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CHAPTER 1 

INTRODUCTION 

Statement of Problem 

              Wheat and its products play a dominant role in the food consumption of humans. The 

type and quality of wheat to be used is decided based on the properties desired in the end food 

product. Wheat is generally preferred to other cereals because wheat flour forms cohesive 

dough which results in easy aeration during the pre-baking processing steps. Wheat contains 

two types of proteins, namely gluten and non-gluten proteins. Gluten strength determines the 

extent of aeration in dough. Gluten proteins are divided into monomeric and polymeric gluten 

proteins, which affect the viscosity and elastic properties of dough. Gluten proteins are 

primarily responsible for the rheological properties of the dough. They also affect the 

fermentation properties of the dough. Gas production, gas retention and dough development are 

the main aspects during fermentation. Fermentation time and yeast activity in turn affect the 

extent of aeration. However, detailed studies of the effect of additives and quality and quantity 

of protein on dough fermentation properties are limited. Emulsifiers and surfactants added to a 

dough system can affect the fermentation properties. The effect of these emulsifiers and 

surfactants in the fermentation properties of dough are poorly studied. Several instruments are 

available to measure these properties of dough during fermentation. These include the 

conventional Maturograph, Oven rise recorder, Gasograph and Rheofermentometer. 
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           Monomeric and polymeric proteins interactions include hydrophobic and hydrophilic non-

covalent as well as covalent (disulfide) bonds. Surfactants, oxidizing and reducing agents modify 

surface tension and affect disulfide bonds. More studies are needed to understand the role of 

oxidizing agents like ascorbic acid on the baking and aerating properties of dough. Urea disrupts 

the hydrophilic and hydrophobic bonds and the interaction of polar amino acids with water 

affects the viscosity and elasticity of gluten. Urea can be used to elucidate the role of non-

covalent bonds in gas retention properties. It is of interest to investigate the specific change in 

fermentation properties as a function of a decreasing number of disulphide bonds, the use of 

dithiothreitol can asset in the reduction of disulfide bonds in dough. 

Purpose of the study 

The objectives of the study are: 

1) To study the effect of reducing surface tension [Chapter III (17)],  the oxidized state 

[Chapter IV (51)], disruption of hydrogen and hydrophobic bonds [Chapter V (84)] and 

disruption of disulfide bonds [Chapter VI (113)] on fermentation properties of dough made 

from commercial hard red winter wheat flours with different protein content, and 

2) To identify possible correlations between fermentation and visco-elastic, mixing and baking 

properties of dough. 

Hypotheses 

          The following null hypothesis will be tested. There is no significant effect on fermentation 

properties between control flours and flours treated with DATEM to reduce the surface tension. 

There is no significant effect on fermentation properties between control flours and flours treated 

with ascorbic acid to oxidize the dough. There is no significant effect on fermentation properties 

between control flours and flours treated with urea and DTT to disrupt the hydrogen and 
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hydrophobic bonds and disulphide bonds. If the null hypotheses are rejected, the effects of the 

mentioned factors (surface tension and bonds) will be explained from possible structural changes 

that occurred in dough or differences in the nature of the proteins present in the gluten. 

Assumptions  

           DATEM is an anionic oil-in-water emulsifier. DATEM is produced by the reaction of 

mono and diacetyl tartaric acid with monoglycerols or mixtures of mono and diaceylglycerols 

derived from edible fats. The effect of DATEM varies on its components; when DATEM is 

added to dough, it will enhance the strength and elasticity of the dough and improve gas 

retention. We assume that DATEM interacts with proteins, especially glutenin to improve the 

gas retention of dough. Ascorbic acid in the form of dehydroascorbic acid (DHA) reacts with 

glutathione (GSH) converting it to its oxidized form (GSSG), increasing the dough strength. We 

assume that ascorbic acid will strength the dough will increase the retention capacity of the 

dough and loaf volume. Urea and DTT will disrupt the hydrogen, hydrophobic and disulphide 

bonds when they react with gluten and decrease dough strength. We also assume that urea and 

DTT will reduce the gas retention capacity of the dough and loaf volume. 
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CHAPTER II 
 

REVIEW OF LITERATURE 

 

Gluten protein  

                           Protein quality and quantity in flour are of specific importance in the bread 

making performance (Goesaert and Brijis, 2005). Gluten proteins determine the rheological 

properties of the optimally mixed dough which contribute to the gas retention properties of the 

fermenting dough (Fig. 1) (Gan et al., 1995). These gas retention properties will affect the loaf 

volume which is one of the key factors evaluated in yeast-fermented products. Gluten consists of 

gliadins and glutennins. Gliadins are monomeric low molecular weight proteins linked by 

interchain disulfide bonds whereas glutenins are mixture of low and high molecular weight 

proteins. Two main factors that affect the protein quality are gluten protein quality and 

gliadin/glutenin protein ratio (Goesaert and Brijis, 2005). When flour is mixed with water those 

gluten proteins form a cohesive visco-elastic gluten protein network (Singh and MacRitchie, 

2001). This gluten protein network undergoes changes and retains carbon dioxide produced 

during fermentation (Graveland et al., 1980; Veraverbeke et al., 1999). 
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Figure 1.  Factors governing bread making quality and wheat dough rheological properties 
(adapted from Veraverbeke and Delcour, 2002). 

 

Effect of Mixing, Water, NaCl, and Yeast 

          The basic ingredients to form dough are wheat flour, water, NaCl and yeast. When these 

are mixed together a visco-elastic dough is formed. The function of mixing is to blend the 

ingredients into a homogeneous mass, to develop the dough into a three-dimensional visco-

elastic structure with gas-retaining properties and to incorporate air which will form nuclei for 

gas bubbles that grow during dough fermentation (Bloksma et al., 1990; Collado and Leyn, 

2000; Dobraszczyk and Morgenstern, 2003; Hoseney and Rogers, 1990; Naeem et al., 2002). 

  The primary step in dough formation is addition of water which hydrates the proteins and forms 

cohesive and visco-elastic dough. Water acts as a plasticizer and solvent (Hosney et al., 1994). 

Rheological properties of dough are affected by the amount of water added to the flour (Ganet 
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al., 1994). Addition of water affects the consistency of dough and hydration time (Farahnaky and 

Hill, 2007). 

 
  Salt is added either as an aqueous solution or a dry powder (Kent and Evers, 1994). When 

salt is added to dough, it improves the flavor and also toughens the gluten and gives less sticky 

dough (Farahnaky and Hill, 2007). It has a strengthening effect on the gluten protein in the 

dough, Kojima et al., (1995) proved that when 1.5% salt was added to wheat dough the physical 

characteristics were affected. When salt is not added, dough mixes and rises faster and is more 

sticky. Larsson (2002) showed that doughs with NaCl had greater strength compared to doughs 

without NaCl. Salt increases the mixing tolerance but decreases the consistency of dough 

(Harinder and Bains, 1990). Salt increases the machinability of dough (Salovaara et al., 1982). 

Salt toughens the protein and increases mixing tolerance producing more stable and stiff dough 

(Galal et al., 1978; Shiu and Yeh, 2001). 

                When yeast is added to flour and mixing starts, yeast converts available sugars into 

CO2 and ethanol under anaerobic conditions. The yeast produced CO2 migrates into tiny cells 

formed during mixing by increasing internal gas pressure and subsequent expansion of dough 

(Hui and Corke, 2006). 

Effect of Emulsifiers  

                   Emulsifiers are fatty substances with hydrophilic and lipophilic properties. They will 

help to form an emulsion by reducing the surface tension of two immiscible phases (Dziezak et 

al., 1988; Flack et al., 1987; Krog et al., 1981). Classifications of emulsifiers are based on origin, 

solubility properties, presence of functional groups, hydrophilic/lipophilic balance (HLB) and 

potential for ionization (Artz et al., 1990). HLB index is defined as relative percentage of 

hydrophilic to lipophilic groups within the emulsifier molecule (Artz et al., 1990). Based on 
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ionization potential; surfactants are classified as either ionic and nonionic. Due to the presence of 

non-covalent bonds, nonionic substances do not dissociate in water (Stampfli and Nersten, 

1995). Emulsifiers are divided into dough strengtheners and crumb softners based on required 

properties in bread making. However some emulsifiers show both properties (Stampfli and 

Nersten, 1995). Diacetyl tartaric acid esters of monodiglycerides (DATEM), sodium stearoyl-2-

lactylate (SSL) and calcium stearoyl-2-lactylate (CSL) are commonly used surfactants in bread 

making.                                     

              Actual mechanisms of these emulsifiers in dough strengthening are not fully understood. 

But theories have suggested that these dough strengtheners will form liquid films of lamellar 

structure in the interface between the gluten strands and the starch that improve the ability of 

gluten to form a film which retains the gas produced by the yeast (Krog et al., 1981; Stampfli et 

al., 1995). Emulsifiers increase the dough height by forming complexes with gluten proteins and 

protein-protein aggregates which increases the strength of gluten matrix (Gomez et al., 2004). 

         When diacetyl tartaric anhydride reacts with monoacyl glycerol with stearic acid as a main 

hydrophobic component, DATEM is formed.  The carboxyl group of DATEM has an influence 

on the visco-elastic properties of dough and gluten (Koehler et al., 2001a). According to Koehler, 

DATEM at 0.1% w/w flour basis did not improve the loaf volume and above 0.5% w/w flour 

basis has no change in the visco-elasticity, dough properties and baking (Kohler and Grosch, 

1999). Some researchers suggested that gluten, by slowing the diffusion of gas through dough 

phase contributes to gas retention. C02 which is produced by yeast fermentation diffuses to the 

gas cells and evaporates to generate excess pressure which leads to dough expansion (Gan et al., 

1994).  
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           Punching is done to remove large bubbles formed during mixing. Emulsifiers helps in 

reducing the surface tension of bubbles which contributes fine crumb structure (Campbell and 

Mougent, 1999). DATEM from 0.4% to 0.7 % will break the bubbles formed during mixing by 

increasing the surface area for mass transfer which helps in dough expansion (Campbell et al., 

2001). 

 Effect of Ascorbic Acid, Urea and DTT 

                              Gluten plays a major role in bread making. The function of gluten depends on 

molecular weight of gluten, formation of covalent and non-covalent bonds between glutenin 

molecules and interactions between glutenin and other flour constituents (Goesacrt et al., 2005). 

Disulphide bonds hold the glutenin subunits together. Oxidizing and reducing agents will affect 

these glutenin subunits which lead to changes in rheological properties of dough (Fitchett and 

Frazier, 1986). 

            Dehydroascorbic acid oxidizes the sulphydryl groups in gluten proteins. Ascorbic acid 

reacts with oxygen and forms deascorbic acid. L-ascorbic acid (L-AA) reacts with oxygen and 

forms L-dehydroascorbic acid (L-DHAA). L-DHAA acts as oxidizing agent by promoting 

disulfide bonds which increases the loaf volume (Tsen et al., 1965). L-AA showed greater dough 

strengthening effects in low quality wheat flour than high quality (Aamodt et al., 2003). Ascorbic 

acid addition at 100 ppm showed strong effect on dough rheology mixing and baking (Every et 

al., 2008). 
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              During mixing, by addition of water hydrogen bonding increases the hydration of 

gluten. Hydrogen bonds break when gluten is deformed on extension. Formation of new 

hydrogen bonds occur when the stress is released (Belton et al., 1995). When urea (1 to 5 M) is 

added to gluten, it increases the elasticity by disruption of hydrogen bonding (Inda et al., 1999). 

DTT at 500 ppm decreases elasticity in gluten. But one study proved that when strong and weak 

gluten were treated with DTT at 500 ppm, elasticity decreased 60% in strong gluten and 42% in 

weak gluten (Khatkar et al., 2005). 

Recording the fermentation properties 

                To observe and record the changes that occur during dough development, equipment 

which can continuously measure and record the changes is used. Maturograph, Oven rise 

recorder and Gasograph instruments have been used to measure the gas retention properties of 

dough but are not extensively used (Czuchajowska and Pomeranz, 1993).  
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           The Rheofermentometer continuously records dough rise, gas formation and gas retention 

(Fig. 2). 

                                             

         Figure 2. F3 Rheofermentometer (Source: Tripette & Renaud Chopin, 2004) 

              Rheofermentometer along with the alveograph as mixer have been used to test the 

quality of flour at relatively low and fixed water absorption (Czuchajowska and Pomeranz, 

1993). The Rheofermentometer measures the fermentation properties of a dough sample when 

weight is placed on the sample and the development of dough is measured by a height sensor and 

gas development of the dough by a pressure sensor. The results are a gaseous release curve and 

dough development curve at the end of the test (Fig. 3) (Tripette & Renaud, 2004).  
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a) 

 

b) 

 

Figure 3. Gaseous release curve (a) and dough development curve (b) ( Tripette & Renaud 

Chopin, 2004). Parameters obtained are explained in Table 1. 
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Table 1. Definitions of fermentation variables. 

Abbreviations                   Definitions Units 
   

Hm Height of maximum dough development. mm 
h 
 

T1 

Height of dough development at the end of 
the test. 
Time of maximum rise. 

mm 
  

 h 
(Hm-h)/Hm Lowering of the development percentage 

after 4 h compared to time of maximum 
rise. 

 
 

% 
H’m Maximum height of the gaseous curve. mm 

TV (A1 + A2) 
VL (A2) 

 
VRt (A1) 

 
RC 

 
T’1 

Total volume of gaseous curve. 
The carbon dioxide volume released by the 
dough during the fermentation test. 
Carbon dioxide retained in the dough at the 
end of the test. 
Retention volume divided by the total 
gaseous release. 
Time spent to reach maximum rise. 

mL 
 

mL 
 

mL 
 

% 
h 
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                                                               CHAPTER III 

EFFECT OF REDUCING SURFACE TENSION OF DOUGH ON FERMENTATION 

PROPERTIES OF DOUGH 

  ABSTRACT 

                 The objective of the study is to quantify the effect of reducing surface tension on 

fermentation properties of dough and to analyze possible correlation of fermentation and visco-

elastic, mixing and baking properties of dough. Four levels of surface tension states were 

obtained by the addition of diacetyl tartaric acid ester of monoglyceride (DATEM) (0, 0.3%, 

0.6% and 1.0% w/w, flour basis). Six commercial hard red winter wheat flours of different 

protein quantity and quality were used. Flours with no treatment were used as controls and flours 

with no yeast and no treatment were used as negative controls. Fermentation properties of dough 

were measured by Rheofermentometer F3. Addition of DATEM increased the dough 

development and volume of gas retained. The levels of 0.3 and 0.6% DATEM increased the 

maximum height of dough development whereas 1% DATEM decreased it (P<0.05). 

Fermentation variables explained more variance (69.2%) than the fermentation variables 

combined with visco-elastic, mixing and baking variables (47.9%). The ratio of dough heights 

[(Hm-h)/Hm] is closely related to gluten elastic properties (Sep and RCY). Volume lost (VL) is 

closely related to gluten viscous (J-Jr, TCR) and negatively related to elastic properties. 

Maximum height of the dough (Hm) and dough height (h) are closely related to baking 

properties (LV and SV).  
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1. INTRODUCTION 

                         It is well accepted that the genetic makeup and environment affect the end quality 

of wheat flour. The quality and quantity of the gluten present in the dough has direct influence on 

the fermentative and rheological properties of dough (Peterson et al., 1992; Baenziger et al., 

1985; Bassett et al., 1989; Busch et al., 1969). Additives like emulsifiers and surfactants enhance 

the fermentative ability of dough. Surfactants are used to reduce the interfacial tension by 

enhancing stability and controlling destabilization of dough between oil and water interfaces. 

They interact with gluten proteins and enhance rheological characteristics at solid/liquid 

interface (Krog et al., 1991). Surfactants aid the incorporation and subdivision of air into the 

liquid phase which promotes foam formation and generally functions at the gas/liquid interface. 

Reducing surface tension favors foam formation. Stability of the foam is dependent on the 

stability of the film of water between air bubbles (Krog et al., 1990). One such emulsifier is 

DATEM. It is chemically an anionic oil-in-water emulsifier which helps to increase the volume 

of bread. DATEM can also enhance the gas-retention properties of the dough, thereby 

minimizing the chances of dough collapse (Zhang Xiujin et al., 2006). However, the influence of 

DATEM on dough properties varies with its chemical composition (Kohler et al., 2001a). For 

instance, DATEM with hydrophilic radicals increases the water retention capacity of dough and 

rheology of gluten (Kohler et al., 2001b). The gas retention capacity of dough is highly improved 

when DATEM interacts with gluten proteins and starch by forming inter-lamellar films in 

between starch and gluten (Zhang et al., 1993b; Stampfli et al., 1995). Several instruments are 

available to measure the rheological and gas retention properties of dough during fermentation. 

The Rheofermentometer (Chopin, Tripette and Renaud, France) is used in the study of the 
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behavior of flour during fermentation. The parameters measured are maximum dough height 

(Hm) in mm, maximum height of gaseous release (H’m) in mm, CO2 production in ml.  

   The objectives of this study were: 

1) To study the effect of reducing surface tension of the dough using the surfactant DATEM 

on the fermentation properties of dough. 

2) To analyze possible correlation of fermentation and visco-elastic, baking and mixing 

properties of dough. 

 

2. Materials and Methods 

a. Materials and Labeling 

                   Six commercial hard red wheat flours were obtained from two different milling 

supplies A and B. They differ in protein content. DATEM (Caravan Ingredients, Lenexa, KS) 

was added to the flours at 0, 0.3, 0.6 and 1.0% w/w flour basis. Instant active dry yeast was from 

Lesaffre Yeast Corporation (Milwaukee, WI) and sodium chloride from Fisher Scientific (Fair 

Lawn, NJ). Flours with no DATEM were used as control (0) and flours with no DATEM and no 

yeast were used as negative control (N). Thus site A flours were labeled as 1A0 (positive 

control), 1AN (negative control), 1A0.3, 1A0.6, 1A1; 2A0, 2AN, 2A0.3, 2A0.6, 2A1; 3A0, 3AN, 

3A0.3, 3A0.6 and 3A1. The 0, 0.3, 0.6 and 1 represent the percentage of DATEM added to the 

flour. Similarly site B flours were labeled as 1B0, 1BN, 1B0.3, 1B0.6, 1B1; 2B0, 2BN, 2B0.3, 

2B0.6, 2B1; 3B0, 3BN, B0.3, 3B0.6 and 3B1.  
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b. Methods 

Dough Preparation 

                           Dough was prepared as described in the Chopin protocol using Chopin 

AlveoConsistograph. The ingredients consisted of 250 g of flour, 3 g of dry yeast and 5g of 

sodium chloride. DATEM was added to the flours at 0.3, 0.6 and 1.0 % w/w flour basis. The 

quantity of deionized water added depended on the moisture content of the flour and it was given 

by the reference table published by the International Association for Cereal Science and 

Technology (ICC) as described in the Chopin Protocol. The sodium chloride was dissolved in 

water prior to the addition to dough. Instant dry yeast and DATEM were blended with 250 g of 

flour in the kneader bowl. Salt water was progressively added to the flour at the beginning of the 

first minute of the mixing period. After one minute, the mixing was stopped to remove the flour 

sticking to the walls and ensure a homogeneous hydration. The mixing process was continued for 

6 minutes. A sample size of 315 g of dough was used for each treatment. 

Fermentation Test 

                Rheofermentometer was used to study the fermentation properties of dough. The 

dough (315 g) obtained from AlveoConsistograph was placed in the bottom of the aluminum 

basket and packed it down with hands. The height of the dough in the basket must be leveled out 

just below the lowest holes. The piston with a 2000 g weight was placed on top of the dough and 

temperature should stabilize to 28.5o C. The basket placed in the F3 Rheofermentometer bowl. 

Displacement sensor was placed and the whole system was tightly closed and the test was run for 

a total of 4 h. This time represents 1 h longer than the Chopin Protocol as it was determined 

experimentally with the samples and treatments in this study.              



 

23 
 

             The F3 Rheofermentometer analyzes the development of a dough sample placed in the 

bowl. The piston placed on the dough rises. The piston is directly linked to a displacement sensor 

which will calculate the dough rising. Rheofermentometer is also linked to a pressure sensor 

through a pneumatic circuit that measures the pressure increase in the fermenting dough. The 

three curves are dough development, speed of C02 release and quantity produced and volume of 

CO2 retained in dough. Fermentation variables are defined in Table 1 and visco-elastic, mixing 

and baking terms are defined in Table 2. 

3. STATISTICAL ANALYSIS 

                 A factorial design within a randomized block design was implemented. Five levels of 

DATEM and 3 levels of flour protein were compared in a 5 X 3 factorial. The significant 

differences in means were compared using Analysis of Variance (ANOVA) with Tukey’s 

comparisons (α=0.05) using SAS (Version 9.1 SAS Institute Inc., Cary, NC). Principal 

Component Analysis (PCA) is a mathematical algorithm that reduces the dimensionality of the 

data (Ringer, 2008). PCA is performed using Canoco for windows 4.5 (Biometris, Plant 

Research International, Wageningen, the Netherlands).  

4. Results and Discussion 

            Protein, moisture and ash content of the flour samples are reported in Table 3. Typical 

dough fermentation property curves and the parameters obtained are illustrated in Figures 1 and 

2 showing results for sample 3B control and 3B containing 0.6% DATEM. The volume of CO2 

lost (VL) is decreased when the surface tension of the sample is reduced (Fig. 1). Volume of 

retention of gas was improved for sample with reduced surface tension when compared with 

control sample. From the dough development curves we can observe that the height of dough is 
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improved when surface tension of sample is reduced (Fig. 2). A summary of the definition of 

fermentation properties of all samples is found in Table 1. 

Maximum height of the dough (Hm) 

         Hm is the maximum height of dough development. As expected, the control sample 

without yeast shows no development (Table 4). The effect of reducing surface tension on Hm 

appears to be flour specific and could be attributed to differences in quality. Observations that 

significantly increased Hm (P<0.05) were 1A flours with 0.3 and 0.6% levels and high protein B 

flours (at all levels) compared to the controls. Observations that significantly decrease Hm 

(P<0.05) were 3A (high protein) flour with all treatments and 2A1 compared to the control. The 

effect of reducing surface tension on Hm does not appear to cause a general trend, which means 

it can detect quality differences in the flours. This means that there appears to be an optimum 

stability of the different phases of the dough (example gas-liquid, gas-solid) and this can 

achieved with or without the addition of DATEM, depending on the quality of the wheat.  

Passing that optimum stability of such phases, the effect will be deleterious for the fermentation 

properties.  So, it is possible that flour 3A does not need improvement of the stability of the 

different phases in the dough, thus, the addition of DATEM is not beneficial. The control sample 

has good fermentation properties without reducing the surface tension of its phases. Overall 

highlights are: highest value of Hm was shown by 3B1 (47.9 mm) and lowest by 1A1 (22.10 

mm) (Table 4). The change of the fermentation properties (%) is reported in Table 5. High 

percentage (59%) increment in maximum height was observed in the lowest protein sample with 

0.3% DATEM (1A0.3). A 28.1% decrease in maximum height was observed in the sample 3A 

(13.7% protein) with 1% DATEM (3A1) (Table 5). The overall effect of decrease in surface 
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tension on Hm was to decrease except for 3B with all the DATEM levels and 1A and 1B with 

0.3 and 0.6 levels which show significant increase. 

 Height of the dough development (h) 

          The height of the dough development (mm) at the end of the test was denoted by h. As 

expected, negative controls showed no development. Overall, the effect of reducing surface 

tension on height of the dough at the end of the test is the same as the observed on maximum 

height of the dough. Lowest value of height was observed in 1B0 (19.85 mm) and highest value 

was observed in 3B1 (46.8 mm) (Table 4). For A flours, 0.3% and 0.6% of DATEM level 

increased the height of the dough when compared to control sample whereas 1% of DATEM 

decreased the height (Table 4). For B flours, h increased by increasing the % level of DATEM 

(Table 4). The highest increase (58%) of h was observed in 1A0.3 and highest (27.6%) decrease 

in 3A1 (Table 5). 

 Lowering of development percentage [(Hm-h)/Hm] 

         (Hm-h)/Hm is the ratio of dough height at the end of the fermentation test in percentage. A 

large percent means the dough has maintained its height during fermentation. Effect of reducing 

surface tension on (Hm-h)/Hm appear to be flour specific. The single observation that 

significantly increased (Hm-h)/Hm was made for 1A flour (8% protein) with 0.3% level. 

Observations that significantly decreased (Hm-h)/Hm were B flours (10.4% protein) at all 

DATEM levels. Overall highlights of trends are: high value was observed in 1B0 (39.1%) and 

lowest value in 3B0 (0) (Table 4). Highest percentage increase was observed in 2B0.6 (400%) 

and highest percentage decrease in 2A0.3 (59.1%) (Table 5). This also has the same effect as Hm 

and h as it shows increase with most of the 1A flours and no change in 3B flours. 
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Maximum height of the gaseous curve (H’m) 

          H’m is the maximum height of the gaseous release curve. Effect of decrease in surface 

tension on H’m also appears to be flour specific. H’m significantly increases in 1A with 0.3 and 

1% DATEM and 3B flours with all levels of DATEM. While H’m significantly decreases in 3A 

with 0.3 and 1% DATEM and in 1B flour with all DATEM levels (Table 4 and 5). Overall 

highlights are: high value of H’m was shown by 3B0.3 (69.75%) and lowest value of the sample 

(with yeast) was shown by 1A0 (47.5%) (Table 4). Highest percentage (28.7%) increment 

(desirable) in maximum height was observed in 3B0.3 and 18.1% decreased by 1B0.6 (Table 5). 

H’m is a critical parameter in fermentation and is related to Hm and h. The overall trend of 

decreasing the surface tension of dough on H’m is the same as on Hm and h. 

