GIS AND HYDROLOGICAL SIMULATION MODEL
 INTEGRATED FEASIBILITY STUDY OF IRRIGATION
 DEVELOPMENT UNDER SALINITY

By
MONIKA GHIMIRE
Bachelor of Science in Environment Management

Pokhara University
Kathmandu, Nepal
2008

Submitted to the Faculty of the Graduate College of the
Oklahoma State University in partial fulfillment of the requirements for the Degree of
MASTER OF SCIENCE
July, 2012

GIS AND HYDROLOGICAL SIMULATION MODEL INTEGRATED FEASIBILITY STUDY OF IRRIGATION DEVELOPMENT UNDER SALINITY

Thesis Approved:

Dr. Art Stoecker
Thesis Adviser
Dr. Jeffrey Vitale Chad Godsey
Dr. Sheryl A. Tucker
Dean of the Graduate College

TABLE OF CONTENTS
Chapter Page
I. INTRODUCTION 1
Background 1
Study Site Description 4
Objectives 7
II. LITERATURE REVIEW 8
Potential Irrigable Areas 8
Geographic Information System 8
Pressurized Irrigation System 9
Hydrological Simulation Model 10
Environmental Policy Integrated Climate (EPIC) 11
Salinity 11
Mathematical Optimization Model 12
Capital Budgeting and Net Present Value 13
III. METHODS AND PROCEDURES 15
Determining Potential Irrigable Areas 15
Pipeline Network Design of the Irrigation System 18
Data 19
Cost of Pipes and Valves 19
Cost of Earthwork 19
Cost of Pumps and Pivot Irrigation System 22
Water Demand 22
Energy Cost 22
Pipeline, Pump Designs 23
Sizing of Pipeline 28
Crop Yield Response Function 30
Net Present Value Estimation 30
Dryland Cotton 32
Chapter Page
IV. FINDINGS 34
Potential Irrigable Soil types and Area 34
Irrigation Pipeline 36
Cost of the Piping. 38
Trenching and Pipeline Cost 38
Sensitivity Analysis of Annual Pipeline Costs to Interest Rates 42
Irrigation System Designs 43
Variable Costs 43
Design 1A Irrigation System 44
Sensitivity Analysis at Different Discount Rates 45
Net Present Value and Optimal Irrigation Water 45
Design 1B Irrigation System 49
Net Present Value and Optimal Irrigation Water 50
Design 2 Irrigation System 54
Sensitivity Analysis at Different Discount Rates 55
Net Present Value and Optimal Irrigation Water 56
Design 3 Irrigation System 60
Net Present Value and Optimal Irrigation Water 61
Partial Pivot Circles 64
Non Feasible Pivot Circles. 65
V. CONCLUSION 67
REFERENCES 70
APPENDICES 74
Appendix 1 74
Appendix 2 75
Appendix 3 76
Appendix 4 77
Appendix 5 78
Appendix 6 100
Appendix 7 101
Appendix 8 102
Appendix 9. 103

LIST OF TABLES

Table Page
Table 1. Five-year averages of harvested acres and yields of dryland cotton from 1971 to 2005 in Tillman and Kiowa counties 6
Table 2. Five-year averages of harvested acres and yields of irrigated cotton from 1971 to 2005 in Tillman and Kiowa counties 6
Table 3. Slope of trench walls for different soil types assumed in trench design. 20
Table 4. Dryland cotton variable cost per acre for 125 acres 32
Table 5. Dryland net returns per acre for different prices of cotton 33
Table 6. Total irrigable areas of different soil types 35
Table 7. Total areas of non-irrigable soils but being irrigated by producers 36
Table 8. Length and size range of main, lateral and final pipelines 37
Table 9. The initial and annualized cost of pipes and trenching for larger pipelines at 4 percent discount rate 40
Table 10. The initial and annualized cost of pipes and trenching for six to eighteen inch pipelines at 4 percent discount rate 41
Table 11. The non-irrigation variable cost of irrigated cotton production and pivot irrigation. 44
Table 12. Fixed costs of Design 1A irrigation system 45
Table 13. Fixed costs of Design1A irrigation system at different discount rates 45

Table 14. Aggregate net present value (NPV) of irrigated cotton for Design1A at cotton
price of $\$ 0.75$ per pound at different levels of EC. 48
Table 15. Aggregate net present value (NPV) of irrigated cotton for Design 1A at cotton price of $\$ 0.9$ per pound at different EC Levels 48
Table 16. Fixed costs of Design 1B irrigation system 49
Table 17. Annual fixed costs of Design 1B irrigation system at different discount rates 50
Table 18. Aggregate NPV of irrigated cotton for Design 1B at cotton price of $\$ 0.7$ per pound for different EC levels. 52
Table 19. Aggregate NPV of irrigated cotton for Design 1B at cotton price of $\$ 0.75$ per pound for different EC levels 52
Table 20. Aggregate NPV of irrigated cotton for Design 1B at cotton price of $\$ 0.9$ per pound for different EC levels 53
Table 21. Fixed costs of Design 2 irrigation system 55
Table 22. Annual fixed costs of Design 2 irrigation system at different discount rates 55
Table 23. Aggregate NPV of irrigated cotton for Design 2 at price of cotton of $\$ 0.7$ per pound for different EC levels 57
Table 24. Aggregate NPV of irrigated cotton for Design 2 at cotton price of $\$ 0.75$ per pound for different EC levels 57
Table 25. Aggregate NPV of irrigated cotton for Design 2 at cotton price of $\$ 0.9$ per pound for different EC levels 58
Table 26. Fixed costs of Design 3 irrigation system 60
Table 27. Annual fixed costs of Design 3 irrigation system at different discount rates 61
Table 28. Aggregate NPV of irrigated cotton for Design 3 at price of cotton $\$ 0.65$ for different EC levels. 63
Table 29. Aggregate NPV of irrigated cotton for Design 3 at cotton price $\$ 0.75$ for different EC levels 64

Table 30. Aggregate NPV of irrigated cotton for Design 3 price at cotton price $\$ 0.9$ for different EC levels ... 64

Table 31. NPV at cotton price $\$ 0.75$ at different EC levels for four different designs of irrigation system. .69

LIST OF FIGURES

Figure Page
Figure. 1. Map Showing Tillman Terrace, Cable Mountain Reservoir, LAID, Lake Altus, Elm Fork, and North Fork. .4

Figure. 2. Potential irrigable areas in Tillman and Kiowa counties 16

Figure. 3. A representation of irrigable soil classes and limitations of selected potential irrigable areas in Tillman terrace area18

Figure. 4. An outline of EPANET pipeline networks with reservoir and pumps representing pressures at different points for non-scheduled irrigation system (Design 1A). Lines represent the pipeline while the nodes represent the junction between the pipelines25

Figure. 5. An outline of EPANET pipeline networks with reservoir and pumps representing pressures at different points for Design 1B irrigation system26

Figure. 6. An outline of EPANET pipeline networks with reservoir and pumps representing pressures at different points for 2 -sides scheduled irrigation system (Design 2)27

Figure. 7. An outline of EPANET pipeline networks with reservoir and pumps representing pressures at different points for 4 -sides scheduled irrigation system (Design 3)28

Figure. 8. A representation of lateral pipe sizing and designing according to water demand.29

Figure. 9. Potential irrigable areas (orange patches) and non-irrigable areas but currently under pivot irrigation (circles) (NRCS, 2010).35

Figure. 10. Pipeline network with the pivot circles in different sections of land overlaid on 10 meter aerial NRCS photo map (Source: NRCS, 2010). White circles in the figure represent pivot irrigation37

Figure. 11. Outline of pipeline from the reservoir to Tillman Terrace with main, lateral, and final pipelines. North-South line is main pipeline and East-West lines are lateral pipelines overlaid on the elevation file

Figure. 12. Sensitivity analysis for the annualized cost of pipeline and earthwork at discount rates of four, five, six and eight percent

Figure. 13. NPV for different water EC levels at different cotton prices per pound for Design 1A irrigation system .46

Figure. 14. Total irrigation water per 125.6 acre irrigation system at different EC levels and cotton prices for Design 1A irrigation system

Figure. 15. NPV for different water EC levels at different cotton prices per pound for Design 1B irrigation system.

Figure. 16. Total irrigation water per 125.6 acre irrigation system at different EC levels and cotton prices for Design 1B irrigation system. .54

Figure. 17. NPV for different water EC levels at different cotton prices per pound for Design 2 irrigation system .56

Figure. 18. Total irrigation water per 125.6 acre irrigation system at different EC levels and cotton prices for Design 2 irrigation system59
Figure. 19. NPV for different water EC levels at different cotton prices per pound for Design 3 irrigation system 61

Figure. 20. Total irrigation water per 125.6 acre irrigation system at different EC levels and cotton prices for Design 3 irrigation system
Figure. 21. Comparative representation of total annual costs of four different designs of irrigation system 68

CHAPTER I

INTRODUCTION

Background:

Irrigation is defined as an application of water to crop land. Supply of irrigation water is crucial to increase crop production in many areas of the world. Irrigation water is obtained generally either from surface water sources like rivers, streams, creeks or from groundwater aquifers. The W.C Austin Project is a water supply project constructed by the Bureau of Reclamation in Greer, Kiowa, and Jackson Counties, Oklahoma. The principal features of the Austin Project are the Altus Dam, and the reservoir located 18 miles north of Altus. The Austin Project has been providing water storage for irrigation and flood control on the North Fork of Red River. The W.C Austin project has provided irrigation water to 48,000 acres of privately owned land south of Lake Altus since 1953. Lake Altus also provides water for municipal and industrial uses, fish and wildlife conservation, and other public recreational opportunities for the city of Altus. At present, Lake Altus has been losing its storage capacity due to sediment accumulation. A 2005 Bureau of Reclamation report estimated the annual capacity loss at 911 acre-feet while a

2007 study estimated annual capacity loss at 417 acre-feet per year (Bureau of Reclamation, 2008). Displacement of available reservoir capacity by sediment will diminish the project's capacity to supply water within 30 to 50 years. It is, therefore, necessary to augment the water supply of this project to maintain or enhance the current level of economic activities in the region.

The Cable Mountain Reservoir is one of the proposed alternatives to increase and augment the water supply of Lake Altus (Bureau of Reclamation, 2005). The proposed site is 40 miles downstream of Lake Altus and north of Headrick, Oklahoma (latitude: $34.6275^{\circ} \mathrm{N}$, longitude: $99.1378^{\circ} \mathrm{W}$, and elevation: $1,430 \mathrm{ft} \mathrm{msl}$). According to the Bureau of Reclamation (2005), the projected reservoir capacity is 100,000 to 120,000 acre-feet which is more than required to replace the water loss from Lake Altus. Part of the project would be to supply, on average, 68,000 acre-feet of water annually to the existing Lugert Altus Irrigation District (LAID). The excess water can be used to irrigate arable lands at lower elevations of the reservoir in the Tillman Terrace area (TTA), the western part of Tillman County ($34^{\circ} 22^{\prime}$ latitude and -99° : 4^{\prime} longitude). The TTA lies in the Osage Plains physiographic province adjacent to the Red River in Tillman County. The expansion of irrigation to utilize excess water in the Cable Mountain Reservoir will not add any additional cost to its initial construction. Instead, its net benefits can be added to the initial net benefit of the Cable Mountain Reservoir. This study evaluates whether the net benefit of constructing the Cable Mountain Reservoir will be enhanced by considering the net benefit from adding this irrigation supply to the TTA.

Construction of the Cable Mountain Reservoir is dependent on a project to prevent loading of up to 400 tons of salt per day on the Elm Fork which is upstream of the proposed reservoir. The source of salt to the Elm Fork and North Fork (downstream of the reservoir) are the three canyons Kaiser, Robinson, and Salton that flow into the river within half a mile of each other. The water currently is not used due to its high salt content. Daily electrical conductivity (EC) samples collected during a low flow year (between October 2009 and September 2011) from Elm Fork of the Red River indicated an average EC of $45.8 \mathrm{mmhos} \mathrm{cm}^{-1}$ with daily measurements ranging from 5.6 to 150 mmhos cm^{-1} (USGS, 2012).

The Tillman Terrace ground water basin is a primary means of water discharges to the rivers and streams. When the water table in the basin is higher than the river, water is discharged to the North Fork of the Red River. Water flows from the river to the aquifer when the water table in the aquifer is lower than the river which causes ground water pollution. The aquifer has been extensively used for various purposes like public water supply, irrigation, mining, and domestic purposes. A hydrological survey conducted by Oklahoma Water Resources Board (OWRB) in 1974 concluded that if present level of ground water uses continues, the aquifer would deplete within 10 to 20 years (Osborn, 2002). Though in recent years the water level in the aquifer has been rising due to more than average precipitation, the high rate of pumping water from the aquifer not only depletes the groundwater but also causes salinity problems in the aquifer because the saline river water will replenish the aquifer.

Study Site Description:

The study area occupies the TTA, the western part of Tillman County, and a portion of Kiowa County (Fig. 1). Tipton, Davidson, and Frederick are the major cities in the area with populations of 847,315 , and 3,940 respectively (US Census Bureau, 2010). The North Fork of the Red River lies to the west of the TTA and the Red River lies to the south. Its ground water basin covers approximately 290 square miles of area. The altitude of land surfaces ranges from 1,131 to $1,396 \mathrm{ft}$.

Fig. 1. Map Showing Tillman Terrace, Cable Mountain Reservoir, LAID, Lake Altus, Elm Fork, and North Fork.

The major soil types in the area are Tipton, Hardeman and Grandfield association which are comprised of loamy and sandy soils. The area is characterized by a dry subhumid climate with long, hot summers and mild winters. The mean annual precipitation of the study area from 1971-2000 was 30.78 inches (Oklahoma Climatological Survey, 2011). The land use in Tillman Terrace is predominantly cropland and pasture. Cotton is the major crop in the area. Other dominant crops are wheat, alfalfa, and peanuts. The five year average of harvested acres and yields of dryland and irrigated cotton from 1971 to 2005 in Tillman and Kiowa Counties are provided in Tables 1 and 2. Table 1 shows that dryland cotton harvested acres are declining in recent years. Harvested cotton acres in Kiowa County were 7,240 during 2001-05 while the total acreage was 50,780 during 1976-80. Total cotton acreage in Tillman County was 97,210 during 1981-85 and decreased to 21,080 acres during 1996-00. However, higher productivity was observed for recent years in both counties. No harvested irrigated cotton acres have been reported in Kiowa County (Table 2) since 1995. Total irrigated cotton acreages have been declining in recent years as compared to 1980s. However, harvested irrigated and dryland cotton acres in Tillman county increased in a period from 2001-05 as compared to 199600. Higher productivity was achieved in Tillman County in recent years.

Table 1. Five year average of harvested acres and yields of dryland cotton from 1971 to 2005 in Tillman and Kiowa Counties.

Harvested acres			Yield (lb/acre)		
Period	Kiowa	Tillman	Total	Kiowa	Tillman
$1971-75$	48,226	53,850	102,076	250	275
$1976-80$	50,780	87,990	138,770	217	257
$1981-85$	45,140	97,210	142,350	241	195
$1986-90$	40,806	91,250	132,056	252	267
$1991-95$	38,860	89,960	128,820	218	235
$1996-00$	13,740	21,080	34,820	257	205
$2001-05$	7,240	46,600	53,840	380	390

Source: National Agricultural Statistics Service (NASS), USDA.

Table 2. Five year averages of harvested acres and yields of irrigated cotton from 1971 to 2005 in Tillman and Kiowa Counties.

Harvested acres			Yield (lb/acre)		
Period	Kiowa	Tillman	Total	Kiowa	Tillman
$1971-75$	1,848	4,990	6,838	364	386
$1976-80$	5,220	20,030	25,250	472	454
$1981-85$	3,080	18,140	21,220	497	457
$1986-90$	2,544	15,970	18,514	532	497
$1991-95$	100	4,160	4,260	115	435
$1996-00$	-	4,220	4,220	-	603
$2001-05$	-	8,300	8,300	-	830

Source: National Agricultural Statistics Service (NASS), USDA

Objectives:

The general objective of this study was to identify the economic feasibility of developing pressurized irrigation system from the Cable Mountain Reservoir to the Tillman Terrace area.

The specific objectives of the study were to:

1. Identify the area of land with irrigation capability.
2. Determine the length, route, and cost of pipeline.
3. Determine the net returns of irrigation with increased crop yield.

CHAPTER II

LITERATURE REVIEW

Potential Irrigable Areas:

Potential irrigable areas can be classified based on soil characteristics, soil types, slope, and other factors. The irrigation potential for the area is determined by the irrigation water requirement of the soil and water availability (FAO, 1997). Hailegebriel (2007) and Meron (2007) used slope of the soil, soil types, land cover/use, water resources, and climate factors to assess irrigation suitability. In this study, slope and irrigation capability classes of the soil types determine their potential for irrigation.

Geographic Information System:

There is a spatial and temporal variation in the irrigation water requirements due to the effect of weather, local climate, soil, and cropping factors. Traditional analytical techniques cannot address spatial and temporal variability in irrigation (Knox and Weatherfield, 1999). This necessitates the use of a spatial data management tool like a Geographic Information System (GIS) for diverse ranges of application in effective water resource management. Geographic Information Systems can be used to integrate spatially distributed data of many variables, including climate, soil, and water distribution
to produce soil class, profile map, crop map, and map for crop requirements (Todorovic and Steduto, 2003).

Application of GIS with respect to irrigation requires detailed information on soil type, agro climate, land use pattern, irrigation practices, and availability of water (Knox and Weatherfield, 1999). The attributes of GIS for storing, manipulating, and analyzing spatial data can be used to project irrigable areas and to estimate water demands (Rao, Brownee, and Sarma, 2004). The use of satellite images in conjunction with GIS is a powerful and an effective tool to identify irrigable areas and cropping patterns (Su 2000; El-Magd and Tanton, 2003). These studies suggest that GIS is an important tool to remotely sense the irrigable areas and manage the irrigation water efficiently. GIS can be used to identify the potentially irrigable areas and determine pipeline routes.

Pressurized Irrigation System:

A pressure piped irrigation system is a network installation consisting of pipes, fittings, and other devices properly designed and installed to supply water under pressure from the source of water to the irrigable area over the most convenient route. A pressurized irrigation system utilizes small to large flows of water very efficiently when compared to traditional surface irrigation methods.

In open canal distribution networks, the water losses are estimated at up to 40 percent in unlined ditches and up to 25 percent in lined canals (Phocaides, 2007). These losses are due to seepage and leakage in gates, spillways, etc. In piped systems, no such losses occur. As a result, water losses can be minimized and an irrigation efficiency of 75-95 percent can be achieved. In open canals, the irrigation application efficiency ranges
from 45 to 60 percent. The operation and maintenance needed in the piped systems is minimal and range from one-tenth to one-quarter of that required for open canals. However, external energy is required to distribute the water and operate the pressurized irrigation system.

Hydrological Simulation Model:

The EPANET software (EPA, 2011), developed by Environmental Protection Agency's Water Supply and Water Resource division, models piped water distribution systems. It is a windows $95 / 98 / \mathrm{NT} / \mathrm{XP}$ program that simulates the hydraulic and water quality behavior within pressurized networks of pipeline. The software calculates the head loss in every pipe and node using the Hazen-William's Head loss formula and also estimates the water pressure for all nodes and pipes of the irrigation system.

EPANET can be utilized to optimize a demand network layout by choosing the most economic pipe sizing and selecting the layout at the same time. In the network design optimization process, the following costs of the irrigation system should be considered (Planells et al, 2000):
a) Cost of network
b) Cost of pumping plant
c) Energy cost

Environmental Policy Integrated Climate:

The Environmental Policy Integrated Climate (EPIC) simulation model is a research tool commonly used to determine the response of crop yields to environmental factors. It is used to simulate crop yield, crop water use, and the relation between yield and crop water use like evapotranspiration and water use efficiency (Ko, Peccinni, and Steglich, 2009). Crop yields are simulated using EPIC once planting and harvesting dates are determined (Tan and Shibasaki, 2003). The simulated yield from EPIC depends on several factors like rainfall, amount of irrigation water, soil salinity, and irrigation water salinity. These factors are used to calculate the returns from irrigation. The parameter estimates for the crop yield response function in response to the salinity of surface water and soil salinity using the simulated yield from EPIC were used in this study (Choi, 2011).

Salinity

Salinity is one of the most severe environmental factors limiting the productivity of agricultural crops. The salinity problem occurs when irrigation water contains some amount of soluble salts that accumulates in the soil over time and reduces crop yields (FAO, 1976). After evaporation and transpiration water loss, plants leave these salts in the soil. Soil salinity and the use of irrigation water containing soluble salts is one of the major considerations in irrigation. Most crops are sensitive to salinity caused by high concentrations of salts in the soil. In the crop yield response function, salinity is an important variable to determine optimum amount of irrigation water to apply over time. Annual salinity cost to agriculture is estimated to be about \$ 12 billion which is expected
to increase as soils are further affected (Gnassemi et al., 1995). Besides this enormous financial cost of production, the salinity problem may impact infrastructure, water supplies, and the social structure and stability of communities. Selection of salt tolerant crops such as barely, cotton, and sugar beets can be done to increase production in saline soils.

Mathematical Optimization Model:

Yaron and Bresler (1970) used a linear programming model to derive the optimal quantity-quality combinations under different levels of irrigation and initial soil salinity. Comparing the empirical estimates of the marginal rate of substitution of water salinity for quality with the cost of the water quantity and quality ratio, the study concluded that an increase in the quantity of irrigation water applied increased the maximum permissible chloride concentration. Econometric estimates of yield response and salt accumulation in the soil under saline conditions with experimental data for alfalfa and cotton were provided by Dinar and Knapp (1986). The crop yield increased as water quantity increased and salt concentration decreased. In addition, they combined the estimated response functions and dynamic soil salt relations with an economic decision model to determine water applications for any give prices and initial soil salinity which maximize the net present value of profits. Profits increased as crop prices increased and decreased as irrigation water prices and initial soil salinity increased. Contrary to their expectation, they found that profits increased as the initial soil salinity increased within a range of salinity EC levels from 4 to 7 for alfalfa.

Dinar et al (1991) provided statistical estimates of crop-water response functions with various levels of salinity. Feinerman (1994) estimated the response function to soil salinity of potatoes in a single-farm framework. The study used a switching regression to estimate a piecewise linear response function. Crop yield was dependent on average soil salinity below a certain critical threshold, and then decreased linearly with increased salt. A set of production functions were estimated relating wheat yield to initial soil salinity, and water quantity and quality (Datta et al 1998). They used the functions to find optimal water application for given irrigation water quality, reuse of drainage water, reduction in income from using saline drainage water mixed at various rates with good quality water. They suggested that yield was not simply related to the average initial soil salinity but also to the salinity in the applied irrigation water.

Kiani and Abbasi (2009) investigated crop response to both soil water content and soil salinity and estimated linear, Cobb-Douglas, quadratic, and transcendental functions. They found that both soil water content and soil salinity affected crop yield.

Capital Budgeting and Net Present Value:

Cost-benefit analysis of an irrigation project is an essential practical tool for decision making since development and maintenance costs of irrigation infrastructures are of great concern. Mostly, costs and benefits of a project are valued using market prices. The response of the crop yield to different irrigation applications can be simulated to determine the marginal production and the economic value of irrigation applications. The direct benefit from the irrigation project can then be estimated using irrigation response to yield functions. The value of irrigation is determined by multiplying the yield
of product price and subtracting the cost of the increased farmers' inputs (Prest and Turvey 1965). The costs and benefits of a project, expressed in monetary terms, needs to be adjusted according to the expected changes in prices of inputs and output including future interest rate.

Capital budgeting is the process which determines the longterm profitability of any project. It projects whether long term investment is expected to generate cash flows over several years. Investment opportunities in long term assets expected to produce benefits for multiple years are analyzed using capital budgeting techniques (CBTs). A survey conducted by Schall, Sundem, and Geijsbeek (1978) showed that sophisticated CBTs are being practiced. The survey mentioned that over 86 percent of the firms used either internal rate of return (IRR) or net present value (NPV) or both in 1978 while Klammer (1972) reported that discounting methods like IRR or NPV were used by 57 percent of the firms in 1970. Bennouna, Meredith, and Marchant (2010) also noted that NPV and IRR are currently favored by the majority of firms as they move towards the adoption of sophisticated CBTs.

Net present value is defined as the difference between the present value of cash inflow and cash outflow. NPV is one of the decision rules of capital budgeting. NPV analysis is sensitive to the reliability of future cash inflows that an investment or project will yield. In other words, present value of future income is the NPV if the incomes are measured after the capital costs. Investment is acceptable when NPV is positive or the present value of benefits exceeds the present value of costs.

CHAPTER III

METHODS AND PROCEDURES

Determining Potential Irrigable Areas:

The study area is the southwestern part of Kiowa County and TTA of western Tillman County which is shown in Fig. 2. A Geographic Information System was used to determine the irrigable areas. The following maps were used for analysis (Geospatial Data Gateway, USDA):

1. Soil Survey Geographic Database (SSURGO) for Tillman and Kiowa counties
2. United States Geological Survey National Elevation Dataset (USGS NED) 10meter digital elevation files for Tillman and Kiowa counties
3. County outlines
4. Township and aerial photo files for Tillman and Kiowa counties

The Natural Resources Conservation Services (NRCS) -SSURGO database (NRCS, 2010) provides the map of soil types and area in acres of Tillman and Kiowa counties. Land is classified according to suitability of soil quality for potential agricultural output. These land categories are I, II, III, IV, V, VI, VII, and VIII. Class I to VIII represents progressively greater limitations and narrower choices for agriculture. Class I and Class II were selected as irrigation land capability classes for determining the most productive
soils to irrigate. Class I soils have few limitations while class II have moderate limitations. There are land capability subclasses. Land capability subclasses are denoted by codes e, w, s, and c. which are related with erosion problems, wetness problems, root zone limitations, and climatic limitations respectively. Irrigable soil types are defined by selecting subclass e and w. Subclasses e and w were added to class codes and I, IIe and IIw classes are considered as potential irrigated soil classes (National Soil Survey Handbook, USDA). NRCS-SSURGO database also divides soil into prime or non-prime categories according to average slopes, and a dry land capability rating.

