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CHAPTER I 

 

 

INTRODUCTION 

 

Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes are 

considered important pathogens responsible for causing food-related human illnesses. In 

the United States, foodborne illnesses are a significant public health issue. An estimated 

76 million cases of illnesses occur annually, resulting in 5,000 deaths and 325,000 

hospitalizations (Suo et al., 2010). According to Russell and Gould (2003), the main 

pathogenic microorganisms responsible for food poisoning and food spoilage are 

Salmonella serovars, L. monocytogenes, E. coli O157:H7, Staphylococcus aureus, 

Campylobacter jejuni, Clostridium botulinum, Clostridium perfringens, and Yersinia 

enterocolitica. Since the 1990s, the four main foodborne pathogens of concern by 

government agencies and the food industry have been Salmonella spp., Campylobacter 

spp., E. coli O157:H7, and L. monocytogenes (Newell et al., 2010). 

Salmonella is an important foodborne pathogen that causes gastrointestinal 

infections in humans. It is associated with animals and can be found on raw, animal-

related food products such as meat, poultry, and eggs, and has also been found in 
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contaminated processed foods such as cake mix and peanut butter. The illness, called 

salmonellosis, may include symptoms such as diarrhea, fever, abdominal pain, nausea, 

vomiting and loss of appetite (Ray, 2001). The bacteria alter the cells of the villi in the 

intestinal wall, increasing water secretion into the lumen and decreasing absorption, 

resulting in diarrhea. Salmonella is capable of surviving for long periods in the 

environment if conditions are favorable (Newell et al., 2010). 

Escherichia coli O157:H7 is also a dangerous foodborne pathogen that can cause 

gastrointestinal illness after consuming contaminated food because the minimum 

infectious dose is very low. Illness may be acquired by consumption of as little as a few 

cells and symptoms often show up quickly (1-2 days) and may last for 7 to 12 days, 

appearing as abdominal cramps, headache, chills, fever, and bloody diarrhea known as 

Hemorrhagic Colitis Syndrome (Kay et al., 1994). In some cases the infection can cause a 

more severe syndrome known as Hemolytic Uremic Syndrome (HUS) which may lead to 

kidney failure or death (Suo et al., 2010). 

L. monocytogenes is a Gram-positive, facultative, non-spore forming, rod-shaped 

intracellular foodborne pathogenic bacterium that may be present on raw meat and 

sometimes as a contaminant in processed ready-to-eat (RTE) meats. It is been identified 

since the early 1980s as a microorganism responsible for numerous outbreaks of 

foodborne disease called listeriosis, which can cause meningitis or sepsis, resulting in 

high mortality rates (Suo et al., 2010). Newborns and fetuses are the largest group 

affected, followed by infants, the elderly, immunocompromised people, and pregnant 

women (Ray, 2001). The microorganism can be found widely distributed in many kinds 

of foods, such as raw produce, raw poultry, raw dairy products, and is an unwanted 



3 
 

resident in meat processing plants. The pathogen has been a recurring problem in meat 

processing facilities especially because L. monocytogenes is capable of adherence to 

equipment and/or environmental surfaces in meat processing facilities, resulting in the 

formation of biofilms (Kushwaha and Muriana, 2010). The microorganism is a 

psychrotrophic and has the ability to grow in refrigerated food products, such as ready-to-

eat (RTE) foods. The increase in consumption of contaminated RTE products that are 

consumed without heating and which allow an increase in microbial growth from 

temperature abuse can consequently cause disease (Ray, 2001). 

These pathogens have been problematic to the raw and processed meat industry, 

causing foodborne illnesses and product recalls. The USDA-FSIS has recently developed 

an incentivized method to promote safety in processed meats by their „Final Rule for 

Control of Listeria in RTE Meats‟ which elaborates 3 processing categories: Alternative 

3 process (sanitation alone), Alternative 2 (use of either post-process lethality or 

antimicrobials to prevent growth of Listeria during shelf life), or Alternative 1 (post-

process lethality and prevention of growth during shelf life). In many instances, the use of 

antimicrobials can be used in both Alternative 1 and 2 to ensure safe food products  

The objective of this study was to evaluate the effect of antimicrobials that are 

commercially available for the food industry using a kinetic growth assay. The 

antimicrobials used in our study were tested to evaluate various concentrations in head-

to-head trials against multi-strain cocktails of Salmonella, E. coli O157:H7, and L. 

monocytogenes. We also determined the Minimum Inhibitory Concentration (MIC) 

which according to Houtsma et al. (1993),  was defined as “the lowest concentration at 

which the absence of growth of a certain microorganism could be observed under the 
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conditions of testing”. Although many of these antimicrobials have been shown to be 

effective in various peer reviewed publications, they have often been examined on 

different products, against different challenge strains, and at different concentrations. 
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CHAPTER II 

 

 

REVIEW OF LITERATURE 

Importance of preservatives 

Preservatives, or antimicrobial inhibitors, are important in foods in order to inhibit 

pathogens and provide a longer shelf life for products by controlling growth of 

microorganisms that cause food spoilage (Ray, 2001). The purposeful application of 

methods to preserve foods started around 6000 B.C. and some methods included drying, 

cooling, fermenting, and heating. Since the early 1900s, chemicals have been introduced 

into foods to control undesirable microorganisms. Today, the methodology used has 

changed in comparison to the methods used in the past due to several factors, such as 

food production and worldwide/global transport, population increase, which all lead to 

larger food production requirements (Davidson and Branen, 1993). Newer methods used 

for food preservation as described by Theron and Lues (2007) include the addiction of 

chemical preservatives, drying, freezing, refrigeration, irradiation, packaging and thermal 

processing. Consumers are interested in products that are safe for consumption, free of 

pathogens (Davidson and Branen, 1993), and contain a minimal concentration of 

preservatives (Ray, 2001). In a processing plant, every food processor has to make the 
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preservation process a key issue in their business to protect consumers (Theron and Lues, 

2007) and the use of a preservative must be approved GRAS substances (Generally 

Recognized As Safe) before adding into the product (Ray, 2001). 

Antimicrobial chemicals are used to either kill microorganisms (i.e., bactericidal) 

or slow down microbial growth (i.e., bacteriostatic). Some antimicrobials not only serve 

as a preservative, but also contribute to flavor or color stability (Davidson and Branen, 

1993), while others are added to improve functional properties of the product (Ray, 

2001). Organic acids are a good example of this, because they not only serve as 

preservatives inhibiting growth of most naturally found microorganisms in food by pH 

reduction, but they also improve flavor acceptance qualities of foods (Theron and Lues, 

2007). Organic acids used as food preservatives have both bactericidal and bacteriostatic 

properties. However, they are pH-dependent as their optimal inhibitory activity is 

expressed at low pH. When applied as decontaminants for raw meats, factors such as 

tissue type (fat or lean), type of bacteria involved (Gram-negative/Gram-positive), 

decontamination technique used (spray or dip), and slaughter technology 

(decontamination of hides) are factors that must be considered to reach optimum activity 

and minimize resistance (Theron and Lues, 2007). 

Benefits that antimicrobial additives provide include reduction of food loss as a 

result of food spoilage and reduced cases of food poisoning from contaminated food 

(Davidson and Branen, 1993). Microbiological causes in decreased food quality are 

important because they may also result in food poisoning. Food poisoning diseases are 

caused mainly by bacterial and viral agents, and regulatory agencies are responsible for 
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either identifying those agents, or newly emerging pathogens, and developing efficient 

methods to combat those agents (Ray, 2001). 

Understanding the classification of antimicrobials (traditional or natural) and their 

sources is of great importance when the selection of antimicrobials is initiated for a 

particular food product. Identification of the spoilage microorganism and possible 

preservation methods are the primary steps to start the selection process of the 

appropriate preservation method. Secondary factors to consider are the spectrum of 

antimicrobial activity, chemical and physicochemical properties of the food, and 

composition of the food product in question when selecting antimicrobials (Davidson and 

Branen, 1993).  

The process of meat contamination by microorganisms theoretically starts growth 

during animal production, but for practical purposes is generally considered to start 

during processing on the slaughter line. Most contamination of animal-derived meats is 

carried on the surface of carcasses or smaller cuts of meat. Microbial contamination can 

be reduced by inhibiting or limiting microbial growth at the surface. Usually the 

contamination of fresh slaughtered beef carcasses occurs through the transmission of 

microorganisms via feces, from the hide, from workers, or contact with environmental 

surfaces. This process may occur by accident when the gastrointestinal tract is damaged 

when it is removed from the carcass during the slaughtering process (Theron and Lues, 

2007). By 1996, the Pathogen Reduction/HACCP (Hazard Analysis Critical Control 

Point) System was approved by the Food Safety and Inspection Service Agency (FSIS) 

and U. S. Department of Agriculture (USDA). The objective of this regulation was to 
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reduce illness risk associated with consumption of meat and poultry products (USDA - 

FSIS, 1996). 

Gill et al., (1999) also suggest that to control and prevent contamination with 

pathogenic microorganisms, it is mandatory to implement HACCP systems in the plant. 

Since contamination is a critical meat safety issue, the implementation of HACCP and 

adherence to GMPs and SOPs are essential mandatory systems required by the USDA - 

FSIS (Gill et al., 1999).  

The increase demand on the food supply normally increases with the population 

and the use of antimicrobials will become more necessary than it is today in order to 

supply a larger population (Davidson and Branen, 1993). In compliance with the increase 

in population, the development of new antimicrobials is essential to face a possible 

emergence of new pathogenic strains in food products (Theron and Lues, 2007). The 

constant development of new technologies to process safe food products and reduce 

contamination is necessary to prevent outbreaks related to the consumption of 

contaminated foods (Theron and Lues, 2007).  

Decontamination methods that provide a safe product without modifying 

appearance, taste, odor, nutritional value and no more environmental hazards, are ideal 

substances to be applied, however, it is also important to provide a cost effective method 

that includes a longer shelf-life for products free of spoilage and pathogenic 

microorganisms (Dinçer and Baysal, 2004). Decontamination methods that have been 

applied in slaughter houses in North America have more frequently done so with the aim 

to reduce microbial loads on meat products (del Río et al., 2007). 
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Microorganisms of importance 

Pathogenic bacteria that are most often the causes of concern are Salmonella 

serovars, L. monocytogenes, E. coli O157:H7, Staphylococcus aureus, Campylobacter 

jejuni, Clostridium botulinum, Clostridium perfringens, and Yersinia enterocolitica 

(Russell and Gould, 2003; Dinçer and Baysal, 2004). Since the 1960s these 

microorganisms have been recorded as the major causes of gastrointestinal disease 

(Newell et al., 2010). Besides foodborne pathogens, food spoilage microorganisms that 

cause much concern include Pseudomonas, Lactobacillus, Acinetobacter, Moraxella, 

Aeromonas, Alteromonas putrefaciens and Brochothrix thermosphacta (Huffman, 2002).  

New foodborne pathogens will likely emerge in the 21
st
 century due to an increase 

in resistance to antimicrobials by zoonotic foodborne bacteria (Newell et al., 2010), an 

increase in travelling (especially international travelling that can bring a new pathogen 

into the country), and changes in food habits by consumers (consumption of raw seafood, 

undercooked hamburgers, imported foods, raw vegetables, fruits and others) (Ray, 2001). 

Salmonella sp. 

Salmonella is Gram-negative, rod-shaped, non-spore-forming pathogen and 

motile enterobacteria. The size of the rods varies from 0.7 µm to 1.5 µm in diameter and 

from 2 µm to 5 µm in length. These organisms are capable of colonizing livestock 

species, such as poultry, cattle and pigs, resulting in contaminated meat and other food 

products. Salmonella has been the cause of frequent outbreaks of salmonellosis. There are 

over 2500 serovars of Salmonella that can cause salmonellosis in humans (Ray, 2001). 

Recently, the association of foodborne outbreaks of salmonellosis has been observed 
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from vehicles that previously were not common, in which the microorganism evolved to 

attach and colonize fresh vegetables. This unusual adaptation demonstrates how this 

pathogen is able to respond and evolve to new niches as a result of environmental 

changes (Newell et al., 2010). 

