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Chapter I 
 

Introduction 
 

In normal healthy animals, the gastrointestinal tracts are colonized by a complex 

microflora containing many different species. A balance of these microorganisms in the 

gastrointestinal tract is important not only in promoting efficient digestion and maximum 

absorption of nutrients, but also in increasing the capacity of the host in excluding 

infectious microorganisms and hence preventing disease (Walter et al., 2003). 

Lactobacilli are common inhabitants of animal gastrointestinal tracts and many 

investigators have reported them to provide various positive health attributes. This group 

of “good” bacteria is generally called probiotics. Therefore, probiotics can be defined as 

living microorganisms that upon ingestion in certain numbers exert health effects beyond 

inherent basic nutrition (Gurner et al., 1998). Naidu et al., 1999 describes probiotics as 

microbial dietary adjuvants that beneficially affect the hosts’ physiology by modulating 

their mucosal and systemic immunity as well as improving the nutritional and microbial 

balance in their intestinal tracts. Probiotics are potentially useful in the management and 

treatment of various gastrointestinal diseases including diarrhea, inflammatory bowel 

disease, and colon cancer (Rolfe, 2000). Enhancement of nonimmunological gut defense 

barrier by probiotics may include maintenance of normal levels of intestinal permeability 

and micro-ecology, which is commonly shifted in the event of intestinal infection by 

pathogenic bacteria.   
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Vertebrate immune system can mount both innate and adaptive immune response in 

the event of infection by pathogenic microorganisms. Many types of immune cells are 

recruited to elicit an immune response and subsequently neutralize the pathogens. These 

cells include epithelial cells, natural killer cells, macrophages, neutrophils, dendritic cells 

and lymphocytes. These cells are quickly activated in the event of infection leading to 

production of an array of humoral mediators. Some may change their physiology and 

become phagocytic, yet others get involved in antibody synthesis and secretion. These 

activated immune cells may provide immediate protection against pathogens or promote 

specific immune responses. Therefore, these cells are useful in the probiotic enhancement 

of immunologic barrier in the animal gastrointestinal tract.   

Probiotics have profound effects on potentiating both arms of immune responses. For 

instance, oral administration of the probiotic, Bifidobacterium breve was shown in mice 

that had been previously challenged with cholera toxin to promote humoral immunity by 

enhancing the secretion of immunoglobulin A (IgA) (Yasui et al., 1999). In an 

investigation conducted by De Simone et al., (1993), bacterial cell wall products were 

demonstrated to be able to not only enhance the proliferation of immune cells but also 

induce the expression of proinflammatory cytokines, which are necessary for the 

maintenance of a stable Th1/Th2 balance.  This delicate balance is important for the host 

immune function as it dictates whether a humoral (antibody production) or a cell- 

mediated (cytotoxic T-cell) response should be mounted (De Simone et al., 1993). 

Therefore, the influence of a probiotic strain of bacteria on the mammalian immune 

system can be easily evaluated through in vitro and in vivo measurement of cytokines, 

immunoglobulin production and lymphocyte proliferation.  
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The use of antibiotics is associated with the emergence of antibiotic-resistant bacteria, 

which have become difficult to control and have exerted adverse effects on the 

consumers of animal products. With the above positive attributes of probiotic bacteria on 

the prevention and disease management, probiotics hold great potential as a better 

alternative to antibiotics in farm animals.  

In this present study, the use of lactic acid-producing bacteria, Lactobacillus 

acidophilus, as a feed supplement in the diet of healthy Holstein calves and its ability to 

modulate their innate and adaptive immune responses was investigated.  
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Chapter II 
 

Literature Review 
 
 

Probiotics 
A “probiotic” by the generally accepted definition, is “a live microbial feed 

supplement, which beneficially affects the host animal by improving its intestinal 

microbial balance” (Fuller, 1989). This definition was broadened by Havenaar and Huis 

in’t Veld (1992) to a “mono or mixed culture of live microorganisms which benefit man 

and animals by improving the properties of their indigenous microflora”. Although the 

definition of probiotics is constantly evolving, they are living microorganisms that confer 

health benefits to their hosts by improving the indigenous microflora (Sanders, 1998; 

Tannock, 1999). A European Commission concerted action program redefined probiotics 

as “a live microbial food ingredient that is beneficial to health” (Salminen et al., 1998). In 

a broadened definition, Naidu et al., (1999) describes probiotics as microbial dietary 

adjuncts that beneficially affect the host physiology by modulating the mucosal and 

systemic immunity as well as improving nutritional and microbial balance in the 

intestinal tract. 

Microflora in animals is extremely important in protecting them against pathogenic 

infections. This fact is evident in the way germ-free animals become susceptible to 

infections in their intestines. While it takes 105 spores of Clostridium botulinum to kill 

mice with functional microflora, only 50 spores are required to kill germ-free mice 

(Wells et al., 1982). 
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In vitro, dozens of microorganisms have been shown to have desirable probiotic 

qualities. However, some ingested bacteria are normally killed in the host stomachs by 

gastric juices. A small number of strains have been shown to colonize the human 

gastrointestinal tract in clinical trial (Crabbe et al., 1968). Some scholars believe this 

colonization is a prerequisite for any health benefits to be conferred. The effect of the 

probiotics on the intestinal ecosystem, may impact the consumer in some beneficial way. 

For a given microorganism to function as an effective probiotic, it must have some 

important properties as in the case of some species of lactobacilli (Reid et al., 1990). The 

organism should be able to: adhere persistently to intestinal epithelial cells and mucus; 

reduce and exclude pathogenic adherence to healthy cells; reproduce in such a manner to 

allow rapid multiplication and colonization; produce reactive agents such as acids, 

hydrogen peroxides and bacteriocins that can hamper pathogen reproduction and 

multiplication; be safe, noncarcinogenic and nonpathogenic; resist various microbicides; 

and form a balanced flora (Reid et al., 1990). 

A number of potential benefits arising from changes to the intestinal milieu through 

the consumption of probiotics have been proposed, including: a) Increased resistance to 

intestinal infections, by pathogen interference, exclusion, and antagonism; b) reduction in 

blood pressure; c) reduction in serum cholesterol concentration; d) maintenance of 

mucosal integrity; e) alleviation of symptoms of lactose intolerance; f) reduction in 

allergy g) stimulation of phagocytosis by peripheral blood leucocytes; h) immune system 

stimulation and modulation in human and animals; i) vaginal and urinary tract health; j) 

modulation of cytokine gene expression; k) adjuvant effect; l) regression of tumors; m) 

and reduction in carcinogens or co-carcinogen production 
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Some probiotics produce metabolic by-products that are antagonistic to establishment 

of pathogenic microorganisms. Strains of Lactobacillus may produce lactic acid and 

hydrogen peroxide that are not only toxic but might aid in inhibition and exclusion of 

potential pathogens (Gilliland and Speck, 1977). Perhaps, surprisingly, despite this 

impressive list of potentially beneficial attributes, probiotics are not commonly part of the 

medical practitioners’ and veterinarians’ armamentarium treatment or preventative 

methods. 

 

The gut mucosal barrier 

The small intestine is constantly exposed not only to food but also to a variety of 

antigens in the life of mammals. These exposures pose challenges to the host because 

some of the antigens may be pathogenic. The bacterial load in the small intestine is 

dynamic and keeps changing both in numbers and types. A well functioning mucosal 

barrier in the gut is important and may help in excluding establishment of pathogenic 

microoragnisms (Janeway et al., 1999). Some antigens are absorbed across the mucosal 

epithelial-cell layer and may be processed in the lysosomes or may be eliminated by the 

mucosal immune system (Isolauri et al., 1993). 

It is well documented that the effect of commensal probiotic bacteria on the immune 

response of their host animals is through their close association with the gut lymphoid 

tissues found in the intestinal mucosa. The gut-associated lymphoid tissues are found in 

specific compartments in the host intestinal tract. The Peyer’s Patches, which are areas 

rich in B-cell lymphoid follicles, are highly organized lymphoid tissues in the wall of the 

small intestine. The Peyer’s Patches are also resident to interfollicular populations of T- 
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cells. Large numbers of lymphoid and myeloid cells aggregate to form the lamina 

propria, which is found to be rich in immunoglobulin-A plasmablasts. The lamina propria 

is found scattered under the gut epithelium. Interspersed within the enterocyte monolayer 

are intraepithelial lymphocytes, which are made up of mostly CD8+ T-cell subsets 

(Janeway et al., 1999). It has been reported by various groups that the quantity and 

quality of immune cells in the Peyer’s Patches and lamina propria compartments depend 

on continuous stimulation provided by endogenous intestinal microflora (Cebra, 1999).  

