
PHOMA MEDICAGINIS: A MODEL PATHOSYSTEM 

 FOR MEDICAGO TRUNCATULA 

 

MADHAVI R. DHULIPALA 
 

Master of Science (Biotechnology) 

 Andhra University, Visakhapatnam, 

 Andhra Pradesh, India 

 2000

Submitted to the Graduate College of 
 Oklahoma State University in partial 

 fulfillment for the Degree of 
 MASTER OF SCIENCE 

 May, 2007



ii

PHOMA MEDICAGINIS: A MODEL PATHOSYSTEM    

 FOR MEDICAGO TRUNCATULA 

 

Thesis Approved: 
 

Stephen M. Marek 
Thesis Adviser 

 

Carol L. Bender 

Michael P. Anderson 

A. Gordon Emslie 
Dean of the Graduate College 

 



iii

ACKNOWLEDGEMENTS 
 

My Master’s research project at Oklahoma State University introduced me to 

several people who contributed to successful completion of my thesis by providing both 

scientific advice and physical assistance during conduct of my experiments.  Foremost, I 

would like to convey my sincere appreciation to my graduate advisor, Dr. Stephen 

Marek.  I thank him for extending financial support to me by providing me a research 

assistantship when I needed the most.  Also, his encouragement and support during tough 

times of my graduate study is greatly appreciated.  I thank my committee members, Dr. 

Carol Bender and Dr. Michael Anderson, for their time, co-operation, and helpful 

suggestions for my thesis.  I appreciate Dr. Tim Samuels, Sandrine Casanova, James 

Enis, and Sivongle Hletchvayo for their assistance during conduct of my research 

experiments. 

I thank Dr. Astri Wayadande for her tremendous moral support during one of the 

toughest moments of my life.  My friends, Praveen Yerramsetty, Madhavi Kommalapati, 

Swati Kasa, and Subrahmanyam Rayaprolu helped me survive a car accident and without 

their care I cannot imagine how I could have survived that very phase.    

My sincere appreciation for the office personnel in the Department of 

Entomology and Plant Pathology including Gerry Smith, Diana Ward, and Michelle 

Kuehn. I thank all the the students, faculty, and staff of the department of Entomology 



iv

and Plant Pathology who were daily acquaintances and integral part of my graduate 

experience. 

Finally I would like to thank my family back home in India including my grand 

parents, my mom and dad, who provided moral and emotional support to me and always 

wish my happy future.  I am thankful to my brother, Rajagopal, who always enquires my 

well being and offers his support.  I sincerely appreciate my husband, Kishan Sambaraju, 

who has seen me pass through several difficult moments of my graduate study and life in 

general.  His care and support allowed me to stay the course and complete my graduate 

study.  Last, I would like to thank everyone whom I have not mentioned in here for being  

part of my graduate program at Oklahoma State University. 

 



v

TABLE OF CONTENTS 

CHAPTER                                                                                                     PAGE 

I. INTRODUCTION…………………………………………...….……….1

References…………………………………………………………………4 

II.  LITERATURE REVIEW………………………………………….……6 

Medicago species and their diseases…………………………………...….6 

Alfalfa, Medicago sativa L. ………………………………………………6 

Medicago truncatula, as a model legume…………………………………7 

Foliar diseases of alfalfa and annual medics………………………………9 

Spring black stem caused by Phoma medicaginis Malbr. & Roum……..10 

Taxonomy of P. medicaginis…………………………………………….10 

Closely related fungi……………………………………………………..11 

Distribution and host range………………………………………………12 

Disease symptoms and pathogen life cycle……………………………...13 

Biology of P. medicaginis………………………………………………..15

Secondary metabolites produced by Phoma spp. ……………………….17 

Management of spring black stem and leaf spot……………………...….19 

Transformation of fungi.............................................................................20 

Agrobacterium-mediated transformation of filamentous fungi.................21 

Selectable marker genes for fungal transformation...................................24 

T-DNA tagging of filamentous fungi........................................................25 

Research objectives....................................................................................25 

References………………………………………………………………..25 

II. AGROBACTERIUM-MEDIATED TRANFORMATION OF P. 

MEDICAGINIS…………………………………………………………34 

Experimental approach…………………………………………………..35 



vi

Results and discussion………………………………...............................41 

References..................................................................................................43 

III. CHARACTERIZATION OF T-DNA TAGGED MUTANTS OF   

P. MEDICAGINIS…………..…………………………………………..45 

Introduction…………………....................................................................45 

Experimental approach…………………………………………………..49 

Inverse PCR...............................................................................................50 

Results and discussion...............................................................................52 

Mutant phenotype of transformants...........................................................56 

Genomic DNA flanking the left border of T-DNA in P1-A17..................57 

References..................................................................................................58 

IV. ASSESSING THE VIRULENCE OF P. MEDICAGINIS STRAINS 

AND TRANSFORMANTS INFECTING MEDICAGO SPP. .............60 

Experimental approach..............................................................................61 

Results........................................................................................................63 

Discussion..................................................................................................75 

References..................................................................................................79 

 



vii

LIST OF TABLES 

TABLE                                                                                                                       PAGE 

1. Toxins secreted by Phoma spp. and closely related Pleosporalean fungi..............18 

2. Some plant pathogenic Ascomycetes transformed using ATMT..........................23 

3. Fungal isolates and bacterial strains used in this research……………………….36 

4. Summary of T-DNA tagged transformants generated in this study......................42 

5. Description of mutants selected for Southern blot analysis..................................47 

6. Mean disease scores of three different Medicago host plants inoculated with 
conidia of three P. medicaginis isolates and their transformants after 2d.............65 

 
7. Mean disease scores of three different Medicago host plants inoculated with 

hyphal fragments of three P. medicaginis isolates and their transformants after 
2d…………………………………………………………………………………65 

 
8. Mean disease scores of three different Medicago host plants inoculated with 

conidia of three P. medicaginis isolates and their transformants after 4d.............66 
 

9. Mean disease scores of three different Medicago host plants inoculated with 
hyphal fragments of three P. medicaginis isolates and their transformants after 
4d............................................................................................................................66 

 
10. Mean disease scores of three different Medicago host plants inoculated with 

conidia of three P. medicaginis isolates and their transformants after 6d.............67 
 

11. Mean disease scores of three different Medicago host plants inoculated with 
hyphal fragments of three P. medicaginis isolates and their transformants after 
6d............................................................................................................................67 

 
12. Mean disease scores of three different Medicago host plants inoculated with 

conidia of three P. medicaginis isolates and their transformants after 8d.............68 
 

13. Mean disease scores of three different Medicago host plants inoculated with 
hyphal fragments of three P. medicaginis isolates and their transformants after 
8d............................................................................................................................68 



viii

LIST OF FIGURES 
 
FIGURE                                                                                                                     PAGE 
 

1. Binary vectors pPTGFPH and pBHt2 used for T-DNA tagging of Phoma 
medicaginis............................................................................................................37

2. Flowchart of Agrobacterium-mediated transformation of P. medicaginis...........41

3. Morphology of three wild types of P. medicaginis and their transformants.........48 
 

4. Schematic representation of inverse PCR procedure.............................................51 
 

5. Southern blot of the T-DNA copy number in P. medicaginis transformants……53 
 

6. Genomic DNA flanking the T-DNA in P1-A17....................................................57 
 

7. Leaves inoculated with P3-A6 showing different steps in initial stages of the 
disease....................................................................................................................71 

 
8. Disease progression in leaves inoculated with P3-A6...........................................72 

 
9. Disease symptoms on detached leaves of Medicago spp. ....................................73 

 
10. Scanned images of attached and detached leaves of M. truncatula and M. sativa 

illustrating the disease on attached and detached leaves.......................................74
 



1

CHAPTER I 

 
INTRODUCTION 

 
Phoma medicaginis Malbr. & Roum. is a filamentous ascomycete causing spring 

black stem and leaf spot disease of the perennial alfalfa, Medicago sativa L. and annual 

medic species such as M. truncatula Gaertner.  The existence of this disease was first 

reported in the US in 1908 (17).  Spring black stem and leaf spot is characterized by 

necrosis and chlorosis of stem, petiole, and leaves, resulting in yield losses (8).  P. 

medicaginis reproduces asexually (mitosporically) as conidia, parasitizes its host 

necrotrophically and produces the toxin brefeldin A.  It is reported to be the dominant 

inhabitant of the leaves and stems of Medicago species and the brefeldin A it produces 

can exclude other fungi from infected host tissues, creating a niche for itself (19).   

 

Medicago species belong to the legume family, Fabaceae.  Members of this 

family provide high-quality protein and oil to humans and livestock and improve soil 

fertility by fixing atmospheric nitrogen in the soil (5) through the formation of root 

nodules with rhizobial bacteria such as Sinorhizobium meliloti (Dangeard) De Lajudie.  

Extensive research has been conducted on the mutualistic symbioses between these 

bacteria and the model legume M. truncatula, furthermore many symbiosis-defective 

mutants have been generated (3, 18).  Also, the interactions between Medicago roots and 

arbuscular endomycorrhizal fungi such as Glomus intraradices (Schenck & Smith) have 
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been investigated (3).  These mycorrhizal fungi supply phosphorous and other minerals 

from soil to the host and get photosynthates in exchange (15, 16).   

 

The foliar ascomycetes, Ascochyta rabiei (Pass.) Labr. and Colletotrichum trifolii 

Bain, have been studied to better understand their pathogenicity on legumes (9, 21).  A. 

rabiei infects chickpea (Cicer arietinum L.) resulting in Ascochyta blight, while C. 

trifolii causes anthracnose of alfalfa.  Research carried out on A. rabiei has been focused 

on its interaction with chickpea, a relatively intractable host.  Leptosphaeria maculans 

(Desm.) Ces. & De Not., Cladosporium fulvum Cooke, and Magnaporthe grisea (Hebert) 

Barr have been proposed as hemibiotrophic fungal pathosystems for the genomically 

tractable model hosts, Arabidopsis thaliana (L.) Heynh., tomato (Lycopersicon 

esculentum Miller) and rice (Oryza sativa L.), respectively.  So far, there are no well-

studied pathosystems available for the model legumes, such as M. truncatula or Lotus 

japonicus (Regel) Larsen. 

 

To design successful disease control strategies it is important to define a 

pathogen’s interactions with its host, the virulence factors it employs, and the different 

genes controlling these interactions.  Ideally, both the pathogen and the host should be 

tractable to molecular manipulation.  One of the most direct approaches to understanding 

a pathogen’s interaction with its host is to the generate mutants of the pathogen using 

various insertional mutagenesis methods, such as random mutagenesis, targeted gene 

disruption, and gene silencing.  Changes in disease progression can then be analyzed by 

microscopy (7, 12).   
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P. medicaginis is a suitable pathogen for such studies because it is: 1) ease to 

culture and maintain in the laboratory, 2) has a short generation time, 3) contains 

monokaryotic (uninucleate) hyphal cells and conidia, and 4) its amenability to 

transformation.  P. medicaginis can grow on most common fungal media, (e.g. potato 

dextrose agar, oatmeal agar, malt extract agar, etc.) and is very stable under laboratory 

conditions even after repeated subculturing.  Generally, conidia germinate within few 

hours in media and abundant pycnidia exuding spores are produced in one week.  