Escherichia coli O157:H7 

E. coli serotype O157:H7 is Gram-negative, rod-shaped enterohemorrhagic strain 

that can colonize the intestine of various host animals. There are six groups of 

diarrhoeagenic E. coli (DEC) strains, classified as enteropathogenic E. coli (EPEC), 

enterotoxigenic E. coli (ETEC), enteroinvasive E. coli (EIEC), enteroaggregative E. coli 

(EAggEC), diffusely adherent E. coli (DAEC) and Vero cytotoxin-producing E. coli 

(VTEC) or Shiga toxin-producing E. coli (STEC). VTEC and STEC strains are more 

associated with foodborne outbreaks than EPEC, ETEC and EAggEC strains (Newell et 

al., 2010). It is estimated that E. coli O157:H7 causes 73,000 illnesses and 250 deaths 

annually (Mead et al., 1999). 

Cattle have been often found to be sources and vehicles of contamination. Any 

processed raw animal product has the potential to carry E. coli O157 contamination from 

animal feces may also spread to fruit and vegetable crops. Contaminated products that 

have already been involved with outbreaks include vegetables, fruits, juices, sprouts, and 

drinking water (Powell et al., 2011). 

In 1982, E. coli O157:H7 was first recognized as a pathogen after an outbreak 

linked to ground beef consumption that caused an unusual gastrointestinal illness with 

severe bloody diarrhea in North America. In 1994, a fast food chain in the USA, Jack-in-

the-Box, was linked to an outbreak of E. coli O157:H7. This outbreak killed four and 
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sickened hundreds of people who consumed hamburger that was not properly cooked. In 

2006, fresh baby spinach was the source of transmission to cause an outbreak of E. coli 

O157:H7, resulting in three deaths and 205 illnesses in 26 U.S. states and in Canada 

(Powell et al., 2011).  

Listeria monocytogenes 

L. monocytogenes is rod-shaped, Gram-positive, non-spore forming, facultative, 

intracellular foodborne pathogenic bacterium that may be found on raw meats and 

vegetables (Suo et al., 2010). It is ubiquitous in nature by virtue of being shed in the feces 

of numerous animals, and is an opportunistic foodborne pathogen, affecting humans and 

animals. This species has been found in soil, leaf litter, vegetation, dust, sewage, water 

and in the intestines of animals and humans. L. monocytogenes has been found in 

different food products such as coleslaw, raw milk, soft cheese, cabbage, meat and 

poultry products, and as a contaminant on ready-to-eat products such as jerky, cooked 

sausages, deli ham and luncheon meats. Due to the seriousness of outbreaks with L. 

monocytogenes, the USDA-FSIS has issued a policy of zero tolerance for this pathogen 

on RTE products (Fabrizio and Cutter, 2005).  

Researchers have observed a pattern change of listeriosis outbreaks in European 

countries. An increase in testing showing numerous positive results reported in patients 

60 years old and over. Clinical changes occurred in the patients presented a bacteremia 

without involvement of the central nervous system. The cause of this modification is still 

not known, but a possible relation of the elderly and their changes in food consumption 

habits may be relevant (Newell et al., 2010). 
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In 2008, an outbreak of L. monocytogenes contaminated deli meats by Maple Leaf 

Foods, Inc. of Canada, resulted in 22 deaths and 57 illnesses. The cause was due to 

commercial meat slicers that were not properly cleaned according to the equipment 

manufacturer‟s instructions. Failure in the sanitation process was not the only reason, 

which also included insufficient planning on food safety practices with the company, 

such as proper implementation of HACCP plans, which today is mandatory in the food 

industry in the U.S. (Powell et al., 2011). 

Improving the safety of foods to reduce foodborne illness 

HACCP is an example of a structured approach to be implemented in the food 

sector to improve food safety and reduce the chance of outbreaks with foodborne 

diseases. In order to reduce the risk of disease and improve microbiological safety of 

food products, the implementation of monitoring methods is essential in all sections of 

the food production system. Farm-to-fork monitoring can aid in avoiding outbreaks 

(Newell et al., 2010). HACCP is a system revolving around seven basic principles that 

reduce and prevents contamination on meat products and a safe product (Table 1) 

(Hulebak and Schlosser, 2002). 

According to Powell et al. (2011), it is essential to change the way that people 

handle food. Public education of consumers and food handlers will be necessary to 

decrease the occurrence of contamination through cross-contamination or from the 

cooking or cooling of foods improperly (Ray, 2001). The emergent concept of „Food 

Safety Culture‟ is based on keeping the concepts of food safety in thought and in 

behavior relevant for the community and for the good and safety of the food system. The 

concept of Food Safety Culture includes food processing facilities, farmers, restaurants 
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and domestic kitchens. Food Safety Culture requires the greatest organization and 

communication systems (Powell et al., 2011). As proposed by Griffith et al. (2010), there 

are six culture factors to provide improved food safety performance that include 

leadership, food safety management systems and style, commitment to food safety, food 

safety environment, risk perception, and communication. Another tool that can provide 

communication and support to the food safety culture for food handlers are food safety 

infosheets. Infosheets include details of an outbreak of food illness and the consequences 

correlated with food handler‟s behavior, with the objective to change people‟s behavior 

(Powell et al., 2011). 

When changes in behavior are mentioned, there are multiple factors that correlate 

to a change tendency in diseases caused by food products. These factors can be explained 

by fast population growth, increased global market in products with origins in different 

countries without proper safety procedures, changes of eating habits, higher proportions 

of immunologically compromised individuals, climate change, and changes in farmer‟s 

practices (Newell et al., 2010). 

Antimicrobial interventions for raw meats 

Table 2 includes safe and suitable antimicrobials used in the production of meat 

and poultry products from the Food Safety and Inspection Service. Some of the 

antimicrobials used in this project have been approved as Generally Recognized as Safe 

(GRAS) substances for use in products and are included in Table 2. 
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Antimicrobial interventions for raw beef 

Lactic acid 

In the past, the use of lactic acid was the result of acidification of foods and by 

microbial cultures accepted sensory qualities. Today, its use is also heavily focused on its 

antimicrobial decontamination properties mainly in beef, pork and chicken products 

(Davidson and Branen, 1993). Lactic acid is a weak-organic acid and by tradition is 

widely used to control pathogens in foods. The inhibitory capacity occurs through 

diffusion of lactate molecules into microbial cells where they dissociate into toxic anionic 

forms based on the relationship of the acid‟s pKa and the pH of the food (Ibrahim et al., 

2008). Organic acids are classified as pure or buffered acids. Lactic acid is a pure acid 

with a simple and small structure, making it more susceptible to move easily into cells 

(Theron and Lues, 2007). The use of lactic acid in the food industry is due to its 

effectiveness when used on a meat surface layer to reduce bacterial counts (Pipek et al., 

2005). 

An evaluation of the efficacy of surface decontamination of beef carcasses was 

the objective of a study conducted by Pipek et al. (2005), which was performed using a 

combination of steam treatment followed by lactic acid solution spray treatment. The 

lactic acid solution was prepared at 2% concentration for the treatment process. The total 

count was tested for mesophilic and psychrophilic microorganisms. Results show that 

mesophilic counts were lower than counts for psychrophilic microorganisms, but the 

effect of decontamination was similar for both groups. The treatment effectively reduced 

microbial counts on the beef surface carcass, by 1 to 3 decimal counts of CFU, as well as 
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slowed down microbial growth during storage, extended shelf life, and increased the 

safety of the product (Pipek et al., 2005). 

Calicioglu et al. (2002) used 2% lactic acid for decontamination of beef carcass 

quarters and fat-covered sub primal cuts. In this study, the authors inoculated samples 

with a mixture of manure slurry plus 5 strains of E. coli O157:H7 at 4 to 5 log10 

CFU/cm
2
. They conducted several experiments to identify the effectiveness of lactic acid 

spray treatment: Experiment A consisted of: (i) control (not treated), (ii) spraying with 

2% LA, (iii) tempered at 21
o
C during 4 h, (iv) tempered followed by 2% LA spray 

solution. Experiment B involved: (v) water spray, (vi) 2% LA spray, (vii) 2% LA spray 

plus 0.5% sodium benzoate, (viii) 2% LA spray plus sodium benzoate plus 5% Tween 20 

(TW20). For experiment C they used: (ix) water spray (control), (x) pre-spray withTW20 

solution followed by 2% LA solution, (xi) pre-sprayed with TW20 followed by 2% LA 

containing SB. Results for these treatment combinations revealed that lactic acid 

treatments on beef carcasses reduced the viable number of the pathogen ranged from 1.6 

to 2.8 log10 CFU/cm
2
, and the pre-spraying with a 5% TW20 solution did increase the 

inhibitory effect of lactic acid by 2.8 log10 CFU/cm
2
 on beef carcass quarters and by 3.2 

log10 CFU/cm
2
 on fat-covered sub primal cuts. This may be explained by the effect of 

TW20 on cells, making them more susceptible to the action of lactic acid (Calicioglu et 

al., 2002). 

Decontaminating treatments, such as spraying with 2% lactic acid, vacuum hot 

water, trimming, washing, and pasteurization with steam or hot water, were placed in 

four beef packing plants where microbiological properties were examined during the 

dressing of beef carcasses (Gill and Landers, 2003). All carcass samples were submitted 
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for bacterial counts to be performed for aerobes, coliforms, and E. coli. A non-

satisfactory result was obtained from samples that were sprayed with 2% lactic acid, 

vacuum-hot water and trimming which were not effective, however, the efficacy of 

washing and pasteurization was satisfactory in reducing bacterial counts on carcasses by 

1 and 2.5 log units, respectively (Gill and Landers, 2003). 

In another study, beef carcass tissue (BCT) inoculated with E. coli O157:H7, L. 

innocua, and Clostridium sporogenes were subjected to an industrial spray wash cabinet 

and submitted for microbial analysis during prolonged refrigerated vacuum-package 

storage after antimicrobial treatment. The method was used to treat the BCT with: water 

(W), 1.5 and 3.0% lactic (LA) or acetic (AA) acid, or 12% trisodium phosphate (TSP) 

washes. Prior to each treatment, fresh bovine feces were inoculated with the following 

antibiotic-resistant bacteria strains (marked): E. coli O157:H7, L. innocua, and 

Clostridium sporogenes. After treatments, plates were stored at 5
o
C and analyzed for up 

to 21 days. Analyses were made by monitoring levels of mesophilic aerobic bacteria, 

lactic acid bacteria, pseudomonads, and added antibiotic-resistant bacteria. Mesophilic 

aerobic bacteria, lactic acid bacteria and pseudomonas were initially 5.6 log CFU/cm
2
, 

after the treatment they were reduced to 1.3 log CFU/cm
2
. Labeled antibiotic resistant 

bacteria had a 1.3 log CFU/cm
2
 reduction that remained constant during 21 days of 

storage. Trisodium phosphate was more effective for mesophilic aerobic bacteria, lactic 

acid bacteria, and L. innocua than for E. coli O157:H7 and Clostridium sporogenes 

(Dorsa et al., 1997). 

Lactic acid at 4% and 2% concentrations were used by Castillo et al., (2001b) 

using organic acid spray systems on beef carcass surfaces inoculated with E. coli 
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O157:H7 and Salmonella Typhimurium. The use of organic acids applied by spray 

systems in carcass decontamination have been shown to be effective in reducing 

pathogens (Anderson and Marshall, 1989). One of the method used in this study 

consisted of spraying 4% lactic acid at 55
o
C for 30 seconds applied to the outside beef 

carcass surfaces already contaminated with the pathogens. The other method was 

examined on prechilled hot carcasses using only a water wash, or a water wash followed 

by a 15 second spray with 2% lactic acid at 55
o
C. The prechill treatment using water 

wash alone reduced both pathogens by 3.3 to 3.4 log cycles and using water wash and 

lactic acid the reduction was up to 5.2 log cycles. A postchill treatment was also 

conducted onto the outside beef carcass surfaces and showed more reduction in both 

pathogens by 2.0 to 2.4 log cycles for E. coli O157:H7 and by 1.6 to 1.9 Salmonella 

Typhimurium, concluding that when using both treatments the counts of pathogens were 

significantly reduced (Castillo et al., 2001b). 