In an investigation by Crabbe et al. (1968), they demonstrated that colonization of 

germ-free mice with different strains of lactic acid bacteria (LAB) induced the secretion 

of mucosal IgA from both the Peyer’s Patches and lamina propria. Since these LAB are 

also commensal organisms in many animals, they might be able to potentiate various 

indices of hosts’ humoral immune responses when used as dietary supplements. 

The development of probiotics for farm animals is based on the knowledge that gut 

microflora is involved in resistance to disease in mammals (Gill, 1998). In a clinical 

study with human volunteers, Alander et al. (1999) demonstrated that L. rhamnosus GG 

attached to human intestinal mucosa and the attachment persisted for about seven days 

following withdrawal of the probiotics. In a different clinical study, Miller et al., (1993) 

demonstrated that application of the same strain to premature infants did not decrease 

pathogen load even if it colonized the intestines. This investigation suggested that the 

probiotic was poorly antagonistic to pathogenic bacteria in vivo. However, the increased 

likelihood of gastrointestinal infection in infants may be due to immaturity of their gut 

defense barrier. This barrier is important because it forms a protective phase between the 
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infants’ internal environment and the potentially pathogenic factors in the external 

environment (Juntunen et al., 2001).  

Although the mechanisms behind the positive effects of probiotics on the host are not 

well known, one way in which probiotics may augment favorable health outcome on the 

host is by enhancing nonspecific (innate) and antigen-specific (adaptive) immune 

response (Miller et al., 1993; Juntunen et al., 2001). 

 

Immune modulation by probiotics 

Immune modulation by dietary bacteria has continued to be a subject of growing 

interest. Probiotics have been reported to facilitate stabilization of gut microflora and 

hence enhance gut defense against pathogenic microorganisms in a way that is 

nonimmunological (Salminen et al., 1998). They can also enhance immunologic barrier 

of the host intestine (Kaila et al., 1992). Although it is known that immune function tends 

to decline with age, supplementation twice daily with a probiotic Bifidobacterium lactis 

was found to significantly increase and improve various indices of immune function in a 

group of healthy elderly people in a double-blinded trial. The good attributes of the 

bacterial supplementation were observed in this group after about six week of trial time 

(Aruchalam et al., 2000). In other studies, probiotics have been shown to augment the 

humoral arm of adaptive immunity and subsequently enhance the immunologic barrier of 

the intestine (Kaila et al., 1992).  

In the event of their action in animals as immune modulators, probiotics may either 

have up- or down-regulatory effects on various indices of immune response. Live 

probiotic microorganisms may stimulate production of cytokines and therefore enhance 
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natural immune responses (Marin et al., 1997). Intestinal inflammation can be suppressed 

by viable probiotics after oral administration, which makes these microorganisms useful 

in controlling hypersensitivity reactions (Majamaa et al., 1996). 

In another independent investigation on the antiproliferative effects of five strains of 

probiotic bacteria, Pessi et al. (1999) studied the proliferation activity of mononuclear 

cells induced by phytohemagglutin as a mitogen. Proliferation of these cells was carried 

out in the presence or absence of either unheated or heat-treated probiotic homogenates 

from L. rhamnosus GG, B. lactis, or L. acidophilus. They demonstrated that homogenates 

from these bacteria suppressed proliferation of mononuclear cells with mitogen 

treatment. The suppression was observed with both unheated and heat-treated 

homogenates. Their findings suggested that these homogenates might be used to generate 

nonviable food products that are immunologically active.  

Low cost and convenience of administration makes immune modulation via the oral 

route a very desirable treatment. Due to large volumes of antigen required for oral 

immunization, and that exposure to soluble protein antigen may induce oral tolerance, 

researchers are leaning towards the use of microorganisms to induce the desired 

immunity (Wells et al., 1996). The adherence to intestinal epithelium and mucus by 

probiotics may be an integral factor in the stimulation of the host immune system. 

Adhesion assists the bacteria in surviving host secretions and improves remarkably the 

chances of the probiotics colonizing the intestinal mucosa (Sami et al., 2001).  When 

newborn ruminants were inoculated with a combination of pure probiotic cultures, 

colonization of the gut tissues was observed, and consequently the animals were better 
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endowed to resist infection by enterotoxigenic Escherichia coli (Cheng and Costerton, 

1988).  

Colonization is very important for the creation of balance of the intestinal microflora. 

Since bacteria adhere to mucus as well as to epithelial cells, it is believed that mucus has 

receptors mimicking the epithelial cells. Therefore, mucus can inhibit bacterial adhesion 

to epithelium. Although mucus serves as a protection to the intestinal mucosa from 

pathogenic microorganism infection, it also provides binding sites as well as nutrients for 

the bacteria. These factors may allow bacteria to multiply, which is a positive attribute 

towards probiotic colonization. Since mucus is continuously sloughed off into the 

intestinal lumen, and is replaced with new mucus secreted by goblet cells, bacteria 

inhabiting the mucus layer can only establish large populations when their multiplication 

exceeds the turnover and loss of the old mucus (Beachy, 1981).  

In a study of adhesion of Enterococcus faecum 18C23 to porcine intestinal mucus and 

its ability to inhibit adhesion of pathogenic Escherichia coli K88, Jin et al. (2000) 

reported that 90% of inhibition was achieved when 109 CFU/mL of E. faecum (18C23) 

culture was added at the same time with E. coli K88 to immobilized mucus. Such 

inhibition of adhesion of E. coli K88 by E. faecum (18C23) might occur through steric 

hindrance.  

Since adhesion to intestinal mucosa is paramount to establishment and colonization of 

host intestines by probiotics, Ouwehand et al., (2003) investigated the influence of 

disease on the capacity of bacterial mucosal adhesion. Using six strains of lactic acid 

bacteria, they observed that all strains adhered better to immobilized mucus than to whole 

intestinal tissue. However, L. rhamnosus and L. reuteri were found to show disease-
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specific adhesion to intestinal tissue. All strains, except L. rhamnosus, displayed disease-

specific adhesion to intestinal mucus. Their results strongly suggested that the strains, 

which bind better for a particular intestinal disease, could be selected for use as 

probiotics. 

 Asahara et al., (2001) investigated the antimicrobial activity of intraurethrally 

administered L. casei in a murine model of E. coli urinary tract infection (UTI). They 

observed that a single administration of L. casei Shirota at 108 CFU 24 hours before a 

three-week challenge with E. coli at 106 CFU in the urinary tract dramatically inhibited 

pathogen growth and inflammatory responses in the urinary tract, suggesting that L. casei 

Shirota may be used as a prophylactic agent for UTI. 

 

The role of probiotics in innate immunity 

In mediating the innate or non-specific immunity in host animals, several types of 

immune cells are recruited and stimulated. These cells include neutrophils, eosinophils, 

macrophages, epithelial cells, natural killer cells and M cells. These cells monitor sites of 

pathogen entry and mount nonspecific immune responses including phagocytosis and 

natural killing (Janeway et al., 1999). It is reported that innate immune responses in 

animals can be modulated by consumption of specific lactic acid bacteria (Perdigon et al., 

1995; Schiffrin et al., 1995). In a study conducted by Haller et al. (2000), human 

peripheral blood mononuclear cells (PBMCs) and purified lymphocyte subsets were 

capable of being stimulated by non-pathogenic gram-positive species of Lactobacillus. In 

vivo, interaction between nonpathogenic commensal bacteria and blood leukocytes may 

occur in definite compartments of the host’s mucosal immune system. They also reported 
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that increase in the number and immune function of lymphoid effector cells at the 

mucosal level is heavily dependent on the presence of gut microflora. Secretion of 

interferon-γ (INF-γ) from purified natural killer (NK) cells was significantly increased in 

the presence of macrophages primed with bacteria, suggesting that probiotic bacteria are 

important in the activation of NK cells by macrophages (Haller et al., 2000).   

