiσ∆x 2⁄ e iσ∆x– 2⁄–( )

g
∆x
------ eiσ∆x 1–( ) iω τ+( )eiσ∆x 2⁄
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u0

0
0

=
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∆x2
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∆x2
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ω2 iτω– gh
∆x2
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ω' i
2
--- τ τ2 4 gh
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iω∆x
6
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2
--- ûj 1+ ûj 1––( )+ 0=
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. (C.79)

Now substitute the definitions given in Equation (C.66) for the spatial harmonics, divide

through by the common factor, eijσ∆x, and write as a system of equations to get

(C.80)

where A is as defined above for the SFD algorithm and 

as in the above Fourier analysis derivations.

Now set the determinant equal to zero and gather like powers of ω to get

, (C.81)

which can be simplified by dividing through by the coefficient of the leading term

. (C.82)

The roots of this quadratic polynomial in ω are found to be

(C.83)

where again the prime notation has been used to differentiate from the continuum

dispersion relationship.

C.2.4  ADCIRC model (generalized wave continuity)

The ADCIRC model discretization of the harmonic equations presented in §C.2.1
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6
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2
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ω ghB2

4
------------–+ 0=
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-------------------------------- 
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+ 0=

ω' i
2
--- τ τ2 36gh B
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-------------------------------- 

  2
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is given as

(C.84)

(C.85)

Now substitute the definitions given in Equation (C.66) for the spatial harmonics,

divide through by the common factor, eijσ∆x, and write as a system of equations to get

(C.86)

where A and B are as defined in the previous derivations. Set the determinant equal to zero

and gather like powers of ω to arrive at

(C.87)

where the cubic polynomial is a result of the second time derivative, and the prime notation

has been used to differentiate from the continuum dispersion relationship. As the roots of a

cubic polynomial are rather tedious to present, only the polynomial itself is presented

herein. Any mathematical software package, such as Mathematica®, could be used to find

the roots themselves.
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C.2.5  Selective lumping finite element

No analytical relationship can be determined for this algorithm, due to the two-step

temporal discretization scheme. It is impossible to write the equations independently of

time, as is required for dispersion analysis, since the temporal discretization is an integral

part of the algorithm.

C.2.6  Low-order finite volume / discontinuous Galerkin FE

The low-order finite volume and discontinuous Galerkin finite element

discretizations of the harmonic equations presented in §C.2.1 are given as

(C.88)

(C.89)

Now substitute the definitions given in Equation (C.66) for the spatial harmonics, divide

through by the common factor, eijσ∆x, and write as a system of equations to get

(C.90)

where A and B are as defined in the previous derivations.

Now set the determinant equal to zero and gather like powers of ω to get

(C.91)

where the roots of this quadratic polynomial in ω are found to be, after simplification,
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. (C.92)

Again the prime notation has been used to differentiate from the continuum dispersion

relationship.
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APPENDIX D

Spatial and Temporal Grid Convergence Results for 
1D SWE Solution Algorithms

D.1   Spatial grid convergence results

The L2 and  error norms for the spatial errors, as described in Chapter 3, are

summarized for each of the study algorithms herein. A fine grid solution of 1281 nodes (∆x

= 39.0625m) from the ADCIRC model is used as the “true” solution. The slope of a best-

fit line through this data in log-log space gives the order of the approximation, or the

convergence rate. Also, the slopes calculated between two successive grid resolutions are

used to compute average and peak convergence rates. The best-fit and average convergence

rates are computed for the linear portions of the data; the flat portion of the curves is not

included. These results are presented graphically in Chapter 3 and the raw data is provided

here in Tables D.1 through D.10.           
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Table D.1  Spatial grid convergence results for 1D SFD algorithm.

 error norms L2 error norms

∆x (m) velocity elevation velocity elevation

5000 0.01111999 0.03948002 0.00529831 0.03293353

2500 0.00452118 0.02114269 0.00242530 0.01750980

1250 0.00208092 0.01056154 0.00130898 0.00907054

625 0.00111577 0.00531280 0.00069661 0.00462047

312.5 0.00064611 0.00265998 0.00036144 0.00233179

156.25 0.00035477 0.00133057 0.00018492 0.00117097

78.125 0.00021681 0.00066552 0.00009430 0.00058639

39.0625 0.00015993 0.00033168 0.00004834 0.00029306

best-fit rate 0.931 0.990 0.956 0.977

average rate 0.947 0.985 0.968 0.973

peak rate 1.298 1.005 1.127 1.001

Table D.2  Spatial grid convergence results for 1D PLF algorithm.

 error norms L2 error norms

∆x (m) velocity elevation velocity elevation

5000 0.00043724 0.00085701 0.00025002 0.00049621

2500 0.00024993 0.00025060 0.00009464 0.00013408

1250 0.00013701 0.00009190 0.00003580 0.00003944

625 0.00010862 0.00004497 0.00001742 0.00001327

312.5 0.00010260 0.00002309 9.954066e-6 5.413497e-6

156.25 0.00010445 0.00001731 6.917866e-6 3.335049e-6

78.125 0.00010361 0.00001818 5.395245e-6 3.070488e-6

39.0625 0.00010357 0.00001973 4.662774e-6 3.064374e-6

best-fit rate 0.837 1.291 1.174 1.637

average rate 0.837 1.304 1.163 1.630

peak rate 0.867 1.774 1.402 1.888
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Table D.3  Spatial grid convergence results for 1D ADCIRC model.