Another decontamination study performed by Castillo et al. (2001a) was the 

evaluation of chilled beef carcasses using a 4% lactic acid (55
o
C at source) solution 

sprayed for 35 s. The objective was to reduce bacterial populations using hot water spray 

treatment followed by lactic acid spray prior to chilling. Three samples from the brisket, 

the clod, and the neck, were examined from 40 untreated and 40 treated carcasses, and 

three bacterial counts were used to examine potential microbial reduction, including: 

aerobic plate count, total coliform count, and E. coli count. The aerobic plate count was 

reduced by 3.0 to 3.3 log cycles, and for coliforms and E. coli the counts were reduced to 

undetectable levels. According to these results, the conclusion for this study was that hot 

4% lactic acid solution spray method was an effective treatment that would considerably 
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reduce bacterial loads on cold carcass surfaces, which could be implemented in a 

commercial slaughter environment (Castillo et al., 2001a). 

To increase palatability of beef subprimal cuts, two types of mechanical 

treatments were used, one is blade tenderization (BT) and the other is moisture 

enhancement (ME). The reduction of E. coli O157:H7 was evaluated on the subprimal 

cuts and the efficacy of five antimicrobial interventions applied before those two 

mechanical treatments were also evaluated during this study. Since the bacteria can be 

transferred to the interior of the beef during those two processes, if the product is not 

cooked thoroughly at 71
o
C, the product can become a health risk for the consuming 

population. Antimicrobial interventions used were as the follows: no intervention, surface 

trimming, hot water (82
o
C), warm 2.5% lactic acid at 55

o
C, warm 5.0% lactic acid at 55º 

C or 2.0% activated lactoferrin followed by warm 5.0% lactic acid at 55
o
C applied to the 

surface of subprimal beef cuts using a handheld sprayer and then submitted for 

mechanical treatments (BT and ME) (Heller et al., 2007). According to Huffman (2002), 

lactoferrin has the potential to be an antimicrobial classified as antimicrobial blocking 

agent due to its action on iron proteins, the compound recently received the status of 

GRAS by US Food and Drug Administration to be applied on fresh beef. The results 

suggests that the reduction of E.coli by 0.93 to 1.10 log CFU/100 cm
2
 for all 

interventions used prior to mechanical tenderization was effective in reducing the 

pathogen population on the interior of subprimal beef cuts (Heller et al., 2007). 

In a recent study using Beefxide antimicrobial solution (a mixture of lactic acid 

and citric acid) to reduce Salmonella and E. coli O157:H7 counts on beef trim through 

spray or immersion treatment intervention showed good results in reducing the pathogen 
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load. According to the results for spray treatments, the log reduction obtained was 1.4 log 

CFU/100 cm
2
 for E. coli and by 1.1 log CFU/100 cm

2
 for Salmonella, significantly 

reducing pathogen populations when the initial inoculum of both strains was 

approximately 10 log CFU/100 cm
2
. The use of Beefxide provided a viable treatment to 

reduce the Salmonella and E. coli O157:H7 load on raw beef products (Laury et al., 

2009). 

Acetic acid 

Acetic acid is an organic acid also known as ethanoic acid and occurs in the 

human body by a natural process, playing an important function in metabolic processes 

such as participating in several biochemical reactions. It has been long used as a natural 

flavoring and acidulant by the food industry (Lück et al., 1997). This antimicrobial, 

considered a GRAS substance, has also been used as a sanitizer of red meat carcasses 

(Anderson and Marshall, 1989). Acetic acid has two main actions to reduce microbial 

population, by lowering the pH value of the product that will be preserved (Anderson and 

Marshall, 1989) and by changing the permeability of the membranes of the microbial 

cells by penetrating inside the cell wall, causing protein denaturation (Lück et al., 1997). 

Since its approval as a GRAS substance in 1982, many studies have been made with the 

main pathogens of concern in the food industry such as E. coli, Salmonella, and L. 

monocytogenes in which its effectiveness has been demonstrated in reducing microbial 

loads (Bell at al., 1997). Acetic acid is produced naturally by biological oxidation or 

synthetically (Lück et al., 1997).  Natural production occurs when there is spoilage of 

certain foods by Acetobacter microorganisms (genus of acetic acid bacteria), which is 

also used in the manufacture of vinegar and wine (Theron and Lues, 2007). 
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A study using spray-washing and rinsing with hot and warm water treatments was 

tested against E.coli inoculated on adipose tissue from beef carcass samples (Delmore et 

al., 1998). The treatments included: pre-evisceration washing, rinse with 2% acetic acid, 

final washing and a hot water rinse. Results, based on aerobic and E. coli counts, showed 

that 3 or 4 combinations were more effective than a single treatment. All spray-washing 

and rinsing treatments were effective in reducing aerobic counts by 1.3 to 2.9 log10 CFU 

cm
-2

 when the initial inoculum level was 6.5 log10 CFU/cm
2
. E. coli counts were reduced 

at least 1 log10 CFU/cm
2 

when the initial inoculum level was 5.4 log10 CFU/cm
2
.The most 

effective treatment was a combination of pre-evisceration washing, acetic acid rinsing, 

final washing, plus acetic acid rinsing (Delmore et al.,1998).  

Another study using spray application of acetic acid for decontamination of beef 

carcass tissues to provide control of possible contamination was by Bell et al. (1997). The 

method used was spray-wash treatments with the aim to reduce microbial counts of E. 

coli, L. innocua and Salmonella Wentworth. The following antimicrobial solutions were 

used alone or in combination: 1% acetic acid, 3% hydrogen peroxide, and 1% sodium 

bicarbonate. Lean and adipose tissue were inoculated with a solution containing fecal 

slurry plus the microorganisms listed above at 5 log10 CFU/cm
2
. The parameters for the 

spray washer were 80 psi for 15 seconds at 25°C. After the treatments all samples were 

analyzed immediately as well as after 1 day for pH, color, bacterial counts, and hydrogen 

peroxide residue. The most effective result for treating E. coli was the combination of 1% 

acetic acid plus 3% hydrogen peroxide resulting in a reduction of 3.97 log10 CFU/cm
2 

on 

lean tissue and 3.69 log10 CFU/cm
2 

on adipose tissue. For L. innocua, the reductions were 

3.05 log10 CFU/cm
2 

and 3.52 log10 CFU/cm
2 

on lean tissue and on adipose tissue, 
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respectively. For S. Wentworth, the results showed a reduction of 3.37 log10 CFU/cm
2 

and 

3.69 log10 CFU/cm
2 

on lean and adipose tissue, respectively (Bell et al., 1997). 

Suspensions of E. coli and Salmonella Typhimurium dip-inoculated onto beef 

semitendinosus muscle (eye of round roasts) where treated using an acetic acid dip 

method at different concentrations (0, 1, 2, and 3%) for 15 seconds, and at different 

temperatures (25, 40, 55 and 70°C). Counts were made for aerobic and 

Enterobacteriaceae microorganisms. Results showed that acetic acid solution had no 

relation with concentration and temperature. Although the treatment that was most 

effective was 3% acetic acid at 70°C against aerobic counts, it was less effective for 

Enterobacteriaceae followed by E. coli and Salmonella Typhimurium (Anderson and 

Marshall, 1989).  

Citric acid 

Algino et al. (2007) evaluated the effectiveness of intervention treatments applied 

to carcasses in small slaughter plants against several bacterial indicators of 

contamination. The treatments were tested against E. coli O157:H7, coliforms, 

Enterobacteriaceae, and aerobic plate counts. The interventions examined 5 methods: the 

first method was dry-aging (refrigeration without water-spray chilling), the second 

method was 2.5% acetic acid spray (applied to the carcass with a hand-held spray wand 

before chilling), the third method was low/high pressure hot-water spray (washing the 

carcass with 150
o
 F water applied using low-pressure or 120

o
 F water using pressure 

washer), and the fourth method was Fresh Bloom spray (mixture of 5% citric acid, 

ascorbic acid, and erythorbic acid) applied to the carcass with a hand-held spray wand 

before chilling. After all treatments, the carcass samples were held in a cooler for 24 h 
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before submitting to fabrication. Results showed that all interventions used were effective 

in decreasing levels of E. coli O157:H7, coliforms, and Enterobacteriaceae 

microorganisms. The reduction average was in a range of 0.6 to 2.0 log CFU/cm
2
 for E. 

coli, 0.7 to 2.2 log CFU/cm
2
 for coliforms, and 0.4 to 2.2 log CFU/cm

2
 for 

Enterobacteriaceae. There were two factors that correlated to bacterial reduction during 

the experiment, relative humidity and the speed at which samples were brought to 

refrigeration temperatures. When the low/high pressure, hot-water spray intervention was 

used, the best factor involved in reducing microbial loads was to increase the spray time. 

These factors are important considerations for processors to apply these interventions in 

slaughter facilities to increase the efficacy of treatments (Algino et al., 2007). 

Peroxyacetic acid  

Peroxyacetic acid (PAA), or peracetic acid, is derived from the peroxide of acetic 

acid and has a strong function as a disinfectant and an oxidant. It is available 

commercially as a quaternary mixture, which contains acetic acid, hydrogen peroxide, 

peroxyacetic acid, and water. This liquid mixture is colorless, clear with a strong pungent 

acetic acid odor and pH 2.0 or less (Kitis, 2004).  

Dairy calves have a high risk to carry E. coli O157, especially during weaning 

time. The transmission of this pathogen can become a potential risk for the meat industry 

in their facilities (Cobbold and Desmarchelier, 2000). In New Zealand, interventions 

were implemented to reduce levels of E. coli on external carcass surfaces of hot-boned 

beef (bobby calf flaps – meat younger than 2 weeks of age) and veal (hot-boned beef 

flaps) using sprays system to remove or minimize the pathogen on the product samples. 

The culture preparation was added to bovine feces at high dose concentrations (10
6
 log 
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CFU/cm
2
) and low dose concentration (10

3
 log CFU/cm

2
) and inoculated onto the meat 

samples. Next, treatments were applied for decontamination as a water wash, POAA 

formulation (marketed as Inspexx 200 – mixture of hydrogen peroxide, acetic acid, 

octanoic acid, peroxyacetic acid, peroxyoctanoic acid and hydroxyethylidene-1, 1-

diphosphoric acid) wash at 180 ppm or water plus POAA wash. The results showed a 

potential reduction of E.coli O157:H7 by 97.4 to 99.9% when POAA treatment was used 

for carcass decontamination of beef and veal carcasses (Penney et al., 2007). 

Acidified sodium chlorite 

Several studies about sodium chlorite solutions were shown to be effective in 

decontaminating fruits and vegetables as a surface disinfectant (Renard et al.,1997; 

Tanner, 1989). Acidified sodium chlorite (ASC) solution has also been proven to reduce 

intramammary infections in dairy herds after milking. In a study to compare both sodium 

chlorite and acidified sodium chlorite, on fish and vegetables, no significant differences 

were observed between the two solutions. The same author suggests that when sodium 

chlorite solution is mixed with lactic acid, the potential for antibacterial activity increases 

(Hasegawa et al., 1990).  

ASC has been approved by the USDA - FSIS for the purpose to be applied for 

carcass decontamination of poultry and beef products. The efficacy of this antimicrobial 

was studied using spray intervention combined with phosphoric or citric acid against 

populations of E. coli O157:H7 and Salmonella Typhimurium on hot beef carcass 

surfaces. The initial counts were 5.5 and 5.4 logs CFU/cm
2
, after inoculation with E. coli 

O157:H7 and Salmonella Typhimurium, respectively. After treatment, reductions were 

3.8 to 3.9 log10 CFU/cm
2
 by acidified sodium chlorite spray intervention combined with 
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phosphoric acid and 4.5 to 4.6 log10 CFU/cm
2
 when using acidified sodium chlorite spray 

intervention combined with citric acid. According to these results, the efficacy of the 

acidified sodium chlorite spray intervention combined with citric acid was better than 

with the other intervention solution, although both showed significantly reduced levels of 

pathogens. In conclusion, acidified sodium chlorite is a good intervention for beef carcass 

decontamination without affecting color or odor (Castillo et al., 1998). 