It is well documented that there is recirculation of the mucosal immune system. Cells 

of the mucosal-associated lymphoid tissue (MALT) recirculate within the mucosal 

system. Given that there is evidence of translocation of nonpathogenic bacteria through 

the epithelial barrier via M-cell pockets, there is every chance that these bacteria interact 

with several types of immune cells, which are resident in M-cell pockets. Probiotic 

bacteria might exploit this fact to potentiate host immune function (Neutra, 1999).    

Phagocytosis is an important arm of the innate immune system and is among the first 

line of defense that animals employ in the event of infection by pathogenic 

microorganisms. Phagocytic cells are known to produce agents that are toxic to 

pathogens like reactive oxygen intermediates and lytic enzymes. They are involved in 

engulfing and destroying particulate antigens. Phagocytes may play an integral role in 

initiating inflammatory reactions. Salminen et al. (1998) reported that intestinal 

inflammation might be as a result of imbalance in the intestinal microflora. Gill et al., 

(2001) showed that both live and heat-killed preparations of L. rhamnosus HN001 had 

the capacity to enhance the phagocytic activity of blood and peritoneal leukocytes in 

mice after administration of 109 CFU of the microorganism daily. They observed that the 

enhancement of the phagocytic capacity was in a dose-dependent manner. However, they 

also demonstrated that mucosal antibody responses were enhanced by live but not killed 
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L. rhamnosus HN001. Their results suggest that while innate immunity is responsive to 

both killed forms of bacteria, only live forms are able to stimulate the gut mucosal 

immunity.  In an earlier study, Gill et al. (2000) demonstrated that feeding mice L. 

acidophilus or B. lactis resulted in a significant increase in the phagocytic activities of 

both PBMCs and peritoneal macrophages compared with control mice.  

An in vitro investigation conducted by Pinchuk et al. (2001) demonstrated that a 

probiotic strain, Bacillus subtilis 3, was able to secret antibiotics that inhibited growth of 

Helicobacter pylori. They showed that the anti-H. pylori activity in cell-free supernatants 

was heat stable and protease insensitive. Their result suggested that other probiotic 

preparations might exhibit similar activities against pathogenic microorganisms.  

 

The role of probiotics in acquired immunity 

Acquired or adaptive immunity is the response of antigen-specific lymphocytes to 

antigen and includes the development of immunological memory. Adaptive immune 

responses are generated by clonal selection of lymphocytes (Janeway et al., 1999). 

Acquired immunity involves lymphocytes with receptors for specific antigens and 

presentation of the antigens in the context of two different major histocompatibility 

complexes (MHC) by antigen presenting cells (APCs). As a result, subsets of helper T- 

cells (Th), the main effectors and regulators of cell-mediated immunity may be activated 

(Roitt et al., 1985). Upon activation by antigen or pathogen, T-cells are activated to 

synthesize and secrete a variety of cytokines that serve as growth, differentiation and 

activation factors for other immunocompetent cells. The types of cytokines produced 
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during infection are key factors in determining whether a humoral (antibody production) 

or a cellular immune response is potentiated in the host animal.  

Among the first proinflammatory cytokines expressed by host immune cells after 

pathogenic challenge are tumor necrosis factor-alpha (TNF-α), interleukin 1β (IL-1β), 

IL-6 and interferons (IFNs) (Tracey and Cerami, 1993). It is well documented that 

cytokines produced later during microbial infection will either influence the development 

of cell-mediated immune response associated with T-helper type 1 cells (Th1) or a 

humoral immune response that is associated with T-helper type 2 cells (Th2) (Abbas et 

al., 1996; Romagnani, 1996).  

Among major Th1 type cytokines are IL-12, IFN-γ and IL-18 of which IL-12 is 

known to stimulate IFN-γ production in both T and NK cells. It also promotes the 

development of naïve CD4+ T cells into Th1 type cells (Abbas et al., 1996; Trinchieri, 

1995). Phagocytic cells are known to enhance their IL-12 production after stimulation 

with IFN-γ, which has a down-regulatory effect on Th2 type cell proliferation and 

activation (Kohno and Kurimoto, 1998). Acting synergistically with IFN-α and IL-12, 

IL-18 is able to enhance IFN-γ expression in T cells (Sareneva et al., 1998). The 

development of naïve T cells to active Th2 type can be enhanced by IL-4 (Seder and 

Paul, 1994). IL-10, which is produced by both macrophages and lymphocytes, can 

enhance Th2 immune responses by inhibiting the production of TNF-α, IL-1β, IL-6, IFN-

γ and IL-12 (Abbas et al., 1996; D’Andrea et al., 1993; De Waal et al., 1991). 

Some have shown that LAB are able to induce the production of IFN-γ, IL-6, IL-10 

and TNF-α in human lymphocytes (Miettinen et al., 1996). Von der Wied et al. (2001) 
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investigated the capacity of LAB to antagonize specific T-helper cell function in vitro 

and subsequent prevention of inflammatory intestinal immunopathologies. Their results 

showed that all LAB strains used were able to induce murine splenocytes to produce both 

IL-12 and IL-10. It is well known that IL-12 and IL-10 have the potential for induction 

and suppression of Th1 functions, respectively. Among all LAB strains used, L. 

paracasei NCC2461 induced the highest levels of both IL-10 and IL-12. They also 

showed that the proliferative activity of CD4+ T cells was strongly inhibited in a dose-

dependent manner by L. paracasei. In a further investigation, they demonstrated that this 

bacterium inhibited the secretion of Th1 and Th2 effector cytokines by CD4+ T cells, 

maintained the production of IL-10 and induced the secretion of transforming growth 

factor-β (TGF-β) by CD4+ T cells (Von Der Weid et al., 2001). 

In a study conducted by Pavan et al. (2003), they used a mouse model to evaluate the 

persistence, safety and immune modulation capacities of LAB. They demonstrated that 

TNF-α, IFN-γ, IL-10 and IL-4 were induced in healthy mice that received a single dose 

of L. plantarum NCIMB8826 or L. lactis for four consecutive days. When mRNA 

transcripts were assessed for these cytokines by semi-quantitative reverse transcriptase 

PCR, they found that there was higher expression of IFN-γ in the colon than in the ileum. 

However, the levels of IL-4 and IL-10 expression were significantly higher in the ileum 

than in the colon. Taken all together, these results suggested that there was a difference in 

Th1/Th2 balance between ileum and colon in mice. Since the bacterium persists in the 

mouse gut, it might be a suitable probiotic candidate for treatment of chronic 

inflammation.       
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Gill et al., (2000) observed that feeding healthy mice with 109 CFU of L. acidophilus, 

L. rhamnosus or B. lactis enhanced the proliferative responses of spleen cells to 

concanavalin A (Con A) and lipopolysacharide (LPS), which are T-and B-cell mitogens, 

respectively. The spleen cells from mice given these different bacteria expressed greater 

amounts of INF-γ after stimulation with Con A than cells from control mice. When they 

assayed the levels of antibody responses after either oral or systemic administration of 

antigen, they found the levels to be higher in mice given the bacteria than in control mice. 

Their results suggested the use of LAB as feed supplements in mice was able to enhance 

several factors of both humoral and cellular immune responses.  

Ibnou-Zekri et al., (2003) investigated the differential impacts of L. johnsonii and L. 

paracasei on the development of mucosal and systemic antibody responses in mice. 

Despite the fact that these two organisms had similar growth and adherence capacities to 

enterocytes in vitro, they showed marked differences in their patterns of colonization and 

translocation. They also promoted different immune responses at the mucosal and 

systemic levels in vivo. They demonstrated that of the strains tested, L. johnsonii 

colonized the intestines more efficiently than did L. paracasei in mice and that both 

strains activated mucosal B-cell responses evidenced by aggregation of cells of the 

Peyer’s Patches. They also showed that IgA secreting plasma cells were prevalent in 

lamina propria after association with either of the bacteria strains. Germ-free mice had 

either few or no IgA secreting cells even after association with either of the bacterial 

strains. They further showed that mice associated with L. johnsonii but not L. paracasei 

secreted increased amounts of Lactobacillus-specific IgA. 
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Waard et al. (2001) investigated the effects of orally administered viable L. casei 

Shirota on immune response indices of Wister and Brown Norway rats. They used the 

Trichinella spiralis host resistant model. In their study, two weeks before and after T. 

spiralis infection, rats were fed with 109 CFU of L. casei 5 days per week. They observed 

that T. spiralis-specific delayed-type hypersensitivity (DTH) responses were significantly 

augmented in mice fed L. casei than in control mice and significantly enhanced T. 

spiralis-specific antibody IgG2b in both types of rats. This type of DTH response is 

considered to be a manifestation of Th1 cell-mediated immunity.  