Total Volume (TV) 

          TV is the total volume under the gaseous curve. Observations that significantly increased 

total volume are 1A with 0.3 and 1% and 3B flour with 0.3 and 0.6% of DATEM. Observations 

that significantly decreased TV are 2A and 2B with 1% and 3A with 0.3 and 0.6% of DATEM 

(Table 4 and 5). Overall highlights of trends are: high value of total volume was observed in 

3B0.3 (1914 mL) and lowest in 1B0 (1412 mL) (Table 4). An increase in total volume (22.4%) 

was observed in 1A0.3 and 14.3% of total volume decreased in 3A1 (Table 5). We observe an 

increase of 1A and 1B flours (low protein) and 3B flours with most of the DATEM levels. 
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Volume lost (VL) 

          VL is the carbon dioxide volume released by the dough during the fermentation test. 

Overall trend of VL is to decrease when the surface tension is reduced. All observations (all 

levels) were significantly decreased volume lost when compared to controls (Table 4 and 5). 

This means reducing surface tension positively effects the fermentation properties by decreasing 

the volume lost. Overall highlights are: high value was observed in 2B0 (567 mL) and lowest in 

1A1 (24 mL) (Table 4). Highest percentage (16.4%) of volume lost was observed in 3B0.3 and 

lowest percentage (7) in 2B1 (Table 5).  

Volume retained (VRt) 

            VRt is the carbon dioxide remaining in the dough at the end of the test. The overall trend 

of volume retention was to increase as the surface tension was reduced. All observations (all 

levels) were significantly increased when compared to controls except 3A with 1%. Overall 

highlights of trends are: highest value was observed in 3B0.6 (1875 mL) and lowest in 1B0 (135 

mL) (Table 4). Highest percentage (52%) of volume retained was observed in 1A0.3 and lowest 

percentage (7.3%) in 3A1 (Table 5). Volume retained shows a maximum volume and then 

decreases and depends on DATEM levels. Flours 1A and 3B showed highest % of volume 

retained (Table 5). 

Retention Coefficient (RC) 

           Retention coefficient (RC) is the retention volume divided by the total gaseous release. 

Overall trend of RC is to increase by reducing the surface tension. All observations (all levels) 

were significantly increased when compared to controls. This means that reducing surface 

tension positively affects the fermentation properties by increasing the retention coefficient. 

Overall highlights of trends are: highest value was observed in 1A1 (98.6%) and lowest value in 
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2B0 (70.5%) (Table 4). Highest percentage (38.4%) of retention coefficient was observed in 2B1 

and lowest percentage (21.5%) in 1B0.6 (Table 5). The effect of reducing the surface tension on 

retention coefficient is an overall reduction. Some flours show high percentage of retention 

coefficient increase (2B) and the others low (1B). 

Time of maximum rise (T1) 

            T1 is the time taken by the dough to reach maximum height during dough development. 

Observations that are significantly decreased T1 (P<0.05) were all high protein B flours with all 

levels, 1A with 0.3 and 1%, 2A with 0.6 and 1% and 2B with 0.6% of DATEM. Time decreases 

when the surface tension was reduced by adding DATEM to the flours (Table 4). Overall 

highlights of trends are: high value was observed in 1A1 (3.9 h) and lowest in 1B0 (1.5 h) (Table 

4). Highest percentage (20.3%) of time taken to reach maximum height of dough development 

was observed in 1B0.6 and time decreased 50% in 2A1 (Table 5).  The effect of a reduced 

surface tension on T1 varied. Half of the samples showed a decrease which means they took less 

time to reach maximum height of dough development. The other half of the samples showed an 

increase in T1 taking more time to reach maximum height of the dough. 

Time of maximum rise (T’1)  

             T’1 is the time spent to reach maximum rise during gaseous release. The overall trend of 

T’1 is to increase. Observations that significantly increased T’1 were 2B and 3B flours with all 

levels and 2A with 0.3% of DATEM. Overall highlights of trends are: highest value was 

observed in 3B1 (4 h) and lowest in 2B0 (1.38 h) (Table 4). Highest increase (188%) of time 

taken to reach maximum height of gaseous curve was observed in 2B1 and the only decrease of 

9.5% in 1A0.6 (Table 5). Overall, the effect of reducing surface tension increased the time to 

reach maximum height of gaseous release. 
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                Campbell (2001) proved that 0.4 to 0.7% DATEM increases the gas retention 

properties. Koehler and Grosch (1999) said that concentrations above 0.5% w/w flour basis 

produce no significant change in dough properties. Treating the flours with DATEM showed 

increment in dough development and in percentage of gas retained (Tables 4 and 5). DATEM of 

levels 0.3% and 0.6% showed larger increment when compared to flour treated with 1% of 

DATEM. 

PCA results 

              Principal component analyses were performed on the data sets obtained from 

fermentation parameters. 

Fermentation variables Vs fermentation variables with flour protein 

                  PCA were performed on the data sets, to assess the relationship of flour protein and 

fermentation properties (Fig. 3 and 4). Figure 3 represents the fermentation properties alone for 

all the samples. Principal component axis 1 (PC1) explained 58.9% variance and principal 

component axis 2 (PC2) explained 18.8% variance. Total explained variance is 77.7% (Table 6). 

Among fermentation properties, the highest contribution of variance (96.8%) was volume of 

retention (VRt) in PC1 whereas in PC2 the highest contribution of variance (80.9%) was volume 

lost (VL) (Table 6). Figure 4 displays the relation of fermentation properties plus flour protein. 

Principal component axis 1 (PC1) explained 53.5% variance and principal component axis 2 

(PC2) explained 17.5% variance. Total explained variance is 71% (Table 7). Among 

fermentation properties with flour protein, the highest contribution of variance (97.4%) was 

maximum height of gaseous release (H’m) on PC1 whereas on PC2 highest contribution of 

variance (72.7%) was volume lost (VL) (Table 7). Only 0.12% of explained variance was 

contributed by flour protein on PC1 and 7.32% on PC2 (Table 6). This suggests that the variation 
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of protein is weakly related to the volume lost and its contribution to the variance is very small 

when compared with samples with changes in their surface tension. In both graphs (Fig. 3 and 4), 

most of the fermentation variables are on PC1. Flours treated with DATEM are very close to 

PC1 when compared with control and negative samples. All control samples are closely related 

among themselves and to volume lost. They are well separated from the flours with surface 

tension changes. Negative controls are also closely related among themselves and well separated 

from the samples with changes in surface tension. So negative controls are removed from the 

data sets and PCA was compared. It also suggests that the samples with reduced surface 

properties are closely related to the maximum height and the volume of the gas retained by the 

dough during fermentation in the first component. The samples are negatively related to 

differences in their gas volume lost by their dough’s in the second component. This means that 

all the samples with reduced surface tension lost less gas compared to the control samples.  

Fermentation variables without negative control Vs fermentation variables with flour 

protein and without negative control 

                   PCA were performed to assess the relationship of fermentation variables and protein 

without the negative controls (Fig. 5 and 6). From the fermentation properties on Figure 5, 

principal component axis 1 (PC1) explained 42.6% variance and principal component axis 2 

(PC2) explained 26.6% variance (Fig. 5). Total explained variance is 69.2% (Table 8). Among 

fermentation properties, the highest contribution of variance (75.6%) was volume of retention 

(VRt) on PC1 whereas on PC2 the highest contribution of variance (88%) was volume lost (VL) 

(Table 8). In comparison, when flour protein was included (Fig. 6), principal component axis 

1(PC1) explained 38.8% variance and principal component axis 2 (PC2) explained 24.6% 

variance. Total explained variance is 63.4% (Table 9). Among fermentation properties with flour 
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protein, the highest contribution of variance (75.8%) was volume of retention (VRt) on PC1 

whereas on PC2 the highest contribution of variance (82.6%) was volume lost (VL) (Table 8). 

Only 0.04% of explained variance was contributed by flour protein on PC1 and 8.07% on PC2 

(Table 9). As the total explained variance of fermentation variables (69.2%) is 5.8 units of 

percentage higher than fermentation variables with flour protein (63.5%), we can say that 

compared to changes in surface tension in this set, flour protein appears to have a small effect 

and is marginally correlated to other fermentation variables. The fact that there are two distinct 

groups suggests that the decrease of surface tension separates the differences in dough 

fermentation properties. One group is closely associated to PC1, highly influenced by the gas 

retained and the maximum dough height. The second group is less associated with the same two 

properties mentioned. They are negatively associated with volume lost but strongly and 

positively associated with the retention coefficient. In both the graphs, most of the A flours are 

associated to lowering development percentage ([Hm-h]/Hm) and B flours are associated to time 

to reach maximum height of gaseous release (T’1) and Volume of retention (VRt) (Fig. 5 and 6). 

Control samples are positively associated with volume lost and negatively associated with 

retention coefficient. They are separated from the flours with lower surface tension (treated with 

DATEM). Flours which are treated with DATEM are closely related to PC1 and PC2 (Fig. 5 and 

6). 

Fermentation properties Vs Fermentation properties with visco-elastic, mixing, baking 

properties 

                   The relationship of fermentation variables with visco-elastic, mixing and baking 

properties was investigated (Fig. 7). From Figure 6, principal component axis 1 (PC1) explained 

38.8% variance and principal component axis 2 (PC2) explained 24.6% variance. Total 
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explained variance is 63.4% (Table 9). From Figure 7, principal component axis 1(PC1) 

explained 27.5% variance and principal component axis 2 (PC2) explained 20.4% variance. 

Total explained variance is 47.9% (Table 10). Among all properties, the highest contribution of 

variance (73.5%) was specific volume of baked loaves (SV) on PC1 whereas on PC2 the highest 

contribution of variance (84.6%) was delta compliance (J-Jr) (Table 10). Flour protein explained 

60.6% of variance on PC1 and 4.8% on PC2 (Table 10). As the total explained variance of 

fermentation variables (69.2%, Fig. 5) is more than fermentation variables with visco-elastic, 

mixing and baking variables (47.9%, Fig. 7), we can say that fermentation properties were able 

to discriminate better the effect of reducing the surface tension and contributed to explained 

higher variance. In Figure 7, low protein A flours are separated from other flours. All control 

samples are closely related and positively correlated with delta compliance (J-Jr) and volume lost 

(VL). They are negatively correlated to lowering development percentage ([Hm-h]/Hm) 

retention coefficient (RC). Flours with reduced surface tension are closely related to loaf height 

and specific volume. From Table 10, the highest contribution of explained variance was 

observed by baking properties. All baking properties show greatest contribution of explained 

variance on PC1. So a PCA analysis is performed on flour protein, fermentation properties and 

baking properties. 

Relationship of flour protein, Fermentation and baking properties 

                        PCA were performed on the data sets of flour protein, fermentation variables and 

baking properties (Fig. 8). PCA analyses of fermentation properties with flour protein were 

already performed (Fig. 6 and Table 9). From Figure 6, principal component axis 1 (PC1) 

explained 38.8% variance and principal component axis 2 (PC2) explained 24.6% variance. 

Total explained variance is 63.4% (Table 9). From Figure 8, principal component axis 1 (PC1) 
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explained 35.3% variance and principal component axis 2 (PC2) explained 21.6% variance.        

Total explained variance is 56.9% (Table 11). The highest contribution of explained variance 

(72.3%) was height of baked loaves (LH) on PC1 whereas on PC2 the highest contribution of 

variance (59.8%) was volume of retention (VRt) (Table 11). Flour protein explained 23.3% 

variance on PC1 and 29.3% on PC2 (Table 11). As the total explained variance of fermentation 

variables (63.4%) is more than fermentation variables with baking variables (56.9%), we can say 

fermentation properties explain more variance than baking properties. Ratio of dough heights 

[(Hm-h)/Hm] is closely related to elastic properties (Sep and RCY). Volume lost (VL) is closely 

related to viscous properties (J-Jr, TCR) and negatively related to elastic properties. Maximum 

height of the dough (Hm) and dough height (h) are closely related to baking properties (LV and 

SV). All control samples were negatively associated with gas retained (VRt) and positively 

related with loaf height (LH) and specific volume (SV). Samples 1A1, 1A0.6 and 1B1 are 

negatively associated with loaf height and specific volume. This suggests as the reduction of 

surface tension increased on these samples it negatively affected their baking performance. The 

height of dough at the end of the fermentation test is the most closely related to loaf height and 

specific volume. A third fermentation parameter worth mentioning is the total volume of gas 

produced which is associated with loaf volume and specific volume.  

5. Conclusions 

           Null Hypothesis is rejected as there is significant effect on fermentation properties 

between control flours and flours treated by reducing surface tension (addition of DATEM). By 

reducing the surface tension of the dough, the height of the dough is significantly improved in 

1A and 3B flours and the retention volume of the gas is increased (11.3-52.1%). Volume of gas 

lost is reduced (7.3-16.4%) and retention coefficient is increased (21-38%). 
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         Fermentation variables explained more variance (69.2%) than the fermentation variables 

combined with visco-elastic, mixing and baking variables (47.9%).  The ratio of dough heights 

[(Hm-h)/Hm] is closely related to gluten elastic properties (Sep and RCY). Volume lost (VL) is 

closely related to gluten viscous (J-Jr, TCR) and negatively related to elastic properties. 

Maximum height of the dough (Hm) and dough height (h) are closely related to baking 

properties (LV and SV).  
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            Table 1. Definitions of fermentation variables. 

Abbreviations                   Definitions Units 
   

Hm Height of maximum dough development. mm 
h 

T1 
Height of dough development at the end of 
the test. 
Time of maximum rise. 

mm 
   h 

(Hm-h)/Hm Lowering of the development percentage 
after 4 h compared to time of maximum 
rise. 

% 

H’m Maximum height of the gaseous curve. mm 
TV 
VL 

 
VRt 
RC 
T’1 

Total volume of gaseous curve. 
The carbon dioxide volume released by the 
dough during the fermentation test. 
Carbon dioxide retained in the dough at the 
end of the test. 
Retention volume divided by the total 
gaseous release. 
Time spent to reach maximum rise. 

mL 
 

mL 
mL 

% 
h 
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Table 2. Definitions of visco-elastic, mixing and baking terms (adapted from Ambardekar, 2009) 
Abbreviations Definitions Units 
Visco-elastic   

J-Jr Delta compliance defined as the difference in compliance of creep and 
recovery at 100 s. An increase in delta compliance suggests that the 
viscous component is higher than elastic component by either an 
increase in viscosity or decrease in elasticity of the gluten structure at 
100 s. 

Pa-1 

SeP Separation time is time at which the creep and recovery split and no 
longer stay superimposed. An increase in separation time suggests that 
the elastic component is higher than viscous component by either an 
increase in elasticity or decrease in viscosity of the gluten structure. 

S 

RCY Percent recoverability is the elastic ability of gluten to recover to its 
original state after the stress is removed. 

% 

TCC Rate at which the deformation of gluten reaches its equilibrium. Higher 
the value of TCC slower the rate of deformation of gluten. 

S 

TCR Rate at which the elastic recovery of gluten reaches its equilibrium. 
Higher the value if TCR, slower the rate of recovery of gluten. 

S 

   
Mixing   

WA Ability of flour to absorb water in order to form a convened dough 
consistency at 500 FU. 

% 

DT Time required for the flour to develop into dough of convened 
consistency during mixing. 

Min 

ST Time for which the developed dough remains stable during mixing. Min 
BT Time at which the dough starts breaking down after mixing. Min 

   
Baking   

LV Volumes of baked loaf measured at 10 min. cm3 
LH Heights of baked loaves. Mm 
PH Heights of loaves after proofing. Mm 
OSP Increase in height of loaves in the oven during baking. Mm 
SV Specific volume of baked loaves. cm3/g 

   
FP Flour protein.  % 
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 Table 3. Proximate analysis of flours (means ± SD, n=2) obtained from sites A and B (adapted 

from Ambardekar, 2009). 

Flours Protein (%) Moisture (%) Ash (%)   
1A   7.95 ± 0.05  11.69 ± 0.02 0.29 ± 0.01  
2A 11.19 ± 0.07 10.51 ± 0.03 0.38 ± 0.01  
3A 13.68 ± 0.02 10.14 ± 0.02 0.41 ± 0.00  

     
1B 10.40 ± 0.10 12.54 ± 0.02 0.47 ± 0.00  
2B 10.59 ± 0.07 12.57 ± 0.00 0.48 ± 0.01  
3B 11.38 ± 0.01 12.98 ± 0.04 0.58 ± 0.01  

 

 



 

40 
 

Table 4. Fermentation properties in six commercial wheat flours treated with DATEM levels. Means (n=2) with same superscripts in a 
column are not significantly different (P > 0.05). The standard deviations of means are shown in parenthesis.        

 

TRT Fermentation Properties 
Hm 
(mm) 

h 
(mm) 

(Hm-h) 
/Hm 
(%) 

H’m 
(mm) 

TV 
(mL) 

VL 
(mL) 

VRt 
(mL) 

RC 
(%) 

T1 
(h) 

T’1 
(h) 

1A0 25.0lmn 24.55lmn 1.80fgh 47.50k 1507.5hijk 323de 1184.5mn 78.65cdef 3.93a 3.17abc 
(1.3) (1.3) (0.3) (2.5) (76.5) (37) (39.5) (1.3) (0.02) (0.15) 

1AN 0n 0o 0h 5.0l 12.5l 2g 11o 83.25bcd 4.00a 0.12i 
(0) (0) (0) (0.1) (0.5) (0) (0) (2.05) (0) (0) 

1A0.3 39.75cd 38.80bc 2.40bc 60.5cd 1845abc 44fg 1801abc 97.6a 2.16defg 3.81ab 
(0.05) (0.8) (1.9) (0.6) (116) (5) (121) (0.4) (0.01) (0.19) 

1A0.6 29.45ijkl  27.95ijkl  4.45efgh 50.9ghijk 1544.5fghijk 35.5fg 1509.5fghi 97.7a 2.93abcdef 2.87bcde 
(7.1) (6.0) (2.6) (1.7) (98.5) (3.5) (94.5) (0.1) (1.03) (1.05) 

1A1 22.10m 21.65mn 2.0fgh 55.3efg 1709cde 24fg 1685cde 98.6a 3.93a 3.76ab 
(1.0) (0.6) (1.5) (2.1) (35) (3) (38) (0.2) (0.02) (0.01) 

2A0 32.15ghijk 31.45ghij 2.20fgh 53.10ghi 1695.5de 389.5c 1306klm 77.05ef 3.68a 1.51h 
(0.5) (1.1) (1.9) (1.0) (27.5) (11.5) (16) (0.35) (0.28) (0.16) 

2AN 0n 0o 0h 4.90l 12l 3.5g 9o 70.2g 4.00a 0.10i 
(0) (0) (0) (1.3) (3) (0.5) (3) (6) (0) (0) 

2A0.3 31.90hijk 31.60fghij 0.90gh 55.40efg 1647.5defgh 48.5fg 1599ef 97.05a 3.98a 3.83ab 
(1.80) (1.5) (0.9) (1.2) (28.5) (16.5) (45) (1.05) (0.02) (0) 

2A0.6 31.85hijk 31.25ghijk 1.85fgh 52.20ghij 1628efgh 33fg 1595.5ef 98a 2.13defg 1.84efgh 
(0.8) (0.6) (0.5) (1.4) (54) (0) (54.5) (0.1) (0.07) (0.08) 

2A1 27.25klm 26.35klm 3.25fgh 49.80hijk 1520ghijk 28.5fg 1491.5fghi 98.1a 1.84efg 1.98defgh 
(1.2) (0.6) (2.0) (1.2) (38) (2.5) (40.5) (0.2) (0.13) (0.07) 

3A0 39.40cde 39.15bc 0.65h 54.3fgh 1669def 362.5cd 1307klm 78.3def 3.98a 1.66gh 
(2.2) (2.4) (0.6) (0.1) (13) (13.5) (0) (0.6) (0.02) (0.04) 

3AN 0n 0o 0h 4.35l 17.5l 2.5g 15.5o 85.5b 4.00a 0.11i 
(0) (0) (0) (0.7) (3.5) (0.5) (4.5) (6.5) (0) (0.01) 

3A0.3 34.10fghi 33.70defg 1.15fgh 48.55ijk 1483ijk 28.5fg 1455ghij 98.1a 3.85a 2.01defgh 
(1.1) (1.1) (0.05) (1.9) (58) (3.5) (61) (0.3) (0.10) (0.06) 

3A0.6 32.65ghij 32.50efghi 0.45h 52.55ghij 1606.5efghi 35.5fg 1571efg 97.8a 3.96a 1.83efgh 
(0.3) (0.4) (0.1) (1.4) (45.5) (2.5) (43) (0.1) (0.01) (0.02) 

3A1 28.50jkl  28.35hijkl 0.50h 48.40jk 1430.5k 28fg 1402.5ijkl  98.05a 3.98a 2.23cdefgh 
(0.5) (0.3) (0.5) (0.7) (17.5) (2) (19.5) (0.15) (0.02) (0.03) 
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Table 4. Continued 
TRT Fermentation Properties  

Hm H (Hm-h) 
/Hm 

H’m TV VL VRt RC T1 T’1 

(mm) (mm) (%) (mm) (mL)  (mL)  (mL)  (%) (h) (h) 
1B0 33.2ghij 19.85n 39.1a 59.55de 1412k 277e 1135n 80.4bcde 1.58g 1.41h 

(2.3) (3.75) (15.5) (1.75) (32) (15) (17) (0.6) (0.17) (0.01) 
1BN 0n 0o 0h 5.5l 18.5l 3g 15.5o 83.35bcd 4.00a 0.12i 

(0) (0) (0) (1.8) (6.5) (2) (4.5) (4.65) (0.00) (0.00) 
1B0.3 34.15fghi 24.85lmn 27.15b 49.5ijk 1479.5ijk 32fg 1447.5ghij 97.85a 1.76fg 1.70fgh 

(0.45) (1.75) (6.05) (1.6) (22.5) (4) (18.5) (0.25) (0.14) (0.05) 
1B0.6 34.45efghi 27.3ijkl  20.75b 48.75ijk 1474ijk 34fg 1439.5ghij 97.7a 1.90efg 1.82efgh 

(0.15) (0.7) (2.35) (1.15) (27) (1) (28.5) (0.1) (0.00) (0.05) 
1B1 32.6ghij 24.75lmn 23.95b 49.8hijk 1458.5jk 31.5fg 1428hijk 97.9a 1.74fg 1.70fgh 

(1.9) (0.75) (2.15) (1.7) (34.5) (2.5) (32) (0.1) (0.03) (0.10) 
2B0 43.3abc 42.75ab 1.25fgh 61.15cd 1911.5ab 567a 1344.5jkl 70.55g 3.41abc 1.38h 

(0.5) (0.05) (1.05) (4.15) (113.5) (102) (11.5) (3.55) (4.00) (0.13) 
2BN 0n 0o 0h 5.2l 23l 1g 21o 94.6a 0.51a 0.12i 

(0) (0) (0) (0) (0) (0) (0) (0) (0) (0) 
2B0.3 41.5bcd 39bc 6.1defgh 61.85cd 1780.5bcd 44fg 1736.5bcd 97.5a 2.33cdefg 3.93ab 

(1) (2.8) (4.5) (2.55) (85.5) (1) (84.5) (0.1) (0.33) (0.02) 
2B0.6 45ab 42.2ab 6.25defgh 64.85bc 1887.5ab 48.5fg 1839ab 97.45a 2.14defg 3.95a 

(2) (2) (0.25) (1.05) (19.5) (2.5) (17) (0.15) (0.03) (0.00) 
2B1 43.1abc 42.65ab 1gh 59de 1701.5de 40fg 1661.5de 97.65a 3.96a 3.98a 

(2.7) (2.25) (1) (3.3) (105.5) (8) (97.5) (0.35) (0.04) (0.02) 
3B0 36.85defgh 36.85cde 0h 54.2fgh 1737cde 462.5b 1275lm 73.4fg 4.00a 2.09defgh 

(0.75) (0.75) (0.4) (1.1) (46) (20.5) (25) (0.5) (0.00) (1.03) 
3BN 0n 0o 0h 4.9l 14l 2.5g 12o 84bc 2.11defg 0.12i 

(0) (0) (0) (0.6) (1) (0.5) (1) (1.2) (1.89) (0.00) 
3B0.3 44.4abc 40.45bc 8.9cdefgh 69.75a 1914ab 76f 1838ab 95.95a 2.12defg 3.96a 

(0) (0.05) (0.1) (2.95) (136) (26) (162) (1.65) (0.10) (0.04) 
3B0.6 46.8a 43.85ab 6.4defgh 69.15ab 1924a 49fg 1875a 97.45a 2.41bcdefg 3.98a 

(3.9) (4.25) (1.3) (0.55) (10) (2) (8) (0.05) (0.06) (0.03) 
3B1 47.9a 46.8a 2.25fgh 61.5cd 1717.5cde 46fg 1670.5cde 97.3a 3.45abc 4.00a 

(1.3) (0.2) (2.25) (1.2) (35.5) (16) (51.5) (1) (0.55) (0.00) 
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Table 5. Change (percent) of fermentation properties of six commercial wheat flours treated with DATEM levels. Values with * are 
significantly different (P<0.05) from control samples. Percentages are calculated from values in Table 4. % change = (Sample treated 
with additive - control sample)/control sample * 100. 

