

UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

MODEL-DATA SYNTHESIS IN TERRESTRIAL ECOSYSTEM MODELING:

INVERSE ANALYSIS AND INVERSE UNCERTAINTY ANALYSIS

A Dissertation

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

By

TAO XU

Norman, Oklahoma

2005

UMI Number: 3163318

3163318
2005

UMI Microform
Copyright

All rights reserved. This microform edition is protected against
 unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
 Ann Arbor, MI 48106-1346

 by ProQuest Information and Learning Company.

MODEL-DATA SYNTHESIS IN TERRESTRIAL ECOSYSTEM MODELING:

INVERSE ANALYSIS AND INVERSE UNCERTAINTY ANALYSIS

A Dissertation APPROVED FOR THE
DEPARTMENT OF MATHEMATICS

BY

 Dr. Luther White

 DR. Yiqi Luo

Dr. Kevin Grasse

 Dr. Semion Gutman

 Dr. S. Walter Wei

c Copyright by TAO XU 2005
All Rights Reserved

ACKNOWLEDGEMENTS

I am very grateful to my major advisors, Dr. Luther White and Dr. Yiqi Luo, for their

invaluable advice and resourceful ideas that they gave to me during this work. I also

thank them for their encouragement and support in guiding me into the field of ecosystem

modeling.

I would like to express special thanks to Dr. Semion Gutman, Dr. Kevin Grasse and Dr.

Walter Wei for their advice and help in various ways. In particular, I sincerely thank Dr.

Semion Gutman for his supervision on my teaching when I served as a teaching assistant

of his class, I thank Dr. Kevin Grasse for helping me understanding stochastic differential

equation theory, and I thank Dr. Walter Wei for all inspiring talks and many helps in

study and in life.

As always, my big family well deserves my love and thanks.

 IV

TABLE OF CONTENTS

CHAPTER 1 Introduction …………………………………………………………. 1

CHAPTER 2 Model description and inverse problem formulation …………….. …6

 2.1 Model description ……………………………………………………………..9

 2.1.1 State-space model ……………………………………………………….9

 2.1.2 Mapping from the state space to the data space ………………… ……. 11

 2.1.3 Problem formulation ……………………………………………… ….. 11

 2.2 Methods used in the study …………………………………………… …….. 15

 2.3 A practical carbon sequestration model ………………………………….. .. . 16

CHAPTER 3 Deterministic optimization …………………………………………. 21

 3.1 Derivation of the gradient vector)(cJ∇ ……………………………………. 22

 3.1.1 Finite difference method for the model equation …………………... …22

 3.1.2 First derivative of the cost function ……………………………. . 24)(cJ

 3.2 Hessian matrix of the cost function …………………………………… 29)(cJ

 3.3 Minimization algorithms …………………………………………………… . 40

 3.3.1 Constrained steepest descent optimization method …………………… 40

 3.3.2 Constrained conjugate gradient optimization method ………………… 42

 3.4 Numerical results ………………………………………………………….... 42

CHAPTER 4 Stochastic optimization …………………………………………..... 46

 4.1 GA Description ……………………………………………………………… 47

 4.1.1 General description of genetic algorithm …………………………….. 47

 4.1.2 Specifications of GA with respect to Model (2.1) ~ (2.6) …………….. 50

 V

 4.1.3 Numerical result using GA …………………………………………… 53

 4.1.4 Discussion of the numerical result …………………………………… 55

 4.2 Simulated annealing (SA) ………………………………………………….. 56

 4.2.1 General description of SA ……………………………………………. 56

 4.2.2 Numerical result ……………………………………………………… 60

CHAPTER 5 Bayesian statistical inference and parameter estimation ………….. 64

 5.1 Forward/inverse probability and Bayes’ Theorem …………………………. 66

 5.2 Proposing the inverse probability density function of Model (2.1) ………… 67

 5.2.1 The prior information …………………………………………………68

 5.2.2 The posterior probability density function (PPDF) p(c) …………… ...69

 5.3. An approximation approach for inverse uncertainty analysis …………….. 70

 5.4 A stochastic simulation approach for inverse uncertainty analysis

 – Markov chain Monte Carlo (MCMC)…………………………………... 72

 5.4.1 Markov chain ………………………………………………………… 73

 5.4.2 Stationary distribution ……………………………………………….. 74

 5.4.3 Metropolis-Hastings (M-H) MCMC ……………………………….. . 75

 5.4.4 MCMC estimator and output analysis ……………………………….. 77

 5.5 Toward a more efficient sampling method ……………………………….. . 79

 5.5.1 Symmetric proposal probability ……… …………………………...... 79

 5.5.2 Stationary proposal probability ……… …………………………….. 80

 5.5.3 The proposal probability that increases the sampling efficiency …… 81

 5.6 Application to the seven-pool model and numerical results ……………… 83

 5.6.1 Numerical result of the analytical approach ………………………… 83

 VI

 5.6.2 Numerical result of the MCMC approach with the standard M-H

 algorithm ……………………………………………………………… 92

 5.6.2.1 Specifications of the MCMC sampling using the

 standard M-H algorithm ……………………………………… 92

 5.6.2.2 Output analysis ……………………………………………….. 96

 5.6.3 MCMC with fast sampling method ………………………………….. 96

 5.6.3.1 Specifications of the MCMC sampling ………………………. 97

 5.6.3.2 Output analysis ……………………………………………….. 100

 5.7. Result comparison ………………………………………………………… 100

 5.8 Data comparison …………………………………………………………… 102

 5.9 Model prediction …………………………………………………………… 105

CHAPTER 6 CONCLUSIONS AND FURTHER WORK ……………………… 108

REFERENCES …………………………………………………………………… 112

 VII

ABSTRACT

In this thesis we investigate various inversion approaches for a general type of

biogeochemical cycle model that describes the carbon sequestration mechanism of

terrestrial ecosystem. We formulate the inverse problems in two approaches – a

deterministic inverse approach and a probabilistic inverse approach. We first develop the

deterministic inverse techniques by calculating the first and second derivatives of the cost

functional. Algorithms that depend on the gradient information are proposed. Then,

considering the stochasticity in the model, we introduce two stochastic optimization

methods – genetic algorithm and simulated annealing, to estimate the model parameters.

We further consider the inverse uncertainty of the problem and introduce the Bayesian

paradigm to formulate a posterior probability density function that describes the inverse

uncertainty. Function approximation approach and Markov Chain Monte Carlo technique

are then used to study the probability density function to reveal the inversion result. To

increase the simulation efficiency, we combine Hessian matrix information with the

proposal probability density function in the Metropolis-Hastings algorithm for fast

sampling. All the approaches are tested against a practical numerical model that describes

forest ecosystem carbon sequestration. The thesis concludes by comparing the various

approaches and by discussing further issues that needs to be studied.

 VIII

CHAPTER 1

INTRODUCTION

The rapid increase in atmospheric carbon dioxide (CO2) concentration provides an urgent

need to quantify potential carbon sinks in terrestrial ecosystems. In the past two decades,

more than a dozen biogeochemical models have been developed to predict terrestrial

carbon sequestration in response to increasing atmospheric CO2 (e.g., Parton et al. 1987;

Rastetter et al. 1997; Comins and McMurtrie 1993; Mellillo et al. 1993; Luo and

Reynolds 1999; Thompson and Randerson 1999). Most of those models share a common

compartmental structure that partitions photosynthetically fixed carbon into several pools.

The number of carbon pools in each model may vary according to different ecosystem

types, for example, two-pool model (Rastetter et al. 1997) verses twelve-pool model

(Thompson and Randerson 1999), seven-pool model (Luo et al. 2003) verses twelve-pool

model (Luo and Reynolds 1999), but the general compartmental model structure is the

same. The capacity of ecosystem carbon sequestration is strongly related to the residence

times of carbon in these pools. Inverses of the residence times are parameters called the

 1

carbon transfer rates that indicate carbon decomposition speeds of various carbon pools.

It is necessary to know these carbon transfer rates from observational data sets to quantify

the carbon sequestration potential of a terrestrial ecosystem under the constantly

changing atmospheric CO2. This research is focused on applying and developing both

deterministic and stochastic inversion techniques to solve the inverse problem of the

general type of biogeochemical cycle models that describe terrestrial ecosystem carbon

cycles. The motivation of the study is mainly based on the following:

1. Global warming and carbon cycle study is becoming increasingly important. With

the accumulation of observational data and the development of various model

types, there is an increasing recognition that one should combine terrestrial carbon

observational data and process models in systematic ways.

2. Parameter estimation can be a formidable task given the complexity of the

ecosystem models and the often limited amount of data, though ecologists’ prior

knowledge can be utilized to constrain model parameters, the prior information is

usually not sufficient to accommodate multiple observational data sets.

3. The randomness in the model functions and the non-linearity of objective

functions with respect to parameters often mean multiple optimal solutions. In

such a case, it is necessary to introduce both local and global optimization

techniques.

4. Ecosystem measurement is subject to uncertainty that affects parameter

estimation and correspondingly the model projection. It is being realized by the

global change research community that data uncertainty is an integral part of

 2

observation and is as important as data values themselves from the model-data

synthesis standpoint and the prediction standpoint. Thus uncertainty study poses

an indispensable component in this thesis. It is necessary to introduce

probabilistic approaches that not only give parameter estimations but also

estimation uncertainties.

The goal and also the contribution of the study are mainly fivefold:

1. To formulate a general type of terrestrial ecosystem inverse problems and develop

inverse solutions from both a deterministic approach and a stochastic approach,

and test the techniques with a practical carbon model.

2. To apply probabilistic inversion technique and study the information content of

the observational data sets on model parameters. The study covers parameter

estimation, uncertainty estimation, parameter identifiability and prediction

uncertainty simulation. Two approaches for studying the inverse uncertainty, an

analytical approach using function approximation and a simulation approach

using Markov chain Monte Carlo (MCMC), are developed. Both approaches

reveal the information content of the posterior probability density function

(PPDF) of the model parameters.

3. To develop an efficient algorithm that reduces computational cost. MCMC

simulation of ecosystem model over a long time span can be very time-

consuming. It is always a good practice to introduce fast algorithms to improve

the MCMC sampling efficiency whenever possible. In the study, a Metropolis-

 3

Hastings (M-H) type of algorithm is coupled with the Hessian matrix information

of the cost function to greatly increase the sampling efficiency.

4. To compare what these various approaches reveal by solving a state-of-art

biogeochemical model describing the carbon cycle of forest ecosystem. The

interesting aspect of the model is that the data sets cannot completely determine

the model parameters and is thus ill-conditioned. The comparison will make clear

how the different approaches reveal the same fact, but from different perspectives.

5. Inverse problems are intensively studied and applied in various mathematical and

engineering fields, but their application to the ecological study is still in an early

stage. By synthesizing various approaches in the context of an ecosystem model

inverse problem, we hope to build a platform for data-model synthesis of general

types of biogeochemical models to benefit future research of this area.

The organization of the paper is the following. In Chapter 2, we give an introduction of

the general inverse problem, as well as the ecosystem carbon model description. We then

formulate the inverse problem in both a deterministic and a stochastic approach. We also

introduce a practical model describing forest ecosystem carbon sequestration. This model

will be used for numerical testing throughout the thesis. In Chapter 3, we explore the

deterministic optimization approach by developing the Jacobian and the Hessian matrices

for the cost function of the general model type. A steepest-descent-type of algorithm and

a conjugate-gradient-type of algorithm are introduced. One algorithm is then applied to

the practical numerical model to search for an inverse solution. The implication of the

inversion result is discussed. Considering the possible multi-optima caused by

 4

stochasticity, in Chapter 4 we introduce two global optimization techniques, genetic

algorithm (GA) and simulated annealing (SA), and apply both of them to the model with

numerical testing. In Chapter 5, considering the uncertainty in the observational data sets,

we introduce the Bayesian framework and formulate the inverse problem as a problem of

determining the joint probability of the model parameters. We propose a posterior

probability density function (PPDF) of the model parameters under the assumption that

the observational data has Gaussian type of random errors. Two methods to analyze the

information in the PPDF are then introduced: one is the Laplace approximation approach,

which is to approximate the PPDF by a Gaussian function; the other approach is the

Markov chain Monte Carlo (MCMC) simulation, which is to sample the PPDF directly

using the Metropolis-Hastings (M-H) type of algorithm. Both approaches reveal the

parameter value information, the parameter correlation information and the estimation

uncertainty. Applications to the numerical model are made and the results are compared.

Along the discussion in Chapter 5, we also propose an efficient sampling algorithm that

utilizes the Hessian matrix information to tremendously increase the sampling efficiency

and thus reduce the computational cost of forward simulation. In Chapter 6,

summarization and conclusions about the various inverse approaches are made, and

issues for further study are listed.

 5

CHAPTER 2

MODEL DESCRIPTION AND

INVERSE PROBLEM FORMULATION

Inverse problems are widely studied in applied mathematics, seismology, oceanography,

atmosphere science and other engineering and science fields (e.g., Tarantola, 1987;

Hensel, 1991; Enting, 2002). They are defined as problems of finding the cause of an

observed effect, in that “the chain of calculation or inference was in the opposite

direction to real-world causality” (Enting, 2002). An inverse problem is always coupled

with a forward problem that provides the effect of a given cause. Generally, an inverse

problem is related to an operator equation:)(cFz = with ZF →Ω: being a possibly

nonlinear operator between two metric spaces Ω and Z . The forward problem is to

determine the effect of a given cause, whereas the inverse problem is to determine the

cause given the effect. The space Ω is commonly denoted the model space or the

 6

parameter space, which is assumed as a finite dimensional space in this thesis. The space

Z is denoted as the data space. If is a perfect model of a physical process and is

some data quantity without any error, then the system is perfectly deterministic.

However, in reality is unlikely to hold for a practically measured quantity ,

since measurements may have finite precision or errors. In addition, the model may be

inaccurate in the sense that the operator may not model all aspects of the physical

processes that produce the observations. With these considerations in mind, the model

should be more realistically written as

F z

)(cFz = z

F

ecFz +=)(with e being an error term

describing observation error and possibly model error as well.

The problem of finding c given z or rather given the pair { }ez, is called an inverse

problem. Inverse problem can be classified as well-posed or ill-posed. A problem is well-

posed if there exists a unique, stable solution. In practice, it is commonly true that the

forward problems are well-posed while the corresponding inverse problems are ill-posed.

The following definition of a well-posed inverse problem is attributed to Hadamard

(1923):

Definition. (Well-posed inverse problem). Let Ω and Z be two normed spaces and let

 be a continuous operator. The inverse problem of ZF →Ω:)(cFZ = is well-posed in

the sense of Hadamard if the following three conditions hold:

1. Existence: there is a solution Zzc ∈∀Ω∈ , with zcF =)(.

2. Uniqueness: There exists at most one solution Ω∈c for any Zz∈ .

3. Stability:)(,0 εδε ∃>∀ so that)(||)()(|| 21 εδ<− cFcF whenever ε<− |||| 21 cc .

 7

Problems for which at least one of the three conditions above fails to hold are called ill-

posed. Whether a problem is well-posed or ill-posed depends on the operator ZF →Ω:

as well as the spaces and Ω Z . In practice, it is rare that an inverse problem is well-

posed. Ill-posed inverse problems are more common due to the incomplete data

information, the choice of admissible set and model structures.

In particular, for ecosystem inverse problem, the description for parameter-estimating

procedures can be phrased in the following way: given a relation , where F is an

general operator representing an ecosystem model in the form of a set of equations (linear

equations, ordinary differential equations or partial differential equations) or simply a

function, c represents either an unknown function or a set of parameters, and z is some

observation (if c is an unknown function of a finite-parametric family of functions, then

where

zcF =)(

),,...,,()(21 tcccctcc m== ()mcc ..1 is a vector of parameters and t is an

independent variable), then the question is to find parameters by

solving the minimization problem:

()mccc ..1=

()[]{ }zcFJc −∈)(minarg

where J is a positive functional, Ω∈c where Ω is an admissible set of c.

Depending on the mapping F, the parameter space and the data space, the above

minimization problem may have a unique solution (for example certain continuity and

convexity conditions of J and the compactness condition of the admissible set Ω are met).

 8

In many situations J may have several local solutions and global ones over Ω (for

example if the convexity of J over Ω is violated). Various local and global techniques

such as the descent-type-of algorithms, the global optimization techniques (simulated

annealing, genetic algorithm, tabu search, downhill-simplex method, etc.) are invented to

handle different situations. Moreover, in ecosystem modeling and observation, due to the

complexity of the actual ecosystem and the imperfection of the mathematical models and

the measurement methods, modeling uncertainty and observational uncertainty always

exist. It is common that observation z contains relatively large errors so that instead of

some “true” observation , one has observation z ezze += . How is the probabilistic

perturbation of data reflected in the parameter estimation? To address such a question,

one needs to follow a probabilistic approach.

Based on the above scenarios we will discuss different effective approaches respectively

in this study. But first we give the description of the general terrestrial carbon cycling

model, the inverse problem formulation and a practical seven-pool carbon model

parameterized with actual observational data sets.

