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CHAPTER I 

 

 

INTRODUCTION 

 

Bovine respiratory disease (BRD) is the most common feedlot disease in North 

America.  Over 14% of cattle in feedlots are affected by BRD (NAHMS, 2000).  The 

combination of environmental changes and pathogens that newly weaned cattle are 

exposed to upon arrival to a feedlot greatly contributes to BRD outbreaks.  Bovine 

respiratory disease detection and treatment is made more complicated by the multiple 

viral and bacterial pathogens that can act as disease factors for BRD infection.  Bovine 

respiratory disease affects both the respiratory tract and the whole animal.  The activation 

of the body‟s immune system and inflammation response affects other metabolic 

pathways and triggers decreased performance, thus reducing value.   

Bovine respiratory disease affects a wide range of performance and carcass 

variables. Decreased average daily gain (ADG), as well as decreased hot carcass weight 

(HCW), marbling scores, and fat thickness have all been reported (Gardner et al., 1999; 

Montgomery et al., 2009).  Because of the decreased carcass value, and the costs 

associated with treatment (e.g., drug cost, labor), cattle treated for BRD return between 

$46.64 to $291.93 less than healthy cattle, with returns decreasing as the number of 

treatments increases (Fulton et al., 2002).   
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Bovine respiratory disease diagnosis currently depends on the observation of 

clinical signs.  Clinical signs include increases in respiratory rate, poor respiratory 

character, depression, nasal discharge, decreased rumen fill, depressed feed intake, and 

high rectal temperature (>39.7
o
C) (Apley, 2006; Duff and Galyean, 2007).  However, 

often by the time these symptoms are noticed, it may be too late for effective treatment.  

In fact, it has been shown that lung lesions, which are a common sign of BRD infection at 

slaughter, were present in 60.6% of animals never treated for BRD (Schneider et al., 

2009).  There are no fast, objective diagnostic tests currently available to detect BRD in 

high risk cattle.  Cattle at high risk for BRD are usually from an unknown origin, recently 

weaned, and are from cow-calf operations that do not utilize consistent vaccination 

(NAHMS, 1997).  By examining how BRD affects the whole body metabolism, and 

specifically how measurable plasma metabolites change, possible biomarkers can be 

identified that could aid in the diagnosis of BRD. 

There have been many ways suggested to better diagnose BRD.  The 

identification of one biomarker through the traditional methods has been suggested, 

although with varying results (Duff and Galyean, 2007).  In addition, other nontraditional 

methods, like rumen temperature boluses, have been applied to the problem of prediction 

of BRD infection (Burciaga-Robles et al., 2009).  However, a new analytical science has 

been developed in the past 10 years that may greatly change how we identify metabolic 

changes due to disease – metabolomics, also known as metabonomics.  The term 

metabolomics was first coined in 1999 (Nicholson et al., 1999), and is defined as “the 

quantitative measurement of the dynamic multiparametric metabolic response of living 

systems to pathophysiological stimuli or genetic modification.”  In plainer terms, 
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metabolomics is the study of all the small molecules of a biological fluid or tissue 

(Nicholson et al., 1999).  Metabolomics allows for the identification and quantification of 

small metabolites of various compound classes to occur at one time, in one assay, instead 

of multiple assays on the same sample.  By utilizing analytical chemistry, like gas 

chromatography coupled with mass spectrometry, biomarkers of a wide range of 

molecules, from amino acids to sugars, can be identified.  This could greatly speed up 

BRD biomarker identification.  Metabolomics has not yet gained popularity outside of 

classical health research on humans and laboratory animals, but has great potential for 

usefulness in animal health research. 

 The present experiment was conducted to examine the effects of BRD infection 

on the plasma metabolome of beef steers.  The examination of plasma metabolites may 

allow for the identification of possible BRD biomarkers that could make diagnosis 

quicker and more objective.  The quantification of selected potential biomarkers could 

then be performed to establish concentrations that could denote the early stages of BRD 

infection.  
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CHAPTER II 

 

 

REVIEW OF LITERATURE 

Introduction 

Bovine respiratory disease (BRD) causes major physiological changes to occur 

within the immune system and the metabolism of animals during infection.  These 

changes are caused by the infection of both viral and bacterial pathogens, along with the 

stress of transportation and commingling of calves from multiple sources.  The responses 

of the immune system and metabolism cause changes in blood metabolites, such as 

proteins, cytokines, and other small metabolites that have potential to be used as 

indicators of BRD infection.  The detection of changes in metabolites have been mainly 

done using traditional laboratory methods; however, the advent of metabolomic 

analytical platforms, that allow for the detection of multiple metabolite compounds at one 

time, may provide better identification and quantification of BRD biomarkers. 

Bovine Respiratory Disease 

BRD is the major cause of morbidity and mortality in feedlots today.  It is caused 

by the introduction of both viral and bacterial pathogens to a stressed calf upon entrance 

to feedlots or other settings where commingling and transportation of various calves 
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occurs.  The effects of BRD are not just on the respiratory tract – rather, the disease 

affects the metabolism of the whole body by activating the immune response as well as 

affecting mineral status, energy metabolism, and protein metabolism. 

Pathogenesis 

 Bovine respiratory disease results from the combination of pathogen exposure and 

stress. Bovine respiratory disease is most common in newly received feedlot cattle that 

are highly stressed due to transport and commingling, and are being exposed to a host of 

new pathogens, both viral and bacterial.  BRD can be caused, or at least affected by both 

preweaning and postweaning factors.  Early nutrition, temperament, and health 

management (i.e., vaccines) preweaning can help to deter the development of BRD 

further down the production line.  Postweaning factors, such as transportation stress, 

commingling, and management techniques such as castration, receiving diets, and 

metaphylatic drug dosing can also affect the development of BRD (Duff and Galyean, 

2007).  Although management can decrease the risk of BRD development, the 

combination of unavoidable stress and pathogen exposure can be too much for the calf‟s 

host defenses to overcome.   

Pathogens responsible for BRD infection include both viruses and bacteria.  

Common viral pathogens include bovine viral diarrhea virus (BVDV), bovine herpes 

virus-1 (BHV-1), bovine respiratory syncytial virus (BRSV), bovine coronavirus (BCV), 

and infectious bovine rhinotracheitis virus (IBRV).  Although some of these pathogens, 

such as BVDV, may not initially appear to have direct effects on the respiratory system, 

they cause respiratory problems by affecting the whole body‟s immune status (Ellis, 

2001).  The decline in immune status then allows bacterial infections to gain hold in the 
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respiratory tract.  BVDV has gained much of the attention mainly due to its prevalence.  

Vaccines have been developed for most strains of BVDV; however, even vaccinated 

calves face some risk of infection because of the multiple strains of BVDV.  More than 

one virus is usually isolated from cattle diagnosed with BRD, once again indicating the 

complexity of the disease (Duff and Galyean, 2007). 

Bacterial pathogens usually include a combination of Mannheimia (Pasturella) 

haemolytica, Pasturella multocida, and Histophilus somni (Haemophilus somnus) (Ellis, 

2001; Apley, 2006).  These gram negative bacteria all produce lipopolysaccharides (LPS) 

and/or lipooligosaccharides as pathogenic factors (Corbeil, 2007; Dabo et al., 2007; Rice 

et al., 2007). Of the major bacterial pathogens, M. haemolytica is generally considered to 

be the most prevalent and pathogenic.  Interestingly, M. haemolytica is naturally found in 

the upper respiratory tract as a native bacterium, but acts as an opportunistic pathogen. It 

does not become pathogenic unless the immune system becomes compromised, such as 

during times of stress or infection.  M. haemolytica produces not only a 

lipopolysaccharide virulence factor, but also a ruminant specific leukotoxin that targets 

ruminant leukocytes, which greatly enhances its virulence (Zecchinon et al, 2005).   

Another less known bacterial pathogen is Mycoplasma bovis. This mycoplasma 

has recently become the subject of increased research especially in North America. In 

recent histopathogolocial evaluations of cattle diagnosed with BRD in Canadian feedlots, 

M. bovis was second only to M. haemolytica in prevalence, and actually was identified 

more often than M. haemolytica in cattle who were classified as chronically BRD 

infected (Booker et al., 2008). 
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Metabolic Response 

Most research on metabolite changes in BRD has focused on the acute phase 

proteins, such as serum amyloid A (SAA), fibrinogen, and most commonly haptoglobin.  

Focus has also been put on characterizing the entire acute phase response, which includes 

not only the acute phase proteins, but inflammatory cytokine production as well 

(Baumann and Gauldie, 1994).  Research has been limited on the effects of BRD 

infection on other, non-protein, non-immune response related metabolites, such as amino 

acids.  Experiments that examine the effects of BRD include both controlled infections, 

where pathogens are known, as well as natural feedlot infection scenarios (Buckham-

Sporer et al., 2008; Gershwin et al., 2005).  In this review, if the causative pathogens are 

known, they will be stated along with metabolite changes. 

 In order to provide a good background on metabolic response to BRD infection, 

induction of the acute phase response (i.e. acute phase protein levels), activation of the 

immune system, and changes in small non-protein metabolite levels will be reviewed.  

The detection of a biomarker in serum that is indicative of BRD infection would greatly 

help BRD treatment and diagnosis.  Accordingly, the main objectives of some of the 

trials discussed within this review involve the determination of possible BRD biomarkers. 

Acute Phase Response 

The acute phase response is a non-specific inflammatory reaction to an infection 

or injury.  It is initiated at the site of infection, usually by tissue macrophages or blood 

monocytes.  These immune cells then stimulate the release of cytokines, which initiate a 

signal cascade that causes the production of cortisol via the adrenal-pituitary axis, which, 

in concert with other cytokines, eventually results in the production of the acute phase 

proteins (serum amyloid A, fibrinogen, and haptoglobin) being produced and released by 
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the liver.  The acute phase response has been shown to be triggered not only by infection, 

but also by stress.  The acute phase response serves as an important regulator of the 

defense response, initiating fever, metabolic changes, production of immune cells, and 

host defense activation which will eventually result in the destruction of pathogens 

(Baumann and Gauldie, 1994). 

 Cattle infected with some form of BRD usually have increased concentrations of 

serum amyloid A (SAA).  In calves that were challenged with BVDV, MH, or a 

combination of the two, all groups of infected calves showed increased SAA levels after 

infection (Ganheim et al., 2003).  Calves challenged with the MH infection alone reached 

maximum SAA concentrations at 1-2 days post infection, while BVDV-challenged calves 

reached a maximum at 8-9 days after infection.  Interestingly enough, calves who 

received both BVDV and MH infection exhibited a biphasic response, with 2-3 days 

between peaks.  BVDV/MH calves also had the most days with higher than baseline 

levels of SAA (Ganheim et al., 2003).   

 Increases in SAA levels were also seen in other models of BRD (Heegaard et al., 

2000; Carroll et al., 2009).  In a trial where calves were infected with BRSV, SAA levels 

were elevated in all but one of the infected treatment group calves.  The SAA levels of 

BRSV infected calves reached a peak of 5-7 times greater than control calves between 

day 5-8 post infection (Heegaard et al., 2000).  Cattle injected with a dose of 

lipopolysaccharide (LPS; which can be used as a model of bacterial infection) also 

showed increases in SAA levels after infection as soon as 7 hours after initial dosing 

(Carroll et al., 2009).  These results indicate that bacterial infections, or intravenous doses 

of LPS, initiate the acute phase response much quicker than viral infections.  Bacterial 



9 
 

infections cause an increase in serum amyloid A levels within 36 hours after infection, 

while viruses can take up to 9 days after infection for SAA levels to peak.  