Extensive research has been conducted on the closely related fungus, L. maculans 

(anamorph:  Phoma lingam (Tode) Desm.), and the sequencing of its genome is ongoing 

((13); http://www.genoscope.cns.fr/).  L. maculans causes black leg disease of canola, 

Brassica napus L., and studies with the model host A. thaliana have been initiated (1, 2). 

 

In general, fungi can be mutagenized using chemical and physical mutagens or by 

insertional transgenic methods, such as restriction enzyme mediated integration (REMI) 

and Agrobacterium tumefaciens-mediated transformation (AMT) (4, 10, 14, 20).  A. 

tumefaciens has the ability to transform fungal protoplasts, spores and hyphae (6).  A. 

tumefaciens inserts T-DNA into its host’s genome by heterologous recombination, 

potentially disrupting or perturbing the host’s genes, and therefore acting as a mutagen.  

This method has advantages over chemical mutagenesis methods because the T-DNA 

“tags” the disrupted gene, aiding its identification.  The high proportion of single T-DNA 

insertions in transformants simplifies gene identification over that of REMI, which often 

results in multiple insertions (10).  Numerous fungal pathosystems of model plants have 



4

begun to be examined at the cellular level using Agrobacterium-mediated transformation 

(11).   
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CHAPTER II 

 
LITERATURE REVIEW 

 
Medicago species and their Diseases 

Alfalfa, Medicago sativa L. 

 

Alfalfa (Medicago sativa L.), also known as lucerne, is a perennial medic and a 

native of Iran and Central Asia (13, 50).  It is currently cultivated in Asia, Europe, 

Australia, and the Americas.  It was introduced into the United States in 1736 by 

colonists and again in the mid-1850s.  Alfalfa is considered to be the most important 

forage crop in the United States (9).  As with all legumes, alfalfa’s mutualistic symbiosis 

with a soil bacterium, Sinorhizobium meliloti (Dangeard) allows it to fix atmospheric 

nitrogen(9), resulting in a high-protein, high quality forage that is vital to the dairy 

industry.  Another mutualistic symbiont of alfalfa roots is the arbuscular mycorrhizal 

fungus, Glomus intraradices, which supplies phosphorous and other minerals from soil to 

the host and gets photosynthates in exchange.  Other valuable attributes of alfalfa include 

its relatively low input costs, its ability to improve soil fertility, and its use as the 

predominant source of nectar for honey production.  In 2005, total production of alfalfa 

(hay) in the United States was about 76 million metric tons (NASS-USDA, 2005), valued 

at $7.3 billion.  In Oklahoma, total production of alfalfa harvested from about 120,000 
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hectares in 2005 was 1.3 million metric tons, valued at $127 million (NASS-USDA, 

2005). 

The genus Medicago also includes annual medics such as M. truncatula (barrel 

medic), M. polymorpha (burr medic) and M. scutellata (snail medic).  Annual medics are 

utilized as cover crops, short season forage crops, and weed-suppressing smother crops 

(35).  Among the annual medics, M. truncatula has been developed as a model legume 

along with another legume, Lotus japonicus. M. truncatula shares many important 

characteristics with alfalfa, such as its mutualistic symbiotic associations with rhizobia 

and mycorrhizal fungi, and its high forage quality.  Generally, most Medicago spp. are 

diploids or tetraploids with a basic haploid complement of 8 chromosomes (n = 8) (50).  

Cultivated alfalfa, for example, is a cross-pollinated (self-incompatible) tetraploid (59).  

 

Medicago truncatula as a model legume 

M. truncatula is a self-compatible, diploid (2n=16), with a small genome of about 

500 Mbp. This combined with a fast generation time (~60 d) and robust seed production 

have made it the preferred medic for genetic research over alfalfa, which is a self-

incompatible tetraploid (20, 90).  As a legume, M. truncatula forms mutualistic 

symbioses with nitrogen-fixing rhizobacteria such as Sinorhizobium meliloti and 

arbuscular mycorrhizal fungi, such as Glomus spp.  These symbiotic interactions are not 

formed by Arabiodopis thaliana, a major model plant system.  

Numerous M. truncatula mutants in these symbioses have been generated using 

different mutagenesis methods such as exposing seed to the chemical, ethylmethane 

sulfonate (EMS) and ionizing radiation, like γ-rays, X-rays and fast neutrons. Mutants 
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with altered nodulation like dmi (3 loci, doesn’t make infection), sunn (supernumerary 

nodulation mutant) and skl (sickle) were obtained from EMS-treated seed (17, 77).

Several mutants affected in nodulation, nitrogen fixation and symbiosis with 

Sinorhizobium, were also generated using γ-irradiation (74).  Thus, numerous M. 

truncatula mutants affected in mutualistic symbioses are available for studying 

interactions with pathogens, such as the subject of this proposal, Phoma medicaginis 

(87).  Other mutagenesis strategies such as T-DNA tagging and transposon-tagging are 

also used to generate mutants of M. truncatula (24, 78).  However, T-DNA-tagging is not 

the preferred method because it is too inefficient to saturate the genome.  Tnt1 is a 

retrotransposon derived from tobacco, is the currently preferred method of insertional 

mutagenesis for M. truncatula. Tnt1 integrates into non-repetitive regions of the genome 

and has no site specificity (24, 85).  

 

The genome of M. truncatula has almost been completely sequenced and a large 

number of EST libraries have also been sequenced and utilized for genome annotation 

and to construct microarrays (86).  EST libraries have been prepared from different 

tissues of M. truncatula during numerous developmental stages, symbiotic interactions 

with S. meliloti and G. intraradices, and pathogenic interactions with P.  medicaginis,

Phytophthora medicaginis Hansen & Maxwell, Meloidogyne incognita Kofoid & White, 

and Colletotrichum trifolii (www.medicago.org).  Another EST library was enriched for 

transcripts from root hairs of M. truncatula (22, 46).  Proteomes from six different tissues 

like stem, leaf, seed pods, roots, flowers and cell suspensions of M. truncatula were 
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analyzed and 304 significant proteins were found (90).  All these resources make M. 

truncatula an attractive model system.  

 

Foliar diseases of alfalfa and annual medics 

Alfalfa is susceptible to numerous plant pathogens such as bacteria, fungi, viruses, 

and nematodes.  Among these pathogens, fungi cause most of the identified diseases of 

alfalfa.  Fungal foliar diseases can blight and defoliate plants thereby reducing overall 

forage yield and quality (23, 52).  In addition to causing yield losses, foliar diseases can 

also reduce forage quality through stimulating the production of phytoestrogen 

compounds like coumestrol, which is toxic to livestock and affects the rate of ovulation 

in sheep (6, 7, 68).  For example, spring black stem disease increases the coumestrol 

levels in the annual medic, M. polymorpha var. brevispina (8).  The production of 

coumestrol in Medicago spp. is also influenced by soil type and growth stage (7, 79).   

 

The important foliar diseases of Medicago spp. include spring black stem and leaf 

spot (P. medicaginis), Lepto leaf spot (Leptosphaerulina trifolii (Rostr.) Petr.), 

anthracnose (Colletotrichum trifolii.), common leaf spot (Pseudopeziza medicaginis 

(Lib.) Sacc.) and summer black stem and leaf spot (Cercospora medicaginis Ellis & 

Everh.) (58).  Most of these fungi are thought to be necrotrophic pathogens of Medicago 

spp., however little is known about the mechanisms utilized by these fungi to infect their 

host.  By exploiting the genetic resources available in M. truncatula and new insertional 

mutagenesis techniques available in the fungi, the molecular nature of these plant-

microbe interactions can be efficiently investigated. 
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Spring Black Stem caused by Phoma medicaginis Malbr. & Roum. 

 

Taxonomy of Phoma medicaginis 

Taxonomically, P. medicaginis belongs to the phylum Ascomycota, class 

Dothideomycetes, and order Pleosporales (72). However, familial placement of this 

asexual, mitosporic ascomycete is uncertain as it displays phylogenetic affinity to 

members of both the Leptosphaeriaceae and the Pleosporaceae.  The fungus has had 

numerous names:  P. herbarum var. medicaginis Westend. ex. Rabenh., P. medicaginis 

Malbr. & Roum., Diplodinia medicaginis Oud., Ascochyta imperfecta Peck, and finally 

as the variety medicaginis, to distinguish it from the chlamydosporous variety pinodella.  

Since var. pinodella has been raised to the species level, it follows that var. medicaginis 

should also be consolidated back to the level of species sensu Malbranche & Roumeguère 

(58). 

With Phoma herbarum Westend. as the type species, the genus Phoma Fr. has 

been divided into 9 different sections to facilitate identification up to species.  These 

subdivisions or sections include Phoma, Heterospora, Paraphoma, Peyronellaea,

Phyllostictoides, Sclerophomela, Plenodomus, Macrospora, and Pilosa (12). Different 

teleomorphs associated with the genus Phoma include Didymella Sacc., Leptosphearia 

Ces. & De Not., Mycosphearella Johanson, and Pleospora Rabenh. ex Ces. & Des Not.  

Phoma species are identified based on the shape, size, and septation of conidia and 

pycnidial wall structure (12).  P. medicaginis var. medicaginis belongs to the section 

Phyllostictoides. The only teleomorph reported in this section was Didymella. Important 

characteristics of members of this section include thin-walled, pseudoparenchymatous, 
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ostiolate pycnidia and conidia that are usually unicellular in vitro, but exhibit septa in 

vivo, depending on environmental conditions.  Chlamydospores are rare, but, when 

present are unicellular and swollen.  Members of the section, Phyllostictoides typically 

cause leaf spots and necrosis of leaves.  

 

Closely Related Fungi 

 

P. medicaginis var. macrospora Boerema, Pieters & Hamers is also a major 

pathogen of alfalfa and causes spring black stem and leaf spot of alfalfa (12). As the 

name suggests, P. medicaginis var. macrospora produces larger conidia (one to three 

septate) at low temperature (6°C) when compared to variety medicaginis. However, at 

room temperature (20-22°C) varietal differences in conidial size are insignificant, making 

distinguishing the two varieties difficult. Another significant difference between these 

two pathogens is that P. medicaginis var. macrospora seems to be more virulent on 

alfalfa than P. medicaginis var. medicaginis. This has been attributed to cold adaptation 

of P. medicaginis var. macrospora, which is thought to have originated in the cold 

mountains of southwest Asia. 

 

Morphologically, P. pinodella appears to be closely related to P. medicaginis and 

was originally named P. medicaginis var. pinodella L.K. Jones.  However, P. pinodella 

primarily infects pea and red clover and only rarely infects Medicago spp.  Other features 

distinguishing P. pinodella from P. medicaginis include its frequent sectoring in culture, 

formation of crystals on MEA, and production of chains of chlamydospores. Because of 
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these and differences in the pycnidial wall, var. pinodella was raised to the status of 

species and became P. pinodella (L.K. Jones) Morgan-Jones & Burch (48). 

 

Distribution and host range  

 

P. medicaginis has been reported from Australia, Canada, Europe, and the United 

States.  In the United States, the disease was first reported in New York in 1908 (83).  In 

Australia, spring black stem is considered an important disease of annual medics such as M. 

truncatula, resulting in extensive defoliation and premature death of plants (2, 4, 45).  In the 

United States, P. medicaginis has been reported from Idaho, Washington, Kentucky, 

Colorado, Kansas, Minnesota, Nebraska, and Oklahoma (34).  

