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ABSTRACT 

 

In this thesis we investigate various inversion approaches for a general type of 

biogeochemical cycle model that describes the carbon sequestration mechanism of 

terrestrial ecosystem. We formulate the inverse problems in two approaches – a 

deterministic inverse approach and a probabilistic inverse approach. We first develop the 

deterministic inverse techniques by calculating the first and second derivatives of the cost 

functional. Algorithms that depend on the gradient information are proposed. Then, 

considering the stochasticity in the model, we introduce two stochastic optimization 

methods – genetic algorithm and simulated annealing, to estimate the model parameters. 

We further consider the inverse uncertainty of the problem and introduce the Bayesian 

paradigm to formulate a posterior probability density function that describes the inverse 

uncertainty. Function approximation approach and Markov Chain Monte Carlo technique 

are then used to study the probability density function to reveal the inversion result. To 

increase the simulation efficiency, we combine Hessian matrix information with the 

proposal probability density function in the Metropolis-Hastings algorithm for fast 

sampling. All the approaches are tested against a practical numerical model that describes 

forest ecosystem carbon sequestration. The thesis concludes by comparing the various 

approaches and by discussing further issues that needs to be studied. 
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CHAPTER 1 

 

INTRODUCTION 

 

The rapid increase in atmospheric carbon dioxide (CO2) concentration provides an urgent 

need to quantify potential carbon sinks in terrestrial ecosystems. In the past two decades, 

more than a dozen biogeochemical models have been developed to predict terrestrial 

carbon sequestration in response to increasing atmospheric CO2 (e.g., Parton et al. 1987; 

Rastetter et al. 1997; Comins and McMurtrie 1993; Mellillo et al. 1993; Luo and 

Reynolds 1999; Thompson and Randerson 1999). Most of those models share a common 

compartmental structure that partitions photosynthetically fixed carbon into several pools. 

The number of carbon pools in each model may vary according to different ecosystem 

types, for example, two-pool model (Rastetter et al. 1997) verses twelve-pool model 

(Thompson and Randerson 1999), seven-pool model (Luo et al. 2003) verses twelve-pool 

model (Luo and Reynolds 1999), but the general compartmental model structure is the 

same. The capacity of ecosystem carbon sequestration is strongly related to the residence 

times of carbon in these pools. Inverses of the residence times are parameters called the 
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carbon transfer rates that indicate carbon decomposition speeds of various carbon pools. 

It is necessary to know these carbon transfer rates from observational data sets to quantify 

the carbon sequestration potential of a terrestrial ecosystem under the constantly 

changing atmospheric CO2. This research is focused on applying and developing both 

deterministic and stochastic inversion techniques to solve the inverse problem of the 

general type of biogeochemical cycle models that describe terrestrial ecosystem carbon 

cycles. The motivation of the study is mainly based on the following:  

 

1. Global warming and carbon cycle study is becoming increasingly important. With 

the accumulation of observational data and the development of various model 

types, there is an increasing recognition that one should combine terrestrial carbon 

observational data and process models in systematic ways. 

2. Parameter estimation can be a formidable task given the complexity of the 

ecosystem models and the often limited amount of data, though ecologists’ prior 

knowledge can be utilized to constrain model parameters, the prior information is 

usually not sufficient to accommodate multiple observational data sets. 

3. The randomness in the model functions and the non-linearity of objective 

functions with respect to parameters often mean multiple optimal solutions. In 

such a case, it is necessary to introduce both local and global optimization 

techniques. 

4. Ecosystem measurement is subject to uncertainty that affects parameter 

estimation and correspondingly the model projection. It is being realized by the 

global change research community that data uncertainty is an integral part of 
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observation and is as important as data values themselves from the model-data 

synthesis standpoint and the prediction standpoint. Thus uncertainty study poses 

an indispensable component in this thesis. It is necessary to introduce 

probabilistic approaches that not only give parameter estimations but also 

estimation uncertainties. 

 

The goal and also the contribution of the study are mainly fivefold:  

 

1. To formulate a general type of terrestrial ecosystem inverse problems and develop 

inverse solutions from both a deterministic approach and a stochastic approach, 

and test the techniques with a practical carbon model. 

2. To apply probabilistic inversion technique and study the information content of 

the observational data sets on model parameters. The study covers parameter 

estimation, uncertainty estimation, parameter identifiability and prediction 

uncertainty simulation. Two approaches for studying the inverse uncertainty, an 

analytical approach using function approximation and a simulation approach 

using Markov chain Monte Carlo (MCMC), are developed. Both approaches 

reveal the information content of the posterior probability density function 

(PPDF) of the model parameters. 

3. To develop an efficient algorithm that reduces computational cost. MCMC 

simulation of ecosystem model over a long time span can be very time-

consuming. It is always a good practice to introduce fast algorithms to improve 

the MCMC sampling efficiency whenever possible. In the study, a Metropolis-

 3



Hastings (M-H) type of algorithm is coupled with the Hessian matrix information 

of the cost function to greatly increase the sampling efficiency.  

4. To compare what these various approaches reveal by solving a state-of-art 

biogeochemical model describing the carbon cycle of forest ecosystem. The 

interesting aspect of the model is that the data sets cannot completely determine 

the model parameters and is thus ill-conditioned. The comparison will make clear 

how the different approaches reveal the same fact, but from different perspectives. 

5. Inverse problems are intensively studied and applied in various mathematical and 

engineering fields, but their application to the ecological study is still in an early 

stage. By synthesizing various approaches in the context of an ecosystem model 

inverse problem, we hope to build a platform for data-model synthesis of general 

types of biogeochemical models to benefit future research of this area.  

 

The organization of the paper is the following. In Chapter 2, we give an introduction of 

the general inverse problem, as well as the ecosystem carbon model description. We then 

formulate the inverse problem in both a deterministic and a stochastic approach. We also 

introduce a practical model describing forest ecosystem carbon sequestration. This model 

will be used for numerical testing throughout the thesis. In Chapter 3, we explore the 

deterministic optimization approach by developing the Jacobian and the Hessian matrices 

for the cost function of the general model type. A steepest-descent-type of algorithm and 

a conjugate-gradient-type of algorithm are introduced. One algorithm is then applied to 

the practical numerical model to search for an inverse solution. The implication of the 

inversion result is discussed. Considering the possible multi-optima caused by 
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stochasticity, in Chapter 4 we introduce two global optimization techniques, genetic 

algorithm (GA) and simulated annealing (SA), and apply both of them to the model with 

numerical testing. In Chapter 5, considering the uncertainty in the observational data sets, 

we introduce the Bayesian framework and formulate the inverse problem as a problem of 

determining the joint probability of the model parameters. We propose a posterior 

probability density function (PPDF) of the model parameters under the assumption that 

the observational data has Gaussian type of random errors. Two methods to analyze the 

information in the PPDF are then introduced: one is the Laplace approximation approach, 

which is to approximate the PPDF by a Gaussian function; the other approach is the 

Markov chain Monte Carlo (MCMC) simulation, which is to sample the PPDF directly 

using the Metropolis-Hastings (M-H) type of algorithm. Both approaches reveal the 

parameter value information, the parameter correlation information and the estimation 

uncertainty. Applications to the numerical model are made and the results are compared. 

Along the discussion in Chapter 5, we also propose an efficient sampling algorithm that 

utilizes the Hessian matrix information to tremendously increase the sampling efficiency 

and thus reduce the computational cost of forward simulation. In Chapter 6, 

summarization and conclusions about the various inverse approaches are made, and 

issues for further study are listed. 
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CHAPTER 2 

 

MODEL DESCRIPTION AND  

INVERSE PROBLEM FORMULATION 

 

Inverse problems are widely studied in applied mathematics, seismology, oceanography, 

atmosphere science and other engineering and science fields (e.g., Tarantola, 1987; 

Hensel, 1991; Enting, 2002). They are defined as problems of finding the cause of an 

observed effect, in that “the chain of calculation or inference was in the opposite 

direction to real-world causality” (Enting, 2002). An inverse problem is always coupled 

with a forward problem that provides the effect of a given cause. Generally, an inverse 

problem is related to an operator equation: )(cFz =  with ZF →Ω:  being a possibly 

nonlinear operator between two metric spaces Ω  and Z . The forward problem is to 

determine the effect of a given cause, whereas the inverse problem is to determine the 

cause given the effect. The space Ω  is commonly denoted the model space or the 
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parameter space, which is assumed as a finite dimensional space in this thesis.  The space 

Z  is denoted as the data space. If  is a perfect model of a physical process and  is 

some data quantity without any error, then the system is perfectly deterministic. 

However, in reality  is unlikely to hold for a practically measured quantity , 

since measurements may have finite precision or errors. In addition, the model may be 

inaccurate in the sense that the operator  may not model all aspects of the physical 

processes that produce the observations. With these considerations in mind, the model 

should be more realistically written as 

F z

)(cFz = z

F

ecFz += )(  with e  being an error term 

describing observation error and possibly model error as well. 

 

The problem of finding c given z or rather given the pair { }ez,  is called an inverse 

problem. Inverse problem can be classified as well-posed or ill-posed. A problem is well-

posed if there exists a unique, stable solution. In practice, it is commonly true that the 

forward problems are well-posed while the corresponding inverse problems are ill-posed.  

 

The following definition of a well-posed inverse problem is attributed to Hadamard 

(1923): 

Definition. (Well-posed inverse problem). Let Ω  and Z be two normed spaces and let 

 be a continuous operator. The inverse problem of ZF →Ω: )(cFZ =  is well-posed in 

the sense of Hadamard if the following three conditions hold: 

1. Existence: there is a solution Zzc ∈∀Ω∈ ,  with zcF =)( . 

2. Uniqueness: There exists at most one solution Ω∈c  for any Zz∈ . 

3. Stability: )(,0 εδε ∃>∀  so that )(||)()(|| 21 εδ<− cFcF  whenever ε<− |||| 21 cc . 
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Problems for which at least one of the three conditions above fails to hold are called ill-

posed. Whether a problem is well-posed or ill-posed depends on the operator ZF →Ω:  

as well as the spaces  and Ω Z . In practice, it is rare that an inverse problem is well-

posed. Ill-posed inverse problems are more common due to the incomplete data 

information, the choice of admissible set and model structures. 

 

In particular, for ecosystem inverse problem, the description for parameter-estimating 

procedures can be phrased in the following way: given a relation , where F is an 

general operator representing an ecosystem model in the form of a set of equations (linear 

equations, ordinary differential equations or partial differential equations) or simply a 

function, c represents either an unknown function or a set of parameters, and z is some 

observation (if c is an unknown function of a finite-parametric family of functions, then 

where 

zcF =)(

),,...,,()( 21 tcccctcc m== ( )mcc ..1  is a vector of parameters and t is an 

independent variable), then the question is to find parameters  by 

solving the minimization problem:  

( )mccc ..1=

 

( )[ ]{ }zcFJc −∈ )(minarg  

 

where J is a positive functional, Ω∈c  where Ω is an admissible set of c.  