 
 
 

TRT                                                                       Fermentation properties 
Hm 
(%) 

h 
(%) 

(Hm-h) /Hm 
(%) 

H’m 
(%) 

TV 
(%) 

VL 
(%) 

VRt 
(%) 

RC 
(%) 

T1 
(%) 

T’1 
(%) 

1A0.3 59.0* 58.0* 33.3* 27.4* 22.4* -13.6* 52.1* 24.1* -45.0* 20.2 
1A0.6 17.8* 13.9 147.2 7.2 2.5 -11* 27.4* 24.2* -25.5 -9.5 
1A1 -11.6 -11.8 11.1 16.4* 13.4* -7.4* 42.3* 25.4* 0.0* 18.6 
2A0.3 -0.8 0.5 -59.1 4.3 -2.8 -12.4* 22.4* 26.0* 8.2 153.6* 
2A0.6 -0.9 -0.6 -15.9 -1.7 -4.0 -8.5* 22.1* 27.2* -42.1* 21.9 
2A1 -15.2* -16.2* 47.7 -6.2 -10.4* -7.3* 14.2* 27.3* -50.0* 31.1 
3A0.3 -13.5* -13.9* 76.9 -10.6* -11.1* -7.9* 11.3* 25.3* -3.3 21.1 
3A0.6 -17.1* -17.0* -30.8 -3.2 -3.7 -9.8* 20.2* 24.9* -0.5 10.2 
3A1 -28.1* -27.6* -23.1 -10.9* -14.3* -7.7* 7.3 25.2* 0.0 34.3 
1B0.3 2.9 25.2 -30.7* -16.9* 4.8 -11.5* 27.5* 21.7* 11.4 20.6 
1B0.6 3.8 37.5* -46.9* -18.1* 4.4 -12.3* 26.8* 21.5* 20.3 29.1 
1B1 -1.8 24.7 -38.8* -16.48 3.3 -11.4* 25.8* 21.8* 10.1 20.6 
2B0.3 -4.2 -8.8 388.0 1.1 -6.9 -7.8* 29.2* 38.2* -31.7 184.8* 
2B0.6 3.9 -1.3 400.0 6.1 -1.3 -8.5* 36.8* 38.1* -37.2* 186.2* 
2B1 -0.5 -0.2 -20.0 -3.5 -11.0* -7.0* 23.68* 38.4* 16.1 188.4* 
3B0.3 20.5* 9.8 0.0 28.7* 10.2* -16.4* 44.2* 30.7* -47.0* 89.5* 
3B0.6 27.0* 19.0* 0.0 27.6* 10.8* -10.6* 47.1* 32.8* -39.8* 90.4* 
3B1 30.0* 27.0* 0.0 13.5* -1.1 -9.9* 31.0* 32.6* -13.8* 91.4* 
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Table 6. Explained variance (%) in PCA of fermentation variables with negative control in flours 

treated with DATEM. 

DATEM 
Axes PC1 PC2 1+2 
PC (%) 58.9 18.9 77.8 

     
Fermentation Hm 94 2 96 

 
H 90 4 94 

 
(Hm-h)/Hm 6 11 17 

 
H’m 97 1 98 

 
TV 95 2 98 

 
VL 5 80 85 

 
VRT 97 0 97 

 
RC 20 62 82 

 
T1 13 25 38 

 
T’1 72 1 73 

  
 

Table 7. Explained variance (%) in PCA of fermentation variables with flour protein in flours 

treated with DATEM. 

DATEM 
Axes PC1 PC2 1+2 
PC (%) 53.5 17.5                     71 

     
Fermentation Hm 94 2 96 

 
H 89 5 95 

 
(Hm-h)/Hm 6 16 22 

 
H’m 97 0 98 

 
TV 95 2 98 

 
VL 5 73 77 

 
VRT 97 0 97 

 
RC 20 55 75 

 
T1 13 30 43 

 
T’1 72 1 73 

Flour Protein  FP 0 7 7 
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Table 8. Explained variance (%) in PCA of fermentation variables without negative control in 

flours treated with DATEM. 

DATEM 
Axes PC1 PC2 1+2 
PC (%) 42.6 26.6 69.2 

     
Fermentation Hm 62 7 69 

 
h 68 16 84 

 
(Hm-h)/Hm 9 11 20 

 
H’m 73 3 76 

 
TV 71 14 85 

 
VL 6 88 94 

 
VRT 76 18 93 

 
RC 10 83 93 

 
T1 1 21 22 

 
T’1 50 6 56 

  
 

Table 9. Explained variance (%) in PCA of fermentation variables with flour protein and without 

negative control in flours treated with DATEM. 

DATEM 
Axes PC1 PC2 1+2 
PC (%) 38.8 24.6 63.4 

     
Fermentation Hm 61 8 69 

 
h 68 18 86 

 
(Hm-h)/Hm 9 13 23 

 
H’m 73 3 76 

 
TV 71 12 83 

 
VL 6 83 89 

 
VRT 76 17 93 

 
RC 10 78 87 

 
T1 1 24 26 

 
T’1 50 7 58 

Flour Protein  FP 0 8 8 
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Table 10.  Explained variance (%) in PCA of fermentation variables when compared with visco-
elastic, mixing and baking variables in flours treated with DATEM. Definitions of fermentation, 
visco-elastic, mixing and baking variables explained in Table 2. 

DATEM 
Axes PC1 PC2 1+2 
PC (%) 27.5 20.4 47.9 

     
Fermentation Hm 41 1 42 

 
h 55 3 58 

 
(Hm-h)/Hm 15 36 50 

 
H’m 20 0 20 

 
TV 22 8 30 

 
VL 01 24 25 

 
VRT 10 2 12 

 
RC 0 24 24 

 
T1 7 31 38 

 
T’1 1 2 3 

     
Visco-elastic  SeP        5. 68 73 

 
 J-Jr        0 85 85 

 
 RCY        0 50 50 

 
 TCR        0 23 23 

 
 TCC        0 52 53 

     
Mixing  WA         53 27 80 

 
 DT         31 0 32 

 
 ST         59 0 60 

 
 BT         38 1 40 

     
Baking  PH         26 39 65 

 
 LH         73 0 73 

 
 SV         74 0 74 

 
 OSP         24 27 51 

 
 LV         72 1 73 

  
    

Flour Protein   FP         61 5 65 
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Table 11. Explained variance (%) in PCA of fermentation variables when compared with baking 

variables in flours treated with DATEM. 

DATEM 
Axes PC1 PC2 1+2 
PC (%) 35.3 21.6 56.9 

     
Fermentation Hm 56 6 62 

 
h 70 3 72 

 
(Hm-h)/Hm 15 1 17 

 
H’m 49 19 68 

 
TV 53 10 63 

 
VL 0 46 46 

 
VRT 31 60 90 

 
RC 0 49 49 

 
T1 0 17 18 

 
T’1 11 50 61 

  
Baking  PH         11 0 12 

 
 LH         72 13 86 

 
 SV         69 14 83 

 
 OSP         38 11 50 

 
 LV         64 16 80 

  
 

Flour Protein   FP         23 29 53 
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Figure 1. A graphical representation of gaseous curve of a) control sample from flour 3B and b) 

sample containing 0.6% DATEM (3B0.6). Blue tracings are the total volume and the red is the 

volume retained. 

 

 

Figure 2. A graphical representation of dough development of a) control sample from flour 3B 

and b) sample containing 0.6% DATEM (3B0.6).  
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Figure 3. Loading plot of first two principal components based on fermentation properties with 
negative control of six commercial wheat flours, added with four levels of DATEM. Definitions 
of fermentation, visco-elastic, mixing and baking variables explained in Table 2 and 3. Flour 
protein content (%), 1A = 7.95, 2A = 11.19, 3A = 13.68, 1B = 10.4, 2B = 10.59 and 3B = 11.38, 
respectively. Symbols and definitions: - -Control samples,   - Negative controls,    – Low protein 
B flours,    - Medium protein B flours,    - High protein B flours.     – Low protein A flours,     -
Medium protein A flours,     - High protein A flours. 
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Figure 4. Loading plot of first two principal components based on fermentation properties with 
flour protein of six commercial wheat flours added with four levels of DATEM. Symbols and 
definitions:     -Control samples,   - Negative controls.   – Low protein A flours,     -Medium 
protein A flours,     - High protein A flours.    – Low protein B flours,    - Medium protein B 
flours,    - High protein B flours.   
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Figure 5. Loading plot of first two principal components based on fermentation properties 
without negative control of six commercial wheat flours added with four levels of DATEM. 
Symbols and definitions:     -Control samples,   – Low protein A flours,     -Medium protein A 
flours,     - High protein A flours.    – Low protein B flours,    - Medium protein B flours,    - 
High protein B flours.   
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Figure 6. Loading plot of first two principal components based on fermentation properties with 
flour protein of six commercial wheat flours containing four levels of DATEM. Negative control 
samples were removed. Symbols and definitions:    -Control samples,    – Low protein A flours,         
-   -Medium protein A flours,     - High protein A flours.    – Low protein B flours,    - Medium 
protein B flours,    - High protein B flours.   
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Figure 7. Loading plot of first two principal components based on fermentation, baking, visco-
elastic and dough properties of six commercial wheat flours added with four levels of DATEM. 
Symbols and definitions:    -Control samples,   – Low protein A flours,     -Medium protein A 
flours,     - High protein A flours.    – Low protein B flours,    - Medium protein B flours,    - 
High protein B flours.   
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Figure 8. Loading plot of first two principal components based on fermentation and baking 
properties of six commercial wheat flours added with four levels of DATEM. Symbols and 
definitions:    -Control samples,   – Low protein A flours,     -Medium protein A flours,     - High 
protein A flours.    – Low protein B flours,    - Medium protein B flours,    - High protein B 
flours.   
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                                                                   CHAPTER IV 

       EFFECT OF OXIDIZED  STATE ON FERMENTATION PROPERTIES OF DOUGH 

ABSTRACT 

           The objective of the study is to investigate the effect of oxidized state on fermentation 

properties of dough and to analyze possible correlations of fermentation and visco-elastic, 

baking and mixing properties of dough. Five levels of oxidized states were obtained by the 

addition of ascorbic acid (0, 50, 100, 150 and 250 ppm). Six commercial hard red winter wheat 

flours with different protein content were used. Flours with no treatment were used as controls 

and flours with no yeast and no treatment were used as negative controls. Fermentation 

properties of dough were measured with a Rheofermentometer F3. Oxidized dough showed 

increased dough development and volume of gas retained.  Oxidizing levels increased the 

retention coefficient of gluten from most flours (P<0.05). When fermentation properties are 

compared with visco-elastic, mixing and baking properties of dough, biplot of principal 

component analysis explained 51.5% of total variance. First principal component axis explained 

27.2% variance and second component axis explained 24.3% variance. Fermentation properties 

alone without flour protein explained 61.7% of total variance. Fermentation variables explained 

more variance (61.7%) than the fermentation variables combined with visco-elastic, mixing and 

baking variables (51.5%). The ratio of dough heights [(Hm-h)/Hm] and volume lost (VL) are 

closely related to gluten elastic properties (Sep and RCY). The time taken to reach maximum 

height of the dough (T1) is closely related to gluten viscous (TCC) and baking properties (OSP).  
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Maximum height of the dough (Hm) and dough height (h) are closely related to flour protein 

(FP) and baking properties (LH and LV). 

1. INTRODUCTION 

                        During mixing the gluten in the dough is stretched and pulled apart so that it can 

provide the needed strength and structure during proofing and baking. Oxidizing agents enhance 

gluten reformation and so are used to adjust dough strength, elasticity and tolerance. Oxidative 

dough improvers convert sulfhydryl groups of gluten proteins to disulfide linkages (Sullivan et 

al., 1940; Tsen and Bushuk 1963).  Ascorbic acid is an oxidizing agent used in baking to 

improve dough elasticity, gas retention and water absorption. During mixing, ascorbic acid (L-

AA) reacts with oxygen and forms dehydroascorbic acid (L-DHA) which oxidizes the sulphydryl 

groups in gluten protein. This specie in turn reacts with thiols to form disulfide and to regenerate 

ascorbic acid (Stauffer et al., 1990). Oxidation of glutathione (GSH) to oxidized disulfide 

derivative (GSSG) improves the effect of L-AA in dough properties. They are added to dough to 

improve the strength of the gluten structure to allow it to hold more CO2 produced during 

fermentation. Ascorbic acid was effective in improving loaf volume in bread. Flour with less 

protein requires more ascorbic acid than a high protein flour to reach its optimum potential 

(Collins et al., 1966). Adding 50 ppm of ascorbic acid gives a tighter strength and dough 

tightness increases during fermentation (Hoseney et al., 1980). Addition of 150 ppm ascorbic 

acid to yeasted dough increased the effectiveness of incorporating oxygen from mixing 

atmosphere (Chamberlain and Collins, 1979). Several instruments are available to measure the 

rheological and gas retention properties of dough during fermentation. The Rheofermentometer 

(Chopin, Tripette and Renaud, France) is used in the study of the behavior of flour during 
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fermentation. The parameters measured are maximum dough height (Hm) in mm, maximum 

height of gaseous release (H’m) in mm, CO2 production in ml. 

  The objectives of the study were: 

1) To study the effect of an oxidizing agent on the fermentation properties of dough using 

ascorbic acid. 

2) To analyze possible correlations of fermentation and visco-elastic, baking and mixing 

properties of dough. 

 

2. Materials and Methods 

a. Materials and Labeling  

           The procurement of wheat flour samples were explained in the Materials and Methods 

section of Chapter III. Five levels (0, 50, 100, 150 and 250 ppm) of ascorbic acid (Mallinckrodt 

Baker Inc., Phillipsburg, NJ) were used. Flours with no ascorbic acid were used as control (0) 

and flours with no ascorbic acid and no yeast were used as negative control (N). Thus site A 

flours were labeled as 1A0 (positive control), 1AN (negative control), 1A50, 1A100, 1A150, 

1A200; 2A0, 2AN, 2A50, 2A100, 2A150, 2A200; 3A0, 3AN, 3A50, 3A100, 3A150, and 3A200. 

The 0, 50, 100, 150 and 200 represent the parts per million of ascorbic acid added to the flours. 

Similarly site B flours were labeled as 1B0, 1BN, 1B50, 1B100, 1B150, 1B200; 2B0, 2BN, 

2B50, 2B0100, 2B150, 2B200; 3B0, 3BN, B50, 3B100, 3B150, and 3B200. 

b. Methods 

Dough Preparation 

          Dough was prepared as described in the Chopin protocol using Chopin 

AlveoConsistograph. The ingredients consisted of 250 g of flour, 3 g of dry yeast and 5g of 
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sodium chloride. Ascorbic acid was added to the flours at 0, 50, 100, 150 and 200 ppm. For 50 

ppm ascorbic acid, a stock solution of l00 ml was prepared containing 0.05 g of ascorbic acid. 

Then 25 ml of stock solution was added to 250 g of flour. In the same way, stock solutions were 

prepared for 100 ppm containing 0.1 g of ascorbic acid, 0.15 g of ascorbic acid for 150 ppm and 

0.2 g for 200 ppm. From the described stock solutions, 25 ml was mixed with the water added to 

the flour to obtain each ascorbic acid addition. The quantity of deionized water added depended 

on the moisture content of the flour and it was given by the reference table published by the 

International Association for Cereal Science and Technology (ICC) as described in the Chopin 

Protocol. The sodium chloride is dissolved in water prior to the addition to dough. Instant dry 

yeast and ascorbic acid were blended with 250 g of flour in the kneader bowl. Salt water was 

progressively added to the flour at the beginning of the first minute of the mixing period. After 

one minute, the mixing was stopped to remove the flour sticking to the walls and ensure a 

homogeneous hydration. The mixing process was continued for 6 minutes. A sample size of 315 

g of dough was used for each treatment. 

Fermentation Test 

              Rheofermentometer was used to study the fermentation properties of dough. The dough 

(315 g) obtained from AlveoConsistograph was placed in the bottom of the aluminum basket and 

packed it down with hands. The height of the dough in the basket must be leveled out just below 

the lowest holes. The piston with a 2000 g weight was placed on top of the dough. The basket 

was placed in the F3 Rheofermentometer bowl. Displacement sensor was placed and the whole 

system was tightly closed and the test was run for a total of 4 h. This time represents 1 h longer 

than the Chopin Protocol as it was determined experimentally with the samples and treatments in 

this study.              
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             The F3 Rheofermentometer analyzes the development of a dough sample placed in the 

bowl. The piston placed on the dough rises. The piston is directly linked to a displacement sensor 

which will calculate the dough rising. Rheofermentometer is also linked to a pressure sensor 

through a pneumatic circuit that measures the pressure increase in the fermenting dough. The 

three curves are dough development, speed of C02 release and quantity produced and volume of 

CO2 retained in dough. Fermentation variables are defined in Table 1 and visco-elastic, mixing 

and baking terms are defined in Table 2 (Chapter III). 

3. STATISTICAL ANALYSIS 

                 A factorial design within a randomized block design was implemented. Six levels of 

ascorbic acid and 3 levels of flour protein were compared in a 6 X 3 factorial. The significant 

differences in means were compared using Analysis of Variance (ANOVA) with Tukey’s 

comparisons (α=0.05) using SAS (Version 9.1 SAS Institute Inc., Cary, NC). Principal 

Component Analysis (PCA) is a mathematical algorithm that reduces the dimensionality of the 

data (Ringer, 2008). PCA is performed using Canoco for windows 4.5 (Biometris, Plant 

Research International, Wageningen, the Netherlands).  

4. Results and Discussion 

             Protein, moisture and ash content of the flour samples are reported in Table 3 (Chapter 

III). Typical dough fermentation property curves obtained are illustrated in Figure 1 and 2 

showing results for sample 3B control and 3B containing 200 ppm ascorbic acid.  The volume of 

CO2 lost (VL) is decreased when the sample is oxidized with 200 ppm ascorbic acid (Fig. 1). The 

volume of retention of gas also improved in the oxidized sample when compared with control 

sample. From the dough development curves we can observe that the height of dough is 
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improved when it is oxidized with 200 ppm ascorbic acid (Fig. 2). A summary of definition of 

the fermentation properties of all samples is found in Table 1 (Chapter III). 

Maximum height of the dough (Hm) 

               Hm is the maximum height of the dough development. As expected, the control sample 

without yeast shows no development (Table 1). The effect of oxidation on Hm does not appear to 

cause a general trend, which means it can detect quality differences in the flours. Observations 

that significantly increased Hm were 3B flours (high protein) with 50, 100 and 200 ppm of 

ascorbic acid. Observations that significantly decreased Hm were 3A flours (high protein) with 

100 and 200 ppm of ascorbic acid (Table 1 and 2). Highest value of Hm was shown by 3B200 

(50.8 mm) and lowest by 1A100 (21.7 mm) (Table 1). The change of the fermentation properties 

(%) is calculated in comparison to the control sample (with yeast) and reported in Table 2. 

Overall highlights of trends are: high percentage (37.9%) increment in maximum height was 

observed in sample 3B (11.4% protein) with 200 ppm ascorbic acid (3B200). A 19.2% decrease 

in maximum height was observed in the sample 3A100 which is the highest protein sample 

(13.7%) (Table 2). This suggests that the effect of oxidation in maximum height of dough during 

fermentation is sample specific.  

Height of the dough development (h) 

  The height of the dough development (mm) at the end of the test was denoted by h. As 

expected, negative controls showed no development. The effect of oxidation on h is the same as 

the observed on maximum height of development except 1B flours with all levels. 1B flours with 

all oxidized levels significantly increased height of the dough development (Table 1 and 2). 

Overall highlights of trends are: lowest value of height was observed in 1B0 (19.9 mm) and 

highest value was observed in 3B200 (50.6 mm) (Table 1). The highest increase (55.7%) of h 
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was observed in 1B150 and decrease (18.8%) in 3A100 (Table 2). This observation also suggests 

that the samples differed in the oxidation of the disulfide bonds achieved with the same levels of 

ascorbic acid and thus have different protein quality. 

Lowering of development percentage [(Hm-h)/Hm] 

            (Hm-h)/Hm is the ratio of dough height at the end of the fermentation test in percentage. 

A large percent means the dough has maintained its height during fermentation. The effect of 

oxidation on (Hm-h)/Hm appear to be flour specific. Observations of significant decrease of 

(Hm-h)/Hm were low protein B flours with all levels of oxidation (Table 1 and 2). Overall 

highlights of trends are: high value of (Hm-h)/Hm was observed in 1B0 (39.1%) and lowest 

value in 2A150 (0.15%) (Table 1). Highest percentage decrease was observed in 2A200, 3A50, 

3A150 and 2B150 (100%) (Table 2). High protein B flours show no change. 

Maximum height of the gaseous curve (H’m) 

             H’m is the maximum height of the gaseous release curve. The overall effect of oxidation 

was a decrease of H’m in most of the samples, except in four samples, 1A with 100 and 150 ppm 

ascorbic acid and 3B with 50 and 100 ppm ascorbic acid which showed a significant increase of 

H’m (28.1 and 15.8%,  and 8.9 and 2.6% increase, respectively). H’m significantly decreases in 

2A with 50 and 100 ppm, 3A with 50, 100 and 200 ppm of ascorbic acid and in 1B and 2B flours 

with all levels of ascorbic acid (Table 1 and 2). Overall highlights are: high value of H’m was 

shown by 1B0 (61.2 mm) and lowest value of the sample with yeast was shown by 1B150 (42.8 

mm) (Table 1). Highest percentage (28.1%) increment (desirable) in maximum height was 

observed in 1A100 and 28.2% decreased by 1B150 (Table 2). The effect of oxidation on 

maximum height of the gaseous release did not give a linear response and varied according to the 
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sample (sample specific) and to the level of oxidation (level of ascorbic acid). But an overall 

trend of oxidization of dough was to decrease maximum height with few exceptions.   

Total Volume (TV) 

              TV is the total volume under the gaseous curve. The effect of oxidation on total volume 

significantly increases in 1A with 100 ppm of ascorbic acid. TV significantly decreases in 2A 

and 3A with 50, 100 and 200 ppm, 2B flours with all levels and 3B with 150 and 200 ppm of 

ascorbic acid (Table 1 and 2). Overall highlights of trends are: high value of total volume was 

observed in 2B0 (1911.3 mL) and lowest in 1B150 (1347 mL) (Table 2). An increase in total 

volume (22.6%) was observed in 1A100 and 21.5% of total volume decreased in 2B150 (Table 

2). The overall effect of oxidation on total volume was a decrease except for sample 1A at all 

levels of oxidation. Sample 1A had the lowest protein (8%), thus when the protein content is low 

the total volume is expected to be increased with oxidation. This observation agrees with 

Koehler (2003a) who reported different levels of ascorbic acid improve low protein flours better 

than high protein flours. 

 Volume lost (VL) 

               VL is the carbon dioxide volume released by the dough during the fermentation test. 

Overall trend of VL is to decrease by oxidation. All observations (all samples and levels) were 

significantly decreased volume lost when compared to controls (Table 1 and 2). Overall 

highlights are: high value was observed in 2B0 (567 mL) and lowest in 1A100 (16.5 mL) (Table 

1). Highest percentage 1B100 (11.6%) of volume lost was observed in 1A100 and lowest 

percentage (5.1%) in 1A100 (Table 2). This observation also agrees with Koehler’s (2003a) 

statement that ascorbic acid improves low protein flours better than high protein flours. 
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Volume retained (VRt) 

              VRt is the carbon dioxide retained in the dough at the end of the test. The overall trend 

of oxidation is to increase volume retention. Observations that significantly increased volume 

retention when compared to controls were 1A flours with all levels, 2A and 3A with 150 ppm, 

1B with 50, 100 and 200 ppm and in 3B flours with 50, 100 and 150 ppm of ascorbic acid (Table 

1 and 2). Overall highlights of trends are: high value f volume retention was observed in 1A100 

(1831.5 mL) and lowest in 1B0 (1135 mL) (Table 1). Highest percentage (54.6%) of volume 

retained was observed in 1A100 and lowest percentage (2.2%) in 2A100 (Table 2).  

Retention Coefficient (RC) 

             Retention coefficient (RC) is the retention volume divided by the total gaseous release. 

The overall trend of RC is to increase with oxidation. All observations (all levels) of RC were 

significantly increased when compared to controls (Table 1 and 2). This means that oxidation 

positively affects the fermentation properties by increasing the retention coefficient. Overall 

highlights of trends are: high value of RC was observed in 1A100 (99.1%) and lowest value in 

2B0 (70.55%) (Table 1). Highest percentage (38.6%) of retention coefficient was observed in 

2B200 and lowest percentage (21.5%) in 1B100 (Table 2). The effect of oxidation on retention 

coefficient is to increase. Retention coefficient and volume retained are the only two parameters 

that show a definitive increase with oxidation.  

Time of maximum rise (T1) 

              T1 is the time taken by the dough to reach maximum height during dough development. 

The overall trend of time of maximum rise of dough development is to increase with oxidation. 

Observation of significant increase in T1 is 1B with 150 ppm of ascorbic acid (61.4% increase) 

when compared to the control (Table 1 and 2). Overall highlights of trends are: high value of T1 
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was observed in 2A200, 3AN, 3A50 and 3A150 (3.9 h). Lowest value of T1 was observed in 

1B0 (1.5 h) (Table 1). Highest percentage (61.4%) of time taken to reach maximum height of 

dough development was observed in 1B150 and time decreased 1.5% in 1A150 (Table 2). The 

overall effect of oxidation on T1 is to cause on increase.   

Time of maximum rise (T’1)  

             T’1 is the time spent to reach maximum rise during gaseous release. The overall trend of 

time of maximum rise of gaseous release is to increase with oxidation. Observations with 

significant increase of T’1 were 1A with 50, 150 and 200 ppm, 2A, 2B and 3B flours with all 

levels and 3A flour with 150 ppm of ascorbic acid (Table 1 and 2). Overall highlights are: high 

value of T’1 was observed in 2A150, 2A200 and 3B200 (4). Lowest value (1.4) of T’1 was 

observed in 2B0 (Table 1). Highest increase (185.5%) of time taken to reach maximum height of 

gaseous curve was observed in all medium protein B flours and lowest (15%) increase was 

observed in  1B200 (Table 2). Time to reach maximum height of gaseous release increases with 

oxidation.               

In summary, from Table 4 and 5 we can say that maximum height of the dough 

development decreases for A flours and increases for B flours. Maximum height of gaseous 

release shows an increase with low protein A flours. Highest percentage of retention volume of 

gas was observed in low protein A flour (1A100). Flours treated with 100 ppm ascorbic acid 

improved gas retention properties better than other concentrations. Highest percentage of 

retention coefficient of gas was observed in medium protein flours. Koehler (2003a) reported 

that different levels of ascorbic acid improve low protein flours rather than high protein flours. 

But in our study we observed different levels of ascorbic acid improved medium and high 

protein flours as well. Chamberlain and Collins (1979) proved that yeasted dough ascorbic acid 
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at 150 ppm increases the effectiveness of dough. Our study showed that fermentation properties 

of yeasted dough from commercial hard red winter wheat flours with ascorbic acid at 100 ppm 

were more desirable than those obtained with 150 ppm. 

PCA results 

              Principal component analyses were performed on the data sets obtained from 

fermentation parameters. 