 error norms L2 error norms

∆x (m) velocity elevation velocity elevation

5000 0.01282147 0.002063137 0.004459657 0.00151752

2500 0.00623724 0.00049856 0.00159062 0.00039099

1250 0.00295148 0.00017966 0.00055701 0.00011083

625 0.00146198 0.00013991 0.00019680 0.00004777

312.5 0.00072114 0.00007972 0.00006958 0.00002114

156.25 0.00031039 0.00004775 0.00002366 9.93729e-6

78.125 0.00013054 0.00002747 7.99160e-6 4.49712e-6

best-fit rate 1.091 1.518 0.951 1.364

average rate 1.103 1.521 1.038 1.400

peak rate 1.250 1.566 2.049 1.957

Table D.4  Spatial grid convergence results for 1D SLFE algorithm.

 error norms L2 error norms

∆x (m) velocity elevation velocity elevation

5000 0.00414089 0.01641770 0.00163751 0.01411178

2500 0.00237912 0.00891522 0.00101341 0.00775322

1250 0.00124155 0.00447967 0.00054521 0.00406424

625 0.00066050 0.00227085 0.00028214 0.00208352

312.5 0.00037726 0.00114595 0.00014485 0.00105492

156.25 0.00022007 0.00059840 0.00007402 0.00053094

78.125 0.00013125 0.00032282 0.00003761 0.00026674

39.0625 0.00011092 0.00017582 0.00001901 0.00013412

best-fit rate 0.840 0.946 0.959 0.966

average rate 0.830 0.935 0.956 0.960

peak rate 0.938 0.993 0.984 0.993
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Table D.5  Spatial grid convergence results for 1D low-order FVM/DG.

 error norms L2 error norms

∆x (m) velocity elevation velocity elevation

5000 0.03702352 0.16967875 0.02086256 0.13968249

2500 0.02070707 0.08454615 0.01138230 0.06979790

1250 0.01085377 0.04283867 0.00580967 0.03516845

625 0.00556164 0.02188525 0.00299509 0.01775876

312.5 0.00281441 0.01109734 0.00157794 0.00893168

156.25 0.00141434 0.00557090 0.00082827 0.00447561

78.125 0.00070876 0.00278744 0.00043048 0.00223841

39.0625 0.00035477 0.00139351 0.00022394 0.00111910

best-fit rate 0.965 0.987 0.938 0.994

average rate 0.958 0.990 0.935 0.995

peak rate 0.998 1.005 0.970 1.001

Table D.6  Spatial grid convergence results for 1D minmod limited FVM.

 error norms L2 error norms

∆x (m) velocity elevation velocity elevation

5000. 0.06986880 0.01710693 0.02499239 0.01351432

2500. 0.03438994 0.01005677 0.01031451 0.00810453

1250. 0.01722827 0.00523638 0.00449823 0.00436109

625. 0.00861693 0.00262424 0.00205627 0.00224514

312.5 0.00421749 0.00133579 0.00097299 0.00113861

156.25 0.00213754 0.00067208 0.00047445 0.00057525

78.125 0.00100430 0.00033235 0.00023417 0.00028929

39.0625 0.00050427 0.00016580 0.00011724 0.00014542

best-fit rate 1.016 0.968 1.098 0.947

average rate 1.016 0.956 1.105 0.934

peak rate 1.090 1.016 1.277 0.992
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Table D.7  Spatial grid convergence results for 1D superbee limited FVM.

 error norms L2 error norms

∆x (m) velocity elevation velocity elevation

5000 0.05940099 0.03604274 0.01960381 0.02710818

2500 0.02848705 0.01654811 0.00692049 0.01351983

1250 0.01430583 0.00781652 0.00250782 0.00670120

625 0.00712807 0.00376295 0.00089999 0.00333100

312.5 0.00333537 0.00186575 0.00030859 0.00166541

156.25 0.00170634 0.00094087 0.00011611 0.00083530

78.125 0.00078590 0.00046922 0.00004206 0.00041834

39.0625 0.00039486 0.00023446 0.00001650 0.00020975

best-fit rate 1.034 1.032 1.466 1.002

average rate 1.033 1.038 1.459 1.002

peak rate 1.118 1.123 1.544 1.013

Table D.8  Spatial grid convergence results for 1D vanLeer limited FVM.

 error norms L2 error norms

∆x (m) velocity elevation velocity elevation

5000 0.06264975 0.14341112 0.03740583 0.10280013

2500 0.04004857 0.08956832 0.02140672 0.06162252

1250 0.02266951 0.05103670 0.01176175 0.03442155

625 0.01203567 0.02743747 0.00626120 0.01826778

312.5 0.00621730 0.01427110 0.00327795 0.00941353

156.25 0.00319331 0.00727676 0.00169178 0.00477600

78.125 0.00161718 0.00367441 0.00086311 0.00240475

39.0625 0.00081366 0.00184683 0.00043817 0.00120671

best-fit rate 0.943 0.940 0.938 0.951

average rate 0.937 0.933 0.935 0.946

peak rate 0.991 0.992 0.978 0.995
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Table D.9  Spatial grid convergence results for 1D unlimited DG.