 Fibrinogen levels, like SAA levels, also increase after infection with BRD 

pathogens.  Calves infected with a viral pathogen (BVDV), had increased fibrinogen 

levels compared to control calves, with maximum levels reached at 8-9 days after viral 

inoculation.  Comparatively, calves that received just a M. haemolytica inoculation 

showed increased fibrinogen levels within 24 hours post infection.  When cattle were first 

dosed with a virus, and then 5 days later given a M. haemolytica inoculation, fibrinogen 

levels did not increase in the five days between the inoculations, but reached a maximum 

3-5 days after M. haemolytica inoculation.  The viral-bacterial pathogen calves did have a 

greater overall number of days with elevated (as compared to normal control values) 

fibrinogen levels than those calves with only a viral infection (Ganheim et al., 2003). 

These results indicate that like SAA levels, fibrinogen levels increase more rapidly in 

cattle with bacterial infections than those with just viruses.    

  Berry et al. (2004) showed that feedlot cattle treated multiple times had greater 

fibrinogen levels than cattle never treated or treated only once.  Different pathogens 

affect levels of fibrinogen – Nikunen et al. (2007) isolated pathogens from cattle naturally 

infected with BRD, and observed that only cattle from which P. multocida was isolated 

had increased fibrinogen.   

 Haptoglobin has received the most attention of the three major acute phase 

proteins.  Haptoglobin, like SAA and fibrinogen, increases in serum concentrations after 

infection.  Haptoglobin has been shown to increase following a bacterial challenge with 

M. haemolytica; however, a solely viral infection with BHV-1 did not trigger an increase 
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(Godson et al., 1996).  Additionally, increases in haptoglobin were seen in cattle 

intravenously injected with lipopolysaccharides from Escherichia coli, another gram 

negative bacterium (Jacobsen et al., 2004).  Like SAA and fibrinogen, in cattle infected 

with just M. haemolytica, haptoglobin levels peaked at around 2 days post infection, 

while haptoglobin levels in virally infected cattle (BVDV) did not reach peak haptoglobin 

levels until day 9 post infection (Ganheim et al., 2003).    

 In a trial where cattle were infected dually with BHV-1 and M. haemolytica, 

haptoglobin levels also increased post infection (Aich et al., 2009).  The haptoglobin 

levels were elevated in both cattle that eventually survived infection and those that died 

(Aich et al., 2009).  Haptoglobin levels were also elevated in cattle that were infected 

with BRSV (Grell et al., 2005).  Multiple studies have  reported that while elevated levels 

of haptoglobin were seen in cattle that were treated for BRD in a commercial setting 

(Berry et al., 2004; Burciaga-Robles et al., 2009), haptoglobin levels were not useful for 

predicting the number of treatments per animal that would be required (Burciaga-Robles 

et al., 2009). 

 The activation of the acute phase response, and the subsequent release of acute 

phase proteins into the serum is a result of infection with BRD pathogens.  However, 

there is still variability in how much the concentrations of these proteins change, which 

confounds the use of them as BRD infection indicators.   Further research is needed in 

order to validate the acute phase proteins as biomarkers.  

Cytokines 

Obviously, any infection or injury to the body will cause the activation of the 

acute phase response, which involves important molecules besides the acute phase 
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proteins.  Cytokines have been shown to increase with infection, although the exact 

cytokines differ depending on the nature of the infection (viral, bacterial, etc.).  Cytokines 

are small molecules released by immune cells in response to various stimuli, including 

inflammation and stress, and signal physiological changes.  The release of some 

cytokines is considered part of the activation of the acute phase response (Baumann and 

Gauldie, 1994).   

Accordingly, increases in cytokine concentrations have been shown to occur in 

BRD challenged cattle.  Burciaga-Robles et al. (2010) reported that cattle infected with 

M. haemolytica had increased levels of tumor necrosis factor alpha (TNF-α), interleukin 

1-beta (IL-1β), and interferon-γ (IFN-γ).  Similarly, after intravenous dosing with LPS, 

blood concentrations of TNF-α, interleukin-6 (IL-6), IL-1β, and IFN-γ were elevated 

(Carroll et al, 2009).  

Virally infected cattle have slightly altered cytokine expression as opposed to 

solely bacterial infections.  BRSV infected cattle had increases in IL-6 and IFN-γ (Grell 

et al., 2005), while cattle infected with BVDV had a cytokine profile with heightened 

levels of TNF-α, IL-1β, as well as IL-6.  Interestingly, cattle that were infected with both 

BVDV and MH saw increases only in TNF-α, IL-6, IFN-γ, but not IL-1β, even though 

IL-1β concentrations were high in separate viral and bacterial infections (Burciaga-

Robles et al., 2010).  

The function of each of these cytokines is well established. IL-1β, TNF-α, and IL-

6 are activated in the first response line of an immune challenge, and their release 

increases inflammation and acts on the liver to induce the acute phase response. IFN-γ‟s 
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major function is the activation of macrophages, which can also be responsible for 

inflammation (Kindt et al., 2007).   

Elevated cytokine levels are a good indication of infection, and may serve a role 

as indicators of disease.  However, because of the differences of cytokine profiles 

between pathogens, as well as a lack of specificity for respiratory disease, other options 

for BRD biomarkers need to be explored.  

Energy Metabolism 

There have been few studies that have examined the effects of infection on small, 

non-mineral, non-protein plasma metabolites.  Montgomery et al. (2009) examined how 

plasma metabolites at arrival changed in receiving heifers depending on the number of 

treatments for apparent BRD.  These heifers had decreased glucose levels, which could 

be the result of a hypoglycemic effect due to disease challenge, and/or reduced feed 

intake due to depression (Montgomery et al., 2009).  Conversely, glucose levels increased 

when cattle were infected with BHV-1 and M. haemolytica (Aich et al., 2009).  These 

differences may be due to differences in pathogen load, as well as diet and relation of 

feeding time to sampling.  Lactate levels also declined in cattle treated for BRD 

(Montgomery et al., 2009).     

Lactate has been discussed as a possible BRD biomarker.  Montgomery et al. 

(2009) saw a decline in lactate levels as number of BRD treatments increased.  The 

decrease in lactate levels with the number of BRD treatments seen in the Montgomery 

trial is in opposition with another study, where BRD infected calves had increased levels 

of lactate as severity increased.  In this trial, high lactate levels also correlated with 

increased mortality (Coghe et al., 2000).  One explanation for the variability in lactate 
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levels is that the cattle in the Montgomery trial may not have had severe enough disease 

to see an increase in lactate.  The oxygen transport chain has enough backup steps to 

continue to provide oxygen to tissues unless disease problems become severe (Coghe et 

al., 2000).  Lactate has also been indicated as a biomarker for the prediction of viral-

bacterial infection – lactate levels were higher in cattle that died of a combination BHV-1 

and M. haemolytica infection than those that survived (Aich et al., 2009).   

Protein Metabolism 

Protein metabolism is affected by disease.  For example, cattle that were injected 

with a dose of lipopolysaccharide (LPS), showed decreases in plasma levels of 

methionine, threonine, leucine, isoleucine, phenylalanine, tryptophan, glycine, serine, 

asparagine, and tyrosine, while alanine increased (Waggoner et al., 2009b).  In a similar 

trial, decreases were seen in threonine, lysine, leucine, phenylalanine, tryptophan, 

asparagine, ornithine, and glutamate, although alanine again increased (Waggoner et al., 

2009a).  Increased valine was also interpreted as a possible biomarker of concurrent 

BHV-1 and M. haemolytica infection (Aich et al., 2009).     

In general, the activation of the immune system in an infection causes a decrease 

in most plasma amino acid levels.  This is due to the increased need for production of 

immune system cells, such as leukocytes, which can require high levels of specific amino 

acids (Colditz, 2002).  Additionally, the activation of the acute phase response and the 

subsequent production of acute phase proteins also heightens the need for amino acids 

and may reduce available plasma amino acid levels (Sandberg et al., 2007).  Amino acids 

are often transported from the muscle to the liver for this specific purpose.  Degradation 

of these amino acids from muscle can also be induced by disease, and not only are these 
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amino acids used for production of proteins or immune cells, they can also be excreted, 

resulting in further nitrogen loss and muscle wasting (Powanda and Beisel, 2003).  Also, 

as reduced intake is considered a clinical sign of disease (Duff and Galyean, 2007), less 

protein intake via feedstuffs exacerbates the effects of increased nitrogen usage by the 

body in order to mount an immune response.  Protein metabolism is where reductions in 

average daily gain and body weights due to disease come into play – in order to meet the 

demands of the acute phase response and immune system, protein requirements greatly 

increase.  Unless amino acids are supplemented into the diet, muscle protein will be 

catabolized to synthesize plasma proteins (Obled et al., 2003). 

Conversely to the results above, amino acid levels were shown to be elevated after 

BHV-1 infection (Aich et al., 2007).  It is possible that different disease factors, such as 

viral or bacterial, can affect nitrogen metabolism differently.  Increased total plasma N 

concentrations have also been shown to be greater in cattle treated for BRD than in those 

that were not (Montgomery et al., 2009).  Cattle challenged with IBRV also had an 

increase in total plasma proteins, increased serum N, while excretion of N increased, 

indicating that disease challenge increased N turnover and affected how N was utilized 

by tissue (Orr et al, 1988).  Overall plasma nitrogen and protein increases are most likely 

due to the proliferation of the acute phase proteins and immune cells and molecules.   

The variability of the effects of BRD on amino acid and protein metabolism may 

be due to the exact disease model used.  LPS injections, which are a model of bacterial 

infections, tend to decrease amino acid concentrations, whereas viral infections have 

shown to cause an increase in serum amino acids.  The variability of pathogens that can 

cause BRD also convolutes how BRD affects metabolism, and thus makes the search for 
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a biomarker of BRD more challenging.  There are, however, emerging technologies that 

may hold the key to identifying BRD biomarkers. 

Metabolomics 

Metabolomics is a discipline that may help in the search for BRD-related 

biomarkers.  Metabolomics is considered the final “omics” science – the last step in the 

cascade that begins with genomics, proceeds to proteomics, and concludes with 

metabolomics.  Metabolomics focuses on small metabolites found in a specific biological 

fluid, like blood, urine, saliva, or tissues such as muscle or liver.  Metabolomics is 

performed using analytical chemistry platforms like mass spectrometry and nuclear 

magnetic resonance (NMR).  Examining changes in metabolite profiles, also known as  

metabolomes, of biological fluids of BRD cattle could expand knowledge of the 

physiological changes that occur during BRD infection, as well as help in the detection of 

biomarker(s) of disease. 

History 

 The field of metabolomics is relatively new to the biological sciences with the 

term first being coined in the late 1990s (Oliver et al., 1998; Nicholson et al., 1999).  The 

study of small metabolites has been around for many years – some have dated the earliest 

example of metabolomic research to Linus Pauling and his research in the 1960s 

(Vinayavekhin et al., 2009).  However, what makes the new field of metabolomics 

special is not only the analytical methods used, but also the advent of bioinformatics 

software that can analyze large multivariate data sets.   