2.1 Model description

2.1.1. State-space model

 9

The general mathematical model describing carbon cycle of a terrestrial ecosystem is

given by the following system of differential equations (Luo et al. 2003; White et al.

2002):

0)0(

)()()()(

XX

tBUtACXt
dt

tdX

=

+= ξ
 (2.1)

where,

1. is a m×1 vector describing carbon pool sizes. T
mxxxX)...(21=

2. A is an m×m matrix describing the proportional carbon distribution among

various carbon pools. It is taken as a constant matrix in the study.

3. C = diag (c) is an m×m diagonal matrix with the diagonal elements given by the

carbon transfer coefficients: .),...,,(21
T

mcccc =

4. B is an m×1 vector that partitions the system input.

5. ξ(.) is a real valued function given as a time series with prominent seasonal

periodicity to simulate the seasonal modulation effect on the carbon

decomposition mechanism. The function is mainly determined by seasonal

moisture and temperature variation. Usually ξ(.) is contaminated with

disturbances.

6. U(.) is a system input function given as a time series modeling carbon input into

the system. Usually U(.) is contaminated with disturbances as well.

7. X0 is an initial condition vector.

 10

2.1.2 Mapping from the state space to the data space.

Assume there are s data sets skZ k ...,2,1, =
(

 in the observation. Corresponding to the s

data sets, we have the following observation operators: with each of the

’s taking the general form of

skk ,...2,1, =φ

kφ

skHc TkkTTk ,...2,1, =+= ϕφ (2.2)

 where H is an m×m constant diagonal matrix and is an m×1 constant vector. T

represents transpose of vector.

kϕ

2.1.3 Problem formulation.

We write the objective function in a discrete form for the convenience of numerical

analysis. Approximation errors between the continuous model and its discrete version are

neglected in the study, although the errors do propagate and influence the assumed

observation errors and is an interesting question in its own right. Let denote the

vector of state variables at all time steps from a finite difference method scheme that

solves the equation (2.1) numerically. Let denote the mapping matrix from

to data set

)(~ cX

)(ckΦ)(~ cX

skZ k ,...,2,1, =
(

 (with a slight abuse of notation, skZ k ,...,2,1, =
(

 also denotes

the vector consisting of the observation time series of the k-th data set). Let the error

covariance matrix for the k-th data set be . Assume the errors of different data

sets are independent. Then the cost function is formulated as:

)cov(kE

 11

() () ()∑
=

−
Φ−Φ−=

s

k

kkkTkk cXcZEcXcZcJ
1

1)(~)()cov()(~)(
2
1)(

((
 (2.3)

However, there are situations where the data sets used may not give us complete

information about the parameter c, as in the case of an ill-conditioned inverse problem. It

is necessary to include regularization scheme to allow the prior selection of some

parameter from a feasible set of parameters. The most common and well-known

regularization scheme is the Tikhonov (Tikhonov 1963) regularization. By introducing

the Tikhonov regularization, we form the following weighted sum of data information

and prior information about the parameter:

() () ())(),(
2
1)(~)()cov()(~)(

2
1)(

1

1 priorprior
s

k

kkkTkk ccccGcXcZEcXcZcJ −−+Φ−Φ−= ∑
=

−
λ

((

 (2.4)

In the above, is some prior information about the parameter c, λ specifies the

weight of the prior information, is a linear operator in the form of a matrix. In

applications, is usually either the identity matrix or some approximation to the prior

covariance matrix of the parameter c. Depending on specific problems, λ can be chosen

as a sequence that tends to zero in iterative optimization techniques, or it can be chosen

based on the “L-curve” (see [Hansen] for a detailed discussion about “L-curves” for

regularization). But we will see later that there is a natural correspondence between the

choice of the regularization parameter λ and the setting-up of the Bayesian prior

information.

priorc

G

G

 12

If, in particular, we assume the observation errors within each data set skZ k ,...,2,1, =
(

are also independent with variances skk ,...,2,1, =σ , then the off-diagonal elements in the

covariance matrix are zeros and the cost functional (2.4) can be written in the

following simple quadratic form:

)cov(kE

>−−<+

−−= ∑ ∑
= =

priorprior

s

k

N

j

k
j

k
j

Tkk
j

k
j

Tk

k

ccccG

ZtcXcZtcXccJ
k

),(
2
1

]))(()(][))(()([1
2
1)(

1 1
2

λ

φφ
σ (2.5)

where is the j-th observation of the k-th data set k
jZ kZ

(
 (kNjsk ,...,1;,...,1 ==), is

the mapping vector of the k-th data set.

)(ckφ

To formulate the optimization problem, let Ω denote be the admissible set for parameter

c in Rm. The problem is to find such that Ω∈opc

{ Ω∈= ccJcJ op |)(min)(} (2.6)

Solving problem (2.6) gives a set of optimal point values for parameter c. In ecosystem

parameter estimation problems, it is reasonable to require the set being compact to

allow the existence of the optimal solution. In fact, one often has the case that

, where are closed intervals defining the physically feasible ranges of the

Ω

i
n
i I1=∏=Ω iI

 13

parameters (e.g., White et al. 2002; Luo et al. 2003). In the case that ξ(.) and U(.) are

modeled by Lipschitz continuous functions, it is easily seen the J(c) is continuously

differentiable and thus the existence of the optimal solutions (Rabenstein, 1972).

The above discussion formulated the inverse problem as a least-squares optimization

problem. As was mentioned earlier, parameter estimation uncertainty always exists due to

the uncertainty in the observational data. To study the estimation uncertainty of the

parameters caused by the uncertainty in the data source, one needs to formulate the PPDF

for the parameters. A systematic treatment of inverse problems from a probabilistic point

of view can be found in Tarantola (1987). We will defer the precise formulation of the

probabilistic inverse problem of Model (2.1) ~ (2.3) till Chapter 5 after we introduce the

Bayesian inverse probability. But roughly, the probabilistic formulation can be phrased in

the following manner: Let the model equation (2.1) and the observation operators (2.2) be

combined such that the forward mapping is denoted by ZcF →Ω∈: , and let the

observation be given by with , where e represents the observational

error information. Given the assumption that the error distribution is known, how to make

statistical inference on the model parameter c?. Baye’s theorem provides a theoretical

answer. In Bayes’ theorem, the posterior knowledge is combined with the prior

knowledge, and the corresponding conditional probability then gives the inverse solution

in a probabilistic manner.

eZ ecFZ true
e +=)(

 14

2.2 Methods used in the study

Corresponding to the above problem formulations, we develop both deterministic and

stochastic optimization techniques. The deterministic techniques are the gradient descent

type of algorithms that are mostly used in nonlinear optimization problems. They include,

for example, the steepest-descent method, the conjugate-gradient method, the quasi-

Newton method, and the Levenberg-Marquardt algorithm (see Press (1992) for detailed

discussions of the methods). Gradient-descent type of methods are mainly based on the

vector () miiccJcJ ,...1)()(=∂∂=∇ . Their advantages are the relative simplicity and low

computational cost; the main disadvantage is that if the surface J(c) has multiple minima

over the admissible set Ω , the algorithms then tend to find a local minimum near the

initial value of c rather than locate the global minimum. To find the desired minimum

point, some prior knowledge about the global optimal co should be utilized to start

searching: one either uses the Tikhonov regularization scheme or one simply starts from

 near to the global optimal and finds the first optimal point. The stochastic

approaches such as the genetic algorithm, simulated annealing, downhill simplex method,

tabu search, etc. are global search methods that tend to find the global optimal by

searching the whole space . They overcome the local-minimum pitfalls of gradient-

descent methods, but have the disadvantage of higher computational costs. The stochastic

approaches may be combined with gradient-descent methods for finding the global

minimum with increased efficiency. For example, a good discussion of global-local

hybrid optimization can be found in Goldberg (1999).

priorc

Ω

 15

More generally, as was mentioned above, since inverse problems are probabilistic in

nature, one should rather treat the parameters as random variables rather than

deterministic values. Bayesian inversion gives a probabilistic description of the model

parameters by packaging data information and prior knowledge in a posterior probability

distribution function (PPDF). Once this distribution function is known, the only thing left

is to study this function. One can then use different approaches such as Monte Carlo

integration, function approximation and MCMC simulations to reveal the information

content in the PPDF. We refer to Tarantola (1987) and Box & Tiao (1973) for a complete

discussion of inverse problems from a probabilistic point of view and discussions of

Bayesian analysis.

We will study the inverse problem formulated in (2.1) ~ (2.6) using the various

approaches mentioned above. For numerical testing purpose, we introduce the following

numerical model.

2.3 A practical carbon sequestration model

The following model describes the carbon sequestration mechanism of the Duke forest

ecosystem with a structure shown in Figure 2.1, and is parameterized with data sets

collected from the Duke forest Free Air CO2 Enrichment (FACE) from the year of 1996

to the year of 2000 (Luo et al. 2003). The model structure is the same as (2.1) with m = 7

and the following corresponding matrices and initial conditions:

 16

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
−

−
−

−
−

=

10.030.0040000
010.2960.275000

0.45 0.42 10.2750.4500
0001010.288
000010712.0
0000010
0000001-

A
.

TB)0000030.025.0(=

TX)9231385123694644100469(0 =

)(cdiagC = with Tcccc),...,,(721=

The two functions ξ(.) and U(.) are given by two time series shown in Figure 2.2. There

are six data sets: woody biomass, foliage biomass, litter-fall, carbon in forest floor,

carbon in forest mineral soil and soil respiration that can be used for the inverse problem

study. Corresponding to the six data sets, there are six mapping operators:

)55.055.07.045.055.025.025.0(
)1110000(

)00075.075.000(
)0000075.075.0(

)00000075.0(
)0000010(

76543216

5

4

213

2

1

ccccccc

cc

=
=
=
=
=
=

φ
φ
φ
φ
φ
φ

The admissible set Ω is a closed set formed by the Cartesian product of the following

intervals for each of the components of vector : Tcccc),...,,(721=

 17

6
7

6

4
6

5

3
5

3

3
4

4

2
3

3

4
2

5

3
1

4

10130.910370.1

10740.210480.5

10850.610740.2

10740.210480.5

10734.210479.5

10740.210480.5

10950.210700.1

−−

−−

−−

−−

−−

−−

−−

×≤≤×

×≤≤×

×≤≤×

×≤≤×

×≤≤×

×≤≤×

×≤≤×

I

I

I

I

I

I

I

 (2.7)

Throughout the numerical analysis in this study, the following standard deviations are

assumed to normalize the six given data sets:

4535,70,50,,5301.18, 654321 ====== σσσσσσ .

These standard deviations are mostly assumed to be proportional to the ranges of the

given data sets. However, relative small standard deviations are assumed for slow SOM

and passive SOM due to the limited amount of observations in these two data sets.

 18

Canopy photosynthesis

Foliage biomass
(X1)

Woody biomass
(X2)

Metabolic litter
(X3)

Microbes
(X5)

Structure litter
(X4)

Slow SOM
(X6)

Passive SOM
(X7)

CO2

CO2

CO2CO2

CO2

CO2

CO2

CO2

Figure 2.1. Structure of the seven-compartment model. There are seven carbon pools in

the model, connected by carbon transfer coefficients that partition carbon distribution

among various pools. (The figure was adopted from Luo et al. 2003 under author’s

permission.)

 19

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

6

8

10

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

3

Carbon Input

Seasonal Modulation Series

Figure 2.2. Time series in the numerical model (2.1). This figures shows the modeled

carbon input U(.) (above) by canopy photosynthesis, as well as the seasonal modulation

function (.)ξ (below) that models the combined effects of moisture and temperature on

the carbon transfer rates. It can be see that both of them have jumps and random noise

components, especially in U(.). Such time series are very common in ecosystem

observation.

 20

CHAPTER 3

DETERMINISTIC OPTIMIZATION

In this Chapter, we develop a framework for deterministic optimization algorithms of

model (2.1) ~ (2.6) by giving the gradient vector)(cJ∇ and the Hessian matrix .

The gradient vector is mainly used for giving descent direction. However, the

Hessian matrix is derived for three purposes throughout the study:

)(2 cJ∇

)(cJ∇

1. To be used in the function approximation approach to study the posterior

probability density function (PPDF) of parameters by approximating the PPDF

using Gaussian function.

2. To be used for the proposal distribution for fast sampling of the PPDF in MCMC

simulation.

3. To be used in the steepest-descent type of algorithms such as the Levenburg-

Marquart algorithm, Newton’s method etc. where the second derivative

information is needed.

 21

3.1 Derivation of the gradient vector)(cJ∇

We first compute () miiccJcJ ,...1)()(=∂∂=∇ . Similar derivation can be found in White et.

al. (2002) for single observation data set (soil respiration). Here we derive the method

under a slightly more general setting where the observation consists of multiple data sets

and the prior information is included in the cost function. Throughout the derivation,

, , U , and is the j-th observation

time of the k-th data set. To facilitate the computation, we introduce the adjoint equation

similarly as in White et al. (2002).

)(jj tξξ = ()Tjmjjjj txtxtxtXX)(,...,)(),()(21==)(jj tU= k
jt

3.1.1 Finite difference method for the model equation

Let be an equally spaced partition of the time interval [0, T]. With finite-

difference method, Equation (1) is solved numerically by the following steps:

{ }N
jjt

0=

1,...2,1,0

])1([])1([1111

−=

−++−+=− ++++

Nj

dtUdtUBdtACXdtACXXX jjjjjjjj θθξθθξ

When j = 0, we have

])1([])1([][010011 dtUdtUBXACdtIXACdtI θθξθθξ −++−+=−

When j = 1, … N-1, we have

 22

])1([][])1([
......

])1([][])1([

111

122211

dtUdtUBXACdtIXACdtI

dtUdtUBXACdtIXACdtI

NNNNNN −−− −+=−+−+−

−+=−+−+−

θθθξξθ

θθθξξθ

The above can be written as an algebraic system:

1

1

00

1

1

21

1

0
...
0

)()(

)(

)()(
......

)()(
)(

×

×

×

×−

+

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

−
mN

mN

mN

mNmNNN

f

cXcB

cX

cBcB

cBcB
cB

(

)

(

)

)
 (3.1)

where].)1([],)1([)(],[)(1dtUdtUBfACdtIcBACdtIcB jjjjjjj −−+=−+=−= θθξθθξ
)

and

1

2

1

1

)(
...

)(
)(

)(

×

×

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

mNN

mN

cX

cX
cX

cX
(

,

1

2

1

1 ...

×

×

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

mNN

mN

f

f
f

f
(

Set , Equation (4) is then written

as:

mNmNNN

mNmN

cBcB

cBcB
cB

cB

×−

×

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

−
=

)()(
......

)()(
)(

)(~

1

21

1

)

)

 23

f

cXcB

cXcB
(

)

(
+

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

0
...
0

)()(

)()(~
00

 (3.2)

Now we have derived the algebraic equation that numerically approximates the solution

of its continuous version Equation (2.1).

3.1.2 First derivative of the cost function)(cJ

We use cost function (2.5) to derive the derivative of . The cost function (2.5) can be

written in a matrix form:

)(cJ

>−−<+−Φ−Φ= ∑
=

priorprior
s

k

kkkTkkk

k

ccccGZcXPcZcXPccJ),(
2
1])()([])()([1

2
1)(

1
2 λ

σ
((((

 (3.3)

where

))(()(
...

)(
)(

)(

kk mNN
Tk

Tk

Tk

k

c

c
c

c

×
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=Φ

φ

φ
φ

 and

)1)((

2

1

...

×
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

k
k mN

k
N

k

k

k

Z

Z
Z

Z
(

are the matrices consisting the mapping operator vectors of the k-th data set and the

observed data points of the k-th data set, respectively. is a projection matrix

that projects the space of the state variable at all time steps

mNmN
k

kP ×

{ }N
jjt

0=
to the space of state

variables associated with observation time steps { } kN

j
k

jt
1=
 of the k-th data set.

 24

Take the derivative of the cost function with respect to c, we have:

)()()(

')(])')(()([])()([1

)]()')([(])()([1')(

1
12

1
2

IIIIII

cccGccXDPcZcXPc

cXPccDZcXPcccDJ

o
s

k
mN

kkTkkk

k

s

k

k
mNN

kTkkk

k
kk

++=

−+Φ−Φ+

Φ−Φ=

∑

∑

=
×

=
×

λ
σ

σ
(((

(((

 (3.4)

with

∑

∑

=
×

=
×

Φ−Φ=

Φ−Φ=

s

k
N

kkTkkk

k

s

k

k
mNN

kTkkk

k

ccXDPcZcXPcII

cXPccDZcXPcI
kk

1
12

1
2

)')(()(])()([1)(

)()')((])()([1)(

(((

(((

σ

σ

')()(cccGIII o−= λ

To compute (I), we need to compute . Since the mapping operators are of the

form in general, we have

)')((ccD kΦ

TkkTTk Hcc ϕφ +=)(

∑
=

==
m

i

kT
ii

kTTk HecHcctcD
1

''']))(([φ

i.e.,

)(1

1

1 .
.