 

P. medicaginis has been reported to have a wide host range that includes many 

legumes such as Arachis hypogaea L. and Glycine max L. Merr. in Brazil, Cicer 

arietinum L., Dolichos uniflorus Lam., and Pongamia pinnata (L.) Pierre in India, 

Glycine ussuriensis Regel & Maack., (Zambia), Medicago spp. (worldwide), Melilotus 

spp. (China and U.S.) and Trifolium spp. (China, U.K. and Australia) (34).  It has also 

been reported to be a pathogen of such non legumes as Brassica spp. (Canada), Capsicum 

annum L. (Brazil) and Pennisetum clandestinum Hochst. ex Chiov. (New Zealand).  

Recently, however, the host range of P. medicaginis has been reported to be limited to 

Medicago spp. (32).  Clearly, the host range of this fungus needs to be re-assessed using 

well-characterized isolates inoculated on a comprehensive series of previously reported 

hosts. 
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Disease symptoms and pathogen life cycle 

 

P. medicaginis can infect all parts of an alfalfa plant, including the roots, crown, 

stems, petioles, leaves and seeds, thereby extensively reducing the yield and forage 

quality of susceptible cultivars (7, 40, 48, 54, 70).  P. medicaginis is considered to be 

both a soilborne and seedborne pathogen with the primary inoculum surviving in the soil 

on plant debris and seeds as pycnidia, mycelia and chlamydospores.  The severity of 

infection depends upon temperature and humidity, and during cool, rainy weather, 

disease develops and spreads rapidly (67).  Seedborne mycelia directly infect seedlings, 

and conidia produced in pycnidia on debris are disseminated to new host tissues by rain.  

All parts of the plant, but particularly older leaves near the crown, are susceptible to 

attack.   

 

Germination of conidia starts within hours after inoculation and the emerging 

germ tubes grow rapidly.  Inoculum between 105 to 107 spores/ml produce severe disease, 

but higher spore concentrations inhibit the germination of spores (69).  The pycnidial 

ooze (mucilage or slime) surrounding conidial cirri possibly suppress germination until 

dilution in water.  Chromatographic analysis of the pycnidial ooze indicated the presence 

of short chained polysaccharides, which give rise to glucose and fructose after hydrolysis.  

Germination of conidia and disease severity is also reduced when spores are washed and 

stored in water, possibly due to the production of another germination inhibitor in water .  

Host tissues and/or nutrients (organic carbon and nitrogen) overcome this inhibition and 

rapidly induce germ tube formation. 
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The germ tubes of P. medicaginis directly penetrate and infect the host’s 

epidermal cells.  Germ tubes can also penetrate through the stomata and infect the 

underlying mesophyll cells.  The death of these initially infected cells corresponds with 

the first visible symptoms (67).  The initial disease symptoms begin as necrotic brown to 

black spots on leaves, stem, and petioles.  As the disease progresses, the leaf spots 

coalesce, leading to chlorosis and ultimately the abscission of leaflets from the petioles.  

Symptom development is favored by high humidity between 24-48 h after inoculation, 

temperatures between 18-24°C and slight wounding of leaves.  Younger leaves are more 

susceptible to the pathogen though the disease begins in lower canopy (69).  Heavy 

defoliation within the canopy decreases the overall yield and forage quality (leaf loss 

reduces crude protein) of infected alfalfa.  Water soaked lesions can form on young 

stems, with heavily infected stems turning dark brown and becoming girdled.  Leaf spots 

increase in size during cool humid periods, resulting in chlorosis.  Pycnidia develop on 

necrotic, senescing leaves, petioles and stems, and exude conidia under wet conditions, 

serving as a source of secondary inoculum throughout the spring and early summer.  

Under less favorable/dry conditions, pycnidia on plant debris can act as resting structures 

and serve as a source of primary inoculum the following season (67).  Additionally, the 

fungus can become seed borne, reducing seedling germination and causing damping off 

of heavily infected seedlings (3).  Symptoms of spring black stem and leaf spot can 

resemble those of common leaf spot caused by Pseudopeziza medicaginis and 

Leptosphaerulina leaf spot caused by L. trifolii (21). 
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The seedborne nature of the pathogen has been investigated several times.  In 

surveys of seed lots of alfalfa and annual medic cultivars, up to 40% of seeds were 

infested with P. medicaginis and the pathogen remained viable on seeds up to three years 

and in field debris up to five years.  Up to 83% of the seed samples from Canada had 

some level of infestation and the infested seeds showed reduced germination rates and 

more root rot.  The pathogen was more common in soils where alfalfa was grown 

continuously (3, 5, 11, 21).  

Biology of Phoma medicaginis 

A. Growth in culture: 

Colony morphology has been studied on several different types of media, such as 

oat meal agar, malt extract agar and potato dextrose agar (PDA) (18), on which colonies 

form wavy, concentric, irregular margins.  On malt agar (MA), P. medicaginis forms 

aerial mycelium and with age, produces dendritic crystals in the agar, which contain 

brefeldin A (62, 64).  On PDA, young colonies are white in the beginning, and later turn 

olive-green in color, with pale buff margins.  As the cultures become mature, the aerial 

hyphae collapse and occasionally sector. Pycnidia are produced abundantly in concentric 

circles, with some formed inside the agar or on aerial mycelia.  Maximum growth of the 

pathogen is observed between 21-24°C.  Pycnidia are produced most profusely between 

21-27°C with exposure to light (58).  On PDA plates, growth is slow at 9ºC, increases 

rapidly until 21ºC and ceases at 33ºC.  Abundant production of pycnidia is seen between 

21ºC to 27ºC.  Pycnidial production is favored at 27ºC and enlarged pycnidia are 
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observed at 21ºC (67).  Inorganic compounds such as nitrate promote the formation of 

pycnidia, when compared to ammonia in the medium (19).

B. Reproduction of Phoma medicaginis 

In nature, the pathogen is mitosporic, forming only asexual pycnidiospores in 

ostiolate pycnidia.  Although the pseudothecia of Pleospora spp., Leptosphaeria spp. and 

Ophiobolus spp., have been found overwintering on alfalfa stems also infected with 

spring black stem, no ascospores from these fungi produced cultures of P. medicaginis 

(21, 43).  As with most anamorphic ascomycetes, this fungus is haploid, reproducing only 

by mitosis (asexual reproduction).  Conidiogenesis occurs inside pycnidia.  Pycnidia of P. 

medicaginis are globose, ostiolate, and glabrous.  The pycnidiospores are cylindrical, 

hyaline and single-celled (occasionally septate) which ooze from pycnidia in wet, pink-

colored masses.  Unicellular chlamydospores are produced only in older cultures (43, 75).  

 

C. Host-pathogen interactions 

Even though spring black stem was first reported in the early 1900s, not many 

mechanistic studies have been made on the disease.  When seeds were inoculated with 

blended mycelia, seedling emergence was reduced due to damping off that caused the 

hypocotyls to turn brown to black (75).  When whole plants were inoculated with blended 

mycelium, lesions appeared on stems and leaves.  Hyphae of the pathogen penetrated 

either directly or through stomata.  Appressoria were not observed.  Lesion development 

started slowly, but it was rapid once the fungus was established inside the host.  The 

fungal hyphae grew intercellularly and intracellularly in living cells in alfalfa stems 
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initially but later grew intracellularly in dead leaves.  The vascular bundles in older stems 

were free of fungus and fungal growth was restricted to the cortical tissue.  Young stems 

were more susceptible and were often girdled.  Pycnidial development occurred beneath 

the epidermis of dead tissue.  

 

Secondary metabolites produced by Phoma spp. 

Few secondary metabolites specifically produced by P. medicaginis have been 

studied.  However, numerous compounds have been isolated from other species of 

Phoma produced in vivo as well as in vitro. Among these, the macrocyclic lactone, 

brefeldin A is secreted by several species of Phoma, including P. medicaginis, as well 

fungi from other genera (62).  This toxin inhibits the Golgi apparatus of plants and 

animals preventing Golgi-mediated extracellular protein secretion.  According to 

Driouich (30), electron microscope studies showed that brefeldin A caused swelling of 

the endoplasmic reticulum, induced stacking of cisternae, and increased the number of 

vesicles in cells of sycamore maple (Acer pseudoplatanus L.).  Biochemical and 

immunocytochemical studies suggest that xyloglucan (XG) accumulated in the cisternae 

of plant cells after brefeldin A treatment.  The effects of the toxin are reversible and 

disappear two hours after its removal (30, 61).  Typically, alfalfa plant tissues are 

completely colonized by P. medicaginis nine days after the death of the tissue.  Brefeldin 

A has been isolated from the dead tissue and could inhibit spore germination of several 

epiphytic fungi co-inhabiting the same phyllosphere, implying brefeldin A is used by P. 

medicaginis to exclude competing fungi (91).  Brefeldin A is produced by other fungi 

like Alternaria spp and Penicillium.spp. The toxin was first isolated from Penicillium 
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decumbens Thom and was later isolated from other species of Penicillium, including 

Eupenicillium brefeldianum (Dodge) Stolk & Scott, from which it gets its name, and 

other genera of fungi (10, 80).   

 

Other than brefeldin, numerous other secondary metabolites are produced by 

Phoma species (Table 1). Phoma betae Frank, a pathogen of beet (Beta vulgaris L.), 

produces betaenone, a toxin causing leaf spot and chlorosis (63).  Phoma lingam 

(teleomorph: L. maculans), which causes black leg and leaf spot on members of 

Brassicaceae, produces several phytotoxins, including, phomalairdenone , phomalide and 

sirodesmin (37, 38, 66, 81). 

 

Table 1.  Toxins secreted by Phoma spp. and closely related Pleosporalean fungi 
Compound  Pathogen Class Activity 

(site of action) 
Ref. 

Brefeldin A P. medicaginis Macrocyclic lactone Antifungal, Phytotoxic 
(golgi inhibitor) 

(30, 
33, 
91) 

Sirodesmin L. maculans Epipolythiodioxo-
piperazine (ETP) 

Antibacterial, Antiviral, 
Phytotoxic 
(unknown) 

(37) 

AM-Toxin Alternaria alternata 
(Fr.) Keissl. 

Cyclic peptide Phytotoxin 
(chloroplast, cell wall-
membrane) 

(44) 

T-Toxin Cochliobolus 
heterostrophus 
(Drechsler) Drechsler 

Polyketide Phytotoxin 
(mitochondria) 

(1) 

Ptr ToxA Pyrenophora tritici-
repentis (Died.) 
Drechsler 

Peptide Phytotoxin 
(chloroplasts) 

(53) 

Management of spring black stem and leaf spot 

Spring black stem and leaf spot can be managed using multiple practices, such as 

seed treatments, cutting herbage, planting resistant cultivars of alfalfa, and spraying 
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fungicides. Disease severity depends heavily upon the susceptibility of cultivars planted, 

the conduciveness of environmental conditions to the disease (e.g. cool, humid weather) 

and the number of years a field has been cultivated continuously in alfalfa (3, 4).  The 

annual medic cultivars, M. truncatula cvs. Jemalong and Cyprus were more susceptible 

to the disease when compared to the cultivars of M. polymorpha L. var. brevispina such 

as ‘Circle Valley’ and ‘Serena’.  The age of the plant plays an important role on the 

resulting disease severity.  Generally, a 10-week old plant is more susceptible compared 

to 1-4 week old plants (5).  Inch et al. also reported that disease was more severe on older 

shoots (42). 