 

Depending on the mapping F, the parameter space and the data space, the above 

minimization problem may have a unique solution (for example certain continuity and 

convexity conditions of J and the compactness condition of the admissible set Ω are met). 
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In many situations J may have several local solutions and global ones over Ω (for 

example if the convexity of J over Ω is violated). Various local and global techniques 

such as the descent-type-of algorithms, the global optimization techniques (simulated 

annealing, genetic algorithm, tabu search, downhill-simplex method, etc.) are invented to 

handle different situations. Moreover, in ecosystem modeling and observation, due to the 

complexity of the actual ecosystem and the imperfection of the mathematical models and 

the measurement methods, modeling uncertainty and observational uncertainty always 

exist. It is common that observation z contains relatively large errors so that instead of 

some “true” observation , one has observation z ezze += . How is the probabilistic 

perturbation of data reflected in the parameter estimation? To address such a question, 

one needs to follow a probabilistic approach.  

 

Based on the above scenarios we will discuss different effective approaches respectively 

in this study. But first we give the description of the general terrestrial carbon cycling 

model, the inverse problem formulation and a practical seven-pool carbon model 

parameterized with actual observational data sets. 

 

 

2.1 Model description 

 

2.1.1. State-space model  
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The general mathematical model describing carbon cycle of a terrestrial ecosystem is 

given by the following system of differential equations (Luo et al. 2003; White et al. 

2002): 

 
0)0(

)()()()(

XX

tBUtACXt
dt

tdX

=

+= ξ
      (2.1) 

where,  

1. is a m×1 vector describing carbon pool sizes. T
mxxxX )...( 21=

2. A is an m×m matrix describing the proportional carbon distribution among 

various carbon pools. It is taken as a constant matrix in the study. 

3. C = diag (c) is an m×m diagonal matrix with the diagonal elements given by the 

carbon transfer coefficients:  .),...,,( 21
T

mcccc =

4. B is an m×1 vector that partitions the system input. 

5. ξ(.) is a real valued function given as a time series with prominent seasonal 

periodicity to simulate the seasonal modulation effect on the carbon 

decomposition mechanism. The function is mainly determined by seasonal 

moisture and temperature variation. Usually ξ(.) is contaminated with 

disturbances. 

6. U(.) is a system input function given as a time series modeling carbon input into 

the system. Usually U(.) is contaminated with disturbances as well. 

7. X0 is an initial condition vector.  
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2.1.2 Mapping from the state space to the data space.  

 

Assume there are s data sets skZ k ...,2,1, =
(

 in the observation. Corresponding to the s 

data sets, we have the following observation operators:  with each of the 

’s taking the general form of  

skk ,...2,1, =φ

kφ

skHc TkkTTk ,...2,1, =+= ϕφ        (2.2) 

 where H is an m×m constant diagonal matrix and  is an m×1 constant vector. T 

represents transpose of vector. 

kϕ

 

2.1.3 Problem formulation.  

 

We write the objective function in a discrete form for the convenience of numerical 

analysis. Approximation errors between the continuous model and its discrete version are 

neglected in the study, although the errors do propagate and influence the assumed 

observation errors and is an interesting question in its own right. Let  denote the 

vector of state variables at all time steps from a finite difference method scheme that 

solves the equation (2.1) numerically. Let denote the mapping matrix from  

to data set 

)(~ cX

)(ckΦ )(~ cX

skZ k ,...,2,1, =
(

 (with a slight abuse of notation, skZ k ,...,2,1, =
(

 also denotes 

the vector consisting of the observation time series of the k-th data set). Let the error 

covariance matrix for the k-th data set be . Assume the errors of different data 

sets are independent. Then the cost function is formulated as: 

)cov( kE
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( ) ( ) ( )∑
=

−
Φ−Φ−=

s

k

kkkTkk cXcZEcXcZcJ
1

1 )(~)()cov()(~)(
2
1)(

((
  (2.3) 

 

However, there are situations where the data sets used may not give us complete 

information about the parameter c, as in the case of an ill-conditioned inverse problem. It 

is necessary to include regularization scheme to allow the prior selection of some 

parameter from a feasible set of parameters. The most common and well-known 

regularization scheme is the Tikhonov (Tikhonov 1963) regularization. By introducing 

the Tikhonov regularization, we form the following weighted sum of data information 

and prior information about the parameter: 

 

( ) ( ) ( ) )(),(
2
1)(~)()cov()(~)(

2
1)(

1

1 priorprior
s

k

kkkTkk ccccGcXcZEcXcZcJ −−+Φ−Φ−= ∑
=

−
λ

((

           (2.4) 

 

In the above,  is some prior information about the parameter c, λ specifies the 

weight of the prior information,  is a linear operator in the form of a matrix. In 

applications,  is usually either the identity matrix or some approximation to the prior 

covariance matrix of the parameter c. Depending on specific problems, λ can be chosen 

as a sequence that tends to zero in iterative optimization techniques, or it can be chosen 

based on the “L-curve” (see [Hansen] for a detailed discussion about “L-curves” for 

regularization). But we will see later that there is a natural correspondence between the 

choice of the regularization parameter λ and the setting-up of the Bayesian prior 

information. 

priorc

G

G
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If, in particular, we assume the observation errors within each data set skZ k ,...,2,1, =
(

 

are also independent with variances skk ,...,2,1, =σ , then the off-diagonal elements in the 

covariance matrix  are zeros and the cost functional (2.4) can be written in the 

following simple quadratic form: 

)cov( kE

 

>−−<+

−−= ∑ ∑
= =

priorprior

s

k

N

j

k
j

k
j

Tkk
j

k
j

Tk

k

ccccG

ZtcXcZtcXccJ
k

),(
2
1

]))(()(][))(()([1
2
1)(

1 1
2

λ

φφ
σ    (2.5) 

 

where  is the j-th observation of the k-th data set k
jZ kZ

(
 ( kNjsk ,...,1;,...,1 == ),  is 

the mapping vector of the k-th data set. 

)(ckφ

 

To formulate the optimization problem, let Ω  denote be the admissible set for parameter 

c in Rm. The problem is to find  such that  Ω∈opc

 

{ Ω∈= ccJcJ op |)(min)( }       (2.6) 

 

Solving problem (2.6) gives a set of optimal point values for parameter c. In ecosystem 

parameter estimation problems, it is reasonable to require the set  being compact to 

allow the existence of the optimal solution. In fact, one often has the case that 

, where  are closed intervals defining the physically feasible ranges of the 

Ω

i
n
i I1=∏=Ω iI
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parameters (e.g., White et al. 2002; Luo et al. 2003). In the case that ξ(.) and U(.) are 

modeled by Lipschitz continuous functions, it is easily seen the J(c) is continuously 

differentiable and thus the existence of the optimal solutions (Rabenstein, 1972). 

 

The above discussion formulated the inverse problem as a least-squares optimization 

problem. As was mentioned earlier, parameter estimation uncertainty always exists due to 

the uncertainty in the observational data. To study the estimation uncertainty of the 

parameters caused by the uncertainty in the data source, one needs to formulate the PPDF 

for the parameters. A systematic treatment of inverse problems from a probabilistic point 

of view can be found in Tarantola (1987). We will defer the precise formulation of the 

probabilistic inverse problem of Model (2.1) ~ (2.3) till Chapter 5 after we introduce the 

Bayesian inverse probability. But roughly, the probabilistic formulation can be phrased in 

the following manner: Let the model equation (2.1) and the observation operators (2.2) be 

combined such that the forward mapping is denoted by ZcF →Ω∈: , and let the 

observation be given by  with , where e represents the observational 

error information. Given the assumption that the error distribution is known, how to make 

statistical inference on the model parameter c?. Baye’s theorem provides a theoretical 

answer. In Bayes’ theorem, the posterior knowledge is combined with the prior 

knowledge, and the corresponding conditional probability then gives the inverse solution 

in a probabilistic manner. 

eZ ecFZ true
e += )(

 

 

 

 14



2.2 Methods used in the study 

 

Corresponding to the above problem formulations, we develop both deterministic and 

stochastic optimization techniques. The deterministic techniques are the gradient descent 

type of algorithms that are mostly used in nonlinear optimization problems. They include, 

for example, the steepest-descent method, the conjugate-gradient method, the quasi-

Newton method, and the Levenberg-Marquardt algorithm (see Press (1992) for detailed 

discussions of the methods). Gradient-descent type of methods are mainly based on the 

vector ( ) miiccJcJ ,...1)()( =∂∂=∇ . Their advantages are the relative simplicity and low 

computational cost; the main disadvantage is that if the surface J(c) has multiple minima 

over the admissible set Ω , the algorithms then tend to find a local minimum near the 

initial value of c rather than locate the global minimum. To find the desired minimum 

point, some prior knowledge about the global optimal co should be utilized to start 

searching: one either uses the Tikhonov regularization scheme or one simply starts from 

 near to the global optimal and finds the first optimal point. The stochastic 

approaches such as the genetic algorithm, simulated annealing, downhill simplex method, 

tabu search, etc. are global search methods that tend to find the global optimal by 

searching the whole space . They overcome the local-minimum pitfalls of gradient-

descent methods, but have the disadvantage of higher computational costs. The stochastic 

approaches may be combined with gradient-descent methods for finding the global 

minimum with increased efficiency. For example, a good discussion of global-local 

hybrid optimization can be found in Goldberg (1999). 

priorc

Ω
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More generally, as was mentioned above, since inverse problems are probabilistic in 

nature, one should rather treat the parameters as random variables rather than 

deterministic values. Bayesian inversion gives a probabilistic description of the model 

parameters by packaging data information and prior knowledge in a posterior probability 

distribution function (PPDF). Once this distribution function is known, the only thing left 

is to study this function. One can then use different approaches such as Monte Carlo 

integration, function approximation and MCMC simulations to reveal the information 

content in the PPDF. We refer to Tarantola (1987) and Box & Tiao (1973) for a complete 

discussion of inverse problems from a probabilistic point of view and discussions of 

Bayesian analysis.

 

We will study the inverse problem formulated in (2.1) ~ (2.6) using the various 

approaches mentioned above. For numerical testing purpose, we introduce the following 

numerical model.  

 

2.3 A practical carbon sequestration model 

 

The following model describes the carbon sequestration mechanism of the Duke forest 

ecosystem with a structure shown in Figure 2.1, and is parameterized with data sets 

collected from the Duke forest Free Air CO2 Enrichment (FACE) from the year of 1996 

to the year of 2000 (Luo et al. 2003). The model structure is the same as (2.1) with m = 7 

and the following corresponding matrices and initial conditions: 
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⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞
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⎜
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⎜
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⎜

⎝

⎛

−
−

−
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−
−

=

10.030.0040000
010.2960.275000

0.45 0.42 10.2750.4500
0001010.288
000010712.0
0000010
0000001-

A
. 

TB )0000030.025.0(=  

TX )9231385123694644100469(0 =  

)(cdiagC =  with  Tcccc ),...,,( 721=

 

The two functions ξ(.) and U(.) are given by two time series shown in Figure 2.2. There 

are six data sets: woody biomass, foliage biomass, litter-fall, carbon in forest floor, 

carbon in forest mineral soil and soil respiration that can be used for the inverse problem 

study. Corresponding to the six data sets, there are six mapping operators: 
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The admissible set Ω is a closed set formed by the Cartesian product of the following 

intervals for each of the components of vector : Tcccc ),...,,( 721=
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Throughout the numerical analysis in this study, the following standard deviations are 

assumed to normalize the six given data sets:  

4535,70,50,,5301.18, 654321 ====== σσσσσσ . 