'...
.

.
')')((

kk mNN

kT
m

kT
m

m

kT

kT

k

He

He

c

He

He

cccD

×
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

++

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=Φ (3.5)

Now

 25

()[]
()[]
()[]

()[] ⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−+

−+

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−++

+−+
=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

++

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−Φ=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

++

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

×

−Φ=

Φ−Φ=

∑ ∑

∑ ∑

∑
∑

∑

∑

∑

∑

= =

= =

=

=

=

=

×

=

=

s

k

N

i

k
i

kT
m

k
i

k
i

TkkT

k

s

k

N

i

k
i

kTk
i

k
i

TkkT

k

T

s

k
N

i

k
i

kT
m

k
i

k
i

TkkT
m

N

i

k
i

kTk
i

k
i

TkkT

k

s

k
k
N

kT
m

kkT
m

m

k
N

kT

kkT

Tkkk

k

k
N

k

k

mNN

kT
m

kT
m

m

kT

kT

s

k

Tkkk

k

s

k

kkTkkk

k

k

k

k

k

kk

k
kk

tXHeZtcXHc

tXHeZtcXHc

c

tXHeZtcXHcc

tXHeZtcXHcc

tXHe

tXHe

c

tXHe

tXHe

cZcXPc

tX

tX
tX

He

He

c

He

He

c

ZcXPc

cXPccDZcXPcI

1 1
2

1 1
12

1

1

1
11

2

1

1

1

11

12

2

1

)(1

1

1

1
2

1
2

)())((1
.
.

)())((1

'

)())(('

...)())(('
1

)(
.
.

)(

'...

)(
.
.

)(

'])()([1

)(
.

)(
)(

.
.

'...
.

.
'

])()([1

)()')((])()([1)(

ϕ
σ

ϕ
σ

ϕ

ϕ

σ

σ

σ

σ

((

((

(((

 (3.6)

To calculate (II), we need to compute)')((ccXD
(

.

From Equation (4), we have

1

00

1

1

21

1

1

21

1

0
...

0
)(')(

)')((

)()(
......

)()(
)(

)(

)')(()')((
......

)')(()')((
)')((

×

×

×−

×××−

××

×

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛
−

+

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

−

mN

mN

mNmNNN

mNmNmmNmmN

mmmm

mm

cXccBD

ccXD

cBcB

cBcB
cB

cX

ccDBccBD

ccDBccBD
ccDB

)

(

)

)

(

)

)

Then

 26

'

))(()()1(
...

))(()()1(
))(()()1(

)()'()()'()1(
...
...

)()'()()'()1(

)(')()(')(
...

)(')()(')(
)(')()(')(

)')((

)()(
......

)()(
)(

11

2211

1100

111

1100

111

2211

1100

1

1

21

1

c

cXdiagAXdiagA

cXdiagAXdiagA
cXdiagAXdiagA

dt

cXcAdiagcXcAdiag

cXcAdiagcXcAdiag

dt

cXccDBcXccBD

cXccDBcXccBD
cXccDBcXccBD

ccXD

cBcB

cBcB
cB

NNNN

mNNNNN

mNNNNN

mN

mNmNNN

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+−

+−
+−

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−−

−−

=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−
−

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

−

−−

×−−

×−−

×

×−

ξθξθ

ξθξθ
ξθξθ

θξξθ

θξξθ

)

)

)

(

)

)

i.e.,

'

))(()()1(
...

))(()()1(
))(()()1(

)')((

)()(
......

)()(
)(

11

2211

1100

1

21

1

c

cXdiagAXdiagA

cXdiagAXdiagA
cXdiagAXdiagA

dt

ccXD

cBcB

cBcB
cB

NNNN

NN

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+−

+−
+−

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

−

−−

−

ξθξθ

ξθξθ
ξθξθ

(

)

)

(3.7)

Now let

 27

1

1

.

.

.

×
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

mNNp

p

p where , then

1,

1,

.

.

.

×

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

mmj

j

j

p

p

p () mN
T

N
TT ppp ×= 11 .. and

()
()

()
()

()
'

))(()()1(

...))(()()1(

'

))(()()1(
.
.

))(()()1(

)(..)(

')(

)()(
..

)()(
)(

11

11001

11

1100

111

1

21

1

c
cXdiagAXdiagAp

cXdiagAXdiagAp
dt

c

cXdiagAXdiagA

cXdiagAXdiagA

ppdt

ccXD

cBcB

cBcB
cB

p

NNNN
T

N

T

mmNNNN

mm

m
T

Nm
T

mNmNNN

T

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+−+

++−
=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+−

+−

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

−

−−

×−−

×

××

×−

ξθξθ

ξθξθ

ξθξθ

ξθξθ

(

)

)

Set

∑
=

×

×−

Φ−Φ=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

−

s

k
mNmN

kkTkkk

k

mNmNNN

T

k
PcZcXPc

cBcB

cBcB
cB

p

1
2

1

21

1

))((])()([1

)()(
......

)()(
)(

((

)

)

σ

or take the transpose of both sides to give

∑
=−

−ΦΦ=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
−

−
s

k

kkKTkTk

k
T

N

T
N

TT

TT

ZcXPccPcp

cB
cB

cBcB
cBcB

1
2

1

22

11

])()([)(1)(

)(
)(...

)()(
)()(

((
)

)

)

σ

Solving the above equation gives the vector . Then)(cp

 28

()
()

dt
pcXdiagAXdiagA

pcXdiagAXdiagA
cII

N
T

NNNN

T
T

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+−++

+−
=

−−))(()()1(...

))(()()1(
')(

11

11100

ξθξθ

ξθξθ (3.8)

Plugging (3.6) and (3.8) into (3.4), we have:

()[]

()[]

()
()

)(

))(()()1(

...))(()()1(

)())((1
...
...

)())((1

)(

111

11100

11 1
2

1 1
12

o
mN

T
NNNN

T

m

s

k

N

i

k
i

kT
m

k
i

k
i

kkT

k

s

k

N

i

k
i

kTk
i

k
i

kkT

k

ccG

pcXdiagAXdiagA

pcXdiagAXdiagA
dt

tXHeZtcXHc

tXHeZtcXHc

cDJ

k

k

−+

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+−+

++−
+

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−+

−+

=

×−−

×= =

= =

∑ ∑

∑ ∑

λ

ξθξθ

ξθξθ

ϕ
σ

ϕ
σ

 (3.9)

3.2 Hessian matrix of the cost function)(cJ

Starting From

'

))(()()1(
......

))(()()1(
))(()()1(

)')((

)()(
......

)()(
)(

11

2211

1100

1

21

1

c

cXdiagAXdiagA

cXdiagAXdiagA
cXdiagAXdiagA

dt

ccXD

cBcB

cBcB
cB

NNNN

NN

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+−

+−
+−

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

−

−−

−

ξθξθ

ξθξθ
ξθξθ

(

)

)

we have

 29

'

))(()()1(
...

))(()()1(
))(()()1(

]')([
...
...

]')([

)()(
......

)()(
)(

11

2211

1100

11

11

1

21

1

c

cXdiagAXdiagA

cXdiagAXdiagA
cXdiagAXdiagA

dt

ccDX

ccDX

cBcB

cBcB
cB

NNNN

mNmN

m

mNmNNN

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+−

+−
+−

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

−

−−

××

×

×−

ξθξθ

ξθξθ
ξθξθ

)

)

i.e.,

'))]((
)()1[(]')()[(]')()[(

...
'))]((

)()1[(]')()[(]')()[(

'))](()()1[(]')()[(

111111

22

11122111

1100111

ccXdiagA
XdiagAdtccDXcBccDXcB

ccXdiagA
XdiagAdtccDXcBccDXcB

ccXdiagAXdiagAdtccDXcB

NN

NNmNNmNN

mm

m

ξθ
ξθ

ξθ
ξθ

ξθξθ

+
−=+−

+
−=+−

+−=

−−××−−

××

×

)

)

Solving the above equation recursively gives:

')()')((1 ccccXD mmNmN ×× =η
(

 (3.10)

Since ∑
=

Φ−Φ=
s

k

kkTkkk

k

cXPccDZcXPcI
1

2)()')((])()([1)(
(((

σ

 ∑
=

Φ−Φ=
s

k

kkTkkk

k

ccXDPcZcXPcII
1

2)')(()(])()([1)(
(((

σ

we have

 30

)'','()'',()'',()'',()'',()'',(

)'','(

))'',')((()(])()([1

)')(()(]'')()([1

)')(('')(])()([1

'')()')((])()([1

)')(()()]('')([1

)()')((]'')()([1

)()')(()]('')([1
'')('')('')()'',(

5
2

4
2

3
2

2
2

1
2

)'',(

1
1

2
2

)'',(

1
12

)'',(

1
2

1
2

)'',(

1
2

1
2

)'',(

1
2

2

5
2

4
2

3
2

2
2

1
2

ccGccJDccJDccJDccJDccJD

ccG

cccXDPcZcXPc

ccXDPcccXDPc

ccXDPccDZcXPc

ccXDPccDZcXPc

ccXDPccXPccD

cXPccDccXDPc

cXPccDcXPccD

cIIIDcIIDcIDccJD

ccJD

s

k
N

kkTkkk

k

ccJD

s

k
N

kkTkk

k

ccJD

s

k

kkTkkk

k

s

k

kkTkkk

k

ccJD

s

k

kkTkk

k

s

k

kkTkk

k

ccJD

s

k

kkTkk

k

λ

λ

σ

σ

σ

σ

σ

σ

σ

+++++=

+

Φ−Φ+

ΦΦ+

Φ−Φ+

Φ−Φ+

ΦΦ+

ΦΦ+

+ΦΦ=

++=

∑

∑

∑

∑

∑

∑

∑

=
×

=
×

=

=

=

=

=

44444444444 344444444444 21

(((

4444444444 34444444444 21

((

4444444444 34444444444 21

(((

(((

444444444 3444444444 21

((

((

444444444 3444444444 21

((

 (3.11)

Now

∑

∑

=
××××××

=

ΦΦ=

ΦΦ=

s

k
mNmNmN

k
mNN

k
NmN

Tk
mNmN

Tk
mN

T

k

s

k

kkTkk

k

cXPccDccDPcX

cXPccDcXPccDccJD

kkkkkk

1
112

1
21

2

)(]')([]'')([)(1

)()')(()]('')([1)'',(

((

((

σ

σ

 31

From the above

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

++

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=Φ

×

×

kT
m

kT
m

m

mNN

kT

kT

mNNk

He

He

c

He

He

cccD

kk

kk .
.

'...
.

.
')')((

)(1

1

1)(

Then

)(

)(

)(11

11

11

)()(1

1

1

)()(1

1

1

.
.

'''

...
.

.
'''

...
.

.
'''

.
.

'...
.

.
'

.
.

''...
.

.
''

]')([]'')([

kk

kk

kk

kkkk

kkkk

kkkk

mNmN

kT
mm

k

kT
mm

k

mm

mNmN

kT
ji

k

kT
ji

k

ji

mNmN

kTk

kTk

mNN

kT
m

kT
m

m

mNN

kT

kT

NmNm
k

m
k

m

NmN

k

k

mNN
k

NmN
Tk

HeeH

HeeH

cc

HeeH

HeeH

cc

HeeH

HeeH

cc

He

He

c

He

He

c

eH

eH

c

eH

eH

c

ccDccD

×

×

×

××

××

××

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

+

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

+

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

++

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

×

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

++

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

ΦΦ

Therefore:

 32

'''

''

)()(1..)()(1
........

)()(1..)()(1

'

)()('''..)()('''1

)(
.
.

)(

'''...

)(
.
.

)(

''')(1

)(

.
.

'''...

.
.

'''

)(1

)'','(

1

1 1
2

1 1
12

1 1
12

1 1
112

1 11
11112

1

1

11

111

112

1

)(11

11

11

2

1
2

cMc

c

tXHeeHtXtXHeeHtX

tXHeeHtXtXHeeHtX

c

tXHeeHtXcctXHeeHtXcc

tXHeeH

tXHeeH

cc

tXHeeH

tXHeeH

ccPcX

cXP

HeeH

HeeH

cc

HeeH

HeeH

cc

PcX

ccJD

T

s

k

N

i

k
i

kT
mm

kTk
i

k

s

k

N

i

k
i

kT
m

kTk
i

k

s

k

N

i

k
i

kT
m

kTk
i

k

s

k

N

i

k
i

kTkTk
i

k
T

s

k

N

i

k
i

kT
mm

kTk
imm

N

i

k
i

kTkTk
i

k

s

k
k
N

kT
mm

k

kkT
mm

k

mm

k
N

kTk

kkTk

TkT

k

s

k

k

kT
mm

k

kT
mm

k

mm

mNmN

kTk

kTk

mNmN
TkT

k

kk

kk

kk

kk

kk
k

=

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

++

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

+

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

∑ ∑∑ ∑

∑ ∑∑ ∑

∑ ∑∑

∑

∑

= == =

= == =

= ==

=

=

×
×

σσ

σσ

σ

σ

σ

(

((

where

mm

s

k

N

i

k
i

kT
mm

kTk
i

k

s

k

N

i

k
i

kT
m

kTk
i

k

s

k

N

i

k
i

kT
m

kTk
i

k

s

k

N

i

k
i

kTkTk
i

k

kk

kk

tXHeeHtXtXHeeHtX

tXHeeHtXtXHeeHtX

M

×
= == =

= == =

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

∑ ∑∑ ∑

∑ ∑∑ ∑

1 1
2

1 1
12

1 1
12

1 1
112

1

)()(1..)()(1
........

)()(1..)()(1

σσ

σσ

is a symmetric matrix.

Next:

 33

T

s

k

kkTkTkT

k

s

k

kkTkTkT

k

s

k

kkTkk

k

s

k

kkTkk

k

ccXDPcccDPcX

cXPccDcPccXD

ccXDPccXPccD

cXPccDccXDPcccJD

22

1
2

1
2

1
2

1
22

2

)')(()(]'')([)(1

)()')(()(]'')([1

)')(()()]('')([1

)()')((]'')()([1)'','(

∆+∆=

ΦΦ+

ΦΦ=

ΦΦ+

ΦΦ=

∑

∑

∑

∑

=

=

=

=

((

((

((

((

σ

σ

σ

σ

and

'

)(
...
...

)(

...

)(
...
...

)(

)()(1''

)(
...
...

)(

'...

)(
...
...

)(

')()(''1

)(]')([)(]'')([1

)(]')([)]'')(()([1

1

1

11

11

2

1

1

11

11

12

1
2

1
22

c

tXHe

tXHe

tXHe

tXHe

cPcc

tXHe

tXHe

c

tXHe

tXHe

ccPcc

cXPccDcPcc

cXPccDccPc

s

k
k
N

kT
m

kkT
m

N

k
N

kT

kkT

NmN
Tk

mNmN
TkT

k

T

s

k
k
N

kT
m

kkT
m

m

N

k
N

kT

kkT

TkTk
mNm

TT

k

s

k

kkTkTkT
mmN

k

s

k

kkT
mmN

kk

k

k
k

k

kkk

k
k

k

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

Φ=

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

++

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

Φ=

ΦΦ=

ΦΦ=∆

∑

∑

∑

∑

=

×

××

=

×

×

=
×

=
×

η
σ

η
σ

η
σ

η
σ

(

(

Set

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

Φ= ∑
=

×

××

s

k
k
N

kT
m

kkT
m

N

k
N

kT

kkT

NmN
Tk

mNmN
TkT

k

T

k
k

k

kkk

tXHe

tXHe

tXHe

tXHe

cPcM
1

1

11

11

22

)(
...
...

)(

...

)(
...
...

)(

)()(1 η
σ

Then

 34

'')(')'','(22222
2 cMMcccJD TTT +=∆+∆=

Next:

T

s

k

kkTkkk

k

s

k
mNmN

k
mNN

kTkkk

k

ccXDPccDZcXPc

ccXDPccDZcXPc

ccJD

kkk

33

1
2

1
2

3
2

)')(()'')((])()([1

)'')(()')((])()([1
)'',(

∆+∆=

Φ−Φ+

Φ−Φ=

∑

∑

=

=

××

(((

(((

σ

σ

'''

'')(
])([1...])([1

.........

])([1...])([1

'

'')(])([1......])([1'

'')(
.

.
])()([1'

]'')([

...
...

'

...
...