 

Application of fungicides to control the disease was thoroughly researched by 

several groups.  In early 1950s, research conducted in Minnesota suggested that contact 

fungicides such as ziram, zineb, nabam and ferbam were not effective against spring 

black stem.  Rather, this study recommended growing resistant cultivars followed by 

rotation to a non-host crop to control the disease (58).  The application of a fungicide 

such as, benomyl, carbendazim, flutriafol, propicanazole or triadimefton, effectively 

controlled spring black stem and leaf spot when combined with the planting of resistant 

cultivars (4, 5).  However, fungicide applications to Medicago forage crops may not be 

economically feasible and may negatively affect livestock. 

 

Transformation of Fungi 

Transformation is the introduction of genetic material into the genome of a 

recipient organism and is an important tool for the genetic manipulation of filamentous 
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fungi and investigating their host-pathogen interactions.  Transformation of fungi can 

result in either random insertions (heterologous or ectopic recombination) or gene 

replacement (homologous recombination).  Both can be used to determine the function of 

a gene of interest through characterization of the resulting transformant’s phenotype.  

With random insertions (insertional mutagenesis), genes are disrupted randomly with a 

selectable marker, resulting in an array of mutants defective in various genes.  The 

inserted transgenes can then act as tags permitting the molecular identification of 

disrupted gene, more rapidly than conventional chemical or UV mutagenesis (56, 60).  In 

gene replacement, the upstream and downstream genomic DNA sequences flanking a 

targeted gene are fused to a marker gene and used as the transgene.  A double-crossover, 

homologous recombination of the transgene into the targeted endogenous sequence, 

results in a gene “knockout”. 

 

Transgenic DNA can be delivered into a recipient fungal cell’s genome using 

numerous methods.  Most protocols require the production of fungal protoplasts or 

spheroplasts using cell wall degrading enzymes in an isotonic solution.  Then 

polyethylene glycol (PEG), restriction enzyme mediated integration (REMI), 

electroporation, particle bombardment (biolistics) or Agrobacterium-mediated 

transformation (AMT) are used to introduce and integrate the transgene into the fungal 

cell’s nucleus (25, 26, 47, 56). 

Electroporation has been used to transform several species of Aspergillus and has 

been a popular method because the generation of protoplasts is not necessarily required.  

However, this technique often results in multiple transgene integrations into the genome, 
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complicating analysis of transformants, thus precluding its use for random mutagenesis or 

site-directed mutagenesis since single integrations are preferred (15).  

 

REMI has been successfully applied to transform the protoplasts of numerous 

fungi such as M. grisea and C. heterostrophus (51, 73, 84).  This technique involves the 

addition of restriction enzymes to the transforming DNA to boost transformation 

efficiency.  It is hypothesized that suitable restriction enzymes partially digest the fungal 

genome and permit similarly digested plasmid DNA to integrate at restriction sites 

possessing compatible sticky ends (47, 76, 84).  This method has been effective for 

generating insertional mutants of various phytopathogenic fungi and has resulted in 

single-copy integrations of transgenes, though significant optimization was required (47).  

However, this method has its share of disadvantages too. Plasmid DNA can integrate into 

the same locus more than once and inaccurate DNA repair after restriction digestion of 

the genome and integration of the transgene (84).  Due to DNA repair errors, transgenes 

can become unlinked from mutated genes making the subsequent rescue of the flanking 

DNA difficult (60).  

 

Agrobacterium-mediated transformation (AMT) of filamentous fungi 

Agrobacterium tumefaciens is the soil-inhabiting, gram-negative bacterium causing 

crown galls of plants.  A. tumefaciens can transfer a piece of DNA (T-DNA) from its 

tumor inducing (Ti)-plasmid into its host plant cell’s nucleus.  In virulent A. tumefaciens,

the T-DNA encodes genes producing phytohormones, causing the formation of galls in 

dicot plants, and opine amino acids only Agrobacterium can metabolize.  The T-DNA 
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can be removed from the Ti plasmid, “disarming” it, and transferred to another plasmid to 

permit manipulations.  The phytohormone and opine genes can then be replaced with 

transgenes of interest (e.g. selectable markers, reporter genes) and this second binary 

plasmid re-introduced into the disarmed A. tumefaciens strain.  These transformed strains 

can then be used to transform plants with the engineered T-DNA.  This method has lead 

to the generation of transgenic plants for research and commercial production (82).  

 

Filamentous fungi, such as Aspergillus awamori, were first transformed using 

Agrobacterium in 1998 (25). Either fungal protoplasts, conidia, or hyphal cells were 

transformed equally well with AMT.  The high transformation efficiency, ease of use and 

high frequency of single integrations has made A. tumefaciens-mediated transformation a 

powerful tool to transform a broad array of filamentous fungi including A. niger, 

Neurospora crassa Shear & Dodge, Fusarium venenatum Nirenberg, Colletotrichum 

gloeosporioides (Penz.) Penz. & Sacc., Trichoderma reesei Simmons, and Agaricus 

bisporus (Lange) Pilat.  Numerous plant pathogenic fungi such as Fusarium oxysporum 

Schltdl., Exserohilum turcicum (Pass.) Leonard & Suggs, Colletotrichum trifolii, and 

Mycospharella graminicola (Fuckel) J. Schröt. have also been transformed with A. 

tumefaciens (27, 41, 94).  Prior to filamentous fungi,  Saccharomyces cerevisiae Meyen 

ex. Hansen was also transformed using A. tumefaciens (16). 
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Table 2. Some plant pathogenic ascomycetes transformed using AMT 
Fungus Class Purpose  of  

transformation 
Ref. 

Magnaporthe grisea Sordariomyctes T-DNA tagging, gene 
replacement 

(49) 

Fusarium oxysporum Sordariomyctes T-DNA tagging (49) 
Verticillium dahliae Sordariomyctes Gene replacement (28) 
Colletotrichum lagenarium Sordariomycetes T-DNA tagging (87) 
C. trifolii Sordariomycetes T-DNA tagging (41) 
C. graminicola Sordariomycetes T-DNA tagging (36) 
Leptosphaeria maculans Dothideomycetes Gene replacement (31, 37, 38) 
M. graminicola Dothideomycetes Gene replacement (55, 94) 
Ascochyta rabiei Dothideomycetes T-DNA tagging (57, 93) 
Cochliobolus 
heterostrophus 

Dothideomycetes T-DNA tagging (1) 

Botrytis cinerea Leotiomycetes T-DNA tagging, gene 
replacement 

(71, 88) 

The mechanism of Agrobacterium-mediated transformation of plant systems is fairly 

well understood and the same mechanism is believed to occur when it is employed to 

transform a fungus (65).  Briefly, Agrobacterium perceives inducing sugars and phenolics 

released by wounded plants and activates the virulence (vir) genes encoded on the Ti 

plasmid and the chv genes present in the chromosome (14).  The vir genes facilitate the 

transfer of T-DNA and the chv genes are essential for attachment (29).  Perception of 

sugars and phenolics results in the phosphorylation of the constitutively expressed VirA, 

which then phosphorylates the VirG transcription factor.  VirG then activates the 

expression of the vir gene operons on the Ti-plasmid.  The VirD proteins nick the Ti-

plasmid and acts as a pilot to deliver T-DNA into the host.  The VirE proteins bind to the 

single-stranded T-DNA forming a protective complex and have nuclear localization 

signals that direct it into the host’s nucleus (39). 

Engineered T-DNA vectors are of two types:  1) co-integration vectors and 2) binary 

vectors.  Co-integration vectors are modified Ti plasmids.  These vectors are more stable 
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in nature and do not require selection pressure for maintenance in A. tumefaciens. Binary 

vectors are capable of replicating in either E. coli or A. tumefaciens and contain only the 

right and left borders of the T-DNA (89).  Binary vectors must be maintained under 

selection in A. tumefaciens strains carrying the Ti-plasmid in order to successfully 

transform a host cell. 

 

Selectable marker genes for fungal transformation 

Auxotrophic and drug resistance markers are the two main types of selectable 

markers used to transform fungi.  Auxotrophic mutant strains are generated using 

antimetabolites preventing prototrophic growth.  For example, 5-fluoro-orotic acid is 

toxic to prototrophs but mutants lacking pyrG (or at some other step in the pyrimidine 

biosynthetic pathway) are resistant this compound.  Such auxotrophic mutants must be 

supplemented with a source of uracil in order to grow.  These mutants can then be 

transformed with a transgene construct carrying the complementary pyrG (ura3) marker, 

permitting the positive selection of transformants on defined media lacking uracil.  This 

marker is routinely used in the transformation of S. cerevisiae, A. nidulans and N. crassa.

Another such selectable marker, acetamidase (amdS), permits wild type fungi to survive 

on acetamide, a poor nitrogen source, insufficient for growth without the amdS transgene.  

Antibiotic resistance genes, such as hygromycin phosphotransferase (hph), bleomycin-

binding protein (ble), benomyl-resistant β-tubulin (tub) and phosphinothricin 

acetyltransferase (bar) are examples of negatively selectable markers and are used widely 

to transformed filamentous fungi (73, 92).  
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T-DNA-tagging of filamentous fungi 

Agrobacterium-mediated transformation has become the preferred method over 

other forms of transformation because of its ease (protoplasts are not required), high 

efficiency, and high frequency of a single-copy of the transgene in each transformant.  

Mutants with single T-DNA insertions simplify rescue and complementation of disrupted 

genes in asexual fungi like P. medicaginis. It was reported that 85% of the T-DNA-

tagged transformants of C. lagenarium and 75% T-DNA transformants of C. trifolii have 

single insertions (41, 87).  

 

Research Objectives 

The objectives of this thesis research project were the following:  1) transform P. 

medicaginis using A. tumefaciens to generate a library of ~1000 transformants and 

identify T-DNA-tagged mutants with altered morphology, 2) characterize the T-DNA 

insertions in the genomes of selected transformants of P. medicaginis and 3) assess the 

comparative virulences of the wild type strains and selected transformants on M. 

truncatula and M. sativa and use P. medicaginis transformants expressing green 

fluorescent protein to investigate the cytology of the infection process using fluorescent 

microscopy. 
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CHAPTER III 

AGROBACTERIUM-MEDIATED TRANSFORMATION OF P. MEDICAGINIS 

 

Introduction 

Transformation of plant pathogenic fungi helps to characterize the gene of interest 

and to understand the host-pathogen interactions.  Transformation introduces a selectable 

marker into the fungus either through random integration (heterologous recombination) 

or disrupting a gene of interest (homologous).  Random mutagenesis is commonly 

followed to generate an array of transformants by tagging them with a selectable marker 

such as hygromycin phosphotransferase (hph).  Insertion of a selectable marker facilitates 

the identification of the disrupted gene, which is difficult with UV irradiation or chemical 

mutagenesis.  Thus, random insertional mutagenesis can help identify genes important for 

the virulence and metabolism.  Restriction enzyme mediated integration (REMI), 

electroporation, particle bombardment and Agrobacterium mediated transformation are 

the commonly used methods for transformation of fungi. 

 

A. tumefaciens can transform the host by transferring a region (T-DNA) of its Ti-

plasmid.  The opine genes on the Ti-plasmids are replaced with selectable markers and 

reporter genes and maintained in E. coli. Agrobacterium-mediated transformation 

(AMT) is preferred over other methods because of its ease of use, high transformation 

efficiency and high frequency of single T-DNA inserts.  Plant pathogenic fungi such as 
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C. trifolii, M. graminicola, E. turcicum and F. oxysporum are some examples that were 

transformed by A. tumefaciens.