These standard deviations are mostly assumed to be proportional to the ranges of the 

given data sets. However, relative small standard deviations are assumed for slow SOM 

and passive SOM due to the limited amount of observations in these two data sets.  
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Figure 2.1. Structure of the seven-compartment model. There are seven carbon pools in 

the model, connected by carbon transfer coefficients that partition carbon distribution 

among various pools. (The figure was adopted from Luo et al. 2003 under author’s 

permission.)  
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Figure 2.2. Time series in the numerical model (2.1). This figures shows the modeled 

carbon input U(.) (above) by canopy photosynthesis, as well as the seasonal modulation 

function (.)ξ  (below) that models the combined effects of moisture and temperature on 

the carbon transfer rates. It can be see that both of them have jumps and random noise 

components, especially in U(.). Such time series are very common in ecosystem 

observation. 
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CHAPTER 3  

 

DETERMINISTIC OPTIMIZATION 

 

In this Chapter, we develop a framework for deterministic optimization algorithms of 

model (2.1) ~ (2.6) by giving the gradient vector )(cJ∇  and the Hessian matrix . 

The gradient vector  is mainly used for giving descent direction. However, the 

Hessian matrix is derived for three purposes throughout the study:  

)(2 cJ∇

)(cJ∇

 

1. To be used in the function approximation approach to study the posterior 

probability density function (PPDF) of parameters by approximating the PPDF 

using Gaussian function. 

2. To be used for the proposal distribution for fast sampling of the PPDF in MCMC 

simulation. 

3. To be used in the steepest-descent type of algorithms such as the Levenburg-

Marquart algorithm, Newton’s method etc. where the second derivative 

information is needed. 
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3.1 Derivation of the gradient vector )(cJ∇  

 

We first compute ( ) miiccJcJ ,...1)()( =∂∂=∇ . Similar derivation can be found in White et. 

al. (2002) for single observation data set (soil respiration). Here we derive the method 

under a slightly more general setting where the observation consists of multiple data sets 

and the prior information is included in the cost function. Throughout the derivation, 

, , U , and  is the j-th observation 

time of the k-th data set. To facilitate the computation, we introduce the adjoint equation 

similarly as in White et al. (2002). 

)( jj tξξ = ( )Tjmjjjj txtxtxtXX )(,...,)(),()( 21== )( jj tU= k
jt

 

3.1.1 Finite difference method for the model equation 

 

Let be an equally spaced partition of the time interval [0, T].  With finite-

difference method, Equation (1) is solved numerically by the following steps: 

{ }N
jjt

0=

 

1,...2,1,0

])1([])1([ 1111

−=

−++−+=− ++++

Nj

dtUdtUBdtACXdtACXXX jjjjjjjj θθξθθξ
  

 

When j = 0, we have  

])1([])1([][ 010011 dtUdtUBXACdtIXACdtI θθξθθξ −++−+=−  

When j = 1, … N-1, we have 
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The above can be written as an algebraic system: 
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Set , Equation (4) is then written 
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Now we have derived the algebraic equation that numerically approximates the solution 

of its continuous version Equation (2.1). 

 

3.1.2 First derivative of the cost function  )(cJ

 

We use cost function (2.5) to derive the derivative of . The cost function (2.5) can be 

written in a matrix form: 

)(cJ
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are the matrices consisting the mapping operator vectors of the k-th data set and the 

observed data points of the k-th data set, respectively.  is a projection matrix 

that projects the space of the state variable at all time steps 

mNmN
k

kP ×

{ }N
jjt

0=
to the space of state 

variables associated with observation time steps { } kN

j
k

jt
1=
 of the k-th data set. 
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Take the derivative of the cost function with respect to c, we have: 
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To compute (I), we need to compute . Since the mapping operators are of the 

form  in general, we have 
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Now  
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To calculate (II), we need to compute )')(( ccXD
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or take the transpose of both sides to give 
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Solving the above equation gives the vector . Then  )(cp
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Plugging (3.6) and (3.8) into (3.4), we have: 
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Since each component in (3.11) has been calculated, summing them together we will 

have . )'',(2 ccJD
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3.3 Minimization algorithms 

 

Now that the Jacobian and the Hessian of the cost function J(c) have been developed, we 

can introduce various deterministic optimization techniques. We refer to Press et al. 

(1992) for a complete discussion of various numerical optimization techniques that rely 

on the first derivative and the second derivative information. In the next, for numerical 

testing purposes we introduce two algorithms: the constrained steepest descent algorithm 

and the constrained conjugate gradient algorithm. We propose a feedback mechanism that 

utilizes the performance of the algorithm at the current stage to ensure a faster 

convergence of the search process. These two algorithms only involve the first derivative 

of J(c). We try to avoid using the algorithms that rely on the second derivatives (Hessian) 

on the consideration that in the case of ill-constrained inverse problems, the second 

derivative of the cost function with respect to some of the parameters may be nearly zero 

if no regularization scheme is used, i.e., the Hessian matrix may be close to singular, as is 

seen in the inverse problem of the seven-compartment model. In the following Ω  is an 

admissible set consisting of the Cartesian product of the closed intervals. 

 

3.3.1 Constrained steepest descent optimization method.  

 

Define the absolute error between two consecutive search points as |)()(| 1cJcJe −= . 

The proposed algorithm is given in the following: 

Step 1. Start from  or any point that is close to . Calculate  and priotcc = priotc )(cDJ

||)(||
)(

cDJ
cDJu =  . 
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Step 2. Take , for each k calculate 21,..,nnk = ⎟
⎠
⎞

⎜
⎝
⎛ − u

m
egcJ k
)( where 

are integers and  is an increasing function of e taking 

positive values. Take the k that gives  the largest decrease and then let 

0,012 >>> mnn )(eg

J

u
m

egcc k

)(1 −= . If any component in vector c hits its upper bound U, then 

generate a random number ( )1,9.01 ∈ρ  and replace the component with U1ρ ; if 

it hits the lower bound L, then generate a random number ( 1.1,12 ∈ )ρ , and 

replace it with L2ρ . This ensures that the component is in the interior near the 

upper or lower bound. 

Step 3. Calculate |)()(| 1cJcJe −=  , terminate the algorithm if it is less than a 

threshold number δ . Otherwise calculate  and go to step 4. )(eg

Step 4. Set , calculate 1cc =
||)(||

)(
cDJ
cDJu =  go to step 2.  

 

Note that when minimizing a simple function, one can calculate the optimal descent step 

along the gradient direction by calculating 0>α  such that )( ccJ ∇−α  is minimized. 

Since this is impossible in our case, we use the Armijo rule in step 2 as was done in 

White (2002), i.e., several probing steps are tried and the integer k that gives the largest 

cost function decrease is used in the descent step size. To make the descent fast during 

the initial and middle stage of searching, we introduce the function  to control the 

descent steps based on the current performance indicated by e. It is an increasing function 

of e with a minimum lager than a positive constant. g(e) is bounded below to ensure the 

updating step sizes are not too small at the end of the search (Figure 3.1).  

)(eg
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3.3.2 Constrained conjugate gradient optimization method. 

 

The proposed method is similar as the above except that the search direction is now 

updated to a conjugate direction that is more efficient for descending. The update formula 

can be either taken as the Fletcher-Reeves formula or the Polak-Ribiere formula (Press 

1992), as is shown in the following step 5. The algorithm is thus: 

Step 1. Start from  or any point that is close to . Calculate  and priotcc = priotc )(cDJ

||)(||
)(0

cDJ
cDJu =  . 

Step 2. Same as the above Step 2.  

Step 3. Same as the above step 3. 

Step 4. Set , calculate 1cc =
||)(||

)(
cDJ
cDJu = . 

Step 5. Let  (Fletcher-Reeves formula) or let 

 (Polak-Ribiere formula). Update u to . Go to 

step 2. 

><>=< 00 ,/, uuuuβ

><>−=< uuuuu ,/, 0β 0uu β+

 

 

3.4 Numerical results 

 

We applied the above algorithms to the carbon model described in Chapter 2.3.  In this 

example, we assume that no prior information is given on the model parameters. 

Therefore three runs were conducted, each starting with a different initial point in the 

admissible set. To make the solution of Model (2.1) and correspondingly J(c) 
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continuously differentiable, the smoothed versions of the two time series (.)(.), ξu  were 

used to remove the random noise. The number of probing steps was set to be five with 

. The feedback function g(e) was chosen to be a piecewise linear 

increasing function of e shown in Figure 3.1. The searches were terminated when 

. The cost function value when stopping criterion was met was about 36. The 

results from the three runs are shown in Figure 3.2.  

2,5,1 21 === mnn

410−<e

 

 

Figure 3.1 One example for specifying g(e). This function was used as a feedback to 

control the descent step sizes. In general it is an increasing function of 

. Other forms of feedback functions are also possible. Note 

however, the minimum value of g(e) is a constant that is bigger than a positive number to 

prevent the step sizes from being too small. 

|)()(| 1−−= kkk cJcJe
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Figure 3.2. Trace plots of the search processes for optimal point. The figure shows the 

convergences or divergences of parameters and also the decrease of the cost functional 

J(c). On each plot, the x-axis represents the number of descent steps. The y-axis for the 

plots of c1, …, c7 are the physical ranges of the parameters. 
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From Figure 3.2 it can be observed that starting from different initial positions, the 

searching paths for each of c1, c2, c4 and c6 converge to the same point, the searching 

paths for  remain constant, and the searching paths for  either hit the upper bound 

or the lower bound. Thus the inverse problem seems only meaningful for c

53 ,cc 7c

1, c2, c4 and c6 

in that the data space, model structure and parameter space together give information to 

these four parameters. There are visible overshootings for parameter c2 due to the use of 

the Armijo rule; however, the magnitude decreases as the search is near to the optimal as 

the gradient closes to zero. The cost function decreases rapidly in general at the initial 

and middle search stage since the function g(e) gives relatively large probing  steps. The 

observation that the three descending paths starting from different initial points for each 

of c1, c2, c4, c6 converges to the same point might suggest the cost function J(c) is 

unimodal for c1, c2, c4, c6.  

 

In general, the above analysis suggests that enough information can be given to c1, c2, c4 

and c6 through inverse analysis, but not to . These observations will be checked 

by other methods in the following sections. 

753 ,, ccc

 

Using one of the searching results we have the following estimation for the identifiable 

values: 

( )-,101.1471-, ,100.9862-,,101.0933,101.8238 -4-3-4-3 ××××=oc  

where “-” stands for non-available. 
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CHAPTER 4 

 

STOCHASTIC OPTIMIZATION 

 

The deterministic algorithms are suitable only when the cost function has one mode; 

otherwise a direct application of a gradient type method would result in finding a 

minimum that may be local and not the global one. In cases where there is no prior 

information about the optimal point or the behavior of the cost function on the parameter 

space is unknown, it is hard for deterministic approach to locate a global optimal. 