...
'

])()([1

]'')([]')([])()([1

'')()')((])()([1)(

3

1
2

1
112

1
1

21
1

112

1 1
2

1
112

1

)(

1
12

1
1

)(

1

1

1

12

1
112

1
23

cMc

ccP
HeZtXHcHeZtXHc

HeZtXHcHeZtXHc

c

ccPHeZtXHcHeZtXHcc

ccP

He

He

ZcXPcc

ccP

He

He

c

He

He

c

ZcXPc

ccPccDZcXPc

ccXDPccDZcXPc

T

k

kT
m

s

k

k
N

k
N

KT

k

kT
m

s

k

kkKT

k

kT
s

k

k
N

k
N

KT

k

kT
s

k

kkKT

k
T

m

i

kkT
i

s

k

k
N

k
N

KT

k

kT
i

s

k

kkKT

k
i

m

i
mNmN

k

mNN

kT
i

kT
i

s

k
N

Tkkk

k
i

s

k
mN

k

mNN

kT
m

kT
m

m

kT

kT

N
Tkkk

k

s

k
mNmmNmNmN

k
mNN

k
N

Tkkk

k

s

k

kkTkkk

k

kk

kk

kk

k

kk

k

kk

k

kkkk

=

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−

−−

=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−Φ=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

+

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−Φ=

Φ−Φ=

Φ−Φ=∆

∑∑

∑∑

∑ ∑∑

∑ ∑

∑

∑

∑

==

==

= ==

=

×

×

=

×

=
×

×

×

=
×××××

=

η

σσ

σσ

η
σσ

η
σ

η
σ

η
σ

σ

((

((

((

(((

 35

'')(')'','(33333
2 cMMcccJD TTT +=∆+∆=

Now

'''

'')()()()(1'

')()()()(''1

)')(()(]'')()([1

)')(()(]'')()([1)'','(

4

1
2

1
2

1
12

1
124

2

cMc

ccPccPcc

ccPccPcc

ccPcccPc

ccXDPcccXDPcccJD

T

s

k
mmN

kkTkTkT
mNm

k

T

s

k
mmN

kkTkTkT
mNm

T

k

s

k
mNmmN

kkT
mmN

kk

k

s

k
mN

kkTkk

k

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ΦΦ=

ΦΦ=

ΦΦ=

ΦΦ=

∑

∑

∑

∑

=
××

=
××

=
×××

=
×

ηη
σ

ηη
σ

ηη
σ

σ
((

Now we calculate:

∑
=

×Φ−Φ=
s

k
mN

kkTkkk

k

cccXDPcZcXPcccJD
1

1
2

25
2))'',')((()(])()([1)'','(

(((

σ

From

')()'')(~('')()')(~())'',')((()(~

0)'',')(()(~')()'')(~('')()')(~(

'

0
....
0

)()(

')()(~)()')(~(

0
...
0

)()(

)(

)()(
......

)()(
)(

1
2

2

00

00

1

21

1

ccXDccBDccXDccBDcccXDcB

cccXDcBccXDccBDccXDccBD

c

cXcB

DccXDcBcXccBD

f

cXcB

cX

cBcB

cBcB
cB

mNmNmNmNmNmNmN

mNmNmNmNmNmN

mNmNmNmN

NN

(((

(((

)

((

(

)

(

)

)

××××

×××

××

−

−−=

=++

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=+

+

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

−

 36

()
() ⎟

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+−
++−

+

=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−+−

−+−
−−

=

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

−
−

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

−
−=

−−

−−

−−−−

×××−

××

×

×××−

××

×

××

')()''()()''()1(
'')()'()()'()1(

...

...

...

...
')()''('')()'(

')()'')((')()'')(('')()')(('')()')((
...

')()'')((')()'')(('')()')(('')()')((
')()'')(('')()')((

')(
...
...
...

')(

)'')(()'')((
......

)'')(()'')((
)'')((

'')(
...
...
...

'')(

)')(()')((
......

)')(()')((
)')((

))'',')((()(~

11

11

1111

1111

22112211

1111

1

1

21

1

1

1

21

1

1
2

cccAdiagccAdiag
cccAdiagccAdiag

cccAdiagcccAdiag

dt

ccXDccDBccXDccBDccXDccDBccXDccBD

ccXDccDBccXDccBDccXDccDBccXDccBD
ccXDccDBccXDccDB

ccXD

ccXD

ccDBccBD

ccDBccBD
ccDB

ccXD

ccXD

ccDBccBD

ccDBccBD
ccDB

cccXDcB

NNNN

NNNN

NNNNNNNN

N
mNmNmmNmmN

mmmm

mm

N
mNmNmmNmmN

mmmm

mm

mNmNmN

ηθξηξθ
ηθξηξθ

ηθξηθξ

(()(()

(()(()

((

(

(

)

)

(

(

)

)

(

Let

∑
=

× Φ−Φ=
s

k

kkTkkk

k
mNmN

T PcZcXPccBp
1

2
)(])()([1)(~ ((

σ

then

 37

()
()

()
()
() ⎪

⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+

++−
×

×+++

×=

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

+−
++−

+

=

−−

−−

−−

−−

××

')()''()()''()1(
'')()'()()'()1(

...')()''('')()'(

')()''()()''()1(
'')()'()()'()1(

.

.
')()''('')()'(

))'',')((()(~

11

11

11111

11

11

1111

1
2

cccAdiagccAdiag
cccAdiagccAdiag
pcccAdiagcccAdiagp

dt
cccAdiagccAdiag

cccAdiagccAdiag

cccAdiagcccAdiag

dtp

cccXDcBp

NNNN

NNNN

T
N

T

NNNN

NNNN

T

mNmNmN
T

ηθξηξθ
ηθξηξθ

ηθξηθξ

ηθξηξθ
ηθξηξθ

ηθξηθξ

(

Now

()

'')('''''''

'

)(
.
.

)(

''''

)(
.
.

)(

'

')('''')('

')()''('')()'(

)1()1()1()1(

111

1111

111

1111

1
111111

11111

cMMccMccMc

c

cAEp

cAEp

cc

cAEp

cAEp

c

ccAEpcccAEpc

cccAdiagcccAdiagp

TTTTT

mmm
T

T

T

mmm
T

T

T

m

i
i

T
ii

T
i

T

+=+=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

+=

+

××

−
∑

ηθξ

ηθξ

ηθξ

ηθξ

ηθξηθξ

ηθξηθξ

where

mmm
T

T

cAEp

cAEp

M

×
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

)(
.
.

)(

111

1111

)1(

ηθξ

ηθξ

 and is the matrix with the i-th diagonal element

being 1 and the remaining elements being zero

iE

Similarly

 38

()
()

'')(''''''''

'

)}()()1{(
.
.

)}()()1{(

''

''

)}()()1{(
.
.

)}()()1{(

'

'')}()()1{(''

'')}()()1{('

')()''()()''()1(
'')()'()()'()1(

)()()()(

11

1111

11

1111

1
11

1
11

11

11

cMMccMccMc

c

cAEcAEp

cAEcAEp

c

c

cAEcAEp

cAEcAEp

c

ccAEcAEpc

ccAEcAEpc

cccAdiagccAdiag
cccAdiagccAdiag

p

TNNTTNTNT

mmNNNNNN
T

N

NNNN
T

N

T

mmNNNNNN
T

N

NNNN
T

N

T

m

i
NiNNiN

T
Ni

m

i
NiNNiN

T
Ni

NNNN

NNNNT
N

+=+=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+−

+−

+

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+−

+−

=

+−+

+−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+

+−

×−−

−−

×−−

−−

=
−−

=
−−

−−

−−

∑

∑

ηθξηξθ

ηθξηξθ

ηθξηξθ

ηθξηξθ

ηθξηξθ

ηθξηξθ

ηθξηξθ
ηθξηξθ

where

mmNNNNNN
T

N

NNNN
T

N

N

cAEcAEp

cAEcAEp

M

×−−

−−

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+−

+−

=

)}()()1{(
.
.

)}()()1{(

11

1111

)(

ηθξηξθ

ηθξηξθ

We then have:

()
()
()

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
+=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+

+−
+

++=

∑
=

−−

−−

'''

')()''()()''()1(
'')()'()()'()1(

...')()''('')()'({)'','(

1

)()(

11

11

111115
2

cMMcdt

cccAdiagccAdiag
cccAdiagccAdiag

p

cccAdiagcccAdiagpdtccJD

N

i

TiiT

NNNN

NNNNT
N

T

ηθξηξθ
ηθξηξθ

ηθξηθξ

Since each component in (3.11) has been calculated, summing them together we will

have .)'',(2 ccJD

 39

3.3 Minimization algorithms

Now that the Jacobian and the Hessian of the cost function J(c) have been developed, we

can introduce various deterministic optimization techniques. We refer to Press et al.

(1992) for a complete discussion of various numerical optimization techniques that rely

on the first derivative and the second derivative information. In the next, for numerical

testing purposes we introduce two algorithms: the constrained steepest descent algorithm

and the constrained conjugate gradient algorithm. We propose a feedback mechanism that

utilizes the performance of the algorithm at the current stage to ensure a faster

convergence of the search process. These two algorithms only involve the first derivative

of J(c). We try to avoid using the algorithms that rely on the second derivatives (Hessian)

on the consideration that in the case of ill-constrained inverse problems, the second

derivative of the cost function with respect to some of the parameters may be nearly zero

if no regularization scheme is used, i.e., the Hessian matrix may be close to singular, as is

seen in the inverse problem of the seven-compartment model. In the following Ω is an

admissible set consisting of the Cartesian product of the closed intervals.

3.3.1 Constrained steepest descent optimization method.

Define the absolute error between two consecutive search points as |)()(| 1cJcJe −= .

The proposed algorithm is given in the following:

Step 1. Start from or any point that is close to . Calculate and priotcc = priotc)(cDJ

||)(||
)(

cDJ
cDJu = .

 40

Step 2. Take , for each k calculate 21,..,nnk = ⎟
⎠
⎞

⎜
⎝
⎛ − u

m
egcJ k
)(where

are integers and is an increasing function of e taking

positive values. Take the k that gives the largest decrease and then let

0,012 >>> mnn)(eg

J

u
m

egcc k

)(1 −= . If any component in vector c hits its upper bound U, then

generate a random number ()1,9.01 ∈ρ and replace the component with U1ρ ; if

it hits the lower bound L, then generate a random number (1.1,12 ∈)ρ , and

replace it with L2ρ . This ensures that the component is in the interior near the

upper or lower bound.

Step 3. Calculate |)()(| 1cJcJe −= , terminate the algorithm if it is less than a

threshold number δ . Otherwise calculate and go to step 4.)(eg

Step 4. Set , calculate 1cc =
||)(||

)(
cDJ
cDJu = go to step 2.

Note that when minimizing a simple function, one can calculate the optimal descent step

along the gradient direction by calculating 0>α such that)(ccJ ∇−α is minimized.

Since this is impossible in our case, we use the Armijo rule in step 2 as was done in

White (2002), i.e., several probing steps are tried and the integer k that gives the largest

cost function decrease is used in the descent step size. To make the descent fast during

the initial and middle stage of searching, we introduce the function to control the

descent steps based on the current performance indicated by e. It is an increasing function

of e with a minimum lager than a positive constant. g(e) is bounded below to ensure the

updating step sizes are not too small at the end of the search (Figure 3.1).

)(eg

 41

3.3.2 Constrained conjugate gradient optimization method.

The proposed method is similar as the above except that the search direction is now

updated to a conjugate direction that is more efficient for descending. The update formula

can be either taken as the Fletcher-Reeves formula or the Polak-Ribiere formula (Press

1992), as is shown in the following step 5. The algorithm is thus:

Step 1. Start from or any point that is close to . Calculate and priotcc = priotc)(cDJ

||)(||
)(0

cDJ
cDJu = .

Step 2. Same as the above Step 2.

Step 3. Same as the above step 3.

Step 4. Set , calculate 1cc =
||)(||

)(
cDJ
cDJu = .

Step 5. Let (Fletcher-Reeves formula) or let

 (Polak-Ribiere formula). Update u to . Go to

step 2.

><>=< 00 ,/, uuuuβ

><>−=< uuuuu ,/, 0β 0uu β+

3.4 Numerical results

We applied the above algorithms to the carbon model described in Chapter 2.3. In this

example, we assume that no prior information is given on the model parameters.

Therefore three runs were conducted, each starting with a different initial point in the

admissible set. To make the solution of Model (2.1) and correspondingly J(c)

 42

continuously differentiable, the smoothed versions of the two time series (.)(.), ξu were

used to remove the random noise. The number of probing steps was set to be five with

. The feedback function g(e) was chosen to be a piecewise linear

increasing function of e shown in Figure 3.1. The searches were terminated when

. The cost function value when stopping criterion was met was about 36. The

results from the three runs are shown in Figure 3.2.

2,5,1 21 === mnn

410−<e

Figure 3.1 One example for specifying g(e). This function was used as a feedback to

control the descent step sizes. In general it is an increasing function of

. Other forms of feedback functions are also possible. Note

however, the minimum value of g(e) is a constant that is bigger than a positive number to

prevent the step sizes from being too small.

|)()(| 1−−= kkk cJcJe

0 5 10 15 20 25 30 35 40 45 50 0

0.5

1

1.5

2

2.5 x 10 -3 Specification of g(e)

g(e)

e

 43

20 40 60 80 100

0.5
1

1.5

2
2.5

x 10
-3

20 40 60 80 100

1

1.5

2

2.5

x 10
-4

20 40 60 80 100

0.01

0.015

0.02

0.025

20 40 60 80 100

1

1.5

2

2.5

x 10
-3

20 40 60 80 100

4

6

8

x 10
-3

20 40 60 80 100
0

1

2

3

x 10
-4

20 40 60 80 100
2

4

6

8

x 10
-6

0 50 100 150
0

200

400

600

Numerical Result with Conjugate Gradient Method

c1 c2 c3

c4

c5
c6

c7 Decrease
of J(c)

Figure 3.2. Trace plots of the search processes for optimal point. The figure shows the

convergences or divergences of parameters and also the decrease of the cost functional

J(c). On each plot, the x-axis represents the number of descent steps. The y-axis for the

plots of c1, …, c7 are the physical ranges of the parameters.

 44

From Figure 3.2 it can be observed that starting from different initial positions, the

searching paths for each of c1, c2, c4 and c6 converge to the same point, the searching

paths for remain constant, and the searching paths for either hit the upper bound

or the lower bound. Thus the inverse problem seems only meaningful for c

53 ,cc 7c

1, c2, c4 and c6

in that the data space, model structure and parameter space together give information to

these four parameters. There are visible overshootings for parameter c2 due to the use of

the Armijo rule; however, the magnitude decreases as the search is near to the optimal as

the gradient closes to zero. The cost function decreases rapidly in general at the initial

and middle search stage since the function g(e) gives relatively large probing steps. The

observation that the three descending paths starting from different initial points for each

of c1, c2, c4, c6 converges to the same point might suggest the cost function J(c) is

unimodal for c1, c2, c4, c6.

In general, the above analysis suggests that enough information can be given to c1, c2, c4

and c6 through inverse analysis, but not to . These observations will be checked

by other methods in the following sections.

753 ,, ccc

Using one of the searching results we have the following estimation for the identifiable

values:

()-,101.1471-, ,100.9862-,,101.0933,101.8238 -4-3-4-3 ××××=oc

where “-” stands for non-available.

 45

CHAPTER 4

STOCHASTIC OPTIMIZATION

The deterministic algorithms are suitable only when the cost function has one mode;

otherwise a direct application of a gradient type method would result in finding a

minimum that may be local and not the global one. In cases where there is no prior

information about the optimal point or the behavior of the cost function on the parameter

space is unknown, it is hard for deterministic approach to locate a global optimal.

Another drawback of the deterministic approaches is that the functions in Model (2.1)

must satisfy certain conditions (e.g., being Lipschitz continuous) to make J(c)

continuously differentiable. In the above numerical analysis, we used smoothed versions

of)(tξ and shown in Figure (2.2) and the noises and jumps are thus removed. But

these disturbances are commonly seen in ecosystem modeling and should not be ignored.

It is necessary to introduce other types of optimization techniques that are robust with

)(tU

 46

optimization under noise and do not need the gradient information. Stochastic

optimization techniques are a natural choice.

Stochastic optimization techniques such as simulated annealing (SA), genetic algorithm

(GA), neural network, downhill simplex method, etc., are powerful global optimization

techniques. The theoretical foundations and applications of random search are partially

documented in books by Goldberg (1989), Holland (1992), Haupt (1998), Vose (1999).

Convergence of most random search procedures is not affected by the cost function, in

particular its smoothness and multimodality. In a minimax sense, stochastic search is

more powerful than deterministic search: it is nearly the best method in the worst possible

situation (noise, discontinuity, multimodality) and the worst method in the best situation

(smoothness, continuity, unimodality).

A detailed theoretical explanation of the general stochastic algorithms is beyond the

scope of this thesis. Here we focus on the application of the algorithms to the Model (2.1)

~ (2.6). In the next we give two stochastic optimization algorithms and some general

specifications. We then apply them to Model (2.1) ~ (2.6) in the context of the seven-pool

compartmental model. We also compare the results with the result of the previous

section.

4.1 GA Description

4.1.1 General description of genetic algorithm

 47

GA was first invented by John Holland in 1975 and later popularized by his students and

colleagues De Jong and Hollstien, etc. (Goldberg 1989). It is a global optimization

method based on simulating nature’s evolution and selection processes. The algorithm

follows an over-population, selection, crossover and mutation type of procedure in order

to select the fittest set of parameters (global optimal points). The structure of GA is the

following:

GA algorithm

Step1. (Initializing) Randomly generate a population of n chromosomes in the admissible

set.