The field of metabolomics can be divided into separate disciplines, all of which 

fall under the metabolomics umbrella.  There has been some debate about the two major 
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terms; metabolomics and metabonomics.  Some propose that these two terms are 

interchangeable (Madsen et al., 2010), while others have defined the two separately, with 

metabolomics defined as the identification and quantification of all the metabolites in a 

biological system (Fiehn et al., 2002), and metabonomics defined as the dynamic 

modeling of changes in a system due to biological stimuli (Nicholson et al., 1999; Dunn 

et al., 2005).  Recently, the researchers who were at the forefront of the development of 

metabonomics/metabolomics published an article stating that the two could be used 

interchangeably, as their separate meanings had become archaic (Nicholson and Lindon, 

2008).  This paper will use metabolomics as the overall term to broadly describe the 

research of the field.   

Metabolic profiling focuses on the quantification of a specific pathway or a 

specific group of compounds, all of which are known.  Related to metabolic profiling is 

targeted profiling, which usually involves the quantification of a few known compounds 

in the same chemical class (Dettmer et al., 2007).  Metabolic fingerprinting focuses on 

the full metabolic profile, also known as the whole metabolome of the tissue or biological 

fluid.  From these fingerprints, samples can be classified into groups and comparisons 

among groups performed.  In addition, this “global” analysis involves the identification 

of the metabolites that are causing the metabolome changes, which are usually unknown 

at the start of an experiment (Fiehn, 2002; Orešič, 2009). Metabolic footprinting is 

another term used to describe the evaluation of the metabolites present in spent growth 

media of cultured cells.  This method is useful because it does not require the extraction 

of intracellular metabolites (Dunn et al., 2005). 
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Applications of metabolomics are spread across the biological sciences.  One of 

the first uses of metabolomics was to examine compound toxicity and how those toxins 

created metabolic perturbations in the NMR profiles of mode l organisms (Holmes et al., 

1998).  Metabolomics has also been used as a way to measure how genes can affect 

multiple metabolic pathways – metabolomics allows for the examination of many 

biological circuits at one time (Fiehn, 2002).  The diagnosis and prediction of diseases 

has also benefited from metabolomics usage (Feng et al., 2009). 

Methods 

 Metabolomic analyses are performed using any number of analytical chemistry 

methods.  The two most common methods are 
1
H nuclear magnetic reasonance 

spectroscopy (NMR) and mass spectrometry (MS) (Vinayavekhin et al., 2010).  NMR is 

usually utilized alone, while MS is commonly coupled to a preceding separation 

technique, such as gas chromatography (GC) or liquid chromatography (LC) (Dettmer et 

al., 2007).  The metabolomics workflow is similar among the treatments, although there 

are differences in sample preparation depending upon the analysis technique.   

 Sample preparation usually involves multiple steps, both through extraction or 

derivitization depending on the analysis type.  One of the most important steps, however, 

is the halting of all enzymatic activity when the sample is taken.  This can be done 

through freezing or the addition of enzymatic stopping reagents (Viant, 2009).  The level 

of sample preparation beyond halting of enzymatic activity depends greatly on the 

analytical method used.  The extraction of the small metabolite fraction is also important 

to remove interfering components, such as proteins.  This process is done through the 
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addition of organic solvents, such as acetonitrile or methanol to the sample, which causes 

precipitation of the protein portion (Want et al., 2005).    

 After extraction of the samples, various platforms of analytical chemistry, such as 

mass spectrometry coupled with a chromatographic precursor, or NMR analyze the 

sample.  These platforms are explained in further detail below.  These platforms are 

important; however, many times the data analysis portion of metabolomics research is the 

limiting factor.   

Mass Spectrometry 

 Mass spectrometry greatly predates metabolomics; mass spectrometry was first 

discovered in 1897 when Sir Joseph Thomson measured the mass to charge (m/z) ratios 

during his cathode ray experiments (Dass, 2001; Downard, 2004).  However, modern 

mass spectrometry did not catch on until the 1940s, and developments since then, such as 

new ionization techniques (electrospray ionization (ESI)), as well as coupling with 

separation techniques such as gas chromatography and liquid chromatography, have 

helped mass spectrometry become an analytical workhorse of the biological sciences. 

 Mass spectrometry is popular because of its high sensitivity and versatility.  It can 

analyze and produce mass spectra for most, if not all compound classes including all 

elements, and has great versatility in what type of samples it can analyze (gas, liquid, 

polar, etc.).  Additionally, mass spectrometers are very sensitive and can detect very low 

concentrations of compounds in most samples (Dass, 2001; Dettmer et al., 2007). 

 All mass spectrometers, no matter the type, have three basic components; and ion 

source, mass analyzer, and ion detector.  The ion source introduces molecules into the 

rest of the mass spectrometer, while also adding a charge or converting the molecules to 
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ions.  The ions then enter the mass analyzer, where they are separated according to mass 

and charge.  Finally, the charged ions pass to the ion detector, where the mass spectra are 

recorded.  The entirety of the mass spectrometer is operated under a vacuum to prevent 

the collision of the charged ions with other gas molecules (Downard, 2004). 

 There are many different types of mass spectrometers, and one of the major 

differences between the types is how the molecules are ionized.  Types of ionization 

include matrix assisted laser/desorption ionization (MALDI), atmospheric pressure 

chemical ionization (APCI), electrospray ionization (ESI), electron ionization (EI), 

among others too numerous to list here (Griffiths and Wang, 2009).  EI was generally 

considered the traditional method of ionization techniques (Downard, 2004), but other 

types such as MALDI and ESI are becoming more commonly used (Griffiths and Wang, 

2009).  Mass spectrometers can also be classified by their mass analyzer type.  Common 

mass analyzers include time-of-flight (TOF), single or triple quadrupole, and fourier 

transform (FT) analyzers (Dass, 2001).  Triple quadrapole analyzers are generally 

considered the standard workhorse for small metabolite analysis (Lu et al., 2008), 

although TOF and FT are also used.    

Separation Methods 

The use of gas chromatography coupled to mass spectrometry (GC-MS) has 

greatly increased since the year 2000.  This is due to the low cost of GC-MS compared to 

other methods such as NMR or LC-MS, along with high resolution and repeatability, 

high sensitivity and the ability to detect a wide range of molecules.  However, GC-MS 

also takes longer compared to faster high thorough-put methods like NMR, and requires a 

derivitization step (Kopka, 2006; Shulaev, 2006).   
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One of downsides of GC-MS platforms is that most samples require a 

derivitization step, which is necessary to increase thermal stability and volatility of polar 

metabolites (Dettmer et al., 2007).  This is usually done through trimethylsilylation of the 

metabolites.  Roessner et al. (2000) tested multiple trimethylsilylation reagents, and 

found that N-methyl-N-(trimethyl)trifluoroacetamide (MSTFA) gave the most accurate 

results over a wide range of chemical compound classes.  This same trial also examined 

methoximation procedures – methoximation works to stabilize sugars and prevent them 

from forming ring structures.  These derivitization procedures have become common 

among GC-MS based metabolomic studies across a wide range of disciplines, from 

studies involving plant metabolites (Choi et al., 2010) to levels of serum metabolites in 

humans (Yan et al., 2009).   

Liquid chromatography attached to mass spectrometry (LC-MS) is another 

important metabolomic platform.  LC-MS, while similar in name to GC-MS, does not 

usually require derivitization – however, its libraries are limited in comparison to NMR 

and GC-MS (Shulaev, 2006).  Most LC performed today is high performance liquid 

chromatography (HPLC), where the mobile phase liquid is injected under high pressure 

onto the solid-phase column (Ardrey, 2003).  Chromatography, especially HPLC, is 

becoming more popular in metabolomics as this technique is able to analyze any 

compound that can be dissolved in liquid (Allwood and Goodacre, 2010).     

Nuclear Magnetic Resonance 

NMR was the original analytical method used when the term „metabonomics‟ was 

coined (Nicholson et al., 1999).  NMR was developed in the mid-1940s, and has been 

used for many years as a potent molecular structure elucidation technique (Günther, 



21 
 

1995).  NMR detects structures by measuring the interaction of radiofrequency 

electromagnetic radiation with the nuclei of molecules while in a strong magnetic field 

(Rahman and Choudhary, 1996).  Each part of a molecule has a separate absorption band 

on the spectra that give a specific signal depending on its structure.  For example, a 

methanol molecule will have separate signals for the OH and CH3 groups, and the 

functional groups will have a signature display, such as single peaks, doublets, and so on 

(Canet, 1996).  This specificity of signals allows for the structural identification of 

various molecules and compounds. 

NMR is still highly useful in the realm of metabolomics research today.  It is one 

of the quickest analytic methods, requiring very little sample preparation, and is non-

destructive to samples.  Basically, for biofluids such as serum or plasma, no processing is 

required except for the addition of a less than 1% saline solution for dilution purposes 

(Beckonert et al., 2007).  However, the cost of NMR can be prohibitive, especially to 

many smaller laboratories.  Additionally, NMR spectra can be very convoluted, due to 

the lack of separation techniques prior to analysis, and also is unable to detect metabolites 

present at low concentrations (Shulaev, 2006).    

Advances have been made in NMR technology that can fix some of these 

convolution problems.  Notably, the development of two-dimensional NMR has 

increased specificity.  Two-dimensional NMR records data from two time domains – the 

first collection, as discussed above, followed by successively incremented delay.  This 

enables the detection of previously undetectable properties, such as spin-spin coupling 

and resonance frequencies (Günther, 1995).  Two-dimensional NMR separates the 
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overlapping resonances that cause convolution in regular, one-dimensional NMR 

(Ludwig and Viant, 2009).   

NMR has been used in all aspects of metabolomics.  From metabolic profiling of 

humans with bipolar disorder (Sussulini et al., 2009), to differences in the serum 

metabolome of patients with leukemia (Macintyre et al., 2010), NMR has been beneficial.  

NMR has been the most utilized form of metabolomics analysis in nutritional 

metabolomics (Scalbert et al., 2009).  Metabolic footprinting, or extracellular 

metabolomics, also utilizes NMR technology (Behrends et al., 2010). 

Disease Detection and Biomarkers 

 Although metabolomics first began in the plant and bacterial realms, it has 

quickly spread to mammalian systems as a way to discover biomarkers of various 

diseases.  Metabolomics has been utilized in a wide range of diseases in both humans and 

laboratory animal models.  Diseases have ranged from neurological disorders such as 

motor neuron disease in humans (Rozen et al., 2005) to parasite infestations in mice (Li 

et al., 2008).  Both MS and NMR analytical methods have been used in mammalian 

systems, so investigations using both of those research methods will be discussed.  The 

studies discussed also use a variety of biological fluids and tissues, although urine and 

blood are most commonly used.   

 The identification of early biomarkers of cancer has been an area of fairly rapid 

development.  Because of its high death rate, pancreatic cancer has been the subject of 

much biomarker research, with biomarkers being identified in plasma (Urayama et al., 

2010) and saliva (Sugimoto et al., 2010).  Biomarkers of colorectal cancer have also been 

identified in serum (Ritchie et al., 2010; Ludwig et al., 2009), as well as in tissues from 
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the digestive tract (Chan et al., 2009; Denkert et al., 2009) and urine (Feng et al., 2009).  