Another drawback of the deterministic approaches is that the functions in Model (2.1) 

must satisfy certain conditions (e.g., being Lipschitz continuous) to make J(c) 

continuously differentiable. In the above numerical analysis, we used smoothed versions 

of )(tξ and  shown in Figure (2.2) and the noises and jumps are thus removed. But 

these disturbances are commonly seen in ecosystem modeling and should not be ignored. 

It is necessary to introduce other types of optimization techniques that are robust with 

)(tU
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optimization under noise and do not need the gradient information. Stochastic 

optimization techniques are a natural choice. 

 

Stochastic optimization techniques such as simulated annealing (SA), genetic algorithm 

(GA), neural network, downhill simplex method, etc., are powerful global optimization 

techniques. The theoretical foundations and applications of random search are partially 

documented in books by Goldberg (1989), Holland (1992), Haupt (1998), Vose (1999). 

Convergence of most random search procedures is not affected by the cost function, in 

particular its smoothness and multimodality. In a minimax sense, stochastic search is 

more powerful than deterministic search: it is nearly the best method in the worst possible 

situation (noise, discontinuity, multimodality) and the worst method in the best situation 

(smoothness, continuity, unimodality).  

 

A detailed theoretical explanation of the general stochastic algorithms is beyond the 

scope of this thesis. Here we focus on the application of the algorithms to the Model (2.1) 

~ (2.6). In the next we give two stochastic optimization algorithms and some general 

specifications. We then apply them to Model (2.1) ~ (2.6) in the context of the seven-pool 

compartmental model. We also compare the results with the result of the previous 

section.  

 

4.1 GA Description 

 

4.1.1 General description of genetic algorithm 
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GA was first invented by John Holland in 1975 and later popularized by his students and 

colleagues De Jong and Hollstien, etc. (Goldberg 1989). It is a global optimization 

method based on simulating nature’s evolution and selection processes. The algorithm 

follows an over-population, selection, crossover and mutation type of procedure in order 

to select the fittest set of parameters (global optimal points). The structure of GA is the 

following: 

 

GA algorithm 

Step1. (Initializing) Randomly generate a population of n chromosomes in the admissible 

set.  

Step 2. (Fitness evaluation) Evaluate the fitness specified by the cost functional J(c) for 

each of the chromosomes in the population.  

Step 3. (Creating new population) Generate each new population by the following steps: 

• (Selection) Select two parent chromosomes from the current population according 

to their fitness.  

• (Crossover) With pre-specified crossover probability cross over the parents to 

form new offspring.  

• (Mutation) With a mutation probability mutate the set of offspring. 

• (Accepting) Place new offspring in the new population. 

Step 4. (Replace) Replace the previous population with the new population. 

Step 5. (Test and stop) If the end condition is satisfied, terminate the program and return 

the best solution in current population; otherwise go to step 2. 

The structure is shown in Figure 4.1. 
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Figure 4.1: Flowchart of GA 
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4.1.2 Specifications of GA with respect to Model (2.1) ~ (2.6) 

 

 To implement GA with Model (2.1) ~ (2.6), some specifications must be given. 

 

Parameter encoding. Depending on the problems at hand, there are various ways of 

encoding the parameter space such as the binary encoding, the permutation encoding, the 

direct value encoding, etc. (Haupt et al. 1998). For parameter estimation problems, the 

most commonly used encodings are either binary encoding or direct value encoding. 

Direct value encoding can be used in problems where complicated values such as real 

numbers are used. We use direct value encoding in this study since the parameters in 

Model (2.1) are real numbers. Thus each parameter vector is directly written in the form 

of ( )mccc ..1= .  

 

Crossover. Crossover operates on selected genes from parent chromosomes and creates 

new offspring. The simplest way is to randomly choose some crossover point and copy 

everything before this point from one parent and then copy everything after the crossover 

point from the other parent.  

 

Chromosome 1 ( ))1()1(
4

)1(
3

)1(
2

)1(
1 ..| mccccc  

Chromosome 2 ( ))2()2(
4

)2(
3

)2(
2

)2(
1 ..| mccccc  

Offspring 1 ( ))1()1(
4

)2(
3

)2(
2

)2(
1 ..| mccccc  

Offspring 2 ( ))2()2(
4

)1(
3

)1(
2

)1(
1 ..| mccccc  

Table 4.1. Crossing over by swapping in which the third “gene” of Chromosome 1 and 

Chromosome 2 are chosen and swapped to generate two offsprings.  
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In this study, we choose to take the convex linear combination (Haupt et al. 1998) of the 

“genes” since the admissible set in our study is a closed convex set made up of Cartesian 

product of closed intervals (see the set made up of intervals in (2.7)), and the convex 

linear combination will reproduce points in the set. For this purpose, m random numbers 

mii ,...,1],1,0[ =∈θ  uniformly distributed between [0, 1] are generated and the crossover 

is performed in the following way: 

 

Chromosome 1 ( ))1()1(
2

)1(
1 .... mccc  

Chromosome 2 ( ))2()2(
2

)2(
1 .... mccc  

Offspring 1 ( ))2()1()2(
22

)1(
22

)2(
11

)1(
11 )1(....)1()1( mmmm cccccc θθθθθθ −+−+−+

Offspring 2 ( ))2()1()2(
22

)1(
22

)2(
11

)1(
11 )1(....)1()1( mmmm cccccc θθθθθθ +−+−+−  

Table 4.2. Crossing over by convex linear combination in which random numbers 

mii ,...2,1, =θ  with 10 ≤≤ iθ  are generated and the convex linear combinations are 

carried out for each corresponding pair of genes to produce two offsprings. 

 

Mutation. Mutation is intended to prevent fast convergence to a local optimum. Mutation 

operation randomly changes the offspring resulted from crossover. In the case of direct 

value encoding we replace a number of randomly chosen vector components and replace 

them with randomly generated numbers within their respective ranges.  
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Original Chromosome 1 ( ))1()1(
2

)1(
1 .... mccc  

Original Chromosome 2 ( ))2()2(
2

)2(
1 .... mccc  

Mutated Chromosome 1 ( ))1()1(
,2

)1(
1 .... mnew ccc    (Note  is randomly chosen 

and replaced by ) 

)1(
2c

)1(
,2 newc

Mutated Chromosome 2 ( ))2(
,

)2(
2

)2(
,1 .... newmnew ccc   (Note  is randomly chosen 

and replaced by , so is ) 

)1(
1c

)1(
,1 newc )1(

mc

Table 4.3 Illustration of mutation 

 

Selection. There are many methods in selecting the best chromosomes such as the 

roulette wheel selection, the rank selection, the tournament selection and so on. Elitism, 

i.e., the copying of the best chromosome (or few best chromosomes) to the new 

population is usually required to ensure convergence of the algorithm by always keeping 

the best. In the study, we apply the ranking selection method by sorting the chromosomes 

by their fitness and selecting the top half of good solutions. 

Control parameters 

Whether GA is efficient or not highly depends on the algorithm's control parameters. The 

control parameters available for adjusting the algorithm are the population size, the 

crossover probability, and the mutation probability. De Jong (1965) made some 

suggestions based on his observations of the performance of GAs on a bench work of 5 

problems where the examples included discontinuities, high dimensionality, noise and 

multimodality, and suggested that settings of population size 50, crossover rate 60% and 

mutation rate 0.1% for satisfactory performance over a wide range of problems. However 

Grefenstette (1986) concluded that a population size 30, a crossover rate 95% and 
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mutation rate 1% resulted in the best performance when the average fitness of each 

generation was used as the indicator, while a population size 80, a crossover rate 45% 

and mutation rate 1% gave the best performance when the fitness of the best individual 

member in each generation was used as indicator. Some other empiric studies suggest the 

crossover rate should be high in general and around about 80% ~ 95%, although 

problem-specific results may suggest other rates (around 60% for example). Mutation 

rate is problem specific with a range of 1%  ~ 10%. The commonly suggested population 

size is about 20 ~ 30, however sometimes sizes 50 ~ 100 are reported as the best. Some 

research also shows the best population size depends on the dimension of the search 

space – the higher the dimension, the larger the population size. In general, it seems these 

parameters are rather problem specific and should be closely related to the problem at 

hand. It may be a good practice to try several sets of control parameters and compare the 

results. 

 

4.1.3 Numerical result using GA 

 

We applied GA to the above described model, using the following specifications: 

1. Initial population size 200. 

2. Population size of the consecutive generations 40.  

3. A mutation rate of 10%.  

4. Paring according to the ranks of individuals.  

5. Algorithm stopping after it runs for 100 generations. 
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The following figure shows the path of the best solutions of the 100 generations and the 

decrease of the cost function in the searching process. We made three runs of the 

algorithm independently and the paths are shown in a same figure. 
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Figure 4.2 Convergence of parameters and decrease of cost function with GA 
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4.1.4 Discussion of the numerical result 

 

The result is remarkably consistent with the result shown in Figure 3.1. It is seen that 

even under the situation of noise-disturbed model functions (Figure 2.2), we still obtain 

the same or even better result (notice the consistent path trends for c3 and c5). The cost 

function is valued at about 35.8 when the algorithm is stopped.  

 

The estimation of the convergent variables is: 

( )-,101.1424-, ,100.9344-,,101.1121,101.8224 -4-3-4-3 ××××=oc  

 

The estimation of the two parameters for c3, c5 are: 025.0018.0 3 ≤≤ c , 

. The variability of c3
5

3 107106 −− ×≤≤× c 7 is the largest and its value cannot be 

determined.  
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4.2 Simulated annealing (SA) 

 

4.2.1 General description of SA 

 

The idea of SA was developed by Kirkpatrick et. al. (Kirkpatrick et al. 1983) motivated 

by the paper published by Metropolis et al. (1953). SA is based on the analogy of global 

optimization to annealing in solids: a solid is heated to melt and then cooled down; if the 

cooling is made slowly enough, crystal structures will be perfect (lowest energy state); if 

the liquid is “quenched” the crystals will contain imperfections. SA simulates this natural 

cooling mechanism by gradually lowering the temperature of the solid until it converges 

to a lowest energy state. The following table presents the analogy between the physical 

annealing process and the SA algorithm (Dowsland 1995): 

 

Physical Annealing Optimization 

System States Feasible Solutions 

Energy Cost 

Change of State Neighbouring Solution generation 

Temperature Control Parameter 

Frozen State Heuristic Solution 

 
Table 4.1 The analogy between the physical annealing process and the SA 
 

SA chooses a random move based on the previous point and allows uphill steps to escape 

local minima. If the move is better than its current position in terms of minimization then 

SA will always take it; otherwise it will accept the new move based on some probability. 
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The following describes the SA algorithm and it is taken from Russell (1995) with a 

slight modification. 