Another study to identify which antimicrobial intervention was more effective on 

beef carcasses was the use of 25% sodium chloride or 0.1% acidified sodium chlorite 

against E. coli O157:H7 and Staphylococcus aureus inoculated onto fresh beef briskets. 

The meat surface samples were inoculated with a mixed strain “cocktail” comprising 5 

strains of each microorganism at an initial level of 6.5 log10 CFU/cm
2
 followed by spray 

treatments varying from 10-60 sec of exposure. The water washes were control 

treatments to determine the effect of liquid displacement on microbial removal. The 

results showed that all treatments were effective in reducing E.coli O157:H7, but only 

acidified sodium chlorite was more effective with increased exposure time. Water wash 

treatments were not effective against S. aureus and sodium chlorite was only effective 

after 60 sec of treatment, however, acidified sodium chlorite was the most effective in 

reducing microbial counts (Hajmeer et al., 2004).  

E. coli O157:H7 and Salmonella Typhimurium DT 104 were applied to boneless 

beef strip loins and taken to different antimicrobial interventions. The objective of this 

recent study was to check the effectiveness of acidified sodium chlorite, lactic acid 

bacteria, and lactic acid sprays to reduce microbial loads and to prevent their 

internalization during mechanical blade tenderization (MT) and injection enhancement 
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(EN) processes in beef loins prior to packaging observed at different locations in the 

sample, and aging date. Bacterial contamination during MT and EN processes are 

commonly observed in beef processing plants (Echeverry et al., 2009). Lactic acid 

bacteria applied as intervention had a significant reduction on E. coli O157:H7 in the 

interior of the meat samples (1.2 to > 2.2 log cycles), while a 0.8 log reduction was 

observed for acidified acid chlorite and a 3.0 log reduction was obtained with lactic acid. 

For Salmonella Typhimurium DT 104, all the interventions had satisfactory results, 

varying from 0.9 to 2.2 log reduction in the interior of the samples. The interventions 

were effective in reducing microbial loads inside the beef strip loins samples for all days 

analyzed (0, 14, and 21 days) (Echeverry et al., 2009).  

Antimicrobial interventions for raw pork  

Lactic acid  

Castelo et al. (2001), utilized three processes of combination treatments for the 

decontamination of pork trim. Lean pork trim tissue (LPT) and fat-covered pork trim 

tissue (FPT) were inoculated with swine feces and treated with 3 combinations processes. 

Combination 1 (water, hot water [65.5°C, 15 s], hot air [510°C, 60 s], and lactic acid), 

combination 2 (water, hot water [82.2°C, 15 s], hot air [510°C, 75 s], and lactic acid), and 

combination 3 (water, hot water [82.2°C, 45 s], hot air [510°C, 90 s], and lactic acid). 

Lactic acid solution was prepared and applied in all combination treatments at a 2% 

concentration. The analysis was made before and after treatment by monitoring 

populations of aerobic bacteria, psychotropic bacteria, coliforms, E. coli and lactic acid 

bacteria during days 2 and 7 at 4
o
C. Results with lower microbial reductions were 
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observed with lean pork trim tissue than on fat-covered pork tissue. The reason for this 

may be explained by the higher buffering capacity of the lean to lactic acid. Treatments 

that were favorable in maintaining the quality of ground pork was hot water wash and 

water plus lactic acid, these treatments were most effective in reducing of microbial 

populations on the sample (Castelo et al., 2001).  

Antimicrobial interventions for raw poultry 

Trisodium phosphate, acidified sodium chlorite and chlorine dioxide have been 

introduced as chemical decontaminants commonly used as interventions for the poultry 

carcass (del Río et al., 2007).  

A study was conducted to identify the most effective chemicals for antimicrobial 

interventions on the natural microbial loads of chicken. In this study, del Rio et al, (2007) 

used chicken legs and the treatments consisted of dipping samples into solutions of 12% 

trisodium phosphate, 1200 ppm acidified sodium chlorite, 2% citric acid, 220 ppm 

peroxyacetic acid, water (control), or no treatment. Following each treatment, samples 

were drained for 15 minutes and placed into sterilized bags for storage at a temperature 

ranging from 1 to 3
o
C. The evaluations consisted of microbiological counts, sensory 

analyses, and pH values tested at days: 0, 1, 3 and 5. After treatment each sample was 

homogenized into a stomacher bag containing peptone water for 2 minutes and subjected 

to microbiological analysis for mesophilic, pseudomonas, psychotropic, coliforms, 

enterococci, Enterobacteriaceae, Micrococcaceae, lactic acid bacteria, yeasts, and molds. 

According to the results, all chemical compounds were effective in reducing microbial 

populations. When analyzed immediately, the most effective antimicrobials were 

trisodium phosphate, acidified sodium chlorite and citric acid, both during and after the 
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storage time. In conclusion, those antimicrobials tested above can be valuable in reducing 

and controlling microbial counts during poultry product storage. A satisfactory sensory 

result lead to the conclusion that the consumer sensory properties of the samples were not 

affected by the chemicals used making the samples acceptable for industry and consumer 

safety (del Río et al., 2007). 

Antimicrobial interventions for ready-to-eat meats 

Organic acids (Frankfurters)  

Organic acid treatments have been shown to improve the shelf-life of red meats. It 

has been also examined for the control of L. monocytogenes in RTE meat processing 

plants because this microorganism is a common contaminant that is able to survive for 

long periods of time and conditions in RTE plants are favorable to its survival (Anderson 

and Marshall, 1989).  

In one study to control possible contamination of L. monocytogenes on the surface 

of frankfurters, dip treatments of organic acid was examined prior to packaging, at 

different concentrations and in combinations. Citric acid combined with acetic acid at 

2.5% concentration proved to control microbial growth on samples during 90 day storage 

at 5
o
C. Results obtained with organic acid dip treatment of frankfurters controlled growth 

of L. monocytogenes on vacuum-packaged frankfurters. (Palumbo and Williams, 1994). 

However, dip treatments are difficult to apply in actual commercial production.  

Organic acids have shown bactericidal effects when used in combination with 

ionizing radiation techniques applied to food products. Sommers et al. (2003) examined 

citric acid, applied on the surfaces of frankfurters in concentrations up to 10% prior 
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packaging, in combination with ionizing radiation against L. monocytogenes. The 

objective was to use irradiation at a level that would reduce 90% of the viable 

microorganisms. Results demonstrate that citric acid can improve the lethality of ionizing 

radiation but it also affected color of raw meat.  Citric acid used as antimicrobial has a 

dual benefit in that it can also act as anti-oxidant in meats, preventing color change on 

frankfurters, lipid oxidation, and maintaining firmness (Sommers et al., 2003). 

In a recent study, Byelashov et al. (2010) evaluated the parameters of 

concentration, temperature, and time of lactic acid treatment of the surfaces of 

frankfurters. The frankfurters for this study were inoculated comprising 10 strains of L. 

monocytogenes and the authors tested lactic acid concentration from 0 to 3%, acid 

solution temperatures ranging from 4, 25, 40, or 55
o
C, and the treatment times lasting 0-

120 seconds. The objective was to evaluate the efficacy of concentration, temperature and 

time to achieve 1 - 2 log-reductions immediately after treatment. They found it was 

possible to achieve a 2-log reduction using lactic acid solution against L. monocytogenes 

on frankfurters by 3% lactic acid at 25ºC applied for 120 sec, or by 1% lactic acid at 55ºC 

for 60 sec (Byelashov et al., 2010).  

In another study, the dip method was used prior to packaging, in which organic 

acids were tested against L. monocytogenes on frankfurters, showing that the lactic acid 

at 5% concentration is also effective against L. monocytogenes. Results from this study 

complement the results in the previous study (Palumbo and Williams, 1994).  

Sodium lactate and acetate (Frankfurters)  

Sodium lactate and sodium acetate are additives that are considered GRAS and at 

present the most widely used chemicals to control L. monocytogenes in the meat industry 
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(Bedie et al., 2001). In a study to test these two chemicals against L. monocytogenes, 

Samelis et al. (2002) examined allowable levels for these chemicals and compared their 

use when applied in frankfurters inoculated with L. monocytogenes. The procedure 

consisted of a preparation of sodium lactate at 1.8% concentration (allowed concentration 

= 3%) and its use alone and in combination with other antimicrobials such as sodium 

acetate, sodium diacetate and gluconolactone each one prepared at 0.25%. The 

antimicrobial preparations were added into the frankfurter formulation, processed 

(cooked), and then surface inoculated with the pathogen at 10
3 

to 10
4
 CFU/cm

2
. After this 

step the samples were vacuum-packaged and kept at 4
o
C for up to 120 days. The use of 

sodium lactate alone was effective to inhibit pathogen growth until 50 days of storage and 

when used in combination with the other antimicrobials, the inhibition was effective 

throughout 120 days of storage at 4
o
C. In conclusion, it is better to use these 

antimicrobials in combination than to use them individually to inhibit L. monocytogenes 

on processed meat products.  

Sodium levulinate and lactate (Turkey roll and Bologna)  

Thompson et al. (2008) evaluated if the antimicrobial sodium levulinate (a GRAS 

flavoring agent) is effective in comparison to sodium lactate or to the combination of 

sodium lactate and sodium diacetate (industry standards) to control L. monocytogenes on 

turkey breast roll and bologna. The samples were prepared and added to the meat 

formulation at 1%, 2% or 3% sodium levulinate, or at 2% sodium lactate, and 2% 

combination of sodium lactate (1.875%) and sodium diacetate (0.125%). A five strain 

mixture of pathogen was prepared at 10
2
 to 10

3
 CFU/cm

2
, and inoculated on previously 

sliced samples. Following this step, samples were vacuum-packaged and kept at 3.0 ± 
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1.1
o
C up to 12 weeks. Sodium levulinate added at 1% or 2% to turkey breast roll and 

bologna demonstrated effectiveness in completely preventing growth of L. 

monocytogenes during 12 weeks of storage. Sodium levulinate demonstrated to be as 

effective as the other antimicrobials that are currently used in the industry. There was no 

overall difference on taste after testing in a sensory panel on both samples.  

Sodium lactate and diacetate (Beef Bologna) 

Antimicrobial activities of sodium lactate and sodium diacetate were studied in 

combination against L. monocytogenes and Salmonella enterica inoculated onto the 

surface of commercial beef bologna with 57% moisture. Results from several studies 

have shown moderate effectiveness in delaying bacterial growth when the product is 

stored at 5 and 10
o
C. Based on this information, Mbandi and Shelef (2002) examined the 

use of single or multiple-strain mixture of 6 strains of pathogens (Listeria and 

Salmonella) inoculated on samples at 3 log CFU/gm. The antimicrobials where used at 

2.5% for sodium lactate and 0.2% sodium diacetate, stored at 5 and 10
o
C for up to 60 

days. The use of these organic acids were effective even when used alone against certain 

pathogens, however, their use in combination showed an enhanced inhibition against L. 

monocytogenes and S. enterica. Results of treatments using combinations of these 

antimicrobials with L. monocytogenes demonstrated that the inhibition was effective for 

45 days when kept at 5
o
C, showing that this approach can prevent the proliferation of this 

pathogen. Results with Salmonella showed undetectable levels at 5 and 10
o
C up to 30 

days of storage. These findings are conclusive that there is an enhancement in the 

inhibitory activity in beef bologna products when these antimicrobials are used in 

combination.  
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Nisin/ Organic acids (Pork Bologna) 

In a recent study by Samelis et al. (2005), using cooked pork bologna dipped in 

solutions of nisin, with or without organic acids prior to vacuum packaging, demonstrated 

that the process can significantly offer protection against L. monocytogenes. The 

objectives were to evaluate nisin used alone or in combination with organic acids to be 

applied as dipping solutions before cooked pork bologna been packaged in order to 

control the pathogen. A mixture of 10 strains of L. monocytogenes was prepared and 

inoculated onto bologna slices after which samples were dipped into nisin (5000 IU/ml) 

or in 1%, 3%, or 5% acetic or lactic acid combined with nisin. Microbiological counts 

were analyzed at 0, 10, 20, 35, 50, 70, 90 and 120 days of storage. Results for this shelf 

life study shows that treatments with nisin in combination with acetic acid or lactic acid 

were the most effective against L. monocytogenes as growth was not observed for 90 

days of storage. 