Fig. 2. Potential irrigable areas in Tillman and Kiowa counties. The dark green patches in Tillman Terrace represent potential irrigable soils.

The township shape file of Tillman and Kiowa counties were clipped with the SSURGO database to get the soil in each township and sections of the counties in ArcMap. The USGS NED 10-meter elevation files (USGS, 2010) were used to determine 10 m slope of the irrigable areas and to make contour lines at 10 m intervals. The raster elevation files of Tillman and Kiowa counties were joined and then converted to a shape file. The shape file was then intersected with SSURGO soil database file, the township, and the counties outline files. Then a large shape file was generated with soil types (prime and non-prime, dry land capability, irrigated capability (I and II)), and their area with a common 10-m slope and elevation. Because class codes I and II are considered suitable as irrigation land capability class, class I and II (Ie and IIe) were chosen for this study (Fig. 3). The acres of each soil type covered by each of the individual pivots and their section identification are presented in Appendix 5.

The acres and soil types with slopes less than 3 percent were used. The elevation shape file was again intersected with the clipped soil section map with slope of 3 percent or less. The obtained intersected shape file was filtered to retain the areas with elevation less than 1,430 mean feet sea level (mfsl) since elevation of the Cable Mountain Reservoir is $1,430 \mathrm{mfs}$. The irrigable soil type areas less than 10 acres were removed on an assumption that it would be uneconomical to irrigate those small areas. The areas and slopes were determined using ArcMap version 9.3 GIS software (ESRI, Redlands, California, USA, 2011). The projection was NAD 1983, UTM Zone 14N. The measurements used in the analysis were based on the GIS calculations made with the shape files. Ten meter elevation and SSURGO soils data files (USGS, 2010) were downloaded for each county.

Potential Irrigable Areas Irrigable Soil Class

Fig. 3. A representation of irrigable soil class of selected potential irrigable areas in Tillman terrace area.

Pipeline Network Design of the Irrigation System:

Areas and shapes of the field with different soil types were identified and a pipeline network was designed using ArcMap. The elevation of irrigable areas was identified and used for the calculation of head pressure and pressure required to deliver the water into the field. Global Mapper was used to create XYZ files which include elevation of every pivot node of the pipeline (Global Mapper, Blue Marble Geographics, Maine, USA, 2011).

Pivot irrigation was chosen as the irrigation system for the area and the areas feasible for pivot irrigation were selected. The "buffer" tool in ArcGIS was used to create pivot circles with radius of a quarter mile. The settlement areas, railway tracks, and gullies in the irrigable areas might represent physical obstacles for an irrigation system. Areas with these features were not included as irrigable areas. The editor in ArcGIS was used to draw the pipeline network to provide irrigation for each pivot circle. The pipeline route was designed to follow the maximum elevation level from the Cable Mountain Reservoir to the TTA in a way that it minimizes the pumping cost of the irrigation system.

Data:

The data for calculating fixed cost of the project is categorized as follows:

Cost of Pipes and Valves:

The cost per linear foot for different sizes of pipes, and valves were obtained from RS Means Construction Data, 2009 which includes labor cost, material cost, and total cost of pipe and valve.

Cost of Earthwork:

The cost of earthwork depends on pipe size. So, the earthwork cost for different pipe sizes was determined. The earthwork to set the pipeline includes trenching to lay the pipeline, backfilling, and packing cost.

Trenching, Backfilling and Packing Cost:

Trenching is a type of excavation in the ground for the purpose of laying the pipeline as a conveyance system to deliver the irrigation water. The trenches of 5 feet or deeper have to be excavated with certain slope for the safety of the workers and durability of the trench (Occupational Safety and Health Administration (OSHA), United States Department of Labor). The slope of the trench also depends on soil types. The OSHA guidelines categorize different soil types (A to C) from most stable to least stable and design the size of the trenches with a run over rise method or a degree system for different soil types as shown in Table 3.

Table 3. Slope of trench walls for different soil types assumed in trench design.

S.N.	Soil type	Rise over run	Wall slope
1	Stable rock	-	90 degree
2	A	Three quarter of a unit run to one unit of rise	53 degree
3	B	One to one ratio	45 degree
4	C	One and one half to one	34 degree

[^0]The depth of the trench was assumed to be equal to the diameter of the pipeline plus 4.5 feet for bedding and filing of trenches. The width of the trench in the bottom was equal to the diameter of pipeline added with 1.5 feet of filling space between two sides of the trench walls and the pipe. The width of the trench at the top was equal to diameter of pipeline at the bottom plus slope width of the trench.

The cost of trenching was estimated for variable sized trenches with a regression model using data on costs for specific depths and width of trenches from Means (2009). The dependent variable was cost of trenching (\$/cubic feet) and the independent variables were width of the trench (ft), depth of the trench (ft), and square of the depth of the trench $\left(\mathrm{ft}^{2}\right)$. The costs of trenching for larger and smaller pipelines were different. Larger wall slopes are required for larger trenches (depth $>5 \mathrm{ft}$.) and smaller wall slopes are required for smaller trenches. Due to this reason, different cost estimation models were used for large and small trenches. Total earthwork cost was calculated as a sum of trenching, backfilling, and packing costs.

Finally, pipe cost and total earthwork were summed as total piping cost. As pipe is onetime cost its replacement is not required within the 50 year planning period. The total costs were then annualized for equal payment over a 50 -year of planning period of irrigation system. A discount rate of four percent was used to annualize the total piping costs. A spreadsheet was used to develop the cost for purchase and installation cost of alternative diameters pipes from 6 through 120 inches, using data on the cost of pipe, excavation, and backfilling using estimates from Means (2009).

Cost of Pumps and Pivot Irrigation System:

The cost of pumps for different water demand was obtained from Berkley pumps and Enterprise Budgets, Oklahoma State University and the cost of pivot irrigation system was obtained from Enterprise Budgets, Oklahoma State University.

The pumps and irrigation systems have to be replaced at the end of their respective economic lives over the 50 -year planning period. A pivot system has an average life of 17 years. The cost of pivot is discounted at $1^{\text {st }}, 17^{\text {th }}$ and $35^{\text {th }}$ year at the four percent discount rate. The cost of a pump, with a 20,000 hour of life span, is calculated based on annual use of pump. For example, a pivot operating at 600 gallons per minute applying approximately 18 acre-inches of water on an average have life of 1012 years. The present values of pumps were discounted at four percent on 1st, 11th, 21st, 31 st and 41 st year. The present values of fixed costs were subtracted from the estimated present value of revenue from irrigated cotton.

Water Demand:

The water demand (gallons/minute) at each pivot is required to determine the head or pressure required, diameter, and the cost of pipelines. The water demand is considered as 600 gpm for an unrestricted irrigation system and 800 gpm for a scheduled irrigation system for 543 pivot circles each of 125.6 acres.

Energy Cost:

Energy cost in this study involves the cost of energy for pumping water to the fields. The pressure of at least 35 PSI for each individual pivot is obtained by adjusting
the pumps in the required areas of the irrigation system. The energy cost for pumping was estimated with the use of both water horse power and brake horse power method as described in Keller and Bliesner (1990).

$$
\begin{equation*}
B h p=\frac{G P M * \operatorname{Head}(f t)}{3960 * P e f f * M e f f} \tag{1}
\end{equation*}
$$

where GPM is gallons per minute, Peff is pumping efficiency, Meff is motor efficiency and Head $(f t)$ is the pressure flow.

The head loss for water moving through a level pipe was calculated using Hazen William's formula (Jensen, 1983).

Head loss $(f t)=\frac{10.46(G P M / C)^{1.85} * \text { Length }}{D^{4.87}}+$ Elevation change + Delivery head
where C is retardation constant which is 120 for steel or aluminum, 140 for Cement Asbestos, and 150 for plastic, and D is pipe inside diameter (Inches)

Energy cost (EGC) was calculated using the following formula (Keller and Bliesner, 1990):

$$
\begin{equation*}
E G C=\frac{\{(G P M * H d) * \text { Kwbhp } * \text { hyp } * \text { pelec }\}}{3960 * \text { Peff } * \text { Meff }} \tag{3}
\end{equation*}
$$

where $H d$ is head in feet, $K w B h p$ is kilowatt per brake horse power, $h p y$ is hours per year, and pelec is electricity cost per kwh.

Pipeline and Pump Designs:

EPANET software models water flow and pressure loss in distribution systems to help with sizing the pipeline, and determining the pump location for minimizing energy cost. The pipe diameters and the node elevations have to be entered in the model. GIS
provided the estimate of the length of pipes. The pipe size were iteratively increased and decreased to obtain optimum pipe size. An example of input file for EPANET is provided in Appendix 9. The pumps were chosen according to the pressure requirement to deliver water demanded in each pivot according to output of EPANET. Four different designs of irrigation systems were developed. Design 1A allows irrigation to all the pivots simultaneously at once. Design 1B was intended to schedule the irrigation alternately to the north and the south of laterals of Design 1A irrigation system. Design 2 divides the irrigable land into the two areas while Design 3 divides the irrigable land into four areas.

In Design 2 and 3, the irrigation system was scheduled to irrigate one area at a time. The outlines of pipeline network in EPANET for scheduled and non-scheduled irrigation systems (Design 1A, 1B, 2, and 3) are shown in Figs. 4, 5, 6, and 7 respectively.

Fig. 4. An outline of EPANET pipeline networks with reservoir and pumps representing pressures at different points for non-scheduled irrigation system (Design 1A). Lines represent the pipeline while the nodes represent the junction between the pipelines.
Pressure
25.00
50.00
75.00
100.00
psi

Fig. 5. An outline of EPANET pipeline network with pressure at different points for Design 1B irrigation system.

Fig. 6. An outline of EPANET pipeline networks with reservoir and pumps representing pressures at different points for 2-sides scheduled irrigation system (Design 2).

Fig. 7. An outline of EPANET pipeline networks with reservoir and pumps representing pressures at different points for a part of four area scheduled irrigation system (Design 3).

Sizing of Pipeline:

The pipeline size was obtained for minimal annual cost of pipes and pumping cost. The minimum annual cost involves a tradeoff between pipe size and energy cost. A standard capital recovery factor was used to annualize the cost of the pipe. The annual capital cost for pipeline and the annual pumping costs were added together to get the size
of pipeline with minimal annual cost. As the diameter of pipe increases, the total cost of the pipe increased but the energy required for pumping the water through the pipe decreased (Appendix 6, Appendix 7, and Appendix 8). Figure 8 shows that lateral pipeline had a total water demand of 9,000 GPM with 600 GPM for each individual pivot. The optimum diameter of pipeline for 9,000 GPM of water demand was 30 inches as it yielded the minimum annual cost of pipeline and pumping. The water demand decreased to 7,800 GPM in the next lateral pipe for which the optimum diameter was 24 inches. In the same way, pipe size of next lateral was reduced as water demand in the pipe decreases. This contributes to decrease the cost of pipeline to some extent. Irrigating the north of the lateral pipeline at one time and south the other time further decreases the water demand in the lateral pipeline in which even smaller pipes would be sufficient to meet the water demand.

Fig. 8. A representation of lateral pipe sizing and designing according to water demand.

Crop Yield Response Function:

Crop yield response functions have been determined based on simulated yield from EPIC (Choi, 2011). The crop yield response functions for different soil types were used in the analysis. The quadratic yield function for each individual soil type is:
$Y_{\text {st }}=a_{0}+a_{1} W_{s t}+a_{2} S_{s t}+a_{3} N R_{s t}+a_{4} W_{s t}^{2}+a_{5} S_{s t}^{2}+a_{6} \frac{s_{s t}}{W_{s t}}$
where $W_{s t}$ is the total water (i.e. sum of irrigation and rainfall) applied (ac-feet), $S_{s t}$ is the quantity of salt in the irrigation water (tons/ac-ft), plus the salt in the soil profile $\frac{S_{s t}}{W_{s t}}$ is the amount of total salt (soil irrigation) divided by the total amount of water (irrigation plus rain fall) per acre, and $N R_{t}$ is the precipitation in the non-growing season (feet). The coefficient estimates for crop yield response function, soil salinity response function at harvest and dynamic soil salinity function at planting for different soil types are provided in Appendix 1, Appendix 2, and Appendix 3, respectively. An example of yield for different soil types for Design1A irrigation system at 0.76 acre-ft. of irrigation water and at an EC level of $1.5 \mathrm{mmhos}_{\mathrm{cm}}{ }^{-1}$ is provided in Appendix 4.

Net Present Value Estimation:

The Net Present Value (NPV) for a 50-year period was calculated for each individual pivot circles as a sum of NPVs for individual soil types with in the pivot circle. The NPV is calculated using the following formula:
$\max _{I r r} N P V=\sum_{t=1}^{T} \frac{1}{(1+r)^{t}} \sum_{s=1}^{n}\left\{A_{s}\left(P \cdot Y_{t}-C_{i r r} \cdot \operatorname{Irr}-C_{o}\right)\right\}$
Subject to,
$Y_{t}=a_{0}+a_{1} W_{s t}+a_{2} S_{h t}+a_{3} N R_{s t}+a_{4} W_{t}^{2}+a_{5} S_{s t}^{2}+a_{6} \frac{S_{s t}}{W_{s t}}$
$S_{h t}=b_{0}+b_{1} I r r_{s t}+b_{2} I r r_{E C t}+b_{3} S_{p t}+b_{4} R_{g s t} W_{s t}$
$W_{s t}=\left(R_{g t}+I r r_{s t}\right)$
$S_{s t}=\left(S_{h t}+I r r_{E C t}\right)$
$S_{p t}=c_{0}+c_{1} S_{h t-1}+c_{2} R_{w t-1}$
where Y_{t} is yield (lbs/acre) in soil year t, A_{s} is the acreage of a soil type s in the individual irrigation circles (number of soils differ for each pivot circle), P is the price of cotton lint $(\$ / \mathrm{lb}), W_{s t}$ is the total water applied i.e. sum of growing season rainfall and irrigation, $S_{s t}$ is the total salt i.e. sum of salt in soil and salt in irrigation water, $S_{h t}$ is soil salt at harvest year t , $I r r_{s t}$ is irrigation water applied, $I r r_{E C t}$ is salt applied with irrigation water, S_{pt} is soil salt at planting, $R_{g t}$ is growing season rainfall, $S_{p t}$ is soil salt at planting, $S_{h t-1}$ is soil salt at previous harvest, $R_{w t-1}$ is non-season (winter) rainfall, $C_{i r r}$ is the irrigation cost (\$/acre-feet), C_{o} is the operation cost and, r is the discount rate. The irrigation water applied each year is that quantity of water which maximizes the NPV of the soil types in each pivot circle.

Dryland Cotton

Table 4. Dryland cotton variable cost per acre for 125 acres.

125 acres farmed				
Production	Units	Price	Quantity	\$/Acre
Cotton Lint	Lbs	0.54^{*}	390	210.60
Cotton Seed	Collars	4.77	5.56	26.52
Other Income	18.54	1	18.54	
Total Receipts				255.66
Operating Inputs	Units	Price	Quantity	\$/Acre
Seed	Acre	12.76	1	12.76
Fertilizer	Acre	20.43	1	20.44
Pesticide	Acre	27.12	1	27.12
Growth Regulators/Harvest Aids	Acre	7.52	1	7.52
Crop Insurance	Acre	9.91	1	9.91
Annual Operating	Dollars	0.083	73.89	6.10
Capital				
Machinery Labor	Hrs.	8	2.03	16.24
Machinery Fuel, Lube, Repairs	Acre	92.04	1	92.04
Ginning/Processing	Acre	37.61	1	37.61
Other Expense	Acre	16.02	1	16.02
Total Operating Costs				245.76
Returns Above Total Operating Costs				$\$ 9.90$
Fixed Costs	Units	Rate		$\$ /$ Acre
Machinery/Irrigation Interest at	Dollars	0.09		47.81
Total Fixed Costs				47.81
Total Costs (Operating + Fixed):				293.57
Returns Above All Specified Costs			$\$ 7.91)$	
Pre of				

*Price of cotton from normalized (Source: ERS, 2011)
Source: Enterprise Budgets, Oklahoma State University
The profitability of dryland cotton was assessed to determine the scenario without the irrigation system in the future. The net returns from dry land cotton are subtracted from the net returns of irrigated cotton, to find out the net agricultural benefits by implementing irrigation practices.

The average yield of dryland cotton for last five years (2001-2005) in Tillman County was 390 lbs per acre (National Agricultural Statistics Service, 2010). On average dryland cotton production generates $\$ 256$ revenue per acre for 54 cents cotton price (Table 4). The total operating cost and fixed cost for dryland cotton were $\$ 246$ and $\$ 48$ per acre, respectively (Table 4). With the cotton price of $\$ 0.54 /$ pound of lint the returns above total operating cost was $\$ 10$ while the returns above all costs (operating and fixed costs) was \$-37.91 (Table 4). The dryland cotton production was only profitable if the cotton lint price was $\$ 0.65$ or more per pound (Table 5). Though dryland cotton production was not profitable below $\$ 0.65$ cotton price per pound, the NASS statistics showed that dryland cotton acreage is increasing in the TTA. This indicates that producers are making profits as they are more likely to get a price higher than $\$ 0.65$ per pound of lint of cotton.

Table 5. Dryland net returns per acre for different prices of cotton.

| | Price of Cotton/lb | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Dry Land Returns | $\mathbf{5 4}$ cents | $\mathbf{6 5}$ cents | 70 Cents | $\mathbf{7 5}$ cents | $\mathbf{9 0}$ cents |
| Net Returns above Variable Costs | $\$ 10$ | $\$ 53$ | $\$ 72$ | $\$ 92$ | $\$ 150$ |
| Returns per acre | | | | | |
| Net Returns above Total Costs
 Returns per acre | -38 | $\$ 5$ | $\$ 24$ | $\$ 44$ | $\$ 102$ |

CHAPTER IV

FINDINGS

Potential Irrigable Soil Types and Areas:

The irrigable areas were selected to allocate the irrigation water and also to determine the optimal quantity of irrigation water for the area. The green areas in Fig. 2 show the potential irrigable areas. The area of potentially irrigable soils totaled 67,868 acres (Table 6). Tipton Sandy Loam and Tipton Loam are the dominant soil types within the area. There were some soils which were not designated as irrigable, but which producers are irrigating. The circles shown in the aerial map in Fig. 9 indicate pivot irrigation currently exists in the area but the areas are not designated as irrigable areas according to NRCS soil classification. There are approximately 45 pivot circles where producers are irrigating though soils are not classified as irrigable. The major soil types and their areas for the non-irrigable areas but being irrigated are given in Table 7. As people would like to continue irrigation, these areas were also included in potential irrigable areas for the region. Other features in Fig. 9 are the potential irrigable areas as designated by NRCS.

Table 6. Total irrigable areas of different soil types.

S.N	Soil type	Description	Total Area (Acres)
$\mathbf{1}$	Ab	Abilene Loam	6,556
$\mathbf{2}$	CaB	Carey Silt Loam 1-3 percent Slope	722
$\mathbf{3}$	TcB	Tillman Clay Loam 1 to 3 percent slope	1,264
$\mathbf{4}$	TdB	Tillman Hinkle Complex 1 to 3 percent slope	837
$\mathbf{5}$	TpA	Tipton Fine Sandy Loam 0 to 1 Percent Slope	24,200
$\mathbf{6}$	TpB	Tipton Fine Sandy Loam 1 to 3 Percent Slope	4,245
$\mathbf{7}$	TtA	Tipton Loam 0 to 1 Percent Slope	27,954
$\mathbf{8}$	TtB	Tipton Loam 1 to 3 Percent Slope	2,091
	Total		$\mathbf{6 7 , 8 6 8}$

Fig.9. Potential irrigable areas (orange patches) and non-irrigable areas but currently under pivot irrigation (circles) (NRCS, 2010).

Table 7. Total areas of non-irrigable soils but being irrigated by producers.

S.N	Soil Type	Description	Areas
1	DeB	Devol loamy fine sand	844
2	DeC	Devol loamy fine sand	332
3	GnA	Grandfield and Grandmore loamy fine sands	606
4	GnB	Grandfield-Grandmore complex	1,841
5	HaA	Devol fine sandy loam	926
6	HaB	Hardeman fine sandy loam	330
7	LdC	Jester loamy fine sand	158
8	TtA	Tipton loam	159
	Total		$\mathbf{5 , 1 9 6}$

Irrigation Pipeline:

Pipeline networks with pivot circles are shown in Fig. 10. Most of the irrigable areas were covered by 543 pivot circles. There can be up to four pivot circles with an area of 125.6 acres in each section of land. Figure 11 shows outline of main, lateral, and final pipelines from the reservoir to Tillman Terrace. Irrigation water flows through the main pipeline (north to south) from the reservoir to the lateral pipelines (east to west). Each lateral pipeline is connected with final pipelines which deliver water to the individual pivots in the fields. The length of main pipeline, lateral and final pipelines were 41, 133, and 151 miles, respectively. The size for main pipeline ranges from 48 inches to 120 inches, lateral ranges from 12 to 36 inches, and final pipes from 8 to 10 inches (Table 8).

Table 8. Length and size range of main, lateral and final pipelines.

Pipelines	Length(ft)	Length(miles)	Size Rage (inches)
Main	217,922	41	48 to 120
Lateral	699,782	133	12 to 36
Final	802,407	152	6 to 10

Fig. 10. Pipeline network with the pivot circles in different sections of land overlaid on 10 meter aerial NRCS photo map (Source: NRCS, 2010). White circles in the figure represent pivot irrigation.

Fig. 11. Outline of pipeline from the reservoir to Tillman Terrace with main, lateral, and final pipelines. North-South line is main pipeline and East-West lines are lateral pipelines overlaid on the elevation file.

Cost of Piping:

Trenching and Pipeline Cost:

The following regression model was obtained for determining the cost of trenching for main pipeline (trenching depth $>5 \mathrm{ft}$):

$$
\mathrm{C}=-7.33+6.97 \mathrm{~W}-1.46 \mathrm{D}+0.48 \mathrm{D}^{2}
$$

where $\mathrm{C}=$ cost of trenching, $\mathrm{W}=$ width of trench $(\mathrm{ft}), \mathrm{D}=\operatorname{depth}$ of trench $(\mathrm{ft}), \mathrm{D}^{2}=$ square of the depth of trench $\left(\mathrm{ft}^{2}\right)$. Data for specific widths and depths were taken from Means (2009).

Total pipe costs, trenching costs, and total annualized costs at 4 percent discount rate for 50 years period for larger pipes are provided in Table 9. Diameter of pipes ranged
from 24 to 120 inch. As the size of pipeline increases, total piping costs also increased. Total pipe costs per linear foot ranged from $\$ 151$ (24-inch) to $\$ 1,925$ (120-inch). Total earthwork cost increased with increasing pipe size ranged from $\$ 70$ per linear foot for a 24-inch diameter pipe to $\$ 271$ for 120 -inch pipe. Total cost was calculated as sum of total pipe cost and total earthwork cost which ranged from $\$ 221$ to $\$ 2,196$ per linear foot. The cost per year was calculated with the excel pmt function for 50-year at four percent discount rate was $\$ 10$ per foot for 24 -inch diameter pipe and reached upward to $\$ 102$ per foot for the 120 -inch pipe.

The regression model to estimate the cost of trenching for smaller pipelines ($<5 \mathrm{ft}$ deep) was: $\quad C=-13.33+4.28 W-2.13 D+0.33 D^{2}$

The total piping cost (earthwork and pipeline cost) and its total annualized cost for smaller pipelines are presented in Table 10. Diameter of pipes ranged from 6 to 18 inches. Total pipe costs ranged from $\$ 8$ for 6 -inch to $\$ 55$ for 18 -inch pipes. Total earthwork cost increased with increasing pipe size ranged from $\$ 8$ to $\$ 16$. Total cost (pipe cost + earthwork cost) ranged from $\$ 16$ to $\$ 71$. The 50 -year annualized cost at 4 percent discount rate ranged from $\$ 0.7$ (6-inch pipe) to $\$ 3.3$ (18-inch pipe) per linear foot.

Table 9.The initial and annualized cost of pipes and trenching for larger pipelines at 4 percent discount rate.