 error norms L2 error norms

∆x (m) velocity elevation velocity elevation

5000 0.00165234 0.00094039 0.00111539 0.00051554

2500 0.00051592 0.00029017 0.00029463 0.00012622

1250 0.00016760 0.00010764 0.00007901 0.00003558

625 0.00012173 0.00004463 0.00002593 0.00001213

312.5 0.00010833 0.00002323 0.00001170 4.88555e-6

156.25 0.00010497 0.00001543 7.31394e-6 2.76321e-6

78.125 0.00010411 0.00002024 5.96062e-6 3.26047e-6

39.0625 0.00010389 0.00003423 5.40672e-6 4.10014e-6

best-fit rate 1.651 1.338 1.666 1.682

average rate 1.651 1.335 1.644 1.680

peak rate 1.679 1.696 1.921 1.696

Table D.10  Spatial grid convergence results for 1D minmod limited DG.

 error norms L2 error norms

∆x (m) velocity elevation velocity elevation

5000 0.04466828 0.08901955 0.01577199 0.06572041

2500 0.02142211 0.04364349 0.00720095 0.03164476

1250 0.01060520 0.02158032 0.00356593 0.01554677

625 0.00524778 0.01073390 0.00177972 0.00771668

312.5 0.00259691 0.00534826 0.00088954 0.00384458

156.25 0.00123695 0.00267072 0.00044475 0.00191870

78.125 0.00056800 0.00133420 0.00022307 0.00095790

39.0625 0.00023221 0.00066681 0.00011224 0.00047807

best-fit rate 1.067 1.008 1.012 1.012

average rate 1.084 1.009 1.019 1.015

peak rate 1.290 1.028 1.131 1.054
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D.2   Temporal interval halving results

The L2 and  error norms for the temporal errors, as described in Chapter 3, are

summarized for each of the study algorithms herein. Interval halving, wherein successive

solutions have a time step equal to one-half of the previous time step, was used to generate

the convergence results. Except for the SLFE algorithm, a base time step of ∆tb = 1.6

seconds was used for all algorithms, such that the errors are computed for two successive

solutions with time steps of ∆tb/m and ∆tb/2m. A base time step of ∆tb = 2.8125 seconds

was used for the SLFE algorithm, since larger time steps are required for consistent results.

Additionally, some of the discontinuous solutions are unstable at these large time steps, as

will be noted in the tables where the lower m values will be missing. These results are

presented graphically in Chapter 3 and the raw data is provided here in Tables D.11 through

D.20. Note that the ratio of successive error norms is equal to 2p, where p is the order of the

approximation when this ratio converges to a constant value. Unless otherwise noted, the

2p entries for the last m value within each table are used to compute the convergence rates,

p.           

Table D.11  Temporal convergence results for 1D SFD algorithm.

 error norms L2 error norms

m velocity 2p elevation 2p velocity 2p elevation 2p

1 3.82528e-6 — 3.59725e-6 — 1.49512e-6 — 1.50362e-6 —

2 1.92341e-6 1.99 2.18063e-6 1.65 7.01211e-7 2.13 7.59658e-7 1.98

4 9.79565e-7 1.96 1.05851e-6 2.06 3.42537e-7 2.05 3.42985e-7 2.21

8 5.14603e-7 1.90 4.31055e-7 2.46 1.42825e-7 2.40 1.38044e-7 2.48

16 1.18150e-7 4.36 1.19009e-7 3.62 3.86751e-8 3.69 3.92028e-8 3.52

32 3.20321e-8 3.69 3.14840e-8 3.78 9.67587e-9 4.00 9.93065e-9 3.95

p 1.88 1.92 2.00 1.98
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Table D.12  Temporal convergence results for 1D PLF algorithm.

 error norms L2 error norms

m velocity 2p elevation 2p velocity 2p elevation 2p

1 0.00002010 — 0.00001754 — 7.08424e-6 — 0.00001167 —

2 0.00001319 1.52 0.00001184 1.48 3.53910e-6 2.00 5.82872e-6 2.00

4 4.58450e-6 2.88 4.62000e-6 2.56 1.77092e-6 2.00 2.91569e-6 2.00

8 2.10150e-6 2.18 2.56794e-6 1.80 8.92226e-7 1.98 1.46657e-6 1.99

16 9.85417e-7 2.13 1.31648e-6 1.95 4.35284e-7 2.05 7.25394e-7 2.02

32 4.22700e-7 2.33 5.47254e-7 2.41 2.11098e-7 2.06 3.58152e-7 2.03

p 1.22 1.27 1.04 1.02

Table D.13  Temporal convergence results for 1D ADCIRC model.

 error norms L2 error norms

m velocity 2p elevation 2p velocity 2p elevation 2p

1 3.79258e-6 — 3.82580e-6 — 8.58070e-7 — 7.38999e-7 —

2 9.69215e-7 3.91 9.28063e-7 4.12 2.27812e-7 3.77 1.93958e-7 3.81

4* 2.43831e-7 3.97 2.40991e-7 3.85 5.60527e-8 4.06 4.98683e-8 3.89

8 1.33203e-7 1.83 6.17263e-8 3.90 5.28166e-8 1.06 2.95586e-8 1.69

16 8.43224e-8 1.58 3.50803e-8 1.76 4.84008e-8 1.09 2.55297e-8 1.16

32 7.47700e-7 0.11 3.72498e-7 0.09 5.15810e-7 0.09 2.70534e-7 0.09

p 1.99 1.95 2.02 1.96

* Converged accuracy taken from italicized row.