Breast cancer biomarkers have also been under scrutiny, with tissue (Sitter et al., 2009), 

saliva (Sugimoto et al., 2010) and urine (Chen et al., 2009) all being examined.  

Biomarkers of lung cancer, which is the leading cause of cancer related deaths, have also 

been found in urine (Matsumura et al., 2010) and tissue (Fan et al., 2009).   

 Biomarkers determined by metabolomic techniques have also been found in 

subjects with lung injury and damage.  In mice dosed intratracheally with inflammatory 

cytokines in order to simulate lung injury, a decline in energy metabolites in lung tissue 

was observed when examined via NMR (Serkova et al., 2008).  The severity of the lung 

inflammation/damage was also able to be distinguished using the NMR spectral profiles.  

(Serkova et al., 2008).  NMR was also used to examine bronchial-alveolar lavage fluid 

from children with chronic cystic fibrosis who had either high or low levels of 

inflammation.  Metabolic profiles easily distinguished between the two inflammation 

groups, with high inflammation patients having increased complexity and higher 

concentrations of most metabolites, while low inflammation patients had overall lower 

concentrations of all metabolites (Wolak et al., 2009).     

 Metabolomics has also been used to examine different bacterial infections and 

their effects on metabolism and metabolite profiles.  Feng et al. (2008) injected mice with 

a combination of lipopolysaccharide and galactosamine into the peritoneal cavity.  The 

plasma profiles of small metabolites, including energy substrates and amino acids, were 

different between the control and injected mice.  Similarly, mice infected with bacterial 

meningitis could be distinguished from control mice by examining NMR profiles of 

cerebrospinal fluid (Himmelreich et al., 2009).  Urinary metabolite profiles can also 
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distinguish between lung infections and controls using two separate bacteria, 

Staphylococcus aureus and Streptococcus pneumonaie.  The differences in the urinary 

metabolic profiles were so definite that not only could non-infected versus infected mice 

be separated, but the two different bacterially infected mice groups could also be 

distinguished (Slupsky et al., 2009).  

 Viral infections can also change the metabolome of biological fluids and tissues.  

Mice injected with lymphocytic choriomeningitis virus (LCMV) had differing metabolic 

profiles from control mice, including a decline in the activity and levels of metabolites 

from the Kreb‟s cycle in the blood (Wikoff et al., 2009).   Xue et al. (2009) also observed 

that serum profiles could distinguish between and be used to classify patients suffering 

from Hepatitis B virus infections.   

Current Applications in Animal Science 

Metabolomics in production animals has lagged behind metabolomics research in 

the plant, bacterial, lab animal and human areas.  Few papers have been published 

regarding changes in farm animal metabolites due to disease or nutrition. This research 

has included examining the effects of feeding L-arginine on the serum metabolome in 

pigs (He et al., 2009), using metabolome profiling to detect growth hormone usage in 

racehorses (Kieken et al., 2009), and work on determining biomarkers of BRD mortality 

in beef cattle and effect of stress coupled with a viral infection (Aich et al., 2007; Aich et 

al., 2009).  The use of anabolic steroids in cattle has also been shown to be able to be 

distinguished from control cattle via NMR metabolomics, indicating that using metabolic 

signatures for identification of users of anabolic steroids (whether human or performance 

animal) is feasible (Dumas et al., 2005).  Milk metabolites have also been examined in 



25 
 

order to aid in selection of cows that can handle the stressors of early lactation more 

satisfactorily (Klein et al., 2010).   

There are many applications for metabolomics in the animal sciences.  

Metabolomics could aid in the detection of drug toxicity, and also eventually decrease the 

number of laboratory animals euthanized for histopathological toxin screening, if toxin 

levels can be detected via non-invasive biological fluids (Jones and Cheung, 2007).  

Examining metabolic signatures could aid in genetic selection of animals better suited for 

varying climates or production schemes, as well as aid in identification of high disease 

risk animals in order to decrease unnecessary antibiotic usage.  The identification of high 

risk cattle, or even the identification of early biomarkers for prevalent animal diseases, 

such as BRD, could greatly help the detection and treatment of BRD infected animals by 

allowing for earlier, objective, diagnosis.   

Summary 

 BRD is the leading cause of mortality in North American feedlots, and affects a 

multitude of biological systems within the animals, including immune activation and 

energy/protein metabolism.  The biological changes that occur with disease status, while 

not beneficial to the animal, may prove to be useful for identifying infected animals 

before the presentation of clinical signs.  As has been shown in human diseases and 

model organisms, disease status can be differentiated and biomarkers identified using 

metabolomic techniques.  When applied to BRD, metabolomics could allow for the 

discovery of early biomarkers of infection in high risk cattle, and lead to improved 

diagnosis and management.   
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CHAPTER III 

 

 

USE OF METABOLOMIC TECHNIQUES TO DETERMINE METABOLIC 

CHANGES IN STEERS INFECTED WITH PATHOGENS OF BOVINE 

RESPIRATORY DISEASE  

Abstract 

Bovine respiratory disease (BRD) is the most costly disease in North American 

feedlots; however, diagnosis is subjective.  Metabolomics, or the study of the total 

metabolic profile of a biological tissue or fluid, may provide a way for objective 

diagnosis. The objective was to identify biomarkers of BRD using metabolomic 

techniques (i.e., GC/MS).  Twenty-four Angus crossbred steers were divided into four 

treatment groups in a randomized complete block design (n = 3 steers/block/treatment).  

Treatments were: 1) exposure to 2 BVDV persistently infected (PI) steers for 72 h 

(BVDV);  2) exposure to the 2 PI-BVDV steers for 72 h and intratracheal challenge with 

Mannheimia haemolytica on d 0 (BVDVMH); 3) intratracheal challenge with M. 

haemolytica on d 0 (MH); and 4) no challenge (CTRL).  Blood samples were collected at 

-72, 12, 24, and 48 h of M. haemolytica challenge.  Using a GC/MS platform, total 

metabolic fingerprints of plasma were obtained.  Normalized abundance values were 

analyzed and means separated using Tukey‟s procedure (GeneSpring MS 1.2; Agilent  
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Technologies, Santa Clara, CA), and metabolites were identified using the NIST ‟05 MS 

Database (NIST, Gaithersburg, MD). At 12 h after infection, the amino acids isoleucine 

decreased (P = 0.003) in BVDVMH and MH cattle, glutamic acid decreased in 

BVDVMH, BVDV, and MH steers (P = 0.003), and tyrosine decreased in MH steers (P = 

0.005) compared with CTRL steers.  Decreased plasma levels of threonic acid (P = 

0.040) and citric acid (P = 0.003) were found in BVDVMH, BVDV, and MH cattle 

compared with CTRL.  Mannitol levels were decreased in BVDVMH and MH steers (P = 

0.014), and galacturonic acid (P = 0.049) and galactofuranoside (P = 0.024) were 

decreased in BVDVMH, BVDV, and MH cattle.  Propanoic acid decreased in BVDVMH 

and BVDV steers (P = 0.049), while galactose decreased in BVDV and MH steers (P = 

0.037).  At 24 h post infection, 2-ethyl-3-hydroxypropionic acid (P = 0.003) was 

observed to decrease in BVDVMH and BVDV steers, while tyrosine (P = 0.039) and 

glycine (P = 0.035) decreased in only MH steers.   Forty-eight hours after infection, 

increases in alanine (P = 0.014) in BVDVMH and BVDV steers and decreases of glycine 

(P = 0.020) in BVDVMH, BVDV, and MH cattle were observed.  Phenylalanine (P = 

0.006) increased in BVDV steers, but was decreased in both BVDVMH and MH steers.  

Valine (P < 0.01) and leucine (P < 0.01) were both increased in BVDVMH but decreased 

in BVDV steers.  Other metabolites that changed included an increase in arabinose in 

BVDV steers, and a decrease in acetic acid in BVDV and MH steers.  Changes in plasma 

amino acid concentrations were further examined through targeted analysis via GC/MS.  

In general, amino acids were observed to be decreased (P < 0.05) in BVDVMH and MH 

steers as compared to CTRL and BVDV steers.  At 12 h after infection, glycine and 

isoleucine levels were decreased in BVDVMH steers compared with CTRL steers.  
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Threonine, serine, proline, methionine, glutamic acid, ornithine, lysine, and tryptophan 

concentrations were decreased (P < 0.05) in BVDVMH and MH steers compared with 

BVDV steers.  Leucine concentrations were increased (P = 0.001) in BVDV steers 

compared with CTRL, BVDVMH, and MH steers.  At 48 h after infection, methionine 

and 4-hydroxyproline levels were decreased (P < 0.03) in BVDVMH and MH steers 

compared with CTRL.   Metabolomics has potential to identify biomarkers; however, 

further analysis and research is needed in order to confirm the identities of possible 

biomarkers.  

Introduction 

Bovine respiratory disease (BRD) is the most common disease in North American 

feedlots (NAHMS, 2000).  It is caused by the combination of exposure to new pathogens 

and stressors that cattle encounter upon arrival at feedlots.  Current diagnostic methods 

are highly subjective and are focused on using visual appraisal and body temperature 

(Duff and Galyean, 2007).  There is a need for the development of definitive, objective 

diagnostic tests that can detect when cattle are in the early stages of BRD.  One way that 

may help to identify novel diagnostic markers is metabolomics.  Metabolomics examines 

all the metabolites of a biological fluid or tissue, such as plasma.  By examining 

metabolites of BRD infected cattle, biomarkers of the disease may be able to be 

identified.  Identification of biomarkers could greatly improve the diagnosis and 

treatment of BRD.  We hypothesized that biomarkers of BRD challenged cattle could be 

identified using metabolomics.  The objective of the experiment was to identify possible 

biomarkers of BRD infection using metabolomic techniques, and then to validate those 

changes using targeted analysis.   
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Materials and Methods 

Animals 

 Twenty-four crossbred Angus steers (initial BW = 313 ± 31 kg) were housed at 

the Nutrition Physiology Research Barn, located at Oklahoma State University, 

Stillwater.  Prior to the start of the experiment, all animals were considered healthy and 

tested seronegative to all pathogens used in this trial using paired serum samples prior to 

the start of the experiment.  All procedures were approved by the Oklahoma State 

University Institutional Animal Care and Use Committee (Protocol # AG0616).   

Treatments 

 Steers were randomly assigned to one of four treatments: 1) exposure to 2 bovine 

viral diarrhea virus persistently infected (PI) steers for 72 h (BVDV);  2) exposure to the 

2 PI-BVDV steers for 72 h and intratracheal challenge with Mannheimia haemolytica on 

d 0 (BVDVMH); 3) intratracheal challenge with M. haemolytica on d 0 (MH); and 4) no 

challenge (CTRL).  Steers were also blocked by weight, with equal numbers of each 

block represented in each treatment (3 steers/block/treatment).  Steers challenged with 

BVDV were transported to the Willard Sparks Beef Research Center (3.2 km) where they 

were exposed to the 2 PI steers (BVDV Type 1b) for 72 h.  M. haemolytica challenge was 

performed by intratracheally dosing steers with 10 ml of solution containing 6 X 10
9
 CFU 

of M. haemolytica serotype A-1 (Buricaga-Robles et al., 2010).  Control steers were 

dosed with 10 ml of phosphate buffered saline solution in the same manner.  All M. 

haemolytica dosing occurred at the same time and same day.  Blood samples were 

collected at -72, 12, 24, and 48 h of M. haemolytica challenge.  Blood samples were 
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collected via jugular venipuncture (Lithium Heparin; Becton Dickinson Vacutainer 

Systems, Franklin Lakes, NJ) with an 18 x 1 gauge collection needle.  Plasma was 

harvested and frozen until time of analysis. 