In an investigation on whether L. casei Shirota exhibited any activity against the 

influenza virus, Hori et al. (2001) observed that mice given the bacterium intranasally 

had greater expression of IL-12, IFN-γ, and TNF-α in their mediastinal lymph node cells. 

This high expression of cytokine helped in excluding the influenza virus. They observed 

that viral titers in the nasal washes of mice given the bacterium before infection with the 

pathogenic virus were significantly lower than in those not inoculated with the bacterium. 

They also observed that the survival rate of the mice inoculated with the bacterium was 

higher than that of the mice not inoculated, after both groups were challenged with the 

virulent virus. They concluded that because the viral titers were decreased in mice 

inoculated with L. casei Shirota to about a tenth of the viral titers found in the control 

group, administration of the bacterium enhanced cellular immune response in upper 

respiratory tract of mice and conferred protection to them against the influenza virus 

infection (Hori et al., 2001). Yasui et al., (1999) reported that another probiotic 

bacterium, B. breve YIT 4064, was able to potentiate humoral immune response and that 

oral administration of this strain was able to augment production of antigen-specific 



 18 

immunoglobulin G in serum and conferred protection against influenza virus infection in 

mice.  

Matsuguchi et al., (2003) investigated the stimulatory effects of Lactobacillus species 

on mouse immune cells. In their investigation, six heat-killed cultures were used, 

including L. fermentum, L. rhamnosus, L. casei, L. plantarum, L. acidophilus and L. 

reuteri. They observed that splenic mononuclear cells from BALB/c mice were induced 

by all six strains to produce TNF-α in varying amounts. They also observed that the 

protoplast fractions of Lactobacillus had the highest activity for TNF-α induction and 

NF-κB activation in a macrophage cell line RAW264.7. In a further experiment they 

observed that Toll-like receptor-2 (TLR2) but not TLR4 was essential for induction of 

TNF-α  by Lactobacillus lipoteichoic acid (LTA). They also demonstrated that TLR2 

mediated the activation of NF-κB by Lactobacillus LTA and that TLR2 was essential for 

cell response to Lactobacillus strains but not TLR4 including eliciting of 

proinflammatory reactions.  

 

Selection of probiotic strains 

Some of the most important factors to consider when selecting a probiotic strain are 

to screen their capabilities for mucosal adhesion, mucosal penetration, inhibition of 

pathogen growth, resistance to bile, resistance to peristaltic gut movements, and tolerance 

to low pH (Sami et al.,2001). It is established that interaction with mucus is among the 

initial steps in adhesion of bacteria to the intestinal mucosa and other surfaces. This 

interaction may promote competitive exclusion by probiotic microorganisms by 

competition for nutrients, blocking adhesion receptors and production of antimicrobial 
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substances. The overall result is blockage of entry sites for host pathogens (Sami et al., 

2001). The choice probiotic, therefore, should be one that is able to multiply fast and out-

compete some of the hosts’ resident microflora. 
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Chapter III 

Modulation of Immune Responses in calves by Lactic Acid Bacteria (Probiotics) 

 

Abstract 

 Some probiotic bacteria can favorably alter the balance of intestinal microfloral, 

inhibit the growth of pathogenic bacteria, promote nutrient digestion, increase resistance 

to infection and boost immune function. Two experiments were conducted to investigate 

the immune modulatory effects of feeding 3 to 4 month-old healthy Holstein female 

calves with 109 colony-forming units (CFU).calf-1.d-1 of Lactobacillus acidophilus 381-

IL-28. In the first experiment, a total of eight animals were divided into two groups with 

four calves having their diets supplemented with the bacteria, while the other four served 

as controls. On days 0, 2, 4, 7, 14, and 21, animal weights were recorded, and fecal 

samples and peripheral venous blood were collected from each calf. In the second 

experiment, six calves were supplemented with probiotics in their diets, while the other 

five served as controls. On days 0, 7, 14, 21, 28, and 35, periperal venous blood was 

obtained from the animals. Fecal temperatures and fecal pH were recorded and animals 

were weighed. In both experiments, differential white blood cell counts were determined. 

White blood cells were isolated and their phagocytosis capacity was determined by flow 

cytometry. Total RNA was also extracted from white blood cells, and used to measure the 

cytokine gene expression by semi-quantitative reverse transcriptase-polymerase chain 

reaction (RT-PCR). In addition, serum IgA levels were measured by enzyme-linked 

immunosorbent assay (ELISA). The results indicated that there was no statistical 

difference between probiotic treated and control animals in weight gain, fecal 
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temperature, fecal pH, phagocytosis capacity, differential white blood cell counts, and 

cytokine expression levels in white blood cells throughout different sampling times in 

either experiment. There also were no significant difference between serum IgA of the 

two groups of animals in either experiment. Taken together, these results suggested that 

feeding healthy Holstein calves with 109 CFU.calf-1.d-1 of L. acidophilus was not 

sufficient to augment either innate or adaptive immune responses. A different dose or 

strain of probiotics may be needed in the future to evaluate their effect on immunity of 

Holstein calves. 

 

Introduction 

 For the host to be protected against infection, it must have a normal intestinal 

microflora, which serves as an extremely important barrier against pathogenic 

microorganisms (Wells et al., 1982). Oral consumption of health-promoting lactic acid 

producing bacteria or probiotics has been associated with prevention, alleviation or cure 

of diverse intestinal disorders (Alander et al., 1999). It is generally accepted that use of a 

probiotic, defined by Fuller as “a live microbial feed supplement which beneficially 

affects the host animal by improving its microbial balance” (Fuller, 1989), is an 

interesting approach for prevention and treatment of some infectious intestinal diseases 

(Banasaz et al., 2002). In recent years, data based on clinical studies indicating health-

promoting properties of several probiotic strains have started to accumulate (Lee and 

Salminen, 1995). Although many mechanisms have been proposed by which probiotics 

promote intestinal health and overall well-being of the host animal, one of the most 

important mechanisms is modulating host immune function (Isolauri et al., 2001).  
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 The mammalian immune system is capable of mounting both the innate and adaptive 

immune responses when challenged by a pathogenic microorganism. The gastrointestinal 

tract of mammals is resident to various immune cells including epithelial cells, 

macrophages, lymphocytes, neutrophils, natural killer cells and dendritic cells. All these 

cells are aggregated in Peyer’s Patches, lamina propria and intraepithelial regions 

(Janeway, 1999). These immune cells are quickly activated upon infection leading to 

enhanced phagocytosis and production of various humoral mediators, which collectively 

provide immediate protection for the host or initiate the development of specific immune 

responses (Zhang and Ghosh, 2001). Some of the humoral mediators produced upon 

infection include cytokines, which will promote a Th1 or a Th2 immune response 

(Infante-Duarte and Kamradt, 1999). Probiotic bacteria have been shown to affect innate, 

humoral and cellular arms of the immune system. Oral administration of Lactobacilli 

resulted in enhanced phagocytosis and natural killer activities as well as elevated 

production of IgA and decreased IgE production in both humans and animals (Isolauri et 

al., 2001). 

Gastrointestinal diseases continue to cause significant economic losses in the bovine 

industry. Diarrhea is one of the most common causes of neonatal mortality in cattle. Poor 

growth performance, which normally accompanies diarrhea and subsequent low feed 

efficiency, are areas of major concern to the bovine industry. Most of the diarrhea is 

caused by enteric pathogens such as Escherichia  coli and Salmonella (Levy, 2000). In 

the recent past, there has been an abated emergence of antibiotic-resistant bacteria, which 

is not only posing serious concerns to public and health specialists, but also to food 

animal producers (Teuber, 2001). Consumers have continued to criticize the practice of 
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using massive antibiotics in animal feeds as growth promoters and means of disease 

control (Threlfall et al., 2000). The unchecked use of antibiotics could increase the 

prevalence of antibiotic-resistant bacteria in the environment, and there is a fear of 

contaminating animal food products with drug-resistant pathogens. The use of probiotics 

in disease management and treatment could serve as an alternative to the use of 

antibiotics. Evidence continues to accumulate about the beneficial effects of probiotics on 

the prevention and treatment of gastroenteric diseases (Marteau et al., 2001). 