Table D.14  Temporal convergence results for 1D SLFE algorithm.

 error norms L2 error norms

m velocity 2p elevation 2p velocity 2p elevation 2p

1/2 0.00008645 — 0.00013421 — 0.00003771 — 0.00011844 —

1 0.00014551 0.59 0.00005706 2.35 0.00007359 0.51 0.00004773 2.48

2 0.00025197 0.58 0.00007806 0.73 0.00014521 0.51 0.00002922 1.63

4 0.00045528 0.55 0.00014138 0.55 0.00028829 0.50 0.00007078 0.41

8 0.00093557 0.49 0.00021437 0.66 0.00057363 0.50 0.00013673 0.52

16 0.00185184 0.51 0.00031224 0.69 0.00113890 0.50 0.00024205 0.56

p -0.99 -0.54 -0.99 -0.82
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Table D.15  Temporal convergence results for 1D low-order FVM/DG.

 error norms L2 error norms

m velocity 2p elevation 2p velocity 2p elevation 2p

1 0.00004726 — 0.00002701 — 0.00002857 — 0.00001908 —

2 0.00002319 2.04 0.00001351 2.00 0.00001423 2.01 9.36754e-6 2.04

4 0.00001151 2.02 6.75278e-6 2.00 7.10251e-6 2.00 4.64376e-6 2.02

8 5.73144e-6 2.01 3.37641e-6 2.00 3.54813e-6 2.00 2.31229e-6 2.01

16 2.86068e-6 2.00 1.68821e-6 2.00 1.77329e-6 2.00 1.15380e-6 2.00

32 1.42911e-6 2.00 8.44108e-7 2.00 8.86456e-7 2.00 5.76317e-7 2.00

64 7.14247e-7 2.00 4.22054e-7 2.00 4.43181e-7 2.00 2.88014e-7 2.00

p 1.00 1.00 1.00 1.00

Table D.16  Temporal convergence results for 1D minmod limited FVM.

 error norms L2 error norms

m velocity 2p elevation 2p velocity 2p elevation 2p

1 unstable — unstable — unstable — unstable —

2 0.00722223 — 0.00695847 — 0.00213639 — 0.00200383 —

4 0.00025100 28.77 0.00023253 29.92 0.00004329 49.35 0.00004271 46.91

8 0.00005300 4.74 0.00005137 4.53 9.23198e-6 4.69 9.03529e-6 4.73

16 0.00001951 2.72 0.00001820 2.82 3.75781e-6 2.46 3.59227e-6 2.52

32 8.57388e-6 2.28 7.90889e-6 2.30 1.73020e-6 2.17 1.63722e-6 2.19

64 4.03972e-6 2.12 3.70330e-6 2.14 8.34583e-7 2.07 7.85413e-7 2.08

p 1.09 1.09 1.05 1.06
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Table D.17  Temporal convergence results for 1D superbee limited FVM.

 error norms L2 error norms

m velocity 2p elevation 2p velocity 2p elevation 2p

1 unstable — unstable — unstable — unstable —

2 unstable — unstable — unstable — unstable —

4 unstable — unstable — unstable — unstable —

8 unstable — unstable — unstable — unstable —

16 0.00004485 — 0.00004325 — 9.47990e-6 — 9.43380e-6 —

32 0.00001330 3.37 0.00001262 3.43 2.64701e-6 3.58 2.58840e-6 3.64

64 5.57205e-6 2.39 5.22455e-6 2.41 1.09685e-6 2.41 1.06002e-6 2.44

p 1.26 1.27 1.27 1.29

Table D.18  Temporal convergence results for 1D vanLeer limited FVM.

 error norms L2 error norms

m velocity 2p elevation 2p velocity 2p elevation 2p

1 0.00005822 — 0.00005933 — 0.00003483 — 0.00002721 —

2 0.00002351 2.48 0.00001866 3.18 0.00001454 2.40 9.10707e-6 2.99

4 0.00001163 2.02 6.34845e-6 2.94 7.14643e-6 2.03 4.32367e-6 2.11

8 5.80605e-6 2.00 3.17668e-6 2.00 3.57060e-6 2.00 2.15496e-6 2.01

16 2.90075e-6 2.00 1.58823e-6 2.00 1.78461e-6 2.00 1.07549e-6 2.00

32 1.44982e-6 2.00 7.94088e-7 2.00 8.92132e-7 2.00 5.37250e-7 2.00

64 7.24777e-7 2.00 3.97036e-7 2.00 4.46023e-7 2.00 2.68502e-7 2.00

p 1.00 1.00 1.00 1.00

L∞

L∞
410



Table D.19  Temporal convergence results for 1D unlimited DG.

 error norms L2 error norms

m velocity 2p elevation 2p velocity 2p elevation 2p

1 - 8 unstable — unstable — unstable — unstable —

16 0.02395420 — 0.02418774 — 0.00357125 — 0.00360566 —

32 0.00008741 274.0 0.00008747 276.5 9.9657e-6 358.4 0.00001004 359.0

64 0.00001681 5.20 0.00001659 5.27 1.9097e-6 5.22 1.9036e-6 5.28

128 6.2593e-6 2.69 6.12607e-6 2.71 7.4590e-7 2.56 7.3735e-7 2.58

256 2.7789e-6 2.25 2.7090e-6 2.26 3.4084e-7 2.19 3.3550e-7 2.20

512 1.3168e-6 2.11 1.2811e-6 2.11 1.6393e-7 2.08 1.6103e-7 2.08

p 1.08 1.08 1.06 1.06

Table D.20  Temporal convergence results for 1D minmod limited DG.