Another study using the dip method of treating frankfurters with organic acids 

against L. monocytogenes prior packaging showed that 2.5% acetic acid combined with 

2.5% citric acid was effective to combat growth of the pathogen for up to 90 days of 

storage at 5
o
C (Palumbo and Williams, 1994). 

Acidic calcium sulfate and lauric arginate (“Table Brown” Ham) 

An intervention delivery method called “Sprayed Lethality In Container” (SLIC) 

was applied in an extensive study where lethality and shelf-life studies were performed 

(Luchansky et al., 2005). During this study two antimicrobials were used to evaluate the 

effectiveness against 5 strains of L. monocytogenes inoculated (7.0 log10) onto 

commercial “table brown” ham prior to packaging and stored at 4
o
C. The antimicrobials 
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used were acidic calcium sulfate (ACS) in a 1:1 or 1:2 solution and lauric arginate (LAE) 

at 5% or 10% solution, spraying 0, 2, 4, 6, or 8 mL immediately before the ham was 

introduced into the bag. They obtained 1.2 log10 CFU/ham, 1.6 log10 CFU/ham, 2.4 log10 

CFU/ham, and 3.1 log10 CFU/ham reduction when ASC was applied in 1:1 solution and 

0.7 log10 CFU/ham, 1.6 log10 CFU/ham, 2.2 log10 CFU/ham, and 2.6 log10 CFU/ham 

reduction, respectively, when applied in a 1:2 solution. For 5% LAE, the results showed 

reductions of 3.3 log10 CFU/ham, 6.5 log10 CFU/ham, 5.6 log10 CFU/ham, and 6.5 log10 

CFU/ham and when tested with 10% LAE they obtained 6.5 log10 CFU/ham reduction for 

all volumes sprayed. According to these results, it is possible to reduce levels of L. 

monocytogenes on ham product within 24 hours stored at 4
o
C. For the shelf-life study, the 

initial inoculum was 3.0 or 7.0 log10 CFU/ham applied at the same conditions as in the 

lethality study, but only treated with 4, 6, and 8 mL of the 1:2 ACS or 5% LAE solution, 

and stored for 60 days at 4
o
C. For samples inoculated with 7.0 log10 CFU and treated with 

1:2 ACS solution had a reduction within 24 hours of 1.2 log10 CFU/ham, 1.5 log10 

CFU/ham, and 2.0 log10 CFU/ham when treated with 4, 6, and 8 mL, respectively, of the 

antimicrobial. Samples treated with 5% LAE had reductions of 5.1 log10 CFU/ham, 5.4 

log10 CFU/ham, and 5.5 log10 CFU/ham for 4, 6 and 8 mLs applied, respectively. Samples 

inoculated with 3.0 log10 CFU/ham of the pathogen observed a decrease of 1.3 log10 

CFU/ham, 1.9 log10 CFU/ham, and 1.8 log10 CFU/ham for the 1:2 ACS treatments when 

compared to controls and for 5% LAE treatments the levels of pathogen were reduced 

below the detection level. After 60 days of storage at 4
o
C, the samples treated with 1:2 

ACS levels of the pathogen remained without change and there was an increase of 2.0 – 

5.0 log10 CFU/ham on samples treated with 5% solution of LAE. The SLIC intervention 
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method to control L. monocytogenes on ham is a potentially effective method to apply 

antimicrobials directly to bags receiving RTE meats (Luchansky et al., 2005). 

Sodium lactate and diacetate (Wieners and Bratwurst)  

In a study involving wieners and cooked bratwurst, two antimicrobial agents 

(sodium lactate and diacetate) were analyzed in order to determine their efficacy against 

the pathogen L. monocytogenes (Glass et al., 2002). The product ingredients included 

pork, turkey and beef, and the cooked bratwurst contained beef and pork. Both product 

samples were inoculated on the surface with 0.2 ml of the pathogen at a target level of 

10
5
 CFU per package. After the treatments, samples were vacuum-packaged in gas-

impermeable pouches and wieners were stored for 60 days at 4.5
o
C and bratwurst were 

stored for 84 days at 3 and 7
o
C. Treatments consisted of dipping the samples into the 

antimicrobial solutions at the point where possible contamination can occur: after chilling 

and before packaging. Although the results for these wieners samples were not 

satisfactory to delay pathogen growth, all surface treatments consisted of dipping wieners 

into different test solutions. In the first trial: 3% sodium diacetate solution, 6% sodium 

lactate solution, and 3% sodium diacetate plus 6% sodium lactate were used. For the 

second trial, wieners were dipped in solutions containing 6% sodium lactate plus 3% 

sodium diacetate and another treatment containing 3% sodium lactate plus 1.5% sodium 

diacetate. The treatments for the bratwurst samples, which had two types of samples: 

cured and naturally smoked bratwurst and uncured and unsmoked bratwurst, consisted of 

3.4% sodium lactate plus 0.1% sodium diacetate (cured and naturally smoked), 2.0% 

sodium lactate, and 3.4% sodium lactate plus 0.1% sodium diacetate (uncured and 

unsmoked). Results for uncured and unsmoked bratwurst were effective in delaying L. 
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monocytogenes growth for 4 weeks at 7
o
C and 12 weeks at 3

o
C at 3.4% and 0.1% for 

sodium diacetate solution, respectively. At 2% sodium lactate, the bacterial growth was 

delayed by 1 week at 7
o
C and 2 weeks at 3

o
C. However, for the cured and smoked 

samples, the inhibition was delayed for as long as 12 weeks when 3.4% sodium lactate 

and 0.1% sodium diacetate were used (Glass et al., 2002). 

Sodium chloride, sodium diacetate, and potassium lactate (Wieners, smoked-cooked 

ham, light bologna, cotto salami) 

A response surface method was used to determine the effect of added sodium 

chloride, sodium diacetate, and potassium lactate on the growth of L. monocytogenes in 

cured RTE meat products. In the various treatments, the concentration of these 

antimicrobials differed: for sodium chloride, the concentration was in a range of 0.8 to 

3.6%; for sodium diacetate, from 0 to 0.2%, and the concentration of potassium lactate 

was from 0.25 to 9.25%. The finished-product moisture was another parameter that was 

evaluated, varying from 45.5 to 83.5%. The sample products were wieners, smoked-

cooked hams, light bologna, and cotto salami which were produced according to three 

different concentrations of potassium lactate and sodium diacetate. Three treatments were 

made to obtain 0% potassium lactate and sodium diacetate (treatment 1), 1.5% potassium 

lactate and 0.15% sodium diacetate (treatment 2), and 2.5% potassium lactate and 1.5% 

sodium diacetate (treatment 3). Five strains of L. monocytogenes where mixed at the 

desired inoculum level (1,000 CFU/g) and applied (100µl) directly to the surface of 

sliced samples weighting 100g, and after the inoculation, the pouches were vacuum 

sealed and kept for 18 weeks at 4
o
C. The samples were analyzed every week for the 

presence of pathogen, and results demonstrated that pathogen growth was reduced 
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significantly for all treatments during the 18 weeks. The study was useful to confirm 

proper use of sodium diacetate and potassium lactate in these specific products against L. 

monocytogenes (Seman et al., 2002). 
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CHAPTER III 

 

 

METHODOLOGY 

 

Bacterial cultures 

All strains were obtained from the bacterial culture collection in the food 

microbiology laboratory of Dr. Peter M. Muriana in the Food and Agricultural Products 

Center (FAPC) at Oklahoma State University. For storage purposes, each strain was 

grown in sterile tryptic soy broth (TSB; Difco™ Becton-Dickenson Laboratories, Sparks, 

MD), centrifuged, and the pellet was resuspended in TSB plus 10% glycerol. Stock 

cultures were maintained in cryovials and stored at -80
o
C. Prior to use in experiments, 

each strain was grown overnight for two consecutive days at 30
o
C in TSB (re-transferred 

into fresh media each day). 

Mixed strain “cocktails” were prepared comprising either 6 strains of Salmonella 

(Salmonella Thompson 120, Salmonella Heidelberg F5038BG1, Salmonella Montevideo 

FS1S051, Salmonella Hadar MF60404, Salmonella Enteritidis H3527 and Salmonella 

Typhimurium H3380), 4 strains of E. coli O157:H7 (ATCC 43894, ATCC 43895, ATCC 

35150, and ATCC 43890), and 5 strains of L. monocytogenes (Scott A-2, 39-2, CW-62, 

CW-77 and CW-50). 
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Bacterial antibiotic resistance  

Antibiotic resistant variants were recovered for each strain by surface plating 100 

µl of overnight culture onto tryptic soy agar (TSB, Difco) containing the various 

antibiotics. Plates were then incubated at 30ºC for 3-5 days to allow for the appearance of 

spontaneous resistant variants which were re-streaked and isolated again from the same 

medium to insure the isolation of a resistance phenotype. Resistance to a second 

antibiotic was obtained in the same manner in order to obtain a double resistance 

phenotype that would provide a good selective advantage for cultures that may be used 

for inoculated studies, and subsequent recovery, from non-sterile foods. In this manner, 

variants of the 6 Salmonella strains were obtained that were resistant to 10 µg/ml 

spectinomycin (Sigma-Aldrich Inc., St. Louis, MO) and 100 µg/ml novobiocin (Sigma-

Aldrich Inc.). Those for the 4 E. coli O157:H7 strains were resistant to 10 µg/ml 

rifamycin and 20 µg/ml gentamycin (Sigma-Aldrich Inc.) and the 5 strains of L. 

monocytogenes were resistant to 10 µg/ml rifamycin and 100 µg/ml streptomycin 

(Mediatech, Inc., Herndon, VA). Stock solutions of spectinomycin, novobiocin, 

rifamycin, gentamycin, and streptomycin were prepared (separately) in sterile water as 

recommended by the manufacture. The antibiotic solutions were filter sterilized using 

0.45 m sterile syringe filters (Pall Corporation, Newquay, Cornwall, UK) and a sterile 

30 ml syringe (Becton Dickinson, Franklin Lakes, NJ). All antibiotic working stocks 

were maintained refrigerated and protected from light to maintain stability. 

Before use in antimicrobial kinetic growth assays, these strains were evaluated for 

confirmation of their specific antibiotic resistances to facilitate a selective plating 

regimen and to insure that the selection for antibiotic resistance did not affect growth rate 
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in comparison to growth on antibiotic–free medium. The 6 strains of Salmonella, 4 

strains of E. coli O157:H7, and 4 strains of L. monocytogenes (Scott A2, 39-2, V7-2, 383-

2) were inoculated into TSB from frozen stock cultures and were transferred for two 

consecutive days at 30
o
C before use. The strains were then serially diluted 10-fold with 

sterile buffered peptone water (BPW; Becton, Dickinson and Company, Sparks, MD) and 

0.1 ml of sample was surface plated in duplicate onto TSA and onto TSA containing the 

two antibiotics for which each strain was resistant. Plates were incubated at 30º C for 24 

h and counted manually.  