 

SA algorithm 

Function Simulated-Annealing returns a solution state 

Inputs :  Problem: model F, admissible set Ω and cost function J 

   Schedule: a sequence of decreasing temperatures 

Local Variables: Current: a node in Ω 

   Next: a node in Ω 

   T: a “temperature” controlling the hill-climbing probability 

Current = make-node (initial node) 

For t = 1 to ∞ do 

T = Schedule[t] 

If T = 0 then return Current 

Next = a randomly selected successor of Current 

∆J = J(Next) – J(Current) 

If ∆J > 0 then Current = Next 

else Current = Next only with probability exp(-∆J /T) 

 

The flowchart of SA is shown in Figure 4.3. 
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Initial Temperature 

Generate New Point 

Acceptance Probability 

 

Figure 4.3. Flowchart of SA 

 

The acceptance criterion in SA is based on the law of thermodynamics which states that 

at temperature t the probability of increasing energy by a magnitude of ∆J is ktep J-∆= , 

Update Storage 

Update Temperature

            End 

   Accept? 

End of Search? 

Yes

No 

No 

Yes
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where k is Boltzmann’s constant (which is usually dropped in SA since it can be 

contained in parameter t). Thus SA calculates cost function at a new state and accepts the 

new state whenever the cost is decreased. In the meanwhile, it also accepts new state with 

probability ktep J-∆= , which gives its hill-climbing ability. It’s obvious as t decreases the 

probability of accepting a hill-climbing move is decreased.  

 

The annealing schedule of SA consists of starting temperature t0, final temperature tf, 

temperature decrement and number of iterations at each temperature. Parameter t0 should 

be high enough to allow access to almost any state in the parameter space to prevent the 

search from terminating locally. However a too high initial temperature tends to turn SA 

into purely random search. No known method exists for finding a suitable t0 for a whole 

range of problems. Some methods suggest (e.g., Rayward & Smith 1996; Dowsland 

1995) to start with a high t0 and cool rapidly until about 60% of uphill solutions are 

accepted. This gives the real t0 on which to start cooling down slowly. The final 

temperature tf needs not be decreased to zero – stopping criteria can either be a suitably 

low tf or a low enough cost function value. Decrement of temperature is critical to the 

performance of SA. Theoretically, enough iteration should be made at each temperature t 

so that the system converges to the stationary distribution at that t. In practice, one needs 

to balance the number of temperatures with the number of iterations. Temperature 

decrement can be a simple linear method, or a geometric decrement where t = tα where α 

< 1. Based on experience, α usually takes values between 0.8 ~ 0.99, with better results 

being found in the higher α at the cost of longer simulation time. A constant number of 

iterations at each temperature can be used. An alternative is to dynamically change the 
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number of iterations as the algorithm progresses. At high temperatures it is important that 

a large number of iterations are done so that the local optimum can be fully explored. At 

lower temperatures, the number of iterations can be less as the search is already near the 

global point. One method is to only do one iteration at each temperature, but to decrease 

the temperature very slowly according to t = t/(1 + βt) where β is a suitably small value 

(Lundy 1986). In general, we point out that these parameters are rather problem specific. 

One really needs to adjust the values several times by observing the performance of the 

algorithm with the problem at hand. 

 
4.2.2 Numerical result 

 

We applied the SA algorithm to the numerical example with the following specified 

parameter values:  

1. Initial annealing temperature: t0 = 5. 

2. Annealing schedule: proportionally decreasing with a ratio of 0.95. 

3. Number of temperatures used: 200. 

4. Number of Monte Carlo simulations at the initial temperature is 300. This number 

was decreased linearly as temperature decreases. 

5. The candidate point was generated in a neighborhood of the currently accepted 

point according to a uniform distribution. In this example, each component was 

perturbed uniformly according to: 

mj
L

R
randcc jcpresent

j
candidate
j ,...,2,1,)

2
1]1,0[( =×−+= , where  is the j-th 

component of the current point c in the simulation chain,   was a random 

present
jc

]1,0[rand
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number uniformly distributed over [0,1],  was the physical bound of 

component , and L was the scale of  that controls the maximum distance 

allowed. Should a point fall outside the boundary, its symmetric image across the 

boundary was taken as a replacement. 

jcR

jc
jcR

6. The algorithm was terminated after exhausting all the specified 200 temperatures. 

(Or one can set the stopping criterion as δ<−= |)()(| nextcurrent cJcJe ). 

 

The parameters above were obtained on a trial and observation basis. The initial 

temperature t0 was chosen to be 5 since observation revealed that there was enough 

freedom for the solution to oscillate in Ω. The temperature decreasing ratio could be 

between 0.8 and 0.99, and essentially gave the same answer for this problem.  

The convergence of the searching process and the decrease of the cost function in the 

searching process are shown in Figure 4.4.  
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Figure 4.4 Convergence of parameters and decrease of cost function with SA. As can be 

seen from the behavior of the cost function J(c), high uphill moves are allowed in the 

initial and middle stages of the search but not at the end of the search when the system is 

essentially “frozen”.  

 

 

 

 

 

It can be observed that in the searching process up-hill moves were accepted, as there 

were a large number of increased cost function values. However, as the temperature went 
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down, the cost function was “frozen” near the lowest value in the sense that large up-hill 

moves are reduced or essentially eliminated, as is seen from the behavior of J(c). 

 

The result here is also consistent with the above results where conjugate-gradient method 

and the genetic algorithm were used. The four convergent parameters are c1, c2, c4 and c6, 

while c3, c5 and c7 show no sign of convergence. The optimal estimation of SA is  

( )-,101.1160-, ,100.9204-,,101.0958,101.8231 -4-3-4-3 ××××=oc  

and it was calculated by averaging the values of the last 100 accepted samples. 
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CHAPTER 5 

 

BAYESIAN STATISTICAL INFERENCE AND 

PARAMETER ESTIMATION 

 

Inverse problems are statistical in nature (Tarantola, 1987). In parameter estimation there 

always exist estimation errors, or uncertainties due to the statistical nature of the 

observation as illustrated in Figure (5.1).  

 

 

Figure 5.1  Model/Observation with uncertainty 

 

When fitting model parameters, it is always assumed that there is some underlying “true” 

set of parameters c hidden from the experimenter. These true parameters are statistically 

  Model F(c) 

Random Error e 

         Parameter c Observation Z 
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realized, along with random measurement errors, as measured data sets symbolized as Z. 

With the above optimization techniques, Z is treated as a set of fixed values and thus the 

obtained parameter estimations are also fixed values. In this Chapter, we adopt a 

probabilistic approach and look at Z as a realization of stochastic processes. It is thus 

interesting to know the distribution of the parameters if some properties of the 

randomness in Z are known (or unknown but assumed). Bayesian inversion suits the need 

by relating forward and inverse probabilities directly (Box and Tiao 1973). In this 

Chapter, we apply the Bayesian inversion framework to study the inverse problem of 

Model (2.1) ~ (2.6). Our accomplishments in this Chapter are mainly the following: 

 

1. Giving a brief description of the Bayesian inversion framework and some 

theoretical background of Markov chain simulation. 

2. Proposing the inverse probability of model (2.1) under suitable assumptions. 

3. Proposing function approximation approach to study the inverse uncertainty. 

4. Using standard MCMC approach to study the inverse uncertainty. 

5. Proposing a faster MCMC sampling algorithm specifically for the problem. 

6. Calculating the numerical results for the seven-compartmental model and making 

comparisons about the different approaches.  

In general, through a Bayesian inversion approach, we obtain the parameter estimation as 

has been done in the previous, as well as the quantities that characterize the inverse 

uncertainty – which is impossible with the previous approaches. 

  5.1 Forward/inverse probability and Bayes’ theorem 
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We only discuss the case where the uncertainty comes solely from the measurement 

errors. The uncertainty caused by model structure is also interesting but will be our next 

stage work. Bayesian statistics provides a theory of inference which enables us to relate 

the results of observation given in the form of forward probability to parameter 

uncertainty given in the form of inverse probability. Briefly, the forward probability 

 is the conditional probability of the observation data )|( cZP Z  given the cause – 

parameter c. The inverse probability )  is the conditional probability of the cause c 

given the observation 

|( ZcP

Z , and it represents the state of knowledge of c after measuring Z. 

Bayes’ theorem links the two probabilities in the following manner: 

 

)()|(
)(

1)|( cPcZP
ZP

ZcP =      (5.1) 

 

The above equation tells how one should update the state of knowledge of c based on the 

acquired knowledge Z. The probability P(c) represents the prior knowledge about c 

before making the observation. The inverse probability P(c|Z) (also called the posterior 

probability of c) embodies the posterior knowledge about c after making the observation 

Z. The forward probability  in (5.1) is usually thought as a function of c for fixed 

observation Z and is thus also called the maximum likelihood function of c. P(Z) is the 

probability of the occurrence of the data, and is unknown usually. But P(Z) does not  

affect sampling from P(c|Z) when using the Metropolis-Hastings algorithm, as it is 

cancelled as a normalizing constant in the algorithm, which we will see later. 

)|( cZP

 

 66



5.2 Proposing the inverse probability density function of Model (2.1) 

 

Now we set out to propose the posterior probability density function (PPDF) for the 

carbon transfer coefficients in Model (2.1). The specification of the PPDF is based on the 

statistical properties of the observational random errors. Thus for a Bayesian approach, 

the knowledge of the observational errors is as important as the observational data 

themselves. However, in practice the information about the probability distributions of 

errors is often unavailable, with the best that one can have being the errors bars specified 

by experimenters. In this study, to proceed with our analysis we assume the following:  

 

1. Within each data set skZ k ,...,2,1, =
(

,  the observation errors  

follow a multivariate Gaussian distribution with a covariance matrix . 

skE k ,...,2,1, =

)cov( kE

2. The errors among different data sets are independent.  

 

While the second assumption is a physically reasonable one, the first assumption is often 

used in applications, since due to the Central Limit Theorem, Gaussian distribution is 

general enough to fully characterize the fluctuation of the combined error effects of 

various sources (e.g., Von Mises 1964). Another reason for assuming Gaussian-type of 

error is because maximizing the PPDF formulated under this assumption is equivalent to 

minimizing the quadratic criterion in the deterministic optimization approach. In the next 

we denote the prior probability density function as  and the PPDF as . )(0 cp )(cp

 

5.2.1 The prior information 
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In the Bayesian paradigm the prior probability of the model parameter c can be regarded 

as an initial degree of belief in the model parameter c. Hence the prior probability  

represents current state of knowledge about the parameters and can be of any density 

function form. Lacking of prior knowledge can be represented by a uniform distribution 

over the admissible set Ω. This is the conceptually simplest non-informative prior 

(Tarantola 1987). In this case the prior distribution 

)(0 cp

Ω∈∀= cconstcp ,)(0 . With a 

uniform prior, one sees that the maximum a posterior probability (MAP) p(c) becomes 

the maximum likelihood probability of c. Hence using the uniform prior is justified from 

the point of view of classical (non-Bayesian) statistics. 

 

We can also specify different forms of prior probability distributions for the model 

parameter c based on the current state of knowledge. One way to specify the prior is to 

use a multivariate Gaussian distribution in which the mean specifies where we believe the 

parameter is and the variance represents the confidence of the belief. With the Gaussian 

prior, there is a natural relationship between the confidence of the belief and the 

Tikhonov regularization number λ  that we discussed in Chapter 2.1 (Fitzpatrick 1991).  