 error norms L2 error norms

m velocity 2p elevation 2p velocity 2p elevation 2p

1 10.0791892 — 10.6250467 — 4.74312272 — 4.18033528 —

2 0.00611484 — 0.00625862 — 0.00181409 — 0.00197993 —

4 0.00021283 28.7 0.00024122 25.9 0.00003931 46.1 0.00004505 44.0

8 0.00004716 4.51 0.00004686 5.15 8.5968e-6 4.57 9.8283e-6 4.58

16 0.00001709 2.76 0.00001675 2.80 3.4319e-6 2.50 4.2386e-6 2.32

32 7.4825e-6 2.28 7.3330e-6 2.28 1.5564e-6 2.21 2.0044e-6 2.11

64 3.5537e-6 2.11 3.4790e-6 2.11 7.4661e-7 2.08 9.8732e-7 2.03

128 1.7853e-6 1.99 * 1.7427e-6 2.00 3.7866e-7 1.97 * 4.9823e-7 1.98

256 1.0432e-6 1.71 9.0457e-7 1.93 2.4019e-7 1.58 2.4344e-7 2.05

p 0.99 0.95 0.99 1.03

The converged ratio for the velocity errors are taken from the m = 128 data point.
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APPENDIX E

Spatial and Temporal Convergence Results for 1D 
Coupled Discontinuous and Continuous SWE 
Solution Algorithms

E.1   Spatial grid convergence results

The L2 and  error norms for the spatial errors, as described in Chapter 4, are

summarized for each of the coupled algorithms herein. A fine grid solution of 1281 nodes

(∆x = 39.0625m) from the ADCIRC model is used as the “true” solution. A time step of

0.01 seconds was used for all simulations, including the “true” solution. The accuracy, or

order of the approximation, for each model is approximated by three different

computations: 1) “best-fit” is the slope of the best fit line through the linear portion of the

log-log plots, 2) “average” is the average of the slopes between successive data points in

log-log space, and 3) “peak” is the maximum of the slopes between successive data points

in log-log space. The log-log plots themselves are presented in Chapter 4 and the raw data

and approximated orders are provided here in Tables E.1 through E.9.   
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Table E.1  Spatial convergence results for 1D equation coupled DG/CG model with 
piecewise constant approximations.

 error norms L2 error norms

∆x (m) velocity elevation velocity elevation

5000 0.03507000 0.00781361 0.02075245 0.00347168

2500 0.01919184 0.00263946 0.01126178 0.00166990

1250 0.00993716 0.00153651 0.00588286 0.00106423

625 0.00501104 0.00106836 0.00301080 0.00066230

312.5 0.00249495 0.00077764 0.00152466 0.00039960

156.25 0.00135526 0.00055177 0.00076848 0.00023514

78.125 0.00076807 0.00037901 0.00038732 0.00013481

39.0625 0.00044782 0.00025594 0.00019570 0.00007627

best-fit 0.915 0.636 0.967 0.762

average 0.899 0.705 0.961 0.787

peak 1.006 1.566 0.988 1.056

Table E.2  Spatial convergence results for 1D equation coupled DG/CG model with 
unlimited piecewise linear approximations.

 error norms L2 error norms

∆x (m) velocity elevation velocity elevation

5000 0.00196626 0.00453322 0.00126043 0.00253494

2500 0.00092744 0.00120015 0.00049588 0.00072467

1250 0.00046570 0.00045641 0.00021250 0.00024974

625 0.00022662 0.00023862 0.00010042 0.00010471

312.5 0.00013831 0.00013820 0.00005056 0.00004947

156.25 0.00010424 0.00008822 0.00002537 0.00002501

78.125 0.00010361 0.00005440 0.00001452 0.00001384

39.0625 0.21180233 0.17422598 0.05236029 0.06302724

best-fit 0.969 1.014 1.070 1.236

average 0.957 1.063 1.073 1.253

peak 1.084 1.917 1.346 1.807
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Table E.3  Spatial convergence results for 1D equation coupled DG/CG model with 
minmod limited piecewise linear approximations.

 error norms L2 error norms

∆x (m) velocity elevation velocity elevation

5000 0.01005670 0.00808653 0.00423833 0.00344977

2500 0.00449376 0.00316799 0.00159232 0.00102661

1250 0.00193015 0.00130298 0.00054665 0.00033274

625 0.00082952 0.00055838 0.00017610 0.00011593

312.5 0.00033744 0.00024699 0.00005860 0.00004575

156.25 0.00012015 0.00011197 0.00002183 0.00001997

78.125 0.00004181 0.00005198 9.7091e-6 9.7237e-6

39.0625 0.00008274 0.00002791 6.2335e-6 5.4820e-6

best-fit 1.311 1.175 1.497 1.336

average 1.318 1.168 1.462 1.328

peak 1.523 1.352 1.634 1.749

Table E.4  Spatial convergence results for 1D coupled DG –> ADCIRC model with 
piecewise constant approximations.

 error norms L2 error norms

∆x (m) velocity elevation velocity elevation

5000 0.08206212 0.05452019 0.05290144 0.03634489

2500 0.04205397 0.02741303 0.02669914 0.01769818

1250 0.02164133 0.01419396 0.01361186 0.00893717

625 0.01114768 0.00726121 0.00691758 0.00450817

312.5 0.00573852 0.00365672 0.00349675 0.00226765

156.25 0.00293296 0.00183685 0.00176131 0.00113983

78.125 0.00148093 0.00092270 0.00088645 0.00057294

39.0625 0.00074224 0.00046275 0.00044583 0.00028845

best-fit 0.967 0.982 0.984 0.994

average 0.970 0.983 0.984 0.997

peak 0.997 0.996 0.992 1.038
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Table E.5  Spatial convergence results for 1D coupled DG –> ADCIRC model with 
unlimited piecewise linear approximations.