     In the present study, two animal experiments were conducted to investigate the effects 

of lactic acid-producing bacteria, L. acidophilus, on local and systemic immune responses 

in cattle. We hypothesized that L. acidophilus is capable of influencing both mucosal and 

systemic immune responses by modulating differential white blood cell counts and 

phagocytic activity of white blood cells as well as the production of immunoglobulins, 

cytokines and disease resistance molecules in Holstein calves.  

 

Material and Methods 

 

Lactobacillus acidophilus preparation 

The probiotic used in this study was L. acidophilus 381-IL-28, which was kindly 

provided by Culture systems, Inc. (Mishawaka, IN) in a lyophilized form with lactose as 

a carrier. Each bag contained enough bacteria to feed 4-6 calves with 1 x 109 CFU.calf-

1.d-1.  
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Experimental design 

Two independent animal trials were conducted in accordance with and approved by 

the Oklahoma State Institutional Animal Care and Use Committee. In the first animal 

trial, eight healthy, 3-month-old, female Holstein calves were (initial BW = 97 ± 22 Kg) 

divided into two groups based on their weight and ancestry and housed in the Nutrition 

and Physiology Research Center at Oklahoma State University. The calves were fed 

twice daily with 4 kg/d of a standard mixed grain ration without antibiotics, but 

supplemented with rumensin, an ionophore with bacteriostatic effects. The animals were 

allowed free access to water and alfalfa hay cubes. After two weeks of acclimatization, 1 

x 109 CFU.calf-1.d-1 of L. acidophilus 381-IL-28 were added to the mixed grain ration and 

fed individually to 4 calves. The other 4 calves did not receive any Lactobacillus but 

were fed the mixed grain with the addition of an amount of lactose comparable to that 

used as carrier for the dried cells of L. acidophilus; these animals served as the control 

group. The trial was conducted for three weeks. Samples from the animals were collected 

on d 0, 2, 4, 7, 14, and 21 following acclimatization.  

The second trial involved a total of 11 healthy, 3-month old female Holstein calves 

(initial BW = 185 ± 30 Kg). They were divided into two groups based on their weights 

and ancestry and housed in the Nutrition and Physiology Research Center. The calves 

were fed twice daily with 4 kg/day of mixed grain ration without both rumensin and 

antibiotics. After three weeks of acclimatization, 1 x 109 CFU.calf-1.d-1 of L. acidophilus 

381-IL-28 were added to the mixed grain ration and fed individually to six calves. The 

other five calves did not receive any Lactobacillus but were fed mixed grain with the 

addition of the same amount of lactose and these animals served as the control group. On 
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d 0, 7, 14, 21, 28 and 35, the calves were weighed and their weights recorded. Their 

rectal temperatures, taken with a clinical thermometer, were recorded. At the same time, 

10 mL of whole blood and 40 mL of uncoagulated blood were collected from the jugular 

vein using vacuum tubes. Heparin was used as anticoagulant. These blood collection 

procedures were done on the calves secured in a chute. The sampling procedures were 

carried out in the mornings before the animals were fed. 

 

Isolation of white blood cells by hypotonic lysis of red blood cells 

White blood cells were isolated from uncoagulated blood by hypotonic lysis as 

described previously (Zhang et al., 1997; Zhang et al., 1999). Basically, hypotonic lysis 

of erythrocytes was done by addition of 0.2% sterile NaCl to the blood with gentle 

mixing for about 30 to 40 seconds followed by addition of an equal amount of 1.6% 

NaCl. The mixture was centrifuged (500 x g) and cell pellet was saved. Two or three 

rounds of lysis and centrifugation were carried out until a white pellet of cells was 

obtained. The cell pellet (i.e., white blood cells) was then resuspended in 4 mL of cell 

culture medium, RPMI1640, counted with a hemocytometer, and maintained on ice. 

 

Phagocytic activity of the white blood cells 

Phagocytosis assays were conducted in accordance with the Vibrant Phagocytosis 

Assay Kit (V-6694) from Molecular Probes, Inc. (Eugene, OR). In general, 1 mL of 

isolated white blood cells (106 cells/mL) from each calf were mixed with 2 µL of 

fluorescein-labeled E. coli (K-12 strain) and incubated with gentle rocking on a platform 

(Midwest Scientific, Model: Reliable Scientific, St. Louis, MO) at 37oC for 30 minutes. 
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After incubation, the cells were centrifuged at 500 x g for 5 minutes at 4oC and the cell 

pellet was washed twice with 2 mL of cold PBS. The cells were then fixed in 1 mL of 2% 

formaldehyde on ice for 10 minutes. Trypan blue (50 µL of 4 mg/L) was added to each 

tube and mixed by vortexing and then analyzed by a FACS flow cytometer (Becton 

Dickson, Model: FACS caliber, Franklin Lakes, NJ). The negative controls were viable 

cells resuspended in RPMI1640 without the addition of fluorescein-labeled E. coli.  Each 

experimental sample was done in triplicate. 

 

Differential white blood cell count 

All procedures used during the differential white blood cell counts were conducted in 

accordance with PROTOCOLTM Hema–Qick III Kit for Wrights-Giemsa staining from 

Fisher Diagnostics Inc. (Middletown, VA). A drop of blood without anticoagulant was 

used to make the blood smear. The smear was let to dry at room temperature and later 

stained with Hema III stain kit. The slides were then observed under a light microscope 

using the oil immersion objective. The first 100 cells were identified and number of each 

cell type recorded.  

 

Measurement of gene expression levels by reverse transcriptase-PCR (RT-PCR) 

Total RNA was isolated from about 107 cells using the Trizol Reagent (Invitrogen, 

Life Technologies, San Diego, CA) and subsequent RT-PCR was carried out essentially 

as described previously (Zhang et al., 1997; Zhang et al., 1999). The first-strand cDNA 

synthesis were conducted with ImProm-II Reverse Transcriptase (Promega, Madison, 

WI) with 4 µg of total RNA. The PCR was done in a total of 20 µL with 0.5 µL of first-
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strand cDNA in the presence of specific primers for either house-keeping gene (β-actin) 

or genes of interest (Table 1). The PCR was performed by using the following program: 

94oC for 2 minutes, and then different cycles of 94oC for 30 seconds, 55oC for 30 

seconds, and 72oC for 1 minute.  

   Table 1. A list of gene-specific primers used for cytokine gene RT-PCR 

IL-Iβ   
        Sense primer: GTGTTCTGCATGGAGCTTTGTG 
       Antisense primer: GCTTTCT (/C) TTAGGGAGAGAGG 
       PCR product size: 349 bp 

IL-8 
       Sense primer: CTCTCTTGGCAGC (/T) TTTCCTG 
      Antisense primer: TCTGCACCCACTTTTCCTTGG 
      PCR product size: 237 bp 
IL-10 
      Sense primer: TTACCTGGGTTGCCAAGCCT 
      Antisense primer: TTGTAGACACCCCTCTCTTGG 
      PCR product size: 240 bp 
IL-12p40 
      Sense primer: TCAGGGACATCATCAAACCAG 
      Antisense primer: GACACAGATGCCCATTCACTC 
      PCR product size: 286 bp 
IL-18 
      Sense primer: CCTGGAATCA (/G) GATC (/T) ACTTTGG 
      Antisense primer: TACACTGCACAGAGATGGTTAC 
      PCR product size: 218 bp 
IFN-γ 
      Sense primer: AACCAGGC (/T) CATTCAAAGGAGC 
      Antisense primer: GAAATAGTCACAGGATACAGG 
      PCR product size: 437 bp 
iNOS 
      Sense primer: ACTTGGCTAACGGAACTGGAC 
      Antisense primer: TTCTGGTGAAGCGTGTCTTG 
      PCR product size: 259 bp 
TGF-β 
      Sense primer: CAACTACTGCTTCAGCTCCAC 
      Antisense primer: CGCACGATCATGTTGGACA 
      PCR product size: 309 bp 
NRAMP1 
      Sense primer: ACAGCAGCCTCCACGACTAC 
      Antisense primer: TTCAGGAAGCCCTCCATCACA 
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      PCR product size: 205 bp 
 

ELISA analysis of IgA and levels in serum  

The serum samples were prepared from peripheral venous blood collected in 10 mL 

vacuum tubes without anticoagulant. The blood was let to coagulate at 4 0C and then 

centrifuged at 500g. The supernatant (serum) was aspirated and saved at –20 0C for future 

IgA assay. ELISA assays of for IgA levels in serum were performed with ELISA Kits 

from Bethyl Laboratories (Montgomery, TX) according to the manufacturer’s 

instructions. Briefly, 1 µL capture antibody was diluted to 100 µL in the coating buffer 

(0.05 M Carbonate-Bicarbonate, pH 9.6), added in 96 well microplates, and incubated for 

60 minutes at room temperature. After incubation, the excess capture antibody was 

aspirated from each well and the wells washed with wash solution (50 mM Tris, 0.14 M 

NaCl, 0.05% Tween 20, pH 8.0) three times. The coated plate was then blocked with 200 

µL of blocking solution (50 mM Tris, 0.14 M NaCl, 0.05% Tween 20, pH 8.0) for 30 

minutes at room temperature followed by washing three times with wash solution. 