 

 

5.2.2 The posterior probability density function (PPDF) p(c) 

 

Similarly as in Chapter 2, let )(~ cX  denote the vector of state variables at all time steps 

from a finite difference method that solves the equation (2.1), denote the mapping )(ckΦ
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matrix from )(~ cX  to data set skZ k ,...,2,1, =
(

, and the error covariance matrix of the k-th 

data set be . Based on the above assumptions (1) and (2), the likelihood function 

for a single data set 

)cov( kE

kZ
(

 is ⎟
⎠
⎞

⎜
⎝
⎛−∝ − kkTkk EEEcZp 1)cov()(

2
1exp)|(

(
 and the likelihood 

function of the multiple data sets is )|(1 cZp ks
k

(
=∏ . By specifying the prior probability 

density function as , the PPDF is then )(0 cp
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From (5.2) we see if the prior probability  of interest is a Gaussian prior 

 (Fitzpatrick 1991), then  

)(0 cp

),( 11 −− GcN prior λ
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from which we see the equivalence between the MAP solution of c and the least squares 

optimal solution of c with Tikhonov regularization specified as in (2.4) of Chapter 2.1. 

Note that the normalizing constant that makes the above function a probability density 

function is ignored for the convenience of notation. 

 

Function (5.2) gives a complete probabilistic description of the model parameter c and is 

thus the inverse problem solution from a Bayesian point of view. However, one needs to 

analyze it in order to fully display the information hidden inside. In the next, we 

introduce two approaches – an approximation approach (also called Laplace 

Approximation in Box & Tiao (1973)) and an MCMC simulation approach – to study the 

PPDF (5.2) of Model (2.1).  

 

5.3. An approximation approach for inverse uncertainty analysis  

 

Depending on the model structure, the data sets and the admissible parameter space, the 

shape of the PPDF p(c) is usually hard to determine. However, in cases where p(c) has a 

single interior dominant mode that falls away from the maximum in an approximately 

Gaussian fashion, then it is useful to approximate the probability density by Gaussian 

function (Box & Tiao 1973). The key advantage of this approach is that Gaussian 

function is completely determined by the mean vector and the covariance matrix. By 

approximating the PPDF (5.3) with a Gaussian function, we can easily construct marginal 

distributions for the parameter vector c and calculate the covariance matrix. For this 
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purpose, we need to use the first and the second derivative information derived in 

Chapter 2. We adopt the following steps: 

 

1. Find the optimal point  for  of (2.4) using the descent-type of algorithm as 

was done in Chapter 2. This gives the mean of the approximate Gaussian. 

oc )(cJ

2. Expand  as a Taylor series up to the second order around the point . The 

linear terms vanish since  is an extreme. Thus we find  

)(cJ oc

oc

)()(
2
1)()( oToo ccQcccJcJ −−+≅   

where Q  is the Hessian matrix of  derived in Chapter 2, with  )(cJ
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We denote , the inverse of the matrix Q , as  since it represents the covariance 

matrix of the parameter vector c. Then the PPDF  (5.3)  is approximately: 

1−Q )cov(c

)(cp
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The above Gaussian function has a simple interpretation: the diagonal elements of  

are the variances of the parameters and the off-diagonal elements describes the 

correlations each pair of parameters. It should be noted that the above approximation is a 

local approximation and is useful only when the shape of the PPDF can be well-

approximated. A perfect approximation only exists in the case of a linear relationship 

between the data space and the parameter space.  

)cov(c

 

5.4 A stochastic simulation approach for inverse uncertainty analysis – Markov 

chain Monte Carlo (MCMC) 

 

The approximation approach for inverse uncertainty analysis is not applicable in general 

since it is a local method. A more general way to study the PPDF (5.3) is to sample it 

directly and let the information about the parameter c be computed from the samples. The 

work of Geman and Geman (1984) introduced the Gibbs sampler as a method for 

obtaining difficult posterior quantities in image restoration. The subsequent integrating 

article by Gelfand and Smith (1990) facilitated the use of MCMC methods to evaluate 

integral quantities. The basic idea of MCMC is to design a Markov chain with the 

probability of interest as the stationary distribution. The Markov chain simulation is run 

for sufficiently long time (after an initial running time called the burn-in period) till 

samples can be taken from the desired probability distribution. Quantities associated with 

the distribution are summarized from the large number of samples. A detailed treatment 

of MCMC can be found in Gamerman (1997).  
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In the next we first explain the fundamentals of Markov chain simulation, and then we 

introduce the Metropolis-Hastings (M-H) algorithm. We will also propose a fast sampling 

algorithm for PPDF (5.2) after the discussion of the M-H algorithm. Only the discrete 

Markov chain is discussed here, considering the discrete nature of numerical simulation 

in practice. The contents can be found in most textbooks on Markov process. We refer to 

lecture notes by Tan, Fox and Nicholls (2004) for some details.  

 

5.4.1 Markov chain 

 

Let  be a sequence of random variables taking values from a 

state space . A Markov chain is a stochastic process with the property 

that a state  in the chain depends only on its immediate previous state  and is thus 

conditionally independent of all other previous states, i.e., 

. 

,...,,...,,, )1()()2()1()0( +kk ccccc

},....,3,2,1,0{=Ω

)1( +kc )(kc

)|(),,...,|( )()1()(
1

)1(
0

)0()1( icjcPicicicjcP kkk
k

kk ======= +
−

−+

 

A Markov chain is completely determined by fixing an initial condition  and 

the transition probability . A homogeneous Markov chain has the 

property that . The transition probability is 

usually written as  and  satisfies the condition . A 

matrix with rows summing to one is called a stochastic matrix (denoted as ) . 

)( 0
)0( icP =

)|( )()1( icjcP kk ==+

)|()|( )()1()()1( icjcPicjcP kknknk ===== ++++

)|( )()1( icjcPP kk
ij === +

ijP 1=∑
Ω∈j

ijP

S

 

5.4.2 Stationary distribution 
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Consider , the probability that after k steps the probability that the 

state is at j. Let  and let 

,...2,1),( )( == jjcP k

)( )()( jcP kk
j ==π ( )...)(

2
)(

1
)( kkk πππ = , then it is easily 

shown  where  denote the stochastic matrix. If there exists Skk )1()( −= ππ S π  so that 

Sππ = , with , then 1=∑
j

jπ π  is called a stationary distribution of the Markov chain. 

If  for any  then ∞→→ kk ,)( ππ )0(π π  is called the equilibrium distribution of the 

chain and the chain is said to be ergodic.  

 

For a Markov chain to be ergodic, the following conditions of ergodicity must be 

satisfied: 

1. Irreducibility. If for any two states i, j in Ω there is a path of non-zero probability 

which links i to j and vice versa, then the chain is said to be irreducible. 

2. Reversibility. A homogeneous Markov chain is said to be reversible if the 

transition probability satisfies: . The 

necessary and sufficient condition for reversibility is given by the following 

theorem: let  be the stochastic matrix of a Markov chain with a unique 

stationary 

)|()|( )1()()()1( icjcPicjcP kkkk ===== ++

Q

π . The chain is reversible if and only if the detailed balance condition 

holds: . Ω∈= jiPP jijiji ,,ππ

3. Aperiodicity. Using the set ( ){ }0,0: >>= nSnT ii
n  to define the steps on which 

it is possible for a chain to revisit i once it starts from I, if the greatest common 

devisor of the integers in set T is one, the chain is called aperiodic. 
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We have the following important theorem of ergodicity. 

 

Ergodicity theorem. For an irreducible, aperiodic Markov chain on a countable state 

space with transition matrix , if there exists S 1,10 =≤≤ ∑
j

jj ππ  and  for 

, then the chain is reversible and ergodic with unique stationary distribution 

jijiji PP ππ =

Ω∈ji, π . 

 

The above result answers the existence problem of the equilibrium distribution π  of a 

chain with a given stochastic matrix. The reverse problem is, given a distribution π , how 

to construct a transitional probability of a Markov chain so that the equilibrium 

distribution of this chain is π ? This has been answered by the MCMC algorithms. 

 

5.4.3 Metropolis-Hastings (M-H) MCMC 

 

M-H MCMC is an algorithm that generates Markov Chain samples from a desired 

equilibrium distribution. The algorithm is as follows: 

 

Let  be the starting point of the chain and suppose the algorithm has been run to 

obtain values  in the admissible set 

)0(c

)1()1()0( ,...,, −kccc Ω . The next point of the chain  is 

obtained by a two-step process consisting of a “proposal step” and a “move step”. 

)(kc

 

Proposal step: Propose a candidate state c in the admissible set on the basis of  

according to some proposal probability  where  satisfies: 

)1( −kc

)|( )1( −kccq )|( )1( −kccq
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1. . 0)|(0)|( )1()1( =⇔= −− ccqccq kk

2.  forms the transition matrix of an irreducible Markov chain on 

Ω. 

)|( )1( −kccq

Move step: With probability 

⎭
⎬
⎫

⎩
⎨
⎧

= −−

−
−

)|()(
)|()(,1min)|( )1()1(

)1(
)1(

kk

k
k

ccqc
ccqcccp

π
π  

accept  

cc k =)(   (acceptance) 

else set 

)1()( −= kk cc  (rejection) 

 

Thus the transition probability is given by . It is 

shown that the Markov chain simulated by the M-H algorithm is reversible with respect 

to 

)|()|()|( )1()1()1( −−− = kkk ccpccqccp

π . If the Markov chain is also irreducible and aperiodic, then it is an ergodic Markov 

chain with unique equilibrium distribution π  (Metropolis et al. 1953; Hastings 1970). 

 

Note the algorithm is presented in two steps. In the first step, a candidate state c is 

generated with the proposal distribution . The second step ensures that the next 

sample lies in the high probability region of 

)|(. )1( −kcq

π . Thus to generate the next Markov chain 

sample on the basis of the current sample, one first generates a candidate state, and then 

takes either the candidate state or the current sample as the next sample according to 

whether the candidate state lies in the high probability region or not.  
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5.4.4 MCMC estimator and output analysis 

 

From the Bayesian point of view, the complete state of knowledge of the parameter 

vector c after the observation Z is given by the PPDF . Once  is known, various 

quantitative estimates can be made such as the maximum likelihood estimates, the MAP 

estimates, the mean estimates and the variances/covariances of the variables etc. can be 

calculated. For example: 

)(cp )(cp

1. the mean estimator dcccpcE )()( ∫=  

2. the parameter covariance matrix dccpcEccEccCov T )())())((()( ∫ −−=  

3. the marginal distribution miii dcdcdcdccpcp ......)()( 111 +−∫=  

In general one needs to calculate the following form of integral:  

∫= dccpcfcfE )()()]([  

We can estimate this integral from some independent and identically distributed (i.i.d.) 

samples of the random variable c, , from , i.e., )()2()1( ,...,, kccc )(cp

∑
=

=
k

i

ik cf
k

ccccfE
1

)()()2()1( )(1],...,,|)([ . 