 error norms L2 error norms

∆x (m) velocity elevation velocity elevation

5000 0.01212657 0.00318933 0.00419702 0.00205673

2500 0.00602124 0.00080762 0.00153532 0.00052103

1250 0.00295208 0.00018389 0.00054927 0.00013348

625 0.00150788 0.00008211 0.00019733 0.00004032

312.5 0.00068417 0.00005244 0.00006677 0.00001514

156.25 0.00029534 0.00003987 0.00002213 6.7107e-6

78.125 0.00012972 0.00001391 7.2655e-6 2.3721e-6

39.0625 0.00001327 0.00001297 2.5507e-6 2.2302e-6

best-fit 1.281 1.215 1.534 1.606

average 1.405 1.307 1.526 1.627

peak 3.289 2.135 1.607 1.981

Table E.6  Spatial convergence results for 1D coupled DG –> ADCIRC model with 
minmod limited piecewise linear approximations.

 error norms L2 error norms

∆x (m) velocity elevation velocity elevation

5000 0.03547245 0.03623953 0.02081462 0.01321169

2500 0.02052077 0.01726474 0.01238833 0.00512514

1250 0.01123804 0.00842210 0.00683957 0.00219122

625 0.00584387 0.00411988 0.00359850 0.00105387

312.5 0.00295772 0.00203585 0.00184567 0.00052417

156.25 0.00148633 0.00101032 0.00093493 0.00026191

78.125 0.00074591 0.00050259 0.00047144 0.00013110

39.0625 0.00037399 0.00025075 0.00023697 0.00006571

best-fit 0.948 1.023 0.933 1.074

average 0.938 1.025 0.922 1.093

peak 0.996 1.070 0.992 1.366
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Table E.7  Spatial convergence results for 1D coupled DG/CG –> ADCIRC model with 
piecewise constant approximations.

 error norms L2 error norms

∆x (m) velocity elevation velocity elevation

5000 0.08093345 0.03341923 0.06521852 0.01955394

2500 0.03669232 0.01038929 0.02897435 0.00459859

1250 0.01835309 0.00526200 0.01466590 0.00272636

625 0.00886315 0.00247034 0.00714362 0.00140816

312.5 0.00423990 0.00113818 0.00349966 0.00069951

156.25 0.00200646 0.00053660 0.00173263 0.00035005

78.125 0.00106237 0.00033331 0.00086000 0.00017698

39.0625 0.00057229 0.00020988 0.00042774 0.00009015

best-fit 1.026 1.036 1.029 1.044

average 1.021 1.045 1.036 1.109

peak 1.141 1.686 1.171 2.088

Table E.8  Spatial convergence results for 1D coupled DG/CG –> ADCIRC model with 
unlimited piecewise linear approximations.

 error norms L2 error norms

∆x (m) velocity elevation velocity elevation

5000 0.13225503 0.05906298 0.10760493 0.04242782

2500 1.30246895 3.07591694 0.58595958 1.58533668

1250 0.20795472 0.68271497 0.09815036 0.32691450

625 6.64994609 5.97165529 2.17561222 2.62063902

312.5 9.03342258 8.10267666 2.91560887 2.98131633

156.25 3.95839057 3.25415539 0.99317998 1.24692051

78.125 90.3073024 79.8062710 20.1016227 22.4564965

39.0625 unstable unstable unstable unstable

* Due to the instability of this algorithm, convergence rates are meaningless.
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Table E.9  Spatial convergence results for 1D coupled DG/CG –> ADCIRC model with 
minmod limited piecewise linear approximations.

 error norms L2 error norms

∆x (m) velocity elevation velocity elevation

5000 0.07400487 0.03424017 0.05779450 0.01656934

2500 0.03284014 0.01222124 0.02508870 0.00435227

1250 0.01594067 0.00594885 0.01337371 0.00261822

625 0.00791121 0.00284464 0.00679698 0.00142056

312.5 0.00402146 0.00134173 0.00343982 0.00073024

156.25 0.00201634 0.00063365 0.00173871 0.00036346

78.125 0.00098013 0.00030092 0.00087525 0.00017880

39.0625 0.00046628 0.00014478 0.00043967 0.00008839

best-fit 1.029 1.104 0.992 1.017

average 1.044 1.127 1.005 1.079

peak 1.172 1.486 1.204 1.929
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E.2   Temporal interval halving results

The L2 and  error norms for the temporal errors, as described in Chapter 4, are

summarized for each of the coupled study algorithms herein. Interval halving, wherein

successive solutions have a time step equal to one-half of the previous time step, was used

to generate the convergence results. A base time step of ∆tb = 1.6 seconds was used for all

algorithms, such that the errors are computed for two successive solutions with time steps

of ∆tb/m and ∆tb/2m. Some of the coupled solutions are unstable at these large time steps,

as will be noted in the tables where the lower m values will be missing. These results are

presented graphically in Chapter 4 and the raw data is provided here in Tables E.10 through

E.18. Note that the ratio of successive error norms is equal to 2p, where p is the order of the

approximation when this ratio converges to a constant value. Unless otherwise noted, the

2p entries for the last m value within each table are used to compute the convergence rates,

p.    