Diameter (in)	Total Pipe cost/ft	Depth (ft)	Top width (ft)	Bottom width (ft)	Cub. yard/ft	Trenching cost/ft	Pack cost/ft $\mathbf{3}^{3}$	Backfill cost/ft $^{\mathbf{3}}$	Total Earthwork cost	Total cost/ft	Annualized cost/ft
24	$\$ 151$	7	17	4	3	$\$ 59$	$\$ 6$	$\$ 5$	$\$ 70$	$\$ 221$	$\$ 10$
36	$\$ 193$	8	20	5	3	$\$ 72$	$\$ 9$	$\$ 7$	$\$ 88$	$\$ 281$	$\$ 13$
48	$\$ 271$	9	23	6	5	$\$ 85$	$\$ 11$	$\$ 9$	$\$ 105$	$\$ 376$	$\$ 18$
60	$\$ 410$	10	26	7	6	$\$ 98$	$\$ 14$	$\$ 11$	$\$ 123$	$\$ 533$	$\$ 25$
72	$\$ 490$	11	29	8	7	$\$ 111$	$\$ 18$	$\$ 14$	$\$ 143$	$\$ 633$	$\$ 29$
84	$\$ 655$	12	33	10	9	$\$ 131$	$\$ 2$	$\$ 18$	$\$ 171$	$\$ 826$	$\$ 38$
96	$\$ 930$	13	36	11	11	$\$ 144$	$\$ 27$	$\$ 21$	$\$ 192$	$\$ 1,122$	$\$ 52$
108	$\$ 1,250$	14	43	16	15	$\$ 185$	$\$ 36$	$\$ 28$	$\$ 249$	$\$ 1,499$	$\$ 70$
120	$\$ 1,925$	15	46	17	17	$\$ 198$	$\$ 41$	$\$ 32$	$\$ 271$	$\$ 2,196$	$\$ 102$

Source: RS Means Facilities Construction Cost Data

Table 10. The initial and annualized cost of pipes and trenching for six to eighteen inch pipelines at 4 percent discount rate.

Diameter (in)	$\begin{array}{r} \text { Pipe } \\ \text { cost/ft } \end{array}$	Top Width (ft)	Bottom width (ft)		Depth (ft)	$\begin{array}{r} \text { Cub } \\ \text { yard/ft } \end{array}$	Trenching cost/ft	$\begin{array}{r} \text { Pack } \\ \operatorname{cost} / \mathbf{f t}^{3} \end{array}$	Backfill	Total earthwork cost	$\begin{array}{r} \text { Total } \\ \text { cost/ft } \end{array}$	$\begin{array}{r} \text { Total } \\ \text { annualized } \\ \text { cost/ft } \end{array}$
6	\$8	4.3		2	4.5	0.5	\$6	\$1	\$1	\$8	\$16	\$0.7
8	\$12	4.3		2	4.7	0.5	\$7	\$2	\$1	\$9	\$21	\$1.0
10	\$23	4.4		2	4.8	0.6	\$7	\$2	\$1	\$10	\$33	\$1.5
12	\$30	5.5		3	5	0.8	\$12	\$3	\$1	\$16	\$45	\$2.1
14	\$30	5.6		3	5.2	0.8	\$11	\$3	\$1	\$15	\$45	\$2.1
16	\$45	5.7		3	5.3	0.9	\$11	\$3	\$1	\$16	\$60	\$2.8
18	\$55	5.8		3	5.5	0.9	\$11	\$3	\$2	\$16	\$71	\$3.3

[^1]
Sensitivity Analysis of Annual Pipeline Costs to Interest Rates

Fig. 12. Sensitivity analysis for the annualized cost of pipeline and earthwork at discount rates of four, five, six and eight percent.

The sensitivity analysis was performed for the annualized cost of pipeline and earthwork at discount rates of four, five, six and eight percent (Fig. 12). Increasing the discount rates from four percent to five percent and five percent to six percent increased the cost by 17 percent on an average. Increasing the discount rate from six percent to eight percent increased the average cost by 29 percent. When the discount rate increased from four percent to six percent and from four percent to eight percent the average annualized cost was increased by 36 percent and 76 percent, respectively.

Irrigation System Designs:

In EPANET software, the pipeline diameters were iteratively increased or decreased until the size of pipeline with minimum cost was determined that gave the pressure required at different nodes of the pipeline. The pumps were added to low pressure points to meet the minimum pressure of 35 PSI for each pivot system operation. This produced different irrigation system designs that would deliver the water to every pivot. Major four designs were evaluated in this study. Design 1A allowed all producers to irrigate simultaneously while Design 1B scheduled the irrigation alternately to the north and south of each lateral of the Design1A irrigation system. Design 2 divided the irrigable land into two areas alternating irrigation in east and west of main pipeline. Design 3 divided the irrigable land into four areas to allow producers to irrigate one area at a time. Design 1A had individual pivot demand of 600 gpm , and Design 1B, 2 and 3 had individual pivot demand of 800 gpm . The four designs were evaluated in terms of the annual fixed and variable costs.

Variable Costs:

The variable costs include inputs costs (minus the revenue from seeds), pumping costs, labor and interest on non-irrigation equipments, and other related costs. The nonirrigation variable cost of irrigated cotton production is tentatively $\$ 496$ per acre (Table 11). The annual pumping cost is approximately $\$ 50$ per acre foot for all four designs.

Table 11. The non-irrigation variable cost of irrigated cotton production and pivot irrigation.

Budget Items	Cost
Seed	$\$ 21.23$
Fertilizer	$\$ 59.96$
Pesticide	$\$ 41.60$
Growth Regulators/Harvest Aids	$\$ 28.86$
Crop Insurance	$\$ 9.91$
Annual Operating Capital	$\$ 11.23$
Machinery Labor	$\$ 21.12$
Irrigation Labor	$\$ 1.52$
Machinery Fuel, Lube, Repairs	$\$ 107.23$
Ginning/Processing	$\$ 110.33$
Other Expense	$\$ 22.34$
Other Fixed Cost	$\$ 137.40$
Returns from seed	$\$ 77.00$
Total overall variable cost	$\$ 496$

Source: Enterprise Budgets, Oklahoma State University.

Design 1A Irrigation System:

This design was for the unrestricted irrigation system with the demand of 600 gpm for each 543 pivot circles. This design used main pipelines from 48 to 120 inches, lateral pipelines from 12 to 36 inch, and final pipelines of 8 to 10 inches. The total water demand was $325,800 \mathrm{gpm}$ and fixed cost per acre was $\$ 399$ at a four percent discount rate (Table 12).

Table 12. Fixed costs of Design 1A irrigation system.

Cost	Total Annualized Cost (4)\%)	Cost/ Acre
Cost of pipe and earthwork	$\$ 23,332,017$	$\$ 343$
Cost of pumps and motors	$\$ 394,697$	$\$ 6$
Cost of pivot irrigation system	$\$ 3,412,362$	$\$ 50$
Total	$\mathbf{\$ 2 7 , 1 3 9 , 0 7 7}$	$\mathbf{\$ 3 9 9}$

Sensitivity Analysis of Annual Fixed costs to Interest Rates:

Sensitivity analysis in Table 13 showed that the total annualized fixed cost per acre increased by 17 percent from $\$ 399$ to $\$ 467$ when the discount rate was increased from four to five percent. Likewise, when the discount rate was increased from four to six percent the annualized fixed cost per acre increased by 35 percent. It increased by 74 percent when the discount rate rose from four to eight percent.

Table 13. Fixed costs of Design1A irrigation system at different discount rates.

Cost	Cost/Acre	Cost/Acre	Cost/ Acre	Cost/ Acre
Discount Rate	$\mathbf{(4 \%)}$	$\mathbf{(5 \%)}$	$\mathbf{(6 \%)}$	$\mathbf{(8 \%)}$
Cost of pipe and earthwork	$\$ 343$	$\$ 401$	$\$ 464$	$\$ 596$
Cost of pumps and motors	$\$ 6$	$\$ 7$	$\$ 8$	$\$ 10$
Cost of pivot irrigation system	$\$ 50$	$\$ 59$	$\$ 68$	$\$ 88$
Total	$\mathbf{\$ 3 9 9}$	$\$ 467$	$\mathbf{\$ 5 4 0}$	$\mathbf{\$ 6 9 4}$

Net Present Value and Optimal Irrigation Water:

With an annualized fixed cost of $\$ 399$ and total annual variable cost of $\$ 550$ of the irrigation system, the cotton lint price should be 75 cents or more per pound to make Design 1A irrigation system economically feasible. A cotton price less than 75 cents per
pound resulted in a negative NPV for the Design 1A irrigation system (Fig. 13). The figure shows that NPV increases with increase in cotton price and decreases with increase in EC levels.

Fig. 13. NPV for different water EC levels at different cotton prices per pound for Design 1A irrigation system.

The aggregate NPVs per acre above returns of dryland cotton for the nonscheduled irrigation system for cotton lint prices of 75 and 90 cents were $\$ 402$ (Table 14) and $\$ 3,189$ (Table 15), respectively for an EC value of $1.5 \mathrm{mmhos} \mathrm{cm}^{-1}$. At this level of EC, the total NPVs for 68,000 acres of land at cotton price of 75 and 90 cents were approximately $\$ 30$ million (Table 14), and $\$ 225$ million (Table 15), respectively. The average NPVs for a 125.6 -acre system were approximately $\$ 56,000$ for 75 cents and $\$ 413,000$ for 90 cents of cotton price. The sensitivity of the fluctuation in the NPV of the system to EC was also analyzed. The result showed that an increase in EC would decrease the NPV per acre and the optimal amount of irrigation water to maximize NPV.

For Design 1A, a decrease in EC from 1.5 to $0.9 \mathrm{mmhos}_{\mathrm{cm}^{-1}}$ increased NPV by 32 and 11 percent for cotton lint prices of 75 and 90 cents per pound, respectively. The optimum quantity of irrigation water increased by 60 , and 35 percent for 75 and 90 cents of cotton prices, respectively. The increase in EC level also decreased the total irrigation water for the irrigation system and increasing the price of cotton increased the total irrigation water linearly (Fig.14).

Fig 14. Total irrigation water per 125.6 acre irrigation system at different EC levels and cotton prices for Design 1A irrigation system.

Increasing the EC level from 0.9 to $1.5 \mathrm{mmhos} \mathrm{cm}^{-1}$ decreased the total irrigation water per 125.6 acres by 37 percent from 217.5 to 137.1 acre-feet for 75 cent cotton. An increase in EC value from 1.5 to 3.0 decreased the NPV by 31 and 18 percent for 75 and 90 cents of cotton prices, respectively. It also decreased the average optimum irrigation water by 78 percent for cotton prices of 75 cents and by 65 percent for cotton prices of 90 cents per pound.

Table 14. Aggregate net present value (NPV) of irrigated cotton for Design 1A at cotton price $\$ 0.75$ at different levels of EC.

EC Level (mmhos cm				
	$\mathbf{0}$)	$\mathbf{0 . 9}$	$\mathbf{1 . 5}$	$\mathbf{2 . 2}$
Total NPV	$\$ 38,905,339$	$\$ 30,391,486$	$\$ 24553297$	$\$ 21,585,240$
Average NPV/125.6 acre	$\$ 71,649$	$\$ 55,970$	$\$ 45,218$	$\$ 39,752$
Average irrigation water	0.40	0.25	0.13	0.06
(ft/acre)				
Total irrigation water (ft)	216	137	70	30
NPV/ Acre above dryland returns	$\$ 534$	$\$ 402$	$\$ 320$	$\$ 276$

Table 15. Aggregate net present value (NPV) of irrigated cotton for Design 1A at cotton price $\$ 0.9$ at different EC Levels.

EC Level (mmhos cm				
	$\mathbf{0 . 9}$)	$\mathbf{1 . 5}$	$\mathbf{2 . 2}$	$\mathbf{3}$
Total NPV	$\$ 252,422,563$	$\$ 224,458,253$	$\$ 199,760,168$	$\$ 183,232,769$
Average NPV/125.6 acre	$\$ 464,867$	$\$ 413,367$	$\$ 367,882$	$\$ 337,445$
Average irrigation water (ft./acre)	0.84	0.62	0.39	0.22
Total irrigation water	454	336	212	118
(ft./ 125.6 acre)				
NPV/ Acre above dryland returns	$\$ 3,599$	$\$ 3,189$	$\$ 2,868$	$\$ 2,622$

Design 1B Irrigation System:

This design was for the restricted irrigation system for instantaneous irrigation water supply. The Design 1A was modified for scheduling irrigation in Design 1B to the north of each lateral at one time and the south the other time. This scheduling reduces the size of pipe of the lateral pipeline as it would requires less amount of water at a certain time than the unrestricted design. The total water demand at a time was $217,600 \mathrm{gpm}$. Main pipelines of 36 to 108 inches, lateral pipelines of 12 to 30 inches, and final pipelines of 6 to 10 inches were used in this design. The annual fixed cost for 50 years decreased to $\$ 277$ (Table 16) from $\$ 399$ (Design 1A) per acre at four percent discount rate.

Table. 16. Fixed costs of Design 1B irrigation system.

Costs	Total Annualized cost (4\%)	Cost/acre
Cost of pipe and earthwork	$\$ 15,278,034$	$\$ 224$
Cost of pivots	$\$ 3,412,362$	$\$ 50$
Cost of pumps and motors	$\$ 207,035$	$\$ 3$
Total	$\mathbf{\$ 1 8 , 8 9 7 , 4 3 1}$	$\mathbf{\$ 2 7 7}$

The sensitivity of discount rates to the cost of this system showed that increasing discount rate from 4 to 5,6 , and 8 percent increased the cost per acre foot by 18 percent, 36 percent, and 76 percent, respectively (Table 17).

Table 17. Annual cost per acre of Design 1B irrigation system for different discount rates.

Costs	Cost/ Acre	Cost/ Acre	Cost / Acre	Cost/Acre
	$\mathbf{4 \%}$	$\mathbf{5 \%}$	$\mathbf{6 \%}$	$\mathbf{8 \%}$
Cost of pipe and	$\$ 224$	$\$ 263$	$\$ 305$	$\$ 393$
earthwork				
Cost of pivots Cost of pumps and motors	$\$ 50$	$\$ 58$	$\$ 68$	$\$ 88$
Total	$\$ 3$	$\$ 3$	$\$ 4$	$\$ 5$

Net Present Value and Optimal Irrigation Water:

With an annualized fixed cost of $\$ 280$ and total annual variable cost of $\$ 550$, Design 1B irrigation system was economically feasible for cotton prices above 70 cents. At 70 cents cotton this design was feasible for EC level less than and equal to 2.2 mmhos cm^{-1}. A cotton price less than 70 cents per pound resulted in a negative NPV for the Design 1B irrigation system (Fig. 15). The figure shows that NPV increases with increase in cotton price and decreases with increase in EC level linearly.

Fig. 15. NPV for different water EC levels at different cotton prices per pound for Design 1B irrigation system.

The aggregate NPVs per acre above dryland returns for the Design 1B irrigation system for cotton lint prices of 70,75 , and 90 cents were $\$ 674$ (Table 18), $\$ 1,795$ (Table 19), and $\$ 5,366$ (Table 20), respectively for an $E C$ value of $1.5 \mathrm{mmhos} \mathrm{cm}^{-1}$. At this level of EC, the total NPVs for 68,000 acres of land at cotton price of 70,75 and 90 cents were approximately $\$ 46$ million (Table 18), $\$ 125$ million (Table 19), and 367 million (Table 20), respectively. The sensitivity of the variability in the NPV and irrigation water use of the system to EC was also analyzed. The result showed that an increase in EC would decrease the NPV per acre and decrease the optimal average and total amount of irrigation water to maximize NPV.

Table 18. Aggregate NPV of irrigated cotton for Design 1B at price of cotton $\$ 0.7$ per pound for different EC levels.

EC Level (mmhos cm				
	$\mathbf{0 . 9}$)	$\mathbf{1 . 5}$	$\mathbf{2 . 2}$	$\mathbf{3}$
Total NPV	$\$ 77,467,321$	$\$ 46,978,340$	$\$ 18,121,976$	$-\$ 2,502,726$
Average NPV/125.6 acre	$\$ 142,665$	$\$ 86,516$	$\$ 33,374$	$-\$ 4,609$
Average irrigation water				
(ft/acre)	1.1	0.8	0.5	0.3
Total irrigation water				
(ft/125.6acre)	574	439	290	172
NPV/Acre above dryland returns	$\$ 1,128$	$\$ 674$	$\$ 244$	$(\$ 62)$

Table 19. Aggregate NPV of irrigated cotton for Design 1B at cotton price of $\$ 0.75$ per pound for different EC levels.

EC (mmhos cm ${ }^{-1}$)	$\mathbf{0 . 9}$	$\mathbf{1 . 5}$	$\mathbf{2 . 2}$	$\mathbf{3}$
Total NPV	$\$ 162,560,744$	$\$ 123,708,374$	$\$ 85,685,646$	$\$ 57,696,768$
Average NPV/125.6 acre	$\$ 299,375$	$\$ 227,824$	$\$ 157,800$	$\$ 106,256$
Average irrigation water	1.2	0.9	0.6	0.4
(ft/ acre)				
Total irrigation water	645	501	337	204
(ft/125.6acre)				
NPV/Acre above dryland returns	$\$ 2,373$	$\$ 1,795$	$\$ 1,229$	$\$ 813$

Table 20. Aggregate NPV of irrigated cotton for Design 1B at price of cotton of $\$ 0.9$ per pound for different EC levels.

EC (mmhos cm ${ }^{-1}$)	$\mathbf{0 . 9}$	$\mathbf{1 . 5}$	$\mathbf{2 . 2}$	$\mathbf{3 . 0}$
Total NPV	$\$ 414,591,644$	$\$ 367,712,681$	$\$ 299,118,775$	$\$ 245,904,800$
Average NPV/125.6	$\$ 763,521$	$\$ 677,187$	$\$ 550,863$	$\$ 452,863$
acre				
Average irrigation	1.4	1.2	0.8	0.5
water (ft/acre)				
Total irrigation	781	646	448	281
water (ft/125.6)				
NPV/Acre above	$\$ 6,064$	$\$ 5,366$	$\$ 4,346$	$\$ 3,554$
dryland returns				

For Design 1B, an increase in EC from 0.9 to $1.5 \mathrm{mmhos} \mathrm{cm}^{-1}$ decreased NPV by 40,24 , and 12 percent for cotton lint prices of 70,75 and 90 cents per pound, respectively. An increase in cotton price also increased the total water and increase in EC levels decreased the total water for the system (Fig. 16). The total water per 125.6 acre ranged from 174 to 574 acre feet for 70 cents cotton price (Table 18), 281 to 781 acre foot for 90 cents cotton price (Table 20). With an increase in EC level from 0.9 to 1.5 mmhos cm^{-1}, the average and total optimum quantity of irrigation water decreased by 23 , 22 , and 17 percent for cotton prices of 70,75 , and 90 cents, respectively. An increase in EC value from 1.5 to 2.2 decreased the NPV by 64,32 , and 19 percent for 70,75 , and 90 cents of cotton prices, respectively.

Fig 16. Total irrigation water per 125.6 acre irrigation system at different EC levels and cotton prices for Design 1B irrigation system.

Design 2 Irrigation System:

This design was also for the restricted instantaneous water supply by scheduling irrigation. The irrigation system was divided into two areas and irrigation was scheduled for one area at a time. Scheduling would require less water at one time so that the smaller pipes would be enough to meet the demand which ultimately lower the cost of the irrigation system. Main pipelines of 36 to 108 inches, lateral pipelines of 12 to 30 inches, and final pipelines of 6 to 10 inches were used in this design. The design was derived by iteratively changing pipeline sizes in EPANET. Water demand for each pivot was 800 gpm so that it would take less time to irrigate each section and so irrigation on the other area can be scheduled sooner. This design required 212,000 gallons of water per minute at a time. This scheduling has an annual fixed cost of $\$ 273$ per acre at four percent
discount rate (Table 21) which is approximately 32 percent less than that of Design 1A and three percent less than Design 1B.

Table 21. Fixed costs of Design 2 irrigation system.

Cost	Total Cost	Cost/Acre
Cost of pipe and earthwork	$\$ 14,689,813$	$\$ 215$
Cost of pumps and motors	$\$ 290,435$	$\$ 4$
Cost of pivot irrigation system	$\$ 3,412,362$	$\$ 50$
Cost of valves	$\$ 211,026$	$\$ 3$
Total	$\$ 3,913,823$	$\$ 273$

Sensitivity Analysis of Annual Fixed Costs to Interest Rates:

The result of sensitivity analysis of costs for Design 2 at different discount rates was is given in Table 22. A one percent increase in discount rate from 4 to 5 percent increased the annual cost of the irrigation system per acre approximately by 17 percent. Increasing the discount rate from four to six percent and four to eight percent increased the cost per acre by 36 percent and 75 percent, respectively.

Table 22. Annual Fixed costs of Design 2 irrigation system at different discount rates.

	Cost/Acre	Cost/Acre	Cost/Acre	Cost/Acre
Cost	$\mathbf{(4 \%)}$	$\mathbf{(5 \%)}$	$\mathbf{(6 \%)}$	$\mathbf{(8 \%)}$
Cost of pipe and earthwork	$\$ 215$	$\$ 253$	$\$ 294$	$\$ 378$
Cost of pumps and motors	$\$ 4$	$\$ 5$	$\$ 6$	$\$ 7$
Cost of pivot irrigation system	$\$ 50$	$\$ 59$	$\$ 68$	$\$ 88$
Cost of valves	$\$ 3$	$\$ 4$	$\$ 4$	$\$ 5$
Total	$\$ 273$	$\$ 321$	$\$ 372$	$\$ 479$

Net Present Value and Optimal Irrigation Water:

At an annualized fixed cost of $\$ 273$ and total variable cost of $\$ 550$ per acre, Design 2 irrigation system was only feasible for the cotton price above 70 cents per pound (Fig. 17). At cotton price of 70 cents this design was feasible for EC levels less than $2.2 \mathrm{mmhos} \mathrm{cm}^{-1}$.

Fig. 17. NPV for different water EC levels at different cotton prices for Design 2 irrigation system.

Aggregate total NPVs, NPVs per acre and average optimal quantity of irrigation water at different EC levels for Design 2 at cotton prices of 70, 75, and 90 cents are presented in Table 23, 24, and 25, respectively. The average NPVs per acre above dryland cotton at EC level of $1.5 \mathrm{mmhos} \mathrm{cm}^{-1}$ for this scheduled irrigation system were $\$ 755$ (Table 23), $\$ 1,887$ (Table 24), and $\$ 5,484$ (Table 25) at the cotton prices of 70, 75, and 90 cents per pound, respectively. At an EC of $1.5 \mathrm{mmhos} \mathrm{cm}^{-1}$, the total NPVs for

68,000 acres of land at cotton price of 70,75 , and 90 cents were approximately $\$ 52$ million (Table 23), $\$ 129$ million (Table 24), and $\$ 375$ million (Table 25), respectively. The total water per 125.6 acres ranged from 180 to 594 acre-feet for a cotton price of 70 cents (Table 23), 212 to 663 acre-feet for a cotton price of 75 cents (Table 24), and 288 to 826 acre-feet for a cotton price of 90 cents (Table 25).

Table 23. Aggregate NPV of irrigated cotton for Design 2 at the price of cotton $\$ 0.7$ per pound for different EC levels.

EC Level (mmhos cm				
	$\mathbf{0 . 9}$)	$\mathbf{1 . 5}$	$\mathbf{2 . 2}$	$\mathbf{3}$
Total NPV	$84,426,767$	$\$ 52,429,273$	$\$ 21,858,011$	$(\$ 178,039)$
Average NPV/125.6 acre	$\$ 155,482$	$\$ 96,555$	$\$ 40,254$	$(\$ 328)$
Average irrigation water				
(ft/acre)	1.1	0.8	0.56	0.33
Total irrigation water (ft/125.6)	594	456	302	180
NPV/Acre above dryland returns	$\$ 1,231$	$\$ 755$	$\$ 300$	$(\$ 28)$

Table 24. Aggregate NPV of irrigated cotton for Design 2 at cotton price of $\$ 0.75$ per pound for different EC levels.

EC (mmhos cm				
)	$\mathbf{0 . 9}$	$\mathbf{1 . 5}$	$\mathbf{2 . 2}$	$\mathbf{3}$
Total NPV	$\$ 163,589,347$	$\$ 129,892,665$	$\$ 89,989,453$	$\$ 60,422,953$
Average NPV/125.6 acre	$\$ 301,270$	$\$ 239,213$	$\$ 165,726$	$\$ 111,276$
Average irrigation water				
(ft/acre)	1.22	0.95	0.64	0.39
Total irrigation water (ft/125.6)	663	517	349	212
NPV/Acre above dryland returns	$\$ 2,355$	$\$ 1,887$	$\$ 1,293$	$\$ 854$

Table 25. Aggregate NPV of irrigated cotton for Design 2 at price of cotton $\$ 0.9$ per pound for different EC levels.

EC (mmhos cm ${ }^{-\mathbf{1}}$)	$\mathbf{0 . 9}$	$\mathbf{1 . 5}$	$\mathbf{2 . 2}$	$\mathbf{3 . 0}$
Total NPV	$\$ 443,274,771$	$\$ 375,608,518$	$\$ 304,758,898$	$\$ 249,579,827$
Average NPV/125.6 acre	$\$ 816,344$	$\$ 691,728$	$\$ 561,250$	$\$ 485,426$
Average irrigation water				
(ft/ acre)	1.52	1.21	0.84	0.53
Total irrigation water	826	659	458	288
$(\mathrm{ft} / 125.6$ acre)				
NPV/Acre above dryland returns	$\$ 6,491$	$\$ 5,484$	$\$ 4,430$	$\$ 3,609$

The average optimal quantity of irrigation water per acre to maximize NPV at an EC level of $1.5 \mathrm{mmhos} \mathrm{cm}^{-1}$ were $0.8,0.95$, and 1.21 acre-feet at the cotton prices of 70 , 75, and 90 cents, respectively. The increase in EC value from 1.5 to $2.2 \mathrm{mmhos} \mathrm{cm}^{-1}$ decreased the irrigation water by 34 percent for 70 cents cotton, 32 percent for 75 cents cotton, and 30 percent for 90 cents cotton. The average irrigation water use was reduced when EC level was increased (Fig. 18).