 

If the samples are i.i.d., the strong and weak laws of large numbers ensure 

that the approximation can be made accurate as desired with increasing k . It should be 

noted  is a random variable itself. For different realizations 

 of the random variable c, the estimation will be different. But in general, 

kic i ,...,2,1,)( =

],...,,|)([ )()2()1( kccccfE

)()2()1( ,...,, kccc
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if  were independent samples and )()2()1( ,...,, kccc ∑
=

=
k

i

ik cf
k

ccccfE
1

)()()2()1( )(1],...,,|)([ , 

then ( ) ( )
k

cfccccfE k )(var],...,,|)([var )()2()1( = , which gives the convergence rate of the 

estimator. 

 

In MCMC, the samples are dependent on their immediate predecessors and hence 

 are correlated samples. In this case and we have the following estimate of 

the variance for : 

)()2()1( ,...,, kccc

],...,,|)([ )()2()1( kccccfE

  ( ) ( )
k

cf
ccccfE fk )(var

],...,,|)([var )()2()1( τ
=  

where fτ  is called the autocovariance time and is given by:  

∑
∞

=

+=
1

)(21
s

fff sρτ  

and )(sffρ  is the normalized autocovariance function 

( ) )var(/)(),(cov)( )()( fcfcfs skk
ff

+=ρ . 

Thus the MCMC estimators should be phrased in the following way: we estimate the 

mean value of   in the interval of )(cf
( )
k

cf
ccccfE fk )(var

2],...,,|)([ )()2()1( τ
×±  with 

95% confidence. It can also be seen that if a Markov chain is well designed such that the 

autocovariance time is small, then the estimators will converge fast.  

 

5.5 Toward a more efficient sampling method 
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The above M-H algorithm is quite general. Usually the computation is quite intensive if 

the proposal probability is not properly set, as a large number of samples will fall out of 

the high probability density area and are thus rejected. When directly applied to Model 

(2.1), the computation is extremely time-consuming since each simulation involves the 

forward solution of the system equation over a long time span, especially when the finite 

difference method is on a fine grid. A successful application of MCMC relies on a proper 

choice of the proposal probability, as the proposal probability not only affects the 

distribution of the candidate state given the present state, but also the convergence rate of 

the MCMC estimators. In the following we discuss two major types of proposal 

distribution and reveal the mechanism of how to improve the efficiency of the MCMC 

algorithm.  

 

5.5.1 Symmetric proposal probability 

 

One common type of proposal probability is the symmetric distribution centered at the 

current state. In this case . This proposal probability is also called 

“chain-adaptive” since the distribution of the candidate state depends on the current state. 

The most commonly used symmetric distribution can either be symmetric Gaussian or 

uniform distribution. However, the step lengths 

)|()|( )1()1( ccqccq kk −− =

nili ,....,2,1, =  for a proposal probability 

in n-dimensional space that control the allowable distance that the next sample can depart 

from the current one affects the sampling efficiency. In general, small step lengths tend to 

increase the correlation among the Markov chain samples, slowing down the convergence 

of the MCMC simulation, while large step values will increase the number of rejected 
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samples and thus also slow down the convergence of the MCMC simulation. When the 

step lengths are excessively large in the parameter space, the candidate states will often 

be generated far away from the current sample, and so may not have a high probability of 

lying in the high probability region even if the currently-accepted one does. The choice of 

the step lengths corresponding to the “spreading” of the proposal probability is a trade off 

between the degree of neighborhood correlations and number of rejected samples. 

 

5.5.2 Stationary proposal probability 

 

As another extreme, the proposal probability can be “stationary” in the sense 

 so that the next sample is generated from some pre-specified 

probability 

)()|( )1( cccq k χ=−

)(cχ  directly sample and thus does not depend on the current one. The 

constructed proposal probability )(cχ  is usually based on some prior knowledge about 

the PPDf and is chosen as close to the PPDF as possible. For example, suppose 

)()( cpc =χ . Then the acceptance probability becomes:  

1
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Thus all generated samples will be accepted. In this case, all samples will be i.i.d. 

according to . This observation shows in order to reduce the computational cost, we 

should sample the PPDF by utilizing information regarding the PPDF, i.e., we should let 

the proposal probability be as close to the PPDF as possible.  

)(cp

 

5.5.3 The proposal probability that increases the sampling efficiency  
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As was analyzed in Chapter 5.3, the Hessian matrix contains the information about the 

geometry of the PPDF. This information can be utilized to improve the efficiency of 

sampling. Thus we propose the following fast Metropolis-Hastings (M-H) type of 

algorithm: 

 

Denote the inverse of the Hessian matrix at the optimal point as  similarly as 

above. Determine eigenvalues 

)cov( oc

iγ  and eigenvectors  of , combine the m column 

vectors  into a matrix T that diagonalizes the matrix  as  

iq )cov( oc

iq )cov( oc
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2

2
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1. Generate independent Gaussian variables: Generate m mutually independent 

Gaussian random variables miyi ,...,1, = with the variances . miii ,...,1,2 == γσ

2. Transform step: Transform the vector ( )Tmyyy ..1= into the correlated 

Gaussian vector according to ( T
mzzz ..1= ) yTz ⋅= . Then z is a sample of a 

Gaussian random vector with zero mean and covariance . )cov( oc

3. Proposal step: propose the next point according to . Then c is a 

sample of a Gaussian random vector with mean  and covariance . 

zcc k += − )1(

)1( −kc )cov( oc

4. Move step: With probability 
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⎭
⎬
⎫

⎩
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= −−
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−
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)|()(,1min)|( )1()1(

)1(
)1(

kk

k
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ccqcp
ccqcpccp  

accept  

cc k =)(   (acceptance) 

else set 

)1()( −= kk cc  (rejection) 

 

It is obvious that the above method is chain-adaptive, but it also utilizes the information 

about the shape of the approximation Gaussian constructed above. The two requirements 

(1) and (2) on proposal probability in the M-H algorithm are not violated by the added 

steps. This proposed algorithm increases tremendously the efficiency of sampling, as is 

evidenced by our numerical results. 

 

 

5.6 Application to the seven-pool model and numerical results 

 

In the following we give three sets of results for analyzing the PPDF. The first inversion 

result is from direct function approximation approach. The second comes from the 

general M-H algorithm where the proposal probability is a uniform distribution. The third 

is from the modified M-H algorithm where the Hessian matrix information is used in the 

proposal probability. Throughout the analysis, the prior distribution of the model 

parameters are assumed to be uniform on the admissible set Ω given in (2.7). 
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5.6.1 Numerical result of the approximation approach 

 

From the previous discussion, it is seen that we can possibly obtain salient information 

for parameters c1, c2, c4 and c6 only. Thus in this section only their joint probability 

density function is approximated. The procedures are given in the following: 

 

1. From the conjugate gradient method, we have the optimal point: 

( )-,101.1471-, ,100.9862-,,101.0933,101.8238 -4-3-4-3 ××××=oc  . 

2. We calculate the Hessian matrix at . The elements corresponding to coc 1, c2, c4 

and c6 are taken to form matrix Q  mentioned in Chapter 5.3.  

 . 
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Q

3. The inverse of  is the covariance matrix of cQ 1, c2, c4 and c6. It is given 

by
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),,,cov( cccc

4. As was discussed in Chapter 5.3, the approximation of the PPDF of c1, c2, c4 and 

c6 is then given by 
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5. From the above multivariate Gaussian distribution, it is easy to write the marginal 

distribution for each of the parameters and also the joint distributions for two or 

more parameters. The marginal distributions for the parameters are given as: 
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The joint distributions for any two parameters are: 
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6. The correlation coefficient matrix (i.e., the normalized covariance matrix) reveals 

the degree of correlations among the coefficients. Based on , it is 

approximately: 

),,,cov( 6421 cccc
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From the correlation matrix, we see  has no correlation with other parameters. The 

correlation between  and  is strong and is about 0.739. The correlation between  

and  is about 0.40, and the correlation between  and  is about 0.44. 

1c

2c 4c 2c

6c 4c 6c
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The information of the PPDF is revealed more intuitively by the following figures of 

marginal distributions and joint distributions:  
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Figure 5.2 Marginal distribution via function approximation approach. The x-axes 

represent the pre-specified physical bounds for the parameters. From the figures we c1 

has the least uncertainty on its physical range. Parameter c6 has the largest uncertainty. 
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Figure 5.3 Joint distribution of c1 and c2 via function approximation approach. As can be 

seen, since these two parameters are independent, the principal directions of the ellipsoid 

are parallel to the axes. 
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Figure 5.4 Joint distribution of c2 and c4 via function approximation approach. The 

skewness of the principal direction is caused by the correlation. 
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Figure 5.5 Joint distribution of c2 and c6 via function approximation approach 
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Figure 5.6 Joint distribution of c4 and c6 via function approximation approach 

 

 

 

 

 

 

 

 

 

 

From Figure 5.2, it can be seen that parameter c1 has the least inverse uncertainty, as its 

marginal distribution is constrained in a very narrow range within the pre-specified 
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physical bound. The constraints of c2 and c4 are about the same. Parameter c6 has the 

largest uncertainty as its marginal distribution has the widest spread over its physical 

bound. The independence of c1 and c2 is characterized by the fact that the principal 

directions of the joint probability function are parallel to the axes. The degrees of 

correlations between each pairs of parameters are characterized by the skewness of the 

principal directions relative to the axes.  

 

The following table summarizes the uncertainty in parameter estimation: 

 

Parameters c1 c2 c3 c4

Mean -3101.8238× -4101.0933×  -3100.9862×  -4101.1471×  

Standard deviation 3.2296×10-5 1.0363×10-5 7.4539×10-5 2.8148×10-5

 
Table 5. 1 Inverse uncertainty analysis of parameters c1, c2, c4 and c6

 

As a conclusion, we see the inverse uncertainty can be obtained from an approximation 

approach to the PPDF. However, it should be noted that since these constructions are 

based on the second order approximation of the cost function locally at the optimal point 

and the Hessian only gives information about the curvature near the optimal point, the 

characterization of the inverse uncertainty may not be complete if the approximation is 

not good enough. For example, the variances of the parameters may be underestimated 

and the correlations may be overestimated, depending on the actual shape of PPDF. 

However, this approach still reveals most of the information in the PPDF, and, in cases 
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when cost functions are nearly quadratic with respect to the model parameters, this 

approach is quite accurate.  

 

5.6.2 Numerical result of the MCMC approach with the standard M-H algorithm 

 

In this section we use M-H algorithm to directly sample the PPDF. By analyzing the 

samples, we will quantify the inverse uncertainty described by the PPDF. Since the 

samples follow the stationary distribution given by the PPDF , the direct analyzing 

of the samples tends to overcome the weakness of the above approximation approach and 

give a more complete view of  from the samples. 

)(cp

)(cp

 

5.6.2.1 Specifications of the MCMC sampling using the standard M-H algorithm 

 

The following are the specifications for the simulation: 

1. Five runs of the M-H algorithm were made, each with a simulation time of 

20,000. 