Step 2. (Fitness evaluation) Evaluate the fitness specified by the cost functional J(c) for

each of the chromosomes in the population.

Step 3. (Creating new population) Generate each new population by the following steps:

• (Selection) Select two parent chromosomes from the current population according

to their fitness.

• (Crossover) With pre-specified crossover probability cross over the parents to

form new offspring.

• (Mutation) With a mutation probability mutate the set of offspring.

• (Accepting) Place new offspring in the new population.

Step 4. (Replace) Replace the previous population with the new population.

Step 5. (Test and stop) If the end condition is satisfied, terminate the program and return

the best solution in current population; otherwise go to step 2.

The structure is shown in Figure 4.1.

 48

Initial Population

Evaluate Fitness

Figure 4.1: Flowchart of GA

Perform Selection

Perform Mutation

 Stop?

No

Yes

End of Search

Perform Crossover

 49

4.1.2 Specifications of GA with respect to Model (2.1) ~ (2.6)

 To implement GA with Model (2.1) ~ (2.6), some specifications must be given.

Parameter encoding. Depending on the problems at hand, there are various ways of

encoding the parameter space such as the binary encoding, the permutation encoding, the

direct value encoding, etc. (Haupt et al. 1998). For parameter estimation problems, the

most commonly used encodings are either binary encoding or direct value encoding.

Direct value encoding can be used in problems where complicated values such as real

numbers are used. We use direct value encoding in this study since the parameters in

Model (2.1) are real numbers. Thus each parameter vector is directly written in the form

of ()mccc ..1= .

Crossover. Crossover operates on selected genes from parent chromosomes and creates

new offspring. The simplest way is to randomly choose some crossover point and copy

everything before this point from one parent and then copy everything after the crossover

point from the other parent.

Chromosome 1 ())1()1(
4

)1(
3

)1(
2

)1(
1 ..| mccccc

Chromosome 2 ())2()2(
4

)2(
3

)2(
2

)2(
1 ..| mccccc

Offspring 1 ())1()1(
4

)2(
3

)2(
2

)2(
1 ..| mccccc

Offspring 2 ())2()2(
4

)1(
3

)1(
2

)1(
1 ..| mccccc

Table 4.1. Crossing over by swapping in which the third “gene” of Chromosome 1 and

Chromosome 2 are chosen and swapped to generate two offsprings.

 50

In this study, we choose to take the convex linear combination (Haupt et al. 1998) of the

“genes” since the admissible set in our study is a closed convex set made up of Cartesian

product of closed intervals (see the set made up of intervals in (2.7)), and the convex

linear combination will reproduce points in the set. For this purpose, m random numbers

mii ,...,1],1,0[=∈θ uniformly distributed between [0, 1] are generated and the crossover

is performed in the following way:

Chromosome 1 ())1()1(
2

)1(
1 mccc

Chromosome 2 ())2()2(
2

)2(
1 mccc

Offspring 1 ())2()1()2(
22

)1(
22

)2(
11

)1(
11)1(....)1()1(mmmm cccccc θθθθθθ −+−+−+

Offspring 2 ())2()1()2(
22

)1(
22

)2(
11

)1(
11)1(....)1()1(mmmm cccccc θθθθθθ +−+−+−

Table 4.2. Crossing over by convex linear combination in which random numbers

mii ,...2,1, =θ with 10 ≤≤ iθ are generated and the convex linear combinations are

carried out for each corresponding pair of genes to produce two offsprings.

Mutation. Mutation is intended to prevent fast convergence to a local optimum. Mutation

operation randomly changes the offspring resulted from crossover. In the case of direct

value encoding we replace a number of randomly chosen vector components and replace

them with randomly generated numbers within their respective ranges.

 51

Original Chromosome 1 ())1()1(
2

)1(
1 mccc

Original Chromosome 2 ())2()2(
2

)2(
1 mccc

Mutated Chromosome 1 ())1()1(
,2

)1(
1 mnew ccc (Note is randomly chosen

and replaced by)

)1(
2c

)1(
,2 newc

Mutated Chromosome 2 ())2(
,

)2(
2

)2(
,1 newmnew ccc (Note is randomly chosen

and replaced by , so is)

)1(
1c

)1(
,1 newc)1(

mc

Table 4.3 Illustration of mutation

Selection. There are many methods in selecting the best chromosomes such as the

roulette wheel selection, the rank selection, the tournament selection and so on. Elitism,

i.e., the copying of the best chromosome (or few best chromosomes) to the new

population is usually required to ensure convergence of the algorithm by always keeping

the best. In the study, we apply the ranking selection method by sorting the chromosomes

by their fitness and selecting the top half of good solutions.

Control parameters

Whether GA is efficient or not highly depends on the algorithm's control parameters. The

control parameters available for adjusting the algorithm are the population size, the

crossover probability, and the mutation probability. De Jong (1965) made some

suggestions based on his observations of the performance of GAs on a bench work of 5

problems where the examples included discontinuities, high dimensionality, noise and

multimodality, and suggested that settings of population size 50, crossover rate 60% and

mutation rate 0.1% for satisfactory performance over a wide range of problems. However

Grefenstette (1986) concluded that a population size 30, a crossover rate 95% and

 52

mutation rate 1% resulted in the best performance when the average fitness of each

generation was used as the indicator, while a population size 80, a crossover rate 45%

and mutation rate 1% gave the best performance when the fitness of the best individual

member in each generation was used as indicator. Some other empiric studies suggest the

crossover rate should be high in general and around about 80% ~ 95%, although

problem-specific results may suggest other rates (around 60% for example). Mutation

rate is problem specific with a range of 1% ~ 10%. The commonly suggested population

size is about 20 ~ 30, however sometimes sizes 50 ~ 100 are reported as the best. Some

research also shows the best population size depends on the dimension of the search

space – the higher the dimension, the larger the population size. In general, it seems these

parameters are rather problem specific and should be closely related to the problem at

hand. It may be a good practice to try several sets of control parameters and compare the

results.

4.1.3 Numerical result using GA

We applied GA to the above described model, using the following specifications:

1. Initial population size 200.

2. Population size of the consecutive generations 40.

3. A mutation rate of 10%.

4. Paring according to the ranks of individuals.

5. Algorithm stopping after it runs for 100 generations.

 53

The following figure shows the path of the best solutions of the 100 generations and the

decrease of the cost function in the searching process. We made three runs of the

algorithm independently and the paths are shown in a same figure.

20 40 60 80 100

0.5
1

1.5

2
2.5

x 10
-3

20 40 60 80 100

1

1.5

2

2.5

x 10
-4

20 40 60 80 100

0.01

0.015

0.02

0.025

20 40 60 80 100

1

1.5

2

2.5

x 10
-3

20 40 60 80 100
3

4

5

6

x 10
-3

20 40 60 80 100

1

1.5

2

2.5

x 10
-4

20 40 60 80 100
2

4

6

8

x 10
-6

0 50 100
20

40

60

80

100

Numerical Result Using Genetic Algorithm

c1
c2

c3

c4 c5
c6

c7 Decrease
 of J(C)

Figure 4.2 Convergence of parameters and decrease of cost function with GA

 54

4.1.4 Discussion of the numerical result

The result is remarkably consistent with the result shown in Figure 3.1. It is seen that

even under the situation of noise-disturbed model functions (Figure 2.2), we still obtain

the same or even better result (notice the consistent path trends for c3 and c5). The cost

function is valued at about 35.8 when the algorithm is stopped.

The estimation of the convergent variables is:

()-,101.1424-, ,100.9344-,,101.1121,101.8224 -4-3-4-3 ××××=oc

The estimation of the two parameters for c3, c5 are: 025.0018.0 3 ≤≤ c ,

. The variability of c3
5

3 107106 −− ×≤≤× c 7 is the largest and its value cannot be

determined.

 55

4.2 Simulated annealing (SA)

4.2.1 General description of SA

The idea of SA was developed by Kirkpatrick et. al. (Kirkpatrick et al. 1983) motivated

by the paper published by Metropolis et al. (1953). SA is based on the analogy of global

optimization to annealing in solids: a solid is heated to melt and then cooled down; if the

cooling is made slowly enough, crystal structures will be perfect (lowest energy state); if

the liquid is “quenched” the crystals will contain imperfections. SA simulates this natural

cooling mechanism by gradually lowering the temperature of the solid until it converges

to a lowest energy state. The following table presents the analogy between the physical

annealing process and the SA algorithm (Dowsland 1995):

Physical Annealing Optimization

System States Feasible Solutions

Energy Cost

Change of State Neighbouring Solution generation

Temperature Control Parameter

Frozen State Heuristic Solution

Table 4.1 The analogy between the physical annealing process and the SA

SA chooses a random move based on the previous point and allows uphill steps to escape

local minima. If the move is better than its current position in terms of minimization then

SA will always take it; otherwise it will accept the new move based on some probability.

 56

The following describes the SA algorithm and it is taken from Russell (1995) with a

slight modification.

SA algorithm

Function Simulated-Annealing returns a solution state

Inputs : Problem: model F, admissible set Ω and cost function J

 Schedule: a sequence of decreasing temperatures

Local Variables: Current: a node in Ω

 Next: a node in Ω

 T: a “temperature” controlling the hill-climbing probability

Current = make-node (initial node)

For t = 1 to ∞ do

T = Schedule[t]

If T = 0 then return Current

Next = a randomly selected successor of Current

∆J = J(Next) – J(Current)

If ∆J > 0 then Current = Next

else Current = Next only with probability exp(-∆J /T)

The flowchart of SA is shown in Figure 4.3.

 57

 Start

Initial Temperature

Generate New Point

Acceptance Probability

Figure 4.3. Flowchart of SA

The acceptance criterion in SA is based on the law of thermodynamics which states that

at temperature t the probability of increasing energy by a magnitude of ∆J is ktep J-∆= ,

Update Storage

Update Temperature

 End

 Accept?

End of Search?

Yes

No

No

Yes

 58

where k is Boltzmann’s constant (which is usually dropped in SA since it can be

contained in parameter t). Thus SA calculates cost function at a new state and accepts the

new state whenever the cost is decreased. In the meanwhile, it also accepts new state with

probability ktep J-∆= , which gives its hill-climbing ability. It’s obvious as t decreases the

probability of accepting a hill-climbing move is decreased.

The annealing schedule of SA consists of starting temperature t0, final temperature tf,

temperature decrement and number of iterations at each temperature. Parameter t0 should

be high enough to allow access to almost any state in the parameter space to prevent the

search from terminating locally. However a too high initial temperature tends to turn SA

into purely random search. No known method exists for finding a suitable t0 for a whole

range of problems. Some methods suggest (e.g., Rayward & Smith 1996; Dowsland

1995) to start with a high t0 and cool rapidly until about 60% of uphill solutions are

accepted. This gives the real t0 on which to start cooling down slowly. The final

temperature tf needs not be decreased to zero – stopping criteria can either be a suitably

low tf or a low enough cost function value. Decrement of temperature is critical to the

performance of SA. Theoretically, enough iteration should be made at each temperature t

so that the system converges to the stationary distribution at that t. In practice, one needs

to balance the number of temperatures with the number of iterations. Temperature

decrement can be a simple linear method, or a geometric decrement where t = tα where α

< 1. Based on experience, α usually takes values between 0.8 ~ 0.99, with better results

being found in the higher α at the cost of longer simulation time. A constant number of

iterations at each temperature can be used. An alternative is to dynamically change the

 59

number of iterations as the algorithm progresses. At high temperatures it is important that

a large number of iterations are done so that the local optimum can be fully explored. At

lower temperatures, the number of iterations can be less as the search is already near the

global point. One method is to only do one iteration at each temperature, but to decrease

the temperature very slowly according to t = t/(1 + βt) where β is a suitably small value

(Lundy 1986). In general, we point out that these parameters are rather problem specific.

One really needs to adjust the values several times by observing the performance of the

algorithm with the problem at hand.

4.2.2 Numerical result

We applied the SA algorithm to the numerical example with the following specified

parameter values:

1. Initial annealing temperature: t0 = 5.

2. Annealing schedule: proportionally decreasing with a ratio of 0.95.

3. Number of temperatures used: 200.

4. Number of Monte Carlo simulations at the initial temperature is 300. This number

was decreased linearly as temperature decreases.

5. The candidate point was generated in a neighborhood of the currently accepted

point according to a uniform distribution. In this example, each component was

perturbed uniformly according to:

mj
L

R
randcc jcpresent

j
candidate
j ,...,2,1,)

2
1]1,0[(=×−+= , where is the j-th

component of the current point c in the simulation chain, was a random

present
jc

]1,0[rand

 60

number uniformly distributed over [0,1], was the physical bound of

component , and L was the scale of that controls the maximum distance

allowed. Should a point fall outside the boundary, its symmetric image across the

boundary was taken as a replacement.

jcR

jc
jcR

6. The algorithm was terminated after exhausting all the specified 200 temperatures.

(Or one can set the stopping criterion as δ<−= |)()(| nextcurrent cJcJe).

The parameters above were obtained on a trial and observation basis. The initial

temperature t0 was chosen to be 5 since observation revealed that there was enough

freedom for the solution to oscillate in Ω. The temperature decreasing ratio could be

between 0.8 and 0.99, and essentially gave the same answer for this problem.

The convergence of the searching process and the decrease of the cost function in the

searching process are shown in Figure 4.4.

 61

2000 4000 6000 8000

0.5
1

1.5

2
2.5

x 10
-3

c1

2000 4000 6000 8000

1

1.5

2

2.5

x 10
-4

2000 4000 6000 8000

0.01

0.015

0.02

0.025

2000 4000 6000 8000

0.5

1

1.5

2

2.5
x 10

-3

2000 4000 6000 8000

0.005

0.01

0.015

2000 4000 6000 8000
0

1

2

3

x 10
-4

2000 4000 6000 8000

2

4

6

8

x 10
-6

2000 4000 6000 8000
20

40

60

80

Numerical Result with Simulated Annealing

c1

c2

c3

c5

c6c4

c7 Behavior
of J(C)

Figure 4.4 Convergence of parameters and decrease of cost function with SA. As can be

seen from the behavior of the cost function J(c), high uphill moves are allowed in the

initial and middle stages of the search but not at the end of the search when the system is

essentially “frozen”.

It can be observed that in the searching process up-hill moves were accepted, as there

were a large number of increased cost function values. However, as the temperature went

 62

down, the cost function was “frozen” near the lowest value in the sense that large up-hill

moves are reduced or essentially eliminated, as is seen from the behavior of J(c).

The result here is also consistent with the above results where conjugate-gradient method

and the genetic algorithm were used. The four convergent parameters are c1, c2, c4 and c6,

while c3, c5 and c7 show no sign of convergence. The optimal estimation of SA is

()-,101.1160-, ,100.9204-,,101.0958,101.8231 -4-3-4-3 ××××=oc

and it was calculated by averaging the values of the last 100 accepted samples.

 63

CHAPTER 5

BAYESIAN STATISTICAL INFERENCE AND

PARAMETER ESTIMATION

Inverse problems are statistical in nature (Tarantola, 1987). In parameter estimation there

always exist estimation errors, or uncertainties due to the statistical nature of the

observation as illustrated in Figure (5.1).

Figure 5.1 Model/Observation with uncertainty

When fitting model parameters, it is always assumed that there is some underlying “true”

set of parameters c hidden from the experimenter. These true parameters are statistically

 Model F(c)

Random Error e

 Parameter c Observation Z

 64

realized, along with random measurement errors, as measured data sets symbolized as Z.

With the above optimization techniques, Z is treated as a set of fixed values and thus the

obtained parameter estimations are also fixed values. In this Chapter, we adopt a

probabilistic approach and look at Z as a realization of stochastic processes. It is thus

interesting to know the distribution of the parameters if some properties of the

randomness in Z are known (or unknown but assumed). Bayesian inversion suits the need

by relating forward and inverse probabilities directly (Box and Tiao 1973). In this

Chapter, we apply the Bayesian inversion framework to study the inverse problem of

Model (2.1) ~ (2.6). Our accomplishments in this Chapter are mainly the following:

1. Giving a brief description of the Bayesian inversion framework and some

theoretical background of Markov chain simulation.

2. Proposing the inverse probability of model (2.1) under suitable assumptions.

3. Proposing function approximation approach to study the inverse uncertainty.

4. Using standard MCMC approach to study the inverse uncertainty.

5. Proposing a faster MCMC sampling algorithm specifically for the problem.

6. Calculating the numerical results for the seven-compartmental model and making

comparisons about the different approaches.

In general, through a Bayesian inversion approach, we obtain the parameter estimation as

has been done in the previous, as well as the quantities that characterize the inverse

uncertainty – which is impossible with the previous approaches.