Fig.18. Total irrigation water per 125.6 acre foot for different EC levels and cotton prices for Design 2 irrigation system.

A decrease in the EC level from 1.5 to $0.9 \mathrm{mmhos} \mathrm{cm}^{-1}$ increased the NPV per acre by 63 percent and the average optimum irrigation water by 38 percent at cotton price of 70 cents. It increased the NPV by 25 percent and average optimum irrigation water increased by 15 percent at cotton price of 75 cents. Similarly, the NPV increased by 18 percent and the average optimum irrigation water increased by 27 percent at the cotton price of 90 cents. An increase in EC level from 1.5 to 2.2, and 3 decreased both the NPV and the optimum quantity of irrigation water. Increasing the EC level to 3 from 1.5 mmhos cm ${ }^{-1}$ decreased NPV by 103 percent (for 70-cent cotton), 55 percent (for 75-cent cotton), and 34 percent (for 90 -cent cotton). In the same way, the average optimum quantity of irrigation water decreased by approximately 55 percent for both 90 and 75 cents of cotton prices.

Design 3 Irrigation System:

This design was also for the restricted instantaneous irrigation supply. In this design, the irrigation system was divided into four areas. At one time, only one area would be irrigated. This reduced the water demand and lead to a further reduction in pipeline size as compared to other designs. Water demand of 800 gpm per pivot for this design requires a total 108,600 gallons of water per minute to irrigate an area. Main pipelines of 36 to 84 inches, lateral pipelines of 12 to 24 inches, and final pipelines of 6 to 10 inches were used in this design. The annualized fixed cost at a four percent discount rate for this design was $\$ 223$ per acre (Table 26) which is approximately 44 percent less than that of Design 1A, 19 percent less than Design 1B, and 18 percent less than that of Design 2.

Similar to Design 2, a one percent increase in discount rate from 4 to 5 percent increased the annual cost of the irrigation system per acre approximately by 17 percent. Increasing the discount rate from four to six percent and four to eight percent increased the cost per acre by 36 percent and 75 percent, respectively (Table 27).

Table 26. Fixed cost of Design 3 irrigation system.

Cost	Total Annualized Cost (4)\%)	Cost/ Acre
Cost of pipe and earthwork	$\$ 11,422,383$	$\$ 167$
Cost of pumps and motors	$\$ 170,525$	$\$ 3$
Cost of valves	$\$ 211,026$	$\$ 3$
Cost of pivot irrigation system	$\$ 3,412,362$	$\$ 50$
Total	$\mathbf{\$ 1 5 , 2 1 6 , 2 9 6}$	$\mathbf{\$ 2 2 3}$

Table 27. Annual per acre fixed costs of Design 3 irrigation system at different discount rates.

Cost	Cost/ Acre	Cost/ Acre	Cost/Acre	Cost/Acre
	$\mathbf{(4 \%)}$	$\mathbf{(5 \%)}$	$\mathbf{(6 \%)}$	$\mathbf{(8 \%)}$
Cost of pipe and earthwork	$\$ 167$	$\$ 197$	$\$ 228$	$\$ 294$
Cost of pumps and motors	$\$ 3$	$\$ 3$	$\$ 3$	$\$ 4$
Cost of valves	$\$ 3$	$\$ 4$	$\$ 4$	$\$ 5$
Cost of pivots	$\$ 50$	$\$ 59$	$\$ 68$	$\$ 88$
Total	$\$ 223$	$\$ 263$	$\$ 304$	$\$ 392$

Net Present Value and Optimal Irrigation Water:

With an annualized fixed cost of $\$ 223$ and total variable cost of $\$ 550$, the Design 3 irrigation system was feasible for the cotton price above 65 cents per pound (Fig. 19). At 65 cents this design was feasible for EC levels less than and equal to $1.5 \mathrm{mmhos} \mathrm{cm}^{-1}$. The total irrigation water use per 125.6 acre was reduced when EC level was increased and rose when cotton price increased (Fig. 20).

Fig. 19. NPV for different water EC levels at different cotton prices for Design 3 irrigation system.

Fig. 20. Total irrigation water per 125.6 acre foot for different EC levels and cotton prices for Design 3 irrigation system.

The aggregate NPVs per acre (above dryland returns) for the scheduled irrigation system at the cotton prices of 65,75 , and 90 cents were $\$ 527$ (Table 28), $\$ 2958$ (Table 29), and $\$ 6,784$ (Table 30), respectively at $1.5 \mathrm{mmhos} \mathrm{cm}^{-1} \mathrm{EC}$ level. At EC of 1.5 mmhos cm^{-1}, the total NPVs for 68,000 acres of land at the cotton prices of 65,75 , and 90 cents were approximately $\$ 35$ million (Table 28), \$201 million (Table 29), and 463 million (Table 30), respectively. The total water per 125.6 acre ranged from 237 to 718 acre-feet for a cotton price of 65 cents (Table 28), 295 to 840 acre-feet for cotton price of 75 cents (Table 29), and 385 to 973 acre-feet for cotton price of 90 cents (Table 30).

At cotton price of 65 cents, when the EC level was decreased from 1.5 to 0.9 mmhos cm^{-1}, the NPV increased by 112 percent and the average optimum quantity of irrigation water increased by 22 percent. The NPV increased by 29 percent and average optimum quantity of irrigation water per acre increased by 25 percent at a cotton price of

75 cents. At the same increase in EC level, and cotton price of 90 cents, both the NPV per acre and the average optimal quantity of irrigation water per acre increased by 20 percent. Increasing the EC level to 3 from $1.5 \mathrm{mmhos} \mathrm{cm}^{-1}$ decreased the NPV by 195 percent (for $65-$ cent cotton), 55 percent (for $75-$ cent cotton), and 38 percent (for 90 -cent cotton). In the same way, the average optimum quantity of irrigation water per acre decreased by approximately 54 percent for cotton prices of 75 and 90 cents per pound. The total irrigation water per 125.6 acre also decreased by 57 percent (65 cents cotton), 59 percent (75 cents cotton) and 54 percent (90 cents cotton) when EC level was increased to 3 from $1.5 \mathrm{mmhos} \mathrm{cm}^{-1}$. The NPV for Design 3 irrigation system was negative at an EC level of $3 \mathrm{mmhos} \mathrm{cm}{ }^{-1}$ and a cotton price of 65 cents per pound. It indicated that the Design 3 irrigation system was unfeasible at higher EC (2.2 or more) level and lower cotton prices (less than 65 cents).

Table 28. Aggregate NPV of irrigated cotton for Design 3 at cotton price of $\$ 0.65$ per pound for different levels of EC.

EC Level (mmhos cm ${ }^{-1}$)	0.9	1.5	2.2	3
Total NPV	\$75,327,627	\$35,827,977	\$(3,993,223)	\$(34,052,596)
Average NPV/125.6 Acre	\$138,725	\$65,982	\$ $(7,354)$	\$(62,712)
Average irrigation water (ft/ acre)	1.3	1.0	0.7	0.4
Total irrigation water (ft/ 125.6 acre)	718	564	385	237
NPV/Acre above dryland returns	\$1,115	\$527	(\$64)	(\$504)

Table 29. Aggregate NPV of irrigated cotton for Design 3 at cotton price $\$ 0.75$ per pound for different levels of EC.

EC ($\mathbf{m m h o s} \mathbf{c m}^{-1}$)	0.9	1.5	2.2	3
Total NPV	\$259,850,367	\$201,911,965	\$140,963,134	\$93,314,077
Average NPV/125.6 acre	\$478,546	\$371,845	\$259,601	\$171,849
Average irrigation water (ft/acre)	1.55	1.24	0.86	0.54
Total irrigation water (ft/ 125.6 acre)	840	672	468	295
NPV/Acre above dryland returns	\$3,820	\$2,958	\$2,051	\$1,343

Table 30. Aggregate NPV of irrigated cotton for Design 3 at a cotton price $\$ 0.9$ per pound for different EC levels.

EC (mmhos cm	-1	$\mathbf{0 . 9}$	$\mathbf{1 . 5}$	$\mathbf{2 . 2}$
Total NPV	$\$ 550,210,680$	$\$ 463,049,407$	$\$ 367,823,753$	$\$ 291,094,555$
Average NPV/125.6 acre	$\$ 1,013,279$	$\$ 852,761$	$\$ 677,392$	$\$ 536,086$
Average Irrigation Water				
(ft/acre)	1.79	1.45	1.03	0.66
Total irrigation water				
(ft/125.6 acre)	973	788	558	358
NPV/Acre above dryland returns	$\$ 8,081$	$\$ 6,784$	$\$ 5,367$	$\$ 4,226$

Partial Pivot Circles:

There were 30 partial pivot circles ranging from 43 acres to 116 acres in each irrigation system design. The cost of pivot irrigation system would be higher for the partial pivot circles as it irrigates a smaller portion of land but pays for total pivot irrigation system. The costs of pivot irrigation system for the partial pivot circles were
higher by $\$ 1$ to $\$ 95$ per acre than that of full pivot circles. The partial pivots were profitable at higher cotton price and lower EC values for all four designs. For designs 1B, 2, and 3 partial pivots were feasible for 90 cent and 75 cent of cotton prices and more at all EC levels ($0.9,1.5,2.2$, and 3 mmhos cm^{-1}). However, partial pivots and most of the full pivots in Design 1A were not feasible at 75 cent cotton price and EC level higher than $2.2 \mathrm{mmhos} \mathrm{cm}^{-1}$. Likewise, most of the partial and full pivots in Designs 1B and 2 were not profitable at the 70 cents of cotton price at EC level higher than $2.2 \mathrm{mmhos} \mathrm{cm}^{-}$ ${ }^{1}$. Partial pivots in Design 3 were feasible at all EC levels for cotton price of 70 cents and more. However, most of the partial and full pivots were not feasible for 65 cents of cotton

Non Feasible Pivots:

For Design 1A at EC level of $3 \mathrm{mmhos} \mathrm{cm}^{-1}, 108$ pivots were not feasible. Removing these pivots increased per acre cost to $\$ 490$ from $\$ 400$ at the four percent discount rate. Most of the remaining feasible pivots also became non feasible at that cost. Removal of those non feasible pivots again increased the cost of the system due to decreased total acreages. At the increased cost of the system, the remaining feasible pivots also became non feasible. Ultimately, the process made all of the pivots of the system unfeasible when there were more non feasible pivots in irrigation system. For Design 1A, only three pivots were not feasible for 75 cents of cotton price at 2.2 mmhos $\mathrm{cm}^{-1} \mathrm{EC}$ level which decreased the acreage of the system to 67,623 acres and increased cost by $\$ 3$ per acre. Likewise, three pivots in Designs 1B and two pivots in Design 2 were not feasible at $2.2 \mathrm{mmhos} \mathrm{cm}^{-1} \mathrm{EC}$ level for 70 cents of cotton price. The acres
irrigated for Design 1B and 2 were 67,690 and 67,748 respectively acres. This increased the cost of Design 1B and 2 systems by $\$ 2$ and $\$ 1$, respectively. Removing few non feasible pivots in the irrigation system did not significantly increase the fixed cost of the irrigation system and decrease the NPV.

CHAPTER V

CONCLUSIONS

A GIS program was used to identify potential irrigable areas in TTA of Tillman County and southwestern parts of Kiowa County. Total irrigable areas, including identified irrigable soils, and non-irrigable soils that are currently under irrigation, were approximately 73,000 acres. Most of the selected irrigation areas were covered by 543 full and partial pivot circles. Total annual pipeline cost including pipe cost and cost of earth work ranged from $\$ 0.7$ (6-inch) to $\$ 102$ (120 -inch) per linear foot. The cost of pipelines increased with increasing size of pipes. The sizing of pipeline involves tradeoff between annual energy cost and cost of pipeline. Total cost of the pipe increased but the energy required for pumping water through the pipe decreased with increasing pipe diameter. Iteratively increasing or decreasing the pipe size to determine the irrigation system with optimum cost resulted in four different designs for the irrigation system.

Design 1A was the irrigation system without scheduling. The total cost (fixed cost + variable cost) of the irrigation system was approximately $\$ 950$ per acre (Fig. 21). At this cost, NPV per acre for partial and full pivots were feasible for the cotton lint price above 75 cents per pound for the EC levels of $0.9,1.5,2.2$, and $3 \mathrm{mmhos}_{\mathrm{cm}}{ }^{-1}$.

Fig. 21. Comparative representation of total annual costs of four different designs of irrigation system.

At a cotton price of 75 cents all full and partial pivots were feasible at an EC level of 2.2 mmhos cm^{-1} and less. Design 1B was designed to schedule the irrigation alternately to the north and south of the laterals of the Design 1A irrigation system. Design 2 was the scheduled irrigation system with two areas of irrigated lands in which irrigation was scheduled for one area at a time. Both Designs 1B and 2 were feasible above cotton price 70 cent for $0.9,1.5,2.2$, and $3 \mathrm{mmhos} \mathrm{cm}^{-1} \mathrm{EC}$ levels. At cotton price of 70 cents the full and partial pivots in Design 1B and 2 were feasible till the EC level of $2.2 \mathrm{mmhos}_{\mathrm{cm}}{ }^{-1}$. Design 3 was another scheduled irrigation system in which irrigable land was divided into four areas and irrigation was scheduled for one area at a time. The total cost of the Design 3 irrigation system was approximately \$ 775 per acre (Fig. 21). The NPV per acre was feasible at a cotton lint price of 65 cents per pound at this cost and EC level of 0.9 and $1.5 \mathrm{mmhos} \mathrm{cm}^{-1}$. However, the NPV for 2.2 and $3 \mathrm{mmhos} \mathrm{cm}^{-1} \mathrm{EC}$ levels were
feasible at prices higher than 65 cents for Design 3. The sensitivity analysis for different EC levels and different cotton prices showed that the NPV, average and total optimum irrigation increased with increasing cotton price and decreased with increasing EC levels in a linear pattern (Table 26).

Table 26. NPVs per acre at 4 percent discount rate and cotton price of 75 cents per pound at different EC levels for four different designs.

EC Level (mmhos cm				
	$\mathbf{0 . 9}$	$\mathbf{1 . 5}$	$\mathbf{2 . 2}$	$\mathbf{3}$
Design 1A (NPV/Acre)	$\$ 578$	$\$ 446$	$\$ 364$	$\$ 320$
Design 1B (NPV/Acre)	$\$ 2,417$	$\$ 1,839$	$\$ 1,273$	$\$ 857$
Design 2 (NPV/Acre)	$\$ 2,399$	$\$ 1,931$	$\$ 1,337$	$\$ 898$
Design 3 (NPV/Acre)	$\$ 3,864$	$\$ 3,002$	$\$ 2,095$	$\$ 1,387$

The energy cost per acre foot of water flowing through a pipe decreases as the diameter of pipe increases. Design 1A had larger pipelines but scheduling water as in Design 1B, Designs 2 and 3 allow for a more efficient use of smaller more cost effective pipes which ultimately reduces the irrigation cost. It indicated that most economical irrigation system can be obtained through a combination of pipe sizing and by increased cooperation in the utilization of a pipeline.

The feasibility of pressurized irrigation was evaluated in this study. However, feasibility using canal irrigation can also be assessed for a comparison in further studies. Several designs can be obtained by changing the pipe size, pump location, and scheduling of irrigation. Thus, other designs can be evaluated in future studies.

REFERENCES

Addink, J.W., Keller, J., Pair, H., Sneed, R.E., and Wolfe, J.W. 1983. Design and operation of sprinkler systems, in M.E. Jensen. ed., Design and Operation of Farm Irrigation Systems. The American Society of Agricultural Engineers, Michigan, USA.

Alandi, P. P., Benito, J. M. Tarjuelo., Alvarez, J. F. Ortega., Matinez, M.I Casanovea., "Design of water distribution network for on demand". Irrigation Science 20:189201.

ArcGIS v.9.3. ESRI, Redlands, California, USA.
Ayer, R.S. and Westcot, D.W. 1985. "Water Quality for Agriculture". FAO Irrigation and Drainage Paper.

Bennouma, K., Meredith, G. G., and Marchant, T. 2010. "Improved Capital Budgeting Decision Making: Evidence from Canada". Management Decision 48:225-247.

Bureau of Reclamation. 2005. Water supply augmentation: Appraisal Report, W. C. Austin Project, Oklahoma. Bureau of Reclamation, Oklahoma-Texas Area Office, Austin, Texas.

Choi, J. 2011. Economic approach on allocation of irrigation water under salinity based on different soils for potential irrigated agriculture using EPIC crop model. Dissertation, Oklahoma State University.

Datta, K. K., Sharma, V. P., and Sharma, D. P. 1998. "Estimation of Production Function for Wheat under Saline Conditions". Agricultural Water Management 36:85-94.

Dinar, A., and Knapp, K. C. 1986. "A Dynamic Analysis of Optimal Water Use under Saline Conditions" Western Journal of Agricultural Economics, 11(1): 58-66.

Dinar, A., Rhoades, J. D., Nash, P., and Waggoner, B. L. 1991. "Production functions relating crop yield, water quality and quantity, soil salinity and drainage volume" Agricultural Water Management, 19: 51-66.

Economic Research Service. 2011. Normalized Prices. (Accessed December 2011, from ERS, USDA, available at http://www.ers.usda.gov/data/normalizedprices/)

El-Magd, I. A., and Tanton, T. W. 2003. "Improvements in Land Use Mapping for Irrigated Agriculture from Satellite Sensor Data Using a Multi-Stage Maximum Likelihood Classification". International Journal of Remote Sensing 24:4197-4206.

Enterprise Budgets, Department of Agricultural Economics, Oklahoma State University. (Available at http://agecon.okstate.edu/budgets)

Environmental Protection Agency (EPA). 2011. Software that models the hydraulic and water quality behavior of water distribution piping systems. U. S. Environmental Protection Agency. (Accessed August 2011, software and user manuals are available at http://www.epa.gov/nrmrl/wswrd/dw/epanet.html\#downloads).

FAO. 1997. Irrigation potential in Africa: A basin approach. FAO Land and Water Bulletin-4, Rome, Italy.

Ferrari, R.L. 2008. Altus Reservoir 2007 Sedimentation Survey, Tech. Serv. Center, Water and Environmental Resources Division, Sedimentation and River Hydraulics Group, Bureau of Reclamation, U.S. Dept. of the Interior.

Freund, R.J. 1956. "The introduction of risk into a programming model". Econometrica 24:253-264.

Geospatial Data Gateway. Soil Survey Geographic Database, NRCS- USDA. (Accessed December 2010, available at http://datagateway.nrcs.usda.gov).

Ghassemi, F., Jakeman, A.J., and Nix, H.A. 1995. Salinization of Land and Water Resources. Human causes, extent, management and case studies. Univ. of New South Wales Press, Ltd., Canberra, Australia.

Global Mapper 2011. GIS Mapping Software, Blue Marble Geographics, Maine, USA. (Accessed August 2011, available at http://www.bluemarblegeo.com/globalmapper).
Hailegebriel, S. 2007. Irrigation potential evaluation and crop suitability analysis using GIS and remote sensing technique in Beles sub basin, Beneshangul Gumez region. MSc Thesis, Addis Ababa University.
Keller, J., and Bliesner, R.D. 1990. Pipeline Hydraulics and economics, and Pump and power unit selection in Sprinkler and Trickle Irrigation. Van Nostrand Reinhold, New York, USA.

Kiani, A. R., and Abbasi, F. 2009. "Assessment of the Water-Salinity Crop Production Function of Wheat using Experimental Data of the Golestan Province, Iran" Irrigation and Drainage 58: 445-455.
Klammer, T. 1972. "Empirical Evidence of the Adoption of Sophisticated Capital Budgeting Techniques". Journal of Business 387-397.
Knox, J. W, and Weatherfield, E. K. 1999. "The Application of GIS to Irrigation Water Resource Management in England and Wales". The Geographical Journal 165:9098.

Ko, J., G. Piccinni, and Steglich, E. 2009. "Using EPIC Model to Manage Irrigated Cotton and Maize". Agricultural Water Management. 96:1323-1331.
Meron, T. 2007. Surface irrigation suitability analysis of Southern Abbay Basin by implementing GIS techniques. MSc Thesis, Addis Ababa University.
Mossman, M.J., and Plotner, S.C. eds. 2009. RS Means Facilities Construction Cost Data. 24th Annual Edition. RS Means Company, Inc. Construction Publishers and Consultants, MA, USA.

Osborn, N. I. 2002. Update of the Hydrological Survey of the Tillman Terrace Groundwater Basin, Southwestern Oklahoma. OWRB Technical Report GW 20011.

Phocaides, A. 2007. "Handbook on Pressurized Irrigation Techniques, Food and Agricultural Organization of the United Nations", Rome

Prest, A. R., and Turvey, R. 1965. "Cost Benefit Analysis: A Survey". The Economic Journal 75: 683-735.

Rao, N. H., Brownee, S. M., and Sarma, P. B. S. 2004. "GIS Based Decision Support System for Real Time Water Demand Estimation in Canal Irrigation Systems". Current Science 87:628-636.

Schall, L. D., Sundem, G. L. and Geijsbeek Jr., W. R. 1978. "Survey and Analysis of Capital Budgeting Method". The Journal of Finance 33:281-287.
$\mathrm{Su}, \mathrm{Z} .2000$. "Remote Sensing of Land Use and Vegetation for Mesoscale Hydrological Studies". International Journal of Remote Sensing 22:213-233.

Tan, G., and Shibasaki, R. 2003. "Global Estimation of Crop Productivity and the Impacts of Global Warming by GIS and EPIC Integration". Ecological Modelling 168:357-370.

Todorovic, M., and Steduto, P. 2003. "A GIS for Irrigation Management". Physics and Chemistry of the Earth 28:163-174.
U.S. Department of Agriculture, National Agricultural Statistics Service. (Accessed June 2010, available at http://www.nass.usda.gov/Statistics_by_Subject/index.php?sector=CROPS).
U.S. Department of Agriculture, Natural Resources Conservation Service. National Soil Survey Handbook, title 430-VI. Available online at: http://soils.usda.gov/technical/handbook/. accessed October 1, 2010.
U.S. Department of Labor, Occupational Safety and Health Administration (OSHA). (Accessed July 2011, available at http://www.osha.gov/).
U.S. Geological Survey, (Accessed January, 2012, available at http://waterdata.usgs.gov/nwis/nwisman/?site_no=07303400\&agency_cd=USGS)
U.S. Geological Survey, (Accessed November 2010, available at http://www.usgs.gov/pubprod/)

Yaron, D., and Bresler, E. 1970. "A Model for the Economic Evaluation of Water Quality in Irrigation" The Australian Journal of Agricultural Economics, 14:53-62

APPENDICES

Appendix 1. Coefficient estimates of crop yield response function for different soil types.

Soil Types	Intercept	Total Water Applied	Total Salinity	Non-Growing Season Precipitation	(Total Water Applied) $)^{2}$	(Total Salinity) ${ }^{2}$	(Total Salinity / Total Water Applied)
Tipton	-524.38	940.09	1.60	112.39	-101.98	-1.43	7.37
Madge	-506.50	934.13	-1.53	98.86	-102.05	-1.54	13.68
Spur clay	-593.76	982.90	-0.09	113.44	-109.05	-1.31	11.49
Tillman clay loam	625.82	333.04	-15.13	74.39	-30.40	-0.53	4.56
Hardeman	-172.27	733.06	0.59	62.93	-80.73	-2.65	6.04
Westill	540.69	352.40	-5.64	68.97	-34.24	-0.75	3.97
Abilene	-701.52	1052.92	-5.72	107.77	-119.45	-0.91	21.24
Burford	-574.03	965.56	-12.13	127.51	-104.57	-0.73	17.42
Carey silt	-593.59	938.83	-6.86	144.36	-96.02	-1.25	5.28
Tipton sandy Loam	-744.73	1049.98	-12.29	122.35	-115.86	-1.36	27.93

Source: Choi (2011)

Appendix 2. Coefficients for soil salinity response function at harvest for different soil types

Soil Types	Intercept	Irrigation water	Amount of Salt in Irrigation water	Soil Salinity at Planting Day	Growing Season Rainfall
Tipton	2.6418	-0.4781	0.7049	0.8980	-1.3373
Madge	2.4821	-0.4519	0.7292	0.8899	-1.2609
Spur clay	2.6866	-0.4853	0.7046	0.9018	-1.3533
Tillman clay loam	2.9271	-0.6801	0.6960	0.9311	-1.2572
Hardeman	1.8523	-0.3885	0.7539	0.8515	-0.9316
Westill	2.5408	-0.5276	0.6854	0.9369	-1.1868
Abilene	3.1533	-0.6580	0.6997	0.9182	-1.4716
Buford	3.2036	-0.6683	0.6540	0.9349	-1.4610
Carey silt	2.9288	-0.5360	0.6418	0.9072	-1.4389
Tipton Sandy Loam	2.3090	-0.4691	0.7274	0.9048	-1.1015
Source: Choi (2011)					

Source: Choi (2011)

Appendix 3. Coefficients for dynamic soil salinity function at planting for different soil types

Soil Types	Intercept	Soil Salinity at Previous Harvest	
Tipton	1.2914	0.9149	Non-Growing Season Precipitation
Madge	1.247	0.9139	-1.7457
Spur clay	1.2706	0.9216	-1.7148
Tillman clay loam	1.3701	0.9494	-1.7321
Hardeman	1.0541	0.8711	-1.8865
Westill	1.2526	0.9499	-1.4912
Abilene	1.4122	0.9378	-1.7693
Burford	1.3692	0.9503	-1.9137
Carey silt	1.2368	0.926	-1.8581
Tipton sandy loam	1.3754	0.9165	-1.6985
Source: Choi (2011)			-1.8673

Source: Choi (2011)

Appendix 4. Yield for different soil types for Design1A irrigation system at 0.76 acre- ft . of irrigation water with EC of $1.5 \mathrm{mmhoscm}^{-1}$.