Metabolomic Analysis 

 Extraction of protein from the plasma samples was done by use of Protein 

Precipitation Plates (Thermo Scientific, Rockford, IL).  All samples were repeated in 

triplicate.  One hundred and eighty microliters (µl) of acetonitrile was added to 60 µl of 

plasma sample in a 2 ml amber glass vial.  One microliter of ribitol (1 mg/ml 

concentration) was added to serve as an internal standard for calibration purposes.  The 

vial was then swirled and the solution was pipetted from the vial into an individual well 

on the precipitation plate.  The plates were centrifuged in an Avanti J-E Centrifuge 

(Beckman-Coulter, Brea, CA) for three minutes at 600 x g.  The clear supernatant was 

removed from the collection plate and pipetted into a new amber glass vial and dried 

completely under a stream of nitrogen.   

 After drying, a derivitization procedure modified from Fiehn and Kind (2006) was 

performed.  Methoxyamine (MOX; Thermo Scientific, Rockford IL) was removed from 

cold storage and allowed to warm to room temperature.  Twenty-five microliters of MOX 

was added to each dried sample.  Vials were swirled and then loosely capped and 

incubated at 45
o
C for 90 minutes.  During the incubation time, N-Methyl-N-

trifluoroacetamide (MSTFA; Thermo Scientific, Rockford, IL) was removed from cold 

storage and warmed to room temperature.  After removal from incubation, samples were 

cooled to room temperature and 160 µl of MSFTA was added to each sample.  Samples 

were then incubated for 30 minutes at 37
o
C in a loosely capped vial.   
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 After the sample cooled to room temperature, the sample was pipetted into glass 

GC inserts (Agilent Technologies, Santa Clara, CA) that contained a mixed hydrocarbon 

standard. The standard consisted of dodecane, heptadecane, eicosane, docosane, and 

pentacosane at individual concentrations of 400 nM in order to aid in retention time 

locking.  Samples were injected onto a 30 m x 250 µm x 0.25 µm HP5-MS column (J & 

W, Agilent Technologies, Santa Clara, CA) in an Agilent 7890A GC, coupled with an 

Agilent 5975C inert XL EI Mass Spectrometer with a triple axis detector (Agilent 

Technologies, Santa Clara, CA).  The sample was injected into the GC in splitless mode 

at a temperature of 250
o
C, and the GC oven was programmed to rise from 50

o
C to 315

o
C 

at a rate of 10
o
C/min.  The flow of the helium gas carrier was set at 1 ml/min, with a total 

run time of 36.5 minutes.  A solvent delay time of 9.8 minutes was selected, with the MS 

source temperature set at 230
o
C, and the MS quadrapole mass analyzer temperature at 

150
o
C.  The sampling rate was set at 3.5 scans/second, with a mass scanning range of 35-

550 m/z. 

Data Processing 

Raw chromatographic and mass spectral data was deposited into Chemstation 

(Agilent Technologies, Santa Clara, CA), and was initially processed and deconvoluted 

using Automated Mass Deconvolution and Identification Software (AMDIS; National 

Institute of Standards and Technology [NIST], Gaithersburg, MD).  The hydrocarbon 

standard mixture was used to create a retention time index library in AMDIS.  This 

library was used to help calibrate the chromatograms and aid in the identification of 

compounds.  The deconvoluted spectra were then imported into GeneSpring MS 1.2 

software (Agilent Technologies, Santa Clara, CA) for statistical analysis.     
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Amino Acid Analysis 

 Plasma amino acid analysis was performed using the EZ:faast Free 

(Physiological) Amino Acid Analysis by GC-MS kit (Phenomenex, Torrance, CA).  All 

reagents and materials for analysis were provided in the kit.  One hundred microliters of 

plasma sample was combined with 100 µl of an internal standard solution containing N-

propanol and 200 nM norvaline as the internal standard.  This mixture was drawn slowly 

through a sorbent tip, after which 200 µl of wash solution containing N-propanol was 

also drawn through the sorbent tip.  Two hundred microliters of eluting medium was 

drawn up into the sorbent tip – and the eluting medium was expelled along with the 

sorbent particles until all particles were removed from the tip.  Following this step, 

derivitizing agents included in the kit were added to the mixture.  After vortexing and 

following a one minute settling period, the upper organic layer was transferred via pipette 

to an autosampler vial and dried under nitrogen until almost dry (<10 min).  The sample 

was reconstituted using the kit-provided reagent.  The solution was transferred to an 

insert and capped for GC/MS analysis.  The final sample was injected onto a 10 m x 0.25 

mm Zebron Amino Acid column (Phenomenex, Torrance, CA) in an Agilent 7890A GC, 

coupled with an Agilent 5975C inert XL EI Mass Spectrometer with a triple axis detector 

(Agilent Technologies, Santa Clara, CA).  Samples were injected via split mode with a 

15:1 split ratio at a temperature of 250
o
C, with the flow set at 1.1 ml helium/min.  The 

GC oven was programmed to rise at 30
o
C/min from 110

o
C to 320

o
C.  The solvent delay 

time was 1.0 minute, and the MS source temperature was set at 230
o
C and the MS 

quadrapole mass analyzer at 150
o
C, with a sampling rate of 3.5 scans/second and a scan 

range of 50-500 m/z.  Amino acid chromatograms and mass spectral data were integrated 
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using Chemstation.  Compounds were quantitated using a standard curve derived from 

standards included in the EZ:faast kit. 

Statistical Analysis and Compound Identification 

In GeneSpring MS 1.2, the spectra were grouped by time point, and normalized 

using the standard MS setting.  Each time point was evaluated individually.  Once the 

data had been normalized, masses were then filtered by relative frequency.  One-way 

ANOVA was performed on the filtered masses, and differences between treated and 

control cattle were examined.  The samples were randomly organized.  The significance 

level was set at 0.05.  In time points where differences were observed between treated 

and control cattle, the Tukey post-hoc test was performed.  The retention times of each 

significantly different metabolite between control and treatment groups were recorded for 

each sample.  The spectrum of the peak at that retention time was examined and its 

identity confirmed in AMDIS using the NIST ‟05 Mass Spectral Database (NIST, 

Gaithersburg, MD) and the Golm Metabolome Database (Max Planck Institute of 

Molecular Plant Physiology, Potsdam, Germany). 

Amino acid data was analyzed using the MIXED procedure of SAS (SAS 

Institute, Cary, NC) with repeated measures.  Animal was the experimental unit and the 

independent variables in the model included treatment and time.  Covariates included 

block, block by treatment, and animal within block by treatment. Random effects were 

block, treatment by block, and animal within treatment by block. The significance level 

was set at α=0.05.  PDiff was used to calculated differences between LSMeans.   
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Results and Discussion 

This challenge model has been shown to induce BRD infection (Burciaga-Robles 

et al., 2010).  Increased rectal temperatures and increased levels of the cytokines IL-1β, 

IL-6, and TNF-α, which are all indicative of infection, were observed in cattle infected 

with BVDV, MH or their combination (Burciaga-Robles et al., 2010).     

Principal Component Analysis. Principal component analysis (PCA) plots for all 

time points are displayed in Figures 1 through 4.  PCA plots allow for the visualization of 

differences over the entire metabolic profile.   

 Prior to the start of the challenge (72 h prior to infection), there was little to no 

separation among the treatment groups (Fig. 1).  This indicates that prior to the start of 

the experiment, all cattle had similar metabolic profiles.  In addition, further statistical 

analysis of the metabolomes showed that no metabolites were significantly different  

among cattle prior to infection.  This allows for the assumption that there were no biases 

among the treatment groups prior to infection and the start of the experiment.   

 Separation of the treatment groups became evident at 12 h after infection (Fig. 2).  

The CTRL and BVDV groups were easily distinguishable from the MH and BVDVMH 

groups, indicating differences existed between their metabolic profiles.  The individual 

cattle in each group also clustered together in the same region, suggesting that changes in 

metabolite concentrations occurred between treatment groups and not within groups.  

There was considerable overlap between MH and BVDVMH steers, which may indicate 

that the profiles of these two groups changed in similar ways.  The overlap of the 

treatments that included the bacterial infection suggests that M. haemolytica may have 

had a greater effect on the metabolic profiles than viral infection.  This may also be due 



35 
 

to the faster response of the body‟s defense systems to M. haemolytica infection.  M. 

haemolytica has been shown to activate the acute phase response and begin raising levels 

of the acute phase proteins within 24 h after challenge, while BVDV infection did not 

cause a response until almost 4 to 8 days after infection (Ganheim et al., 2003).    

 Interestingly, at 24 h after infection (Fig. 3), treatment groups were less 

distinguishable from each other than at either the 12 or 48 h time points.  At 24 h, all 

treatment groups have considerable overlap with each other.  This suggests that there 

were fewer changes in metabolite levels among groups at 24 hours after infection.  This 

result was unexpected, as it was predicted that treatment groups would differentiate from 

each other at all time points after the challenge.  There were still a few metabolites that 

significantly changed at this time point; however, these changes were not enough to 

trigger separation of the treatment groups in the PCA plot. 

 At 48 h post infection (Fig. 4), the trends of the PCA were similar to those of the 

12 h after infection.  The BVDVMH and MH treatment groups overlapped, while both 

the CTRL and BVDV groups were separated out from each other and the other treatment 

groups.  This pattern suggests that M. haemolytica infection caused the metabolic profiles 

of BVDVMH and MH steers to change in a more similar manner.   

 The differences in the metabolic profile of the different treatment groups may also 

be due to the lag time between viral infection and activation of the acute phase response.  

Viral pathogens associated with BRD generally take 7 to 9 days to activate the body‟s 

defense responses, such as the acute phase response (Heegaard et al., 2000; Ganheim et 

al., 2003).  It would follow then that the metabolic profile would also not be fully 

affected until that time.  Changes were seen in some metabolites of BVDV versus CTRL 
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steers at all time points, so it is evident that viral infection at least began to affect 

metabolism.   

 Metabolites Identified by Metabolomic Analysis. The most common metabolites 

that were identified as significantly changing were amino acids and energy substrates.   