Experimental Approach 

Fungal cultures: Three single-spore isolates of P. medicaginis were collected from an 

alfalfa field at the Oklahoma State University Agronomy research farm in Stillwater, 

Oklahoma.  These three isolates were designated as P1, P2, and P3, and they were 

maintained on YPS medium (0.1% yeast extract, 0.1% tryptone and 0.1% dextrose, and 

1.8% agar).  For transformation these three isolates were grown on 60 mm YPS plates 

incubated at 18°C under 20 W fluorescent lights with a 12 h light cycle.  Spores were 

suspended from 7-10 d old plates, into ~2 ml of sterile milliQ water and spore number 

was determined using a hemocytometer. For transformation, spore concentrations were 

adjusted to 105 spores/ml in water (5).  

 

Bacterial cultures: A. tumefaciens strains were streaked from 20% glycerol stocks stored 

at -80°C onto plates of Agrobacterium minimal media (AMM; 2.05g K2HPO4, 1.45g

KH2PO4, 0.5 g NH4NO3, 1.5g NaCl, 0.01g CaCl2, 0.25g MgSO4, 2.5mg FeSO4, 2g 

glucose, 20 µl trace elements stock solution (Vogel, 1964) and 18g agar in 1 liter of 

milliQ water (2) and incubated at 28°C for 2 d until single colonies were formed.  All 

cultures of A. tumefaciens LBA 4404 were supplemented with streptomycin (200 µg ml-1)

to maintain the Ti plasmid, pLBA4404, and were additionally supplemented with 

kanamycin (100 µg ml-1) to maintain the fungal transformation vectors, pPTGFPH and 

pBHt2 (Table 1; Fig. 1).   
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Table 3. Fungal isolates and bacterial strains used in this research 
 
Species Isolate/Strain Binary 

vector 

Bacterial 

selection 

Fungal 

selection 

Visual 

marker 

A. tumefaciens LBA4404 N/Aa Streptomycin N/A N/A 

A. tumefaciens LBA4404 pPTGFPH Streptomycin, 

Kanamycin 

HygR (hph)b

G418R (nptII)c

GFPd

A. tumefaciens LBA4404 pBHt2e Streptomycin, 

Kanamycin 

HygR (hph) N/A 

 

P. medicaginis P1 N/A N/A N/A N/A 

P. medicaginis P2 N/A N/A N/A N/A 

P. medicaginis P3 N/A N/A N/A N/A 
a N/A, not applicable 
b hph, hygromycin phosphotransferase from Escherichia coli driven by the trpC promoter 

from Aspergillus nidulans 
c nptII, neomycin phosphotransferase from E. coli driven by the nopaline synthase (nos)

promoter and terminator from A tumefaciens.
d GFP, green fluorescent protein, sGFP (S65T) variant, driven by the toxA promoter from 

Pyrenophora tritici-repentis and the nos terminator. 
e see Mullins et al. (2001) 



37

Figure 1. Binary vectors pPTGFPH and pBHt2 used for T-DNA tagging of Phoma 
medicaginis. The T-DNA regions (lime) between the red borders were integrated into the 
genome of P. medicaginis strains.  Transgenes carried on the T-DNAs are described in 
the text.  The PCR products used to confirm transformants are indicated (yellow).  The 
sGFP-hph PCR product was used to probe Southern blots of EcoRI-digested genomic 
DNA.  Gray-colored ORFs are required for maintenance of transformation vectors in 
bacterial hosts.  
 
Fungal Transformation: Single colonies of LBA4404 (vector-less control), LBA4404 

(pPTGFPH), and LBA4404 (pBHt2), were used to inoculate 5 ml of 523 broth (1% 

sucrose, 0.8% tryptone, 0.4% yeast extract, 0.3% K2HPO4, and 0.03% MgSO4·7H2O) 

supplemented with the appropriate antibiotics (Table 3) in gamma-irradiated, sterile 15 

ml falcon tubes, and incubated in an angled rack overnight on a shaker at 28°C.  Optical 

densities (OD) of the cultures were measured using a spectrophotometer (UV-265, UV-

Visible spectrophotometer, Shimadzu, Kyoto, Japan) at 600 nm.  Bacterial cells were 

pelleted by centrifugation at 2,000× g for 1 min and diluted to an OD 0.2 in virulence-

inducing minimal medium broth (IMM; 2.05 g K2HPO4, 1.45g KH2PO4, 0.5g NH4NO3,

0.15g NaCl, 0.0025g FeSO4, 0.01g CaCl2, 0.25g MgSO4, 0.9g glucose, 5.33g MES, 5 ml 

glycerol, 20 µl Vogel trace elements solution in 1 liter of milliQ water and supplemented 
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with 200 µM acetosyringone (200 µl per liter from 1 M DMSO stock) and appropriate 

antibiotics) and incubated shaking (250 rpm) overnight at 28°C as 5 ml IMM broth 

cultures in 15 ml Falcon tubes.  The OD’s of cultures were measured and again diluted to 

OD 0.2 with IMM broth and used as the working stock suspensions for subsequent 

transformations.  These virulent induced cultures could be stored at 4°C and used for 7 d.   

 

For transformation, 500 µl induced Agrobacterium culture and 500 µl P. 

medicaginis spore suspension (105 conidia ml-1) were mixed and 200 µl aliquots of the 

mixture were each spread onto 47 mm nitrocellulose membranes (Fisher Scientific, 

Pittsburgh, PA) overlaid on a 60 mm IMM plates supplemented with the appropriate 

antibiotics.  Mixed culture plates were co-incubated at 20°C in the dark for 3 d.  As a 

transformation control, conidia were co-incubated with induced vector-less LBA4404.  

After co-incubation, nitrocellulose membranes with fungal and bacterial cells were 

transferred to 60 mm plates containing selection medium (YPS supplemented with 50 µg

ml-1 hygromycin, to select fungal transformants, and 200 µg ml-1 timentin and 50 µg ml-1 

cefotaxime, to eliminate Agrobacterium) and incubated at room temperature. 

 

After 7-14 d, hygromycin-resistant colonies of P. medicaginis were observed and 

transferred to 24-well plates containing selection medium.  No fungal colonies developed 

on vector-less LBA4404 control plates.  Unless stated otherwise, the fungal transformants 

were selected and maintained on YPS selection medium containing hygromycin and 

timentin. 
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Purification of transformants: Transformants were each purified to stable homokaryons 

by streaking hygromycin-resistant colonies from the wells of 24-well plates each onto 60 

mm plates of selection medium.  After ~3 d, hyphal tips from a single colony of each 

transformant were transferred to the wells of new 24-well plates containing selection 

medium.  This procedure was repeated three times for each transformants and the 

stability of transformants was tested by subculturing on YPS plates without selection 

followed by transfer back to YPS selection medium proving that the integrated transgene 

was not lost.  The resulting transformants were considered to be homokaryons with stably 

integrated T-DNA.  Transformants were stored by streaking on filter paper placed on the 

selection medium and incubated until sufficient growth had colonized the paper. The 

colonized paper was peeled off, desiccated, and kept inside sterile, plastic WhirlPak 

pouches. The transformant library was stored at 4°C in a sealed plastic box with 

desiccant. 

Analysis of transformants: Sixty transformants (10 transformants for each isolate-vector 

combination) were selected to analyze T-DNA integration.  Briefly, mycelia of wild type 

strains and transformants were cultured in 15 ml falcon tubes containing 5 ml of PDYP 

broth (2.4% potato dextrose broth, 0.1% tryptone and 0.1% yeast extract) supplemented 

with or without the appropriate antibiotics and incubated at room temperature in the dark 

on a tissue culture rotator (35-40 rpm) for 5 d. Preventing exposure of the cultures to 

light suppressed melanization of transformants, thereby increasing DNA yields.  After 5d, 

mycelial cultures were centrifuged at 3,500 rpm for 5 min, the supernatants discarded, 

and the pelleted mycelia washed with 1x PBS and then lyophilized for 2 d.  
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DNA was isolated from lyophilized mycelia using DNeasy plant mini kit (Qiagen 

Inc., Valencia, CA), and quantified using a ND-1000 spectrophotometer (NanoDrop 

Technologies, Inc., Wilmington, DE).  The presence of T-DNA in each transformant was 

determined by PCR with primers (IDT techologies, Coralville, IA) “sGFP-reverse” (5’-

AAGTCGTGCTGCTTCATGTG-3’) and “hph-reverse-Leclerque” (5’-

CCGTCAACCAAGCTCTGATAG-3’) for transformants derived from pPTGFPH and 

primers “hph-reverse” (5’-GCCGATGCAAAGCCGATAAACA-3’) and “trpC-forward” 

(5’-GCTGCTTGGTGCACGATAA-3’) for pBHt2 transformants.  Eleven of the 60 

transformants were selected for further analysis of T-DNA copy number by Southern blot 

hybridization (Table 4). Since many of the selected transformants were morphologically 

abnormal, we amplified and sequenced the ribosomal internal transcribed spacer (ITS) 

region of each of the 11 transformants, using primers ITS4 and ITS5 (6), to confirm the 

identity of these transformants as P. medicaginis. 
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Figure 2. Flowchart of Agrobacterium-mediated transformation of P. medicaginis 
(see text for details). A) induced Agrobacterium cells and B) conidia of P. 
medicaginis are mixed and the mixture spread on C) a membrane-covered IMM plate.  
After co-incubation, the membrane is transferred to D) a selection medium on which 
Agrobacterium is eliminated and colonies of fungal transformants are recovered and 
transferred to E) a multiwell selection plate.  T-DNA tagged transformants are then 
further processed and characterized. 

Results and discussion 

Nine hundred eighty-two transformants of P. medicaginis were obtained by AMT 

(Table 4).  Most of the transformants were generated using the vector pBHt2 with AMT 

efficiency estimated to be about ~ 0.017 % (i.e. 18 transformants were generated per 105

conidia). The other vector used in this study, pPTGFPH, was not as efficient a vector for 

transformation producing only five transformants per 105 conidia, ~ 0.005%.  Often times 

Transformant 
purification 

Storage 

B

C

3 d

20°C

D

~14 d

PCR 

Analysis Southern 
Hybridization 

A
E

Inverse
PCR 
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pPTGFPH did not produce any viable transformants (data not shown).  Two of the 

transformants generated using pPTGFPH lost the transgene, which was further confirmed 

by PCR.   

 

Table 4. Summary of T-DNA tagged transformants generated in this study 

Fungal Isolate Agrobacterium Strain Vector # transformants PCR 
confirmeda

P. medicaginis P1 LBA 4404 pPTGFPH 24 10/10 

LBA 4404 pBHt2 319 10/10 

P. medicaginis P2 LBA 4404 pPTGFPH 10 8/10 

 LBA 4404 pBHt2 245 10/10 

P. medicaginis P3 LBA 4404 pPTGFPH 60 10/10 

 LBA 4404 pBHt2 324 10/10 

 Total 982 58/60 
a T-DNA transgene was amplified with hph R and sGFP R primers for pPTGFPH and 

trpC R and hph R for pBHt2. 

 

The transformation efficiency and the number of transformants of P. medicaginis 

generated using AMT was similar compared to that achieved in other closely related 

plant pathogenic fungi like Ascochyta rabiei (4, 5). In A.rabiei, about 11 transformants 

were generated per 105 conidia, using the Agrobacterium strain LBA1126. A similar 

strain LBA4404 was used for transformation in our study (see materials and methods). 