Fermentation variables Vs fermentation variables with flour protein 

                  PCA were performed on the data sets, to assess the relationship of flour protein and 

fermentation properties (Fig. 3 and 4). Figure 3 represents the fermentation properties alone and 

all the samples. Principal component axis 1 (PC1) explained 54.7% variance and principal 

component axis 2 (PC2) explained 20.8% variance. Total explained variance is 75.5% (Table 3). 

Among fermentation properties, the highest contribution of variance (94.7%) was volume of 

retention (VRt) in PC1 whereas in PC2 the highest contribution of variance (70.8%) was volume 

lost (VL) (Table 3). Figure 4 displays the fermentation properties plus flour protein. Principal 

component axis 1 (PC1) explained 49.7% variance and principal component axis 2 (PC2) 

explained 18.9% variance. Total explained variance is 68.6% (Table 4). Among fermentation 

properties with flour protein, the highest contribution of variance (94.7%) was volume of 

retention (VRt) on PC1 whereas on PC2 highest contribution of variance (70.8%) was volume 

lost (VL) (Table 4). Only 0.07% of explained variance was contributed by flour protein on PC1 

and 0% on PC2 (Table 4). This suggests that the variation of protein is weakly related to the 

volume lost and its contribution to the variance is very small when compared with samples with 

changes in their oxidizing state. In both graphs (Fig. 3 and 4), most of the fermentation variables 

are on PC1. Flours treated with ascorbic acid are very close to PC1 when compared with control 
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and negative samples. All control samples are closely related among themselves and to volume 

lost. They are well separated from the oxidized flours. Negative controls are also closely related 

among themselves and well separated from the samples with changes due to oxidation. So 

negative controls are removed from the data sets and PCA was compared. It also suggests that 

the oxidized samples are closely related to volume of the gas retained by the dough during 

fermentation in the first component. These samples are negatively related to volume lost and 

differences in their gas volume lost by their dough’s in the second component. This means that 

all the oxidized samples lost less gas compared to the control samples.  

Fermentation variables without negative control Vs fermentation variables with flour 

protein and without negative control 

  PCA were performed to assess the relationship of fermentation variables and protein 

without the negative controls (Fig. 5 and 6). From the fermentation properties on Figure 5, 

principal component axis 1 (PC1) explained 32.7% variance and principal component axis 2 

(PC2) explained 29.0% variance (Fig. 5). Total explained variance is 61.7% (Table 5). Among 

fermentation properties, the highest contribution of variance (65.3%) was time taken to reach 

maximum height of gaseous curve (T’1) on PC1 whereas on PC2 the highest contribution of 

variance (75.8%) was total volume (TV) (Table 5). In comparison, when flour protein was 

included (Fig. 6), principal component axis 1 (PC1) explained 29.8% variance and principal 

component axis 2 (PC2) explained 26.5% variance. Total explained variance is 56.3% (Table 6). 

Among fermentation properties with flour protein, the highest contribution of variance (64.3%) 

was time taken to reach maximum height of gaseous curve (T’1) on PC1 whereas on PC2 the 

highest contribution of variance (62.8%) was maximum height of gaseous curve (Table 6). Only 

0.16% of explained variance was contributed by flour protein on PC1 and 3.07% on PC2 (Table 
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6). As the total explained variance of fermentation variables (61.7%) is 5.4 units of percentage 

higher than fermentation variables with flour protein (56.3%), we can say that compared to 

changes in oxidation state in this set, flour protein appears to have a small effect and is 

marginally correlated to other fermentation variables. Controls are closely related to volume lost 

(VL) and are separated from the oxidized flours. Most of the A flours are closely related to time 

to reach maximum height of gaseous curve (T’1) and retention coefficient (RC). They are 

negatively correlated to total volume (TV) and maximum height of dough development (Hm). 

Most of the B flours are closely related to volume of gas retained (VRt) and negatively correlated 

to volume lost (VL) and lowering development percentage ([Hm-h]/Hm). By oxidizing the 

dough, we are bringing samples close to the axis thus by increasing the fermentation properties. 

Fermentation properties Vs Fermentation properties with visco-elastic, mixing, baking 

properties 

          The relationship of fermentation variables with visco-elastic, mixing and baking properties 

was investigated (Fig. 7). From Figure 6, principal component axis 1 (PC1) explained 29.8% 

variance and principal component axis 2 (PC2) explained 26.5% variance. Total explained 

variance is 56.3% (Table 6). From Figure 7, principal component axis 1 (PC1) explained 27.2% 

variance and principal component axis 2 (PC2) explained 24.3% variance. Total explained 

variance is 51.5% (Table 7). Among all properties, the highest contribution of variance (84.7%) 

was delta compliance (J-Jr) and second major component that contributes high variance (83.0%) 

is flour protein (FP) on PC1 whereas on PC2 the highest contribution of variance (60.7%) was 

loaf volume (LV) (Table 7). As the total explained variance of fermentation variables (56.3%) is 

higher than fermentation variables with visco-elastic, mixing and baking variables (51.5%), we 

can say including all the variables from visco-elastic, mixing and baking do not improve the 
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explained variance. This means that all these analyses are not increasing the ability to separate 

the samples. Fermentation properties would give as much information as all the tests combined. 

All variables are closely associated. Low protein A flours and low protein B flours are separated 

from other flours. Ratio of dough heights [(Hm-h)/Hm] and volume lost (VL) are closely related 

to elastic properties (Sep and RCY). Time taken to reach maximum height of the dough (T1) is 

closely related to gluten time constant of creep (TCC, viscous property) and oven spring (OSP, 

baking property).  Maximum height of the dough (Hm) and dough height (h) are closely related 

to flour protein (FP) and baking properties (LH and LV). All control samples are closely related 

and positively correlated with volume lost (VL) and are negatively correlated to delta 

compliance (J-Jr) (viscous component) and retention coefficient (RC). Medium and high protein 

oxidized flours are closely related to loaf height and loaf volume. All baking properties show 

greatest contribution of explained variance on PC2. It was of interest to explore other possible 

correlations revealed by PCA analysis on flour protein, fermentation properties and baking 

properties. 

Relationship of flour protein, Fermentation and baking properties 

              PCA were performed on the data sets of flour protein, fermentation variables and baking 

properties (Fig. 8). PCA analyses of fermentation properties with flour protein were already 

performed (Fig. 6 and Table 6). From Figure 6, principal component axis 1 (PC1) explained 

29.8% variance and principal component axis 2 (PC2) explained 26.5% variance. Total 

explained variance is 56.3% (Table 6). From Figure 8, principal component axis 1 (PC1) 

explained 27.1% variance and principal component axis 2 (PC2) explained 24.9% variance. 

Total explained variance is 52% (Table 8). Highest contribution of explained variance (72.1%) 

was loaf volume (LV) and second highest variance (71.2%) was explained by height of loaf 
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volume (LH) on PC1 whereas on PC2 highest contribution of variance (59.8%) was volume of 

gas retained (VRt) (Table 8). Flour protein explained 45.6% variance on PC1 and 10.9% on PC2 

(Table 8). As the total explained variance of fermentation variables (56.3%) is more than 

fermentation variables with baking variables (52%), we can say fermentation properties explain 

more variance than baking properties. Control samples were negatively associated with gas 

retained (VRt) and positively related with volume lost (VL). Weak flours are separated from the 

rest of the flour samples. The height of dough at the end of the fermentation test is the variable 

most closely related to loaf height and loaf volume.  

5. Conclusions 

                 Null Hypothesis is rejected as there is significant effect of the oxidized sate of the 

dough (by adding ascorbic acid) on fermentation properties when compared to the control 

samples.  By oxidizing the dough, the maximum height of gaseous release decreased in all flours 

except in low protein A flours. The highest percentage of retention volume of gas was observed 

in low protein A flour while the highest percentage of retention coefficient of gas was observed 

in medium protein B flour.  

          Fermentation variables explained more variance (61.7%) than the fermentation variables 

combined with visco-elastic, mixing and baking variables (51.5%). The ratio of dough heights 

[(Hm-h)/Hm] and volume lost (VL) are closely related to gluten elastic properties (Sep and 

RCY). The time taken to reach maximum height of the dough (T1) is closely related to gluten 

viscous (TCC) and baking properties (OSP).  Maximum height of the dough (Hm) and dough 

height (h) are closely related to flour protein (FP) and baking properties (LH and LV). 
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   Table 1. Fermentation properties in six commercial wheat flours treated with ascorbic acid levels. Means (n=2) with same 
superscripts in a column are not significantly different (P > 0.05). The standard deviations of means are shown in parenthesis.       

TRT Fermentation Properties 
Hm 

(mm) 
h 

(mm) 
(Hm-h)/Hm 

(%) 
H’m 
(mm) 

TV 
(mL) 

VL 
(mL) 

VRT 
(mL) 

RC 
(%) 

T1 
(hr) 

T’1 
(hr) 

1A0 25mn 24.55kl 1.8b 47.5fghijklm 1507.5efghijk 323de 1184.5lm 78.65cd 3.93a 3.16bc 
(1.3) (1.35) (0.3) (2.5) (76.5) (37) (39.5) (1.35) (0.02) (0.15) 

1AN 0o 0n 0b 5n 12.5l 2f 11n 83.25bc 4a 0.11h 
(0) (0) (0) (0.1) (0.5) (0) (0) (2.05) (0) (0) 

1A50 23.6n 23.55lm 0.2b 51.8defghi 1555cdefghij 19.5f 1535.5bcdefg 98.75a 3.97a 3.97a 
(0.9) (0.85) (0.2) (0.8) (35) (0.5) (34.5) (0.05) (0.03) (0.02) 

1A100 21.7n 21.45lm 1.05b 60.85ab 1848.5ab 16.5f 1831.5a 99.1a 3.95a 3.68ab 
(3.3) (3.15) (0.55) (7.45) (214.5) (1.5) (216.5) (0.2) (0) (0.31) 

1A150 24.6mn 24.45klm 0.55b 55abcde 1634cdefg 27f 1607bcd 98.35a 3.87a 3.9a 
(3) (2.85) (0.55) (2.1) (64) (3) (61) (0.15) (0.13) (0.09) 

1A200 23.35n 23.1lm 0.95b 50.45defghijkl 1565.5cdefghi 24.5f 1540.5bcdef 98.4a 3.97a 3.9a 
(2.85) (2.6) (0.95) (1.95) (91.5) (4.5) (87.5) (0.2) (0.03) (0.1) 

2A0 32.15kl 31.45ij 2.2b 53.1cdefg 1695.5bcdef 389.5c 1306jklm 77.05de 3.67a 1.50fg 
(0.55) (1.15) (1.9) (1) (27.5) (11.5) (16) (0.35) (0.28) (0.16) 

2AN 0o 0n 0b 4.9n 12l 3.5f 9n 70.2f 4a 0.1h 
(0) (0) (0) (1.3) (3) (0.5) (3) (6) (0) (0) 

2A50 29lm 28.45jk 1.95b 43.9lm 1369.5ijk 31f 1338.5hijkl 97.7a 3.97a 3.95a 
(0.5) (1.05) (1.95) (2.1) (46.5) (3) (49.5) (0.3) (0.03) (0.04) 

2A100 28.95lm 28.65jk 1.05b 43.9lm 1357.5jk 22f 1335hijkl 98.4a 3.71a 3.95a 
(1.25) (1.05) (0.65) (0.4) (25.5) (3) (23) (0.2) (0.10) (0.04) 

2A150 31.15kl 31.1ij 0.15b 48.5efghijklm 1534.5defghijk 27.5f 1507.5cdefghi 98.2a 3.98a 4a 
(2.25) (2.2) (0.15) (0.6) (40.5) (0.5) (41.5) (0.1) (0.02) (0) 

2A200 31.5kl 31.5ij 0b 46.35ghijklm 1429.5ghijk 23.5f 1406efghijk 98.3a 4a 4a 
(1) (1) (0) (3.45) (76.5) (5.5) (82) (0.5) (0) (0) 
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Table 1. continued 

 

TRT Fermentation Properties 
Hm 

(mm) 
h 

(mm) 
(Hm-h)/Hm 

(%) 
H’m 
(mm) 

TV 
(mL) 

VL 
(mL) 

VRT 
(mL) 

RC 
(%) 

T1 
(hr) 

T’1 
(hr) 

3A0 39.4efgh 39.15efg 0.65b 54.3abcdef 1669bcdef 362.5cd 1307jklm 78.3cde 3.98a 1.65efg 
(2.2) (2.45) (0.65) (0.1) (13) (13.5) (0) (0.6) (0.02) (0.04) 

3AN 0o 0n 0b 4.35n 17.5l 2.5f 15.5n 85.5b 4a 0.10h 
(0) (0) (0) (0.75) (3.5) (0.5) (4.5) (6.5) (0) (0.01) 

3A50 34.8hijk 34.8ghi 0b 46.35ghijklm 1437.5ghijk 24f 1413.5efghijk 98.35a 4a 2.17de 
(0.8) (0.8) (0) (1.15) (44.5) (3) (47.5) (0.25) (0) (0.03) 

3A100 31.85kl 31.8ij 0.15b 44.4klm 1381hijk 32f 1349.5fghijkl 97.7a 3.98a 2.05def 
(1.35) (1.4) (0.15) (1) (35) (6) (41.5) (0.5) (0.02) (0.04) 

3A150 38.35fghi 38.35efg 0b 55.95abcd 1748abc 27f 1721ab 98.5a 4a 2.63cd 
(0.25) (0.25) (0) (8.15) (277) (6) (271) (0.1) (0) (0.67) 

3A200 33.25jkl 33.1hij 0.45b 45.45hijklm 1415hijk 26.5f 1388.5efghijk 98.1a 3.97a 2.18de 
(0.05) (0.1) (0.45) (0.35) (14) (0.5) (13.5) (0) (0.03) (0.18) 

1B0 33.2jkl 19.85m 39.1a 59.55abc 1412hijk 277e 1135m 80.4bcd 1.58d 1.40g 
(2.3) (3.75) (15.5) (1.75) (32) (15) (17) (0.6) (0.17) (0.01) 

1BN 0o 0n 0b 5.5n 18.5l 3f 15.5n 83.35bc 4a 0.11h 
(0) (0) (0) (1.8) (6.5) (2) (4.5) (4.65) (0) (0) 

1B50 32.15kl 30.2ij 5.95b 45.75hijklm 1429.5ghijk 31.5f 1398efghijk 97.85a 1.91cd 1.71efg 
(1.65) (0.7) (2.65) (0.25) (9.5) (2.5) (7) (0.15) (0) (0.05) 

1B100 31.4kl 29.3j 6.7b 45ijklm 1403hijk 32f 1370.5efghijkl 97.7a 1.99cd 1.64efg 
(0.3) (0) (0.9) (1.4) (21) (4) (25.5) (0.3) (0.13) (0.03) 

1B150 32.7jkl 30.9ij 5.5b 42.75m 1347k 30f 1317.5ijklm 97.8a 2.55bc 1.71efg 
(1.2) (1.1) (0.1) (1.65) (21) (1) (22.5) (0.1) (0.19) (0.05) 

1B200 34ijk 32.35hij 4.8b 44.5jklm 1400hijk 29f 1371.5efghijkl 97.95a 2.01cd 1.61efg 
(0.1) (0.55) (1.9) (1.1) (38) (4) (33.5) (0.25) (0.20) (0.05) 
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Table 1. Continued 

 
TRT Fermentation Properties 

Hm 
(mm) 

h 
(mm) 

(Hm-h)/Hm 
(%) 

H’m 
(mm) 

TV 
(mL) 

VL 
(mL) 

VRT 
(mL) 

RC 
(%) 

T1 
(hr) 

T’1 
(hr) 

2B0 43.3bcde 42.75bcde 1.25b 61.15a 1911.5a 567a 1344.5ghijkl 70.55f 3.40ab 1.38g 
(0.5) (0.05) (1.05) (4.15) (113.5) (102) (11.5) (3.55) (0.51) (0.13) 

2BN 0o 0n 0b 5.2n 23l 1f 21n 94.6a 4a 0.11h 
(0) (0) (0) (0) (0) (0) (0) (0) (0) (0) 

2B50 47.1ab 46.85ab 0.5b 51.4defghij 1509efghijk 37f 1472cdefghij 97.55a 3.95a 3.93a 
(1) (0.75) (0.5) (0.7) (27) (5) (32) (0.35) (0.04) (0.02) 

2B100 45.25bc 45bc 0.55b 52.05defgh 1557.5cdefghij 35.5f 1521.5cdefgh 97.7a 3.94a 3.97a 
(0.65) (0.5) (0.35) (0.85) (0.5) (2.5) (2.5) (0.2) (0.03) (0.03) 

2B150 44.3bcd 44.3bcd 0b 50.75defghijkl 1501efghijk 37.5f 1463.5defghijk 97.5a 4a 3.97a 
(0.3) (0.3) (0) (1.95) (62) (3.5) (58.5) (0.1) (0) (0.03) 

2B200 44.2bcd 44.1bcd 0.25b 51.1defghijkl 1514.5efghijk 33.5f 1481cdefghij 97.8a 3.98a 3.97a 
(0.7) (0.8) (0.25) (1) (13.5) (6.5) (7) (0.4) (0.02) (0.03) 

3B0 36.85ghij 36.85fgh 0b 54.2bcdef 1737abcd 462.5b 1275klm 73.4ef 4a 2.09def 
(0.75) (0.75) (0) (1.1) (46) (20.5) (25) (0.5) (0) (1.03) 

3BN 0o 0n 0b 4.9n 14l 2.5f 12n 84b 2.10cd 0.11h 
(0) (0) (0) (0.6) (1) (0.5) (1) (1.2) (1.89) (0) 

3B50 46.85abc 46.6abc 0.5b 59.05abc 1698.5bcde 35.5f 1663.5abc 97.9a 3.95a 3.97a 
(2.35) (2.1) (0.5) (2.85) (114.5) (2.5) (111.5) (0) (0.04) (0.03) 

3B100 42.35cdef 42.1cde 0.55b 55.6abcd 1579.5cdefgh 29f 1550.5bcde 98.15a 3.98a 3.98a 
(2.45) (2.2) (0.55) (0.9) (35.5) (3) (38.5) (0.25) (0.02) (0.02) 

3B150 40.05defg 39.9def 0.4b 53.55cdef 1522efghijk 40f 1482cdefghij 97.35a 3.95a 3.97a 
(1.75) (1.9) (0.4) (2.15) (51) (4) (56) (0.35) (0.04) (0.03) 

3B200 50.8a 50.55a 0.5b 53.15cdefg 1489.5fghijk 33.5f 1455.5defghijk 97.75a 3.96a 4a 
(4.6) (4.65) (0.1) (0.95) (11.5) (3.5) (7.5) (0.25) (0) (0) 
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Table 2. Change (percent) of fermentation properties of six commercial wheat flours treated with ascorbic acid levels. Values with * 
are significantly different (P<0.05) from control samples. Percentage calculated values are from Table 1 and % change = (Sample 
treated with additive - control sample)/control sample * 100. 

TRT                                                 Fermentation properties 
Hm 
(%) 

h 
(%) 

(Hm-h)/Hm 
          (%) 

H’m 
(%) 

TV 
(%) 

VL 
(%) 

VRt 
(%) 

RC 
(%) 

T1 
(%) 

T’1 
(%) 

1A50 -5.6 -4.1 -88.9 9.1 3.2 -6.0* 29.6* 25.6* 1.0 25.6* 
1A100 -13.2 -12.6 -41.7 28.1* 22.6* -5.1* 54.6* 26.0* 0.5 16.5 
1A150 -1.6 -0.4 -69.4 15.8* 8.4 -8.4* 35.7* 25.0* -1.5 23.4* 
1A200 -6.6 -5.9 -47.2 6.2 3.8 -7.6* 30.1* 25.1* 1.0 23.4* 
2A50 -9.8 -9.5 -11.4 -17.3* -19.2* -8.0* 2.5 26.8* 8.2 163.3* 
2A100 -10.0 -8.9 -52.3 -17.3* -19.9* -5.6* 2.2 27.7* 1.1 163.3* 
2A150 -3.1 -1.1 -93.2 -8.7 -9.5 -7.1* 15.4* 27.4* 8.4 166.7* 
2A200 -3.1 0.2 -100.0 -12.7 -15.7* -6.0* 7.7 27.6* 9.0 166.7* 
3A50 -11.7 -11.1 -100.0 -14.6* -13.9* -6.6* 8.1 25.6* 0.5 31.5 
3A100 -19.2* -18.8* -76.9 -18.2* -17.3* -8.8* 3.3 24.8* 0.0 24.2 
3A150 -2.7 -2.0 -100.0 3.0 4.7 -7.4* 31.7* 25.8* 0.5 59.4* 
3A200 -15.6* -15.5* -30.8 -16.3* -15.2* -7.3* 2.4 25.3* -0.3 32.1 
1B50 -3.2 52.1* -84.8* -23.2* 1.2 -11.4* 23.2* 21.7* 20.9 22.1 
1B100 -5.4 47.6* -82.9* -24.4* -0.6 -11.6* 20.7* 21.5* 25.9 17.1 
1B150 -1.5 55.7* -85.9* -28.2* -4.6 -10.8* 16.1 21.6* 61.4* 22.1 
1B200 2.4 63.0* -87.7* -25.3* -0.8 -10.5* 20.8* 21.8* 27.2 15.0 
2B50 8.8 9.6 -60.0 -15.9* -21.1* -6.5* 9.5 38.3* 16.2 184.8* 
2B100 4.5 5.3 -56.0 -14.9* -18.5* -6.3* 13.2 38.5* 15.9 187.7* 
2B150 2.3 3.6 -100.0 -17.0* -21.5* -6.6* 8.9 38.2* 17.6 187.7* 
2B200 2.1 3.2 -80.0 -16.4* -20.8* -5.9* 10.2 38.6* 17.1 187.7* 
3B50 27.1* 26.5* 0.0 8.9 -2.2 -7.7* 30.5 33.4* -1.3 90.0* 
3B100 14.9* 14.2* 0.0 2.6 -9.1 -6.3* 21.6 33.7* -0.5 90.4* 
3B150 8.7 8.3 0.0 -1.2 -12.4* -8.6* 16.2 32.6* -1.3 90.0* 
3B200 37.9* 37.2* 0.0 -1.9 -14.2* -7.2* 14.2 33.2* -1.0 91.4* 
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Table 3. Explained variance (%) in PCA of fermentation variables with negative control in flours 

treated with ascorbic acid. 

Ascorbic acid 
AXES PC1 PC2 1+2 
PC (%) 54.7% 20.8% 75.5% 

     
Fermentation Hm 87   2 89 

 h 87   0 87 
 (Hm-h)/Hm   0 37 37 
 H’m 92   5 97 
 TV 92   4 95 
 VL   3 71 74 
 VRT 95   0 95 
 RC 21 52 73 
 T1   1 25 26 
 T’1 69 14 83 
     

Table 4. Explained variance (%) in PCA of fermentation variables with flour protein in flours 
treated with ascorbic acid. 
 

Ascorbic acid 
AXES PC1 PC2 1+2 
PC (%) 49.7% 18.9% 68.6% 

     
Fermentation Hm 87   2 89 

 h 87   0 87 
 (Hm-h)/Hm   0 37 37 
 H’m 92   5 97 
 TV 92   3 95 
 VL   3 70 74 
 VRT 95   0 95 
 RC 22 51 73 
 T1   1 25 26 
 T’1 69 14 83 

Flour Protein FP   0   0   0 
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Table 5. Explained variance (%) in PCA of fermentation variables without negative control in 

flours treated with ascorbic acid. 

Ascorbic acid 
AXES PC1 PC2 1+2 
PC (%) 32.7% 29% 61.7% 

     
Fermentation Hm   6 23 29 

 h 19 23 41 
 (Hm-h)/Hm 41   1 42 
 H’m   0 68 69 
 TV   2 76 78 
 VL 45 45 89 
 VRT 57   6 63 
 RC 51 39 89. 
 T1 42   8 50 
 T’1 65   0 66 

 

Table 6. Explained variance (%) in PCA of fermentation variables with flour protein and without 

negative control in flours treated with ascorbic acid. 

Ascorbic acid 
AXES PC1 PC2 1+2 
PC (%) 29.8% 26.5% 56.3% 

     
Fermentation Hm   7 28 35 

 h 20 28 48 
 (Hm-h)/Hm 41   1 43 
 H’m   0 63 63 
 TV   2 70 72 
 VL 44 46 89 
 VRT 56   4 61 
 RC 49 40 89 
 T1 43   8 51 
 T’1 65   1 65 

Flour Protein  FP   0   3   3 
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Table 7.  Explained variance (%) in PCA of fermentation variables when compared with visco-
elastic, mixing and baking variables in flours treated with ascorbic acid. Definitions of 
fermentation, visco-elastic, mixing and baking variables explained in Table 2 (Chapter III). 

Ascorbic Acid 
AXES PC1 PC2 1+2 
PC (%) 27.2% 24.3% 51.5% 

     
Fermentation Hm 44 0 45 

 H 46 6 51 
 (Hm-h)/Hm 3 47 50 
 H’m 0 0 1 
 TV 0 2 2 
 VL 0 29 29 
 VRT 1 40 41 
 RC 0 34 34 
 T1 2 58 60 
 T’1 4 52 56 

Visco-elastic SeP 0 80 80 
 J-Jr 0 58 58 
 RCY 1 61 62 
 TCR 2 31 33 
 TCC 0 25 25 

Mixing WA 65 0 65 
 DT 76 4 80 
 ST 66 3 68 
 BT 85 2 87 

Baking PH 58 19 77 
 LH 73 2 74 
 SV 4 1 4 
 OSP 3 51 54 
 LV 64 7 71 

Flour Protein  FP 83 0 83 
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Table 8. Explained variance (%) in PCA of fermentation variables when compared with baking 

variables in flours treated with ascorbic acid. 