 12 h after infection.  At 12 h post infection, the amino acids identified as changing 

in challenged cattle compared with CTRL were isoleucine, glutamic acid, and tyrosine 

(Table 1).  Glutamic acid was lower (P = 0.003) across all treatment groups compared 

with CTRL cattle.  Glutamate (glutamic acid) has been shown to decrease in cattle dosed 

with LPS, one of the major pathogens produced by M. haemolytica (Waggoner et al., 

2009a).  Tyrosine decreased (P = 0.005) only in MH cattle when compared to CTRL, 

which has also been noted to occur in cattle challenged with LPS (Waggoner et al., 

2009b).  Isoleucine was decreased (P = 0.003) in both BVDVMH and MH cattle 

compared with CTRL.  As a branched chain amino acid (BCAA), isoleucine is important 

in protein metabolism.  In most stressed states, such as infection, the BCAA are 

mobilized from muscle stores in order to be utilized for energy.  However, the BCAA are 

quickly catabolized, meaning that their levels in blood are usually decreased compared to 

healthy animals (Harris et al., 2003; Tom and Nair, 2006), which was seen in this 

experiment for cattle challenged with M. haemolytica.  The breakdown of BCAA is 

catalyzed by the rate limiting enzyme branched chained α-keto acid dehydrogenase 

(BCKAD), the activation of which has been shown to be increased by administration of 

inflammatory cytokines such as TNF-α in rats (Nawabi et al., 1990).  TNF-α levels have 

been shown to be increased in BVDV and MH challenged cattle (Burciaga-Robles et al., 

2010).   
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 Threonic acid was also affected by BRD infection, with plasma levels increasing 

(P = 0.040) in BVDVMH, BVDV, and MH cattle versus CTRL (Table 1).  Threonic acid, 

also known as threonate, is formed from L-dehydroascorbate (DHA), which is the 

primary oxidation product of the interaction of ascorbic acid and radical oxygen species 

(ROS; Simpson and Ortwerth, 2000).  Elevated levels of threonic acid could be due to 

increased levels of radical oxygen species being scavenged by ascorbic acid, leading to 

increased oxidation products.  Dwenger et al. (1994) saw improved respiratory function 

in sheep suffering from endotoxin induced lung inflammation when infused with ascorbic 

acid, indicating that ROS species are a mechanism in endotoxin infection, and increased 

levels of threonic acid may be an indicator of neutralization of these species. 

 Citric acid and other energy substrates such as galactose also decreased (P < 0.05) 

at 12 h after infection (Table 1).  Citric acid decreased (P = 0.003) in virally challenged 

calves, as did propanoic acid (P = 0.049).  Galacturonic acid and galactofuranoside 

decreased (P < 0.05) in all challenged cattle.  Galactose decreased (P = 0.037) only in 

BVDV and MH steers.  The production of immune cells can increase energy expenditure, 

which could lead to decrease levels of energy substrates in the blood.  During times of 

inflammatory infection nutrients are often shunted from growth to the production of 

immune cells (Spurlock, 1997) increasing overall energy requirements.  

 24 h after infection.  There were only three metabolites detected as changing at 24 

h after infection (Table 2).  In steers that were challenged with a viral pathogen, 

decreases (P = 0.003) in the plasma concentrations of 2-ethyl-3-hydroxypropionic acid 

were seen.  This metabolite has been indicated as a possible marker of deficiencies in the 

catabolism of isoleucine in humans (Human Metabolome Database [HMDB]; Wishart et 
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al., 2009).  As this biomarker was not indicated in steers challenged with MH, decreases 

in 2-ethyl-3-hydroxypropionic acid may be unique to viral infection.   

 In MH steers, the amino acids glycine and tyrosine were both decreased (P < 

0.04) compared with CTRL (Table 2).  The changes in only cattle challenged with MH 

again allude to the faster pathogenesis of bacterial infection.  The dosing of cattle with 

LPS has shown to decrease levels of both glycine and tyrosine in plasma for at least 12 h 

after challenge (Waggoner et al., 2009b).   

 48 h after infection.  Table 3 exhibits the metabolites that were different between 

challenged and control cattle.  Alanine, glycine, phenylalanine, valine, and leucine were 

all detected as differing (P < 0.05) from CTRL.  Alanine increased (P = 0.014) in 

BVDVMH and BVDV cattle, but had no change in MH steers.  Interestingly, glycine 

reacted in the opposite manner, decreasing (P = 0.020) in both BVDVMH and BVDV 

cattle, but increased in MH steers.  Phenylalanine, valine, and leucine all decreased (P < 

0.01) in BVDVMH steers, but increased in BVDV steers.  Phenylalanine also decreased 

(P = 0.006) in MH cattle.  These changes indicate that amino acid metabolism is affected 

differently depending on the severity and type of infection, whether bacterial or viral.  

Decreased amino acid concentrations could also be due to increased use of amino acids 

for energy (Beisel, 1975).  Amino acid concentrations have been shown to increase 

during a viral challenge with BHV-1 (Aich et al., 2007), and increased valine, in 

particular, was identified as a biomarker of BHV-1 and M. haemolytica infection (Aich et 

al., 2009). However, it has also been stated that the mobilization of amino acids for 

production of immune cells can decrease plasma concentrations (Colditz, 2002).  Levels 

of amino acids were generally decreased at 48 h after infection for steers that had a 
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bacterial component of the challenge.  This could be due to the faster action of endotoxin 

infection, which would cause an acute phase response, and thus deplete plasma levels of 

amino acids.    

 Acetic acid and arabinose were also affected (P < 0.04) by infection (Table 3).  

Acetic acid levels were lower (P = 0.04) in both BVDV and MH cattle, while arabinose 

was increased (P = 0.024) in BVDV.  As seen at the 12 h time point, energy requirements 

change during inflammation and infection.  Acetic acid and arabinose can both be utilized 

for energy.     

 Amino Acid Analysis and Comparisons. Because amino acids were identified as 

being affected by BRD infection at all sampling times, targeted analysis of amino acids 

was performed.  Amino acid data is displayed in Tables 4 through 8, as well as in 

Appendix 1.   At 72 h prior to infection, serine was observed to be lower (P = 0.042) in 

BVDVMH cattle than other treatments, which indicates that the BVDVMH group may 

have had naturally lower levels of serine (Table 4).  There were no differences among 

treatment groups for total essential, non-essential, glucogenic, and ketogenic amino acids. 

At 12 h after infection, changes were observed in glycine and isoleucine (Table 

5).  Glycine levels were decreased (P = 0.020) in BVDVMH steers compared with CTRL 

and BVDV.  Glycine has been shown to be decreased in both pigs dosed with complete 

Freud‟s adjuvant, which contains killed Mycoplasma tuberculosis cells (Melchior et al., 

2004), as well as in cattle dosed with LPS (Waggoner et al., 2009b).  Although no 

changes were apparent in glycine at 12 h after infection in the metabolomic analysis, 

lower glycine levels were apparent in MH steers at 24 h after infection.  Glycine has been 

implicated as a potential inhibitor of the inflammatory response (Gunderson et al., 2005), 
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and reduced levels may coincide with an increase in inflammatory substances.  Glycine is 

also a component of glutathione (GSH), which can scavenge free radicals (Wu et al., 

2004). Isoleucine was decreased (P = 0.015) in both BVDVMH and MH steers compared 

with CTRL and BVDV steers.  Isoleucine was shown to be decreased as well in the 

metabolomic data for BVDVMH and MH steers.  The amino acid results for isoleucine 

match those of the metabolomic analysis, in which isoleucine levels decreased in both 

BVDVMH and MH steers.   

Changes in amino acid profiles of infected steers were also seen at 24 h after 

infection (Table 6).  Interestingly, leucine, another important BCAA, was higher (P = 

0.001) in BVDV steers as compared to all other treatment groups.  Methionine was 

observed to have changed similarly, with BVDV steers having increased (P = 0.008) 

plasma concentrations compared to other treatment groups.  Isoleucine, threonine, 

proline, glutamic acid, ornithine, and tryptophan all followed a similar trend where both 

BVDVMH and MH steers had decreased (P < 0.008) concentrations of those amino 

acids, compared with CTRL and BVDV steers.  Tryptophan has been implicated as 

having important function in the immune response which is explained in more detail 

below.  Glutamic acid (glutamate) is another component of glutathione, which can 

scavenge free radicals (Wu et al., 2004).  BVDVMH and MH cattle also had decreased (P 

< 0.041) levels of serine and lysine compared with BVDV steers.  This may be because 

of the bacterial infection factor – the faster action of LPS infection causes increased 

demand of many amino acids for the production of immune system products.   

Concentrations of total amino acid classes were different among treatment groups 

at 24 h after infection.  Total essential amino acids were higher (P = 0.007) in BVDV 
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steers than remaining treatment groups.  BVDVMH and MH steers had decreased levels 

of total non-essential (P = 0.021) and glucogenic (P = 0.000) amino acids compared with 

CTRL and BVDV steers.  Total ketogenic amino acids were greater (P = 0.001) in 

BVDV steers than other groups, and MH steers had the lowest total ketogenic amino acid 

levels of all treatment groups. These trends follow throughout the data, where steers 

challenged with MH had lower levels of amino acids than the non-MH challenged 

groups.   

At 48 h after infection, the only changes were seen with methionine and 4-

hydroxyproline (Table 7). Methionine and 4-hydroxyproline levels were decreased (P < 

0.022) in BVDVMH and MH steers compared with CTRL.  Methionine levels were 

lower in BVDVMH and MH steers than CTRL steers at both 24 and 48 hours after 

infection.  This is again indicative of the possible faster effect of bacterial infection. 

There were also changes in amino acids that were independent of time, i.e., 

differences among treatments across the entire experiment (Table 7).  Serine levels were 

decreased (P = 0.022) in BVDVMH compared with CTRL steers.  BVDVMH and MH 

steers also had lower (P = 0.022) serine levels than BVDV steers.  The general trends 

follow those seen in other parts of the analysis, with MH and BVDVMH steers differing 

from the CTRL and BVDV steers.  Two interesting amino acids that decreased (P < 

0.041) were glutamine and tryptophan.  Glutamine has been indicated as an important 

amino acid during the immune response.  Specifically, glutamine has been shown to be 

important for cell growth and as a substrate to enhance growth of immunological cells 

(Wilmore et al., 1998).  Low levels of glutamine, as was seen in BVDVMH and MH 

cattle when compared to CTRL cattle, have also been shown to decrease major 
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histocompatibility complex protein presentation by 40% (Juretic et al., 1994). Major 

histocompatibilty complexes (MHC) are molecules on the surface of cells that present 

proteins and antigens that can be recognized by T cells.  Once T cells contact a MHC that 

is presenting antigens, the T cell can then proliferate into additional T cells that can 

recognize and destroy cells that are presenting that antigen (Kindt et al., 2006). A 

decrease in the levels of glutamine would decrease the ability of the immune system to 

activate its cells and effectively fight off infection.   

Both BVDVMH and MH cattle had lower (P = 0.001) levels of tryptophan than 

BVDV and CTRL steers.  Tryptophan has been shown to decrease with lung 

inflammation, indicating increased tryptophan catabolism (Melchior et al., 2004).  

Tryptophan and its metabolites have also been identified as being able to perform 

functions such as scavenging free radicals (Goda et al., 1999).  The decreased levels of 

tryptophan may be due to the increased utilization of tryptophan to aid in the immune 

response and ROS scavenging. 

Although the metabolomic and amino acid data did not match exactly, there were 

similarities in the directional changes of amino acids.  In the majority of amino acids, 

even if the changes were not statistically significant, bacterial challenge caused decreases 

in amino acid concentrations.  This was seen in both metabolomic and the targeted 

analysis data.  In addition, the volume of metabolites that were present in the plasma 

during metabolomic analysis may have inhibited the detection of changes in some less 

abundant amino acids.  In future analyses, separating plasma into fractions based on 

polarity may allow for the identification of additional metabolites and amino acids that 

may be relevant biomarkers.  The use of metabolomics to identify BRD biomarkers has 
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promise, although more research is needed in order to confirm results and definitively 

indentify biomarkers. 

Implications 

 These results indicate that BRD affects both amino acid and energy metabolites.  