Bovine serum albumin (BSA) was added to the blocking solution.Serum samples were 

thawed on ice and diluted to 1:10,000. Standards were diluted in the same sample diluent 

according to the instruction. One hundred microliters of the samples or standards (from 

the kit) were added to the assigned wells. Standards, samples, and blanks were analyzed 

in duplicate. The plates were then incubated for 60 minutes at room temperature. After 

incubation, the samples and standards were removed by aspiration and the wells washed 

five times with wash buffer.  

Horseradish peroxidase (HRP) conjugated capture antibody was diluted in the wash 

buffer to 1:35,000. To each well, 100 µL of the diluted HRP conjugate was added and 
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then the plate incubated for 60 minutes. The plates were washed five times with wash 

solution. The color was developed by adding 100 µL/well of the substrate solution, 3,3” 

5,5” tetramethylbenzidine (TMB), followed by incubation at room temperature for 15 

minutes, after which the reaction was stopped by the addition of 100 µL of 2 M sulphuric 

acid. The color was read at 450 nm using a microtiter plate reader (Molecular Devices, 

Sunnyvale, CA). The averages of the duplicate readings from each standard, control and 

sample were calculated. The Blank reading was subtracted from each of the averages. A 

standard curve was then generated for standards. The IgA concentration of each sample 

was then extrapolated from the standard curve.  

 

Statistical Analyses 

Proc Mixed analysis of Statistical Analysis System (SAS Institute, Cary, NC) was used. 

Experiments 1 and 2 were analyzed separately. Animal served as the experimental unit. 

Data are presented as Least squares (LS) means ± standard error. All data were analyzed 

as a completely random design with repeated measures over days. The model included 

fixed effects of treatment, day and treatment x day. Differences were considered 

statistically significant if P< 0.05.
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Results and Discussion 

 

Effect of probiotics on growth performance, body temperature and fecal pH 

Results from Exp. 1 and 2 indicated that supplementation of calf diets with probiotics 

did not improve the BW gain (P = 0.97 and 0.08 respectively; Fig. 1 and 2; Table 2). The 

increase in body weight was due to normal growth of the healthy calves as a result of 

normal feeding. Increasing growth rates across days were reflected in an obvious day 

effect in both trials (P <0.001 for both). There was no day x treatment interaction when 

body weight gain was analyzed (P = 0.73 and 0.36 for Exp. 1 and 2, respectively). 

However, there was a significant difference in average weight gain observed between 

treatment and control animals in Exp. 2 (P = 0.008) on d 35, which was probably caused 

by a small number of animals used. 

 The fecal pH analysis showed no significant day, treatment, nor day x treatment 

effects (P = 0.83, 0.19 and 0.58, respectively) in Exp. 1 (Fig. 3 and Table 3). When 

animal rectal temperatures were analyzed, no significant treatment effect was observed in 

either trial (P = 0.77 and 0.69 for Exp. 1 and 2, respectively; Table 3), but there was a 

significant day effect (P = 0.02 and P <0.001 for Exp. 1 and 2, respectively) (Fig. 4 and 

5). The day effect may be attributed to changes in environmental temperature since the 

trials were done in summer and environmental temperatures fluctuated, particularly in the 

second animal trial. There was no day x treatment effect for rectal temperature (P = 0.98 

and P = 0.57 for Exp. 1 and 2, respectively). 
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Effect of probiotic on serum IgA concentrations 

 Probiotic treatment has been shown to enhance the number of IgA-producing plasma 

cells in a dose-dependent manner (Perdigon et al., 1995). In the present experiments, 

serum IgA concentrations were measured. The results showed no significant differences 

in IgA levels between probiotic treated and control animals (P = 0.61 and 0.30 for Exp. 1 

and 2, respectively; Fig. 6 and 7; Table 4). The failure in enhancing secretion of IgA in 

the serum implied that more than 109 CFU.calf-1.d-1 might be needed to exert beneficial 

effects in Holstein calves. Alternatively, longer duration of administration or different 

strains of probiotics might be needed. 

 

Effect of probiotic on regulation of host immune responsive genes 

 Although several studies have shown that cytokine production by cells of the immune 

system can be altered by probiotic use (Tejada-Simon et al., 1999), our results showed 

that most of the proinflammatory cytokine genes were not upregulated in probiotic-

treated animals (data not shown). For example, constant expressions of IL-1β and IL-8 

were observed on Days 7 and 35 in both groups of animals (Fig. 10).  In fact, this 

phenomenon was seen across all sampling days, consistent with the findings of Tejada-

Simon et al. (1999), who reported no effect of repeated oral exposure to viable or killed 

L. acidophilus on basal cytokine mRNA expression in Peyer’s Patches, spleen or lymph 

nodes of mice after 14-day exposure. In contrast, Miettinen et al. (1996) showed a strong 

induction of IL-1β and IL-18 protein secretion when human peripheral mononuclear cells 

were stimulated with non-pathogenic strains of Lactobacillus. 
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Effect of probiotic on differential counts and phagocytic activity of white blood cells 

(WBC) 

Leukocytes in cattle blood primarily consist of neutrophils, lymphocytes and 

monocytes. Differential white blood cell count is an important criterion in detection of 

infection with both viruses and bacteria. Our results indicated that feeding probiotics did 

not cause a statistical difference in the percentage of lymphocytes (Fig. 11), monocytes 

(Fig. 12), or neutrophils (Fig. 13), on any sampling day in the first experiment. Consistent 

with these results, there was no difference in differential WBC counts for lymphocytes 

except on d 7 (P = 0.037) in Exp. 2 (Fig. 14).  Similarly no statistical difference was 

observed in monocyte counts in Exp. 2 (Fig. 15). However, the percentage of neutrophils 

in control animals in Exp. 2 was greater (P = 0.005) than in animals whose diets had been 

supplemented with probiotics (Fig. 16; Table 5). The difference in percentage of 

neutrophils between the two groups of animals was significant on d 21 (P = 0.0134). 

Since the animals used in this experiment were healthy and the probiotic used, L. 

acidophilus, is non-pathogenic, a decrease in the percentage of neutrophil counts most 

likely was due to a small sample size (a total of eleven animals were used in the second 

experiment).  

Furthermore, the phagocytic activity of white blood cells was also measured in both 

experiments. The results indicated that no difference in phagocytic capacity was observed 

between control animals and animals treated with probiotics (P = 0.62 and P = 0.53 in 

Exp. 1 and Exp. 2, respectively; Fig. 17 and Fig. 18; Table 6). Therefore, it can be 
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concluded that supplementation with the probiotic did not enhance the phagocytic 

capacity of blood leukocytes.  