   

   

Table E.10  Temporal convergence results for 1D equation coupled DG/CG model with 
piecewise constant approximations.

 error norms L2 error norms

m velocity 2p elevation 2p velocity 2p elevation 2p

1 0.00003346 — 0.00001818 — 0.00001807 — 9.7121e-6 —

2 0.00001633 2.05 8.6179e-6 2.11 9.0039e-6 2.01 4.7360e-6 2.05

4 8.0780e-6 2.02 4.2001e-6 2.05 4.4946e-6 2.00 2.3397e-6 2.02

8 4.0183e-6 2.01 2.0738e-6 2.03 2.2456e-6 2.00 1.1630e-6 2.01

16 2.0041e-6 2.01 1.0305e-6 2.01 1.1224e-6 2.00 5.7980e-7 2.01

32 1.0008e-6 2.00 5.1365e-7 2.01 5.6108e-7 2.00 2.8948e-7 2.00

p 1.00 1.00 1.00 1.00
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Table E.11  Temporal convergence results for 1D equation coupled DG/CG model with 
unlimited piecewise linear approximations.

 error norms L2 error norms

m velocity 2p elevation 2p velocity 2p elevation 2p

1-32 unstable — unstable — unstable — unstable —

64 0.00380814 — 0.00254330 — 0.00081105 — 0.00081860 —

128 0.00005026 75.77 0.00002974 85.53 0.00001007 80.53 0.00001019 80.32

256 4.8532e-6 10.36 3.0776e-6 9.66 1.0366e-6 9.72 1.0492e-6 9.71

512 1.1276e-6 4.30 8.8326e-7 3.48 2.7695e-7 3.74 2.8009e-7 3.75

1024 3.9019e-7 2.89 3.4566e-7 2.56 1.0797e-7 2.57 1.0897e-7 2.57

2048 1.6609e-7 2.35 1.5413e-7 2.24 4.8522e-8 2.23 4.8895e-8 2.23

p 1.23 1.17 1.15 1.16

Table E.12  Temporal convergence results for 1D equation coupled DG/CG model with 
minmod limited piecewise linear approximations.

 error norms L2 error norms

m velocity 2p elevation 2p velocity 2p elevation 2p

1 4.43040325 — 4.53973911 — 1.28788171 — 1.34285149 —

2 0.00171690 — 0.001984570 — 0.00065100 — 0.00068380 —

4 0.00005701 30.1 0.00006047 32.8 0.00002028 32.1 0.00001881 36.4

8 0.00001923 2.97 0.00001743 3.47 5.2596e-6 3.86 4.8000e-6 3.92

16 8.6574e-6 2.22 7.7852e-6 2.24 2.0878e-6 2.52 1.8895e-6 2.54

32 4.1130e-6 2.10 3.677-e-6 2.12 9.8298e-7 2.12 8.7346e-7 2.16

64 2.0311e-6 2.03 1.81239e-6 2.03 4.7731e-7 2.06 4.1909e-7 2.08

128 1.0749e-6 1.89 9.5689e-7 1.89 2.4188e-7 1.97 2.0992e-7 2.00

256 6.1045e-7 1.76 5.3868e-7 1.78 1.6011e-7 1.51 1.3984e-7 1.50

p 0.92 0.92 0.98 1.00
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Table E.13  Temporal convergence results for 1D subdomain coupled DG -> ADCIRC 
model with piecewise constant approximations.

 error norms L2 error norms

m velocity 2p elevation 2p velocity 2p elevation 2p

1 0.00003097 — 0.00002001 — 0.00001638 — 0.00001047 —

2 0.00001506 2.06 9.5524e-6 2.10 8.1478e-6 2.01 5.1259e-6 2.04

4 7.4351e-6 2.03 4.6717e-6 2.04 4.0664e-6 2.00 2.5376e-6 2.02

8 3.7000e-6 2.01 2.3092e-6 2.02 2.0343e-6 2.00 1.2629e-6 2.01

16 1.8796e-6 1.97 1.1366e-6 2.03 1.0391e-6 1.96 6.3270e-7 2.00

32 9.6688e-7 1.94 5.5717e-7 2.04 5.3762e-7 1.93 3.1867e-7 1.99

64 8.1586e-7 1.19 3.4592e-7 1.61 4.7984e-7 1.12 2.4416e-7 1.31

128 5.3963e-6 0.15 2.4323e-6 0.14 3.0180e-6 0.16 2.0932e-6 0.12

256 0.00001240 0.44 5.6035e-6 0.43 6.8577e-6 0.44 4.8883e-6 0.43

p * 0.96 1.03 0.95 0.99

* Converged rate taken from m = 32 ratio before model begins to diverge due to ADCIRC BCs.

Table E.14  Temporal convergence results for 1D subdomain coupled DG -> ADCIRC 
model with unlimited piecewise linear approximations.

 error norms L2 error norms

m velocity 2p elevation 2p velocity 2p elevation 2p

1-4 unstable — unstable — unstable — unstable —

8 8.79937283 — 8.85318433 — 2.20323573 — 2.25141420 —

16 0.00009887 — 0.00008242 — 0.00001813 — 0.00001401 —

32 7.9132e-6 12.5 7.4993e-6 11.0 1.9004e-6 9.54 1.7904e-6 7.83

64 3.9371e-6 2.01 3.3285e-6 2.25 8.1874e-7 2.32 7.0945e-7 2.52

128 6.3671e-6 0.62 2.5735e-6 1.29 3.0389e-6 0.27 2.1121e-6 0.34

256 0.00001237 0.51 5.6522e-6 0.46 6.8663e-6 0.44 4.8865e-6 0.43

p * 1.01 1.17 1.21 1.34

* Converged rate taken from m = 64 ratio before model begins to diverge due to ADCIRC BCs.
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Table E.15  Temporal convergence results for 1D subdomain coupled DG -> ADCIRC 
model with minmod limited piecewise linear approximations.