The results identified that amino acids may serve as biomarkers of BRD infection, as well 

as other metabolites, such as threonic acid.  The amino acid targeted analysis did not, 

however, match all the amino acids observed to be changing during the metabolomic 

analysis, indicating that further work is needed to confirm biomarker identities.  In 

addition, the establishment of baseline levels of biomarkers will need to be established.  It 

may be beneficial to identify multiple metabolites that would, together, serve as 

biomarkers of BRD infection.  These results indicate it may be possible to identify 

biomarkers of BRD with further research.   
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Table 1. Normalized abundances for metabolites found to be significantly changing 

between control (CTRL) and bovine viral diarrhea virus and M. haemolytica infection 

(BVDVMH), bovine viral diarrhea virus (BVDV),  and M. haemolytica (MH) treatments 

at 12 hours after infection (N=24).   

Metabolite CTRL BVDVMH BVDV MH P-value 

Isoleucine  1.376 0.220
*
 1.415 0.468

*
 0.003 

L-glutamic Acid 1.527 0.232
*
 0.536

*
 0.181

*
 0.003 

Tyrosine 1.379      0.672    0.910 0.537
*
 0.005 

Threonic Acid 0.103 0.991
*
 0.610

*
 0.885

*
 0.04 

Citric Acid 2.748 0.109
*
 1.114

*
 0.052

*
 0.003 

Mannitol 0.924 0.190
*
 0.710 0.075

*
 0.014 

Galacturonic Acid 1.160 0.179
*
 0.228

*
 0.395

*
 0.049 

Galactofuranoside 1.084 0.101
*
 0.336

*
 0.327

*
 0.024 

Propanoic Acid 1.018 0.297
*
 0.171

*
  0.450 0.049 

Galactose 0.965      0.425 0.299
*
 0.160

*
 0.037 

*
denotes difference from CTRL steers (P < 0.05) 

 

 

Table 2. Normalized abundances for metabolites found to be significantly changing 

between control (CTRL) and bovine viral diarrhea virus and M. haemolytica infection 

(BVDVMH), bovine viral diarrhea virus (BVDV),  and M. haemolytica (MH) treatments 

at 24 hours after infection (N=24).   

Metabolite CTRL BVDVMH BVDV MH P -value 

2-ethyl-3-hydroxypropionic Acid 1.990  0.163
*
  0.163

*
  1.523 0.003 

Tyrosine 0.872 0.666 1.531 0.337
*
 0.039 

Glycine 0.503 0.971 0.472 0.080
*
 0.035 

*
denotes difference from CTRL steers (P < 0.05) 
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Table 3.  Normalized abundances for metabolites found to be significantly changing 

between control (CTRL) and bovine viral diarrhea virus and M. haemolytica infection 

(BVDVMH), bovine viral diarrhea virus (BVDV),  and M. haemolytica (MH) treatments 

at 48 hours after infection (N=24).   

Metabolite CTRL BVDVMH BVDV MH P-value 

Alanine 0.214 1.111
*
 0.936

*
 0.457 0.0139 

Glycine 1.248 0.095
*
 0.269

*
 0.665

*
 0.020 

Phenylalanine 0.191 0.033
*
 1.409

*
 0.125

*
 0.006 

Valine 0.462 0.073
*
 1.236

*
 0.323 <0.01 

Leucine 0.230 0.072
*
 1.191

*
 0.099 <0.01 

Arabinose 0.400 0.627 1.190
*
 0.571 0.024 

Acetic Acid 0.989 0.951 0.110
*
 0.214

*
 0.040 

*
denotes difference from CTRL steers (P < 0.05) 
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Table 4. Least square means of plasma amino acid concentrations (nM/mL) of steers 

infected with either bovine viral diarrhea virus (BVDV) and/or M. haemolytica (MH) at 

72 h prior to infection (N=24). 

Amino Acid CTRL BVDVMH BVDV MH SE P-value 

Valine 207.72 337.66 441.84 245.28 42.68 0.165 

Leucine 112.92 186.69 152.74 157.83 12.39 0.318 

Isoleucine 74.30 85.04 84.72 82.09 2.04 0.891 

Threonine 38.87 40.24 40.76 33.56 1.35 0.867 

Methionine 5.66 6.55 6.09 6.64 0.18 0.983 

Phenylalanine 40.03 51.48 48.76 49.04 2.05 0.563 

Lysine 71.81 61.16 80.14 69.03 3.20 0.999 

Histidine 4.15 3.52 4.62 3.57 0.21 0.679 

Tryptophan 16.51 16.35 21.74 15.19 1.19 0.402 

Alanine 365.32 368.97 388.56 377.51 4.22 0.980 

Sarcosine 2.74 0.00 4.01 0.00 0.82 0.520 

Glycine 276.20 259.85 301.59 283.11 7.06 0.960 

α-Aminobutyric Acid 7.60 13.96 10.45 8.61 1.14 0.437 

Serine 104.13
b
 56.53

a
 118.49

b
 101.62

b
 3.72 0.042 

Proline 93.86 96.88 99.12 101.09 1.27 0.973 

Asparagine 13.02 10.86 18.36 17.37 1.45 0.813 

Aspartic Acid 2.80 1.75 2.09 2.52 0.19 0.797 

4-Hydroxyproline 20.95 18.45 23.77 19.77 0.93 0.730 

Glutamic Acid 370.39 361.43 396.96 397.72 7.56 0.961 

Glutamine 56.64 26.07 39.98 41.07 5.10 0.743 

Ornithine 71.61 101.57 103.15 114.76 7.51 0.705 

Tyrosine 23.88 33.46 28.41 32.10 1.75 0.829 

Essential AA 562.81 797.88 876.76 662.23 57.05 0.145 

Non-Essential AA 1373.73 1382.27 1517.04 1496.77 30.60 0.893 

Glucogenic AA 1791.00 1832.15 2153.82 1903.76 66.37 0.580 

Ketogenic AA 374.79 477.95 455.86 438.84 18.11 0.676 
a 
within row, means with different superscripts differ (P < 0.05).  
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Table 5.  Least square means of plasma amino acid concentrations (nM/mL) of steers 

infected with either bovine viral diarrhea virus (BVDV) and/or M. haemolytica (MH) at 

12 h after infection (N=24).  

Amino Acid CTRL BVDVMH BVDV MH SE P-value 

Valine 340.69 387.84 419.60 242.54 31.52 0.562 

Leucine 123.64 99.82 157.70 77.29 14.04 0.229 

Isoleucine 76.34
a
 32.41

b
 77.24

a
 33.09

b
 10.38 0.015 

Threonine 31.57 20.93 46.88 15.76 5.61 0.347 

Methionine 5.93 2.50 6.04 2.97 0.77 0.203 

Phenylalanine 53.95 48.42 60.76 42.08 3.25 0.354 

Lysine 49.36 18.67 40.82 23.29 5.91 0.091 

Histidine 4.46 6.20 5.84 10.64 1.09 0.080 

Tryptophan 17.31 10.71 14.79 9.79 1.44 0.342 

Alanine 309.98 296.46 305.05 240.52 13.12 0.362 

Sarcosine 4.61 5.08 2.92 3.99 0.38 0.570 

Glycine 202.41
b
 112.80

a
 231.39

b
 172.20

ab
 20.71 0.020 

α-Aminobutyric Acid 8.69 6.31 8.43 5.60 0.63 0.079 

Serine 67.73 44.34 77.01 48.31 6.37 0.503 

Proline 81.47 66.14 89.62 55.25 6.28 0.055 

Asparagine 6.46 5.62 9.86 5.85 0.81 0.511 

Aspartic Acid 1.94 N.D.
*
 3.88 1.63 0.50 0.063 

4-Hydroxyproline 20.86 18.87 21.88 17.66 0.78 0.699 

Glutamic Acid 282.25 207.43 250.38 172.47 19.65 0.158 

Glutamine 75.30 53.89 50.75 58.09 4.47 0.497 

Ornithine 45.36 25.79 46.52 32.47 4.12 0.432 

Tyrosine 18.89 10.80 22.33 10.27 2.44 0.183 

Essential AA 703.25 603.28 820.73 454.12 63.44 0.183 

Non-Essential AA 1121.02 843.42 1097.78 820.16 65.66 0.145 

Glucogenic AA 1621.73 1291.43 1688.30 1150.05 105.62 0.143 

Ketogenic AA 371.07 241.91 422.14 211.57 41.24 0.188 
ab

 within row, means with different superscripts differ (P < 0.05). 
*
 concentration was not high enough to be detected  
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Table 6. Least square means of plasma amino acid concentrations (nM/mL) of steers 

infected with either bovine viral diarrhea virus (BVDV) and/or M. haemolytica (MH) at 

24 h after infection (N=24).  

Amino Acid CTRL BVDVMH BVDV MH SE P-value 

Valine 313.10 279.55 368.47 319.25 14.97 0.628 

Leucine 115.14
a
 124.92

a
 183.13

b
 94.30

a
 15.53 0.001 

Isoleucine 71.47
a
 46.98

b
 91.78

c
 47.08

b
 8.83 0.000 

Threonine 30.80
b
 16.22

a
 53.80

b
 12.84

a
 7.61 0.000 

Methionine 5.67
a
 4.43

a
 8.27

b
 4.02

a
 0.78 0.008 

Phenylalanine 52.10 72.71 70.06 60.40 3.85 0.383 

Lysine 51.55
ab

 32.37
c
 61.65

a
 35.20

bc
 5.65 0.041 

Histidine 6.03 7.82 6.15 9.54 0.67 0.584 

Tryptophan 18.58
a
 9.34

b
 19.44

a
 8.83

b
 2.35 0.001 

Alanine 337.67 260.42 296.58 276.87 13.60 0.436 

Sarcosine 3.30 3.83 2.88 2.62 0.22 0.786 

Glycine 242.60 100.88 187.81 136.41 25.23 0.061 

α-Aminobutyric Acid 9.56 6.96 7.15 6.56 0.55 0.431 

Serine 69.24
ab

 49.44
b
 89.78

a
 45.04

b
 8.37 0.014 

Proline 79.39
a
 64.87

b
 86.25

a
 58.55

b
 5.21 0.000 

Asparagine 10.37 7.07 8.86 4.98 0.95 0.292 

Aspartic Acid 6.70 1.58 3.24 1.77 0.97 0.071 

4-Hydroxyproline 22.89 16.24 24.33 16.16 1.76 0.210 

Glutamic Acid 325.15
a
 217.66

b
 279.77

a
 202.75

b
 23.16 0.00 

Glutamine 78.93 34.39 69.77 46.42 8.39 0.225 

Ornithine 57.24
a
 36.05

b
 65.94

a
 35.68

b
 6.23 0.001 

Tyrosine 17.44 20.73 24.28 14.99 1.65 0.341 

Essential AA 664.43
a
 595.86

a
 862.75

b
 590.42

a
 52.03 0.007 

Non-Essential AA 1255.10
a
 817.52

b
 1143.20

a
 845.30

b
 88.78 0.021 

Glucogenic AA 1721.00
a
 1227.62

b
 1729.68

a
 1283.50

b
 111.13 0.00 

Ketogenic AA 357.07
a
 323.93

a
 504.14

b
 273.63

c
 40.45 0.001 

abc
 within row, means with different superscripts differ (P < 0.05). 
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Table 7. Least square means of plasma amino acid concentrations (nM/mL) of steers 

infected with either bovine viral diarrhea virus (BVDV) and/or M. haemolytica (MH) at 

48 h after infection (TP+48; N=24).  