Transformation efficiency varies from one strain to another. For example, in A. rabiei the 

Agrobacterium strain AGL1 produced more transformants, about 16 transformants per 

105 conidia.  

 

In the closely related black leg fungus, L. maculans, AMT efficiency was lower 

than that in A. rabiei and P. medicaginis, with only 0.35 transformants obtained per 105

conidia (1).  Factors determining AMT efficiency include the fungal species and strain, 
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co-cultivation period, and density of bacteria (7).  In Mycosphaerella graminicola, 5-7 

transformants were produced per 107 spores and the number of transformants generated 

depended upon the age of the conidia (3).

Results indicated that pBHt2 was a better binary vector for transformation of P. 

medicaginis, while pPTGFPH was not as efficient, because fewer transformants were 

generated, possibly due to the instability of the T-DNA insertion.  The two copies of the 

nos terminator, oriented as a direct repeat might have been recognized as a transposon 

and excised by the fungus’ genomic defense machinery (Fig. 1).   
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CHAPTER IV 

CHARACTERIZATION OF T-DNA TAGGED MUTANTS OF P. MEDICAGINIS 

 

Introduction 

Before gene identification can proceed, insertional mutants must be analyzed to 

determine the number of transgenes integrated into their genomes.  Southern 

hybridization is frequently used to estimate the number of T-DNA inserts in a fungal 

genome after AMT and determine if any mutant phenotypes in virulence or morphology 

are a result of one or more T-DNA inserts.  Since restriction fragment length 

polymorphisms are also assessed by Southern hybridization, relative genomic context of 

each T-DNA is determined for each transformant, indicating whether T-DNA integration 

into the P. medicaginis genome is random or not.  T-DNA-tagged mutants containing 

single insertions can then be analyzed to identify the genes encoded on the genomic DNA 

flanking the T-DNA.  Inverse PCR and TAIL-PCR are the commonly used methods to 

identify the flanking sequence (5, 10).  Inverse PCR is reported to be more efficient than 

TAIL-PCR (10).  Ten T-DNA tagged mutants and the three wild type strains were 

selected for Southern hybridization, and, one with a single insert and a readily scoreable 

phenotype, P1-A17, was selected for inverse PCR determination of flanking sequences. 

 

The ten transformants were chosen from the transformant library based on their 

range of aberrant and wild type morphologies (Fig. 3; Table 5).  Three transformants, P1-
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A17, P1-E90, and P1-A3, were derived from wild type P1.  Transformants P1-A17 and 

P1-E90 were generated using the vector pBHt2 and P1-A3 was generated using 

pPTGFPH.  Morphologically, the pycnidia and hyphae of P1-A17 appeared to lack 

melanin, though the pycnidia still produced conidia, which appeared pink en masse.  P1-

E90, another non-melanized mutant, produced only white aerial hyphae and did not form 

pycnidia and conidia.  However, melanization was observed in older cultures of P1-E90 

(>30 d).  Transformant P1-A3 frequently produced aberrant pycnidia that were cracked, 

lacked distinct ostioles, and appeared more melanized compared to the wild type P1 (Fig. 

3).   

 

Four transformants from the wild type strain P2, P2-65, P2-70, P2-N234 and P2-

P262 were selected for analysis.  P2-65 and P2-70 were transformed using the vector 

pPTGFPH while P2-N234 and P2-P262 were transformed with pBHt2.  P2-65 showed 

white, aerial hyphae and its pycnidial development was extremely delayed.  The pycnidia 

of P2-70 were darkly melanized with reduced conidial production.  P2-N234 appeared to 

be similar to wild type.  P2-P262 had dark hyphae and conspicuously cracked pycnidia 

without spores.  

Three transformants derived from the wild type strain P3, P3-A6, P3-Q278 and 

P3-T347 were selected. P3-A6 was generated using pPTGFPH and P3-Q278 and P3-

T347 were obtained by using pBHt2.  Fluorescent microscopy revealed that P3-A6 has 

very bright GFP expression in its hyphae and pycnidia, and thus, it was selected as the 

transformant used for the microscopy studies in Chapter V.  P3-Q278 resembled the wild 
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type, P3, morphologically.  The other transformant in this category P3-T347 possessed 

highly melanized hyphae and lacked pycnidia or spores.  

 

Table 5.  Description of mutants selected for Southern hybridization analysis and number 

of T-DNA insertions in each 
Southern Results T-DNA-

tagged 
mutant 

Vector 
used 

Phenotype: 
(pycnidia, conidia and other 

characteristics) # inserts 
Est Size 

(Kbp) 
P1-A3 pPTGFPH Cracked pycnidia, no ostioles  

Reduced conidiation 1 8.5 

P1-A17 pBHt2 Non-melanization pycnidia 
Abundant conidia 1 9

P1-E90 pBHt2 Fluffy, white hyphae 
No pycnidia or conidia 1 10 

 
P2-65 pPTGFPH White, aerial hyphae  

Small or delayed pycnidia formation 
bright GFP in hyphae 

1 8.5 

P2-70 pPTGFPH Darkly melanized pycnidia 
Reduced conidia 1 5

P2-N234 pBHt2 Apparently wild type 2 10, 9, 3.5 
P2-P262 pBHt2 Dark colony  

Cracked pycnidia, no ostioles 
No conidia 

2 10, 9 

 
P3-A6 pPTGFPH Apparently wild type 

bright GFP in hyphae smear 4-9.7 

P3-Q278 pBHt2 Apparently wild type 2 8.5, 3 
P3-T347 pBHt2 Highly melanized hyphae  

No pycnidia or conidia 1 5
a N/A, not applicable 
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P2P2

Figure 3. Cultural morphology of wild type strains and transformants of P. 
medicaginis. Top row, from left to right, the three wild type isolates, P1, P2, and P3.  
Column 1, mutants of P1, P1-A17 forming non-melanized (“albino”) pycnidia, P1-E90 
fails to form pycnidia or melanized hyphae and becomes hydrophilic (water-soaked) in 
the older part of the colony, and P1-A3, pycnidia fail to form ostioles and eventually 
crack open.  Column 2, mutants of P2, P2-65, characterized by white aerial hyphae 
and delayed pycnida, P2-70, with darkly melanized pycnidia and reduced conidiation, 
P2-N234, morphologically wild type, and P2-P262, highly melanized colony with 
large pycnidia and no conidiation. Column 3, mutants of P3, P3-A6, similar to wild 
type with bright GFP expression (not shown), P3-Q278 morphologically wild type, 
and P3-T347, highly melanized hyphae with no pycnidia or conidia. 
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Experimental Approach 

 

Southern blot hybridization: Southern blots were performed essentially according to 

Sambrook et. al. (6).  To obtain sufficient high molecular weight genomic DNA for 

Southern hybridization, wild types and 10 transformants were cultured as in objective 1.  

Genomic DNA was isolated according to Möller et al. (4) with the following 

modifications to improve the purity of resulting DNA:  addition of 1.0% PVP and 1.0% 

PVPP to the extraction buffer.  Addition of these compounds reduced co-precipitation of 

phenolics and polysaccharides with genomic DNA.  Commercial kits did not yield 

sufficient genomic DNA for a Southern blot, even though the genomic DNA was very 

clean. 

 

Six micrograms of genomic DNA from each transformant were digested with 

EcoRI at 37°C overnight and separated on a 0.8% agarose-TBE gel at 50 V for 4 h.  The 

gel was post-stained with 0.5 µg ml-1 ethidium bromide to check loading.  Separated 

DNA was blotted to a positively charged nylon membrane by upward capillary transfer, 

followed by UV cross-linking.  The blot was probed with the sGFP-hph PCR product 

(~1.8 Kb) from the vector pPTGFPH (Fig. 1), which also hybridizes to the trpC-hph 

region of the T-DNA from pBHt2.  The purified PCR product was denatured and 

crosslinked with alkaline phosphatase using the Alkaphos Direct kit (Amersham 

Biosciences, Pittsburgh, PA) and hybridized with the blot overnight according to 

manufacturer’s directions.  The hybridized probe was detected by chemiluminescence, 
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using CDP-Star as a substrate.  Southern hybridization revealed that six of the ten 

mutants had single insertions (Fig. 5).  

 

Inverse PCR: Inverse PCR is used to obtain unknown sequence flanking known 

sequence.  From among the mutants with single T-DNA insertions, P1-A17 was selected 

to identify the flanking sequence because of its colony morphology and relatively small 

left border-flanking sequence (~3 Kb of 5 Kb EcoRI genomic fragment based on 

Southern results; Figs. 4 and 5).  Genomic DNA was isolated from mycelial cultures of 

P1-A17 and the wild type P1 as before for the Southern.  Approximately 5 µg of genomic 

DNA was digested overnight at 37°C with EcoRI, then heat-inactivated at 70°C for 10 

min. The digested sample was cleaned and precipitated using Geneclean Turbo kit 

(Qbiogene, Morgan Irvine, CA) and resolved on a 0.8% agarose gel prepared using 0.5× 

TBE gel.  The gel was post-stained with ethidium bromide and the target DNA smear 

(about 4-6 Kb, Fig. 4) excised with a clean sharp razor blade and gel-purified with the 

Geneclean Turbo kit.  Ligation reactions were set up in 20 µl volumes each containing 1× 

T4 ligation buffer (Promega, Madison, WI), 3 U T4 DNA ligase and 200 ng of digested 

DNA and milliQ water.  The reaction mixture was incubated at 4°C overnight, then 

inactivated at 70°C for 5 min. 

 PCR reactions were set up in 20 µl volumes containing of 1 µl of ligated DNA, 1× 

reaction buffer, 1 U DNA polymerase (Mango Taq, Bioline, Randolph, MA), 200 µM

dNTPs, 0.1 µM of each T-DNA specific primer (‘dsRed-F’, 5’-

TCCGGCTCGTATGTTGTGTGGAAT-3’ and ‘pBHt2-LB1’, 5’-

GGGTTCCTATAGGGTTTCGCTCATG-3’) and PCR carried out on a PTC-200 DNA 
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engine thermal cycler (MJ research, Waltham, MA) using the following program:  3 min 

at 95°C, 10 cycles of 30 s at 94°C, 1 min at 59°C, and 3 min at 72°C, another 25 cycles 

of 30 s at 94°C, 30 s at 59°C, and 30 s at 72°C and finally 7 min at 72°C.  PCR products 

were confirmed by electrophoresis, purified (P1-A17 only, ~3 Kbp) using a PureLink 

PCR purification kit (Invitrogen, Carlsbad, CA) and submitted for sequencing, with the 

‘dsRed-F’ and ‘pBHt2-LB1’ primers, on an ABI 377 automated DNA sequencer 

(Applied Biosystems, Foster City, CA) in the Recombinant DNA/Protein Resource 

Facility (Biochemistry & Molecular Biology Department, OSU).  Nested primers were 

designed and based on the 3’ sequences and the entire 3 Kb product sequence in both 

directions.  Sequences assembled into a single contig with ChromasPro software 

(Technelysium Pty Ltd, Tewantin, QLD, Australia) and similar sequences searched  
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Figure 4.  Schematic representation of inverse PCR amplification and sequencing of the 

genomic DNA flanking the left border of the T-DNA in P1-A17. 
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Results and Discussion 

Determination of T-DNA copy number  

Six of the ten transformants analyzed by Southern hybridization were found to have 

single copies of the T-DNA inserted in their genome (Fig. 5).  Transformants P1-A3, P1-