 5.1 Forward/inverse probability and Bayes’ theorem

 65

We only discuss the case where the uncertainty comes solely from the measurement

errors. The uncertainty caused by model structure is also interesting but will be our next

stage work. Bayesian statistics provides a theory of inference which enables us to relate

the results of observation given in the form of forward probability to parameter

uncertainty given in the form of inverse probability. Briefly, the forward probability

 is the conditional probability of the observation data)|(cZP Z given the cause –

parameter c. The inverse probability) is the conditional probability of the cause c

given the observation

|(ZcP

Z , and it represents the state of knowledge of c after measuring Z.

Bayes’ theorem links the two probabilities in the following manner:

)()|(
)(

1)|(cPcZP
ZP

ZcP = (5.1)

The above equation tells how one should update the state of knowledge of c based on the

acquired knowledge Z. The probability P(c) represents the prior knowledge about c

before making the observation. The inverse probability P(c|Z) (also called the posterior

probability of c) embodies the posterior knowledge about c after making the observation

Z. The forward probability in (5.1) is usually thought as a function of c for fixed

observation Z and is thus also called the maximum likelihood function of c. P(Z) is the

probability of the occurrence of the data, and is unknown usually. But P(Z) does not

affect sampling from P(c|Z) when using the Metropolis-Hastings algorithm, as it is

cancelled as a normalizing constant in the algorithm, which we will see later.

)|(cZP

 66

5.2 Proposing the inverse probability density function of Model (2.1)

Now we set out to propose the posterior probability density function (PPDF) for the

carbon transfer coefficients in Model (2.1). The specification of the PPDF is based on the

statistical properties of the observational random errors. Thus for a Bayesian approach,

the knowledge of the observational errors is as important as the observational data

themselves. However, in practice the information about the probability distributions of

errors is often unavailable, with the best that one can have being the errors bars specified

by experimenters. In this study, to proceed with our analysis we assume the following:

1. Within each data set skZ k ,...,2,1, =
(

, the observation errors

follow a multivariate Gaussian distribution with a covariance matrix .

skE k ,...,2,1, =

)cov(kE

2. The errors among different data sets are independent.

While the second assumption is a physically reasonable one, the first assumption is often

used in applications, since due to the Central Limit Theorem, Gaussian distribution is

general enough to fully characterize the fluctuation of the combined error effects of

various sources (e.g., Von Mises 1964). Another reason for assuming Gaussian-type of

error is because maximizing the PPDF formulated under this assumption is equivalent to

minimizing the quadratic criterion in the deterministic optimization approach. In the next

we denote the prior probability density function as and the PPDF as .)(0 cp)(cp

5.2.1 The prior information

 67

In the Bayesian paradigm the prior probability of the model parameter c can be regarded

as an initial degree of belief in the model parameter c. Hence the prior probability

represents current state of knowledge about the parameters and can be of any density

function form. Lacking of prior knowledge can be represented by a uniform distribution

over the admissible set Ω. This is the conceptually simplest non-informative prior

(Tarantola 1987). In this case the prior distribution

)(0 cp

Ω∈∀= cconstcp ,)(0 . With a

uniform prior, one sees that the maximum a posterior probability (MAP) p(c) becomes

the maximum likelihood probability of c. Hence using the uniform prior is justified from

the point of view of classical (non-Bayesian) statistics.

We can also specify different forms of prior probability distributions for the model

parameter c based on the current state of knowledge. One way to specify the prior is to

use a multivariate Gaussian distribution in which the mean specifies where we believe the

parameter is and the variance represents the confidence of the belief. With the Gaussian

prior, there is a natural relationship between the confidence of the belief and the

Tikhonov regularization number λ that we discussed in Chapter 2.1 (Fitzpatrick 1991).

5.2.2 The posterior probability density function (PPDF) p(c)

Similarly as in Chapter 2, let)(~ cX denote the vector of state variables at all time steps

from a finite difference method that solves the equation (2.1), denote the mapping)(ckΦ

 68

matrix from)(~ cX to data set skZ k ,...,2,1, =
(

, and the error covariance matrix of the k-th

data set be . Based on the above assumptions (1) and (2), the likelihood function

for a single data set

)cov(kE

kZ
(

 is ⎟
⎠
⎞

⎜
⎝
⎛−∝ − kkTkk EEEcZp 1)cov()(

2
1exp)|(

(
 and the likelihood

function of the multiple data sets is)|(1 cZp ks
k

(
=∏ . By specifying the prior probability

density function as , the PPDF is then)(0 cp

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−−=∏∝ ∑

=

−
=

s

k

kkTkks
k EEEcpcZpcpcp

1

1
010)cov()(

2
1exp)()|()()(

(

i.e.,

() (⎟
⎠

⎞
⎜
⎝

⎛
Φ−Φ−−∝ ∑

=

−
s

k

kkkTkk cXcZEcXcZcpcp
1

1
0)(~)()cov()(~)(

2
1exp)()(

(() (5.2)

From (5.2) we see if the prior probability of interest is a Gaussian prior

 (Fitzpatrick 1991), then

)(0 cp

),(11 −− GcN prior λ

() ()

() ()

() () () (⎟
⎠

⎞
⎜
⎝

⎛
−−−Φ−Φ−−=

⎟
⎠

⎞
⎜
⎝

⎛
Φ−Φ−−×

⎟
⎠
⎞

⎜
⎝
⎛ −−−∝

∑

∑

=

−

=

−

s

k

priorTpriorkkkTkk

s

k

kkkTkk

priorTprior

ccGcccXcZEcXcZ

cXcZEcXcZ

ccGcccp

1

1

1

1

2
1)(~)()cov()(~)(

2
1exp

)(~)()cov()(~)(
2
1exp

2
1exp)(

λ

λ

((

((

)
 (5.3)

 69

from which we see the equivalence between the MAP solution of c and the least squares

optimal solution of c with Tikhonov regularization specified as in (2.4) of Chapter 2.1.

Note that the normalizing constant that makes the above function a probability density

function is ignored for the convenience of notation.

Function (5.2) gives a complete probabilistic description of the model parameter c and is

thus the inverse problem solution from a Bayesian point of view. However, one needs to

analyze it in order to fully display the information hidden inside. In the next, we

introduce two approaches – an approximation approach (also called Laplace

Approximation in Box & Tiao (1973)) and an MCMC simulation approach – to study the

PPDF (5.2) of Model (2.1).

5.3. An approximation approach for inverse uncertainty analysis

Depending on the model structure, the data sets and the admissible parameter space, the

shape of the PPDF p(c) is usually hard to determine. However, in cases where p(c) has a

single interior dominant mode that falls away from the maximum in an approximately

Gaussian fashion, then it is useful to approximate the probability density by Gaussian

function (Box & Tiao 1973). The key advantage of this approach is that Gaussian

function is completely determined by the mean vector and the covariance matrix. By

approximating the PPDF (5.3) with a Gaussian function, we can easily construct marginal

distributions for the parameter vector c and calculate the covariance matrix. For this

 70

purpose, we need to use the first and the second derivative information derived in

Chapter 2. We adopt the following steps:

1. Find the optimal point for of (2.4) using the descent-type of algorithm as

was done in Chapter 2. This gives the mean of the approximate Gaussian.

oc)(cJ

2. Expand as a Taylor series up to the second order around the point . The

linear terms vanish since is an extreme. Thus we find

)(cJ oc

oc

)()(
2
1)()(oToo ccQcccJcJ −−+≅

where Q is the Hessian matrix of derived in Chapter 2, with)(cJ

() ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂∂
∂

==
ji

ij cc
JqQ

2

.

3. The approximation Gaussian is then

⎟
⎠
⎞

⎜
⎝
⎛ −−−=

−
)()(

2
1exp

)det()2(
1)(

1

oTo

n
ccQcc

Q
cg

π

We denote , the inverse of the matrix Q , as since it represents the covariance

matrix of the parameter vector c. Then the PPDF (5.3) is approximately:

1−Q)cov(c

)(cp

() ⎟
⎠
⎞

⎜
⎝
⎛ −−−≈ −)()cov()(

2
1exp

))det(cov()2(
1)(1 oTo

n
ccccc

c
cp

π

 71

The above Gaussian function has a simple interpretation: the diagonal elements of

are the variances of the parameters and the off-diagonal elements describes the

correlations each pair of parameters. It should be noted that the above approximation is a

local approximation and is useful only when the shape of the PPDF can be well-

approximated. A perfect approximation only exists in the case of a linear relationship

between the data space and the parameter space.

)cov(c

5.4 A stochastic simulation approach for inverse uncertainty analysis – Markov

chain Monte Carlo (MCMC)

The approximation approach for inverse uncertainty analysis is not applicable in general

since it is a local method. A more general way to study the PPDF (5.3) is to sample it

directly and let the information about the parameter c be computed from the samples. The

work of Geman and Geman (1984) introduced the Gibbs sampler as a method for

obtaining difficult posterior quantities in image restoration. The subsequent integrating

article by Gelfand and Smith (1990) facilitated the use of MCMC methods to evaluate

integral quantities. The basic idea of MCMC is to design a Markov chain with the

probability of interest as the stationary distribution. The Markov chain simulation is run

for sufficiently long time (after an initial running time called the burn-in period) till

samples can be taken from the desired probability distribution. Quantities associated with

the distribution are summarized from the large number of samples. A detailed treatment

of MCMC can be found in Gamerman (1997).

 72

In the next we first explain the fundamentals of Markov chain simulation, and then we

introduce the Metropolis-Hastings (M-H) algorithm. We will also propose a fast sampling

algorithm for PPDF (5.2) after the discussion of the M-H algorithm. Only the discrete

Markov chain is discussed here, considering the discrete nature of numerical simulation

in practice. The contents can be found in most textbooks on Markov process. We refer to

lecture notes by Tan, Fox and Nicholls (2004) for some details.

5.4.1 Markov chain

Let be a sequence of random variables taking values from a

state space . A Markov chain is a stochastic process with the property

that a state in the chain depends only on its immediate previous state and is thus

conditionally independent of all other previous states, i.e.,

.

,...,,...,,,)1()()2()1()0(+kk ccccc

},....,3,2,1,0{=Ω

)1(+kc)(kc

)|(),,...,|()()1()(
1

)1(
0

)0()1(icjcPicicicjcP kkk
k

kk ======= +
−

−+

A Markov chain is completely determined by fixing an initial condition and

the transition probability . A homogeneous Markov chain has the

property that . The transition probability is

usually written as and satisfies the condition . A

matrix with rows summing to one is called a stochastic matrix (denoted as) .

)(0
)0(icP =

)|()()1(icjcP kk ==+

)|()|()()1()()1(icjcPicjcP kknknk ===== ++++

)|()()1(icjcPP kk
ij === +

ijP 1=∑
Ω∈j

ijP

S

5.4.2 Stationary distribution

 73

Consider , the probability that after k steps the probability that the

state is at j. Let and let

,...2,1),()(== jjcP k

)()()(jcP kk
j ==π ()...)(

2
)(

1
)(kkk πππ = , then it is easily

shown where denote the stochastic matrix. If there exists Skk)1()(−= ππ S π so that

Sππ = , with , then 1=∑
j

jπ π is called a stationary distribution of the Markov chain.

If for any then ∞→→ kk ,)(ππ)0(π π is called the equilibrium distribution of the

chain and the chain is said to be ergodic.

For a Markov chain to be ergodic, the following conditions of ergodicity must be

satisfied:

1. Irreducibility. If for any two states i, j in Ω there is a path of non-zero probability

which links i to j and vice versa, then the chain is said to be irreducible.

2. Reversibility. A homogeneous Markov chain is said to be reversible if the

transition probability satisfies: . The

necessary and sufficient condition for reversibility is given by the following

theorem: let be the stochastic matrix of a Markov chain with a unique

stationary

)|()|()1()()()1(icjcPicjcP kkkk ===== ++

Q

π . The chain is reversible if and only if the detailed balance condition

holds: . Ω∈= jiPP jijiji ,,ππ

3. Aperiodicity. Using the set (){ }0,0: >>= nSnT ii
n to define the steps on which

it is possible for a chain to revisit i once it starts from I, if the greatest common

devisor of the integers in set T is one, the chain is called aperiodic.

 74

We have the following important theorem of ergodicity.

Ergodicity theorem. For an irreducible, aperiodic Markov chain on a countable state

space with transition matrix , if there exists S 1,10 =≤≤ ∑
j

jj ππ and for

, then the chain is reversible and ergodic with unique stationary distribution

jijiji PP ππ =

Ω∈ji, π .

The above result answers the existence problem of the equilibrium distribution π of a

chain with a given stochastic matrix. The reverse problem is, given a distribution π , how

to construct a transitional probability of a Markov chain so that the equilibrium

distribution of this chain is π ? This has been answered by the MCMC algorithms.

5.4.3 Metropolis-Hastings (M-H) MCMC

M-H MCMC is an algorithm that generates Markov Chain samples from a desired

equilibrium distribution. The algorithm is as follows:

Let be the starting point of the chain and suppose the algorithm has been run to

obtain values in the admissible set

)0(c

)1()1()0(,...,, −kccc Ω . The next point of the chain is

obtained by a two-step process consisting of a “proposal step” and a “move step”.

)(kc

Proposal step: Propose a candidate state c in the admissible set on the basis of

according to some proposal probability where satisfies:

)1(−kc

)|()1(−kccq)|()1(−kccq

 75

1. . 0)|(0)|()1()1(=⇔= −− ccqccq kk

2. forms the transition matrix of an irreducible Markov chain on

Ω.

)|()1(−kccq

Move step: With probability

⎭
⎬
⎫

⎩
⎨
⎧

= −−

−
−

)|()(
)|()(,1min)|()1()1(

)1(
)1(

kk

k
k

ccqc
ccqcccp

π
π

accept

cc k =)((acceptance)

else set

)1()(−= kk cc (rejection)

Thus the transition probability is given by . It is

shown that the Markov chain simulated by the M-H algorithm is reversible with respect

to

)|()|()|()1()1()1(−−− = kkk ccpccqccp

π . If the Markov chain is also irreducible and aperiodic, then it is an ergodic Markov

chain with unique equilibrium distribution π (Metropolis et al. 1953; Hastings 1970).

Note the algorithm is presented in two steps. In the first step, a candidate state c is

generated with the proposal distribution . The second step ensures that the next

sample lies in the high probability region of

)|(.)1(−kcq

π . Thus to generate the next Markov chain

sample on the basis of the current sample, one first generates a candidate state, and then

takes either the candidate state or the current sample as the next sample according to

whether the candidate state lies in the high probability region or not.

 76

5.4.4 MCMC estimator and output analysis

From the Bayesian point of view, the complete state of knowledge of the parameter

vector c after the observation Z is given by the PPDF . Once is known, various

quantitative estimates can be made such as the maximum likelihood estimates, the MAP

estimates, the mean estimates and the variances/covariances of the variables etc. can be

calculated. For example:

)(cp)(cp

1. the mean estimator dcccpcE)()(∫=

2. the parameter covariance matrix dccpcEccEccCov T)())())((()(∫ −−=

3. the marginal distribution miii dcdcdcdccpcp)()(111 +−∫=

In general one needs to calculate the following form of integral:

∫= dccpcfcfE)()()]([

We can estimate this integral from some independent and identically distributed (i.i.d.)

samples of the random variable c, , from , i.e.,)()2()1(,...,, kccc)(cp

∑
=

=
k

i

ik cf
k

ccccfE
1

)()()2()1()(1],...,,|)([.

If the samples are i.i.d., the strong and weak laws of large numbers ensure

that the approximation can be made accurate as desired with increasing k . It should be

noted is a random variable itself. For different realizations

 of the random variable c, the estimation will be different. But in general,

kic i ,...,2,1,)(=

],...,,|)([)()2()1(kccccfE

)()2()1(,...,, kccc

 77

if were independent samples and)()2()1(,...,, kccc ∑
=

=
k

i

ik cf
k

ccccfE
1

)()()2()1()(1],...,,|)([,

then () ()
k

cfccccfE k)(var],...,,|)([var)()2()1(= , which gives the convergence rate of the

estimator.

In MCMC, the samples are dependent on their immediate predecessors and hence

 are correlated samples. In this case and we have the following estimate of

the variance for :

)()2()1(,...,, kccc

],...,,|)([)()2()1(kccccfE

 () ()
k

cf
ccccfE fk)(var

],...,,|)([var)()2()1(τ
=

where fτ is called the autocovariance time and is given by:

∑
∞

=

+=
1

)(21
s

fff sρτ

and)(sffρ is the normalized autocovariance function

())var(/)(),(cov)()()(fcfcfs skk
ff

+=ρ .

Thus the MCMC estimators should be phrased in the following way: we estimate the

mean value of in the interval of)(cf
()
k

cf
ccccfE fk)(var

2],...,,|)([)()2()1(τ
×± with

95% confidence. It can also be seen that if a Markov chain is well designed such that the

autocovariance time is small, then the estimators will converge fast.