 error norms L2 error norms

m velocity 2p elevation 2p velocity 2p elevation 2p

1 0.01360372 — 0.01192763 — 0.00477688 — 0.00471115 —

2 0.00195032 6.98 0.00206047 5.79 0.00063685 7.50 0.00057787 8.15

4 0.00006732 29.0 0.00006106 33.7 0.00001305 48.8 0.00001205 48.0

8 0.00002138 3.15 0.00002019 3.02 4.2195e-6 3.09 3.9419e-6 3.06

16 9.3239e-6 2.29 8.6538e-6 2.33 1.8977e-6 2.22 1.7251e-6 2.29

32 4.4057e-6 2.12 4.0281e-6 2.15 9.1884e-7 2.07 8.1627e-7 2.113

64 2.4745e-6 1.78 1.8482e-6 2.18 6.0566e-7 1.52 4.3697e-7 1.87

128 5.6612e-6 0.44 2.5298e-6 0.73 3.0316e-6 0.20 2.0957e-6 0.21

256 0.00001234 0.46 5.6207e-6 0.45 6.8667e-6 0.44 4.8780e-6 0.43

p * 1.08 1.10 1.05 1.08

* Converged ratio taken from m = 32 ratio before begins to diverge due to ADCIRC BCs.

Table E.16  Temporal convergence results for 1D equation and subdomain coupled DG/
CG -> ADCIRC model with piecewise constant approximations.

 error norms L2 error norms

m velocity 2p elevation 2p velocity 2p elevation 2p

1 0.00002695 — 0.00001370 — 0.00001420 — 5.9847e-6 —

2 0.00001317 2.05 6.5408e-6 2.09 7.0789e-6 2.01 2.9352e-6 2.04

4 6.5191e-6 2.02 3.1994e-6 2.04 3.5362e-6 2.00 1.4545e-6 2.02

8 3.2483e-6 2.01 1.5814e-6 2.02 1.7702e-6 2.00 7.2461e-7 2.01

16 1.6555e-6 1.96 7.7577e-7 2.04 9.0657e-7 1.95 3.6598e-7 1.98

32 8.5558e-7 1.93 3.7827e-7 2.054 4.7095e-7 1.93 1.8716e-7 1.96

64 7.6128e-7 1.12 2.6870e-7 1.41 4.4192e-7 1.07 2.0573e-7 0.91

128 5.2860e-6 0.14 2.3962e-6 0.11 2.9507e-6 0.15 2.0846e-6 0.10

256 0.00001219 0.43 5.5784e-6 0.43 6.7287e-6 0.44 4.8727e-6 0.43

p * 0.97 1.03 0.97 0.99

* Converged ratio taken from m = 32 ratio before begins to diverge due to ADCIRC BCs.
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Table E.17  Temporal convergence results for 1D equation and subdomain coupled DG/
CG -> ADCIRC model with unlimited piecewise linear approximations.

 error norms L2 error norms

m velocity 2p elevation 2p velocity 2p elevation 2p

2 1.523e274 — 9.625e273 — 1.056e273 — 1.067e273 —

4 6.861e231 — 1.000e232 — 7.903e230 — 1.158e231 —

8 2.414e212 — 3.329e212 — 2.546e211 — 3.991e211 —

16 2.277e203 — 1.681e203 — 1.781e202 — 1.939e202 —

32 3.168e198 — 4.721e198 — 3.574e197 — 5.475e197 —

64 1.529e196 207.3 2.165e196 218.1 1.861e195 192.0 2.678e195 204.4

128 1.183e195 12.93 1.129e195 19.17 1.167e194 15.95 1.518e194 17.64

256 2.407e194 4.91 2.105e194 5.36 2.164e193 5.39 2.681e193 5.66

512 7.676e193 3.14 6.466e193 3.25 6.667e192 3.25 8.075e192 3.32

1024 3.066e193 2.50 2.538e193 2.55 2.624e192 2.54 3.144e192 2.57

p 1.32 1.35 1.35 1.36

**Although unstable, the errors do exhibit a trend and “converge”.

Table E.18  Temporal convergence results for 1D equation and subdomain coupled DG/
CG -> ADCIRC model with minmod limited piecewise linear approximations.

 error norms L2 error norms

m velocity 2p elevation 2p velocity 2p elevation 2p

1 0.03882913 — 0.02025589 — 0.03191003 — 0.01019256 —

2 0.00174259 22.28 0.000772267 26.237 0.00134152 23.79 0.00037250 27.36

4 0.00004019 43.36 0.00004299 17.97 0.00001048 128.0 0.00001115 33.41

8 0.00001461 2.75 0.00002245 1.91 3.2719e-6 3.20 4.6518e-6 2.40

16 5.9313e-6 2.46 5.9802e-6 3.75 1.1760e-6 2.78 1.2251e-6 3.80

32 2.8130e-6 2.11 2.8294e-6 2.11 5.5308e-7 2.13 5.5781e-7 2.20

64 1.7054e-6 1.65 1.2691e-6 2.23 4.2393e-7 1.30 2.3729e-7 2.35

128 5.1339e-6 0.33 2.4296e-6 0.52 2.9115e-6 0.15 1.9994e-6 0.12

256 0.00001211 0.42 5.5628e-6 0.44 6.7121e-6 0.43 4.8216e-6 0.41

p * 1.08 1.08 1.09 1.14

* Converged ratio taken from m = 32 ratio, before begins to diverge due to ADCIRC BCs.
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