Antimicrobial solutions 

Ten antimicrobials were used in this study. They include acetic acid, citric acid, 

lactic acid (88%), peroxyacetic acid, PuraQ XTend FX25 (Table 3), AFTEC 3000, 

AvGard® XP, Cytoguard,  Protect M, and Syntrx 3300 (Table 4). Calculations for 

dilution of antimicrobials were performed using the following equation: C1 x V1 = C2 x 

V2, where C is concentration and V is volume. This equation was used to calculate how 

much volume of the concentrated stock was necessary to add and obtain a desired final 

antimicrobial concentration (or dilution of a commercial blend) of the antimicrobial for 

further inclusion with the bacterial inoculum. The antimicrobials were diluted and mixed 

appropriately in sterile TSB solution at a desired concentration as follows. Acetic acid 

was prepared from 17.4 M solution to an 8% solution, Aftec 3000 was prepared to a 5% 

final solution, AvGard® XP (powdered form) was prepared to a 6% solution, citric acid 

(powder) was prepared to a final concentration of 2% solution, Cytoguard LA was 

prepared to a final concentration of 5%, lactic acid (88%) was prepared to a 2% solution, 

Protect M was prepared to 1.19% solution, peroxyacetic acid (15%) was prepared to a 
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final concentration of 4%, PuraQ XTend FX25 (25%) to a 1% final solution, and Syntrx 

3300 was prepared to a 4% solution (Table 3). The antimicrobials concentration of acetic 

acid, citric acid, lactic acid (88%), peroxyacetic acid, and PuraQ XTend FX25 were 

based on the main active ingredients (Table 3), while AFTEC 3000, AvGard® XP, 

Cytoguard, Protect M, and Syntrx 3300 antimicrobials concentration were prepared based 

on the commercial solutions (Table 4). The sterilization of the solutions was performed 

by filtration using 0.45 m sterilized syringe filter (Pall Corp.) and a 30 ml Syringe 

(Becton Dickinson).  

Determination of minimum inhibitory concentration (MIC) of antimicrobials 

Mixed strains “cocktails” were prepared comprising either 6 strains of 

Salmonella, 4 strains of E. coli O157:H7, or 5 strains of L. monocytogenes which were 

separately cultured overnight at 30ºC in TSB (all were resistant to two antibiotics as per 

our previous selective regimen). Immediately prior to use in kinetic growth assays, one 

ml from each individually grown culture was added together for each specific pathogen 

cocktail and mixed by vortexing. The mixture (i.e., the „cocktail‟) was then diluted with 

sterile TSB to obtain a concentration of approximately 10
6
 CFU ml

 
-1

. 

The kinetic growth assays were performed in 96-well flat bottom microplates 

(Becton Dickinson, Franklin Lakes, NJ) in which three separate solutions were added in 

stages in order to obtain the desired effect serial dilution of antimicrobial while 

maintaining a constant inoculation level for the microbial cocktail. Both antimicrobial 

and bacterial cocktail were inoculated into sterile broth media. Initially, 100 µl of sterile 

TSB was aliquoted into a series of wells in microplates.  Then, 100 µl of antimicrobial 

solution (in TSB) was added sequentially to make 1:2 serial dilutions of the antimicrobial 



40 
 

solution along the series of wells by carrying 100 µl from one well to the next (with 

mixing in between) to give the desired 2-fold serial dilution series of the antimicrobial. 

Finally, each well plate was inoculated with 100 µl of the cocktail prepared from the 

bacterial strains (also in fresh TSB). The 96-well microplates were then incubated using 

the Tecan GENios
TM

 (Phenix, Austria, Europe) microplate reader using Magellan v.5.0 

data analysis software (Magellan
TM

, Switzerland). The settings for kinetic growth curve 

analyses were as follows: (1) measurement mode: absorbance, (2) measurement 

wavelength: 595nm, (3) number of flashes: 1, (4) valid temperature range: 33 - 35° C, (5) 

shake duration (orbital normal): 10 sec, (6) kinetic interval: 1800 sec, (7) unit: OD. The 

96-well plates were sealed with UltraClear film (Axygen Inc., Union City, CA) to prevent 

evaporation of the liquids as well as well to well contamination. Measurements were 

taken for up to 48 hours. Controls included in this series of experiments were culture 

without added antimicrobial. Each antimicrobial series was performed with all three 

pathogens. Three replicates were performed for each treatment. The addition of all 

substances during the entire experiment was done by using an 8-channel pipetter, which 

was capable of inoculating multiple wells simultaneously. The experimental disposition 

of a 96-well microplate format is shown in Figure 1.  

Statistical analysis 

Growth level comparisons on media with, and without, antibiotics were used to 

calculate the mean (log CFU ml
-1

) from three replicates performed for each analysis. 

Kinetic growth inhibition assays were also performed in triplicate and mean values of 

O.D. were plotted over time for each concentration of antimicrobial. Data were analyzed 

using one way repeated measures analysis of variance (ANOVA) to compare the 
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significance level between growth curves of different antimicrobial concentrations. 

Pairwise multiple comparisons was applied using the Holm-Sidak method at a level of 

significance (p-value) set at 0.05. The data were analyzed using SigmaPlot v.11 software 

(Systat Software, Chicago, IL). 
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CHAPTER IV 

 

 

RESULTS 

 

We evaluated some common and proposed antimicrobials in head-to-head 

comparisons against 3 banks of pathogens (Salmonella, E. coli O157:H7, and L. 

monocytogenes) to identify MIC levels. It is hoped that this would provide initial data 

that could be used for making recommendations of concentrations that would be useful 

for applications in the beef industry to enhance safety and increase shelf-life of food 

products. Since subsequent application of this data is intended to be performed with 

actual food products, and surviving pathogenic bacteria would need to be recovered from 

non-sterile foods, we needed to insure that the antibiotic resistant strains we isolated were 

not physiologically impaired relative to growth on nonselective media. The MIC kinetic 

growth assay determinations were then tested at different concentrations of antimicrobials 

against mixtures of the antibiotic-resistant strains of Salmonella, E.coli O157:H7, and L. 

monocytogenes we isolated. 
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Evaluation of antibiotic resistance of pathogenic strains 

Prior to the testing of food antimicrobials against Salmonella, E.coli O157:H7, 

and L. monocytogenes, the growth levels of antibiotic resistant variants was evaluated to 

insure that the same counts could be obtained with media containing antibiotics as 

without. This was done in preparation for future food applications that would be 

performed on non-sterile food products and the use of antibiotics would allow selective 

enumeration for inoculated strains. It is not unusual in some instances that an „antibiotic 

resistant‟ isolate is obtained that is not completely resistant and may show differences in 

plate counts between selective and nonselective media that could be as large as 1-3 logs. 

In this experiment, analyses were performed to compare treatments with and without 

antibiotic. For this purpose, TSA enumeration plates were prepared with (selective), and 

without (non-selective) antibiotics. For Salmonella strains, selective TSA plates were 

prepared containing spectinomycin (10 µg ml
-1

) plus novobiocin (100 µg ml
-1

). For E.coli 

O157:H7 strains, selective TSA plates were prepared containing rifamycin (10 µg ml
-1

) 

plus gentamycin (20 µg ml
-1

). Lastly, for L. monocytogenes strains, selective TSA plates 

were prepared containing rifamycin (10 µg ml
-1

) plus streptomycin (100 µg ml
-1

) (Table 

5).  

The bacterial antibiotic resistance study for E. coli O157:H7, Salmonella, and L. 

monocytogenes strains did not vary with serotype and all strains obtained similar log 

(CFU ml
-1

) counts when comparing plate counts on TSA plates without antibiotics and 

TSA plates containing antibiotics. The results confirmed that all strains tested were 

unaffected by the specific antibiotics to which they were resistant and therefore did not 

affect the microbial counts obtained. The use of selective plating on media containing 
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antibiotics would be useful when performing antimicrobial trials on actual inoculated 

food samples whereby the double antibiotic resistance would exclude any indigenous 

bacteria from being counted. 

Kinetic growth curve and antimicrobial inhibition assays 

The pathogenic groups of strains described earlier were used in kinetic growth 

assays in the presence of as many as 7 different concentrations of each antimicrobial (2-

fold dilutions). Select groupings of Salmonella, E. coli O157:H7, and L. monocytogenes 

(i.e., the „cocktail‟ inoculum showed differences in inhibitory activity with various 

antimicrobials). The objective was to evaluate growth of mixtures of pathogens at 

different concentrations of antimicrobials which would help in establishing Minimum 

Inhibitory Concentration (MIC) that could possibly be helpful in antimicrobial 

applications with actual food products. The effect of the antimicrobials tested (acetic 

acid, Aftec, AvGard, citric acid, Cytoguard, lactic acid, Protect M, peroxyacetic acid, 

PuraQ, and Syntrx 3300) were found to be different for each microorganism, hence the 

MIC was dependent on the interaction between pathogen and antimicrobial (Table 3 and 

4). We determined that the MIC would be the concentration that resulted in near 

complete suppression of growth as observed in the kinetic growth curve assays.  

For the Salmonella strains tested, the results show that the MIC‟s were 4% acetic 

acid (Fig. 2), 1.25% AFTEC solution (Fig. 3), and 0.75% AvGard required a 

concentration of 0.75% (Fig. 4). Citric acid, lactic acid, and PuraQ XTend (Figures 5, 6, 

7, respectively) were found to control Salmonella growth at a concentration (or dilution 

of commercial product) of 0.5%. Moreover, Cytoguard effectively inhibit microbial 

growth with a 2.5% concentration (Fig. 8) whereas peroxyacetic acid solution 
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concentration as low as 0.063% controlled growth of Salmonella (Fig. 9). Protect M 

inhibited microbial growth at 0.07% concentration (Fig. 10). Lastly, Syntrx (Fig. 11) 

showed MIC level at 0.125% concentration. 

Similar to the results for Salmonella, when acetic acid, AFTEC, AvGard, citric 

acid, Cytoguard, lactic acid, Protect M, and Syntrx (Figs. 2, 3, 4, 5, 8, 6, 10, and 11) were 

evaluated against E. coli strains the MICs were 4%, 1.25%, 0.75%, 0.5%, 2.5%, 0.5%, 

0.07%, and 2.00% respectively. Even though the response of E. coli and Salmonella to 

many of the antimicrobials tested was similar, when peroxyacetic acid and PuraQ XTend 

were tested against E. coli, lower levels of antimicrobial concentration were able to 

inhibit E. coli as compared to Salmonella. The concentration of peroxyacetic acid and 

PuraQ XTend (Figs. 9 and 7) that controlled E. coli was 0.063% and 0.25%, respectively. 

Results for L. monocytogenes showed that acetic acid, AFTEC, AvGard, citric 

acid, and Syntrx (Figs. 2, 3, 4, 5, and 11) controlled L. monocytogenes at the same MIC 

concentrations that were observed for E. coli and Salmonella. However, Cytoguard, lactic 

acid, Protect M, and PuraQ XTend were effective at lower concentrations for L. 

monocytogenes than were needed to inhibit E. coli or Salmonella. The MIC for 

Cytoguard, lactic acid, Protect M, and PuraQ XTend for complete inhibition of L. 

monocytogenes were: 1.25%, 0.25%, 0.04%, and 0.016%, respectively (Figs. 8, 6, 10, and 

7). Peroxyacetic acid MIC for L. monocytogenes was 0.125% (Fig. 9). 

We observed that peroxyacetic acid (Fig. 9) required the lowest concentration 

(0.063%) to control the mixed Salmonella serovars, followed by Protect M 0.07% (Fig. 

10), and 0.5% for citric acid, lactic acid, and PuraQ XTend (Figs. 5, 6, and 7). For the 

mixed E. coli O157:H7 strains tested, the lowest concentration of antimicrobial necessary 
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to inhibit microbial growth was provided by peroxyacetic acid 0.063% (Fig. 9), followed 

by 0.07% Protect M (Fig. 10), and 0.25% PuraQ XTend (Fig. 7). For the L. 

monocytogenes strains tested, PuraQ XTend provided the lowest concentration necessary 

to inhibit microbial growth (0.016%) (Fig. 7), followed by 0.04% Protect M (Fig. 10) and 

0.125% peroxyacetic acid (Fig. 9). On the contrary, the highest concentration of 

antimicrobial necessary for complete growth inhibition of Salmonella, E. coli O157:H7, 

and L. monocytogenes was 4% acetic acid as an antimicrobial (Fig. 2). 
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CHAPTER V 

 

 

DISCUSSION 

 

Using the kinetic growth assay for antimicrobial inhibition studies, we were able 

to identify the MIC of each antimicrobial that inhibited Salmonella, E. coli O157:H7, and 

L. monocytogenes growth (Table 6 and 7). During these experiments it was observed that 

4% acetic acid was required to inhibit the growth of the three groups of pathogens (Fig. 