Collectively, these results revealed no beneficial effect of feeding 109 colony-forming 

units (CFU).calf-1.d-1 of Lactobacillus acidophilus 381-IL-28 to 3 to 4-month-old 

Holstein calves on both innate and adaptive immune responses. However, large-scale 

experiments involving the use of a larger number of animals need to be performed to 

confirm this conclusion. Moreover, a different dose or strain of probiotic also warrants 

further investigation. 
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Fig. 1. Effect of probiotic on weight gain of calves in Exp.1. There was a significant day 

effect (P < 0.0001) and no significant treatment (P = 0.97) nor day x treatment (P = 0.73) 

effects on weekly weight-gain of the calves. SEM = 2.12 
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Fig. 2. Effect of probiotics on average calf weekly weight gain in Exp. 2 showing 

tendency towards a significant treatment effect (P = 0.08) with control animals having a 

higher weekly weight gain in general. There was a significant difference in average 

weight gain observed on day 35 between the two groups of animals (P = 0.008). SEM = 

2.4 

 

 

P = 0.008 
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Table 2.  Effect of probiotics on growth performance 

Experiment 1 

Item Control Probiotic SEM P-value 

n 20 20   

Weight gain 
(Kg) 

10.36 10.31 2.12 0.97 

Experiment 2 

Item Control Probiotic SEM P-value 

n 30 36   

Weight gain 
(Kg) 

26.22 23.1 2.4 0.08 
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Fig. 3. Effect of probiotics on fecal pH in Exp.1. There was no significant day (P = 0.83), 

treatment (P = 0.19) nor day x treatment (P = 0.58) effects on fecal pH. SEM = 0.13 
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Fig. 4. Effect of probiotics on calf rectal temperatures in Exp. 1. No significant treatment 

nor day x treatment effects with P values of 0.77 and 0.98, respectively. There was a 

significant day effect (P = 0.02) due to fluctuation daily environmental temperature 

during the experimental period. SEM = 0.24 
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Fig. 5. Effect of probiotics on calf weekly rectal temperatures in Exp. 2. No significant 

treatment or day x treatment effects with P values of 0.69 and 0.57, respectively. There 

was a significant day effect (P < 0.001). Daily environmental temperature varied during 

the experimental period. SEM = 0.85 
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Table 3. Effect of probiotics on fecal pH and rectal temperature 

Experiment 1 

Item Control Probiotic SEM P-Value 

n 16 16   

Fecal pH 6.67 6.42 0.13 0.19 

Rectal temp 0F 103.6 103.7 0.24 0.78 

Experiment 2 

Item Control Probiotic SEM P-Value 

n 30 36   

Rectal temp 0F 102.16 102.21 0.85 0.69 
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Fig. 6. Effect of probiotics on serum IgA levels in Exp. 1. There was no day (P = 0.87), 

treatment (P = 0.61) nor day x treatment (P = 0.27) effects on IgA levels. SEM = 1.0 x 

105 
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Fig. 7. Effect of probiotics on serum IgA levels in Exp. 2. No significant day (P = 0.47), 

treatment (P = 0.30) nor day x treatment (P = 0.80) effects were observed between the 

probiotic-treated and control animals on IgA levels.  SEM = 8.7 x 104 
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Table 4. Effect of probiotics on serum concentrations of IgA and IgG 

Experiment 1 

Item Control Probiotic SEM P-Value 

n 12 12   

IgA (ng/mL) 4.3 x 105 3.4 x 105 1.0 x 105 0.60 

Experiment 2 

Item Control Probiotic SEM P-value 

n 30 36   

IgA (ng/mL) 6.6 x 105 5.3 x 105 8.7 x 104 0.30 
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Fig. 8. Effect of probiotic on cytokine gene expression on day 7 (A) and day 35 (B) in 

Exp. 2. There was no significant difference in cytokine gene expression levels between 

probiotic-treated and control animals. The cytokine genes, IL-1β and IL-18 were 

amplified from cDNAs prepared from total RNA isolated from white blood cells prepared 

from blood samples collected on days 7 and 35, respectively.  
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Fig. 9. Effect of probiotics on lymphocytes counts in Exp.1. A significant day (P = 0.04) 

effect was observed with no significant treatment (P = 0.88) nor day x treatment (P = 

0.96) effects on lymphocyte counts. SEM = 1.91 
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Fig. 10. Effect of probiotic on monocyte counts in Exp. 1. No significant day (P = 0.37), 

treatment (P = 0.43) nor day x treatment (P = 0.56) effects were observed on monocyte 

counts between probiotic and control animals. SEM = 1.3 
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Fig. 11. Effect of probiotic on neutrophils counts in Exp.1. A significant day effect (P = 

0.0481) was observed with no significant treatment (P = 0.99) nor day x treatment (P = 

0.61) effects on neutrophil counts between probiotic-treated and control animals. SEM = 

1.99 
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Fig. 12. Effect of probiotic on lymphocyte counts showing significant day (P = 0.009) 

and treatment (P = 0.024) effects in Exp. 2. The difference in lymphocyte counts between 

probiotic-treated and control animals was significant on day 7 (P = 0.037).  There was no 

significant day x treatment effect (P= 0.67). SEM = 0.93 

P = 0.037 
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Fig. 13. Effect of probiotic on monocyte counts in Exp. 2; no significant day (P = 0.32), 

treatment (P = 0.1905) nor day x treatment (P = 0.98) effects were observed. SEM = 1.33 
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Fig. 14. Effect of probiotic on neutrophil counts in Exp. 2. There was a significant 

treatment effect (P = 0.052) with control animals showing generally higher neutrophil 

count. The difference was most significant on day 21 (P = 0.013). SEM = 1.21 

P = 0.013 
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Table 5. Effect of probiotics on differential white blood cell count 
 
Experiment 1 

Item Control Probiotic SEM P-value 

n 24 24   

% Neutrophils 33.25 33.20 1.99 0.98 

% Lymphocytes 35.62 36.04 1.91 0.88 

% Monocytes 31.25 30.25 1.30 0.43 

Experiment 2 

Item Control Probiotic SEM P-value 

n 30 36   

% Neutrophils 30.70 25.00 1.21 0.005 

% Lymphocytes 37.56 40.80 0.93 0.02 

% Monocytes 31.96 34.11 1.33 0.19 
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Fig. 15. Effect of probiotic on the phagocytic activity of white blood cells in Exp. 1. 

There was a significant day (P < 0.0001) with no significant treatment (P = 0.62) nor day 

x treatment (P = 0.82) effects observed. Therefore, there was no significant difference in 

phagocytosis capacity between immune cells from probiotic treated and control animals. 

SEM = 2.5 
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Fig. 16.  Effect of probiotic on the phagocytosis capacity of isolated white blood cells 

from both probiotic treated and control animals in Exp. 2. The results showed neither 

significant treatment (P = 0.53) nor day x treatment (P = 0.63) effects. SEM = 0.69 
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Table 6.  Effect of probiotics on phagocytosis of total white blood cells 

Experiment 1 

Item Control Probiotic SEM P-value 

n 20 20   

% Phagocytosis 28.8 30.7 2.5 0.61 

Experiment 2 

Item Control Probiotic SEM P-value 

n 30 36   

% Phagocytosis 14.94 14.31 0.69 0.53 
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Appendix 

Raw data 

Exp. 1. 

Animal 
ID 

TRT 
 

Day 
 

Phagoc 
(%) 

IgA 
(ng/ml) 

Neu 
(%) 

Lymp 
(%) 

Mono 
(%) 

Wt Gain 
(Kg) 

Temp 
(oF) 

pH 
 

306 PRO 0 12.19 302508 30 38 32   6.55 
308 CON 0 9.63 896653 24 41 35   7.13 
311 PRO 0 23.68 241466 24 31 43   6.33 
307 PRO 0 10.82 1151000 27 47 26   6.13 
309 CON 0 9.6 234836 36 42 22   6.5 
310 CON 0 17 421333 21 53 26   7.13 
303 PRO 0 8.7 75197 37 40 23   5.65 
305 CON 0 5.93 265532 39 31 30   5.87 

           
306 PRO 2 23.66  42 38 20 5.9  6.37 
308 CON 2 38.4  27 45 28 7.2  6.62 
311 PRO 2 33.77  22 49 29 8.2  7.07 
307 PRO 2 27.78  26 48 26 1.4  6.67 
309 CON 2 34.92  23 50 28 4.5  6.6 
310 CON 2 43.1  29 33 38 4.0  6.99 
303 PRO 2 54.77  37 33 30 3.6  5.36 
305 CON 2 27.45  34 39 27 3.6  7.45 

           
306 PRO 4 54.72  38 22 30 5.9 103.8 6.59 
308 CON 4 49.08  42 33 25 6.8 103.2 6.2 
311 PRO 4 44.27  41 37 22 9.0 103.4 5.74 
307 PRO 4 32.08  29 42 29 5 103.2 6.79 
309 CON 4 33.19  28 37 35 6.8 102.5 6.79 
310 CON 4 49.26  35 23 42 7.2 103.6 6.76 
303 PRO 4 51.81  36 34 30 8.6 103.8 6.69 
305 CON 4 33.83  37 37 30 10 104.2 6.37 