A17, P1-E90, P2-65, P2-70, and P3-T347 each had single T-DNA insertions with EcoRI

fragment sizes estimated to be 8.5, 5, 10, 8.5, 5, and 5 Kbp, respectively (Table 5).  The 

remaining four transformants showed more than one insert.  Transformant P2-N234 had 

at least 3 T-DNA insertions with estimated EcoRI fragment sizes of 10, 9, and 3.5 Kbp 

and may have had multiple copies of T-DNA with EcoRI fragment sizes of 9 Kbp (Fig. 5, 

lane 9).  Transformant P2-P262 had two T-DNA insertions with EcoRI fragment sizes of 

10 and 9 Kbp.  Transformant P3-Q278 had at least two T-DNA insertions with EcoRI

fragment sizes of 8.5 and 3 Kbp.  Transformant P3-A6 had a smear (an undefined band) 

which spread between 4-9.7 Kb.  No cross-hybridizing T-DNA regions were found in any 

of the control wild type strains.   
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Southern hybridization indicated that ~60% of the selected P. medicaginis 

transformants had single T-DNA inserts.  Other fungi transformed by AMT had similar 

frequencies of single T-DNA inserts.  In M. graminicola, 85% of transformants had 

single T-DNA inserts (11).  In the alfalfa anthracnose fungus, C. trifolii, 75% of AMT 

transformants had single copies of T-DNA (7), while in F. oxysporum 56% of 

transformants were found to have had single T-DNA inserts (5).  Even with the resolving 

limitations of the blot preventing accurate EcoRI fragment size estimations, it appeared 
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Figure. 5. Southern analysis of the T-DNA copy number in P. medicaginis 
transformants.  Lanes 1-3, wild type strains P1, P2, and P3, lanes 4-13, 
transformants, lane 14, molecular weight markers, lane 15, pPTGFPH digested with 
EcoRI, lanes 17-18, pBHt2 digested with EcoRI or AccI, respectively, and lane 18, 
hph-sGFP PCR product (unlabeled probe). Transformants P1-A3, P1-A17, P1-E90, 
P2-65, P2-70, and P3-T347 (lane 13) had single T-DNA inserts, while transformants 
P2-N234 (lane 9), P2-P262 (lane 10), P3-A6, and P3-Q278 (lane 12) had more than 
one T-DNA insert. 
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that most T-DNA inserts were of different sizes, indicating that the T-DNA had inserted 

randomly in the genomes of the selected transformants. 

 

The P3-A6 DNA smear (Fig. 5; lane 11) may have resulted due to the presence 

phenolics and polysaccharides contaminants in the genomic DNA preparation which 

would have inhibited EcoRI, resulting in the partial digestion of genomic DNA.  

Genomic DNA from P. medicaginis was isolated according to Möller et al. (4), since 

commercial kits did not yield sufficient DNA for Southern blots, and DNA enzyme 

inhibitors may have co-purified with the DNA.  The presence of probe-hybridizing, high 

molecular weight DNA remaining in the well at the top of the gel blot supports this 

interpretation.  Alternatively, DNA may have degraded during isolation, or multiple 

copies of T-DNA inserted at the same site resulting in an overloaded hybridization signal. 

 

Mutant Phenotypes of Transformants 

Some of the selected mutants P1-E90, P2-P262 and P3-T347 lost the ability to 

sporulate (Table 5).  P2-P262 possessed visible pycnidia, but did not produce conidia, 

while P1-E90 and P3-347 lacked both pycnidia and spores.  This could be due to the T-

DNA disrupting a regulatory or coding regions of a gene either directly or 

pleiotrophically involved in the sporulation pathway.  Also, secondary metabolism is 

often co-regulated with sporulation in fungi (2).  According to Calvo et al. , sporulation is 

influenced by different factors such as metabolites that activate sporulation, pigments 

such as melanin and secondary metabolites such as toxins produced by colonies.  In 

Aspergillus spp. (Eurotiomycetes), sporulation is induced by polyunsaturated fatty acids 
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such as linoleic acid (2).  In Penicillium urticae, calcium supplements induced 

conidiogenesis. 

 

Only one mutant, P1-E90 possessed non-melanized, white hyphae among the 

three non-sporulating mutants.  However, when P1-E90 was cultured in liquid media, 

hyphae melanized as cultures aged.  Likewise, in the normally melanized Cochliobolus 

heterostrophus, a white colony morphology was observed in MAP kinase Chk1 deletion 

mutants, which also became melanized after prolonged growth (3). 

 

P1-A17 had a single T-DNA insertion in its genome, which might have disrupted 

a gene upstream or downstream of melanin pathway.  The pink color of P1-A17 may be 

due to accumulation of precursor of melanin synthesis pathway.  A “rosy” mutant has 

been reported in M. grisea, where mutation of the scytalone dehydratase gene resulted in 

the accumulation of scytalone, a pink melanin precursor (8).  In C. heterostrophus, an 

orange-pink colored colony was observed when the transcription factor Cmr1 was deleted 

(3).  Also in C. heterostrophus, mutations in the MAP kinases Chk1 and Mps1 affected 

the expression of transcription factor Cmr1, along with the genes of the melanin 

biosynthetic pathway, scd1 (scytalone dehydratase), brn1 and brn2 

(dihydroxynaphthalene reductase) and pks1 (polyketide synthase).  Cmr1 transcription 

factors have also been identified in C. lagenarium and M. grisea (9). 
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Genomic DNA Flanking the Left Border of the T-DNA in P1-A17  

Inverse PCR sequences of the genomic DNA flanking left border of the T-DNA 

in P1-A17 displayed 76% identity to a hypothetical serine/threonine protein kinase 

encoded by the SNOG_08128.1 locus of the genome sequence of Stagonospora nodorum 

(Berk.) Castell. & Germano available at the Broad Institute website 

(www.broad.mit.edu/annotation/genome/stagonospora_nodorum/).  Using the blastx 

homology search (www.ncbi.nlm.nih.gov/BLAST/), the left border flanking sequence 

showed homology to the C-terminal end of this hypothetical protein in S. nodorum. The 

hypothetical serine threonine protein kinase shared homology to several hypothetical 

protein kinases from the other filamentous fungi, Aspergillus nidulans, Botryotinia 

fuckeliana, Neurospora crassa, and Gibberella zeae, and was similar to a functionally 

characterized Ran1-like protein kinase from budding yeast, Saccharomyces cerevisiae.

The Ran1-like protein kinase in yeast plays an important role in suppressing the meiotic 

pathway during active growth in conditions when nutrients are not limiting (1).  The 

yeast Ran1-like protein kinase is inactivated during starvation, which is thought to be an 

essential in the activation of the meiotic pathway.  Other than in yeasts, this protein has 

not been characterized in other fungi.   
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Figure 6.  Similarity of the genomic DNA flanking the left border of the T-DNA in P1-
A17 to hypothetical proteins encoded in the S. nodorum SN15 and other fungal genomes 
from the Broad Institute.  A. BlastX alignment of the amino acid sequences of P1-A17 
and S. nodorum SN15.  B. Genome region alignment of the P1-A17 flanking DNA with 
hypothetical protein kinases identified in the genomes of various fungi, Sn, S. nodorum,
An, Aspergillus nidulans, Bc, Botrytis cinerea, Nc, Neurospora crassa, Gz, Gibberella 
zeae, Sc, Saccharomyces cerevisiae, and Sn EST, EST genome annotation.  Pink, blue 
and gray arrows indicate automated annotations of the S. nodorum genome.  The 
approximate locations of the inverse PCR primers (outward facing arrow heads) on the 
pBHt2 T-DNA and the EcoRI cut sites are shown. 
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CHAPTER V 

 

ASSESSING THE VIRULENCE OF P. MEDICAGINIS STRAINS AND 

TRANSFORMANTS INFECTING MEDICAGO SPP. 

 

Introduction 

Macroscopic and microscopic analyses of host-pathogen interactions are essential 

to assess the virulence of wild type and mutant strains of the pathogen through detection 

of differences in disease progression.  Previous studies have provided insights into spring 

black stem of alfalfa caused by P. medicaginis (3, 16).  Fluorescent microscopy of 

transformants expressing green fluorescent protein (GFP) allows repeated observations of 

disease progression in inoculated tissues at the cellular level (4, 13, 19, 21).  To assess the 

macroscopic disease progression and relative virulences, the three wild type and ten 

mutant strains of P. medicaginis (same strains as in Ch. IV) were assayed on three hosts, 

M. truncatula cv. Jemalong and M. sativa cvs. Baralfa 42 IQ and Vernal.  For fluorescent 

microscopy, a bright GFP-expressing transformant, P3-A6, was used to inoculate M. 

truncatula and M. sativa cv. Baralfa 42 IQ. 
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Experimental Approach 

 

Virulence Assays of Transformants 

Detached Leaf Assay: Trifoliate leaves from 28-35 day old plants of the spring black 

stem-susceptible cultivars Jemalong (M. truncatula) and Vernal (M. sativa) and the 

resistant cultivar Baralfa 42 IQ (M. sativa, Barenbrug, Tangent, OR) were excised from 

plants with a surface-sterilized razor blade.  The leaves were surface-sterilized with a 

solution containing 1% bleach (~0.05% NaOCl), 1% ethanol and 0.01% Tween 20 and 

washed 3 times with distilled water.  Three detached leaves were placed in 100mm 

plastic petri dishes with two sterile, moistened paper filters.  For each wild type strain and 

transformant of P. medicaginis, four plates containing 3 leaves each were inoculated 

using the droplet method (5).  Briefly, two leaflets of each trifoliate leaf were each 

inoculated with a 5 µl droplet of spore suspension (105 ml−1 in 0.01% Hi-Yield Spreader-

Sticker (Voluntary Purchasing Groups, Inc., Bonham, TX) or a 5 µl droplet mycelial 

fragment suspension for the aconidial mutant transformants, P1-E90, P2-P262, and P3-

T347.  The third leaflet of each leaf was mock-inoculated as a control with a 5 µl droplet 

sterile 0.01% spreader sticker or sterile YPS agar suspension (prepared as with the 

mycelial suspension), and the third leaflet mock-inoculated with 0.01% spreader-sticker 

solution.  The mycelial fragment suspensions were prepared by bead-beating (BioSpec 

Products, Inc., Bartlesville, OK) six ~3 mm3 agar plugs from 10 d old YPS cultures with 

three 3 mm glass beads in 1 ml YPS broth.  This suspension was incubated overnight at 

room temperature, washed once with sterile distilled water and re-suspended in 1 ml of 

sterile distilled water.  Symptoms were scored 2, 4, 6 and 8 days post-inoculation (dpi) 
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using a 0 to 4 scale as follows: 0 healthy, no disease; 1 showing black spots (<1 mm 

diameter); 2 showing black spots, with partial chlorosis (< 50%); 3 showing black spots 

with extensive chlorosis (> 50%) and some water-soaking; and 4 complete tissue collapse 

with black spots, complete chlorosis and water-soaking, pycnidia, and leaflet abscission. 

 

Statisical Analyses: Data from detached leaf assays were transformed by √X+0.5 (25) 

and analyzed by PROC ANOVA (SAS Institute, Inc., 2003).  Multiple comparisons 

between treatment (isolate) means were conducted by the least significant difference 

(LSD) method at a significance level of 0.05.  Untransformed data are presented by in the 

tables with F-values and their corresponding probabilities.   