3), due to its ability to lower pH and cause instability of bacterial cell membranes 

(Stivarius et al., 2002). Delmore et al. (1998) reported that acetic acid at 2% 

concentration, applied on adipose tissue from beef carcasses samples through pre-

evisceration washing, was effective in reducing aerobic microbial and E. coli counts. The 

method used consisted of rinsing with 2% acetic acid followed by final washing, and hot 

water rinse treatments. In another study, Bell et al. (1997) applied 1% acetic acid, 3% 

hydrogen peroxide, and 1% sodium bicarbonate using a spray application, in combination 

or individually, with the objective to reduce E. coli, L. innocua, and Salmonella 

Wentworth counts on beef carcasses. They proved that acetic acid was most effective 

when used in combination with hydrogen peroxide. However, in a study conducted by 

Anderson and Marshall (1989), a factorial treatment of three acetic acid concentrations 
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(0, 1, 2, and 3%) and four temperatures (25, 40, 55 and 70
o
C) were applied as dip method 

of beef semitendinosus muscle contaminated with E. coli and Salmonella Typhimurium. 

Their research demonstrated that 3% acetic acid at 70° C was the most effective treatment 

in reducing microbial counts.  

When citric acid was tested, we observed that 0.5% concentration was effective in 

inhibiting growth of the three groups of pathogens (Fig. 5). Algino et al. (2007) used a 

2.5% acetic acid and Fresh Bloom (mixture of 5% citric acid, ascorbic acid, and 

erythorbic acid) applied onto beef carcasses before chilling, and showed that all 

interventions used were effective and decreased levels of E. coli O157:H7, coliforms, and 

Enterobacteriaceae. A 2.5% citric acid solution combined with 2.5% acetic acid, applied 

as dip treatments to control possible contamination of L. monocytogenes on the surface of 

frankfurters was demonstrated to be an effective method to control L. monocytogenes 

growth during 90 day storage at 5
o
C (Palumbo and Williams, 1993). 

When lactic acid was tested against Salmonella and E. coli, a 0.5% concentration 

was sufficient to inhibit growth, however for L. monocytogenes, even 0.25% lactic acid 

was an effective growth inhibitor (Fig. 6). Calicioglu et al. (2002) conducted a study 

using lactic acid at 2% concentration for beef carcass decontamination using a spray 

method against strains of E. coli O157:H7. In their experiment, a series of treatments 

were conducted including pre-spraying a solution of 5% concentration of Tween 20 

(TW20) that resulted in increased effectiveness of lactic acid. Gill and Landers (2003) 

applied spray treatment using 2% lactic acid, vacuum hot water, trimming, washing, and 

pasteurizing (with steam or hot water) for decontamination of beef carcasses, providing 

evidence that 2% lactic acid, vacuum hot water, and trimming were not effective in 
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reducing E. coli counts, but washing and pasteurization were satisfactory as far as 

reducing bacterial counts on carcasses. These findings are in agreement with previous 

studies reported using lactic acid at 2% solution. Lactic acid at 4% and 2% concentrations 

were used in a study conducted by Castillo et al. (2001b) using spray systems on beef 

carcass surfaces inoculated with E. coli O157:H7 and Salmonella Typhimurium and 

obtained significant reductions counts of these pathogens. Further, treatments of 2.5% 

and 5% lactic acid at 50 and 55
o
C, respectively, as well as 2% activated lactoferrin 

followed by 5% lactic acid at 55
o
C were evaluated on subprimal cuts applied before blade 

tenderization and moisture enhancement indicated that all treatment interventions were 

effective in decreasing E. coli population on the interior of beef subprimal cuts when 

applied prior to mechanical tenderization (Heller et al., 2007). Byelashov et al. (2010) 

demonstrated that it was possible to achieve a 2-log reduction on frankfurters inoculated 

with L. monocytogenes using 3% lactic acid at 25º C applied for 120 seconds, and/or 1% 

lactic acid at 55 º C for 60 seconds.  

Protect M (lauric arginate) antimicrobial showed significant inhibition of 

Salmonella, E. coli, and L. monocytogenes at low concentration (Fig. 10). Although, the 

inhibition of Salmonella and E. coli was achieved with 0.07% concentration, 0.04% 

Protect M was required to suppress growth of L. monocytogenes. Taormina and Dorsa 

(2009) conducted a study using Sprayed Lethality in Container (SLIC) method, and 

showed that at 5% solution of lauric arginate resulted in a 5-log reduction of L. 

monocytogenes counts, concluding that lauric arginate solution is an effective 

intervention at this concentration. Even though a 5% lauric arginate solution using the 

SLIC method reduced microbial growth, the concentration used was higher than the 
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concentration used to inhibit microbial growth during our MIC determination (this study). 

The contrast between these results is likely to happen due to an interaction effect between 

concentration, method used (intervention and MIC determination), specific antimicrobial, 

and the effect of the food product upon which is applied. Our approach was only able to 

determine levels that prevent growth, even at optimal growth temperatures.  A future 

application would be to utilize the data obtained herein as a starting point to examine log 

reduction as well as interactions when several antimicrobials are combined. 

Peroxyacetic acid (PAA) antimicrobial tested against Salmonella and L. 

monocytogenes inhibited microbial growth at a concentration of 0.125% whereas only 

0.063% was necessary to kill E. coli (Fig. 9). Penney et al. (2007) demonstrated that PAA 

reduced the microbial load of E. coli O157:H7 by 97.4 to 99.9%, and supported the 

potential of this antimicrobial for beef carcass decontamination.  

With additional antimicrobials, our results showed that 2.5% concentration of 

Cytoguard antimicrobial was needed to inhibit Salmonella and E. coli growth, whereas 

for L. monocytogenes growth inhibition was achieved at 1.25% concentration (Fig. 8). 

Sommers et al (2009) demonstrated that Ultraviolet Light (UV-C) irradiation applied 

with 5% lauric arginate (Cytoguard) to the surface of frankfurters immediately prior 

sealing inactivated L. monocytogenes, Staphylococcus aureus, and Salmonella spp. by 

1.39–1.65 log when the initial log was 10
6
 cfu/g. Lauric arginate used in combination 

with potassium lactate and sodium diacetate, and UV-C light inactivated 2.32–2.80 log of 

the pathogens, showed more effectiveness than individual treatments. 

Aftec at 1.25% was able to inhibit growth of Salmonella, E. coli O157:H7, and L. 

monocytogenes (Fig. 3) while only a 0.75% solution of AvGard was able to inhibit the 
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three groups of pathogens (Fig. 4). Salvat et al (1997), demonstrated that AvGard, 

applied at 10% for poultry carcass decontamination through manual dip method, had 

significant effects against aerobic mesophilic counts, thermo tolerant coliforms, 

Pseudomonas, Campylobacter, L. monocytogenes, and Salmonella. A reduction of 2 log 

was observed for Salmonella counts while for L. monocytogenes it was also reduced 

bacterial counts in poultry carcasses. 

The PuraQ XTend antimicrobial inhibited Salmonella at 0.5% whereas E. coli 

was inhibited at 0.25% and L. monocytogenes by 0.016% (Fig. 7). Finally, for the Syntrx 

antimicrobial that we tested, the results showed that as high as 2% was necessary to 

inhibit the three groups of pathogens (Fig. 11).  

Our data defines the relative level of each antimicrobial solution/mixture and their 

inhibitory effect on the 3 mixtures of different pathogens, E. coli O157:H7, Salmonella 

spp., and L. monocytogenes. Although complete inhibition or microbial growth under 

permissive conditions was demonstrated by the MIC, it does not identify microbial 

reduction yet it provides a basis from which future studies can draw upon to examine 

lethality and define potential synergistic activities. The data provided herein will be 

useful to future studies by applying the antimicrobials in challenge trials on raw meat 

products as surface interventions as well as shelf life inhibitors. However, if used as shelf 

life inhibitors, the presence of extended activity during shelf life may require the 

antimicrobials to be listed as an ingredient as opposed to being considered as a 

„processing aid‟ and remain unlisted as an ingredient. 
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CHAPTER V 

 

 

CONCLUSION 

 

Currently, Salmonella, E. coli O157:H7, and L. monocytogenes have been 

problematic to the raw and processed meat industries, causing foodborne illness, product 

recalls, and even deaths. Salmonella and E. coli O157:H7 are major problems for raw 

meat and poultry products, while L. monocytogenes has been recognized as the main 

pathogen of concern for RTE meat products. The problems associated contamination of 

meats during slaughter, with the persistence of these pathogens in meat processing plants 

that sometimes ending up on the products themselves, has led to numerous regulatory 

directives and control measures including antimicrobial treatments to reduce pathogens 

and/or prevent their growth during the shelf life of a product. Data obtained from the 

literature may not be as clear as to the effect of antimicrobials on target pathogens. Most 

studies examine only a few antimicrobials. Different studies may use different strains of 

pathogens, so it is not clear if the sensitivity of the different strains of the same pathogens 

can be compared, let alone the conditions for treatment. This study was meant to compare 

several antimicrobials against mixed-strain „cocktails‟ of 3 different pathogens using the 

same conditions and antimicrobial solutions for each of the 3 pathogens. This identifies 

the MIC in head-to-head comparisons. In conclusion, this research suggests 
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what levels the various antimicrobials may be used to inhibit pathogen growth and be 

beneficial for consumers. These levels may be used in further studies to determine 

lethality effects on the same types of pathogens to establish microbial reduction 

conditions for post-process lethality regimens.  
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TABLES 

 

 

 

Table 1. The seven principles of HACCP program 

 

Principle 1. Conduct a hazard analysis.  

Principle 2. Identify the critical control points (CCPs) in the program. 

Principle 3. Establish critical limits for preventive measures associated with each 

identifiable CCP. 

Principle 4. Establish monitoring requirements and procedures for using monitoring 

results to adjust processes and maintain control. 

Principle 5. Establish corrective actions to be taken when monitoring indicates that 

there is a deviation from an established critical limit. 

Principle 6. Establish effective record-keeping procedures that document the HACCP 

plan. 

Principle 7. Establish procedures to verify that the HACCP system is working 

correctly. 

(Hulebak and Schlosser, 2002)  
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Table 2. Safe and suitable antimicrobials used in the production of meat and poultry 

products.  

Substance Product Amount Reference 
Labeling 

Requirements 

Acetic acid 

(0.5%) 

Cooked meat 

products 

Not to exceed 

0.5% of finished 

product 

formulation 

Acceptability 

determination 

Listed by common 

or usual name in 

the ingredients 

statement 

Citric acid 

Bologna in an edible 

casing 

 

Up to a 10 

percent solution 

applied prior to 

slicing 

 

Acceptability 

determination 

 

Listed by common 

or usual name in 

the ingredients 

statement 

Citric acid 

Bologna in an 

inedible casing 

 

Up to a 10 

percent solution 

applied prior to 

slicing 

Acceptability 

determination 

 

None under the 

accepted 

conditions of use 

 

Citric acid 

Fully cooked meat 

and poultry products 

in fibrous casings. 