Ascorbic Acid 
Axes PC1 PC2 1+2 
PC (%) 27.13 24.97 52.1 

     
     
Fermentation Hm 52 6 58 

 
h 66 3 67 

 
(Hm-h)/Hm 23 1 43 

 
H’m 3 19 7 

 
TV 6 10 8 

 
VL 0 46 67 

 
VRT 9 60 47 

 
RC 1 49 71 

 
T1 29 17 45 

 
T’1 5 50 63 

  
Baking PH 27 54 82 

 
LH 71 5 76 

 
SV 3 8 11 

 
OSP 21 40 61 

 
LV 72 0 72 

  
Flour Protein FP 46 11 57 
 

 

 

 

 

 

 



 

79 
 

  

Figure 1. A graphical representation of gaseous curve of a) control sample from flour 3B and b) 

sample containing 200 ppm of ascorbic acid (3B200). Blue tracings are the total volume and the 

red is the volume retained. 

 

  

Figure 2. A graphical representation of dough development of a) control sample from flour 3B 

and b) sample containing 200 ppm of ascorbic acid (3B200).  
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Figure 3. Loading plot of first two principal components based on fermentation properties with 
negative control of six commercial wheat flours, added with five levels of ascorbic acid. 
Definitions of fermentation, visco-elastic, mixing and baking variables explained in Table 2 and 
3. Flour protein content (%), 1A = 7.95, 2A = 11.19, 3A = 13.68, 1B = 10.4, 2B = 10.59 and 3B 
= 11.38, respectively. Symbols and definitions:     -Control samples,   - Negative controls.   – 
Low protein A flours,     -Medium protein A flours,     - High protein A flours.    – Low protein B 
flours,    - Medium protein B flours,    - High protein B flours.   
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Figure 4. Loading plot of first two principal components based on fermentation properties with 
flour protein of six commercial wheat flours added with five levels of ascorbic acid. Symbols 
and definitions:   -Control samples,   - Negative controls.   – Low protein A flours,     -Medium 
protein A flours,     - High protein A flours.    – Low protein B flours,    - Medium protein B 
flours,    - High protein B flours.   
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Figure 5. Loading plot of first two principal components based on fermentation properties 
without negative control of six commercial wheat flours added with five levels of ascorbic acid. 
Symbols and definitions:     -Control samples,    – Low protein A flours,     -Medium protein A 
flours,     - High protein A flours.    – Low protein B flours,    - Medium protein B flours,    - 
High protein B flours.   
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Figure 6. Loading plot of first two principal components based on fermentation properties with 
flour protein of six commercial wheat flours containing five levels of ascorbic acid. Negative 
control samples were removed. Symbols and definitions:    -Control samples,    – Low protein A 
flours,     -Medium protein A flours,     - High protein A flours.    – Low protein B flours,    - 
Medium protein B flours,    - High protein B flours.   
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Figure 7. Loading plot of first two principal components based on fermentation, baking, visco-
elastic and dough properties of six commercial wheat flours added with five levels of ascorbic 
acid. Symbols and definitions:   -Control samples,    – Low protein A flours,     -Medium protein 
A flours,     - High protein A flours.    – Low protein B flours,    - Medium protein B flours,    - 
High protein B flours.   
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Figure 8. Loading plot of first two principal components based on fermentation and baking 
properties of six commercial wheat flours added with five levels of ascorbic acid. Symbols and 
definitions:    -Control samples,   – Low protein A flours,     -Medium protein A flours,     - High 
protein A flours.    – Low protein B flours,    - Medium protein B flours,    - High protein B 
flours.   
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CHAPTER V 

EFFECT OF DISRUPTION OF HYDROGEN AND HYDROPHOBIC BONDS ON 

FERMENTATION PROPERTIES OF DOUGH 

             

ABSTRACT 

                  The objective of the study is to investigate the effect of the disruption of hydrogen 

and hydrophobic bonds on fermentation properties of dough and to analyze possible correlation 

of fermentation and visco-elastic, mixing and baking properties of dough. Disruption of 

hydrogen and hydrophobic bonds were produced by the addition of four levels of urea (0, 0.5, 1 

and 1.5 M). Six commercial hard red winter wheat flours with different protein quantity and 

quality were used. Flours with no treatment were used as controls and flours with no yeast and 

no treatment were used as negative controls. Disruption of hydrogen and hydrophobic bonds 

decreases the height of dough development, maximum height of gaseous release and total 

volume of gas. Fermentation variables explained more variance (67.7%) than fermentation 

variables with visco-elastic, mixing and baking variables (53.1%). The ratio of dough heights 

[(Hm-h)/Hm] is closely related to gluten elastic properties (Sep and RCY). The time taken to 

reach maximum height of dough development (T1) and time taken to reach maximum height of 

gaseous release (T’1) are closely related to gluten viscous (TCC and TCR). Total volume (TV) 

and maximum height of gaseous release (H’m) are closely related to flour protein. Retention 

coefficient (RC) is negatively related to baking and mixing properties.   
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1. INTRODUCTION 

                        Gluten plays a key role in determining the baking quality of wheat. The function 

of gluten depends on the molecular weight of gluten, formation of covalent and non-covalent 

bonds between glutenin molecules and interactions between glutenin and other flour constituents 

(Goesacrt et al., 2005). The extractability of gluten proteins decreases  during dough 

fermentation (Graveland et al., 1980; Veraverbeke et al., 1999). Retention of CO2 and ethanol 

during fermentation mainly depends on gluten proteins. Loaf volume and crumb structure of 

bread depends on the amount of gas retained in the dough. Gliadin/glutenin ratio and quality of 

glutenin fraction are the two main factors that determine gluten protein quality (Goesacrt et al., 

2005). Glutenins provides strength and elasticity to the dough due to their large size and 

monomeric gliadins act as plasticizers. Gluten proteins provide elasticity and plasticity to dough 

due to the presence of gliadins and glutenins (Goesacrt et al., 2005). The structure of gluten 

network depends on non-covalent (hydrogen and hydrophobic) bonds as well as disulfide bonds. 

Hydrogen bonding with water increases by hydration of gluten. When these bonds are disrupted 

it will affect the fermentation properties of dough. Only few studies investigated the effect of 

disruption of hydrogen bonds on the fermentation properties of dough. Urea breaks hydrogen 

bonds and makes dough less stable. 

The objectives of the study were: 

1)   To study the effect of disruption of hydrogen and hydrophobic bonds on the 

fermentation properties of dough using urea. 

2) To analyze possible correlation of fermentation and flour protein, visco-elastic, baking 

and mixing properties of dough. 
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2. Materials and Methods 

a. Materials and Labeling 

              The procurement of wheat flour samples were explained in the Materials and Methods 

section of Chapter III. Four levels (0, 0.5, 1 and 1.5 M) of urea (VWR International Inc., West 

Chester, PA) were used. Flours with no urea were used as control (0) and flours with no urea and 

no yeast were used as negative control (N). Thus site A flours were labeled as 1A0 (positive 

control), 1AN (negative control), 1A0.5, 1A1, 1A1.5; 2A0, 2A0.5, 2A1, 2A1.5; 3A0, 3A0.5, 

3A1 and 3A1.5. Similarly site B flours were labeled as 1B0, 1BN, 1B0.5, 1B16, 1B1.5; 2B0, 

2B0.5, 2B1, 2B1.5; 3B0, 3B0.5, 3B1and 3B1.5.  

b.  Methods 

Dough Preparation 

               Dough was prepared as described in the Chopin protocol using Chopin 

AlveoConsistograph. The ingredients consisted of 250 g of flour, 3 g of dry yeast and 5 g of 

sodium chloride. Urea was added to the flours at 0, 0.5, 1 and 1.5 M concentrations. For 0.5 M 

urea, a stock solution of 100 ml was prepared containing 3 g of urea. Then 25 ml of stock 

solution was added to 250 g of flour. In the same way, stock solutions were prepared for 1 M 

containing 6 g of urea, 9 g of urea for 1.5 M.  From the described stock solution, 25 ml was 

mixed with water added to the flour to obtain each urea addition. The quantity of deionized water 

added depended on the moisture content of the flour and it was given by the reference table 

published by the International Association for Cereal Science and Technology (ICC) as 

described in the Chopin Protocol. The sodium chloride was dissolved in water prior to the 

addition to dough. Instant dry yeast and urea were blended with 250 g of flour in the kneader 

bowl. Salt water was progressively added to the flour at the beginning of the first minute of the 
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mixing period. After one minute, the mixing was stopped to remove the flour sticking to the 

walls and ensure a homogeneous hydration. The mixing process was continued for 6 minutes. A 

sample size of 315 g of dough was used for each treatment. 

Fermentation Test 

                Rheofermentometer was used to study the fermentation properties of dough. The 

dough (315 g) obtained from AlveoConsistograph was placed in the bottom of the aluminum 

basket and packed it down with hands. The height of the dough in the basket must be leveled out 

just below the lowest holes. The piston with a 2000 g weight was placed on top of the dough. 

The basket placed in the F3 Rheofermentometer bowl. Displacement sensor was placed and the 

whole system was tightly closed and the test was run for a total of 4 h. This time represents 1 h 

longer than the Chopin Protocol as it was determined experimentally with the samples and 

treatments in this study.              

            The F3 Rheofermentometer analyzes the development of a dough sample placed in the 

bowl. The piston placed on the dough rises. The piston is directly linked to a displacement sensor 

which will calculate the dough rising. Rheofermentometer is also linked to a pressure sensor 

through a pneumatic circuit that measures the pressure increase in the fermenting dough. The 

three curves are dough development, speed of C02 release and quantity produced and volume of 

CO2 retained in dough. Fermentation variables are defined in Table 1 and visco-elastic, mixing 

and baking terms are defined in Table 2 (Chapter III). 
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3. STATISTICAL ANALYSIS 

                 A factorial design within a randomized block design was implemented. Five levels of 

urea and 3 levels of flour protein were compared in a 5 X 3 factorial. The significant differences 

in means were compared using Analysis of Variance (ANOVA) with Tukey’s comparisons 

(α=0.05) using SAS (Version 9.1 SAS Institute Inc., Cary, NC). Principal Component Analysis 

(PCA) is a mathematical algorithm that reduces the dimensionality of the data (Ringer, 2008). 

PCA is performed using Canoco for windows 4.5 (Biometris, Plant Research International, 

Wageningen, the Netherlands).  

4. Results and Discussion 

             Protein, moisture and ash content of the flour samples and water added are reported in 

Table 3 (Chapter III). Typical dough fermentation property curves obtained are illustrated in 

Figures 1 and 2 showing results for sample 3B control (a) and 3B with containing 1 M urea (b). 

The volume of CO2 lost (VL) is decreased in sample in which the hydrogen and hydrophobic 

bonds are disrupted (Fig. 1b). The volume of retention of gas was improved for sample in which 

hydrogen and hydrophobic bonds are disrupted when compared with control sample. From the 

dough development curves we can observe that height of dough is improved when the hydrogen 

and hydrophobic bonds are disrupted (Fig. 2). A summary of the fermentation properties of all 

samples is found in Table 1 (Chapter III). 

Maximum height of the dough (Hm) 

                 Hm is the maximum height of the dough development. As expected control sample 

without yeast shows no development (Table 1). The overall trend of disrupting hydrogen and 

hydrophobic bonds is a decrease on Hm. Within each specific flour group and levels of urea, 
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3A0 and 3A0.5 are the only two comparisons that were statistically different (Table 1). Flour 3A 

with higher protein (13.7%) shows 14.7% decrease of Hm with 0.5 M urea treatment (Table 2). 

Overall highlights are: high value of Hm was shown by 2B0 (43.3 mm) and lowest by 1A1 (24.5 

mm) (Table 1). The change of the fermentation properties (%) is reported in Table 2. High 

percentage (5.2%) increment in maximum height was observed in the highest protein sample 

with 1.5 M urea (3B1.5). A 14.7% decrease in maximum height was observed in the sample 3A 

with 0.5 M of urea (3A0.5) (Table 2). This suggests that the effect of disruption of hydrogen and 

hydrophobic bonds on maximum height of dough development is to decrease it by making the 

dough more viscous. Although 1A1.5 and 3B1.5 show a modest increase in Hm, these are not 

significantly different. 

 Height of the dough development (h) 

           The height of the dough development (mm) at the end of the test was denoted by h. As 

expected, negative controls showed no development. Comparing the effect of decreasing 

hydrogen and hydrophobic bonds within sample reveals only two significantly different 

observations: 3A0 vs. 3A0.5 (39.2 vs. 33.1 mm) and 2B0 vs. 2B1 (47.8 vs. 36.5 mm) (Table 1). 

The overall trend of the decrease of hydrogen bonds is to decrease h, which is a similar 

observation as with Hm (Table 1 and 2). Overall highlights are: lowest value of height was 

observed in 1B0 (19.85 mm) and highest value was observed in 2B0 (42.75 mm) (Table 1). An 

apparent increase (12.3%) of h but not significant was observed in 1B0.5 and highest (18.2%) 

decreased (significant) in 2B1.5 (Table 2). This suggests that the effect of disruption hydrogen 

and hydrophobic bonds on h is not significant in most samples. 
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Lowering of development percentage [(Hm-h)/Hm] 

            (Hm-h)/Hm is the ratio of dough height at the end of the fermentation test in percentage. 

A large percent means the dough has maintained its height during fermentation. Comparing the 

ratio of dough height within samples, only in two samples 1B and 2B significant changes in ratio 

of dough were observed as the hydrogen and hydrophobic bonds are disrupted (Table 1). In 

sample 1B, all the urea levels lowered significantly the ratio of dough height compared to the 

control. While in sample 2B, 1.5 M urea increased the ratio of dough height compared to control. 

This apparently contradicted effect could be explained in part by different hydrophobic domains 

of the gluten proteins of these samples. In sample 2B, a trend is observed to an increase in ratio 

of dough height with lower urea levels. This suggests that the nature of the flour is more 

hydrophobic than 1B in which urea causes a decrease of this ratio. Overall highlights are: high 

value was observed in 1B0 (39.1%) and lowest value in 1A0.5 (0.4%) (Table 1). Highest 

percentage increase was observed in 2B1.5 (1044%) and lowest percentage decrease was 

observed in 3A1 (100%) (Table 2). High protein B flours show no change. Medium protein A 

and B flours show greater increment whereas others decreased. 

Maximum height of the gaseous curve (H’m) 

        H’m is the maximum height of the gaseous release curve. The effect of decreasing hydrogen 

and hydrophobic bonds caused significant decrease of H’m (Table1 and 2). Overall highlights 

are: high value of H’m was shown by 2B0 (61.2 mm) and lowest value was shown by 1B1.5 

(37.15mm) (Table 1). Highest percentage (37.6%) decrease in maximum height was observed in 

1B1.5 and 2 % decrease in 1A0.5 (Table 2). Maximum height of gaseous release is decreased for 

all samples by treating with urea (Table 1 and 2).  
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Total Volume (TV) 

           TV is the total volume under the gaseous curve. The effect of decreasing hydrogen and 

hydrophobic bonds causes a decrease in total volume in all samples (P<0.05) (Table 1 and 2). 

This has similar effect as the observed on Hm. This suggests that hydrogen and hydrophobic 

bonds are important in forming the fermented dough structure impermeable to gas loss. Overall 

highlights are: high value of total volume was observed in 2B0 (1911 mL) and lowest in 1B1.5 

(1084.5 mL) (Table 1). Highest decrease in total volume (30.8%) was observed in 2B1 and 

lowest decrease (3.1%) of total volume in 1A0.5 (Table 2).  

Volume lost (VL) 

                 VL is the carbon dioxide volume released by the dough during the fermentation test. 

The effect of decreasing hydrogen and hydrophobic bonds is to decrease the volume lost (Table 

1 and 2). Volume lost has to be related to the total volume produced which was lowered by 11.7 

to 32.6%. From this lowered volume produced, decreasing hydrogen and hydrophobic bonds 

lowered the volume lost significantly from 5 to 10%. Overall highlights are: high value was 

observed in 2B0 (567 mL) and lowest in 1A1.5 (22 mL) (Table 1). Highest percentage (10.5%) 

of volume lost (less desirable) was observed in 1B0.5 and lowest percentage (5.2) in 3B1 (Table 

2).  

Volume retained (VRt) 

          VRt is the carbon dioxide remaining in the dough at the end of the test. Only two samples 

showed significant differences on volume retention compared to the control. Flour 1A with 0.5 

and 1.0 M urea increase volume retention significantly compared to control. Flour 2A with 1.5 M 

urea decreases volume retention significantly compared to the control (Table 1 and 2). Overall 

highlights are: high value was observed in 1A0.5 (1437 mL) and lowest in 1B1.5 (1058 mL) 
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(Table 1). Highest percentage (21.3%) of volume retained was observed in 1A0.5 and VRt is 

decreased to 12.9% in 2A1.5 (Table 2). Half of the samples decreased the retention of volume 

gas by disruption of hydrogen and hydrophobic bonds whereas the other half increased the 

retention volume of gas.  This suggests that the samples and treatments have produced matrices 

with different retention volume gas characteristics.   

Retention Coefficient (RC) 

            Retention coefficient (RC) is the retention volume divided by the total gaseous release. 

Retention coefficient of all samples and treatments were significantly increased by the decrease 

in hydrogen and hydrophobic bonds. This suggests that the disruption of these bonds positively 

contribute to the retention coefficient. One has to be careful interpreting these results without 

cross referencing the effect on total volume. Total volume decreased significantly all samples 

and levels of urea. Overall highlights are: high value was observed in 1A0.5, 1A1, 1A1.5, 2A0.5, 

2A1, 3A0.5, 3A1 and 3B1 (98%) and lowest value in 2B0 (70%) (Table 1). Highest percentage 

(38%) of retention coefficient was observed in medium protein B flours (2B0.5, 2B1 and 2B1.5) 

and lowest percentage (21%) in low protein B flours (1B0.5, 1B1 and 1B1.5) (Table 2). In 

summary, the effect of disruption of hydrogen and hydrophobic bonds on retention coefficient is 

to increase. 

Time of maximum rise (T1) 

           T1 is the time taken by the dough to reach maximum height during dough development. 

Even though the effect of disruption of hydrogen and hydrophobic bonds on T1 appears to be 

flour specific, they were not significantly different (Table 1 and 2). Overall highlights are: high 

value was observed in 3A1, 1B1, 3B0 and 3B1 (4 h) and lowest in 1B0 (1.6 h) (Table 1). Highest 

percentage (16.5%) of time taken to reach maximum height of dough development was observed 
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in 1B1.5 and time decreased 27.1% in 2B1.5 (Table 2). Time of maximum rise is increased only 

with low protein A and B flours whereas it decreased with other flours. 

Time of maximum rise (T’1)  

       T’1 is the time spent to reach maximum rise during gaseous release. Observations that 

significantly increased T’1 were 2B with all levels of urea and 3B with 0.5 M of urea. Only one 

observation showed significantly decrease on T’1 is 1A with 1.5 M of urea. Overall highlights 

are: high value was observed in 1A0.5, 2B0.5, 2B1 and 3B0.5 (3.9) and lowest (1.3) in 2A0.5, 

1B1 and 2B0 (Table 1). Highest increase (200%) of time taken to reach maximum height of 

gaseous curve was observed in 2B0.5 and 2B1 and time decreased to 51.6% in 1A1.5 (Table 2). 

Overall, the effect of disruption of hydrogen and hydrophobic bonds on time of maximum rise 

shows mostly an increase. 

           Inda et al., (1991) reported that elasticity of dough decreased when it is treated with 0 to 3 

M concentration of urea. McGrane et al., (2004) reported that urea reduces the gel strength by 

decreasing the intermolecular network formation between water and amylase. Our study shows 

that dough treated with 0 to 1.5 M of urea reduces the fermentation properties of dough and 

confirms the important contribution of hydrogen and hydrophobic bonds in the structure that 

retains the gas produced during fermentation. 

PCA results 

            Principal component analyses were performed on the data sets obtained from 

fermentation parameters. 

Fermentation variables with and without flour protein 

           PCA were performed on the data sets to assess the relationship of flour protein and 

fermentation properties (Fig. 3 and 4). Figure 3 represents the fermentation properties alone and 
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all the samples and urea treatments. Principal component axis 1 (PC1) explained 55.2% variance 

and principal component axis 2 (PC2) explained 19.8% variance. Total explained variance is 

77% (Table 3). Among fermentation properties, the highest contribution of variance was total 

volume (TV) (95.8%) and volume of retention (VRt) (95%) in PC1 whereas in PC2 highest 

contribution of variance (64.6%) was retention coefficient (RC) (Table 3). Figure 4 displays the 

fermentation properties plus flour protein. Principal component axis 1 (PC1) explained 50.2% 

variance and principal component axis 2 (PC2) explained 18.1% variance. Total explained 

variance is 68.3% (Table 4). Among fermentation properties with flour protein, the highest 

contribution of variance (95.7%) was total volume (TV) on PC1 whereas on PC2 the highest 

contribution of variance (61.5%) was retention coefficient (RC) (Table 4). Only 0.3% of 

explained variance was contributed by flour protein on PC1 and 3.7% on PC2 (Table 4). In both 

graphs (Fig. 3 and 4), most of the fermentation variables are on PC1. Flours treated with urea are 

very close to PC1 when compared with control and negative samples. All control samples are 

closely related among themselves and to volume lost. They are well separated from the treated 

flours. Negative controls are also closely related among themselves and well separated from the 

samples with changes due to urea. So negative controls are removed from the data sets and PCA 

was compared. The results suggest that the urea samples are closely related to volume of the gas 

retained by the dough during fermentation in the first component. These samples are negatively 

related to volume lost.  

Fermentation variables without negative control Vs fermentation variables with flour 

protein and without negative control 

           PCA were performed to assess the relationship of fermentation variables and protein 

without the negative controls (Fig. 5 and 6). From the fermentation properties on Figure 5, 
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principal component axis 1 (PC1) explained 43.3% variance and principal component axis 2 

(PC2) explained 24.4% variance (Fig. 5). Total explained variance is 67.7% (Table 5). Among 

fermentation properties, the highest contribution of variance (73.8%) was volume lost (VL) on 

PC1 whereas on PC2 the highest contribution of variance (58.3%) was lowering development 

percentage ([Hm-h]/Hm) (Table 5). In comparison, when flour protein was included (Figure 6), 

principal component axis 1(PC1) explained 39.8% variance and principal component axis 2 

(PC2) explained 22.5% variance. Total explained variance is 62.3% (Table 6). Among 

fermentation properties with flour protein, the highest contribution of variance (89.9%) was total 

volume (TV) on PC1 whereas on PC2 the highest contribution of variance (52.5%) was lowering 

development percentage ([Hm-h]/Hm) (Table 6). Only 6.8% of explained variance was 

contributed by flour protein on PC1 and 8.6% on PC2 (Table 6). As the total explained variance 

of fermentation variables (67.7%) is 5.4 units of percentage higher than fermentation variables 

with flour protein (62.3%), we can say that compared to changes in hydrogen and hydrophobic 

bonds in this set, flour protein appears to have a small effect and is marginally correlated to other 

fermentation variables. Controls are closely related to volume lost (VL) and are separated from 

the flours. Low protein B flours which are treated with urea are separated and closely related to 

lowering development percentage ([Hm-h]/Hm). They are negatively correlated to flour protein 

(FP) and volume of gas retained (VRt). By disruption of hydrogen bonds, this group of samples 

have high values of ([Hm-h]/Hm) but they have lower volume retained to begin with.   

Fermentation properties Vs Fermentation properties with visco-elastic, mixing, baking 

properties 

            The relationship of fermentation variables with visco-elastic, mixing and baking 

properties was investigated (Fig. 7). From Figure 6, principal component axis 1 (PC1) explained 
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39.8% variance and principal component axis 2 (PC2) explained 22.5% variance. Total 

explained variance is 62.3% (Table 6). From Figure 7, principal component axis 1(PC1) 

explained 30.5% variance and principal component axis 2 (PC2) explained 22.6% variance. 

Total explained variance is 53.1% (Table 7). Among all properties, the highest contribution of 

variance (81.5%) was flour protein (FP) and second major component that contributes high 

variance (78.3%) is specific volume (SV) on PC1 whereas on PC2 the highest contribution of 

variance (82.9%) was separation time (SeP) (Table 7). As the total explained variance of 

fermentation variables (62.3%) is higher than fermentation variables with visco-elastic, mixing 

and baking variables (53.1%), we can say that there are more differences in fermentation 

variables compared to the combination of all the variables. In other words, fermentation 

properties separated the properties of these samples and treatment more efficiently. In Fig 7, all 

variables are closely associated. Low protein B flours are separated from other flours. The ratio 

of dough heights [(Hm-h)/Hm] is closely related to elastic properties (Sep and RCY). Time taken 

to reach maximum height of dough development (T1) and time taken to reach maximum height 

of gaseous release (T’1) are closely related to gluten viscous (TCC and TCR). Total volume 

(TV) and maximum height of gaseous release (H’m) are closely related to flour protein. 

Retention coefficient (RC) is negatively related to baking and mixing properties. All control 

samples are well separated and are negatively correlated to lowering development percentage 

([Hm-h]/Hm). PCA analysis is performed on flour protein, fermentation properties and baking 

properties. 

Relationship of flour protein, fermentation and baking properties 

             PCA were performed on the data sets of flour protein, fermentation variables and baking 

properties (Fig. 8). PCA analyses of fermentation properties with flour protein were already 
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performed (Fig. 6 and Table 6). From Figure 6, principal component axis 1 (PC1) explained 

39.8% variance and principal component axis 2 (PC2) explained 22.5% variance. Total 

explained variance is 62.3% (Table 6). From Figure 8, principal component axis 1 (PC1) 

explained 40.8% variance and principal component axis 2 (PC2) explained 15.4% variance. 

Total explained variance is 56.3% (Table 8). The highest contribution of explained variance 

(81.5%) was loaf volume (LV) and second highest variance (81%) was explained by specific 

volume (SV) on PC1 whereas on PC2 the highest contribution of variance (60.4%) was lowering 

development percentage ([Hm-h]/Hm) (Table 8). Flour protein explained 18.2% variance on PC1 

and 3% on PC2 (Table 8). As the total explained variance of fermentation variables (62.3%) is 

higher than fermentation variables with baking variables (56.3%), we can say fermentation 

properties explain more variance than baking properties. All control samples were negatively 

associated with retention coefficient (RC) and positively related with volume lost (VL) and loaf 

volume (LH). Low protein flours are separated from the rest of the flours.  