           
306 PRO 7 31.3 348166 34 42 24 10.4 103.6 5.58 
308 CON 7 38.99 242549 33 42 25 8.6 103.4 6.49 
311 PRO 7 30.48 170421 35 37 28 8.6 103.8 7.21 
307 PRO 7 23.54 1192000 26 43 31 12.7 103.2 6.81 
309 CON 7 19.16 188122 31 35 34 4.5 102.8 6.85 
310 CON 7 29.16 311233 29 32 39 10.9 103.2 7.2 
303 PRO 7 29.15 75179 34 29 37 12.7 104 7.2 
305 CON 7 23.54 265532 38 30 32 11.8 104.8 5.74 
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306 PRO 14  156441 37 27 36 4.5 105  
308 CON 14  1235000 22 45 43 4.5 104.1  
311 PRO 14  265537 36 29 35 5.4 103.2  
307 PRO 14  187114 28 46 26 8.2 104.3  
309 CON 14  302544 43 19 38 1.4 103.1  
310 CON 14  453250 25 41 34 9.0 103.4  
303 PRO 14  72058 35 29 36 7.2 104.2  
305 CON 14  353603 36 31 33 9.5 105.6  

           
306 PRO 21   38 30 32 23.6 103.8  
308 CON 21   36 34 30 24 104.1  
311 PRO 21   30 28 42 12.3 103  
307 PRO 21   26 41 33 22.2 104  
309 CON 21   48 25 27 23.6 103  
310 CON 21   38 23 39 24.5 103.1  
303 PRO 21   49 25 26 30.4 102.9  
305 CON 21   44 34 22 24.0 103.5  

 

Exp. 2 

Animal 
ID 

TRT 
 

Day 
 

Phagoc 
(%) 

IgA 
(ng/ml) 

Neu 
(%) 

Lymp 
(%) 

Mono 
(%) 

Wt Gain 
(Kg) 

Temp 
(oF) 

291 PRO 0 18.16 607326 40 35 25  102.2 
292 CON 0 14.29 575133 22 48 30  103.1 
293 PRO 0 14.79 1183570 25 42 33  103.4 
295 PRO 0 14.14 886072 26 45 29  102.7 
296 CON 0 15.5 776955 21 52 27  105.3 
297 PRO 0 19.05 326263 28 46 26  103.3 
298 CON 0 19.89 581275 18 36 46  102.8 
300 PRO 0 15.55 363652 20 48 32  103.1 
301 CON 0 15.31 311331 26 45 29  103.4 
302 PRO 0 16.03 780788 20 38 42  102.4 
304 CON 0 14.29 1433000 39 37 24  102.7 
291 CON 7 13.19 648388 32 38 30 13.2 101.8 
292 PRO 7 14.53 468272 19 38 43 10.9 102.1 
293 CON 7 11.55 659191 27 43 30 11.3 102.0 
295 PRO 7 9.95 1021098 24 31 45 2.3 102.2 
296 PRO 7 10.47 522456 27 31 42 5.9 102.3 
297 CON 7 18.61 284980 24 47 29 8.6 102.7 
298 PRO 7 12.73 410448 24 40 36 6.8 101.9 
300 CON 7 13.91 363440 17 44 39 5.4 101.4 
301 PRO 7 11.11 632086 30 40 30 3.6 101.4 
302 CON 7 10.69 527553 25 45 30 9.0 102.1 
304 PRO 7 10.59 803512 31 25 44 14.5 101.9 
291 PRO 14 14.95 367404 29 33 38 20.4 101.8 
292 CON 14 10.04 437055 28 41 31 19.0 101.6 
293 PRO 14 10.85 858738 25 38 37 17.3 102.1 
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295 PRO 14 4.55 418286 33 28 39 16.8 102.2 
296 CON 14 9.835 463843 31 42 27 21.8 101.5 
297 PRO 14 10.98 287036 34 37 29 16.4 101.6 
298 CON 14 13.97 333732 31 39 30 17.7 102 
300 PRO 14 11.4 356144 26 38 36 14.1 101.8 
301 CON 14 8.42 734798 26 30 44 16.8 101.9 
302 PRO 14 16.93 486797 14 38 48 19.1 101.7 
304 CON 14 11.85 1756000 40 35 25 24.1 102 
291 PRO 21 16.72 420018 26 42 32 28.2 102 
292 CON 21 17.68 421914 22 49 29 25.4 102 
293 PRO 21 11.88 605198 28 40 32 17.3 102.2 
295 PRO 21 6.815 483226 32 36 32 29.5 102.2 
296 CON 21 8.32 506295 41 35 24 19.1 101.9 
297 PRO 21 20.38 318792 23 43 34 27.3 102.2 
298 CON 21 12.715 572992 33 33 34 23.2 101.8 
300 PRO 21 13.74 510004 24 45 31 25.4 102.1 
301 CON 21 12.89 631701 31 38 31 27.3 102.3 
302 PRO 21 11.26 652467 23 37 40 20 102 
304 CON 21 9.936 1531000 40 34 26 28.6 101.8 
291 PRO 28 20.74 406822 37 38 25 30.4 102.2 
292 CON 28 23.73 613285 22 47 31 30.9 102 
293 PRO 28 9.03 553158 26 42 32 28.5 101.9 
295 PRO 28 19.92 376734 25 45 30 36.8 101.8 
296 CON 28 24.44 412458 22 50 28 37.7 102.4 
297 PRO 28 16.43 382365 28 45 27 32.7 102.1 
298 CON 28 12.24 724330 18 37 45 27.7 101.6 
300 PRO 28 16.93 380614 21 47 32 25.4 102.6 
301 CON 28 22.21 675596 27 45 28 35.4 102 
302 PRO 28 16.21 575630 22 37 41 31.3 101.6 
304 CON 28 18.22 796323 40 36 24 35 102.3 
291 PRO 35 23.15 296430 30 32 37 59.1 102.3 
292 CON 35 20.59 827270 28 40 32 37.8 102.2 
293 PRO 35 16.91 572448 25 38 37 34.1 102.4 
295 PRO 35 7.65 424796 33 28 39 42.2 102 
296 CON 35 16.43 425028 33 40 27 44.1 101.8 
297 PRO 35 15.14 401008 34 37 29 41.8 102.3 
298 CON 35 19.18 715597 30 40 30 36.8 102 
300 PRO 35 15.62 344833 26 38 36 26.3 102.1 
301 CON 35 11.88 682931 30 34 46 38.2 101.4 
302 PRO 35 17.69 419971 24 40 36 30 102.4 
304 CON 35 18.92 653404 40 35 25 40 102.2 
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Scope and Method of Study: The purpose of this study was to investigate effect of 
       probiotics as dietary supplement in three to four month-old Holstein calves on their  
       local and systemic immune responses. Probiotic bacteria are microorganisms that  
       have beneficial effects on the physiology and pathology of their host animals. Their  
       effects on intestinal microflora may play a role in improving animal health.  One of  
       their putative effects is the modulation of the immune function.  Probiotics have been  
       shown to affect the innate and both the cellular and the humoral arms of the immune  
       system. In this study, Lactobacillus acidophilus was administered orally to six calves  
       daily for 35 days at the rate of 109 colony-forming units per animal. Five other calves  
       were not given the bacteria and served as controls. 
 
Findings and Conclusions: I observed that there was no significant difference observed in  
       phagocytic activity of immune cells isolated from animals fed on probiotics and the 
       controls.  ELISA measurements of serum IgA concentrations of animals fed on  
       probiotics and their controls showed no significant difference.  Pro-inflammatory 

cytokine gene assay, by semi-quantitative RT-PCR also yielded result of no 
significant difference between the two groups of animals suggesting that the probiotic 
did not have effect on their regulation. Therefore, I concluded that, at the rate of 
feeding healthy 3 to 4- month old calves with at least 109 colony-forming units of 
bacteria, no key immunological function is enhanced.  Either the bacteria had 
difficulty in establishing and colonizing the gastrointestinal tract, or the numbers of 
bacteria fed  to the animals were low such that no microfloral balance was created 
leading to no beneficial effects being conferred to the animals.    
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