Amino Acid CTRL BVDVMH BVDV MH SE P-value 

Valine 354.21 376.93 408.88 431.21 13.89 0.921 

Leucine 142.97 167.37 177.98 119.91 10.60 0.657 

Isoleucine 85.54 78.23 95.36 72.34 4.05 0.644 

Threonine 44.88
a
 25.00

b
 52.23

a
 23.87

b
 5.82 0.005 

Methionine 6.91
a
 3.54

bc
 6.00

ab
 3.24

c
 0.74 0.022 

Phenylalanine 60.61 54.51 65.33 48.80 2.94 0.647 

Lysine 61.56 59.52 55.39 46.82 2.66 0.683 

Histidine 7.77 8.91 7.10 7.39 0.32 0.843 

Tryptophan 21.75 12.33 16.04 12.16 1.83 0.971 

Alanine 329.28 207.26 267.30 223.03 22.31 0.126 

Sarcosine 5.37 4.34 3.49 4.25 0.32 0.768 

Glycine 216.31 105.87 165.17 162.35 18.42 0.055 

α-Aminobutyric Acid 7.46 7.00 6.45 5.26 0.39 0.754 

Serine 77.09 48.08 78.26 55.00 6.27 0.142 

Proline 80.24 71.85 77.72 63.44 3.05 0.555 

Asparagine 10.11 5.74 9.12 6.08 0.89 0.411 

Aspartic Acid 3.78 4.52 3.48 3.56 0.19 0.886 

4-Hydroxyproline 23.73
a
 16.87

b
 20.81

ab
 15.67

b
 1.51 0.013 

Glutamic Acid 270.81 202.31 242.19 213.70 12.53 0.067 

Glutamine 80.69 47.99 57.79 45.26 6.57 0.165 

Ornithine 65.82 64.58 59.15 42.18 4.45 0.650 

Tyrosine 23.87 12.62 23.18 13.11 2.52 0.066 

Essential AA 786.20 811.81 885.95 765.44 21.48 0.931 

Non-Essential AA 1189.18 799.86 1010.26 856.65 71.22 0.355 

Glucogenic AA 1739.66 1413.91 1625.38 1423.98 65.00 0.490 

Ketogenic AA 441.18 407.47 485.00 335.37 25.78 0.528 
abc

 within row, means with different superscripts differ (P < 0.05). 
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Table 8.  Least square means of plasma concentrations (µM/mL) for amino acids that 

were affected overall by bovine viral diarrhea virus (BVDV) and/or M. haemolytica 

(MH) infection over total experiment time (N=24).   

Amino Acid  CTRL BVDVMH BVDV MH SE P- value 

Serine 79.24
ab

 52.53
c
 88.36

a
 62.54

bc
 6.59 0.022 

Proline 83.76
ab

 74.15
ac

 87.95
b
 69.85

c
 3.42 0.029 

Glutamine 74.67
a
 38.34

b
 55.88

ab
 48.07

b
 6.28 0.041 

Tryptophan 18.83
a
 12.11

b
 17.83

a
 11.43

b
 1.56 0.001 

abc 
within row, means with different superscripts differ (P < 0.05). 
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Figure 1.  Principal component analysis of 72 hours prior to infection (TP-72; N=24).  

Treatments are indicated by the colors shown in legend.  Circles are color coded in 

accordance to the treatment they encircle.  

 

 

 

 

 

Y: PCA component 2 (26.16% variance) 

X: PCA component 1 (35.86% variance) 

Z: PCA component 3 (16.62% variance) 
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Figure 2.  Principal component analysis of 12 hours after infection (TP+12; N=24). 

Treatments are indicated by the colors shown in legend.  Circles are color coded in 

accordance to the treatment they encircle. 

 

 

 

Y: PCA component 2 (15.49% variance) 

X: PCA component 1 (29.33% variance) 

Z: PCA component 3 (10.73% variance) 
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Figure 3. Principal component analysis of 24 hours after infection (TP+24; N=24). 

Treatments are indicated by the colors shown in legend.  Circles are color coded in 

accordance to the treatment they encircle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Y: PCA component 2 (20.94% variance) 

X: PCA component 1  

(27.33% variance) 

Z: PCA component 3 (11.96% variance) 
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Figure 4.  Principal component analysis of 48 hours after infection (TP+48; N=24). 

Treatments are indicated by the colors shown in legend.  Circles are color coded in 

accordance to the treatment they encircle. 

 

Y: PCA component 2 (12.02% variance) 

X: PCA component 1 (20.79% variance) 

Z: PCA component 3 (5.797% variance) 
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APPENDICES 

 

Appendix 1.  Least square means of all concentrations of plasma amino acids for bovine viral diarrhea virus (BVDV) and/or M. 

haemolytica (MH) challenged steers across all time points (N=24).  Differences among all treatments are displayed.   

abc
 means across a row within a time point are significantly different (P < 0.05). 

*
 concentration was not high enough to be detected 

 

 

Amino Acid CTRL BVDVMH BVDV MH SE CTRL BVDVMH BVDV MH SE CTRL BVDVMH BVDV MH SE CTRL BVDVMH BVDV MH SE P -value

Alanine 357.37 374.09 387.43 377.51 19.58 309.98 288.17 306.12 240.52 19.10 337.66 262.22 296.58 276.87 18.38 329.28 209.83 265.56 232.89 19.73 0.367

Sarcosine 4.56 N.D.
*

4.01 N.D.
*

N.D.
*

4.61 5.23 2.98 3.98 0.54 3.37 3.83 2.88 2.62 0.48 5.22 4.09 3.61 4.26 0.47 0.883

Glycine 277.10 264.38 299.66 283.11 39.88 202.41 111.90 216.20 172.20 39.23 242.26 97.61 187.81 136.41 39.11 216.31 128.77 165.85 178.32 39.56 0.083

α-Aminobutyric Acid 6.16 15.35 9.77 8.61 1.83 8.69 6.06 8.07 6.00 1.79 9.55 6.62 7.15 6.56 1.78 7.46 6.40 6.28 6.10 1.81 0.208

Valine 248.63 317.22 454.61 245.28 40.14 340.69 392.94 428.40 242.54 38.53 313.10 286.46 368.47 319.25 36.39 354.21 355.47 405.81 429.75 40.55 0.780

Leucine 124.24 183.48 156.68 157.83 17.87 123.64 108.94 152.87 77.29 17.44 115.14 129.09 183.13 94.30 17.26 142.97 151.86 177.51 128.53 17.76 0.159

Isoleucine 80.36 83.81 85.90 82.09 4.51 76.34
a

35.77
b

77.46
a

33.09
b

4.28 71.47
ab

47.73
ac

91.78
b

47.08
c

4.09 76.34 35.77 77.46 33.09 4.54 0.021

Threonine 41.51 37.39 42.02 33.56 8.04 31.57
ab

24.38
ab

41.99
a

15.76
b

7.95 30.83
a

17.4
ab

53.8
c

12.84
bc

7.92 44.88
a

26.37
b

52.11
a

21.78
b

8.01 0.031

Serine 102.91 57.59 119.48 101.63 6.04 67.73 48.08 65.10 48.31 5.84 69.24 49.85 89.78 45.04 5.53 77.09 54.60 79.08 55.19 6.21 0.266

Proline 93.92 97.02 99.11 101.09 3.79 81.47 64.48 87.80 55.25 3.57 79.39 64.87 86.25 58.55 3.38 80.24 70.21 78.64 64.51 3.83 0.478

Asparagine 12.75 10.91 18.47 17.37 2.03 6.46 5.77 8.92 5.85 1.85 10.37 7.18 8.86 4.98 1.81 10.11 6.08 9.78 5.37 1.96 0.912

Aspartic Acid 2.89 1.68 2.09 2.49 2.29 1.90 N.D.
*

3.81 1.63 N.D.
*

6.77
b

1.46
a

3.3
a

1.88
a

0.60 3.78 4.16 3.54 3.68 0.59 0.027

Methionine 6.01 6.42 6.35 6.64 1.13 5.92 2.86 5.88 2.92 1.12 5.67 4.38 8.27 4.02 1.10 6.90 4.16 6.00 3.52 1.14 0.304

4-Hydroxyproline 20.58 17.95 23.82 19.77 1.76 20.86 17.79 20.80 17.66 1.73 22.29 16.66 24.33 16.16 1.68 23.73 17.07 21.44 16.22 1.78 0.835

Glutamic Acid 343.41 388.82 384.37 397.72 34.42 282.25 196.63 246.10 172.47 33.59 202.75 212.64 279.77 202.75 33.22 270.81 200.54 236.21 214.42 34.35 0.667

Phenylalanine 45.19 50.67 50.13 49.04 8.67 53.95 49.35 59.19 42.08 8.64 52.10 73.46 70.06 60.40 8.58 60.61 52.00 65.94 51.80 8.68 0.180

Glutamine 63.74 18.11 44.61 41.07 8.98 75.30 50.48 51.32 58.09 8.93 78.93 35.02 69.77 46.42 8.33 80.69 49.76 57.82 46.71 9.17 0.967

Ornithine 76.87 97.54 104.13 114.76 17.38 45.36 23.27 47.14 32.47 17.05 57.24 36.62 65.94 35.68 16.98 65.82 53.92 57.88 53.90 17.22 0.537

Lysine 71.66 62.30 78.93 69.03 5.95 49.36 17.87 40.08 23.29 5.40 51.55 32.14 61.65 35.20 5.19 61.56 60.65 55.74 48.97 5.68 0.601

Histidine 3.65 4.09 4.62 3.57 1.36 4.46 6.08 6.44 10.40 1.37 6.03 7.83 6.15 9.89 1.33 7.77 9.21 7.14 8.29 1.35 0.230

Tyrosine 25.63 31.90 29.10 32.10 5.33 18.89 11.51 20.95 10.27 5.24 17.44 21.24 24.28 14.99 5.21 23.87 14.83 22.84 14.34 5.31 0.321

Tryptophan 17.67 16.11 21.93 15.19 4.35 17.31 10.62 14.36 9.79 4.35 18.58 9.45 19.44 8.83 4.32 21.75 12.24 15.59 11.93 4.35 0.137

Essential AA 650.57 773.35 902.07 662.23 78.42 703.25
ab

657.16
ab

829.59
a

454.12
b

78.14 664.43 613.36 862.75 590.42 75.76 786.20 754.15 883.99 789.67 78.38 0.000

Non-Essential AA 1374.56 1383.63 1516.73 1496.77 52.98 1121.02 823.88 1073.11 820.16 50.86 1255.10 816.73 1143.20 845.30 47.33 1189.18 815.54 1017.11 886.88 54.08 0.436

Glucogenic AA 1805.80 1851.16 2157.71 1903.75 68.70 1621.73 1297.94 1671.64 1150.05 66.11 1721.00 1233.36 1729.68 1283.50 61.81 1739.66 1305.38 1631.11 1469.83 68.70 0.189

Ketogenic AA 410.15 463.70 466.13 351.94 48.98 371.07 255.59 408.60 211.57 48.42 357.07 329.31 504.14 273.63 47.85 441.18 387.11 438.84 484.88 49.06 0.152

TP-72 TP+12 TP+24 TP+48
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