5. Conclusions 

              Null Hypothesis is rejected as there is significant effect of disruption of hydrogen and 

hydrophobic bonds (addition of urea) on fermentation properties when compared to the control 

samples. The effect of disruption of hydrogen and hydrophobic bonds decreased maximum 

height of gaseous release, total volume of gas and volume lost.  

            Fermentation variables explained more variance (67.7%) than fermentation variables with 

visco-elastic, mixing and baking variables (53.1%). The ratio of dough heights [(Hm-h)/Hm] is 

closely related to gluten elastic properties (Sep and RCY). Time taken to reach maximum height 

of dough development (T1) and time taken to reach maximum height of gaseous release (T’1) 

are closely related to viscous properties (TCC and TCR). Total volume (TV) and maximum 
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height of gaseous release (H’m) are closely related to flour protein. Retention coefficient (RC) is 

negatively related to baking and mixing properties.  
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Table 1. Fermentation properties in six commercial wheat flours treated with urea levels. Means (n=2) with same superscripts in a 
column are not significantly different (P > 0.05). The standard deviations of means are shown in parentheses.     

 

TRT Fermentation Properties 
Hm 
(mm) 

h 
(mm) 

(Hm-h) /Hm 
(%) 

H’m 
(mm) 

TV 
(mL) 

VL 
(mL) 

VRt 
(mL) 

RC 
(%) 

T1 
(h) 

T’1 
(h) 

1A0 25klm 24.55klmno 1.8ghi 47.5defghi 1507.5defgh 323de 1184.5hijk 78.65cdef 3.93a 3.1abcd 
(1.3) (1.35) (0.3) (2.5) (76.5) (37) (39.5) (1.35) (0.0) (0.2) 

1AN 0n 0p 0i 5q 12.5r 2g 11l 83.25bcd 4a 0.1j 
(0) (0) (0) (0.1) (0.5) (0) (0) (2.05) (0.0) (0.0) 

1A0.5 24.9lm 24.8klmno 0.4i 46.55defghij 1461.5efghij 25.5fg 1437a 98.3a 3.97a 3.9a 
(0.2) (0.1) (0.4) (0.05) (1.5) (0.5) (1) (0) (0.0) (0.0) 

1A1 24.5m 24.2klmno 1.25ghi 43.7ijklmn 1382.5ghijklm 23fg 1360abcde 98.35a 3.96a 2.8bcdef 
(1.1) (1.2) (0.45) (1.5) (58.5) (7) (52) (0.45) (0.0) (1.2) 

1A1.5 25.8jklm 25.2jklmn 2.35ghi 40.9mnop 1274.5lmnop 22fg 1252efghij 98.3a 3.95a 1.5i 
(0.2) (0.6) (1.55) (1) (22.5) (5) (17) (0.4) (0.0) (0.1) 

2A0 32.15efghi 31.45fghi 2.2ghi 53.1c 1695.5c 389.5c 1306abcdefgh 77.05ef 3.67abc 1.5i 
(0.55) (1.15) (1.9) (1) (27.5) (11.5) (16) (0.35) (0.3) (0.2) 

2AN 0n 0p 0i 4.9q 12r 3.5g 9l 70.2g 4a 0.1j 
(0) (0) (0) (1.3) (3) (0.5) (3) (6) (0.0) (0.0) 

2A0.5 30.35fghij 28.95hijk 4.5fghi 46.25efghijk 1449.5efghij 29fg 1421abc 98a 2.88abcdef 1.3i 
(0.75) (0.65) (4.5) (0.15) (28.5) (5) (23) (0.3) (1.1) (0.1) 

2A1 30.4fghij 29.25ghijk 3.7ghi 43.95hijklmn 1322.5jklmno 23.5fg 1299bcdefgh 98.25a 2.98abcde 1.5i 
(1) (0.35) (2) (0.05) (3.5) (4.5) (1) (0.35) (0.5) (0.0) 

2A1.5 29.75ghijkl 27.55ijk 7.4efghi 38.7op 1162pq 24fg 1138ijk 97.95a 2.69bcdefg 1.5i 
(0.25) (0.25) (1.6) (2.1) (60) (3) (57) (0.15) (0.0) (0.1) 

3A0 39.4abcd 39.15abcd 0.65i 54.3bc 1669c 362.5cd 1307abcdefgh 78.3def 3.98a 1.6hi 
(2.2) (2.45) (0.65) (0.1) (13) (13.5) (0) (0.6) (0.0) (0.0) 

3AN 0n 0p 0i 4.35q 17.5r 2.5g 15.5l 85.5b 4a 0.1j 
(0) (0) (0) (0.75) (3.5) (0.5) (4.5) (6.5) (0.0) (0.0) 

3A0.5 33.6efgh 33.1efgh 1.45ghi 44.25fghijklmn 1361.5ijklmn 24.5fg 1336.5abcdefg 98.2a 3.83ab 1.6ghi 
(1.3) (1.3) (0.05) (1.25) (43.5) (5.5) (37.5) (0.4) (0.1) (0.1) 

3A1 35.75cde 35.75bcdef 0i 44.3fghijklmn 1327.5jklmno 24fg 1303.5bcdefgh 98.15a 4a 1.7ghi 
(0.65) (0.65) (0) (0) (9.5) (3) (6.5) (0.25) (0.0) (0.1) 

3A1.5 37.1bcde 36.7bcde 1.1hi 41.15lmnop 1237nop 26.5fg 1210.5ghij 97.85a 3.56abc 1.8fghi 
(3) (3) (0.1) (0.45) (4) (0.5) (4.5) (0.05) (0.4) (0.0) 
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Table 1. Continued 

TRT Fermentation Properties 
Hm 
(mm) 

h 
(mm) 

(Hm-h)/ Hm 
(%) 

H’m 
(mm) 

TV 
(mL) 

VL 
(mL) 

VRt 
(mL) 

RC 
(%) 

T1 
(h) 

T’1 
(h) 

           
1B0 33.2efghi 19.85o 39.1a 59.55a 1412fghijkl 277e 1135jk 80.4bcde 1.58g 1.4i 

(2.3) (3.75) (15.5) (1.75) (32) (15) (17) (0.6) (0.2) (0.0) 
1BN 0n 0p 0i 5.5q 18.5r 3g 15.5l 83.35bcd 4a 0.1j 

(0) (0) (0) (1.8) (6.5) (2) (4.5) (4.65) (0.0) (0.0) 
1B0.5 28.35ijklm 22.3lmno 21.15bc 42.2jklmno 1247.5mnop 29.5fg 1217.5fghij 97.65a 1.72fg 1.4i 

(1.35) (0.2) (3.05) (1.2) (29.5) (8.5) (20.5) (0.65) (0.1) (0.0) 
1B1 30fghijk 21.85mno 27.2b 39.8nop 1163pq 27fg 1136jk 97.65a 1.82efg 1.3i 

(0) (0.45) (1.5) (0.1) (2) (5) (7) (0.45) (0.0) (0.0) 
1B1.5 28.55hijklm 20.25no 29.05b 37.15p 1084.5q 26.5fg 1058k 97.55a 1.84efg 1.5i 

(0.35) (0.15) (1.35) (0.55) (13.5) (0.5) (14) (0.05) (0.0) (0.0) 
2B0 43.3a 42.75a 1.25ghi 61.15a 1911.5a 567a 1344.5abcdef 70.55g 3.40abc 1.3i 

(0.5) (0.05) (1.05) (4.15) (113.5) (102) (11.5) (3.55) (0.5) (0.1) 
2BN 0n 0p 0i 5.2q 23r 1g 21l 94.6a 4a 0.1j 

(0) (0) (0) (0) (0) (0) (0) (0) (0.0) (0.0) 
2B0.5 39.6abcd 37.9abcde 4.25fghi 42.7jklmno 1345.5ijklmno 35.5fg 1309.5abcdefgh 97.35a 2.50cdefg 3.9a 

(0.9) (0.4) (1.15) (0.2) (4.5) (4.5) (0.5) (0.35) (0.2) (0.1) 
2B1 40.85abc 36.55bcde 10.55defg 41.75klmno 1323.5jklmno 34fg 1289cdefgh 97.4a 2.69bcdefg 3.9a 

(0.55) (0.75) (0.65) (0.35) (21.5) (2) (20) (0.1) (0.0) (0.0) 
2B1.5 40.8abc 34.95cdef 14.3cde 40.9mnop 1288klmnop 32.5fg 1255.5efghij 97.5a 2.48cdefg 2.7cdefg 

(2) (1.15) (1.4) (1.3) (40) (6.5) (33.5) (0.4) (0.0) (1.3) 
3B0 36.85bcde 36.85bcde 0i 54.2bc 1737bc 462.5b 1275defgh 73.4fg 4a 2.0efghi 

(0.75) (0.75) (0) (1.1) (46) (20.5) (25) (0.5) (0.0) (1.0) 
3BN 0n 0p 0i 4.9q 14r 2.5g 12l 84bc 2.10defg 0.1j 

(0) (0) (0) (0.6) (1) (0.5) (1) (1.2) (1.9) (0.0) 
3B0.5 36.2cde 34.7cdef 3.8ghi 44.05ghijklmn 1367hijklmn 32fg 1335abcdefg 97.7a 3.11abcd 3.9a 

(3.9)_ (2.7) (2.9) (1.95) (50) (9) (41) (0.6) (0.7) (0.0) 
3B1 34.9def 34.1defg 2.35ghi 41mnop 1280lmnop 24fg 1255.5efghij 98.1a 3.88ab 2.6defgh 

(2.3) (2.6) (1.05) (0.5) (4) (4) (0.5) (0.3) (0.1) (1.3) 
3B1.5 38.75abcd 38.1abcde 1.65ghi 38.75op 1209.5opq 24.5fg 1185hijk 97.95a 3.22abcd 1.4i 

(0.25) (0) (0.65) (1.95) (47.5) (2.5) (50) (1) (0.0) (0.1) 
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Table 2. Change (percent) of fermentation properties of six commercial wheat flours treated with 
urea levels. Values with * are significantly different (P<0.05) when compared to control samples. 

 
Percentage calculated from values in Table 1 and % change = (Sample treated with additive- 
Control sample)/control sample * 100. 
 

 

 

 

 

TRT                                                 Fermentation properties 
Hm 
(%) 

h 
(%) 

(Hm-h) 
/Hm 
(%) 

H’m 
(%) 

TV 
(%) 

VL 
(%) 

VRt 
(%) 

RC 
(%) 

T1 
(%) 

T’1 
(%) 

           
1A0.5 -0.4 1.0 -77.8 -2.0 -3.1 -7.9* 21.3* 25.0* 1.0 25.8 
1A1 -2.0 -1.4 -30.6 -8.0 -8.3 -7.1* 14.8* 25.0* 0.8 -9.7 
1A1.5 3.2 2.6 30.6 -13.9* -15.5* -6.88 5.7 25.0* 0.5 -51.6* 
           
2A0.5 -5.6 -7.9 104.5 -12.9* -14.5* -7.4* 8.8 27.2* -21.5 -13.3 
2A1 -5.1 -7.0 68.2 -17.2* -22.0* -6.0* -0.5 27.5* -18.8 0.0 
2A1.5 -7.5 -12.4 236.4 -27.1* -31.5* -6.2* -12.9* 27.1* -26.7 0.0 
           
3A0.5 -14.7* -15.5* 123.1 -18.5* -18.4* -6.8* 2.3 25.4* -3.8 0.0 
3A1 -9.3 -8.7 -100.0 -18.4* -20.5* -6.6* -0.3 25.4* 0.5 6.2 
3A1.5 -5.8 -6.3 69.2 -24.2* -25.9* -7.3* -7.4 25.0* -10.6 12.5 
           
1B0.5 -14.6 12.3 -45.9* -29.1* -11.7* -10.6* 7.27 21.5* 8.9 0.0 
1B1 -9.6 10.1 -30.4* -33.2* -17.6* -9.7* 0.09 21.5* 15.2 -7.1 
1B1.5 -14.0 2.0 -25.7* -37.6* -23.2* -9.6* -6.78 21.3* 16.5 7.1 
           
2B0.5 -8.5 -11.3 240.0 -30.2* -29.6* -6.3* -2.60 38.0* -26.5 200.0* 
2B1 -5.7 -14.5* 744.0 -31.7* -30.8* -6.0* -4.13 38.1* -20.9 200.0* 
2B1.5 -5.8 -18.2 1044* -33.1* -32.6* -5.7* -6.62 38.2* -27.1 107.7* 
           
3B0.5 -1.8 -5.8 0.0 -18.7* -21.3* -6.9* 4.71 33.1* -22.3 95.0* 
3B1 -5.3 -7.5 0.0 -24.4* -26.3* -5.2* -1.53 33.7* -3.0 30.0 
3B1.5 5.2 3.4 0.0 -28.5* -30.4* -5.3* -7.06 33.4* -19.5 -30.0 
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Table 3.  Explained variance (%) in PCA of fermentation variables with negative control in 

flours treated with urea. 

UREA 
AXES PC1 PC2 1+2 
PC (%) 55.2% 19.8% 75% 

     
Fermentation Hm 94 0 94 

 h 89 1 90 
 (Hm-h)/Hm 5 30 35 
 H’m 94 1 95 
 TV 96 2 98 
 VL 19 59 78 
 VRT 95 1 96 
 RC 5 65 70 
 T1 4 38 42 
 T’1 51 2 53 

 

Table 4. Explained variance (%) in PCA of fermentation variables and flour protein in flours 
treated with urea. 
 

UREA 
AXES PC1 PC2 1+2 
PC (%) 50.2% 18.1% 68.31% 

     
Fermentation Hm 94 0 94 
 h 89 1 90 
 (Hm-h)/Hm 5 32 38 
 H’m 94 1 95 
 TV 96 2 98 
 VL 19 56 74 
 VRT 95 1 96 
 RC 5 61 67 
 T1 4 39 43 
 T’1 50 3 53 
Flour Protein  FP 0 4 4 
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Table 5.  Explained variance (%) in PCA of fermentation variables without negative control in 

flours treated with urea. 

UREA 
AXES PC1 PC2 1+2 
PC (%) 43.3% 24.4% 67.7% 

     
Fermentation Hm 20 1 21 
 h 37 22 60 
 (Hm-h)/Hm 23 58 81 
 H’m 70 18 88 
 TV 93 1 94 
 VL 74 22 96 
 VRT 25 35 60 
 RC 68 26 94 
 T1 23 34 57 
 T’1 0 26 27 
 

Table 6. Explained variance (%) in PCA of fermentation variables with flour protein and without 

negative control in flours treated with urea. 

UREA 
AXES PC1 PC2 1+2 
PC (%) 39.8% 22.5% 62.3% 

     
Fermentation Hm 24 4 29 
 h 42 30 72 
 (Hm-h)/Hm 24 52 76 
 H’m 67 21 89 
 TV 90 3 93 
 VL 71 25 96 
 VRT 24 28 52 
 RC 65 29 95 
 T1 23 27 50 
 T’1 0 19 19 
Flour Protein  FP 7 9 15 
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Table 7.  Explained variance (%) in PCA of fermentation variables when compared with visco-
elastic, mixing and baking variables in flours treated with urea. Definitions of fermentation, 
visco-elastic, mixing and baking variables explained in Table 2 (Chapter III). 

UREA 
AXES PC1 PC2 1+2 
PC (%) 30.5% 22.5% 53% 

     
Fermentation Hm 26 5 30 
 h 33 30 63 
 (Hm-h)/Hm 8 54 62 
 H’m 38 1 39 
 TV 39 3 42 
 VL 31 0 31 
 VRT 10 18 28 
 RC 29 0 29 
 T1 0 27 27 
 T’1 6 24 31 
Visco-elastic SeP 0 83 83 
 J-Jr 3 76 79 
 RCY 4 48 52 
 TCR 8 53 62 
 TCC 7 57 63 
Mixing WA 30 0 30 
 DT 30 16 46 
 ST 50 11 61 
 BT 41 16 56 
Baking PH 45 15 60 
 LH 71 11 82 
 SV 78 7 86 
 OSP 40 1 41 
 LV 52 2 54 
Flour Protein  FP 81 7 88 
 

 

 

 

 

 

 



 

107 
 

Table 8. Explained variance (%) in PCA of fermentation variables when compared with baking 

variables in flours treated with urea. 

UREA 
Axes PC1 PC2 1+2 
PC (%) 40.8 15.4 56.3 

     
Fermentation Hm 14 19 33 

 
h 20 56 76 

 
(Hm-h)/Hm 7 60 67 

 
H’m 66 1 67 

 
TV 68 6 74 

 
VL 57 0 57 

 
VRT 15 29 45 

 
RC 54 1 55 

 
T1 1 25 25 

 
T’1 4 19 24 

Baking  PH         50 10 60 

 
 LH         75 9 85 

 
 SV         81 5 86 

 
 OSP         39 2 41 

 
 LV         81 4 85 

Flour Protein   FP         18 3 21 
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Figure 1. A graphical representation of gaseous curve of a) control sample from flour 3B and b) 

3B flour containing 1 M of urea (3B1). Blue tracings are the total volume and the red is the 

volume retained. 

 

  

Figure 2. A graphical representation of dough development of a) control sample from flour 3B 

and b) 3B flour containing 1 M of urea (3B1).  
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Figure. 3. Loading plot of first two principal components based on fermentation properties with 
negative control of six commercial wheat flours, added with four levels of urea. Definitions of 
fermentation, visco-elastic, mixing and baking variables explained in Table 2 and 3. Flour 
protein content (%), 1A = 7.95, 2A = 11.19, 3A = 13.68, 1B = 10.4, 2B = 10.59 and 3B = 11.38, 
respectively. Symbols and definitions:   -Control samples,   - Negative controls.   – Low protein 
A flours,     -Medium protein A flours,     - High protein A flours.    – Low protein B flours,    - 
Medium protein B flours,    - High protein B flours.   
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Figure. 4. Loading plot of first two principal components based on fermentation properties with 
flour protein of six commercial wheat flours added with four levels of urea. Symbols and 
definitions:    -Control samples,   - Negative controls.   – Low protein A flours,     -Medium 
protein A flours,     - High protein A flours.    – Low protein B flours,    - Medium protein B 
flours,    - High protein B flours.   
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Figure. 5. Loading plot of first two principal components based on fermentation properties 
without negative control of six commercial wheat flours added with four levels of urea. Symbols 
and definitions:    -Control samples,    – Low protein A flours,     -Medium protein A flours,     - 
High protein A flours.    – Low protein B flours,    - Medium protein B flours,    - High protein B 
flours.   
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Figure. 6. Loading plot of first two principal components based on fermentation properties with 
flour protein of six commercial wheat flours containing four levels of urea. Negative control 
samples were removed. Symbols and definitions:    -Control samples,   – Low protein A flours,                                                                                                        
-       -Medium protein A flours,     - High protein A flours.    – Low protein B flours,    - Medium 
protein B flours,    - High protein B flours.   
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Figure. 7. Loading plot of first two principal components based on fermentation, baking, visco-
elastic and dough properties of six commercial wheat flours added with four levels of urea. 
Symbols and definitions:     -Control samples,   – Low protein A flours,     -Medium protein A 
flours,     - High protein A flours.    – Low protein B flours,    - Medium protein B flours,    - 
High protein B flours.   
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Figure. 8. Loading plot of first two principal components based on fermentation and baking 
properties of six commercial wheat flours added with four levels of urea. Symbols and 
definitions:     -Control samples,   – Low protein A flours,     -Medium protein A flours,     - High 
protein A flours.    – Low protein B flours,    - Medium protein B flours,    - High protein B 
flours.   
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Total Explained Variance=56.3%
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CHAPTER VI 

EFFECT OF DISRUPTION OF DISULFIDE BONDS ON FERMENTATION PROPERTIES 

OF DOUGH 

            ABSTRACT 

                  The objective of the study is to quantify the effect of disruption of disulfide bonds on 

fermentation properties of dough and to analyze possible correlation of fermentation and visco-

elastic, mixing and baking properties of dough. Four levels of reduced states were obtained by 

the addition of dithiothreitol (DTT) (0, 0.1, 0.25 and 0.5 mM). Five commercial hard red winter 

wheat flours with different protein content were used. Flours with no treatment were used as 

controls and flours with no yeast and no treatment were used as negative controls. Fermentation 

properties of dough were measured using a Rheofermentometer F3. Addition of DTT decreases 

the height of the dough development, maximum height of gaseous release and total volume of 

gas. Fermentation variables explained more variance (66.2%) than the fermentation variables 

combined with visco-elastic, mixing and baking variables (57.2%). The ratio of dough heights 

[(Hm-h)/Hm] is closely related to gluten elastic properties (Sep and RCY). Retention coefficient 

(RC) is closely related to viscous properties (TCC and TCR). Maximum height of the dough 

(Hm) and height of the dough at the end of the test (h) are closely related to flour protein (FP). 

Volume lost (VL) is closely related to baking properties (LH and SV). 
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1. INTRODUCTION 

                Disulfide bonds play a major role in gluten strength. Gluten consists of gliadins and 

glutenins. Monomeric gliadins can form only intrachain disulfide bonds whereas glutenin can 

form both intra- and interchain disulfide bonds (Shewry and Tatham, 1997). Dough quality 

depends on molecular weight (MW) distribution of glutenins which is governed by the state of 

disulfide structure which depends on genetic factors, environmental factors and the redox state 

(Wieser, 2007). Disulfide bonds hold the gluten subunits and form large polymer size matrices. 

High molecular weight glutenin subunits (HMW) and low molecular weight glutenin subunits 

(LMW) are the two major groups. By reducing the interchain disulfide bonds, HMW and LMW 

subunits are separated (Shewry and Tatham, 1997). Dough structure and loaf quality depends on 

HMW sub fraction of glutenin. Humphris et al., (2000) reported that the ability of reduced and 

disulfide linkage free high molecular weight glutenin fractions to form branched hydrogen 

bonding structures can be estimated using atomic force microscopy. Gao et al., (1992) reported 

that disruption of disulfide bonds starts at 0.08 mM of DTT and dough stickiness started 

increasing at 3 mM of DTT. Kim and Bushuk (1995) reported that two Canadian hard red winter 

wheat flours with protein contents of 6.8 and 9.6% showed decrease in elasticity by 79 and 97%, 

respectively with 0.1 mM of DTT. Strong and weak gluten flours when treated with DTT at 500 

ppm showed high decrease in elasticity in strong gluten compared to weak gluten flours (Khatkar 

et al., 2005). 
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The objectives of the study were: 

1) To study the effect of disruption of disulfide bonds on the fermentation properties of 

dough using DTT. 

2) To analyze possible correlation of fermentation and visco-elastic, baking and mixing 

properties of dough. 

2. Materials and Methods 

a. Materials and Labeling 

              Five commercial hard red wheat flours were obtained from two different milling 

supplies A and B. They differ in protein content. Four levels (0, 0.1, 0.25 and 0.5 mM) of DTT 

(VWR International, West Chester, PA) were used. Flours with no DTT were used as control and 

flours with no DTT and no yeast were used as negative control. Thus site A flours were labeled 

as 1A0 (positive control), 1AN (negative control), 1A0.1, 1A0.25 and 1A0.5; 2A0, 2A0.1, 

2A0.25, 2A0.5; 3A0, 3A0.1, 3A0.2 and, 3A0.5. Similarly site B flours were labeled as 1B0, 

1BN, 1B0.1, 1B0.25, 1B0.5; 3B0, 3B0.1, 3B0.25 and 3B0.5. The protein, moisture and ash 

contents were determined using the NIR system (FOSS NIR Systems Inc, Laurel, MD) as shown 

in Table 1 (Chapter III).  

b. Methods 

Dough Preparation 

Dough was prepared as described in the Chopin protocol using Chopin Alveo -

Consistograph. The ingredients consisted of 250 g of flour, 3 g of dry yeast and 5 g of sodium 

chloride. DTT was added to the flours at 0, 0.1, 0.25 and 0.5 mM. A stock solution of 100 ml 

was prepared containing 1.54 g of DTT. For 0.1 mM of DTT, a working solution of 1000 ml was 

prepared by adding 0.1 ml of stock solution. In the same way, working solutions were prepared 
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for 0.25 mM containing 2.5 ml of stock solution in 1000 ml and 5 ml for 0.5 mM. From the 

described working solutions, 125 ml was mixed with water added to the flour to obtain each 

DTT addition. The quantity of deionized water added depended on the moisture content of the 

flour and it was given by the reference table published by the International Association for 

Cereal Science and Technology (ICC) as described in the Chopin Protocol. The sodium chloride 

was dissolved in water prior to the addition to dough. Instant dry yeast and DTT are blended with 

250 g of flour in the kneader bowl. Salt water was progressively added to the flour at the 

beginning of the first minute mixing period. After one minute, the mixing was stopped to remove 

the flour sticking to the walls and ensure a homogeneous hydration. The mixing process was 

continued for 6 minutes. A sample size of 315 g of dough was used for each treatment. 

Fermentation Test 

              Rheofermentometer was used to study the fermentation properties of dough. The dough 

(315 g) obtained from AlveoConsistograph was placed in the bottom of the aluminum basket and 

packed it down with hands. The height of the dough in the basket must be leveled out just below 

the lowest holes. The piston with a 2000 g weight was placed on top of the dough. The basket 

placed in the F3 Rheofermentometer bowl. Displacement sensor was placed and the whole 

system was tightly closed and the test was run for a total of 4 h. This time represents 1 h longer 

than the Chopin Protocol as it was determined experimentally with the samples and treatments in 

this study.              

              The F3 Rheofermentometer analyzes the development of a dough sample placed in the 

bowl. The piston placed on the dough rises. The piston is directly linked to a displacement sensor 

which will calculate the dough rising. Rheofermentometer is also linked to a pressure sensor 

through a pneumatic circuit that measures the pressure increase in the fermenting dough. The 
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three curves are dough development, speed of C02 release and quantity produced and volume of 

CO2 retained in dough. Fermentation variables are defined in Table 1 and visco-elastic, mixing 

and baking properties are defined in Table 2 (Chapter III). 