Appendix 5. Soil Types and Land Section for each Pivot Circle and Water Pressure at the Pivot Head

Appendix 5. Continued

19	26-T1N-R18W	0.0	96.8	0.0	28.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	36.9
20	26-T1N-R18W	0.0	81.0	0.0	44.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	36.0
21	26-T1N-R18W	0.0	113.9	6.9	4.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	34.7
22	25-T1N-R18W	0.0	116.6	9.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	36.3
23	36-T1N-R18W	0.0	18.7	0.0	106.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	59.8
24	36-T1N-R18W	19.3	0.0	0.0	106.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	36.2
25	34-T1N-R18W	55.1	0.0	0.0	70.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	35.7
26	34-T1N-R18W	36.2	0.0	0.0	89.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	49.4
27	34-T1N-R18W	26.1	0.0	0.0	93.8	0.0	0.0	0.0	0.0	5.7	0.0	0.0	0.0	125.6	50.3
28	33-T1N-R18W	0.0	0.0	0.0	125.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	48.6
29	28-T1N-R18W	4.5	57.3	0.0	63.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	48.1
30	28-T1N-R18W	0.0	96.5	0.0	29.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	50.9
31	27-T1N-R18W	0.0	6.9	0.0	118.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	47.6
32	27-T1N-R18W	0.0	0.0	0.0	99.2	0.0	0.0	0.0	0.0	26.4	0.0	0.0	0.0	125.6	48.8
33	27-T1N-R18W	0.0	0.0	0.0	117.9	0.0	0.0	0.0	0.0	7.7	0.0	0.0	0.0	125.6	50.6
34	27-T1N-R18W	0.6	2.2	0.0	122.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	58.2
35	21-T1N-R18W	14.7	40.5	0.0	70.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	47.5
36	21-T1N-R18W	0.0	96.2	0.0	29.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	52.6
37	21-T1N-R18W	0.0	81.7	0.0	43.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	49.3
38	21-T1N-R18W	0.0	90.1	0.0	29.4	0.0	0.0	0.0	0.0	0.0	0.0	6.1	0.0	125.6	52.4
39	16-T1N-R18W	5.3	21.1	0.0	0.0	0.0	55.8	0.0	0.0	0.0	0.0	43.4	0.0	125.6	52.6
40	15-T1N-R18W	0.0	66.8	0.0	0.0	0.0	0.8	0.0	0.0	0.1	58.0	0.0	0.0	125.6	50.1
41	20-T1N-R18W	0.0	102.8	0.0	22.6	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.0	125.6	52.4
42	29-T1N-R18W	0.0	82.8	0.0	37.9	0.0	4.9	0.0	0.0	0.0	0.0	0.0	0.0	125.6	44.8
43	30-T1N-R18W	0.0	62.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	62.7	0.0	0.0	125.6	35.7
44	29-T1N-R18W	0.0	64.4	0.0	14.2	0.0	47.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	43.3

Appendix 5. Continued

45	29-T1N-R18W	0.0	57.0	0.0	0.0	0.0	68.7	0.0	0.0	0.0	0.0	0.0	0.0	125.6	57.9
46	30-T1N-R18W	0.0	69.7	0.0	0.0	0.0	52.4	0.0	0.0	0.0	3.5	0.0	0.0	125.6	38.0
47	30-T1N-R18W	0.0	90.8	0.0	0.0	0.0	32.2	0.0	0.0	0.0	0.0	2.6	0.0	125.6	44.5
48	25-T1N-R19W	0.0	59.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	43.7	22.8	0.0	125.6	34.3
49	25-T1N-R19W	0.0	94.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	31.0	0.0	0.0	125.6	44.9
50	25-T1N-R19W	0.0	4.7	0.0	76.8	0.0	0.0	0.0	0.0	0.0	44.2	0.0	0.0	125.6	34.0
51	24-T1N-R19W	6.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	119.0	0.0	0.0	125.6	46.1
52	24-T1N-R19W	22.7	18.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	84.6	0.0	0.0	125.6	42.0
53	19-T1N-R18W	0.0	86.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	38.8	0.0	0.0	125.6	51.3
54	19-T1N-R18W	31.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	94.1	0.0	0.0	125.6	46.4
55	20-T1N-R18W	0.0	3.5	0.0	53.2	0.0	0.0	0.0	0.0	0.0	68.9	0.0	0.0	125.6	54.0
56	17-T1N-R18W	69.7	11.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	44.4	0.0	0.0	125.6	55.0
57	19-T1N-R18W	0.0	12.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	112.7	0.0	0.0	125.6	53.7
58	24-T1N-R19W	1.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.5	122.6	0.0	0.0	125.6	55.7
59	25-T1N-R19W	0.0	109.3	0.0	16.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	55.9
60	26-T1N-R19W	0.0	103.7	0.0	21.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	39.6
61	36-T1N-R19W	0.0	32.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	57.4	35.5	0.0	125.6	40.0
62	36-T1N-R19W	0.0	77.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	47.7	0.0	125.6	44.9
63	35-T1N-R19W	0.0	125.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	43.1
64	31-T1N-R18W	0.0	40.0	0.0	0.0	0.0	7.4	0.0	0.0	0.0	21.1	57.1	0.0	125.6	38.5
65	31-T1N-R18W	0.0	63.6	0.0	0.0	0.0	62.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	42.0
66	32-T1N-R18W	11.9	36.0	0.0	0.0	0.0	77.8	0.0	0.0	0.0	0.0	0.0	0.0	125.6	38.4
67	31-T1N-R18W	0.0	78.7	0.0	23.5	0.0	23.4	0.0	0.0	0.0	0.0	0.0	0.0	125.6	57.2
68	36-T1N-R19W	0.0	38.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20.3	67.0	0.0	125.6	43.4
69	36-T1N-R19W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	53.7	71.9	0.0	125.6	44.3
70	2-T1S-R19W	0.0	28.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	97.2	0.0	125.6	49.7

Appendix 5. Continued

71	2-T1S-R19W	0.0	60.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	65.1	0.0	125.6	48.2
72	2-T1S-R19W	0.0	14.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	111.6	0.0	125.6	45.8
73	2-T1S-R19W	0.0	4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	109.2	0.0	113.2	47.9
74	1-T1S-R19W	0.0	49.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.1	73.9	0.0	125.6	44.1
75	12-T1S-R19W	0.0	52.8	0.0	6.9	0.0	0.0	0.0	0.0	0.0	0.0	28.1	0.0	87.8	43.5
76	11-T1S-R19W	0.0	32.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	57.3	0.0	89.2	35.1
77	1-T1S-R19W	0.0	2.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	123.1	0.0	125.6	40.8
78	11-T1S-R19W	0.0	95.8	0.0	1.6	0.0	0.0	0.0	0.0	0.0	0.0	28.2	0.0	125.6	52.5
79	11-T1S-R19W	0.0	56.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	69.6	0.0	125.6	49.4
80	12-T1S-R19W	0.0	3.1	0.0	18.0	0.0	0.0	0.0	0.0	0.0	0.0	62.7	0.0	83.9	40.3
81	14-T1S-R19W	0.0	103.6	0.0	22.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	47.1
82	14-T1S-R19W	0.0	48.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	56.5	0.0	104.7	42.6
83	13-T1S-R19W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	77.0	0.0	77.0	44.4
84	13-T1S-R19W	0.0	0.0	0.0	13.9	0.0	46.9	0.0	0.0	0.0	0.0	64.8	0.0	125.6	38.0
85	3-T1S-R19W	0.0	93.9	0.0	8.5	0.0	18.5	0.0	0.0	0.0	4.7	0.0	0.0	125.6	38.6
86	3-T1S-R19W	0.0	107.9	0.0	13.7	0.0	0.0	0.0	0.0	0.0	0.0	4.0	0.0	125.6	40.4
87	10-T1S-R19W	0.0	68.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	56.9	0.0	125.6	38.7
88	10-T1S-R19W	0.0	106.4	0.0	19.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	41.8
89	10-T1S-R19W	0.0	56.6	0.0	0.0	0.0	23.8	0.0	0.0	0.0	45.2	0.0	0.0	125.6	49.7
90	10-T1S-R19W	0.0	115.3	0.0	3.3	0.0	0.0	0.0	0.0	0.0	7.1	0.0	0.0	125.6	43.1
91	15-T1S-R19W	0.0	63.5	0.0	62.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	43.2
92	15-T1S-R19W	0.0	114.4	0.0	11.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	43.1
93	16-T1S-R19W	0.0	0.0	62.4	0.3	0.0	57.9	0.0	0.0	0.0	5.0	0.0	0.0	125.6	35.1
94	16-T1S-R19W	0.0	0.0	72.1	0.1	0.0	11.3	0.0	0.0	0.0	37.4	4.8	0.0	125.6	39.0
95	15-T1S-R19W	0.0	113.3	0.0	8.0	0.0	0.0	0.0	0.0	0.0	0.0	4.3	0.0	125.6	36.9
96	15-T1S-R19W	0.0	51.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	74.4	0.0	125.6	37.6

Appendix 5. Continued

97	14-T1S-R19W	0.0	66.0	0.0	0.0	0.0	17.9	0.0	0.0	0.0	0.0	32.1	0.0	116.1	36.3
98	14-T1S-R19W	0.0	0.0	0.0	0.0	0.0	2.1	0.0	0.0	0.0	0.0	41.2	0.0	43.3	37.9
99	13-T1S-R19W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	98.1	0.0	98.1	36.2
100	13-T1S-R19W	0.0	43.0	0.0	0.0	0.0	9.4	0.0	0.0	0.0	0.0	73.3	0.0	125.6	49.3
101	22-T1S-R19W	0.0	87.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24.9	13.6	0.0	125.6	37.3
102	22-T1S-R19W	0.0	6.9	2.8	0.0	0.0	0.0	0.0	0.0	0.0	29.9	86.0	0.0	125.6	47.7
103	27-T1S-R19W	0.0	70.7	0.0	9.5	0.0	21.1	0.0	0.0	0.0	0.0	24.3	0.0	125.6	49.2
104	27-T1S-R19W	0.0	68.5	0.0	15.9	0.0	0.0	0.0	0.0	0.0	0.0	41.2	0.0	125.6	45.5
105	34-T1S-R19W	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.4	0.0	125.6	40.3
106	34-T1S-R19W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	0.0	125.6	43.4
107	34-T1S-R19W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	0.0	125.6	44.0
108	27-T1S-R19W	4.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	121.4	0.0	125.6	45.9
109	27-T1S-R19W	23.2	54.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	48.4	0.0	125.6	42.4
110	34-T1S-R19W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	0.0	125.6	43.4
111	35-T1S-R19W	0.0	18.3	0.0	0.0	0.0	60.9	0.0	0.0	0.0	0.0	46.4	0.0	125.6	51.4
112	26-T1S-R19W	3.3	0.0	0.0	0.0	0.0	12.0	0.0	0.0	0.0	0.0	110.3	0.0	125.6	40.6
113	26-T1S-R19W	0.0	49.4	0.0	0.0	0.0	13.2	0.0	0.0	0.0	0.0	63.1	0.0	125.6	41.4
114	26-T1S-R19W	0.0	18.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	15.9	91.2	0.0	125.6	39.2
115	26-T1S-R19W	0.0	49.2	0.0	0.0	0.0	47.0	0.0	0.0	0.0	0.0	29.4	0.0	125.6	40.0
116	35-T1S-R19W	0.0	86.6	0.0	0.0	0.0	6.6	0.0	0.0	0.0	24.0	8.4	0.0	125.6	34.9
117	35-T1S-R19W	0.0	83.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	8.7	33.9	0.0	125.6	37.9
118	35-T1S-R19W	0.0	26.2	0.0	0.0	0.0	4.5	0.0	0.0	0.0	0.0	94.8	0.0	125.6	53.9
119	2-T2S-R19W	0.0	100.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	24.7	0.0	125.6	53.0
120	2-T2S-R19W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	0.0	125.6	54.6
121	3-T2S-R19W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	0.0	125.6	37.4
122	3-T2S-R19W	0.0	27.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	98.0	0.0	125.6	49.0

Appendix 5. Continued

123	3-T2S-R19W	0.0	55.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	40.5	0.0	95.8	38.2
124	4-T2S-R19W	0.3	20.1	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	62.3	0.0	82.9	40.3
125	3-T2S-R19W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	0.0	125.6	40.4
126	2-T2S-R19W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.8	115.8	0.0	125.6	40.7
127	2-T2S-R19W	0.0	47.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	77.8	0.0	0.0	125.6	40.0
128	36-T1S-R19W	0.0	37.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	27.1	42.5	0.0	107.4	36.7
129	36-T1S-R19W	0.0	6.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	118.7	0.0	125.6	38.3
130	1-T2S-R19W	0.0	6.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	70.5	48.4	0.0	125.6	35.5
131	1-T2S-R19W	0.0	51.9	0.0	0.0	0.0	65.6	0.0	0.0	0.0	8.1	0.0	0.0	125.6	42.8
132	12-T2S-R19W	0.0	29.6	0.0	0.0	0.0	88.4	0.0	0.0	0.0	0.0	7.7	0.0	125.6	36.0
133	12-T2S-R19W	0.0	8.0	0.0	0.0	0.0	0.6	0.0	0.0	0.0	0.0	117.1	0.0	125.6	53.3
134	11-T2S-R19W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	0.0	125.6	38.6
135	11-T2S-R19W	0.0	0.0	0.0	0.0	1.1	0.0	0.0	0.0	0.0	0.0	122.0	0.0	123.1	48.2
136	10-T2S-R19W	0.0	0.0	0.0	0.0	0.0	28.9	0.0	0.0	0.0	0.0	26.4	0.0	55.3	48.6
137	10-T2S-R19W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	0.0	125.6	49.0
138	10-T2S-R19W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	0.0	125.6	49.4
139	10-T2S-R19W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	0.0	125.6	37.9
140	9-T2S-R19W	0.0	0.0	0.0	0.0	0.0	1.4	0.0	0.0	0.0	0.0	124.2	0.0	125.6	40.1
141	9-T2S-R19W	0.0	0.0	0.0	0.0	0.0	10.3	0.0	0.0	0.0	0.0	115.3	0.0	125.6	35.7
142	16-T2S-R19W	0.0	8.9	0.0	0.0	0.0	2.8	0.0	0.0	0.0	0.0	113.9	0.0	125.6	35.2
143	15-T2S-R19W	0.0	1.5	0.0	0.0	0.0	17.2	0.0	0.0	0.0	0.0	106.9	0.0	125.6	37.5
144	14-T2S-R19W	0.0	0.0	0.0	0.0	0.0	0.4	0.0	0.0	0.0	0.0	125.2	0.0	125.6	50.8
145	14-T2S-R19W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	0.0	125.6	36.8
146	13-T2S-R19W	0.0	49.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	76.1	0.0	125.6	35.7
147	12-T2S-R19W	0.0	31.6	0.0	0.0	0.0	78.7	0.0	0.0	0.0	0.0	15.4	0.0	125.6	36.3
148	12-T2S-R19W	0.0	13.3	0.0	0.0	0.0	20.5	0.0	0.0	0.0	0.0	91.8	0.0	125.6	38.4

Appendix 5. Continued

149	13-T2S-R19W	0.0	80.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	45.2	0.0	125.6	37.5
150	14-T2S-R19W	0.0	0.0	0.0	0.0	0.0	36.0	0.0	0.0	0.0	0.0	36.2	0.0	72.2	43.4
151	15-T2S-R19W	0.0	0.0	0.0	0.0	0.0	8.7	0.0	0.0	0.0	0.0	2.8	0.0	11.5	43.5
152	15-T2S-R19W	0.0	0.0	0.0	0.0	0.0	17.2	0.0	0.0	0.0	0.0	108.4	0.0	125.6	46.8
153	16-T2S-R19W	0.0	0.0	0.0	0.0	0.0	73.0	0.0	0.0	0.0	0.0	52.7	0.0	125.6	46.8
154	14-T2S-R19W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	0.0	125.6	47.8
155	13-T2S-R19W	0.0	22.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	102.8	0.0	125.6	47.2
156	13-T2S-R19W	0.0	81.3	0.0	0.0	0.0	10.5	0.0	0.0	0.0	0.0	33.9	0.0	125.6	47.6
157	22-T2S-R19W	0.0	0.0	0.0	0.0	0.0	17.5	0.0	0.0	0.0	0.0	108.1	0.0	125.6	43.8
158	23-T2S-R19W	0.0	7.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	75.0	0.0	82.5	47.1
159	23-T2S-R19W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	0.0	125.6	40.9
160	24-T2S-R19W	0.0	36.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	89.7	0.0	125.6	45.5
161	24-T2S-R19W	0.0	72.9	0.0	0.0	0.0	9.9	0.0	0.0	0.0	0.0	42.8	0.0	125.6	37.9
162	22-T2S-R19W	0.0	0.0	0.0	0.0	0.0	10.3	0.0	0.0	0.0	0.0	115.3	0.0	125.6	41.4
163	23-T2S-R19W	0.0	38.0	0.0	0.0	0.0	47.9	0.0	0.0	0.0	0.0	39.7	0.0	125.6	45.0
164	23-T2S-R19W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	0.0	125.6	53.4
165	23-T2S-R19W	0.0	25.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	99.8	0.0	125.6	57.0
166	24-T2S-R19W	0.0	100.9	0.0	0.0	0.0	18.0	0.0	0.0	0.0	6.7	0.0	0.0	125.6	47.7
167	26-T2S-R19W	0.0	86.5	0.0	0.0	0.0	39.1	0.0	0.0	0.0	0.0	0.0	0.0	125.6	56.1
168	26-T2S-R19W	0.0	19.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	106.1	0.0	125.6	56.1
169	25-T2S-R19W	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	22.9	102.4	0.0	125.6	43.9
170	25-T2S-R19W	0.0	51.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	61.0	13.4	0.0	125.6	42.6
171	19-T2S-R18W	0.0	90.7	0.0	0.0	0.0	20.1	0.0	0.0	0.0	0.0	14.8	0.0	125.6	48.3
172	30-T2S-R18W	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	22.3	101.3	0.0	125.6	42.1
173	19-T2S-R18W	0.0	3.4	0.0	0.0	0.0	90.8	0.0	0.0	0.0	31.2	0.3	0.0	125.6	48.0
174	30-T2S-R18W	0.0	41.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	64.4	20.0	0.0	125.6	41.4

Appendix 5. Continued

175	30-T2S-R18W	0.0	93.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	32.3	0.3	0.0	125.6	45.5
176	30-T2S-R18W	0.0	52.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	49.9	23.6	0.0	125.6	36.8
177	25-T2S-R19W	0.0	5.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	71.5	48.8	0.0	125.6	51.3
178	25-T2S-R19W	0.0	70.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	16.4	39.0	0.0	125.6	35.3
179	26-T2S-R19W	0.0	28.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.1	88.2	0.0	125.6	35.5
180	26-T2S-R19W	0.0	82.0	0.0	0.0	0.0	43.7	0.0	0.0	0.0	0.0	0.0	0.0	125.6	40.6
181	27-T2S-R19W	0.0	0.0	0.0	0.0	0.0	51.4	0.0	0.0	0.0	0.0	74.2	0.0	125.6	33.1
182	27-T2S-R19W	0.0	0.0	0.0	0.0	0.0	74.0	0.0	0.0	0.0	0.0	51.6	0.0	125.6	36.4
183	27-T2S-R19W	0.0	0.0	0.0	0.0	0.0	64.6	0.0	0.0	0.0	0.0	61.0	0.0	125.6	33.8
184	27-T2S-R19W	0.0	0.0	0.0	0.0	0.0	58.2	0.0	0.0	0.0	0.0	67.4	0.0	125.6	37.7
185	34-T2S-R19W	0.0	0.0	0.0	0.0	0.0	28.9	0.0	0.0	0.3	0.0	96.5	0.0	125.6	34.6
186	34-T2S-R19W	0.0	31.7	0.0	0.0	0.0	17.2	0.0	0.0	0.0	43.1	33.7	0.0	125.6	38.7
187	35-T2S-R19W	0.0	26.6	0.0	0.0	0.0	20.9	0.0	0.0	0.0	78.1	0.0	0.0	125.6	41.2
188	35-T2S-R19W	0.0	113.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	11.9	0.0	0.0	125.6	51.1
189	36-T2S-R19W	0.0	38.9	0.0	0.0	0.0	30.5	0.0	0.0	0.0	56.2	0.0	0.0	125.6	42.5
190	36-T2S-R19W	0.0	82.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	43.5	0.0	0.0	125.6	46.0
191	24-T1S-R19W	0.0	0.0	0.0	0.0	0.0	11.8	0.0	0.0	0.0	0.0	113.8	0.0	125.6	50.7
192	24-T1S-R19W	0.0	0.0	0.0	0.0	0.0	37.5	0.0	0.0	0.0	6.8	81.3	0.0	125.6	44.3
193	24-T1S-R19W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	0.0	125.6	49.8
194	25-T1S-R19W	0.0	3.4	0.0	0.0	0.0	62.7	0.0	0.0	0.0	15.8	43.8	0.0	125.6	45.2
195	25-T1S-R19W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	0.0	125.6	45.1
196	25-T1S-R19W	0.0	7.1	0.0	0.0	0.0	49.4	0.0	0.0	0.0	12.4	48.5	0.0	117.4	42.2
197	25-T1S-R19W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	107.2	0.0	107.2	53.9
198	36-T1S-R19W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	0.0	125.6	52.3
199	36-T1S-R19W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	0.0	125.6	50.5
200	1-T2S-R19W	0.0	2.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	122.7	0.0	125.6	48.8

Appendix 5. Continued

201	1-T2S-R19W	0.0	68.8	0.0	0.0	0.0	21.1	0.0	0.0	0.0	0.0	35.7	0.0	125.6	46.8
202	6-T2S-R18W	0.0	6.4	0.0	0.0	0.0	4.7	0.0	0.0	0.0	0.0	114.6	0.0	125.6	44.7
203	6-T2S-R18W	0.0	0.0	0.0	0.0	15.0	65.1	0.0	0.0	0.0	0.0	45.6	0.0	125.6	47.6
204	31-T1S-R18W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	0.0	125.6	50.5
205	31-T1S-R18W	0.0	0.0	0.0	0.0	0.0	23.8	0.0	0.0	0.0	0.0	101.8	0.0	125.6	53.3
206	31-T1S-R18W	0.0	0.0	0.0	0.0	0.0	13.8	0.0	0.0	0.0	0.0	111.8	0.0	125.6	36.0
207	31-T1S-R18W	0.0	0.0	0.0	0.0	0.0	8.7	0.0	0.0	0.0	0.0	116.9	0.0	125.6	32.4
208	6-T2S-R18W	0.0	37.8	0.0	0.0	0.0	16.7	0.0	0.0	0.0	0.0	71.1	0.0	125.6	31.1
209	32-T1S-R18W	0.0	0.0	0.0	0.0	0.0	2.4	0.0	0.0	0.0	0.0	123.2	0.0	125.6	27.8
210	32-T1S-R18W	0.0	0.0	0.0	0.0	0.0	58.6	0.0	0.0	0.0	0.0	67.0	0.0	125.6	52.7
211	5-T2S-R18W	0.0	2.0	0.0	0.0	0.0	5.4	0.0	0.0	0.0	0.0	118.2	0.0	125.6	32.5
212	6-T2S-R18W	0.0	91.5	0.0	0.0	0.0	34.2	0.0	0.0	0.0	0.0	0.0	0.0	125.6	48.2
213	5-T2S-R18W	0.0	66.7	0.0	0.0	0.0	43.2	0.0	0.0	0.0	0.0	15.8	0.0	125.6	33.6
214	7-T2S-R18W	0.0	56.0	0.0	30.0	0.0	39.6	0.0	0.0	0.0	0.0	0.0	0.0	125.6	51.2
215	5-T2S-R18W	0.0	49.6	0.0	0.0	0.0	26.9	0.0	0.0	0.0	0.0	49.1	0.0	125.6	27.5
216	32-T1S-R18W	0.0	0.0	0.0	0.0	0.0	2.1	0.0	0.0	0.0	0.0	123.5	0.0	125.6	52.6
217	32-T1S-R18W	0.0	0.0	0.0	0.0	0.0	45.8	0.0	0.0	0.0	16.3	63.5	0.0	125.6	45.5
218	29-T1S-R18W	0.0	9.6	0.0	0.0	0.0	15.4	0.0	0.0	0.0	18.1	82.6	0.0	125.6	38.9
219	29-T1S-R18W	0.0	9.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	115.9	0.0	125.6	55.7
220	30-T1S-R18W	0.0	2.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	123.3	0.0	125.6	35.5
221	5-T2S-R18W	0.0	48.5	0.0	0.0	0.0	77.1	0.0	0.0	0.0	0.0	0.0	0.0	125.6	38.8
222	7-T2S-R18W	0.0	73.4	0.0	0.0	0.0	52.2	0.0	0.0	0.0	0.0	0.0	0.0	125.6	49.7
223	8-T2S-R18W	0.0	102.7	0.0	0.0	0.0	7.1	0.0	0.0	0.0	0.0	15.7	0.0	125.6	48.8
224	8-T2S-R18W	0.0	67.0	0.0	0.0	0.0	58.6	0.0	0.0	0.0	0.0	0.0	0.0	125.6	45.3
225	17-T2S-R18W	0.0	49.8	0.0	0.0	0.0	75.8	0.0	0.0	0.0	0.0	0.0	0.0	125.6	38.2
226	8-T2S-R18W	0.0	65.7	0.0	0.0	0.0	59.9	0.0	0.0	0.0	0.0	0.0	0.0	125.6	36.1