5.5 Toward a more efficient sampling method

 78

The above M-H algorithm is quite general. Usually the computation is quite intensive if

the proposal probability is not properly set, as a large number of samples will fall out of

the high probability density area and are thus rejected. When directly applied to Model

(2.1), the computation is extremely time-consuming since each simulation involves the

forward solution of the system equation over a long time span, especially when the finite

difference method is on a fine grid. A successful application of MCMC relies on a proper

choice of the proposal probability, as the proposal probability not only affects the

distribution of the candidate state given the present state, but also the convergence rate of

the MCMC estimators. In the following we discuss two major types of proposal

distribution and reveal the mechanism of how to improve the efficiency of the MCMC

algorithm.

5.5.1 Symmetric proposal probability

One common type of proposal probability is the symmetric distribution centered at the

current state. In this case . This proposal probability is also called

“chain-adaptive” since the distribution of the candidate state depends on the current state.

The most commonly used symmetric distribution can either be symmetric Gaussian or

uniform distribution. However, the step lengths

)|()|()1()1(ccqccq kk −− =

nili ,....,2,1, = for a proposal probability

in n-dimensional space that control the allowable distance that the next sample can depart

from the current one affects the sampling efficiency. In general, small step lengths tend to

increase the correlation among the Markov chain samples, slowing down the convergence

of the MCMC simulation, while large step values will increase the number of rejected

 79

samples and thus also slow down the convergence of the MCMC simulation. When the

step lengths are excessively large in the parameter space, the candidate states will often

be generated far away from the current sample, and so may not have a high probability of

lying in the high probability region even if the currently-accepted one does. The choice of

the step lengths corresponding to the “spreading” of the proposal probability is a trade off

between the degree of neighborhood correlations and number of rejected samples.

5.5.2 Stationary proposal probability

As another extreme, the proposal probability can be “stationary” in the sense

 so that the next sample is generated from some pre-specified

probability

)()|()1(cccq k χ=−

)(cχ directly sample and thus does not depend on the current one. The

constructed proposal probability)(cχ is usually based on some prior knowledge about

the PPDf and is chosen as close to the PPDF as possible. For example, suppose

)()(cpc =χ . Then the acceptance probability becomes:

1
)()(
)()(,1min

)|()(
)|()(,1min)1(

)1(

)1()1(

)1(

=
⎭
⎬
⎫

⎩
⎨
⎧

=
⎭
⎬
⎫

⎩
⎨
⎧

−

−

−−

−

cpcp
cpcp

ccpcp
ccpcp

k

k

kk

k

Thus all generated samples will be accepted. In this case, all samples will be i.i.d.

according to . This observation shows in order to reduce the computational cost, we

should sample the PPDF by utilizing information regarding the PPDF, i.e., we should let

the proposal probability be as close to the PPDF as possible.

)(cp

5.5.3 The proposal probability that increases the sampling efficiency

 80

As was analyzed in Chapter 5.3, the Hessian matrix contains the information about the

geometry of the PPDF. This information can be utilized to improve the efficiency of

sampling. Thus we propose the following fast Metropolis-Hastings (M-H) type of

algorithm:

Denote the inverse of the Hessian matrix at the optimal point as similarly as

above. Determine eigenvalues

)cov(oc

iγ and eigenvectors of , combine the m column

vectors into a matrix T that diagonalizes the matrix as

iq)cov(oc

iq)cov(oc

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=−

2

2
1

1

.
.

)cov(

m

o TcT

σ

σ

1. Generate independent Gaussian variables: Generate m mutually independent

Gaussian random variables miyi ,...,1, = with the variances . miii ,...,1,2 == γσ

2. Transform step: Transform the vector ()Tmyyy ..1= into the correlated

Gaussian vector according to (T
mzzz ..1=) yTz ⋅= . Then z is a sample of a

Gaussian random vector with zero mean and covariance .)cov(oc

3. Proposal step: propose the next point according to . Then c is a

sample of a Gaussian random vector with mean and covariance .

zcc k += −)1(

)1(−kc)cov(oc

4. Move step: With probability

 81

⎭
⎬
⎫

⎩
⎨
⎧

= −−

−
−

)|()(
)|()(,1min)|()1()1(

)1(
)1(

kk

k
k

ccqcp
ccqcpccp

accept

cc k =)((acceptance)

else set

)1()(−= kk cc (rejection)

It is obvious that the above method is chain-adaptive, but it also utilizes the information

about the shape of the approximation Gaussian constructed above. The two requirements

(1) and (2) on proposal probability in the M-H algorithm are not violated by the added

steps. This proposed algorithm increases tremendously the efficiency of sampling, as is

evidenced by our numerical results.

5.6 Application to the seven-pool model and numerical results

In the following we give three sets of results for analyzing the PPDF. The first inversion

result is from direct function approximation approach. The second comes from the

general M-H algorithm where the proposal probability is a uniform distribution. The third

is from the modified M-H algorithm where the Hessian matrix information is used in the

proposal probability. Throughout the analysis, the prior distribution of the model

parameters are assumed to be uniform on the admissible set Ω given in (2.7).

 82

5.6.1 Numerical result of the approximation approach

From the previous discussion, it is seen that we can possibly obtain salient information

for parameters c1, c2, c4 and c6 only. Thus in this section only their joint probability

density function is approximated. The procedures are given in the following:

1. From the conjugate gradient method, we have the optimal point:

()-,101.1471-, ,100.9862-,,101.0933,101.8238 -4-3-4-3 ××××=oc .

2. We calculate the Hessian matrix at . The elements corresponding to coc 1, c2, c4

and c6 are taken to form matrix Q mentioned in Chapter 5.3.

 .

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

××××
××××
××××
××××

=

9887

8897

89108

7788

101.5968101.7179-107.7445-103.5738-
101.7179-103.5445101.8625-101.8025-
107.7445-101.8625-102.0979102.8857
103.5738-101.8025-102.8857109.6316

Q

3. The inverse of is the covariance matrix of cQ 1, c2, c4 and c6. It is given

by

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

××××
××××
××××
××××

=

−−−−

−−−−

−−−−

−−−−

1091011

991011

10101011

1111119

6421

10923.710007.110185.1101.274
10007.110556.510209.6102.560-
10185.110209.610074.1101.615-
101.274102.560-101.615-10043.1

),,,cov(cccc

4. As was discussed in Chapter 5.3, the approximation of the PPDF of c1, c2, c4 and

c6 is then given by

 83

() ()

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
−
−
−

−−−−−

×≈

−

0
66

0
44

0
22

0
11

1
6421

0
66

0
44

0
22

0
11

6421

),,,cov(
2
1exp

)),,,det(cov()2(
1)(

cc
cc
cc
cc

cccccccccccc

cccc
cp

T

nπ

5. From the above multivariate Gaussian distribution, it is easy to write the marginal

distribution for each of the parameters and also the joint distributions for two or

more parameters. The marginal distributions for the parameters are given as:

() .4,3,2,1,)()var()(
2
1exp

))var(2
1)(1 =⎟

⎠
⎞

⎜
⎝
⎛ −−−= − iccccc

c
cf o

ii
o
i

i
i π

The joint distributions for any two parameters are:

()() () .4,3,2,1,,),var(
2
1exp

)),det(var()2(
1),(

1

2

=⎟
⎠
⎞

⎜
⎝
⎛ −−−−−×

=

− jicccccccccc

cc
ccf

To
j

o
iji

o
j

o
i

ji

ji
π

6. The correlation coefficient matrix (i.e., the normalized covariance matrix) reveals

the degree of correlations among the coefficients. Based on , it is

approximately:

),,,cov(6421 cccc

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

×
=

10.4400.4060
0.44010.7390
0.4060.73910

0001

)var()var(
),var(

4,...,1, jiji

ji

cc
cc

From the correlation matrix, we see has no correlation with other parameters. The

correlation between and is strong and is about 0.739. The correlation between

and is about 0.40, and the correlation between and is about 0.44.

1c

2c 4c 2c

6c 4c 6c

 84

The information of the PPDF is revealed more intuitively by the following figures of

marginal distributions and joint distributions:

 85

0 0.5 1 1.5 2 2.5 3

x 10
-3

0

2000

4000

6000

8000

10000

12000

0.5 1 1.5 2 2.5 3 3.5

x 10
-4

0

1

2

3

4
x 10

4

0.5 1 1.5 2 2.5 3

x 10
-3

0

1000

2000

3000

4000

5000

0 2 4

x 10
-4

0

5000

10000

15000

c1
c2

c4 c6

Marginal Distributions Constructed by Function Approximation

Figure 5.2 Marginal distribution via function approximation approach. The x-axes

represent the pre-specified physical bounds for the parameters. From the figures we c1

has the least uncertainty on its physical range. Parameter c6 has the largest uncertainty.

 86

Figure 5.3 Joint distribution of c1 and c2 via function approximation approach. As can be

seen, since these two parameters are independent, the principal directions of the ellipsoid

are parallel to the axes.

 87

Figure 5.4 Joint distribution of c2 and c4 via function approximation approach. The

skewness of the principal direction is caused by the correlation.

 88

Figure 5.5 Joint distribution of c2 and c6 via function approximation approach

 89

Figure 5.6 Joint distribution of c4 and c6 via function approximation approach

From Figure 5.2, it can be seen that parameter c1 has the least inverse uncertainty, as its

marginal distribution is constrained in a very narrow range within the pre-specified

 90

physical bound. The constraints of c2 and c4 are about the same. Parameter c6 has the

largest uncertainty as its marginal distribution has the widest spread over its physical

bound. The independence of c1 and c2 is characterized by the fact that the principal

directions of the joint probability function are parallel to the axes. The degrees of

correlations between each pairs of parameters are characterized by the skewness of the

principal directions relative to the axes.

The following table summarizes the uncertainty in parameter estimation:

Parameters c1 c2 c3 c4

Mean -3101.8238× -4101.0933× -3100.9862× -4101.1471×

Standard deviation 3.2296×10-5 1.0363×10-5 7.4539×10-5 2.8148×10-5

Table 5. 1 Inverse uncertainty analysis of parameters c1, c2, c4 and c6

As a conclusion, we see the inverse uncertainty can be obtained from an approximation

approach to the PPDF. However, it should be noted that since these constructions are

based on the second order approximation of the cost function locally at the optimal point

and the Hessian only gives information about the curvature near the optimal point, the

characterization of the inverse uncertainty may not be complete if the approximation is

not good enough. For example, the variances of the parameters may be underestimated

and the correlations may be overestimated, depending on the actual shape of PPDF.

However, this approach still reveals most of the information in the PPDF, and, in cases

 91

when cost functions are nearly quadratic with respect to the model parameters, this

approach is quite accurate.

5.6.2 Numerical result of the MCMC approach with the standard M-H algorithm

In this section we use M-H algorithm to directly sample the PPDF. By analyzing the

samples, we will quantify the inverse uncertainty described by the PPDF. Since the

samples follow the stationary distribution given by the PPDF , the direct analyzing

of the samples tends to overcome the weakness of the above approximation approach and

give a more complete view of from the samples.

)(cp

)(cp

5.6.2.1 Specifications of the MCMC sampling using the standard M-H algorithm

The following are the specifications for the simulation:

1. Five runs of the M-H algorithm were made, each with a simulation time of

20,000.

2. Each run was started at a randomly chosen point in the admissible set.

3. The candidate point was generated according to a uniform distribution. Each

component was perturbed uniformly according to:

 mj
L

R
randcc jcpresent

j
candidate
j ,...,2,1,)

2
1]1,0[(=×−+= ,

where is the j-th component of the current point c in the simulation chain,

 is a random number uniformly distributed over [0,1], is the

present
jc

]1,0[rand
jcR

 92

physical bound of component , and L is the scale of that controls the

maximum distance allowed. If falls outside the admissible set, then it is

reflected back across the boundary.

jc
jcR

candidate
jc

4. The burn-in length was set to be the first 100 samples.

5. Each run rejected about 18800 candidate samples. The rejection rate was about

94% on the average. Thus only 6% new updates were accepted.

6. The samples of the five runs were mixed to get a total of 99500 samples.

The following figure shows the mixed chains for all the seven parameters.

 93

2 4 6 8

x 10
4

0.5
1

1.5

2
2.5

x 10
-3

2 4 6 8

x 10
4

1

1.5

2

2.5

x 10
-4

2 4 6 8

x 10
4

0.01

0.015

0.02

0.025

2 4 6 8

x 10
4

1

1.5

2

2.5

x 10
-3

2 4 6 8

x 10
4

3

4

5

6

x 10
-3

2 4 6 8

x 10
4

1

1.5

2

2.5

x 10
-4

2 4 6 8

x 10
4

2

4

6

8

x 10
-6

2 4 6 8

x 10
4

0

100

200

300

400

MCMC Samples from Five Runs of Metropolis-Hastings Algorithm

c1 c2

c3

c4

c5

c6

J(c)
c7

Figure 5.7 MCMC sampling processes for the model parameters. The last plot shows the

values of J(c) at the high probability density area.

 94

0.5 1 1.5 2 2.5

x 10
-3

2000
4000
6000
8000

10000
12000

c1

1 1.5 2 2.5

x 10
-4

2000
4000
6000
8000

10000
12000

c2

0.01 0.015 0.02 0.025

2000
4000
6000
8000

10000
12000

c3

1 1.5 2 2.5

x 10
-3

2000
4000
6000
8000

10000
12000

c4

3 4 5 6

x 10
-3

2000
4000
6000
8000

10000
12000

c5

1 1.5 2 2.5

x 10
-4

2000
4000
6000
8000

10000
12000

c6

2 4 6 8

x 10
-6

2000
4000
6000
8000

10000
12000

c7

Histograms of MCMC Samples for the Model Parameters

c1 c2 c3

c4 c5 c6

c7

Figure 5.8 Histograms of MCMC samples for the model parameters.

5.6.2.2 Output analysis

 95

1. Mean estimators.

Based on the mixed sampling series, the means of are 6421 ,,, cccc

-4
6

-3
4

-4
2

-3
1 101.2729][,109360.0][,101.0669][,101.8242][×=×=×=×= cEcEcEcE

2. Covariance matrix.

The following covariance matrix and correlation coefficient matrix are calculated

directly from the samples:

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

××××
××××
××××
××××

=

−−−−

−−−−

−−−−

−−−−

9101011

1091011

10101012

1111129

6421

100323.1102642.9101.1949102.2314
102642.9105259.7105.4586102.1682-
101.1949105.4586100835.1108.6965-
102.2314102.1682-108.6965-101.0644

),,,cov(cccc

3. Matrix of correlation coefficients.

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

×
10.33240.35730

0.332410.60450
0.35730.604510

0001

)var()var(

),var(

, jiji

ji

cc

cc

5.6.3 MCMC with fast sampling method

The sampling efficiency of the standard M-H algorithm used above is very low, as is seen

from the high rejection rate (about 94%) of the proposed candidate samples. This means

94% of the forward simulations were wasted. This imposes a costly computational

burden for computer simulation. In this section, we test the fast M-H-G type of algorithm

 96

and make comparisons with the above approach. The followings are the specifications

and numerical results.

5.6.3.1 Specifications of the MCMC sampling

The following are the specifications for the simulation:

1. We run the M-H algorithm with 20,000 simulation times.

2. The candidate point was generated according to the following: c1, c2, c4 and c6

were generated by the method discussed in Chapter 5.5.2, while c3, c5 and c7 were

uniformly generated according to:

.7,5,3,)
2
1]1,0[(=×−+= j

L

R
randcc jcpresent

j
candidate
j similarly as above.

3. The burn-in length was set to be the first 100 samples.

4. The algorithm rejected about 12,000 candidate samples, giving a rejection rate of

60%. Compared with the above rate of 94%, it is a tremendous decrease. Now

40% new updates were accepted due to the fast sampling method.