3. STATISTICAL ANALYSIS 

           A factorial design within a randomized block design was implemented. Five levels of 

DTT and 3 levels of flour protein were compared in a 5 X 3 factorial. The significant differences 

in means were compared using Analysis of Variance (ANOVA) with Tukey’s comparisons 

(α=0.05) using SAS (Version 9.1 SAS Institute Inc., Cary, NC). Principal Component Analysis 

(PCA) is a mathematical algorithm that reduces the dimensionality of the data (Ringer, 2008). 

PCA is performed using Canoco for windows 4.5 (Biometris, Plant Research International, 

Wageningen, the Netherlands).  

4. Results and Discussion 

           Protein, moisture and ash content of the flour samples and water added are reported in 

Table 3 (Chapter III). Typical dough fermentation property curves are illustrated in Figures 1 and 

2 showing results for sample 3B control (a) and 3B containing 0.5 mM DTT (b). The volume of 

CO2 lost (VL) is decreased in the sample in which disulfide bonds are disrupted (Fig. 1). Volume 

of retention of gas was improved for sample with disruption of disulfide bonds when compared 

with control sample. From the dough development curves we can observe that the height of 

dough is improved when disulfide bonds are disrupted (Fig. 2). A summary of the definition of 

fermentation properties of all samples is found in Table 1 (Chapter III). 
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Maximum height of the dough (Hm) 

             Hm is the maximum height of the dough development. As expected control sample 

without yeast shows no development (Table 1). The overall trend of disrupting disulfide bonds is 

a decrease on Hm. Observations that significantly decreased Hm were 3A and 1B flours with all 

levels of DTT. Only one comparison of 3B flour with 0.25 mM of DTT significantly increased 

Hm (Table 1). Overall highlights are: high value of Hm was shown by 3B0.25 (43.2 mm) and 

lowest by 1A0.5 (24.4 mm) (Table 1 and 2). The change of the fermentation properties (%) is 

reported in Table 2. A trend of high percentage (17.1%) increment in maximum height was 

observed in 3B0.25 (Table 2). A trend of 25.5% decrease in maximum height was observed in 

the sample 1B0.5 (Table 2). Overall maximum height of dough development decreased except 

for most of the 1A and 3B flours. 

 Height of the dough development (h) 

        The height of the dough development (mm) at the end of the test was denoted by h. As 

expected, negative controls showed no development. Observations that significantly decreased 

height of the dough development are 2A flour with 0.1 Mm and 3A flours with all levels of DTT 

(Table 1). Only one comparison of 3B flour with 0.25 mM of DTT significantly increased Hm 

compared to the control (Table 1 and 2). Overall highlights are: lowest value of height was 

observed in 1B0 (19.85 mm) and highest value was observed in 3B0.25 (43.1 mm) (Table 1). A 

trend to high increase (16.9%) of h was observed in 1B0.1 and to high decrease (23.4%) is 

observed in 3A0.5 (Table 2). Dough height at the end of the test is decreased for 2A and 3A 

flours whereas it increased for other flours. 
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Lowering of development percentage [(Hm-h)/Hm] 

          (Hm-h)/Hm is the ratio of dough height at the end of the fermentation test in percentage. A 

large percent means the dough has maintained its height during fermentation. Comparing the 

ratio of dough height within samples, only in two samples 2A and 1B significant changes in ratio 

of dough were observed as the disulfide bonds are disrupted (Table 1 and 2). In sample 1B, all 

the urea levels lowered significantly the ratio of dough height compared to the control. While in 

sample 2A, 0.5 mM DTT increased the ratio of dough height compared to control. Overall 

highlights are: high value was observed in 1B0 (39.1%) and lowest value in 3B0 (0) (Table 1). A 

trend to high percentage increase was observed in 3A0.5 (576.9%) and low percentage decrease 

in 1A0.5 (77.8%) (Table 2). Overall lowering of development percentage decreased for low 

protein flours 1A and 1B. 

Maximum height of the gaseous curve (H’m) 

          H’m is the maximum height of the gaseous release curve. Overall trend of decrease of 

disulfide bonds is to decrease H’m. Observations that are significantly decreased H’m by 

decreasing the disulfide bonds were 2A, 3A and 1B flours with all levels and 3B flour with 0.1 

mM of DTT. Only one observation significantly increased H’m is 1A with 0.5 mM of DTT 

(Table 1 and 2). Overall highlights are: high value of H’m was shown by 1B0 (59.55 mm) and 

lowest value was shown by 1B0.25 (40.65 mm) (Table 1). A trend to an increase (10%) in 

maximum height was observed in 1A0.5 and 31.7% decreased in 1B0.25 (Table 2). Maximum 

height of gaseous release is increased for low protein flours (1A and 1B) whereas it decreased 

with other flours (2A, 3A and 1B). 
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Total Volume (TV) 

            TV is the total volume of gaseous curve. The effect of decreasing disulfide bonds causes 

a decrease in total volume in all samples except 1A flours with all levels (P<0.05) (Table 1 and 

2). This has similar effect as the observed on Hm. This suggests that disulfide bonds are 

important in forming the fermented dough structure impermeable to gas loss. Overall highlights 

are: high value of total volume was observed in 3B0 (1737 mL) and lowest in 1B0.25 (1268.5 

mL) (Table 1). A highest percentage increase in total volume (9.7%) was observed in 1A0.5 and 

lowest decrease (25.2%) is observed in 3A0.1 (Table 2). Total volume is decreased with all 

flours except 1A. 

 Volume lost (VL) 

              VL is the carbon dioxide volume released by the dough during the fermentation test. 

The effect of decreasing disulfide bonds is to decrease the volume lost (Table 1 and 2). Volume 

lost has to be related to the total volume produced which was lowered by 9 to 25.2%. From this 

lowered volume produced, decreasing disulfide bonds lowered the volume lost significantly from 

6 to 15%. Overall highlights are: high value was observed in 3B0 (462.5 mL) and lowest in 

1B0.5 (26.5 mL) (Table 1). Highest percentage (13.5%) of volume lost was observed in 1A0.5 

and lowest percentage (6.05%) in 3B0.1 (Table 2).  

Volume retained (VRt) 

                VRt is the carbon dioxide remained in the dough at the end of the test. The effect of 

disruption of disulfide bonds on volume retention is to increase. Observations that are 

significantly increased volume retention by decreasing the disulfide bonds were 1A flours with 

all levels, 1B with 0.1 and 0.5 mM of DTT and 3A and 3B flours with 0.25 and 0.5 mM of DTT. 

Overall highlights and trends are: high value was observed in 3B0.5 (1618 mL) and lowest in 
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1B0 (1135 mL) (Table 1). Highest percentage (35.88%) of volume retained was observed in 

1A0.5 and lowest percentage decrease (0.3%) was observed in 3B0.1 (Table 2).  

Retention Coefficient (RC) 

              Retention coefficient (RC) is the retention volume divided by the total gaseous release. 

Retention coefficient of all samples and treatment were significantly increased by the decrease in 

sulfide bonds. This suggests that the disruption of these bonds positively affected retention 

coefficient (Table 1 and 2). Overall highlights are: high value was observed in 2A0.5 and 1B0.5 

(97.9%) and lowest value in 3B0 (73.4%) (Table 1). Highest percentage (33%) of retention 

coefficient was observed in all low protein B flours (3B) and lowest percentage (21%) in all 1B 

flours (Table 2).  

Time of maximum rise (T1) 

        T1 is the time taken by the dough to reach maximum height during dough development. The 

effect of decreasing disulfide bonds on T1 is to decrease. Observations that significantly 

decreased T1 were 2A, 3A and 3B flour treated with 0.5 mM of DTT. Overall highlights are: 

high value was observed in 3B0 (4 h) and lowest in 1B0 (1.5 h) (Table 1). Highest percentage 

(13.3%) of time taken to reach maximum height of dough development was observed in 1B0.1 

and time decreased to 47.2% in 2A0.5 (Table 2).  

Time of maximum rise (T’1)  

              T’1 is the time spent to reach maximum rise during gaseous release. The effect of 

decreasing disulfide bonds on T’1 is to increase. Observations that are significantly increased 

T’1 were 2A and 1B flours with 0.5 mM of DTT and 3B flours with all levels. Overall highlights 

are: high value was observed in all high protein B flours (3.9) and lowest in 1B0 (1.4) (Table 1). 



 

124 
 

Highest increase (95%) of time taken to reach maximum height of gaseous curve was observed 

in all high protein B flours and time decreased 17.7% in 1A0.1 (Table 2).  

       Jones et al., (1974) reported that small amount of DTT decreases the consistency of the 

dough which in turn affect the rate of dough development. Our study shows that effect of DTT 

on height of dough during fermentation is sample specific. Khatkar et al., (2005) proved that 

addition of DTT showed highest percentage decrease of elasticity in strong gluten and lowest 

percentage of decrease in weak gluten. Our study suggests that high protein flours are positively 

affected by the disruption of disulfide bonds and this effect is higher compared to that on low 

protein flours. The proposition is that high protein samples also have more disulfide bonds in 

their structure and therefore the effect is higher compared to low protein flours with perhaps 

lower potential of forming disulfide bonds.   

PCA results 

            Principal component analyses were performed on the data sets obtained from 

fermentation parameters. 

Fermentation variables Vs fermentation variables with flour protein 

              PCA were performed on the data sets, to assess the relationship of flour protein and 

fermentation properties (Fig. 3 and 4). Figure 3 represents the fermentation properties alone and 

all the samples. Principal component axis 1 (PC1) explained 56.9% variance and principal 

component axis 2 (PC2) explained 19.3% variance. Total explained variance is 76.2% (Table 3). 

Among fermentation properties, the highest contribution of variance (95%) was maximum height 

of gaseous release (H’m), total volume (TV) and volume of retention (VRt) in PC1 whereas in 

PC2 the highest contribution of variance (56.6%) was time to reach maximum height of dough 

development (T1) (Table 3). Figure 4 displays the fermentation properties plus flour protein. 
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Principal component axis 1 (PC1) explained 51.8% variance and principal component axis 2 

(PC2) explained 17.7% variance. Total explained variance is 69.5% (Table 4). Among 

fermentation properties with flour protein, the highest contribution of variance (95.6%)  was 

maximum height of gaseous release (H’m) and second highest contribution of variance (95.1%) 

was volume of retention (VRt) on PC1 whereas on PC2 the highest contribution of variance 

(54.8%) was time to reach maximum height of dough development (T1) (Table 4). Only 0.13% 

of explained variance was contributed by flour protein on PC1 and 2.5% on PC2 (Table 4). This 

suggests that the variation of protein is weakly related to the volume lost and its contribution to 

the variance is very small when compared with samples with changes in their disulfide bonds. In 

both the graphs (Fig. 3 and 4), most of the fermentation variables are on PC1. Flours treated with 

DTT are very close to PC1 when compared with control and negative samples. All control 

samples are closely related among themselves and to volume lost. They are well separated from 

the flours treated with DTT. Negative controls are also closely related among themselves and 

well separated from the samples with reduced disulfide bonds. So negative controls are removed 

from the data sets and PCA was compared. It also suggests that the samples treated with DTT are 

closely related to volume of the gas retained by the dough during fermentation in the first 

component. These samples are negatively related to volume lost. 

Fermentation variables without negative control Vs fermentation variables with flour 

protein and without negative control 

             PCA were performed to assess the relationship of fermentation variables and protein 

without the negative controls (Fig. 5 and 6). From the fermentation properties on Figure 5, 

principal component axis 1 (PC1) explained 40.3% variance and principal component axis 2 

(PC2) explained 25.9% variance (Fig. 5). Total explained variance is 66.2% (Table 5). Among 
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fermentation properties, the highest contribution of variance (76.3%) was total volume (TV) on 

PC1 whereas on PC2 the highest contribution of variance (76.9%) was retention coefficient (RC) 

(Table 5). In comparison, when flour protein was included (Fig. 6), principal component axis 1 

(PC1) explained 37% variance and principal component axis 2 (PC2) explained 23.6% variance. 

Total explained variance is 60.6% (Table 6). Among fermentation properties with flour protein, 

the highest contribution of variance (73.3%) was total volume (TV) on PC1 whereas on PC2 the 

highest contribution of variance (74.9%) was retention coefficient (RC) (Table 6). Only 5.4% of 

explained variance was contributed by flour protein on PC1 and 0.9% on PC2 (Table 6). As the 

total explained variance of fermentation variables (66.2%) is 5.6 units of percentage higher than 

fermentation variables with flour protein (60.6%), we can say that compared to changes in 

disulfide bonds in this set, flour protein appears to have a small effect and is marginally 

correlated to other fermentation variables. Controls are closely related to volume lost (VL) and 

are separated from the flours treated with DTT. All flours except low protein B flours treated 

with DTT are closely related to volume of gas retained (VRt) and negatively correlated to 

volume lost (VL) and lowering development percentage ([Hm-h]/Hm). Low protein B flours are 

separated from other flours treated with DTT. By disruption of disulfide bonds, the fermented 

dough retained more volume and improved retention coefficient.   

Fermentation properties Vs Fermentation properties with visco-elastic, mixing, baking 

properties 

             The relationship of fermentation variables with visco-elastic, mixing and baking 

properties was investigated (Fig. 7). From Figure 6, principal component axis 1 (PC1) explained 

37% variance and principal component axis 2 (PC2) explained 23.6% variance. Total explained 

variance is 60.6% (Table 6). From Figure 7, principal component axis 1(PC1) explained 35.9% 
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variance and principal component axis 2 (PC2) explained 21.3% variance. Total explained 

variance is 57.2% (Table 7). Among all properties, the highest contribution of variance (91.8%) 

was flour protein (FP) and second major component that contributes high variance (91.6%) is 

specific volume (SV) on PC1 whereas on PC2 the highest contribution of variance (64.2%) was 

lowering of development percentage ([Hm-h]/Hm) (Table 7). As the total explained variance of 

fermentation variables (60.6%) is 3.5 units of percentage higher than fermentation variables with 

visco-elastic, mixing and baking variables (57.2%), we can say that the samples are better 

separated based on fermentation properties differences. From Figure 7, we can deduce that some 

variables are closely associated meaning they give redundant information. The ratio of dough 

heights [(Hm-h)/Hm] is closely related to gluten elastic properties (Sep and RCY). Retention 

coefficient (RC) is closely related to gluten viscous (TCC and TCR).The maximum height of the 

dough (Hm) and height of the dough at the end of the test (h) are closely related to flour protein 

(FP). Volume lost (VL) is closely related to baking properties (LH and SV). Samples 1A and 1A 

representing low protein flours appeared to be in different groups and separated from other 

flours. This suggests that they have different properties.  All baking properties show greatest 

contribution of explained variance on PC2. PCA analysis is performed on flour protein, 

fermentation properties and baking properties. 

Relationship of flour protein, Fermentation and baking properties 

              PCA were performed on the data sets of flour protein, fermentation variables and baking 

properties (Fig. 8). PCA analyses of fermentation properties with flour protein were already 

performed (Fig. 6 and Table 6). From Figure 6, principal component axis 1 (PC1) explained 37% 

variance and principal component axis 2 (PC2) explained 23.6% variance. Total explained 

variance is 60.6% (Table 6). From Figure 8, principal component axis 1 (PC1) explained 42.8%  
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variance and principal component axis 2 (PC2) explained 22.3% variance. Total explained 

variance is 65.1% (Table 8). The highest contribution of explained variance (90.9%) was height 

of loaf volume (LH) on PC1 whereas on PC2 the highest contribution of variance (73.5%) was 

volume of gas retained (VRt) (Table 8). Flour protein explained 26.5% variance on PC1 and 

0.1% on PC2 (Table 8). As the total explained variance of fermentation variables (60.6%) is less 

than fermentation variables with baking variables (65.1%), we can say the combination of baking 

and fermentation properties explain more variance than fermentation properties by themselves. 

Although a 4.5% increase in the explained variance is good, it will be occasions in which using 

fermentation parameters alone will be sufficient when taking into account the time consuming 

test of baking. In other words, a good approximation of the performance of flours can be 

estimated by analyzing the fermentation properties.  It appears that including visco-elastic and 

mixing, baking properties is not as effective in separating the effect of the disruption of disulfide 

in flour samples as it is the comparison of the fermentation properties.  All control samples were 

negatively associated with gas retained (VRt) and positively related with volume lost (VL). 

Volume lost is the variable most closely related to loaf height and loaf volume.  

5. Conclusions 

               Null Hypothesis is rejected as there is significant effect of disruption of disulfide bonds 

of the dough (addition of DTT) on fermentation properties when compared to the control 

samples. Disruption of disulfide bonds decreases maximum height of the dough and maximum 

height of the gaseous release for most flours. Total volume and volume lost is also decreased.  
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               Fermentation variables explained more variance (66.2%) than the fermentation 

variables combined with visco-elastic, mixing and baking variables (57.2%). The ratio of dough 

heights [(Hm-h)/Hm] is closely related to gluten elastic properties (Sep and RCY). Retention 

coefficient (RC) is closely related to viscous properties (TCC and TCR). Maximum height of the 

dough (Hm) and height of the dough at the end of the test (h) are closely related to flour protein 

(FP). Volume lost (VL) is closely related to baking properties (LH and SV). 
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Table 1. Fermentation properties in five commercial wheat flours treated with DTT levels. Means (n=2) with same superscripts in a 
column are not significantly different (P <0.05). The standard deviations of means are shown in parenthesis.   
  

TRT Fermentation Properties 
Hm 
(mm) 

H 
(mm) 

(Hm-h)/Hm 
(%) 

H’m 
(mm) 

TV 
(mL) 

VL 
(mL) 

VRt 
(mL) 

RC 
(%) 

T1 
(h) 

T’1 
(h) 

1A0 25klm 24.55jklm 1.8ghi 47.5fgh 1507.5defg 323cd 1184.5kl 78.65cdef 3.9ab 3.16abcd 
(1.3) (1.4) (0.3) (2.5) (76.5) (37.0) (39.5) (1.4) (0.0) (0.2) 

1AN 0n 0o 0i 5l 12.5k 2f 11m 83.25bcd 4a 0.1k 
(0.0) (0.0) (0.0) (0.1) (0.5) (0.0) (0.0) (2.1) (0.0) (0.0) 

1A0.1 26.75ijklm 26.45ghijkl 1.45ghi 50.55def 1591.5bcde 41.5ef 1550.5ab 97.35a 3.9ab 2.6defghi 
(2.6) (2.3) (1.1) (2.4) (98.5) (6.5) (104.5) (0.6) (0.1) (1.2) 

1A0.25 26.3jklm 26.2hijkl 1hi 50.45def 1578bcde 33.5ef 1544.5ab 97.85a 3.8ab 3.8ab 
(0.8) (0.8) (1.0) (0.4) (27.0) (1.5) (25.5) (0.1) (0.1) (0.1) 

1A0.5 24.35m 24.05klmn 0.4i 52.25cde 1653abc 43.5ef 1609.5a 97.3a 3.9a 2.8bcdefg 
(4.0) (4.2) (0.0) (3.6) (121.0) (12.5) (133.5) (1.0) (0.0) (1.2) 

2A0 32.15cdefgh 31.45defg 2.2ghi 53.1cde 1695.5ab 389.5b 1306fghijk 77.05ef 3.6abc 1.5j 
(0.6) (1.2) (1.9) (1.0) (27.5) (11.5) (16.0) (0.4) (0.3) (0.2) 

2AN 0n 0o 0i 4.9l 12k 3.5f 9m 70.2g 4a 0.1k 
(0.0) (0.0) (0.0) (1.3) (3.0) (0.5) (3.0) (6.0) (0.0) (0.0) 

2A0.1 27.2hijklm 27hijkl 10.55efg 43.65hijk 1372ghij 47ef 1324.5defghij 96.5a 2.73bcdefgh 1.9efghij 
(1.4) (1.4) (8.5) (3.4) (102.0) (9.0) (111.5) (0.9) (0.9) (0.1) 

2A0.25 29.3fghijklm 28.9ghij 4.8fghi 45.65ghij 1425fghi 31ef 1394cdefghi 97.85a 2.5cdefgh 1.8efghij 
(0.5) (0.3) (0.1) (1.1) (37.0) (6.0) (31.0) (0.4) (0.1) (0.0) 

2A0.5 29.65efghijkl 29.2efghij 13.6def 46.55fgh 1434fghi 29.5ef 1404.5cdefg 97.9a 1.9fgh 2.9abcde 
(0.8) (0.6) (1.5) (1.7) (60.0) (1.5) (61.5) (0.2) (0.1) (1.1) 

3A0 39.4ab 39.15ab 0.65i 54.3bcd 1669ab 362.5bc 1307fghijk 78.3def 3.9a 1.6ij 
(2.2) (2.5) (0.7) (0.1) (13.0) (13.5) (0.0) (0.6) (0.0) (0.0) 

3AN 0n 0o 0i 4.35l 17.5k 2.5f 15.5m 85.5b 4a 0.1k 
(0.0) (0.0) (0.0) (0.8) (3.5) (0.5) (4.5) (6.5) (0.0) (0.0) 

3A0.1 31.35defghij 31.05defgh 0.95hi 43.5hijk 1338.5hij 27.5ef 1311.5efghijk 97.95a 3.9ab 2.0efghij 
(0.6) (0.5) (0.4) (1.0) (21.5) (4.5) (17.5) (0.3) (0.0) (0.0) 

3A0.25 32.5cdefg 32.35cdef 0.45i 49.6efg 1518.5cdef 56ef 1462.5bc 96.3a 3.6abc 1.8fghij 
(0.2) (0.1) (0.5) (0.2) (1.5) (24.0) (25.5) (1.6) (0.4) (0.0) 

3A0.5 31.45defghi 30efghi 4.4fghi 49.05efg 1479efgh 34.5ef 1444.5bcd 97.7a 2.7bcdefgh 1.8fghij 
(3.6) (2.8) (1.9) (1.2) (25.0) (0.5) (24.5) (0.0) (0.0) (0.0) 
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Table 1. Continued 
TRT Fermentation Properties  

Hm h (Hm-h)/Hm H’m TV VL VRt RC T1 T’1 
(mm) (mm) (%) (mm) (mL)  (mL)  (mL)  (%) (h) (h) 

1B0 33.2cdef 19.85n 39.1a 59.55a 1412fghi 277d 1135l 80.4bcde 1.5h 1.4j 
(2.3) (3.8) (15.5) (1.8) (32.0) (15.0) (17.0) (0.6) (0.2) (0.0) 

1BN 0n 0o 0i 5.5l 18.5k 3f 15.5m 83.35bcd 4a 0.1k 
(0.0) (0.0) (0.0) (1.8) (6.5) (2.0) (4.5) (4.7) (0.0) (0.0) 

1B0.1 28.1ghijklm 23.2lmn 17.4cde 41.95ijk 1339hij 32ef 1307.5efghijk 97.6a 1.7gh 1.7ghij 
(0.5) (0.2) (2.2) (0.7) (18.0) (4.0) (21.5) (0.3) (0.0) (0.1) 

1B0.25 25.2klm 20.7mn 17.8bcde 40.65k 1268.5j 30.5ef 1238.5jkl 97.65a 1.6h 1.7hij 
(1.1) (0.7) (0.8) (0.2) (8.5) (0.5) (7.5) (0.1) (0.1) (0.1) 

1B0.5 24.75lm 19.9n 19.6bcde 41.45jk 1296.5ij 26.5ef 1270ijk 97.95a 1.6h 2.7cdefgh 
(0.2) (0.1) (0.1) (2.7) (83.5) (0.5) (83.0) (0.1) (0.1) (1.2) 

3B0 36.85bc 36.85bc 0i 54.2bcd 1737a 462.5a 1275ghijk 73.4fg 4a 2.0efghij 
(0.8) (0.8) (0.0) (1.1) (46.0) (20.5) (25.0) (0.5) (0.0) (1.0) 

3BN 0n 0o 0i 4.9l 14k 2.5f 12m 84bc 2.1efgh 0.1k 
(0.0) (0.0) (0.0) (0.6) (1.0) (0.5) (1.0) (1.2) (1.9) (0.0) 

3B0.1 39.8ab 39.65ab 0.3i 45.45ghijk 1299ij 28ef 1271hijk 97.85a 3.8ab 3.9a 
(7.1) (7.0) (0.3) (2.0) (40.0) (0.0) (40.0) (0.1) (0.1) (0.0) 

3B0.25 43.15a 43.05a 0.25i 58.4ab 1651abc 36ef 1614.5a 97.8a 3.9a 3.9a 
(2.3) (2.4) (0.3) (0.0) (10.0) (2.0) (11.5) (0.1) (0.0) (0.0) 

3B0.5 41.05ab 36.8bc 10.25efgh 58.6ab 1652abc 33.5ef 1618.5a 97.95a 2.2defgh 3.9a 
(1.4) (0.2) (3.5) (2.3) (31.0) (3.5) (34.5) (0.3) (0.1) (0.0) 
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 Table 2. Change (percent) of fermentation properties of five commercial wheat flours treated with DTT levels. 
 
 
 

 
Values with * are significantly different to control samples (P<0.05). Percentage calculated from values in Table 1 and % change = 
(Sample treated with additive- Control sample)/Control sample * 100. 

TRT                                                 Fermentation properties 
Hm 
(%) 

h 
(%) 

(Hm-h)/Hm 
(%) 

H’m 
(%) 

TV 
(%) 

VL 
(%) 

VRt 
(%) 

RC 
(%) 

T1 
(%) 

T’1 
(%) 

1A0.1 7.0 7.9 -19.4 6.42 5.6 -12.8* 30.90* 23.8* 0.0 -17.7 
1A0.25 5.2 6.7 -44.4 6.21 4.7 -10.4* 30.39* 24.4* -2.6 20.3 
1A0.5 -2.6 -2.0 -77.8 10.00* 9.7* -13.5* 35.88* 23.7* 0.0 -11.4 
           
2A0.1 -15.4 -14.1* 379.5 -17.80* -19.1* -12.1* 1.42 25.2* -24.2 26.7 
2A0.25 -8.9 -8.1 118.2 -14.03* -16.0* -8.0* 6.74 27.0* -30.6 20 
2A0.5 -7.8 -7.2 518.2* -12.34* -15.4* -7.6* 7.54 27.1* -47.2* 93.3* 
           
3A0.1 -20.4* -20.7* 46.2 -19.89* -19.8* -7.6* 0.34 25.1* 0.0 25 
3A0.25 -17.5* -17.4* -30.8 -8.66* -9.0* -15.4* 11.90* 23.0* -7.7 12.5 
3A0.5 -20.2* -23.4* 576.9 -9.67* -11.4* -9.5* 10.52* 24.8* -30.8* 12.5 
           
1B0.1 -15.4* 16.9 -55.5* -29.55* -5.2 -11.55* 15.20* 21.4* 13.3 21.4 
1B0.25 -24.1* 4.3 -54.5* -31.74* -10.2* -11.01* 9.12 21.5* 6.7 21.4 
1B0.5 -25.5* 0.3 -49.9* -30.39* -8.2 -9.57* 11.89* 21.8* 6.7 92.9* 
           
3B0.1 8.0 7.6 0.0 -16.14* -25.2* -6.05* -0.31 33.3* -5.0 95* 
3B0.25 17.1* 16.8* 0.0 7.75 -5.0 -7.78* 26.63* 33.2* -2.5 95* 
3B0.5 11.4 -0.1 0.0 8.12 -4.9 -7.24* 26.94* 33.4* -45* 95* 
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Table 3. Explained variance (%) in PCA of fermentation variables with negative control 

in flours treated with DTT. 