Appendix 5. Continued

227	17-T2S-R18W	0.0	99.1	0.0	0.0	0.0	26.5	0.0	0.0	0.0	0.0	0.0	0.0	125.6	37.5
228	17-T2S-R18W	0.0	51.9	0.0	0.0	0.0	73.7	0.0	0.0	0.0	0.0	0.0	0.0	125.6	35.7
229	17-T2S-R18W	0.0	64.7	0.0	0.0	0.0	61.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	37.8
230	16-T2S-R18W	0.0	107.8	0.0	2.9	0.0	14.9	0.0	0.0	0.0	0.0	0.0	0.0	125.6	35.4
231	20-T2S-R18W	0.0	63.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	61.8	0.0	125.6	51.2
232	16-T2S-R18W	0.0	37.4	0.0	45.9	0.0	42.3	0.0	0.0	0.0	0.0	0.0	0.0	125.6	39.8
233	21-T2S-R18W	0.0	72.0	0.0	7.0	0.0	0.0	0.0	0.0	0.0	43.3	3.3	0.0	125.6	32.8
234	21-T2S-R18W	0.0	54.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	66.1	4.7	0.0	125.6	49.7
235	29-T2S-R18W	0.0	28.8	0.0	0.0	0.0	30.0	0.0	0.0	0.0	34.2	32.6	0.0	125.6	36.0
236	20-T2S-R18W	0.0	51.1	0.0	0.0	0.0	72.0	0.0	0.0	0.0	2.5	0.0	0.0	125.6	51.2
237	20-T2S-R18W	0.0	47.6	0.0	0.0	0.0	45.7	0.0	0.0	0.0	3.6	28.7	0.0	125.6	33.5
238	29-T2S-R18W	0.0	13.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	30.9	81.4	0.0	125.6	40.2
239	29-T2S-R18W	0.0	5.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	28.3	92.2	0.0	125.6	50.3
240	29-T2S-R18W	17.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	108.5	0.0	125.6	51.5
241	32-T2S-R18W	44.0	5.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	76.4	0.0	125.6	50.3
242	32-T2S-R18W	0.0	87.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	38.1	0.0	125.6	45.5
243	31-T2S-R18W	0.0	81.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	44.1	0.0	0.0	125.6	44.5
244	31-T2S-R18W	0.0	66.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	59.4	0.0	0.0	125.6	42.8
245	36-T2S-R19W	0.0	98.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	27.2	0.0	0.0	125.6	46.4
246	36-T2S-R19W	0.0	99.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	26.0	0.0	0.0	125.6	42.6
247	35-T2S-R19W	0.0	71.0	0.0	0.0	0.0	25.2	0.0	0.0	0.0	29.4	0.0	0.0	125.6	48.1
248	31-T2S-R18W	0.0	0.0	0.0	0.0	0.0	57.3	0.0	0.0	0.0	68.3	0.0	0.0	125.6	60.4
249	31-T2S-R18W	0.0	95.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20.3	10.0	0.0	125.6	54.2
250	32-T2S-R18W	48.0	73.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.4	0.0	125.6	48.6
251	32-T2S-R18W	102.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	23.4	0.0	125.6	62.0
252	9-T2S-R18W	0.0	69.6	0.0	0.0	0.0	56.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	60.5

Appendix 5. Continued

253	8-T2S-R18W	0.0	27.3	0.0	0.0	0.0	98.3	0.0	0.0	0.0	0.0	0.0	0.0	125.6	55.8
254	9-T2S-R18W	0.0	39.1	0.0	0.0	0.0	86.5	0.0	0.0	0.0	0.0	0.0	0.0	125.6	51.1
255	16-T2S-R18W	0.0	68.8	0.0	0.0	0.0	53.2	0.0	0.0	0.0	0.0	3.7	0.0	125.6	51.3
256	9-T2S-R18W	0.0	59.5	0.0	0.0	0.0	35.2	0.0	0.0	0.0	0.0	31.0	0.0	125.6	50.0
257	9-T2S-R18W	0.0	57.9	0.0	0.0	0.0	66.0	0.0	0.0	0.0	0.0	1.7	0.0	125.6	47.5
258	16-T2S-R18W	0.0	78.1	0.0	47.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	51.8
259	21-T2S-R18W	0.0	83.1	0.0	27.7	0.0	0.0	0.0	0.0	0.0	14.8	0.0	0.0	125.6	52.9
260	21-T2S-R18W	0.0	84.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	41.5	0.0	0.0	125.6	52.1
261	28-T2S-R18W	0.0	6.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	39.9	79.7	0.0	125.6	49.9
262	28-T2S-R18W	0.0	46.3	0.0	0.0	0.0	33.0	0.0	0.0	0.0	38.0	8.3	0.0	125.6	41.3
263	28-T2S-R18W	0.0	26.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24.6	74.4	0.0	125.6	40.5
264	28-T2S-R18W	0.0	57.9	0.0	0.0	0.0	67.7	0.0	0.0	0.0	0.0	0.0	0.0	125.6	42.0
265	15-T2S-R18W	0.0	28.5	0.0	15.3	0.0	81.8	0.0	0.0	0.0	0.0	0.0	0.0	125.6	41.8
266	15-T2S-R18W	0.0	108.7	0.0	0.7	0.0	16.2	0.0	0.0	0.0	0.0	0.0	0.0	125.6	40.7
267	10-T2S-R18W	0.0	52.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	73.1	0.0	125.6	41.2
268	10-T2S-R18W	0.0	82.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	42.9	0.0	125.6	56.7
269	22-T2S-R18W	0.0	81.9	0.0	0.0	0.0	43.7	0.0	0.0	0.0	0.0	0.0	0.0	125.6	40.7
270	34-T2S-R19W	0.0	9.6	0.0	0.0	0.0	1.6	0.0	0.0	12.7	0.0	101.8	0.0	125.6	41.8
271	34-T2S-R19W	0.0	65.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	53.9	5.8	0.0	125.6	45.2
272	35-T2S-R19W	0.0	15.9	0.0	0.0	0.0	40.1	0.0	0.0	0.0	69.6	0.0	0.0	125.6	39.2
273	3-T3S-R19W	0.0	72.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	52.7	0.0	125.6	42.5
274	3-T3S-R19W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.2	0.0	116.4	0.0	125.6	40.0
275	3-T3S-R19W	13.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.2	2.6	107.1	0.0	125.6	44.6
276	3-T3S-R19W	0.0	10.8	0.0	0.0	0.0	38.2	0.0	0.0	0.0	0.0	76.6	0.0	125.6	44.2
277	2-T3S-R19W	0.0	73.6	0.0	0.0	0.0	45.7	0.0	0.0	0.0	5.2	1.1	0.0	125.6	55.3
278	2-T3S-R19W	0.0	63.7	0.0	0.0	0.0	2.6	0.0	0.0	0.0	1.4	58.0	0.0	125.6	67.5

Appendix 5. Continued

279	2-T3S-R19W	0.0	55.0	0.0	0.0	0.0	43.7	0.0	0.0	0.5	26.5	0.0	0.0	125.6	64.7
280	1-T3S-R19W	0.0	125.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	40.6
281	1-T3S-R19W	0.0	88.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.9	0.0	0.0	125.6	51.9
282	6-T3S-R18W	0.0	23.6	0.0	0.0	0.0	39.4	0.0	0.0	0.0	62.6	0.0	0.0	125.6	50.4
283	6-T3S-R18W	0.0	24.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	101.4	0.0	125.6	44.0
284	5-T3S-R18W	92.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33.0	0.0	125.6	40.9
285	5-T3S-R18W	72.4	11.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	42.0	0.0	125.6	44.7
286	6-T3S-R18W	0.0	92.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.2	26.7	0.0	125.6	41.2
287	1-T3S-R19W	0.0	35.1	0.0	0.0	0.0	32.3	0.0	0.0	0.0	58.2	0.0	0.0	125.6	39.7
288	1-T3S-R19W	0.0	51.2	0.0	30.6	0.0	43.4	0.0	0.0	0.0	0.5	0.0	0.0	125.6	38.6
289	11-T3S-R19W	0.0	33.2	0.0	0.0	0.0	21.7	0.0	0.0	0.0	0.0	70.7	0.0	125.6	40.4
290	11-T3S-R19W	0.0	0.5	0.0	0.0	0.0	41.4	0.0	0.0	0.0	0.0	83.7	0.0	125.6	31.1
291	14-T3S-R19W	0.0	34.0	0.0	0.0	0.0	35.4	0.0	0.0	0.0	0.0	56.3	0.0	125.6	33.0
292	14-T3S-R19W	0.0	0.0	0.0	0.0	0.0	52.7	0.0	0.0	0.0	0.0	72.9	0.0	125.6	29.8
293	6-T3S-R18W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	0.0	125.6	30.1
294	7-T3S-R18W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	0.0	125.6	49.9
295	7-T3S-R18W	0.0	65.8	0.0	0.0	0.0	0.8	0.0	0.0	0.0	0.0	59.0	0.0	125.6	51.2
296	7-T3S-R18W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	0.0	125.6	53.7
297	7-T3S-R18W	0.0	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0.0	0.0	123.6	0.0	125.6	43.1
298	18-T3S-R18W	0.0	0.8	0.0	0.0	0.0	37.5	0.0	0.0	0.0	0.0	87.4	0.0	125.6	44.6
299	18-T3S-R18W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.2	0.0	122.4	0.0	125.6	40.3
300	18-T3S-R18W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20.7	0.0	104.9	0.0	125.6	43.3
301	18-T3S-R18W	0.0	63.9	0.0	0.0	0.0	28.4	0.0	0.0	0.0	0.0	33.4	0.0	125.6	38.5
302	19-T3S-R18W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	0.0	125.6	40.3
303	19-T3S-R18W	0.0	10.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	45.4	69.5	0.0	125.6	32.3
304	30-T3S-R18W	0.0	66.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	58.1	1.5	0.0	125.6	36.0

Appendix 5. Continued

305	30-T3S-R18W	0.0	78.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	47.1	0.0	0.0	125.6	30.3
306	30-T3S-R18W	0.0	79.9	0.0	0.0	0.0	26.5	0.0	0.0	0.0	19.2	0.0	0.0	125.6	33.2
307	31-T3S-R18W	0.0	125.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	43.7
308	36-T3S-R19W	0.0	125.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	36.7
309	36-T3S-R19W	0.0	71.7	0.0	0.0	0.0	0.9	0.0	0.0	0.0	0.0	53.0	0.0	125.6	50.2
310	35-T3S-R19W	0.0	42.2	0.0	0.0	0.0	22.2	0.0	0.2	0.0	53.9	7.1	0.0	125.6	45.1
311	35-T3S-R19W	0.0	0.1	0.0	0.0	0.0	98.3	14.9	12.3	0.0	0.0	0.0	0.0	125.6	41.3
312	25-T3S-R19W	0.0	105.9	0.0	0.0	0.0	19.8	0.0	0.0	0.0	0.0	0.0	0.0	125.6	43.5
313	25-T3S-R19W	0.0	96.7	0.0	0.0	0.0	28.9	0.0	0.0	0.0	0.0	0.0	0.0	125.6	38.7
314	24-T3S-R19W	0.0	97.7	0.0	0.0	0.0	27.9	0.0	0.0	0.0	0.0	0.0	0.0	125.6	37.9
315	24-T3S-R19W	0.0	119.3	0.0	0.0	0.0	6.3	0.0	0.0	0.0	0.0	0.0	0.0	125.6	35.8
316	23-T3S-R19W	0.0	71.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	54.5	0.0	125.6	37.2
317	26-T3S-R19W	0.0	53.5	0.0	0.0	0.0	1.8	0.0	0.0	0.0	0.0	70.4	0.0	125.6	34.6
318	36-T3S-R19W	0.0	9.4	0.0	0.0	0.0	115.9	0.0	0.3	0.0	0.0	0.0	0.0	125.6	34.8
319	36-T3S-R19W	0.0	5.0	0.0	0.0	0.0	120.6	0.0	0.0	0.0	0.0	0.0	0.0	125.6	30.3
320	1-T4S-R19W	7.5	0.0	0.0	0.0	0.0	112.1	0.0	6.1	0.0	0.0	0.0	0.0	125.6	42.8
321	31-T3S-R18W	0.0	125.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	36.9
322	32-T3S-R18W	0.0	125.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	50.7
323	29-T3S-R18W	0.0	110.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	15.1	0.0	0.0	125.6	52.5
324	29-T3S-R18W	0.0	3.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	49.8	72.6	0.0	125.6	45.3
325	20-T3S-R18W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	0.0	125.6	46.2
326	20-T3S-R18W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	0.0	125.6	41.8
327	5-T3S-R18W	56.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	69.7	0.0	125.6	43.5
328	8-T3S-R18W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	0.0	125.6	37.8
329	8-T3S-R18W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	0.0	125.6	36.2
330	17-T3S-R18W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	0.0	125.6	38.0

Appendix 5. Continued

331	17-T3S-R18W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	0.0	125.6	35.0
332	20-T3S-R18W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	0.0	125.6	36.2
333	17-T3S-R18W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	0.0	125.6	29.7
334	17-T3S-R18W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	0.0	125.6	33.4
335	20-T3S-R18W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	0.0	125.6	29.9
336	8-T3S-R18W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	0.0	125.6	35.8
337	8-T3S-R18W	0.0	54.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12.4	58.3	0.0	125.6	34.1
338	5-T3S-R18W	0.7	66.6	0.0	0.0	0.0	15.4	0.0	0.0	0.0	0.0	43.0	0.0	125.6	35.2
339	4-T3S-R18W	0.0	45.5	0.0	0.0	0.0	76.4	0.0	0.0	0.0	0.0	3.7	0.0	125.6	39.2
340	4-T3S-R18W	0.0	23.6	0.0	0.0	0.0	44.3	0.0	0.0	0.0	57.7	0.0	0.0	125.6	38.9
341	9-T3S-R18W	0.0	1.7	0.0	0.0	51.5	0.0	0.0	0.0	0.0	65.4	7.0	0.0	125.6	42.4
342	9-T3S-R18W	0.0	0.0	0.0	0.0	2.1	28.0	0.0	0.0	0.0	62.7	32.9	0.0	125.6	42.4
343	16-T3S-R18W	0.0	0.0	0.0	0.0	0.0	51.7	0.0	0.0	0.0	53.9	20.1	0.0	125.6	35.4
344	16-T3S-R18W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	16.4	109.3	0.0	125.6	38.6
345	9-T3S-R18W	0.0	17.9	0.0	0.0	29.0	7.0	0.0	0.0	0.0	71.5	0.2	0.0	125.6	33.3
346	9-T3S-R18W	0.0	26.1	0.0	0.0	0.0	47.8	0.0	0.0	0.0	24.4	27.4	0.0	125.6	38.3
347	16-T3S-R18W	9.1	0.0	0.0	0.0	0.0	6.5	0.0	0.0	0.0	54.2	55.8	0.0	125.6	36.9
348	16-T3S-R18W	72.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.6	42.3	0.0	125.6	33.6
349	21-T3S-R18W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	0.0	125.6	42.4
350	21-T3S-R18W	64.8	0.0	0.0	0.0	0.0	27.5	0.0	0.0	0.0	0.0	33.3	0.0	125.6	32.3
351	21-T3S-R18W	17.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	107.8	0.0	125.6	11.8
352	21-T3S-R18W	83.1	0.0	0.0	0.0	7.2	24.9	0.0	0.0	0.0	0.0	3.5	0.0	118.7	11.0
353	28-T3S-R18W	111.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	14.6	0.0	125.6	47.2
354	29-T3S-R18W	1.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	11.2	112.6	0.0	125.6	49.3
355	28-T3S-R18W	63.8	0.0	0.0	0.0	1.1	10.9	0.0	0.0	0.0	24.0	1.5	0.0	101.3	41.5
356	28-T3S-R18W	125.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	37.7

Appendix 5. Continued

357	29-T3S-R18W	2.0	60.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	63.0	0.0	125.6	38.0
358	28-T3S-R18W	88.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0	125.6	35.0
359	27-T3S-R18W	0.0	0.0	0.0	0.0	1.3	24.0	0.0	0.0	0.0	36.1	64.2	0.0	125.6	39.4
360	27-T3S-R18W	0.0	0.0	0.0	0.0	0.0	0.6	0.0	0.0	0.0	0.4	124.6	0.0	125.6	16.1
361	27-T3S-R18W	21.9	0.0	0.0	0.0	0.0	0.0	7.1	0.0	0.0	0.0	96.6	0.0	125.6	32.3
362	27-T3S-R18W	0.0	0.0	0.0	0.0	0.0	13.6	0.0	0.0	0.0	0.0	112.1	0.0	125.6	37.2
363	26-T3S-R18W	88.0	0.0	0.0	0.0	0.0	24.6	13.1	0.0	0.0	0.0	0.0	0.0	125.6	32.0
364	15-T3S-R18W	45.6	7.7	0.0	0.0	0.0	72.2	0.0	0.0	0.0	0.0	0.0	0.0	125.6	33.5
365	15-T3S-R18W	15.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	110.5	0.0	125.6	19.9
366	10-T3S-R18W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	0.0	125.6	36.3
367	10-T3S-R18W	0.0	0.0	0.0	0.0	0.0	3.9	0.0	0.0	0.0	14.9	106.8	0.0	125.6	40.7
368	3-T3S-R18W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	119.5	0.0	119.5	34.8
369	4-T3S-R18W	0.0	10.2	0.0	0.0	42.7	0.0	0.0	0.0	0.0	60.1	12.6	0.0	125.6	39.2
370	4-T3S-R18W	0.0	51.1	0.0	0.0	17.8	5.0	0.0	0.0	0.0	51.7	0.0	0.0	125.6	31.3
371	3-T3S-R18W	0.0	0.0	0.0	0.0	18.6	0.0	0.0	0.0	0.0	37.3	63.5	0.0	119.4	42.3
372	3-T3S-R18W	0.0	5.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	62.2	0.0	67.3	52.1
373	2-T3S-R18W	59.6	1.2	0.0	0.0	0.0	0.0	20.5	0.0	0.0	0.0	44.3	0.0	125.6	52.8
374	3-T3S-R18W	29.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	90.4	0.0	119.5	40.0
375	10-T3S-R18W	25.3	11.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	89.0	0.0	125.6	54.6
376	10-T3S-R18W	0.0	56.3	0.0	0.0	0.0	32.3	0.0	0.0	0.0	0.0	37.0	0.0	125.6	46.4
377	15-T3S-R18W	25.1	30.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	70.1	0.0	125.6	38.3
378	22-T3S-R18W	30.5	71.7	0.0	0.0	0.8	0.0	0.0	0.0	0.0	0.0	22.7	0.0	125.6	47.6
379	23-T3S-R18W	74.7	49.1	0.0	0.0	0.0	1.8	0.0	0.0	0.0	0.0	0.0	0.0	125.6	39.7
380	23-T3S-R18W	122.4	2.9	0.0	0.0	0.0	0.0	0.3	0.0	0.0	0.0	0.0	0.0	125.6	34.4
381	26-T3S-R18W	108.0	0.0	0.0	0.0	0.0	0.0	17.7	0.0	0.0	0.0	0.0	0.0	125.6	34.5
382	26-T3S-R18W	120.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.6	0.0	125.6	37.9

Appendix 5. Continued

383	26-T3S-R18W	26.6	0.0	0.0	0.0	0.0	6.5	71.3	0.0	0.0	0.0	21.2	0.0	125.6	44.6
384	34-T3S-R18W	0.0	0.0	0.0	0.0	0.0	0.8	0.0	0.0	0.0	38.4	86.4	0.0	125.6	51.2
385	34-T3S-R18W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.8	123.9	0.0	125.6	49.3
386	33-T3S-R18W	17.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.1	98.5	0.0	125.6	54.8
387	33-T3S-R18W	9.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	116.3	0.0	125.6	48.9
388	32-T3S-R18W	0.0	96.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	29.0	0.0	125.6	42.9
389	32-T3S-R18W	0.0	0.7	0.0	0.0	0.0	50.7	0.0	0.0	0.0	0.0	74.2	0.0	125.6	44.4
390	32-T3S-R18W	0.0	22.5	0.0	0.0	0.0	11.1	0.0	0.0	0.0	0.0	92.0	0.0	125.6	38.1
391	33-T3S-R18W	0.0	0.0	0.0	0.0	0.0	8.7	0.0	0.0	0.0	0.0	116.9	0.0	125.6	39.5
392	5-T4S-R18W	0.0	0.0	0.0	0.0	0.0	101.2	0.0	0.0	0.0	0.0	24.5	0.0	125.6	33.0
393	5-T4S-R18W	0.0	0.0	0.0	0.0	0.0	125.6	0.0	0.0	0.0	0.0	0.0	0.0	125.6	33.7
394	31-T3S-R18W	0.0	32.7	0.0	0.0	0.0	91.4	0.0	0.0	0.0	0.0	1.5	0.0	125.6	35.5
395	31-T3S-R18W	0.0	19.2	0.0	0.0	0.0	8.0	0.0	0.0	0.0	0.0	98.4	0.0	125.6	32.5
396	3-T4S-R18W	0.0	0.0	0.0	0.0	0.0	125.6	0.0	0.0	0.0	0.0	0.0	0.0	125.6	30.6
397	3-T4S-R18W	0.0	0.0	0.0	0.0	0.0	125.6	0.0	0.0	0.0	0.0	0.0	0.0	125.6	41.1
398	4-T4S-R18W	0.0	0.0	0.0	0.0	0.0	123.4	0.0	0.0	0.0	0.0	2.2	0.0	125.6	50.2
399	35-T3S-R18W	39.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	11.0	75.6	0.0	125.6	40.4
400	25-T3S-R18W	101.2	0.0	0.0	0.0	0.0	24.4	0.0	0.0	0.0	0.0	0.0	0.0	125.6	41.4
401	36-T3S-R18W	37.3	11.4	0.0	0.0	0.0	3.6	0.0	0.0	0.0	0.0	73.3	0.0	125.6	33.1
402	25-T3S-R18W	47.5	0.0	0.0	0.0	0.0	33.1	0.0	0.0	39.2	5.1	0.7	0.0	125.6	33.5
403	36-T3S-R18W	0.0	82.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	42.9	0.0	125.6	23.8
404	35-T3S-R18W	0.0	0.0	0.0	0.0	0.0	38.7	0.0	0.0	0.0	0.0	86.9	0.0	125.6	30.7
405	36-T3S-R18W	0.0	13.8	0.0	0.0	0.0	34.2	0.0	0.0	0.0	8.8	68.9	0.0	125.6	36.0
406	30-T3S-R17W	121.3	0.0	0.0	0.0	0.0	3.1	0.0	0.0	0.0	0.0	1.2	0.0	125.6	35.4
407	25-T3S-R18W	125.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	39.9
408	25-T3S-R18W	44.0	0.0	0.0	0.0	0.0	26.9	0.0	0.0	0.0	13.3	41.4	0.0	125.6	47.4

Appendix 5. Continued

409	30-T3S-R17W	57.0	0.0	0.0	0.0	0.0	25.7	0.0	0.0	0.0	19.8	23.0	0.0	125.6	45.7
410	30-T3S-R17W	0.0	10.9	0.0	0.0	0.0	28.1	0.0	0.0	7.6	0.0	77.3	1.8	125.6	50.7
411	30-T3S-R17W	0.0	1.0	0.0	0.0	0.0	31.9	0.0	0.0	5.4	0.0	87.4	0.0	125.6	47.3
412	2-T4S-R18W	0.0	0.0	0.0	0.0	0.0	125.6	0.0	0.0	0.0	0.0	0.0	0.0	125.6	51.5
413	11-T3S-R18W	14.4	93.6	0.0	0.0	0.0	17.6	0.0	0.0	0.0	0.0	0.0	0.0	125.6	36.4
414	2-T3S-R18W	117.6	8.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	37.4
415	14-T3S-R18W	0.0	120.8	0.0	0.0	0.0	4.9	0.0	0.0	0.0	0.0	0.0	0.0	125.6	35.5
416	13-T3S-R18W	50.4	47.4	0.0	0.0	0.0	27.8	0.0	0.0	0.0	0.0	0.0	0.0	125.6	36.6
417	13-T3S-R18W	112.0	12.6	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	35.9
418	24-T3S-R18W	125.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	35.8
419	24-T3S-R18W	95.5	0.0	0.0	0.0	0.0	0.0	22.7	0.0	0.0	0.0	0.0	7.5	125.6	29.8
420	24-T3S-R18W	125.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	36.6
421	24-T3S-R18W	125.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	41.6
422	34-T2S-R18W	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.0	27.4	97.7	0.0	125.6	45.0
423	34-T2S-R18W	0.0	1.1	0.0	0.0	19.7	0.0	0.0	0.0	0.0	104.0	0.8	0.0	125.6	41.4
424	27-T2S-R18W	0.0	12.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	75.9	37.1	0.0	125.6	43.9
425	27-T2S-R18W	0.0	22.1	0.0	0.0	0.0	73.8	0.0	0.0	0.0	29.7	0.0	0.0	125.6	39.2
426	34-T2S-R18W	10.5	47.9	0.0	0.0	2.5	43.6	0.0	0.0	0.0	21.1	0.0	0.0	125.6	36.0
427	27-T2S-R18W	0.0	0.0	0.0	0.0	36.1	0.0	0.0	0.0	0.0	76.3	13.2	0.0	125.6	35.2
428	23-T2S-R18W	0.0	46.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	76.3	3.3	0.0	125.6	38.4
429	26-T2S-R18W	15.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	27.5	62.2	0.0	105.5	35.6
430	26-T2S-R18W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	72.0	0.0	72.0	37.7
431	23-T2S-R18W	88.8	0.0	0.0	0.0	0.0	17.6	0.0	0.0	0.0	12.2	7.0	0.0	125.6	35.4
432	26-T2S-R18W	104.2	0.0	0.0	0.0	0.0	0.0	6.3	0.0	0.0	0.0	0.4	0.0	110.9	30.5
433	24-T1S-R19W	0.0	4.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	121.2	0.0	125.6	36.0
434	19-T1S-R18W	0.0	72.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	53.3	0.0	125.6	35.8