The following figure shows the sampling chains for all the seven parameters:

 97

0.5 1 1.5 2

x 10
4

0.5
1

1.5

2
2.5

x 10
-3

0.5 1 1.5 2

x 10
4

1

1.5

2

2.5

x 10
-4

0.5 1 1.5 2

x 10
4

0.01

0.015

0.02

0.025

0.5 1 1.5 2

x 10
4

1

1.5

2

2.5

x 10
-3

0.5 1 1.5 2

x 10
4

3

4

5

6

x 10
-3

0.5 1 1.5 2

x 10
4

1

1.5

2

2.5

x 10
-4

0.5 1 1.5 2

x 10
4

2

4

6

8

x 10
-6

0.5 1 1.5 2

x 10
4

0

100

200

300

400

MCMC Samples from the Fast Metropolis-Hastings Algorithm

c1
c2

c3

c4

c5

c6

J(c)

c7

Figure 5.9 MCMC sampling processes with the fast Metropolis-Hastings algorithm

 98

0.5 1 1.5 2 2.5

x 10
-3

500

1000

1500

2000

c1

1 1.5 2 2.5

x 10
-4

500

1000

1500

2000

2500

c2

0.01 0.015 0.02 0.025

500

1000

1500

2000

2500

c3

1 1.5 2 2.5

x 10
-3

500

1000

1500

2000

2500

c4

3 4 5 6

x 10
-3

500

1000

1500

2000

2500

c5

1 1.5 2 2.5

x 10
-4

500

1000

1500

2000

2500

c6

2 4 6 8

x 10
-6

500

1000

1500

2000

2500

c7

Histograms of the MCMC Samples for the Model Parameters

c1

c4

c2 c3

c5 c6

c7

Figure 5.10 Histograms of the samples from fast MCMC

5.6.3.2 Output analysis

 99

Based on the above samples, we calculate the following:

1. Mean estimator

-4
6

-3
4

-4
2

-3
1 101.2881][,109337.0][,101.0660][,101.8258][×=×=×=×= cEcEcEcE

2. Covariance matrix

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

××××
××××
××××
××××

=

−−−−

−−−−

−−−−

−−−−

9101011

1091011

10101011

1111119

6421

101.0256108.174101.0594103.9704
108.174106.8488105.763106.0669-
101.0594105.763101.0832101.9761-
103.9704106.0669-101.9761-101.0650

),,,cov(cccc

3. Matrix of correlation coefficients

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

×
10.30840.31780

0.308410.66910
0.31780.669110

0001

)var()var(
),var(

, jiji

ji

cc
cc

5.7. Result comparison

The above three sets of results are summarized in the following Table 2. From the table,

it can be observed that the approximation approach overestimated the correlations among

the parameters and underestimated the variance of c6. However, the estimates are in

general quite consistent.

 100

 Approaches

 Approximation Standard M-H Fast M-H

Var(c1) 910043.1 −× 9101.0644 −× 9101.0650 −×

Var(c2) 1010074.1 −× 10100835.1 −× 10101.0832 −×

Var(c3) 910556.5 −× 9105259.7 −× 9106.8488 −×

Var(c4) 1010923.7 −× 9100323.1 −× 9101.0256 −×

Table 5.2 Comparison of Variance Estimations

 Approaches

 Approximation Standard M-H Fast M-H

c1,cj (j = 2,4,6) 0 0 0

c2, c4 0.739 0.6045 0.6691

c2, c6 0.406 0.3573 0.3178

c4, c6 0.440 0.3324 0.3084

Table 5.3 Comparison of Correlation Coefficient Estimation

 101

It is also of interest to compare the Bayesian inversion result with the results obtained

from all the previous approaches. By comparing Figure 5.10 with Figure 3.2, it is easily

seen that the optimal values of the identifiable parameters c1, c2, c4 and c6 from the

conjugate-gradient optimization algorithm are nearly the same as the maximum

likelihood estimations from the Bayesian approach, nevertheless, the Bayesian approach

gives a more complete description of the inversion results in that it also includes the

inverse uncertainty as part of the information. For the non-informative parameters c3, c5,

c7 with the conjugate-gradient method, the MCMC approach yields widely spreading

profiles across their pre-specified physical bounds and also the information that the

parameters c3, c5 have higher probability of clustering at the upper bound of their

physical ranges. The comparison between Figure 5.10 and Figure 4.2 yields the similar

observation. Through comparison, we see that the Bayesian inversion should be a

preferred approach for inverse analysis, as it gives the whole picture of the probability

density function of the parameters from which one can “see the trees as well as the

forest”. Moreover, we can estimate all the interested quantities that summarize the

inversion results such as maximum likelihood values, mean values, variances and

correlations etc.

5.8 Data comparison

Now we show the comparison between the simulated data sets and the observed data sets.

To obtain the comparison, we fixed values for at 6421 ,,, cccc

-4-3-4-3 101.2729,109360.0,101.0669,101.8242 ××××

 102

and randomly generated a set of numbers for c3 and c5 according to the modes indicated

by Figure 5.10: ; while c]105.8,105.5[],027.0,02.0[33
53

−− ××∈∈ cc 7 was randomly

generated according to uniform distribution over its physical bound. The fittings are in

general satisfactory with R2 being high, as are indicated by Figure 5.11.

 103

0 500 1000 1500 2000
0

1

2

3

4

5
Soil respiration

0 500 1000 1500 2000
4000

4500

5000

5500

6000

6500

Woody biomass

0 500 1000 1500 2000
350

400

450

500

550

600

Foilage biomass

1 2 3 4 5
350

400

450

500

550

600

650

700

Litterfall

0 500 1000 1500
550

600

650

700

750

Carbon in
 forest floor

0 500 1000 1500
2400

2450

2500

2550

2600

2650

2700

2750

Carbon in
forest mineral

observed
simulated

Comparison of Simulated Data and Observed Data

R2=0.85 R2=0.99 R2=0.71

R2=0.64

Figure 5.11 Data comparison. The figure shows the six observational data sets used in the

inverse analysis and the six simulated data sets based on the inversion result.

 104

5.9 Model prediction

Now we construct the posterior predictive distribution of the pool sizes based on the

above simulation result. The predictive probability distribution of Ẑ given Z is defined

by

∫= θθθ dZpZpZZp)|()|ˆ()|ˆ(

To actually construct the predictive distribution, samples from the above MCMC

simulations were fed to the model equation (2.1). The properties of the output were

summarized by the following marginal distributions and cumulative distributions.

 105

550 600 650 700 750
0

200

400

600

7000 8000 9000 10000
0

200

400

600

800

0 50 100 150 200
0

500

1000

1500

800 1000 1200 1400 1600
0

200

400

600

100 200 300 400
0

200

400

600

800

1000 2000 3000 4000
0

200

400

600

850 900 950 1000 1050
0

100

200

300

400

500

Predictive Marignal Distributions of Carbon Pool Sizes

x1 x2 x3

x4 x5 x6

x7

Figure 5.12 Histograms (un-normalized predictive marginal distributions) of carbon pool

sizes predicted in the year of 2010.

 106

600 620 640 660 680 700
0

0.2

0.4

0.6

0.8

1

7000 7500 8000 8500 9000 9500
0

0.2

0.4

0.6

0.8

1
Predicted Cumulative Distributions of Pool Sizes

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

800 1000 1200 1400 1600
0

0.2

0.4

0.6

0.8

1

100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

1500 2000 2500 3000 3500
0

0.2

0.4

0.6

0.8

1

900 920 940 960 980 1000
0

0.2

0.4

0.6

0.8

1

x1 x2 x3

x4
x5

x6

x7

Figure 5.13 Predictive cumulative distributions of carbon pool sizes in the year of 2010.

 107

CHAPTER 6

CONCLUSIONS AND FURTHER WORK

In this thesis, we studied the inverse problem of a general type of biogeochemical cycles

that describes the carbon sequestration mechanism of terrestrial ecosystem from both

deterministic and probabilistic approaches. For the deterministic approaches, we

developed the Jacobian and Hessian matrix of the cost functional under a general model

structure setting and multiple data sets constraints. We then proposed two descent-type

algorithms, applied them to the practical model, and made estimates for the model

parameters. By tracing the searching paths, we revealed the identifiability/non-

identifiability of the parameters. In order to include the situations where the functions in

the model were not smooth and the possible existence of multi-minima, we introduced

the stochastic search algorithms GA and SA. It was shown that the numerical testing

results were the same even under non-smooth functions in the model. However, these

 108

approaches have limitations in that they only give point estimations and could not reveal

the uncertainty in the inversion caused by observational uncertainties.

To include the inverse uncertainty study, we introduced the Bayesian paradigm. By

specifically assuming the Gaussian type of random errors in the observational data sets,

we proposed the posterior probability density function (PPDF) for the model parameters.

Two approaches were developed to study the PPDF – the Laplace approximation

approach which approximated the PPDF with Gaussian function based on the Hessian

matrix information, and the MCMC simulation approach which sampled the PPDF

directly and analyzed the samples to obtain the PPDF properties. The first approach only

works in the situation where the PPDF has a single distinguished peak or is nearly

quadratic in model parameters. The second approach overcomes this limitation, and is

generally applicable to PPDF of any shape due to the fact the MCMC approach regards

the PPDF as a stationary distribution of a Markov chain. However, standard MCMC

algorithms are computationally costly, especially when applied to the biogeochemical

model where each simulation involves the solution of the forward differential equation

over a significant time span. To increase the efficiency of the MCMC simulation, we

combined the Hessian matrix with the proposal probability in the Metropolis-Hastings

algorithm. Application to the practical model showed the number of samples accepted

was considerably increased.

Through the comparison, we see that, for inverse problems, the probabilistic approach not

only gives the parameter values but also the description of inverse uncertainty, and is a

more complete approach than the non-probabilistic approaches.

 109

Though this thesis gives a relatively complete study of the inverse analysis methods that

could be applied to the ecosystem model, there are still further issues to be addressed:

1. We did not address the convergence aspects of the MCMC simulation, nor did we

delve deep to the theoretical aspects of the algorithms. One reason for this

negligence was perhaps due to the fact that the study was strongly application

motivated; the other reason was perhaps because the convergence was fairly

straightforward for the practical numerical model we used – all approaches

showed that the cost function or the PPDF had only one single well-defined peak

for the identifiable parameters, and it was obviously not difficult for MCMC to

find the single peak. However, there will be situations where the model space and

data space together define a cost function or PPDF in a complex manner in which

cases the convergence analysis will become very important for MCMC to reliably

reveal the PPDF structure. There is a very rich literature about the convergence

analysis for MCMC that needs to be introduced with further study (see Cowles &

Carlin (1996) for an excellent review of Markov Chain Monte Carlo Convergence

Diagnostics).

2. We studied the uncertainty caused by measurement uncertainty. Uncertainty

caused by model structure was not addressed. One interesting question is: based

on the current information available, what the model structure should be. This

means, instead of fixing the number of pools in the model, we let the number of

pools be decided by the current information available. This could avoid the over-

 110

parameterization of model and enable the information to be concentrated on the

key parameters.

 111

REFERENCES

1. Aarts, E., Korst, J. Simulated Annealing and Boltzmann Machines, John Wiley &

Sons, 1989.

2. Box & Tiao, Bayesian Inference in Statistical Analysis, Published by Addison-

Wesley, 1973.

3. Comins, H. N., R. E. McMurtrie, Long-term biotic response of nutrient-limited forest

ecosystems to co2 enrichment: equilibrium-behavior of integrated plant-soil models,

Ecological Applications 3:666 -681, 1993.

4. Cowles, M.K. and Carlin, B., Markov chain Monte Carlo convergence diagnostics: A

comparative review. Journal of the American Statistical Association, 91: 883-904,

1996.

5. De Jong, K. A., An Analysis of the Behavior of a Class of Genetic Adaptive Systems,

Ph.D. Thesis, University of Michigan, Ann Arbor, MI., 1975.

6. Dowsland, K.A., Simulated Annealing. In Modern Heuristic Techniques for

Combinatorial Problems (ed. Reeves, C.R.), McGraw-Hill, 1995.

 112

7. Enting, I.G., Inverse Problems in Atmospheric Constituent Transport, Cambridge

Atmospheric and Space Science Series, 2002.

8. Fitzpatrick, B.G., Bayesian Analysis in Inverse Problems, Inverse Problems (7), 675-

702, 1991.

9. Gelfand A. E., Smith, A. F. M. Sampling based approaches to calculating marginal

densities. Journal of the American Statistical Association, 85:398--409, 13, 1990.

10. Geman S. and Geman D., Stochastic relaxation, gibbs distributions, and the bayesian

restoration of images. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 6:721--741, 1984

11. Gamerman, D., MCMC: Stochastic simulation for Bayesian inference, Chapman &

Hall/CRC, New York, 1997.

12. Gill, J. Bayesian Methods – a Social and Behavioral Approach, Published by

Chapman & Hall/CRC.

13. Goldberg, D.E., Genetic Algorithms in Search, Optimization and machine learning,

Published by Addison-Wesley Pub Co., 1989.

14. Goldberg, D. and Vosser, S., “Optimizing Global-Local Search Hybrids” Proc. the

Genetic and Evolutionary Computation Conference, pp 220-228, Morgan Kaufmann,

1999.

15. Grefenstette, J. J., Optimization of Control Parameters for Genetic Algorithms, IEEE

Trans. Syst., Man, Cyber. SMC-16, 122-128, 1986.

16. Hadamard, J., Lectures on Cauchy's Problem in Linear Partial Differential Equations,

New Haven, CT, Yale University Press, 1923.

 113

17. Hansen, P. C., The L-curve and its use in the numerical treatment of inverse

problems, http://www.sintef.no/static/AM/vskoler/.

18. Hastings, W.K., Monte Carlo sampling methods using Markov chain and their

applications, Biometrika, 57, 97-109, 1970.

19. Haupt, R.L., Haupt, S.E., Practical Genetic Algorithm, Published by Wiley

Interscience, 1998.

20. Hensel, Edward, Inverse Theory and Applications for Engineers, Prentice-Hall, 1991.

21. Holland, John H., Genetic Algorithms, Scientific American, 1992.

22. Kirkpatrick, S , Gelatt, C.D., Vecchi, M.P. 1983. Optimization by Simulated

Annealing. Science, vol 220, No. 4598, pp671-680

23. Lundy, M., Mees, A. 1986. Convergence of an Annealing Algorithm. Math. Prog.,

34, 111-124

24. Luo, Y., Luther W. White, Josep G. Canadell, Evan H. DeLucia, David S. Ellsworth,

Adrien Finzi, John Lichter, and William H. Schlesinger Sustainability of terrestrial

carbon sequestration: A case study in Duke Forest with inversion approach, Global

Biogeochemical Cycles, Vol. 17, No.1, 2003.

25. Luo, Y., and J.F. Reynolds, Validity of extrapolating field CO2 experiments to

predict carbon sequestration in natural ecosystems, Ecology 80:1568-1583, 1999.

26. Mellillo, J.M., A.D. McGuire, D.W. Kicklighter, B. Moore III , C.J. Vorosmarty , and

A. I Schloss, Global climate change and terrestrial net primary production, Nature

363 :234- 240, 1993.

 114

27. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E. 1953.

Equation of State Calculation by Fast Computing Machines. J. of Chem. Phys., 21,

1087-1091.

28. Mitra, D., Romeo, F., Sangiovanni-Vincentelli, A. 1986. Convergence and Finite

Time Behavior of Simulated Annealing. Advances in Applied Probability, vol 18, pp

747-771.

29. Nicholls, G.K., Bayesian inference and Markov chain Monte Carlo by example,

2004, available on line at

http://www.math.auckland.ac.nz/~nicholls/linkfiles/papers/NichollsKuopio04.pdf

30. Parton, W.J., D.S. Schimel , C.V. Cole, and D.S. Ojima, Analysis of factors

controlling soil organic matter levels in Great Plains grasslands. Soil Science Society

of America Journal 51:1173 – 1179, 1987.

31. Press, W.H., Teukolsky SA, Vetterling WT, Flannery BP, Numerical Recipes IN

Fortran 77: the Art of Science Computing. Cambridge University Press, UK, 1992.

32. Rabenstein, A.L., Introduction to Ordinary Differential Equations, Academic Press,

1972.

33. Rastetter, E.B., G.I. Agren and G.R. Shaver, Responses of N-limited ecosystems to

increased CO2: a balanced-nutrition, coupled-element-cycles model, Ecological

Applications 7:444 – 460, 1997.

34. Rayward-Smith, V.J., Osman, I.H., Reeves, C.R., Smith, G.D. 1996. Modern

Heuristic Search Methods. John Wiley & Sons.

35. Russell, S., Norvig, P. 1995. Artificial Intelligence A Modern Approach. Prentice-

Hall.

 115

36. Roberts, G.O. and Rosenthal, J.S., Markov chain Monte Carlo: Some practical

implications of theoretical results, Canadian J. Stat. 26, 5-31, 1998.

37. Spall, J. C., Introduction to stochastic search and optimization, , simulation and

control, Published by Wiley-Interscience, 2003.

38. Spall, J. C, Estimation via Markov Chain Monte Carlo, Proceeding sof the American

Control Conference, Anchorage, AK, May 8-10, 2002.

39. Tan, S.M, C. Fox and G.K. Nicholls, Inverse Problems, 2004, available on website

http://www.math.auckland.ac.nz/~nicholls/707/.

40. Tarantola, Albert. Inverse Problem Theory: Methods for Data Fitting and Model

Parameter Estimation, Elsevier Science Press, Amsterdam, 1987.

41. Thompson, M.V, and J.T. Randerson, Impulse response functions of terrestrial carbon

cycle models: method and application, Global Change Biology 5: 371-394, 1999.

42. Tikhonov, A., On the solution of incorrectly stated problems and method of

regularization. Dokl Akad Nauk SSSR, 151:501, 1963.

43. Von Mises. Mathematical Theory of Probability and Statistics. Academic Press, New

York, 1964.

44. Vose. M. D., the Simple Genetic Algorithm: Foundations and Theory (Complex

Adaptive Systems), MIT Press, 1999.

45. White, L., Luo, Y., Estimation of carbon transfer coefficients using Duke Forest free-

air CO2 enrichment data, Applied Mathematics and Computation, 130, 101-120,

2002.

 116