2. Each run was started at a randomly chosen point in the admissible set. 

3. The candidate point was generated according to a uniform distribution. Each 

component was perturbed uniformly according to:  

 mj
L

R
randcc jcpresent

j
candidate
j ,...,2,1,)

2
1]1,0[( =×−+= ,  

where  is the j-th component of the current point c in the simulation chain,  

 is a random number uniformly distributed over [0,1],  is the 

present
jc

]1,0[rand
jcR
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physical bound of component , and L is the scale of  that controls the 

maximum distance allowed. If   falls outside the admissible set, then it is 

reflected back across the boundary. 

jc
jcR

candidate
jc

4. The burn-in length was set to be the first 100 samples. 

5. Each run rejected about 18800 candidate samples. The rejection rate was about 

94% on the average. Thus only 6% new updates were accepted.  

6. The samples of the five runs were mixed to get a total of 99500 samples.  

 

The following figure shows the mixed chains for all the seven parameters. 
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Figure 5.7 MCMC sampling processes for the model parameters. The last plot shows the 

values of J(c) at the high probability density area. 
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Figure 5.8 Histograms of MCMC samples for the model parameters. 

 

 

 

 

 

 

5.6.2.2 Output analysis 
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1. Mean estimators. 

Based on the mixed sampling series, the means of  are 6421 ,,, cccc

-4
6

-3
4

-4
2

-3
1 101.2729][,109360.0][,101.0669][,101.8242][ ×=×=×=×= cEcEcEcE

 

2. Covariance matrix. 

The following covariance matrix and correlation coefficient matrix are calculated 

directly from the samples: 
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3. Matrix of correlation coefficients. 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

×
10.33240.35730

0.332410.60450
0.35730.604510

0001

)var()var(

),var(

, jiji

ji

cc

cc
 

 

 

5.6.3 MCMC with fast sampling method  

 

The sampling efficiency of the standard M-H algorithm used above is very low, as is seen 

from the high rejection rate (about 94%) of the proposed candidate samples. This means 

94% of the forward simulations were wasted. This imposes a costly computational 

burden for computer simulation. In this section, we test the fast M-H-G type of algorithm 
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and make comparisons with the above approach. The followings are the specifications 

and numerical results. 

 

5.6.3.1 Specifications of the MCMC sampling 

 

The following are the specifications for the simulation: 

1. We run the M-H algorithm with 20,000 simulation times. 

2. The candidate point was generated according to the following: c1, c2, c4 and c6 

were generated by the method discussed in Chapter 5.5.2, while c3, c5 and c7 were 

uniformly generated according to: 

.7,5,3,)
2
1]1,0[( =×−+= j

L

R
randcc jcpresent

j
candidate
j  similarly as above.  

3. The burn-in length was set to be the first 100 samples. 

4. The algorithm rejected about 12,000 candidate samples, giving a rejection rate of 

60%. Compared with the above rate of 94%, it is a tremendous decrease. Now 

40% new updates were accepted due to the fast sampling method.  

 

The following figure shows the sampling chains for all the seven parameters: 

 

 

 

 

 

 

 97



 

0.5 1 1.5 2

x 10
4

0.5
1

1.5

2
2.5

x 10
-3

0.5 1 1.5 2

x 10
4

1

1.5

2

2.5

x 10
-4

0.5 1 1.5 2

x 10
4

0.01

0.015

0.02

0.025

0.5 1 1.5 2

x 10
4

1

1.5

2

2.5

x 10
-3

0.5 1 1.5 2

x 10
4

3

4

5

6

x 10
-3

0.5 1 1.5 2

x 10
4

1

1.5

2

2.5

x 10
-4

0.5 1 1.5 2

x 10
4

2

4

6

8

x 10
-6

0.5 1 1.5 2

x 10
4

0

100

200

300

400

MCMC Samples from the Fast Metropolis-Hastings Algorithm 

c1 
c2

c3 

c4 

c5 

c6 

J(c )

c7 

 

Figure 5.9 MCMC sampling processes with the fast Metropolis-Hastings algorithm 
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Figure 5.10 Histograms of the samples from fast MCMC 

 

 

 

 

 

 

 

 

5.6.3.2 Output analysis 
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Based on the above samples, we calculate the following: 
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5.7. Result comparison 

 

The above three sets of results are summarized in the following Table 2. From the table, 

it can be observed that the approximation approach overestimated the correlations among 

the parameters and underestimated the variance of c6. However, the estimates are in 

general quite consistent.  
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 Approaches 

 Approximation Standard M-H Fast M-H 

Var(c1) 910043.1 −×  9101.0644 −×  9101.0650 −×  

Var(c2) 1010074.1 −×  10100835.1 −×  10101.0832 −×  

Var(c3) 910556.5 −×  9105259.7 −×  9106.8488 −×  

Var(c4) 1010923.7 −×  9100323.1 −×  9101.0256 −×  

 
Table 5.2 Comparison of Variance Estimations 

 
 
 
 
 Approaches 

 Approximation Standard M-H Fast M-H 

c1,cj ( j = 2,4,6 ) 0 0 0 

c2, c4 0.739  0.6045  0.6691  

c2, c6 0.406  0.3573  0.3178  

c4, c6 0.440  0.3324  0.3084  

 

Table 5.3 Comparison of Correlation Coefficient Estimation 
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It is also of interest to compare the Bayesian inversion result with the results obtained 

from all the previous approaches. By comparing Figure 5.10 with Figure 3.2, it is easily 

seen that the optimal values of the identifiable parameters c1, c2, c4 and c6 from the 

conjugate-gradient optimization algorithm are nearly the same as the maximum 

likelihood estimations from the Bayesian approach, nevertheless, the Bayesian approach 

gives a more complete description of the inversion results in that it also includes the 

inverse uncertainty as part of the information. For the non-informative parameters c3, c5, 

c7 with the conjugate-gradient method, the MCMC approach yields widely spreading 

profiles across their pre-specified physical bounds and also the information that the 

parameters c3, c5 have higher probability of clustering at the upper bound of their 

physical ranges. The comparison between Figure 5.10 and Figure 4.2 yields the similar 

observation. Through comparison, we see that the Bayesian inversion should be a 

preferred approach for inverse analysis, as it gives the whole picture of the probability 

density function of the parameters from which one can “see the trees as well as the 

forest”. Moreover, we can estimate all the interested quantities that summarize the 

inversion results such as maximum likelihood values, mean values, variances and 

correlations etc. 

 

5.8 Data comparison 

 

Now we show the comparison between the simulated data sets and the observed data sets. 

To obtain the comparison, we fixed values for  at  6421 ,,, cccc

-4-3-4-3 101.2729,109360.0,101.0669,101.8242 ××××  
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and randomly generated a set of numbers for c3 and c5 according to the modes indicated 

by Figure 5.10: ; while c]105.8,105.5[],027.0,02.0[ 33
53

−− ××∈∈ cc 7 was randomly 

generated according to uniform distribution over its physical bound. The fittings are in 

general satisfactory with R2 being high, as are indicated by Figure 5.11. 
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Figure 5.11 Data comparison. The figure shows the six observational data sets used in the 

inverse analysis and the six simulated data sets based on the inversion result. 

 

 

 

 

 

 

 104



5.9 Model prediction 

 

Now we construct the posterior predictive distribution of the pool sizes based on the 

above simulation result. The predictive probability distribution of Ẑ  given Z  is defined 

by 

∫= θθθ dZpZpZZp )|()|ˆ()|ˆ(  

 

To actually construct the predictive distribution, samples from the above MCMC 

simulations were fed to the model equation (2.1). The properties of the output were 

summarized by the following marginal distributions and cumulative distributions.  
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Figure 5.12 Histograms (un-normalized predictive marginal distributions) of carbon pool 

sizes predicted in the year of 2010. 
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Figure 5.13 Predictive cumulative distributions of carbon pool sizes in the year of 2010. 
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CHAPTER 6 

 

CONCLUSIONS AND FURTHER WORK 

 

In this thesis, we studied the inverse problem of a general type of biogeochemical cycles 

that describes the carbon sequestration mechanism of terrestrial ecosystem from both 

deterministic and probabilistic approaches. For the deterministic approaches, we 

developed the Jacobian and Hessian matrix of the cost functional under a general model 

structure setting and multiple data sets constraints. We then proposed two descent-type 

algorithms, applied them to the practical model, and made estimates for the model 

parameters. By tracing the searching paths, we revealed the identifiability/non-

identifiability of the parameters. In order to include the situations where the functions in 

the model were not smooth and the possible existence of multi-minima, we introduced 

the stochastic search algorithms GA and SA. It was shown that the numerical testing 

results were the same even under non-smooth functions in the model. However, these 
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approaches have limitations in that they only give point estimations and could not reveal 

the uncertainty in the inversion caused by observational uncertainties. 

To include the inverse uncertainty study, we introduced the Bayesian paradigm. By 

specifically assuming the Gaussian type of random errors in the observational data sets, 

we proposed the posterior probability density function (PPDF) for the model parameters. 

Two approaches were developed to study the PPDF – the Laplace approximation 

approach which approximated the PPDF with Gaussian function based on the Hessian 

matrix information, and the MCMC simulation approach which sampled the PPDF 

directly and analyzed the samples to obtain the PPDF properties. The first approach only 

works in the situation where the PPDF has a single distinguished peak or is nearly 

quadratic in model parameters. The second approach overcomes this limitation, and is 

generally applicable to PPDF of any shape due to the fact the MCMC approach regards 

the PPDF as a stationary distribution of a Markov chain. However, standard MCMC 

algorithms are computationally costly, especially when applied to the biogeochemical 

model where each simulation involves the solution of the forward differential equation 

over a significant time span. To increase the efficiency of the MCMC simulation, we 

combined the Hessian matrix with the proposal probability in the Metropolis-Hastings 

algorithm. Application to the practical model showed the number of samples accepted 

was considerably increased.  

 

Through the comparison, we see that, for inverse problems, the probabilistic approach not 

only gives the parameter values but also the description of inverse uncertainty, and is a 

more complete approach than the non-probabilistic approaches.  
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Though this thesis gives a relatively complete study of the inverse analysis methods that 

could be applied to the ecosystem model, there are still further issues to be addressed: 

 

1. We did not address the convergence aspects of the MCMC simulation, nor did we 

delve deep to the theoretical aspects of the algorithms. One reason for this 

negligence was perhaps due to the fact that the study was strongly application 

motivated; the other reason was perhaps because the convergence was fairly 

straightforward for the practical numerical model we used – all approaches 

showed that the cost function or the PPDF had only one single well-defined peak 

for the identifiable parameters, and it was obviously not difficult for MCMC to 

find the single peak. However, there will be situations where the model space and 

data space together define a cost function or PPDF in a complex manner in which 

cases the convergence analysis will become very important for MCMC to reliably 

reveal the PPDF structure. There is a very rich literature about the convergence 

analysis for MCMC that needs to be introduced with further study (see Cowles & 

Carlin (1996) for an excellent review of Markov Chain Monte Carlo Convergence 

Diagnostics). 

2. We studied the uncertainty caused by measurement uncertainty. Uncertainty 

caused by model structure was not addressed. One interesting question is: based 

on the current information available, what the model structure should be. This 

means, instead of fixing the number of pools in the model, we let the number of 

pools be decided by the current information available. This could avoid the over-
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parameterization of model and enable the information to be concentrated on the 

key parameters.  
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