 

Up to a 3 

percent solution 

is applied to the 

casing just prior 

to removal 

Acceptability 

determination 

 

None under the 

accepted 

conditions of use 

 

Lactic acid 

Livestock carcasses 

prior to fabrication 

(i.e., pre- and post-

chill), variety meats 

Up to 5 percent 

lactic acid 

solution 

Acceptability 

determination 

 

None under the 

accepted 

conditions of use 

 

Lactic acid 

Beef and pork sub-

primals and 

trimmings 

2 - 5 percent  

lactic acid 

solution 

Acceptability 

determination 

 

None under the 

accepted 

conditions of use 

Lauramide 

arginine ethyl 

ester (LAE) 

RTE meat and 

poultry products 

Applied to the 

inside of the 

package via 

“Sprayed 

Lethality in 

Container” 

(SLIC) up to 44 

ppm 

Acceptability 

determination 

 

None under the 

accepted 

conditions of use 

 

Lauramide 

arginine ethyl 

ester (LAE) 

dissolved in 

either water, 

propylene 

glycol, or 

glycerin 

Non-standardized 

and standardized 

RTE comminuted 

meat products that 

permit the use of 

any safe and suitable 

antimicrobial agent 

Not to exceed 

200 ppm LAE 

by weight of the 

finished product 

Acceptability 

determination 

 

When applied to 

the surface of RTE 

products listed by 

usual name and 

when applied to 

the surface of 

fresh cuts of meat 

and poultry none 

under the accepted 

conditions of use 

 



56 
 

Substance Product Amount Reference 
Labeling 

Requirements 

Lauramide arginine 

ethyl ester (LAE) 

dissolved in either 

water, propylene 

glycol, or glycerin 

Fresh cuts of 

meat and 

poultry and 

various non-

standardized 

and 

standardized 

RTE meat and 

poultry products 

that permit use 

of any safe and 

suitable 

antimicrobial 

agent 

Applied to the 

surface of the 

product at a rate 

not to exceed 

200 ppm LAE 

by weight of the 

finished food 

product 

GRAS Notice 

No. 000164 

None under the 

accepted 

conditions of 

use 

Organic acids (i.e., 

lactic, acetic and 

citric acid) 

As part of 

carcass wash 

applied pre-chill 

At up to 2.5 

percent of a 

solution 

FSIS Notice 

49-94 

None under the 

accepted 

conditions of 

use 

Peroxyacetic acid, 

octanoic acid, acetic 

acid, hydrogen 

peroxide, 

peroxyoctanoic 

acid, and 1-

hydroxyethylidene-

1, 1-diphosphonic 

acid 

Meat and 

poultry 

carcasses 

Maximum 

concentration 

for meat 

carcasses: 

Peroxyacetic 

acids 220 ppm, 

hydrogen 

peroxide 75 

ppm; 

Maximum 

concentration 

for poultry 

carcasses: 

Peroxyacetic 

acids 220 ppm, 

hydrogen 

peroxide 110 

ppm 

21 CRF 

173.370 

None under the 

accepted 

conditions of 

use 

(FSIS-USDA, 2009) 
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Table 3. Description of antimicrobials evaluated in this study, trade name, supplier, main 

active ingredient(s), and maximum product application strength. Product application 

strength calculated based on concentration of the main active ingredient. 

Trade Name Supplier 
Main Active 

Ingredient(s) 

Maximum Product 

Application Strength 

Acetic acid  
Pharmco Products Inc., 

Brookfield, CT 
Acetic acid 8% Acetic acid 

Citric acid  

Spectrum Chemicals & 

Laboratory Products, 

Gardena, CA 

Citric acid 2% Citric acid 

Lactic acid FCC  
Birko Corporation, 

Henderson, CO 

Hydroxypropanoic 

acid (88%) 
2% Lactic acid 

Peroxyacetic acid  

Enviro Tech Chemical 

Services, Inc., 

Modesto, CA 

Peroxyacetic acid 

(15% PAA) 
4% Peroxyacetic acid 

PuraQ XTend 

FX25 

Purac America Inc., 

Lincolnshire, IL 

25% Polylysine 

 
1% PuraQ XTend 
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Table 4. Description of antimicrobials evaluated in this study, trade name, supplier, main 

active ingredient(s), and maximum product application strength. Product application 

strength calculated based on the dilution factor of the supplier commercial solution. 

Trade Name Supplier 
Main Active 

Ingredient(s) 

Maximum Product 

Application Strength 

Aftec 3000 

Advanced Food 

Technologies, LLC, 

Shreveport, LA 

Buffered sulfuric 

acid 
5% Aftec 3000 

AvGard XP  

Danisco A/S, 

Copenhagen, 

Denmark 

Sodium 

Metasilicate, 

anhydrous 

6% AvGard XP 

Cytoguard 
A&B Ingredients, 

Fairfield, NJ 

Lauric arginate & 

peroxyacetic acid 
5% Cytoguard 

Protect M  
Purac America Inc., 

Lincolnshire, IL 

Lauric arginate 

(10.5%) 
1.19% Protect M 

Syntrx 3300 

Synergy 

Technologies Inc., 

Shreveport, LA 

Hydrochloric & 

citric acids 
4% Syntrx 3300 
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Table 5. Salmonella, E. coli O157:H7, and L. monocytogenes strains tested for plate 

count enumeration on media with, and without, antibiotics. Control plates were prepared 

without (non-selective) antibiotics. Plates were incubated at 30ºC for 24 h.  

Bacterial strain TSA TSA + Antibiotics 

 Log CFU/ml S.D. Log CFU/ml S.D. 

Salmonella Hadar MF60404 9.09
a 

0.05 9.03
a
 0.01 

Salmonella Typhimurium H3380 9.09
a 

0.03 9.01
a
 0.10 

Salmonella Thompson 120 9.08
a
 0.05 9.04

a
 0.01 

Salmonella Montevideo FSIS 051 8.66
a
 0.02 8.77

a
 0.04 

Salmonella Heidelberg F5038BG1 9.06
a
 0.05 9.07

a
 0.01 

Salmonella Enteritidis H3527 9.02
a
 0.07 9.09

a
 0.01 

E. coli O157:H7 ATCC 43894 7.79
a
 0.08 7.88

a
 0.01 

E.coli O157:H7 ATCC 43895 7.73
a
 0.06 7.85

a
 0.03 

E. coli O157:H7 ATCC 35150 7.60
a
 0.00 7.48

a
 0.05 

E. coli O157:H7 ATCC 43890 7.76
a
 0.02 7.83

a 
0.04 

L. monocytogenes V7-2 7.59
a
 0.02 7.62

a
 0.08 

L. monocytogenes 383-2 8.20
a
 0.05 8.19

a
 0.01 

L. monocytogenes Scott A-2 8.22
a
 0.05 8.30

a
 0.01 

L. monocytogenes 39-2 8.16
a
 0.00 8.15

a
 0.06 

 

a 
Data means in the same row with the same lowercase superscript letter designation are 

not significantly different (P > 0.05). S.D., standard deviation. 
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Table 6. Minimum Inhibitory Concentrations (%) of various mixed-strain cocktails of 

foodborne pathogens. 

 Salmonella E.coli O157:H7            L.monocytogenes         

Antimicrobials MIC MIC MIC 

Aftec 1.25 1.25 1.25 

AvGard XP 0.75 0.75 0.75 

Cytoguard 2.50 2.50 1.25 

Protect M 0.07 0.07 0.04 

Syntrx 3300 2.00 2.00 2.00 

 

Where: MIC = Minimum Inhibitory Concentration (minimum concentration at which no 

growth was observed for 48 h at 30
o
C over the course of the assay). 
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Table 7. Minimum Inhibitory Concentrations (%) of various mixed-strain cocktails of 

foodborne pathogens. 

 Salmonella E.coli O157:H7            L.monocytogenes         

Antimicrobials MIC MIC MIC 

Acetic acid 4.00 4.00 4.00 

Citric acid 0.50 0.50 0.50 

Lactic acid 0.50 0.50 0.25 

Peroxyacetic acid 0.063 0.063 0.125 

PuraQ XTend FX25 0.50 0.25 0.016 

 

Where: MIC = Minimum Inhibitory Concentration (minimum concentration at which no 

growth was observed for 48 h at 30
o
C over the course of the assay). 
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FIGURES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Panel A, experimental design of 96-well plates. Each antimicrobial series was 

performed with all three groups of bacteria (Salmonella, E. coli and L. monocytogenes). 

All microbiological experiments were performed in triplicate replication. Antimicrobial, 

AM. Panel B, flat bottom microplates that were sealed with optical film; plates were read 

from the bottom side. Panel C, multichannel pipetter and temperature-controlled plate 

reader; the plate reader was programmed to shake plates before reading. 
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Figure 2. The effect of acetic acid on Salmonella, E. coli, and L. monocytogenes. 

Statistical significance was determined from end-point values. End point values with the 

same lowercase letter designation are not significantly different (P > 0.05). 
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Figure 3. The effect of AFTEC on Salmonella, E. coli, and L. monocytogenes. Statistical 

significance was determined from end-point values. End point values with the same 

lowercase letter designation are not significantly different (P > 0.05).
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Figure 4. The effect of AvGard on Salmonella, E. coli, and L. monocytogenes. Statistical 

significance was determined from end-point values. End point values with the same 

lowercase letter designation are not significantly different (P > 0.05).
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Figure 5. The effect of citric acid on Salmonella, E. coli, and L. monocytogenes. 

Statistical significance was determined from end-point values. End point values with the 

same lowercase letter designation are not significantly different (P > 0.05). 
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Figure 6. The effect of lactic acid on Salmonella, E. coli, and L. monocytogenes. 

Statistical significance was determined from end-point values. End point values with the 

same lowercase letter designation are not significantly different (P > 0.05).
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Figure 7. The effect of PuraQ on Salmonella, E. coli, and L. monocytogenes. Statistical 

significance was determined from end-point values. End point values with the same 

lowercase letter designation are not significantly different (P > 0.05).
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Figure 8. The effect of Cytoguard on Salmonella, E. coli, and L. monocytogenes. 

Statistical significance was determined from end-point values. End point values with the 

same lowercase letter designation are not significantly different (P > 0.05).
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Figure 9. The effect of peroxyacetic acid on Salmonella, E. coli, and L. monocytogenes. 

Statistical significance was determined from end-point values. End point values with the 

same lowercase letter designation are not significantly different (P > 0.05).
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Figure 10. The effect of Protect M on Salmonella, E. coli, and L. monocytogenes. 

Statistical significance was determined from end-point values. End point values with the 

same lowercase letter designation are not significantly different (P > 0.05).
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Figure 11. The effect of Syntrx on Salmonella, E. coli, and L. monocytogenes. Statistical 

significance was determined from end-point values. End point values with the same 

lowercase letter designation are not significantly different (P > 0.05).
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Scope and Method of Study: The objective of this work was to evaluate the effect of 

antimicrobials that are commercially available for the food industry using a 

kinetic growth assay. The antimicrobials used in our study were tested to evaluate 

various concentrations in head-to-head trials against multi-strain cocktails of 

Salmonella, E. coli O157:H7, and L. monocytogenes. We also determined the 

Minimum Inhibitory Concentration (MIC). Mixed strains “cocktails” were 

prepared comprising either 6 strains of Salmonella, 4 strains of E. coli O157:H7, 

and 5 strains of L. monocytogenes which were separately cultured using TSB 

broth and used to inoculate antimicrobials performed in 96-well flat bottom 

microplates. The microplates were incubated using the Tecan GENious
TM

 

microplate reader using Magellan data analysis software to obtain growth curves 

at different concentrations of the antimicrobials. Measurements were taken as 

optical density (OD595nm) readings every 30 minutes up to 48 hours. 

 

Findings and Conclusions:  The following antimicrobials were tested against Salmonella, 

E. coli 0157:H7, and L. monocytogenes with their respective results as Minimum 

Inhibitory Concentration (MIC): acetic acid (4%, 4% and 4%), Aftec (1.25%, 

1.25% and 1.25%), AvGard XP (0.75%, 0.75% and 0.75%), citric acid (0.5%, 

0.5% and 0.5%), Cytoguard (2.5%, 2.5% and 1.25%), lactic acid (0.5%, 0.5% and 

0.25%), Protect M (0.07%, 0.07% and 0.04%), peroxyacetic acid (0.063%, 

0.063% and 0.125%), PuraQ XTend (0.5%, 0.25% and 0.016%), and Syntrx 3300 

(2%, 2% and 2%). The data identifies the MIC levels of antimicrobial that gives 

complete inhibition of the various pathogen cocktail mixtures. Our research 

suggests that, the levels of the various antimicrobials may be used to inhibit 

pathogen growth and be beneficial for consumers.  

 

 

 

 

 