Appendix 5. Continued

435	19-T1S-R18W	0.0	11.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18.0	96.6	0.0	125.6	40.3
436	19-T1S-R18W	0.0	101.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24.0	0.0	0.0	125.6	35.2
437	30-T1S-R18W	0.0	3.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.2	121.3	0.0	125.6	38.8
438	30-T1S-R18W	0.0	105.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.5	16.1	0.0	125.6	37.9
439	29-T1S-R18W	0.0	125.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	125.6	40.1
440	29-T1S-R18W	0.0	45.7	0.0	0.0	0.0	3.8	0.0	0.0	0.0	0.0	76.1	0.0	125.6	40.8
441	22-T1S-R18W	0.0	0.0	0.0	125.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	46.7
442	28-T1S-R18W	0.0	20.1	0.0	0.0	0.0	12.6	0.0	0.0	0.0	56.6	36.3	0.0	125.6	44.5
443	28-T1S-R18W	0.0	14.2	0.0	0.0	0.0	13.1	0.0	0.0	0.0	9.5	88.8	0.0	125.6	48.3
444	28-T1S-R18W	0.0	0.0	0.0	0.0	0.0	70.7	0.0	0.0	0.0	0.0	54.9	0.0	125.6	41.6
445	28-T1S-R18W	0.0	48.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	76.8	0.0	125.6	44.6
446	33-T1S-R18W	0.0	0.0	0.0	0.0	0.0	22.3	0.0	0.0	0.0	0.0	103.3	0.0	125.6	40.9
447	33-T1S-R18W	0.0	62.9	0.0	0.0	0.0	11.1	0.0	0.0	0.0	0.0	51.6	0.0	125.6	42.6
448	33-T1S-R18W	10.3	3.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	112.3	0.0	125.6	42.2
449	4-T2S-R18W	0.0	0.0	0.0	0.0	0.0	12.8	0.0	0.0	0.0	0.0	112.8	0.0	125.6	44.6
450	4-T2S-R18W	0.0	64.1	0.0	0.0	0.0	61.1	0.0	0.0	0.0	0.0	0.5	0.0	125.6	43.8
451	4-T2S-R18W	0.0	35.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	89.9	0.0	125.6	36.7
452	4-T2S-R18W	0.0	33.4	0.0	0.0	0.0	2.0	0.0	0.0	0.0	0.0	90.2	0.0	125.6	40.2
453	3-T2S-R18W	0.0	41.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	83.9	0.0	125.6	35.6
454	3-T2S-R18W	0.0	41.5	0.0	0.0	0.0	8.4	0.0	0.0	0.0	0.0	75.8	0.0	125.6	39.7
455	20-T1S-R18W	0.0	41.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	84.2	0.0	125.6	48.7
456	20-T1S-R18W	0.0	96.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	29.5	0.0	0.0	125.6	49.7
457	21-T1S-R18W	0.0	92.1	0.0	24.3	0.0	0.0	0.0	0.0	0.0	0.0	9.2	0.0	125.6	50.6
458	22-T1S-R18W	0.0	47.9	0.0	77.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	51.7
459	16-T1S-R18W	29.4	11.8	0.0	84.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	50.9
460	10-T1S-R18W	0.0	0.0	0.0	125.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	53.6

Appendix 5. Continued

461	10-T1S-R18W	0.0	0.0	0.0	125.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	52.5
462	16-T1S-R18W	0.0	23.5	0.0	102.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	54.0
463	15-T1S-R18W	0.0	0.0	0.0	125.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	50.5
464	15-T1S-R18W	16.5	0.0	0.0	109.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	55.0
465	10-T1S-R18W	1.5	0.0	0.0	124.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	40.2
466	15-T1S-R18W	0.0	0.0	0.0	125.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	52.2
467	14-T1S-R18W	0.0	17.8	0.0	107.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	56.1
468	14-T1S-R18W	0.0	51.8	0.0	73.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	47.2
469	14-T1S-R18W	0.0	96.6	0.0	29.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	52.5
470	14-T1S-R18W	13.5	9.4	0.0	102.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	44.7
471	11-T1S-R18W	4.6	0.0	0.0	121.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	46.3
472	11-T1S-R18W	7.4	0.0	0.0	118.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	42.4
473	10-T1S-R18W	2.2	0.0	0.0	123.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	45.3
474	9-T1S-R18W	0.0	0.0	0.0	125.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	41.6
475	9-T1S-R18W	0.0	0.0	0.0	125.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	45.2
476	16-T1S-R18W	0.0	16.3	0.0	109.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	35.6
477	21-T1S-R18W	0.0	61.8	0.0	63.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	43.1
478	22-T1S-R18W	11.6	0.0	0.0	114.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	39.0
479	22-T1S-R18W	0.0	0.5	0.0	125.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	44.2
480	23-T1S-R18W	0.0	58.7	0.0	66.5	0.0	0.4	0.0	0.0	0.0	0.0	0.0	0.0	125.6	40.5
481	27-T1S-R18W	0.0	72.9	0.0	19.5	0.0	33.2	0.0	0.0	0.0	0.0	0.0	0.0	125.6	41.4
482	23-T1S-R18W	0.0	71.6	0.0	0.0	0.0	54.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	51.8
483	26-T1S-R18W	0.0	115.5	0.0	0.0	0.0	1.4	0.0	0.0	0.0	0.0	8.8	0.0	125.6	56.0
484	26-T1S-R18W	0.0	46.8	0.0	0.0	0.0	14.8	0.0	0.0	0.0	0.0	64.0	0.0	125.6	54.9
485	27-T1S-R18W	0.0	103.9	0.0	0.0	0.0	21.7	0.0	0.0	0.0	0.0	0.0	0.0	125.6	55.1
486	13-T1S-R18W	0.0	19.1	0.0	50.7	0.0	54.1	0.0	0.0	0.2	0.0	0.0	0.0	125.6	52.5

Appendix 5. Continued

| 487 | 13-T1S-R18W | 0.0 | 0.4 | 0.0 | 45.0 | 12.5 | 49.7 | 0.0 | 0.0 | 4.9 | 0.0 | 0.0 | 0.0 | 125.6 |
| ---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | 50.7

Appendix 5. Continued

513	2-T2S-R18W	5.9	36.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	83.3	0.0	125.6
40.0														
514	2-T2S-R18W	35.1	3.4	0.0	0.0	0.0	23.9	0.0	0.0	0.0	32.2	31.1	0.0	125.6
35.1														
515	1-T2S-R18W	27.4	14.6	0.0	0.0	0.0	11.3	3.6	0.0	0.0	14.2	44.9	0.0	125.6
516	36-T1S-R18W	34.0	21.7	0.0	0.0	0.0	20.3	0.0	0.0	0.0	0.0	49.6	0.0	125.6
29.9														
517	36-T1S-R18W	71.0	43.6	0.0	0.0	0.0	11.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6
44.9														
518	25-T1S-R18W	107.9	0.0	0.0	0.0	0.0	17.7	0.0	0.0	0.0	0.0	0.0	0.0	125.6
33.1														
519	11-T1S-R18W	0.0	39.9	0.0	85.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6
33.1														
520	12-T1S-R18W	17.1	0.0	0.0	108.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6
51.0														
521	12-T1S-R18W	31.3	0.0	0.0	94.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6
50.9														
522	12-T1S-R18W	0.0	25.0	0.0	89.6	0.0	11.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6
54.2														
523	12-T1S-R18W	19.9	55.5	0.0	50.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6
56.4														
524	20-T1S-R18W	0.0	50.0	0.0	64.8	0.0	0.0	0.0	0.0	0.0	10.9	0.0	0.0	125.6
51.1														
525	20-T1S-R18W	0.0	93.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	32.3	0.0	125.6
50.6														
526	21-T1S-R18W	0.0	77.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	32.8	15.0	0.0	125.6
45.0														
527	21-T1S-R18W	0.0	41.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	54.6	30.0	0.0	125.6
45.8														
528	21-T2N-R17W	0.0	69.3	0.0	0.0	0.0	0.0	0.0	56.3	0.0	0.0	0.0	0.0	125.6
41.7														
529	22-T2N-R17W	0.0	48.7	0.0	0.0	0.0	0.0	0.0	40.0	36.9	0.0	0.0	0.0	125.6
44.5														
530	9-T2N-R17W	0.0	96.9	0.0	0.0	0.0	0.0	0.0	28.7	0.0	0.0	0.0	0.0	125.6
42.5														
531	10-T2N-R17W	0.7	105.0	0.0	0.0	0.0	0.0	0.0	8.5	11.4	0.0	0.0	0.0	125.6
45.7														
532	10-T2N-R17W	27.2	13.6	0.0	0.0	0.0	0.0	0.0	13.0	71.8	0.0	0.0	0.0	125.6
35.1														
533	2-T2N-R17W	36.0	3.7	0.0	0.0	0.0	0.0	0.0	0.0	86.0	0.0	0.0	0.0	125.6
40.6														
534	2-T2N-R17W	0.0	42.4	0.0	0.0	0.0	0.0	0.0	0.0	83.2	0.0	0.0	0.0	125.6
39.0														
535	2-T2N-R17W	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	125.6	0.0	0.0	0.0	125.6
38.1														
536	35-T3N-R17W	28.4	18.0	0.0	0.0	0.0	0.0	0.0	25.7	53.6	0.0	0.0	0.0	125.6
35.4														
537	19-T1N-R18W	0.0	125.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	125.6
45.3														
538	33-T2S-R18W	0.0	34.9	0.0	0.0	0.0	53.8	0.0	0.0	0.0	0.0	36.9	0.0	125.6
35.1														

Appendix 5. Continued

539	33-T2S-R18W	0.0	58.1	0.0	0.0	0.0	3.5	0.0	0.0	0.0	11.4	52.7	0.0	125.6
540	33-T2S-R18W	0.0	39.8	0.0	0.0	0.0	17.6	0.0	0.0	0.0	68.3	0.0	0.0	125.6
541	33-T2S-R18W	0.0	44.8	0.0	0.0	0.0	70.5	0.0	0.0	0.0	10.3	0.0	0.0	125.6
542	2-T3S-R19W	0.0	0.0	0.0	6.0	0.0	0.0	0.0	0.0	72.5	47.2	0.0	0.0	125.6
543	33-T2N-R17W	0.0	4.2	0.0	0.0	0.0	0.0	0.0	0.0	53.9	0.0	0.0	0.3	58.4

Appendix 6. Annual pipeline cost per linear foot for different pipe sizes.

Appendix 7. Annual pumping cost (calculated using EGC formula 3) for different diameters of pipe at different water demand.

GPM	600	1200	1800	2400	3000	3600	4200	4800	5400	6000	6600	7200	7800	8400	9000	9600	10200	10800	11400
Diamet	r (in)	Annual Cost per acre (in thousand dollars)																	
	\$4.1	\$18.0	\$50	\$106	\$195	\$323	\$496	\$721	\$1,003	\$1,350	\$1,767	\$2,260	\$2,835	\$3,497	\$4,253	\$5,108	\$6,067	\$7,137	\$8,322
6	\$2.7	\$7.8	\$17	\$33	\$57	\$90	\$134	\$191	\$262	\$350	\$454	\$577	\$720	\$885	\$1,073	\$1,286	\$1,524	\$1,789	\$2,083
8																			
	\$2.4	\$5.6	\$10	\$17	\$27	\$39	\$56	\$76	\$102	\$133	\$170	\$213	\$263	\$320	\$385	\$458	\$539	\$630	\$731
10	\$2.3	\$5.0	\$8	\$12	\$18	\$24	\$32	\$42	\$54	\$68	\$84	\$103	\$125	\$150	\$178	\$210	\$245	\$283	\$326
12	\$2.3	\$4.7	\$7	\$11	\$14	\$19	\$24	\$29	\$36	\$44	\$53	\$63	\$75	\$88	\$102	\$118	\$136	\$155	\$177
14	\$2.3	\$4.6	\$7	\$10	\$13	\$16	\$20	\$24	\$29	$\$ 34$	\$40	\$46	\$53	\$61	\$69	\$79	\$89	\$100	\$113
16	\$2.3	\$4.6	\$7	\$10	\$12	\$15	\$18	\$21	\$25	\$29	\$33	\$38	\$43	\$48	\$54	\$60	\$67	\$74	\$82
18 20	\$2.3	\$4.6	\$7	\$9	\$12	\$14	\$17	\$20	\$23	\$26	\$30	\$33	\$37	\$42	\$46	\$51	\$56	\$61	\$67
20 24	\$2.3	\$4.5	\$7	\$9	\$12	\$14	\$16	\$19	\$22	\$24	\$27	\$30	\$33	\$36	\$39	\$42	\$46	\$49	\$53
30	\$2.3	\$4.5	\$7	\$9	\$11	\$14	\$16	\$18	\$21	\$23	\$26	\$28	\$31	\$33	\$36	\$38	\$41	\$44	\$46
36	\$2.3	\$4.5	\$7	\$9	\$11	\$14	\$16	\$18	\$21	\$23	\$25	\$28	\$30	\$32	\$35	\$37	\$39	\$42	\$44

Appendix 8. Sum of pipe cost and pumping cost per linear foot for different pipe diameters and gallons of water per minute.

Appendix 9. An input file for EPANET for Design 3 irrigation system

Appendix 9. Continued

C183	1209	0	;
C184	1268	0	;
C185	1259	0	;
C186	1250	0	;
C187	1233	0	;
C188	1218	0	;
C189	1210	0	;
C190	1276	0	;
C191	1272	0	;
C192	1290	0	;
C193	1264	0	;
C194	1249	0	;
C195	1213	0	;
C196	1222	0	;
C197	1255	0	;
C198	1225	0	;
C199	1215	0	;
C200	1209	0	;
C201	1202	0	;
C202	1201	0	;
C203	1193	0	;
C204	1187	0	;
C205	1178	0	;
C206	1183	0	;
C29	1225	0	;
C30	1228	0	;
C307	1358	0	;
C308	1322	0	;
C309	1327	0	;
C31	1225	0	;
C310	1322	0	;
C311	1370	0	;
C312	1363	0	;
C313	1361	0	;
C314	1297	0	;
C315	1296	0	;

Appendix 9. Continued

C316	1287	0	;
C317	1291	0	;
C319	1286	0	;
C32	1265	0	;
C320	1281	0	;
C321	1278	0	;
C322	1263	0	;
C323	1274	0	;
C324	1252	0	;
C325	1205	0	;
C326	1204	0	;
C327	1200	0	;
C328	1345	0	;
C329	1356	0	;
C33	1277	0	;
C333	1346	0	;
C336	1347	0	;
C337	1349	0	;
C34	1289	0	;
C341	1342	0	;
C342	1350	0	;
C345	1347	0	;
C346	1345	0	;
C347	1346	0	;
C35	1215	0	;
C350	1346	0	;
C352	1323	0	;
C354	1326	0	;
C355	1314	0	;
C356	1346	0	;
C358	1350	0	;
C359	1345	0	;
C36	1252	0	;
C360	1348	0	;
C361	1348	0	;
C362	1346	0	;

Appendix 9. Continued

C37	1217	0	;
C38	1225	0	;
C39	1253	0	;
C4	1184	0	;
C40	1226	0	;
C41	1220	0	;
C42	1232	0	;
C43	1223	0	;
C44	1216	0	;
C45	1198	0	;
C46	1203	0	;
C63	1336	0	;
C7	1284	0	;
C8	1296	0	;
C81	1189	0	;
C82	1185	0	;
C83	1305	0	;
C84	1337	0	;
C85	1352	0	;
COO1	1377	0	;
J391	1347	800	;
J394	1347	800	;
J395	1329	800	;
J397	1318	800	;
J400	1329	800	;
J401	1311	800	;
J404	1320	800	;
J405	1282	800	;
J409	1245	800	;
J412	1248	800	;
J413	1229	800	;
J416	1225	800	;
J420	1227	800	;
J421	1339	800	;
J423	1313	800	;
J426	1293	800	;

Appendix 9. Continued

J427	1300	800	;
J430	1284	800	;
J431	1285	800	;
J434	1280	800	;
J435	1269	800	;
J438	1267	800	;
J439	1248	800	;
J442	1252	800	;
J443	1231	800	;
J446	1229	800	;
J447	1225	800	;
J450	1224	800	;
J454	1281	800	;
J455	1277	800	;
J458	1275	800	;
J459	1273	800	;
J462	1269	800	;
J463	1271	800	;
J466	1268	800	;
J467	1228	800	;
J470	1226	800	;
J471	1223	800	;
J473	1294	800	;
J476	1287	800	;
J477	1280	800	;
J480	1275	800	;
J481	1273	800	;
J484	1270	800	;
J485	1268	800	;
J488	1265	800	;
J489	1265	800	;
J492	1263	800	;
J493	1272	800	;
J496	1266	800	;
J498	1220	800	;
J499	1218	800	;

Appendix 9. Continued

J502	1215	800	;
J503	1290	800	;
J506	1288	800	;
J507	1277	800	;
J510	1276	800	;
J511	1262	800	;
J515	1261	800	;
J519	1257	800	;
J523	1257	800	;
J527	1215	800	;
J531	1210	800	;
J535	1286	800	;
J538	1281	800	;
J539	1287	800	;
J542	1290	800	;
J543	1266	800	;
J546	1269	800	;
J547	1260	800	;
J550	1260	800	;
J554	1250	800	;
J558	1231	800	;
J562	1216	800	;
J563	1209	800	;
J566	1210	800	;
J567	1278	800	;
J570	1271	800	;
J571	1277	800	;
J574	1267	800	;
J575	1278	800	;
J577	1265	800	;
J579	1255	800	;
J581	1228	800	;
J583	1216	800	;
J585	1209	800	;
J588	1223	800	;
J589	1231	800	;

Appendix 9. Continued

J591	1223	800	;
J594	1221	800	;
J595	1259	800	;
J598	1246	800	;
J599	1263	800	;
J602	1254	800	;
J603	1220	800	;
J605	1239	800	;
J607	1231	800	;
J610	1220	800	;
J611	1227	800	;
J614	1220	800	;
J615	1218	800	;
J618	1209	800	;
J619	1212	800	;
J622	1203	800	;
J623	1217	800	;
J626	1214	800	;
J627	1207	800	;
J630	1195	800	;
J631	1208	800	;
J634	1194	800	;
J636	1197	800	;
J638	1193	800	;
J640	1190	800	;
J641	1187	800	;
J643	1189	800	;
J645	1188	800	;
J647	1185	800	;
J649	1182	800	;
J652	1183	800	;
J1654	1352	800	;
J1655	1350	800	;
J1694	1348	800	;
J1695	1341	800	;
J1704	1331	800	;

Appendix 9. Continued

J1705	1316	800	;
J1714	1363	800	;
J1660	1358	800	;
J1663	1361	800	;
J1682	1349	800	;
J1725	1354	800	;
J1688	1356	800	;
J1683	1341	800	;
J1708	1333	800	;
J1685	1342	800	;
C2	1214	800	;
C3	1189	800	;
C343	1360	800	;
C344	1362	800	;
C348	1343	800	;
C349	1344	800	;
C353	1330	800	;
[RESERVOIRS]			
;ID	Head		
Resv1	1415		

[TANKS]

;ID	Elevation	InitLevel	MinLevel	MaxLevel	Diameter	MinVol		VolCurve		
[PIPES]										
;ID	Node1	Node2	Length	Diameter	Roughness	Minor		Status		
M0		C1	C2	2656	48	140		0	Open	;
M04	C323	C322	2917	48	140	0	Open	;		
M05	C326	C327	2618	36	140	0	Open	;		
M06	C327	C3	2476	36	140	0	Open	;		
M35	C317	C316	2656	60	140	0	Open	;		
M36	C316	C319	2708	60	140	0	Open	;		
M37	C319	C320	2487	60	140	0	Open	;		
M38	C320	C321	2813	60	140	0	Open	;		
M39	C321	C323	2240	60	140	0	Open	;		

Appendix 9. Continued

M41	C322	C324	2734	48	140	0	Open	;
M42	C324	C1	2643	48	140	0	Open	;
M43	C2	C325	2630	48	140	0	Open	;
M44	C325	C326	2604	36	140	0	Open	;
M45	C3	C4	2713	36	140	0	Open	;
M07	C308	C309	5432	96	140	0	Open	;
MainP1	COO1	C307	36953	96	140	0	Open	;
M08	C307	C308	14740	96	140	0	Open	;
M09	C309	C310	5527	96	140	0	Open	;
M11	C85	C311	4074	84	140	0	Open	;
M12	C311	C14	7118	84	140	0	Open	;
M14	C312	C313	629	96	140	0	Open	;
M15	C313	C11	7992	96	140	0	Open	;
M16	C11	C328	5404	96	140	0	Open	;
M18	C358	C329	4903	84	140	0	Open	;
M19	C329	C359	2376	84	140	0	Open	;
M20	C359	C360	3502	84	140	0	Open	;
M21	C360	C361	2312	84	140	0	Open	;
M22	C361	C333	2331	84	140	0	Open	;
M23	C333	C337	2798	84	140	0	Open	;
M24	C337	C336	2353	84	140	0	Open	;
M25	C336	C362	3097	84	140	0	Open	;
M26	C362	C341	2526	84	140	0	Open	;
M27	C341	C346	2740	84	140	0	Open	;
M28	C346	C345	2469	84	140	0	Open	;
M29	C345	C356	2800	84	140	0	Open	;
M30	C356	C350	3726	84	140	0	Open	;
M31	C350	C63	2563	84	140	0	Open	;
M32	C63	C354	2799	84	140	0	Open	;
M33	C354	C355	3154	84	140	0	Open	;
M333	C314	C315	2513	84	140	0	Open	;
M334	C315	C317	2643	84	140	0	Open	;
M34	C355	C314	4546	84	140	0	Open	;
L17.1	C155	C342	2525	30	140	0	Open	;
L17.2	C156	C155	2747	30	140	0	Open	;
L17.3	C157	C156	2760	24	150	0	Open	;

Appendix 9. Continued

L17.4	C158	C157	2526	18	150	0	Open	;
L17.5	C159	C158	2474	18	150	0	Open	;
L17.6	C160	C159	2539	18	150	0	Open	;
L17.7	C161	C160	2734	18	150	0	Open	;
L17.8	C30	C161	2591	16	150	0	Open	;
L17.9	C29	C30	2730	10	150	0	Open	;
L18.1	C84	C347	2517	30	150	0	Open	;
L18.2	C83	C84	5339	30	150	0	Open	;
L18.3	C162	C83	2617	30	150	0	Open	;
L18.4	C163	C162	2734	24	150	0	Open	;
L18.5	C164	C163	2474	18	150	0	Open	;
L18.6	C165	C164	2552	18	150	0	Open	;
L18.7	C166	C165	2604	18	150	0	Open	,
L18.8	C167	C166	2608	14	150	0	Open	,
L19.1	C168	C352	7785	24	150	0	Open	;
L19.2	C169	C168	2812	24	150	0	Open	,
L19.3	C170	C169	2669	18	150	0	Open	;
L19.4	C32	C170	2461	18	150	0	Open	,
L19.5	C31	C32	5169	16	150	0	Open	,
L19.6	C171	C31	2585	10	150	0	Open	;
L20.2	C33	C34	2813	30	150	0	Open	;
L20.3	C172	C33	2331	30	150	0	Open	;
L20.4	C173	C172	2852	24	150	0	Open	;
L20.5	C174	C173	2552	18	150	0	Open	;
L20.6	C175	C174	2539	18	150	0	Open	;
L20.7	C176	C175	2956	16	150	0	Open	;
L20.8	C177	C176	2253	14	150	0	Open	;
L21.2	C179	C178	2721	18	150	0	Open	;
L21.3	C180	C179	2669	18	150	0	Open	;
L21.4	C181	C180	2539	18	150	0	Open	,
L21.5	C182	C181	2747	18	150	0	Open	;
L21.6	C36	C182	2708	16	150	0	Open	;
L21.7	C35	C36	2656	14	150	0	Open	;
L21.8	C183	C35	2381	10	150	0	Open	;
L22.2	C7	C8	2617	30	150	0	Open	;
L22.3	C8	C184	2604	24	150	0	Open	,