DTT 
AXES PC1 PC2 1+2 
PC (%) 56.9% 19.3% 76.2% 

     
Fermentation Hm 94 1 94 
 h 88 4 93 
 (Hm-h)/Hm 5 34 39 
 H’m 96 1 96 
 TV 95 1 96 
 VL 10 50 61 
 VRT 95 0 96 
 RC 22 45 67 
 T1 2 57 58 
 T’1 62 1 63 
 

Table 4. Explained variance (%) in PCA of fermentation variables and flour protein in 
flours treated with DTT. 
 

DTT 
AXES PC1 PC2 1+2 
PC (%) 51.8% 17.7% 69.5% 

     
Fermentation Hm 94 1 95 
 h 89 5 94 
 (Hm-h)/Hm 5 34 39 
 H’m 96 0 96 
 TV 95 1 96 
 VL 10 50 60 
 VRT 95 0 96 
 RC 22 45 67 
 T1 2 55 57 
 T’1 62 1 63 
Flour Protein  FP 0 2 3 
 
 

 

 

 



 

135 
 

 

Table 5. Explained variance (%) in PCA of fermentation variables without negative 

control in flours treated with DTT. 

DTT 
AXES PC1 PC2 1+2 
PC (%) 40.3% 25.9% 66.2% 

     
Fermentation Hm 47 0 47 
 h 69 5 74 
 (Hm-h)/Hm 37 16 53 
 H’m 58 3 60 
 TV 76 1 77 
 VL 23 72 95 
 VRT 19 53 72 
 RC 19 77 96 
 T1 54 2 56 
 T’1 2 31 33 
 

Table 6. Explained variance (%) in PCA of fermentation variables and flour protein and 

without negative control in flours treated with DTT. 

DTT 
AXES PC1 PC2 1+2 
PC (%) 37% 23.6% 60.6% 

     
Fermentation Hm 51 0 51 
 h 72 5 77 
 (Hm-h)/Hm 36 16 53 
 H’m 56 2 59 
 TV 73 0 74 
 VL 23 70 93 
 VRT 17 55 72 
 RC 19 75 94 
 T1 52 3 55 
 T’1 2 32 34 
Flour Protein FP 5 1 6 
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Table 7.  Explained variance (%) in PCA of fermentation variables when compared with 
visco-elastic, mixing and baking variables in gluten and flours treated with DTT. 
Definitions of fermentation, visco-elastic, mixing and baking variables explained in Table 
2 (Chapter III). 

DTT 
AXES PC1 PC2 1+2 
PC (%) 35.9% 21.3% 57.2% 

     
Fermentation Hm 33 28 61 
 h 18 64 82 
 (Hm-h)/Hm 1 64 65 
 H’m 7 13 20 
 TV 1 34 35 
 VL 40 0 40 
 VRT 23 37 61 
 RC 39 1 40 
 T1 0 55 55 
 T’1 18 8 26 
Visco-elastic SeP 40 35 75 
 J-Jr 26 33 59 
 RCY 32 38 70 
 TCR 29 20 50 
 TCC 30 32 61 
Mixing WA 46 1 46 
 DT 25 18 44 
 ST 40 15 55 
 BT 19 19 38 
Baking PH 84 1 85 
 LH 83 0 83 
 SV 92 1 93 
 OPH 39 0 39 
 LV 42 11 54 
Flour Protein  FP 92 3 95 
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Table 8. Explained variance (%) in PCA of fermentation variables when compared with 

baking variables in gluten and flours treated with DTT. 

DTT 
Axes PC1 PC2 1+2 
PC (%) 42.8 22.3 65.1 

     
Fermentation Hm 42 21 63 

 
H 36 47 82 

 
(Hm-h)/Hm 2 47 50 

 
H’m 20 30 50 

 
TV 15 50 65 

 
VL 61 2 63 

 
VRT 12 74 86 

 
RC 59 4 62 

 
T1 11 42 53 

 
T’1 8 21 29 

Baking  PH         76 3 79 

 
 LH         91 6 97 

 
 SV         84 3 87 

 
 OSP         56 7 63 

 
 LV         85 1 86 

Flour Protein   FP         27 0 27 
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Figure 1. A graphical representation of gaseous curve of a) control sample from flour 3B 

and b) 3B flour containing 0.5 mM of DTT (3B0.5). Blue tracings are the total volume 

and the red is the volume retained. 

 

  

Figure 2. A graphical representation of dough development of a) control sample from 

flour 3B and b) flour 3B containing 0.5 mM of DTT (3B0.5).  
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Figure 3. Loading plot of first two principal components based on fermentation properties 
with negative control of five commercial wheat flours, added with four levels of DTT. 
Definitions of fermentation, visco-elastic, mixing and baking variables explained in Table 
2 and 3 (Chapter III). Flour protein content (%), 1A = 7.95, 2A = 11.19, 3A = 13.68, 1B 
= 10.4 and 3B = 11.38, respectively. Symbols and definitions:   -Control samples;   - 
Negative controls.    – Low protein A flours,     -Medium protein A flours,     - High 
protein A flours.    – Low protein B flours,    - Medium protein B flours,    - High protein 
B flours.   
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Figure 4. Loading plot of first two principal components based on fermentation properties 
with flour protein of five commercial wheat flours added with four levels of DTT. 
Symbols and definitions:  -Control samples;   - Negative controls.   – Low protein A 
flours,     -Medium protein A flours,     - High protein A flours.    – Low protein B flours,     
-  - Medium protein B flours,    - High protein B flours.   
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Figure 5. Loading plot of first two principal components based on fermentation properties 
without negative control of five commercial wheat flours added with four levels of DTT. 
Symbols and definitions:    -Control samples;   - Negative controls.   – Low protein A 
flours,     -Medium protein A flours,     - High protein A flours.    – Low protein B flours,    
- Medium protein B flours,    - High protein B flours.   
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Figure 6. Loading plot of first two principal components based on fermentation properties 
with flour protein of five commercial wheat flours containing four levels of DTT. 
Negative control samples were removed. Symbols and definitions:   -Control samples;   - 
Negative controls.   – Low protein A flours,     -Medium protein A flours,     - High 
protein A flours.    – Low protein B flours,    - Medium protein B flours,    - High protein 
B flours.   
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Figure 7. Loading plot of first two principal components based on fermentation, baking, 
visco-elastic and dough properties of five commercial wheat flours added with four levels 
of DTT. Symbols and definitions:    -Control samples,    – Low protein A flours,     -
Medium protein A flours,     - High protein A flours.    – Low protein B flours,    - 
Medium protein B flours,    - High protein B flours.   
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Figure 8. Loading plot of first two principal components based on fermentation and 
baking properties of five commercial wheat flours added with four levels of DTT. 
Symbols and definitions:    -Control samples,   – Low protein A flours,     -Medium 
protein A flours,     - High protein A flours.    – Low protein B flours,    - Medium protein 
B flours,    - High protein B flours.   
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CHAPTER VII 
CONCLUSIONS 

 
                      By reducing the surface tension of the dough, height of the dough is 

significantly improved in 1A and 3B flours, retention volume of the gas is increased 

(11.3-52.1%). Volume of gas lost is reduced (7.3-16.4%). Retention coefficient is 

increased (21-38%). Treating the flours with DATEM showed increment in dough 

development and in percentage of gas retained. DATEM of levels 0.3% and 0.6% showed 

larger increment when compared to flour treated with 1% of DATEM. Fermentation 

variables explained more variance (69.2%) than the fermentation variables with visco-

elastic, mixing and baking variables (47.9%). The ratio of dough heights [(Hm-h)/Hm] is 

closely related to gluten elastic properties (Sep and RCY). Volume lost (VL) is closely 

related to viscous properties (J-Jr, TCR) and negatively related to elastic properties. 

Maximum height of the dough (Hm) and dough height (h) are closely related to baking 

properties (LV and SV).  

By oxidizing the dough, maximum height of the dough development decreases for 

A flours and increases for B flours. Maximum height of gaseous release shows an 

increase with low protein A flours. Highest percentage of retention volume of gas was 

observed in low protein A flour (1A100). Flours treated with 100 ppm ascorbic acid 

showed good increment compared to other concentrations. Highest percentage of 

retention coefficient of gas was observed in medium protein flours. Fermentation 

variables explained more variance (61.7%) than fermentation variables with visco-elastic, 

mixing and baking variables (51.5%).  The ratio of dough heights [(Hm-h)/Hm] and 

volume lost (VL) are closely related to gluten elastic properties (Sep and RCY). The time 
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taken to reach maximum height of the dough (T1) is closely related to gluten viscous 

(TCC) and baking properties (OSP). Maximum height of the dough (Hm) and dough 

height (h) are closely related to flour protein (FP) and baking properties (LH and LV). 

                       The effect of disruption of hydrogen and hydrophobic bonds decreased 

maximum height of gaseous release, total volume of gas and volume lost. Fermentation 

variables explained more variance (67.7%) than fermentation variables with visco-elastic, 

mixing and baking variables (53.1%). The ratio of dough heights [(Hm-h)/Hm] is closely 

related to gluten elastic properties (Sep and RCY). The time taken to reach maximum 

height of dough development (T1) and time taken to reach maximum height of gaseous 

release (T’1) are closely related to viscous properties (TCC and TCR). Total volume 

(TV) and maximum height of gaseous release (H’m) are closely related to flour protein. 

Retention coefficient (RC) is negatively related to baking and mixing properties.  

                 Disruption of disulfide bonds decreases maximum height of the dough and 

maximum height of the gaseous release for most flours. Total volume and volume lost is 

also decreased. Fermentation variables explained more variance (66.2%) than 

fermentation variables with visco-elastic, mixing and baking variables (57.2%). The ratio 

of dough heights [(Hm-h)/Hm] is closely related to gluten elastic properties (Sep and 

RCY). Retention coefficient (RC) is closely related to gluten viscous (TCC and TCR). 

Maximum height of the dough (Hm) and height of the dough at the end of the test (h) are 

closely related to flour protein (FP). Volume lost (VL) is closely related to baking 

properties (LH and SV). 
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                  Overall correlation of fermentation properties with visco-elastic, mixing and 

baking properties: ratio of dough heights [(Hm-h)/Hm] is closely related to gluten elastic 

properties. In the red-ox state, the time taken to reach maximum height of dough 

development (T1) is closely related to gluten viscous and height of the dough 

development (h) is closely related to flour protein. Retention coefficient (RC) is not 

useful in predicting baking properties as it is negatively related to flour protein and 

baking. Mixing properties are not related to fermentation.  
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                                                                CHAPTER VIII 
                                                             FUTURE STUDIES 
 

                            The study focused on effect of fermentation properties of flours with 

DATEM (surfactant), ascorbic acid (oxidizing agent), urea (non covalent hydrogen bond 

disruption in glutenin) and DTT (disulfide linkage disruption in glutenin). Correlations 

were identified among fermentation, visco-elastic, baking, mixing properties in dough to 

establish the relationship between fermentation, visco-elastic, baking and mixing 

properties. Fermentation properties were measured by Rheofermentometer. 

 Although the different levels of DATEM, ascorbic acid, urea and DTT used were 

based in ranges of literature reports, it will be advisable to optimize the concentrations for 

each chemical reagent used. This can be achieved in a separate study with appropriate 

experimental design and statistical modeling using response surface methodology. 

Another suggestion is to increase the number of replicates (experimental units) to three or 

four. This will increase the power of the analysis.   
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                                                                APPENDIX 1 

 

Figure 1. Loading plot of first two principal components based on fermentation properties 
with negative control of six commercial wheat flours, added with four levels of DATEM. 
Definitions of fermentation, visco-elastic, mixing and baking variables explained in Table 
2 and 3. Flour protein content (%), 1A = 7.95, 2A = 11.19, 3A = 13.68, 1B = 10.4, 2B = 
10.59 and 3B = 11.38, respectively. Symbols and definitions:    -Control samples,   - 
Negative controls.   – Low protein A flours,     -Medium protein A flours,     - High 
protein A flours.    – Low protein B flours,    - Medium protein B flours,    - High protein 
B flours.   
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Figure 2. Loading plot of first two principal components based on fermentation properties 
with flour protein of six commercial wheat flours added with four levels of DATEM. 
Symbols and definitions:   -Control samples,   - Negative controls,    – Low protein A 
flours,     -Medium protein A flours,     - High protein A flours.    – Low protein B flours,    
- Medium protein B flours,    - High protein B flours.   
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Figure 3. Loading plot of first two principal components based on fermentation properties 
without negative control of six commercial wheat flours added with four levels of 
DATEM. Symbols and definitions:   -Control samples,    – Low protein A flours,     -
Medium protein A flours,     - High protein A flours.    – Low protein B flours,    - 
Medium protein B flours,    - High protein B flours.   
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Figure 4. Loading plot of first two principal components based on fermentation properties 
with flour protein of six commercial wheat flours containing four levels of DATEM. 
Negative control samples were removed. Symbols and definitions:    -Control samples,      
– Low protein A flours,       -  -Medium protein A flours,     - High protein A flours.    – 
Low protein B flours,    - Medium protein B flours,    - High protein B flours.   
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Figure 5. Loading plot of first two principal components based on fermentation, baking, 
visco-elastic and dough properties of six commercial wheat flours added with four levels 
of DATEM. Symbols and definitions:   -Control samples,   – Low protein A flours,     -
Medium protein A flours,     - High protein A flours.    – Low protein B flours,    - 
Medium protein B flours,    - High protein B flours.   
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Figure 6. Loading plot of first two principal components based on fermentation and 
baking properties of six commercial wheat flours added with four levels of DATEM. 
Symbols and definitions:    -Control samples,    – Low protein A flours,     -Medium 
protein A flours,     - High protein A flours.    – Low protein B flours,    - Medium protein 
B flours,    - High protein B flours.   
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Figure 7. Loading plot of first two principal components based on fermentation properties 
with negative control of six commercial wheat flours, added with five levels of ascorbic 
acid. Definitions of fermentation, visco-elastic, mixing and baking variables explained in 
Table 2 and 3. Flour protein content (%), 1A = 7.95, 2A = 11.19, 3A = 13.68, 1B = 10.4, 
2B = 10.59 and 3B = 11.38, respectively. Symbols and definitions:    -Control samples,   - 
Negative controls,    – Low protein A flours,     -Medium protein A flours,     - High 
protein A flours.    – Low protein B flours,    - Medium protein B flours,    - High protein 
B flours.   
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Figure 8. Loading plot of first two principal components based on fermentation properties 
with flour protein of six commercial wheat flours added with five levels of ascorbic acid. 
Symbols and definitions:    -Control samples,   - Negative controls,    – Low protein A 
flours,     -Medium protein A flours,     - High protein A flours.    – Low protein B flours,    
- Medium protein B flours,    - High protein B flours.   
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Figure 9. Loading plot of first two principal components based on fermentation properties 
without negative control of six commercial wheat flours added with five levels of 
ascorbic acid. Symbols and definitions:    -Control samples,   – Low protein A flours,     -
Medium protein A flours,     - High protein A flours.    – Low protein B flours,    - 
Medium protein B flours,    - High protein B flours.   
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Figure 10. Loading plot of first two principal components based on fermentation 
properties with flour protein of six commercial wheat flours containing five levels of 
ascorbic acid. Negative control samples were removed. Symbols and definitions:   -
Control samples,    – Low protein A flours,     -Medium protein A flours,     - High 
protein A flours.    – Low protein B flours,    - Medium protein B flours,    - High protein 
B flours.   
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Figure 11. Loading plot of first two principal components based on fermentation, baking, 
visco-elastic and dough properties of six commercial wheat flours added with five levels 
of ascorbic acid. Symbols and definitions:   -Control samples,   – Low protein A flours,     
-Medium protein A flours,     - High protein A flours.    – Low protein B flours,    - 
Medium protein B flours,    - High protein B flours.   
 
 

-1.0 1.0

-1
.0

1.
0

Hm

h

(Hm-h)/Hm

H'm

TV

VL

VRt
RC

T1
T'1

LV

BT

WA

DT

ST

PH

LH

OSP

SV

TCRTCC

J-Jr

SeP

RCY

FP

1A01A01A01A0

1A501A501A501A50

1A1001A1001A1001A100

1A1501A1501A1501A150

1A2001A2001A2001A200

2A02A02A02A0

2A502A502A502A50

2A1002A1002A1002A100

2A1502A1502A1502A150 2A2002A2002A2002A200

3A03A03A03A0

3A503A503A503A50

3A1003A1003A1003A100

3A1503A1503A1503A150

3A2003A2003A2003A200

1B01B01B01B0

1B501B501B501B50

1B1001B1001B1001B100

1B1501B1501B1501B150

1B2001B2001B2001B2002B02B02B02B0

2B502B502B502B50

2B1002B1002B1002B100

2B1502B1502B1502B150

2B2002B2002B2002B200

3B03B03B03B0

3B503B503B503B50

3B1003B1003B1003B100

3B1503B1503B1503B150

3B2003B2003B2003B200

PC1 27.2%

P
C

2 
24

.3
%

Total Explained Variance = 51.5%



 

160 
 

 

Figure 12. Loading plot of first two principal components based on fermentation and 
baking properties of six commercial wheat flours added with five levels of ascorbic acid. 
Symbols and definitions:    -Control samples,   – Low protein A flours,     -Medium 
protein A flours,     - High protein A flours.    – Low protein B flours,    - Medium protein 
B flours,    - High protein B flours.   
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Figure.13. Loading plot of first two principal components based on fermentation 
properties with negative control of six commercial wheat flours, added with four levels of 
urea. Definitions of fermentation, visco-elastic, mixing and baking variables explained in 
Table 2 and 3. Flour protein content (%), 1A = 7.95, 2A = 11.19, 3A = 13.68, 1B = 10.4, 
2B = 10.59 and 3B = 11.38, respectively. Symbols and definitions:   -Control samples,   - 
Negative controls,   – Low protein A flours,     -Medium protein A flours,     - High 
protein A flours.    – Low protein B flours,    - Medium protein B flours,    - High protein 
B flours.   
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Figure.14. Loading plot of first two principal components based on fermentation 
properties with flour protein of six commercial wheat flours added with four levels of 
urea. Symbols and definitions:    -Control samples,   - Negative controls,    – Low protein 
A flours,     -Medium protein A flours,     - High protein A flours.    – Low protein B 
flours,    - Medium protein B flours,     - High protein B flours.   
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Figure. 15. Loading plot of first two principal components based on fermentation 
properties without negative control of six commercial wheat flours added with four levels 
of urea. Symbols and definitions:   -Control samples,   – Low protein A flours,     -
Medium protein A flours,     - High protein A flours.    – Low protein B flours,    - 
Medium protein B flours,    - High protein B flours.   
  
 

-1.0 1.0

-1
.0

1.
0

Hm

h

(Hm-h)/Hm

H'm

TV

VL

VRt

RC
T1

T'1

1A01A01A01A0

1A0.51A0.51A0.51A0.5

1A11A11A11A1

1A1.51A1.51A1.51A1.5

2A02A02A02A0

2A0.52A0.52A0.52A0.5

2A12A12A12A1

2A1.52A1.52A1.52A1.5
3A03A03A03A0

3A0.53A0.53A0.53A0.5

3A13A13A13A1

3A1.53A1.53A1.53A1.5

1B01B01B01B0

1B0.51B0.51B0.51B0.5

1B11B11B11B1

1B1.51B1.51B1.51B1.5

2B02B02B02B0

2B0.52B0.52B0.52B0.5

2B12B12B12B1

2B1.52B1.52B1.52B1.5

3B03B03B03B0

3B0.53B0.53B0.53B0.5
3B13B13B13B1

3B1.53B1.53B1.53B1.5

PC1 43.3%

P
C

2 
24

.4
%

Total Explained Variance = 67.7% 



 

164 
 

 

Figure. 16. Loading plot of first two principal components based on fermentation 
properties with flour protein of six commercial wheat flours containing four levels of 
urea. Negative control samples were removed. Symbols and definitions:     -Control 
samples,   – Low protein A flours,   -Medium protein A flours,     - High protein A flours.    
– Low protein B flours,    - Medium protein B flours,    - High protein B flours.   
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Figure. 17. Loading plot of first two principal components based on fermentation, baking, 
visco-elastic and dough properties of six commercial wheat flours added with four levels 
of urea. Symbols and definitions:   -Control samples,   – Low protein A flours,     -
Medium protein A flours,     - High protein A flours.    – Low protein B flours,    - 
Medium protein B flours,    - High protein B flours.   
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Figure.18. Loading plot of first two principal components based on fermentation and 
baking properties of six commercial wheat flours added with four levels of urea. Symbols 
and definitions:    -Control samples,   – Low protein A flours,     -Medium protein A 
flours,     - High protein A flours.    – Low protein B flours,    - Medium protein B flours,    
- High protein B flours.   
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Figure 19. Loading plot of first two principal components based on fermentation 
properties with negative control of five commercial wheat flours, added with four levels 
of DTT. Definitions of fermentation, visco-elastic, mixing and baking variables explained 
in Table 2 and 3 (Chapter III). Flour protein content (%), 1A = 7.95, 2A = 11.19, 3A = 
13.68, 1B = 10.4 and 3B = 11.38, respectively. Symbols and definitions:   -Control 
samples,   - Negative controls,   – Low protein A flours,     -Medium protein A flours,     - 
High protein A flours.    – Low protein B flours,    - Medium protein B flours,    - High 
protein B flours.   
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Figure 20. Loading plot of first two principal components based on fermentation 
properties with flour protein of five commercial wheat flours added with four levels of 
DTT. Symbols and definitions:    -Control samples,    - Negative controls,   – Low protein 
A flours,     -Medium protein A flours,     - High protein A flours.    – Low protein B 
flours,    - Medium protein B flours,    - High protein B flours.   
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Figure 21. Loading plot of first two principal components based on fermentation 
properties without negative control of five commercial wheat flours added with four 
levels of DTT. Symbols and definitions:    -Control samples,    – Low protein A flours,     
-Medium protein A flours,     - High protein A flours.    – Low protein B flours,    - 
Medium protein B flours,    - High protein B flours.   
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Figure 22. Loading plot of first two principal components based on fermentation 
properties with flour protein of five commercial wheat flours containing four levels of 
DTT. Negative control samples were removed. Symbols and definitions:    -Control 
samples,    – Low protein A flours,     -  -Medium protein A flours,     - High protein A 
flours.    – Low protein B flours,    - Medium protein B flours,    - High protein B flours.   
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Figure 23. Loading plot of first two principal components based on fermentation, baking, 
visco-elastic and dough properties of five commercial wheat flours added with four levels 
of DTT. Symbols and definitions:    -Control samples,   – Low protein A flours,     -
Medium protein A flours,     - High protein A flours.    – Low protein B flours,    - 
Medium protein B flours,    - High protein B flours.   
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Figure 24. Loading plot of first two principal components based on fermentation and 
baking properties of five commercial wheat flours added with four levels of DTT. 
Symbols and definitions:    -Control samples,   – Low protein A flours,     -Medium 
protein A flours,     - High protein A flours.    – Low protein B flours,    - Medium protein 
B flours,    - High protein B flours. 
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Scope and Method of Study: Fermentation properties of wheat dough are key factors in the 
production of yeasted bread products.  The purpose of this study was to investigate the effect of 
physical and chemical changes of dough on fermentation properties and to find possible 
correlations of fermentation properties with visco-elastic, mixing and baking properties. Six 
commercial hard red winter wheat flour samples with different protein content and quality were 
used. The physical and chemical changes were achieved by modifying the surface tension, red-ox 
state and hydrogen and hydrophobic bonds by the addition of different levels of DATEM, 
ascorbic acid, dithiothreitol (DTT), and urea.  The fermentation properties were measured with a 
Rheofermentometer. 
 

Findings and Conclusions: By reducing the surface tension of the dough, height of the dough is 
significantly improved in 1A and 3B flours and retention volume of the gas is increased (11.3-
52.1%). Volume of gas lost is reduced (7.3-16.4%) and retention coefficient is increased (21-
38%). Overall, gas retention was improved with reducing surface tension obtained with 0.3 and 
0.6% DATEM compared to 1% DATEM. By oxidizing the dough, maximum height of the dough 
development decreases for A flours and increases for B flours. Maximum height of gaseous 
release shows an increase in low protein A flours. Highest percentage of retention volume of gas 
was observed in low protein A flour (1A100). Highest percentage of retention coefficient of gas 
was observed in medium protein flours. The effect of disruption of hydrogen and hydrophobic 
bonds decreased maximum height of gaseous release, total volume of gas and volume lost. 
Disruption of disulfide bonds decreases maximum height of the dough and maximum height of 
the gaseous release for most flours. The ratio of dough heights [(Hm-h)/Hm] is closely related to 
elastic properties. In both reduction and oxidation states of dough, time taken to reach maximum 
height of dough development (T1) is closely related to viscous properties and height of the dough 
development (h) is closely related to flour protein. Retention coefficient (RC) is negatively 
related to flour protein and baking. Mixing properties are not related to fermentation.  

 

 

 