Appendix 9. Continued

L22.4	C184	C185	2734	18	150	0	Open	;
L22.5	C185	C186	2604	18	150	0	Open	;
L22.6	C186	C187	2604	18	150	0	Open	;
L22.7	C187	C188	2695	16	150	0	Open	;
L22.8	C188	C189	2617	14	150	0	Open	;
L23.2	C191	C190	2552	24	150	0	Open	;
L23.3	C192	C191	2682	18	150	0	Open	;
L23.4	C193	C192	2604	18	150	0	Open	;
L23.5	C194	C193	2630	18	150	0	Open	;
L23.6	C38	C194	2643	18	150	0	Open	;
L23.7	C37	C38	2630	14	150	0	Open	;
L23.8	C195	C37	2305	10	150	0	Open	;
L24.2	C197	C39	2552	18	150	0	Open	;
L24.3	C39	C40	8086	16	150	0	Open	;
L24.4	C40	C196	2565	10	150	0	Open	;
L25.2	C42	C198	2591	14	150	0	Open	;
L25.3	C41	C42	7123	10	150	0	Open	;
L26.2	C43	C44	5443	18	150	0	Open	;
L26.3	C199	C43	2617	18	150	0	Open	;
L26.4	C200	C199	2396	14	150	0	Open	;
L27.2	C202	C201	2683	18	150	0	Open	;
L27.3	C46	C202	2709	16	150	0	Open	;
L27.4	C45	C46	2631	14	150	0	Open	;
L27.5	C203	C45	2357	10	150	0	Open	;
L28.2	C81	C82	2734	18	150	0	Open	;
L17.003	C342	C343	2345	30	150	0	Open	;
L17.002	C343	C344	2951	30	150	0	Open	;
L18.03	C347	C348	2519	30	150	0	Open	;
L18.02	C348	C349	2474	30	150	0	Open	;
L19.11	C352	C353	2605	30	150	0	Open	;
L28.3	C204	C81	2813	18	150	0	Open	;
L28.4	C205	C204	2513	16	150	0	Open	;
L28.5	C206	C205	2123	10	150	0	Open	;
F153	J391	C155	1499	8	150	0	Open	;
F154	C155	J394	1304	8	150	0	Open	;
F155	J395	C156	1492	8	150	0	Open	;

Appendix 9. Continued

F156	J397	C157	1543	8	150	0	Open	;
F157	C157	J400	1434	8	150	0	Open	;
F158	J401	C158	1434	8	150	0	Open	;
F159	C158	J404	1304	8	150	0	Open	;
F160	J405	C159	1434	8	150	0	Open	;
F162	J409	C161	1564	8	150	0	Open	;
F163	C161	J412	1695	8	150	0	Open	;
F164	J413	C30	1451	8	150	0	Open	;
F165	C30	J416	1261	8	150	0	Open	;
F167	C29	J420	1434	8	150	0	Open	;
F168	J421	C84	1510	8	150	0	Open	;
F169	J423	C83	1499	8	150	0	Open	;
F170	C83	J426	1499	8	150	0	Open	;
F171	J427	C162	1434	8	150	0	Open	;
F172	C162	J430	1564	8	150	0	Open	;
F173	J431	C163	1238	8	150	0	Open	;
F174	C163	J434	1434	8	150	0	Open	;
F175	J435	C164	1434	8	150	0	Open	;
F176	C164	J438	1564	8	150	0	Open	;
F177	J439	C165	1392	8	150	0	Open	;
F178	C165	J442	1345	8	150	0	Open	;
F179	J443	C166	1457	8	150	0	Open	;
F180	C166	J446	1228	8	150	0	Open	;
F181	J447	C167	1238	8	150	0	Open	;
F182	C167	J450	1564	8	150	0	Open	;
F184	C168	J454	1434	8	150	0	Open	;
F185	J455	C169	1406	8	150	0	Open	;
F186	C169	J458	1499	8	150	0	Open	;
F187	J459	C170	1435	8	150	0	Open	;
F188	C170	J462	1501	8	150	0	Open	;
F189	J463	C32	1310	8	150	0	Open	;
F190	C32	J466	1464	8	150	0	Open	;
F191	J467	C31	1536	8	150	0	Open	;
F192	C31	J470	1173	8	150	0	Open	;
F193	J471	C171	1583	8	150	0	Open	;
F194	J473	C34	1434	8	150	0	Open	;

Appendix 9. Continued

F195	C34	J476	1442	8	150	0	Open	;
F196	J477	C33	1304	8	150	0	Open	;
F197	C33	J480	1499	8	150	0	Open	;
F198	J481	C172	1304	8	150	0	Open	;
F199	C172	J484	1434	8	150	0	Open	;
F200	J485	C173	1304	8	150	0	Open	;
F201	C173	J488	1564	8	150	0	Open	;
F202	J489	C174	1564	8	150	0	Open	;
F203	C174	J492	1629	8	150	0	Open	;
F204	J493	C175	1629	8	150	0	Open	;
F205	C175	J496	1369	8	150	0	Open	;
F206	C176	J498	1455	8	150	0	Open	;
F207	J499	C177	1631	8	150	0	Open	;
F208	C177	J502	1496	8	150	0	Open	;
F209	J503	C178	1499	8	150	0	Open	;
F210	C178	J506	1527	8	150	0	Open	;
F211	J507	C179	1434	8	150	0	Open	;
F212	C179	J510	1629	8	150	0	Open	;
F213	J511	C180	1305	8	150	0	Open	;
F215	J515	C181	1369	8	150	0	Open	;
F217	J519	C182	1329	8	150	0	Open	;
F219	J523	C36	1173	10	150	0	Open	;
F221	J527	C35	1524	8	150	0	Open	;
F223	J531	C183	1515	8	150	0	Open	;
F225	J535	C7	1434	8	150	0	Open	;
F226	C7	J538	1435	8	150	0	Open	;
F227	J539	C8	1401	8	150	0	Open	;
F228	C8	J542	959	8	150	0	Open	;
F229	J543	C184	1505	8	150	0	Open	;
F230	C184	J546	1173	8	150	0	Open	;
F231	J547	C185	1370	8	150	0	Open	;
F232	C185	J550	1045	8	150	0	Open	;
F234	C186	J554	1183	8	150	0	Open	;
F236	C187	J558	1499	8	150	0	Open	;
F238	C188	J562	1399	8	150	0	Open	;
F239	J563	C189	1620	8	150	0	Open	;

Appendix 9. Continued

F240	C189	J566	1494	8	150	0	Open	;
F241	J567	C190	1494	8	150	0	Open	;
F242	C190	J570	1371	8	150	0	Open	;
F243	J571	C191	1369	10	150	0	Open	;
F244	C191	J574	1246	8	150	0	Open	;
F245	J575	C192	1539	10	150	0	Open	;
F246	J577	C193	1800	10	150	0	Open	;
F247	J579	C194	1515	8	150	0	Open	;
F248	J581	C38	1494	8	150	0	Open	;
F249	J583	C37	1479	8	150	0	Open	;
F250	J585	C195	1506	8	150	0	Open	;
F251	C38	J588	1183	8	150	0	Open	;
F252	J589	C40	1427	8	150	0	Open	;
F253	J591	C196	1681	8	150	0	Open	;
F254	C40	J594	1352	8	150	0	Open	;
F255	J595	C39	1538	8	150	0	Open	;
F256	C39	J598	1369	8	150	0	Open	;
F257	J599	C197	1614	10	150	0	Open	;
F258	C197	J602	1495	8	150	0	Open	;
F259	J603	C41	1422	8	150	0	Open	;
F260	J605	C42	1576	8	150	0	Open	;
F261	J607	C198	1477	8	150	0	Open	;
F262	C198	J610	1288	8	150	0	Open	;
F263	J611	C43	1433	8	150	0	Open	;
F264	C43	J614	1245	8	150	0	Open	;
F265	J615	C199	1369	8	150	0	Open	;
F266	C199	J618	1369	8	150	0	Open	;
F267	J619	C200	1561	8	150	0	Open	;
F268	C200	J622	1432	8	150	0	Open	;
F269	J623	C44	1309	8	150	0	Open	;
F270	C44	J626	1307	8	150	0	Open	;
F271	J627	C201	1058	8	150	0	Open	;
F272	C201	J630	1371	8	150	0	Open	;
F273	J631	C202	1058	8	150	0	Open	;
F274	C202	J634	1432	8	150	0	Open	;
F275	C46	J636	1245	8	150	0	Open	;

Appendix 9. Continued

F276	C45	J638	1403	8	150	0	Open	;
F277	C203	J640	1532	8	150	0	Open	;
F278	J641	C82	1557	8	150	0	Open	;
F279	J643	C81	1272	8	150	0	Open	;
F280	J645	C204	1534	8	150	0	Open	;
F281	J647	C205	1499	8	150	0	Open	;
F282	J649	C206	1411	8	150	0	Open	;
F283	C205	J652	1528	8	150	0	Open	;
F348	C342	J1654	1429	8	150	0	Open	;
F367	J1655	C342	1365	8	150	0	Open	;
F368	C347	J1694	1327	8	150	0	Open	;
F379	J1695	C347	1218	8	150	0	Open	;
F380	C352	J1704	1138	6	150	0	Open	;
F389	J1705	C352	1042	6	150	0	Open	;
F364	C344	J1714	977	6	150	0	Open	;
F366	C343	J1660	1093	8	150	0	Open	;
F369	J1663	C343	1128	8	150	0	Open	;
F370	C348	J1682	1532	8	150	0	Open	;
F371	J1725	C344	994	6	150	0	Open	;
F372	C349	J1688	1606	8	150	0	Open	;
F381	J1683	C348	979	8	150	0	Open	;
F382	C353	J1708	1175	6	150	0	Open	;
F383	J1685	C349	1035	6	150	0	Open	;
MP1	C14	C312	7996	96	140	0	Open	;
Main	C328	C358	3214	96	140	0	Open	;
MAINPIPE	C310	C85	23456	96	140	0	Open	;

[PUMPS]

;ID	Node1	Node2	Parameters	
MainP	Resv1	COO1	HEAD MC	$;$
LP1	C345	C344	MEAD HEA LP1	$;$
LP2	C350	C349	HEAD LP2	$;$
LP3	C354	C353	HEAD LP3	$;$
LP4	C314	C34	LEAD LP4	$;$

Appendix 9. Continued

LP5	C317	C178	HEAD CR5	C7
LP6	C319	C7EAD	CR6	
LP7	C321	C190	CREAD HEA CR7	$;$
LP8	C322	C197	HEAD CR8	$;$
LP10	C325	C44	HEAD CR10	$;$
LP9	C1	C198	HEAD CR9	$;$
LP11	C327	C201	HEAD CR11 HEAD CR12	$;$

[VALVES]

;ID	Node1	Node2	Diameter	Type	Setting	MinorLoss
[TAGS]						
[DEMANDS]						
;Junction	Demand	Pattern	Category			
[STATUS]						
;ID	Status/Setti					
[PATTERNS]						
;ID	Multipliers					
[CURVES]						
;ID	X-Value	Y-Value				
;PUMP: PUMP: PUMP:	PUMP:	PUMP:				
MC	116800	210				
;PUMP: PUMP:						
LP1	15200	100				
;PUMP: PUMP:						
LP2	16800	100				
;PUMP: PUMP:						
LP3	10400	100				

Appendix 9. Continued

;PUMP: PUMP:		
LP4	12000	50
;PUMP:		
CR5	8000	60
;PUMP:		
CR6	10400	30
;PUMP:		
CR7	8800	70
;PUMP:		
CR8	5600	30
;PUMP:		
CR9	6400	20
;PUMP:		
CR10	5600	0.001
;PUMP:		
CR11	4200	0.001
;PUMP:		

[CONTROLS]
[RULES]
[ENERGY]
Global Efficiency 75
Global Price 0
Demand Charge 0
[EMITTERS]
;Junction Coefficient
[QUALITY]
;Node
InitQual
[SOURCES]
;Node Type Quality Pattern

Appendix 9. Continued

[REACTIONS]		
;Type	Pipe/Tank	Coefficient
[REACTIONS]		
Order Bulk	1	
Order Tank	1	
Order Wall	1	
Global Bulk	0	
Global Wall	0	
Limiting Potential	0	
Roughness Correlation	0	
[MIXING]		
;Tank	Model	
[TIMES]		
Duration	0:00	
Hydraulic Timestep	1:00	
Quality Timestep	0:05	
Pattern Timestep	1:00	
Pattern Start	0:00	
Report Timestep	1:00	
Report Start	0:00	
Start ClockTime	12:00 AM	
Statistic	NONE	
[REPORT]		
Status	Full	
Summary	No	
Page	0	
[OPTIONS]		
Units	GPM	
Headloss	H-W	
Specific Gravity	1	

Appendix 9. Continued

Viscosity	1	
Trials	40	
Accuracy	0.001	
CHECKFREQ	2	
MAXCHECK	10	
DAMPLIMIT	0	
Unbalanced	Continue 10	
Pattern	1	
Demand Multiplier	1	
Emitter Exponent	0.5	
Quality	None mg/L	
Diffusivity	1	
Tolerance	0.01	
[COORDINATES]		
;Node	X-Coord	Y-Coord
C1	489413.5	3794390
C11	489697	3818432
C14	493442.3	3821681
C155	489031.9	3807277
C156	488195.3	3807289
C157	487358.5	3807289
C158	486585.8	3807292
C159	485831.5	3807288
C160	485057.3	3807288
C161	484223	3807297
C162	486585.8	3805686
C163	485751.8	3805698
C164	484997.3	3805709
C165	484220.6	3805666
C166	483426.8	3805668
C167	482632	3805713
C168	487459.4	3804074
C169	486601.3	3804056
C170	485789.6	3804049
C171	482677.8	3804067

Appendix 9. Continued

C172	487439.5	3802448
C173	486567.9	3802473
C174	485791.6	3802462
C175	485017.2	3802441
C176	484119.4	3802468
C177	483428.1	3802453
C178	489057.6	3800847
C179	488233.7	3800860
C180	487419.7	3800840
C181	486645.3	3800845
C182	485808.3	3800848
C183	483454.8	3800853
C184	487420.5	3799229
C185	486585.8	3799229
C186	485792.5	3799234
C187	484997.2	3799239
C188	484180.8	3799244
C189	483381.8	3799243
C190	488979.6	3797604
C191	488201.8	3797612
C192	487389	3797593
C193	486591.3	3797590
C194	485788.3	3797585
C195	483478.2	3797592
C196	485014.6	3796032
C197	489039.2	3796038
C198	489031.7	3794393
C199	486548.9	3792817
C200	485813.1	3792796
C201	489016.4	3791204
C202	488199.8	3791197
C203	485849.8	3791244
C204	487328.2	3789589
C205	486566.1	3789580
C206	485913.3	3789575
C29	482594.1	3807288

Appendix 9. Continued

C30	483432.8	3807292
C307	501523.8	3836504
C308	500486	3832143
C309	500099.1	3830526
C31	483464	3804063
C310	499710.4	3828889
C311	494961.2	3823232
C312	491685.9	3820130
C313	491535.6	3820013
C314	489413.8	3802414
C315	489422.4	3801656
C316	489420.8	3800039
C317	489417.4	3800849
C319	489422.9	3799217
C32	485037.1	3804057
C320	489421.2	3798459
C321	489420.6	3797600
C322	489417	3796030
C323	489417.6	3796919
C324	489416.9	3795195
C325	489415.1	3792782
C326	489416	3791983
C327	489409.7	3791182
C328	489624.9	3816921
C329	491382.6	3815284
C33	488152.3	3802435
C333	491941.7	3812123
C336	491954.6	3810530
C337	491941.7	3811281
C34	489009	3802416
C341	492230.6	3808865
C342	489817.6	3807306
C345	492484	3807300
C346	492357.4	3808051
C347	489794.4	3805622
C35	484170.5	3800847

Appendix 9. Continued

C350	491743.5	3805538
C352	489834.1	3804127
C354	490937.7	3804111
C355	490479	3803290
C356	492290.5	3806498
C358	490244.4	3816123
C359	491561.8	3814565
C36	484982.5	3800844
C360	491788.4	3813704
C361	491938.8	3812838
C362	492102.1	3809633
C37	484182.3	3797578
C38	484979.7	3797591
C39	488259.4	3796039
C4	489467.7	3789606
C40	485798.2	3796031
C41	486077.5	3794418
C42	488246.3	3794398
C43	487346.2	3792800
C44	489000	3792789
C45	486571.3	3791227
C46	487370.3	3791214
C63	491345.6	3804845
C7	489010.1	3799224
C8	488211.2	3799225
C81	488185.4	3789595
C82	489020.2	3789602
C83	487381.9	3805675
C84	489010.3	3805651
C85	495835	3824119
COO1	490566.7	3839440
J391	489029.1	3807722
J394	489029.1	3806868
J395	488214.6	3807742
J397	487380.2	3807762
J400	487360.3	3806848

Appendix 9. Continued

J401	486585.5	3807722
J404	486585.5	3806907
J405	485830.6	3807722
J409	484221.4	3807762
J412	484221.4	3806808
J413	483446.6	3807742
J416	483426.7	3806907
J420	482592.3	3806848
J421	489009.2	3806113
J423	487380.2	3806152
J426	487380.2	3805239
J427	486585.5	3806152
J430	486585.5	3805239
J431	485751.1	3806113
J434	485751.1	3805298
J435	484996.2	3806172
J438	484996.2	3805298
J439	484221.4	3806093
J442	484221.4	3805258
J443	483426.7	3806113
J446	483426.7	3805298
J447	482632	3806093
J450	482632	3805278
J454	487459.6	3803655
J455	486605.4	3804490
J458	486605.4	3803596
J459	485771	3804470
J462	485810.7	3803596
J463	484996.2	3804450
J466	485055.8	3803615
J467	483466.4	3804529
J470	483466.4	3803715
J471	482632	3804549
J473	489009.2	3802841
J476	489009.2	3801986
J477	488155	3802841

Appendix 9. Continued

J480	488155	3801986
J481	487439.8	3802861
J484	487439.8	3802026
J485	486565.6	3802900
J488	486565.6	3802026
J489	485790.8	3802940
J492	485790.8	3801986
J493	485016	3802920
J496	485016	3802006
J498	484122	3802026
J499	483446.6	3802920
J502	483406.8	3802006
J503	489049	3801311
J506	489068.8	3800377
J507	488234.4	3801311
J510	488234.4	3800377
J511	487400	3801231
J515	486645.1	3801251
J519	485810.7	3801251
J523	484976.3	3801192
J527	484161.8	3801311
J531	483426.7	3801311
J535	489009.2	3799670
J538	489029.1	3798776
J539	488214.6	3799650
J542	488214.6	3798935
J543	487419.9	3799690
J546	487419.9	3798875
J547	486605.4	3799650
J550	486605.4	3798915
J554	485792.7	3798881
J558	484957.9	3798805
J562	484180	3798805
J563	483364.2	3799716
J566	483383.2	3798824
J567	488980.1	3798065

Appendix 9. Continued

J570	488999.1	3797192
J571	488202.2	3798046
J574	488221.2	3797249
J575	487386.4	3798065
J577	486589.5	3798141
J579	485792.7	3798046
J581	484976.9	3798065
J583	484180	3798027
J585	483421.1	3798046
J588	484976.9	3797230
J589	485792.7	3796471
J591	485014.8	3796547
J594	485830.6	3795617
J595	488259.1	3796509
J598	488259.1	3795636
J599	489037	3796528
J602	489056	3795599
J603	485906.5	3794821
J605	488240.2	3794878
J607	489018	3794840
J610	489018	3794005
J611	487329.5	3793246
J614	487348.4	3792411
J615	486551.6	3793246
J618	486551.6	3792411
J619	485773.7	3793265
J622	485811.7	3792354
J623	488999.1	3793189
J626	488999.1	3792392
J627	489018	3791538
J630	488999.1	3790817
J631	488202.2	3791519
J634	488202.2	3790760
J636	487367.4	3790836
J638	486570.6	3790798
J640	485830.6	3790779

Appendix 9. Continued

J641	489018	3790077
J643	488183.2	3789983
J645	487329.5	3790058
J647	486589.5	3790040
J649	485773.7	3789983
J652	486551.6	3789110
J1654	489829.2	3807734
J1655	489826.6	3806909
J1694	489777.9	3806036
J1695	489777.9	3805242
J1704	489811.3	3804477
J1705	489830.8	3803800
J1714	491444.8	3807001
J1660	490583.9	3807632
J1663	490576.2	3806955
J1682	490576.2	3806053
J1725	491470.6	3807635
J1688	491338.9	3806075
J1683	490560.9	3805288
J1708	490677.5	3804501
J1685	491341.1	3805257
C2	489415.6	3793578
C3	489436.1	3790432
C343	490571.6	3807313
C344	491458	3807314
C348	490568.3	3805589
C349	491332.3	3805589
C353	490642.2	3804131
Resv1	488388.3	3839411
[VERTICES]		
;Link	X-Coord	Y-Coord
MainP1	494761.9	3839162
M34	490429.3	3803197
M34	489407.5	3802398

Appendix 9. Continued

[LABELS]					
;X-Coord	Y-Coord	Label \& Anchor Node			
[BACKDROP]					
DIMENSIONS		488804	3787114	502129.5	3841932
UNITS		None			
FILE					
OFFSET		0	0		
[END]					

VITA
Monika Ghimire
Candidate for the Degree of
Master of Science
Thesis: GIS AND HYDROLOGICAL SIMULATION MODEL INTEGRATED FEASIBILITY STUDY OF IRRIGATION DEVELOPMENT UNDER SALINITY

Major Field: Agricultural Economics
Biographical:
Education:
Completed the requirements for the Master of Science in Agricultural Economics at Oklahoma State University, Stillwater, Oklahoma in July, 2012.

Completed the requirements for the Bachelor of Science in Environment Management at Pokhara University, Kathmandu, Nepal in 2008.

Experience:
Graduate Research Assistant, Department of Agricultural
Economics, Oklahoma State University, August 2010 to Present.
Environmental Impact Analyst MaxTech Study and Services, September 2008 to May 2010.

Professional Memberships:
Agricultural and Applied Economics Association (AAEA) - Member

Name: Monika Ghimire
 Date of Degree: July, 2012
 Institution: Oklahoma State University Location: Stillwater, Oklahoma
 Title of Study: GIS AND HYDROLOGICAL SIMULATION MODEL INTEGRATED FEASIBILITY STUDY OF IRRIGATION DEVELOPMENT UNDER SALINITY

Pages in Study: 129

Candidate for the Degree of Master of Science

Major Field: Agricultural Economics

Scope and Method of Study: This study estimated net irrigation benefits of irrigation development from the proposed Cable Mountain Reservoir (CMR) on the North Fork of the Red River in Southwestern Oklahoma to Tillman terrace Area (TTA) of Western Tillman County. Part of the benefits from the CMR might come from replacing the largely depleted groundwater in the TTA. The area of irrigation capability lands, and the length and route of pipelines were identified using GIS in TTA. This study also determined the cost of the pipeline and the net returns of irrigation from yield increment with the aid of the EPANET a hydrological simulation model and mathematical optimization model, respectively. The NPVs of the areas for four different designs of irrigation system for pivot irrigation was estimated at different EC levels of irrigation water and cotton prices.

Findings and Conclusions: Total irrigable areas of 68,000 acres within 543 full and partial pivot circles were identified. The length of main, lateral, and final pipelines were 41,133 , and 151 miles, respectively. The size of main pipeline ranged from 48 to 120 inches, lateral pipeline ranged from 12 to 36 inches, and final pipes were 8 to 10 inches. Design 1A allowed all producers to irrigate simultaneously at 600 GPM. The total annual cost of the irrigation system was approximately $\$ 950$ per acre. At this cost, NPV per acre was feasible for the cotton lint price of 75 cents (at an EC levels less than and equal to 2.2 $\mathrm{mmhos} \mathrm{cm}^{-1}$) and more per pound at EC levels of $0.9,1.5,2.2$ and $3 \mathrm{mmhos} \mathrm{cm}^{-1}$. Design 1 B was designed to schedule the irrigation alternately to the north and south of the laterals of Design 1A irrigation system. With an approximate total cost of $\$ 830$ per acre this irrigation system was feasible for cotton price of 70 cents (at EC levels less than and equal to $2.2 \mathrm{mmhos}_{\mathrm{cm}^{-1}}$) and more for $0.9,1.5,2.2$, and $3 \mathrm{mmhos}_{\mathrm{cm}^{-1} \mathrm{EC}} \mathrm{levels}$. Design 2 divided the irrigable acreages into two areas. With total annual cost of $\$ 825$ per acre, Design 2 system was feasible at the cotton price of 70 cents (at EC levels less than and equal to $2.2 \mathrm{mmhos} \mathrm{cm}^{-1}$) and more for $0.9,1.5,2.2$, and $3 \mathrm{mmhos}_{\mathrm{cm}^{-1} \mathrm{EC}} \mathrm{levels}$. Design 3 system divided the irrigable land into four areas to allow producers to irrigate one area at a time with 800 gpm of individual pivot demand. This design was feasible for cotton price of 65 cents (at EC levels less than and equal to $1.5 \mathrm{mmhos} \mathrm{cm}^{-1}$) and more for $0.9,1.5,2.2$, and $3 \mathrm{mmhos} \mathrm{cm}^{-1}$ EC levels. The analysis showed that the NPV and irrigation water increased with increasing cotton price and decreased with increasing EC levels in linear pattern. The study suggests that economies can be obtained through a combination of pipe sizing and by increased cooperation or utilization of the pipeline.

[^0]: Source: OSHA, US Department of Labor

[^1]: Source: RS Means Facilities Construction Cost Data