 

Cytology of infection of Medicago spp. by P. medicaginis 

Plant culture and inoculation: Seedlings of Jemalong were grown in peat mix 

(Rediearth, Sungro, Bellevue, WA) and incubated in a growth chamber with a 16-8 h, 

light-dark cycle and 22°C (day) and 18°C (night) and 60% relative humidity.  Fully 

expanded, 3-4 day-old cotyledons were excised with a sterile double edged razor blade 

and inoculated with the conidia from the transformant P3-A6.  Conidia were suspended 

105 ml-1 in 0.01% spreader-sticker and a 5 µl droplet of this spore suspension placed on 

each cotyledon (14).  Control cotyledons were mock-inoculated with 5 µl 0.01%

spreader-sticker solution.  Also, 28-35 day-old detached trifoliate leaves and whole plants 

of Jemalong were inoculated with 105 ml-1 conidial suspension of P3-A6 using an hobby 

air brush (Testor Corp., Rockford, IL) and sprayed to run-off.  Additionally, 28-35 day-

old whole plants of Jemalong and Baralfa 42 IQ were spray inoculated as above.  Two to 
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three leaves were selected and excised every 24 h and images of the disease symptoms 

recorded using a digital scanner (Epson Inc., Long Beach, CA) and cytology observed as 

follows. 

 

Microscopy: Inoculated detached cotyledons and leaves were examined microscopically 

multiple times between 17-170 post-inoculation (hpi).  Cotyledons were embedded in 3% 

agarose and hand-sectioned with a double-edged razor blade.  Intact and cut cotyledons 

and whole leaflets were observed using a Nikon Eclipse E600 fluorescent microscope 

(Nikon Inc., Melville, NY) using a B2A longpass filter (ex 450-490 nm/dichroic 500 

nm/em >515 nm) and images captured using a Magnafire CCD camera (Optronics, 

Goleta, CA).  Additional images were captured using a Nikon Eclipse E800 fluorescent 

microscope with an Endow GFP longpass filter set (ex. 450-490nm/dichroic 495nm/em. 

>500nm) and a Retiga-2000R CCD camera (QImaging, Burnaby, Canada). 

 

Results 

 

Virulence Assays 

Disease symptoms developed on detached leaves of M. truncatula and M. sativa,

4 days post inoculation (dpi).  From 0-48 hours (to 2 dpi), no disease symptoms were 

observed on any of the inoculated detached leaves (Table 6).  At 4 dpi, black spots 

without chlorosis appeared on the M. sativa cvs. (Table 8).  Since leaves were inoculated 

with 5 µl droplets, black spots were not defined to single epidermal cells and instead 

formed aggregated clusters of black cells around the inoculation site.  Chlorosis appeared 
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only occasionally on M. sativa cultivars with cv. Vernal showing higher disease ratings 

than Baralfa 42 IQ at 4 dpi (Table 8).  However, most M. truncatula leaves at 4 dpi 

already showed about 25% chlorosis in addition to black spots (Table 8).  At 6 dpi, the 

diameter of black leaf spots on M. sativa cvs. increased, due to merging of black spots 

(invasion of adjacent epidermal cells by the fungus), and leaves became chlorotic.  At 6 

dpi, M. truncatula leaves showed extensive chlorosis and water soaking and pycnidia 

appeared sporadically (Table 10).  By day 8, leaves of M. truncatula were completely 

collapsed and pycnidia were observed.  M. sativa leaves also showed widespread 

damage. 

 

Leaves inoculated with mycelial fragments showed symptoms much more quickly 

than leaves inoculated with conidia.  Brown spots appeared around the inoculation point 

on M. truncatula leaves by 2 dpi (Table 7).  By 4 dpi, severe disease was widespread on 

M. truncatula leaves, with significant chlorosis and water-soaking (Table 9).  By 6 dpi 

most M. truncatula leaves had completely collapsed.  Disease also progressed more 

quickly on the mycelial fragment-inoculated leaves of M. sativa cvs.  By 6 dpi, most 

mycelial-fragement inoculated M. sativa cvs. showed severe disease. 

 

For the most part, none of the transformants appeared to differ significantly in 

virulence from the wild type strains.  However, at 4 and 6 dpi, P2-65 showed reduced 

virulence on Vernal (Tables 8 and 10).  P3-Q278 showed reduced virulence on M. 

truncatula comapared to the wild type. In contrast, at 8 dpi, P3-Q278 showed increased 

virulence along with P3-A6 on 42 IQ compared to P3 (Tables 10 and 12).  
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Table 6. Mean disease scores of three different Medicago host plants inoculated with 

conidia of three P. medicaginis isolates and their transformants after 2 dpi  

Day 2a
Isolate M. truncatula* 42 IQ Vernal 
Control 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 

P1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 
P1-A3 0.4 ± 0.2 0.1 ± 0.1 0.0 ± 0.0 
P1-A17 0.5 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 

P2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 
P2-65 0.0 ± 0.0 0.1 ± 0.1 0.0 ± 0.0 
P2-70 0.4 ± 0.4 0.0 ± 0.0 0.0 ± 0.0 

P2-N234 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 
P3 0.3 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 

P3-A6 0.3 ± 0.2 0.1 ± 0.1 0.0 ± 0.0 
P3-Q278 0.1 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 
F(10, 33) 1.51 1.20 - 
Pr > F† 0.1975 0.3277 - 
F(9, 30) 1.36 1.17 - 
Pr>F‡ 0.2507 0.3509 - 

Table 7.  Mean disease scores of three different Medicago host plants inoculated with 
mycelial fragments of three P. medicaginis isolates and their transformants after 2 dpi 
 

Day 2 a 
Bead beat isolates** 

M. truncatula* 42 IQ Vernal 
Agar control 0.0 ± 0.0d 0.0 ± 0.0c 0.0 ± 0.0 

P1bb 0.3 ± 0.2cd 0.4 ± 0.2ab 0.2 ± 0.1 
P1-E90 0.5 ± 0.1c 0.2 ± 0.1bc 0.2 ± 0.1 
P2bb 0.6 ± 0.3bc 0.6 ± 0.2a 0.3 ± 0.2 

P2-P262 0.0 ± 0.0d 0.0 ± 0.0c 0.0 ± 0.0 
P3bb 1.1 ± 0.1a 0.5 ± 0.0ab 0.2 ± 0.1 

P3-T347 0.9 ± 0.1ab 0.3 ± 0.1abc 0.3 ± 0.1 
F(6, 21) 8.81 3.29 1.84 
Pr > F† < 0.0001 0.0192 0.1404 
F(5, 18) 6.75 2.41 1.27 
Pr > F‡ 0.0010 0.0768 0.3185 

* Based on 0 – 4 disease scale as described in Materials and Methods.  
** Agar plugs colonized by strains of P. medicaginis were bead-beated with glass beads and suspended in 

spreader-sticker solution (see above) 
a Means followed by the same lowercase letter in a column are not significantly different (P < 0.05). 
† Significance level determined from ANOVA of square roots of all disease scores, including controls. 
‡ Significance level determined from ANOVA of square roots of all disease scores, excluding controls. 
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Table 8. Mean disease scores of three different Medicago host plants inoculated with 
conidia of three P. medicaginis isolates and their transformants after 4 dpi  
 

Day 4 a Isolate M. truncatula* 42 IQ Vernal 
Control 0.3 ± 0.3c 0.0 ± 0.0d 0.2 ± 0.2c 

P1 1.6 ± 0.3ab 1.0 ± 0.2abc  1.2 ± 0.1b 
P1-A3 2.3 ± 0.3ab 1.6 ± 0.4a 1.8 ± 0.2a 
P1-A17 1.8 ± 0.4ab 1.1 ± 0.3abc 1.2 ± 0.2b 

P2 2.3 ± 0.4ab 0.9 ± 0.1bc 1.7 ± 0.0a 
P2-65 1.4 ± 0.3b 0.6 ± 0.2c 0.9 ± 0.1b 
P2-70 2.3 ± 0.2ab 1.2 ± 0.2ab 1.1 ± 0.1b 

P2-N234 1.6 ± 0.3ab 1.2 ± 0.1ab 1.1 ± 0.1b 
P3 2.4 ± 0.4a 0.9 ± 0.3bc 1.2 ± 0.2b 

P3-A6 1.8 ± 0.3ab 0.9 ± 0.1abc 1.2 ± 0.1b 
P3-Q278 2.4 ± 0.1a 1.5 ± 0.2ab 1.1 ± 0.1b 
F(10, 33) 5.75 5.17 10.47 
Pr > F† < 0.0001 0.0002 < 0.0001 
F(9, 30) 1.61 4.64 1.74 
Pr > F‡ 0.5164 0.0007 0.1224 

Table 9. Mean disease scores of three different Medicago host plants inoculated with 
mycelial fragments of three P. medicaginis isolates and their transformants after 4 dpi 
 

Day 4 a 
Bead beat isolates M. truncatula* 42 IQ Vernal 

Agar control 0.8 ± 0.5c 0.4 ± 0.2c 0.0 ± 0.0c 
P1bb 2.4 ± 0.3ab 1.5 ± 0.2ab 1.4 ± 0.3b 

P1-E90 3.0 ± 0.2ab 2.0 ± 0.4a 1.7 ± 0.4b 
P2bb 1.9 ± 0.6b 0.9 ± 0.3bc 1.8 ± 0.3b 

P2-P262 2.2 ± 0.4ab 1.6 ± 0.4ab 1.1 ± 0.1b 
P3bb 3.3 ± 0.2a 1.9 ± 0.4a 1.5 ± 0.1b 

P3-T347 3.2 ± 0.1a 2.2 ± 0.2a 2.7 ± 0.3a 
F(6, 21) 5.64 4.54 15.29 
Pr > F† 0.0013 0.0042 < 0.0001 
F(5,18) 2.49 1.93 3.59 

Pr > F‡ 0.0703 0.1399 0.0199 

* Based on 0 – 4 disease scale as described in Materials and Methods.  
** Agar plugs colonized by strains of P. medicaginis were bead-beated with glass beads and suspended in 

spreader-sticker solution (see above) 
a Means followed by the same lowercase letter in a column are not significantly different (P < 0.05). 
† Significance level determined from ANOVA of square roots of all disease scores, including controls. 
‡ Significance level determined from ANOVA of square roots of all disease scores, excluding controls. 
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Table 10. Mean disease scores of three different Medicago host plants inoculated with 
conidia of three P. medicaginis isolates and their transformants after 6 dpi  
 

Day 6 a 
Isolate M. truncatula* 42 IQ Vernal 
Control 1.7 ± 0.5c 0.3 ± 0.1c 0.7 ± 0.3e 

P1 4.0 ± 0.0a 3.3 ± 0.1a 2.3 ± 0.1bdc 
P1-A3 3.8 ± 0.3a 3.4 ± 0.3a 3.2 ± 0.3a 
P1-A17 4.0 ± 0.0a 2.6 ± 0.5ab 3.0 ± 0.2ab 

P2 3.8 ± 0.2a 2.5 ± 0.2ab 2.8 ± 0.1abc 
P2-65 3.6 ± 0.3a 2.3 ± 0.6ab 1.8 ± 0.3d 
P2-70 4.0 ± 0.0a 2.8 ± 0.6ab 3.1 ± 0.3ab 

P2-N234 3.3 ± 0.0ab 2.9 ± 0.5ab 2.7 ± 0.3abc 
P3 4.0 ± 0.0a 2.0 ± 0.5b 2.1 ± 0.3dc 

P3-A6 3.8 ± 0.2a 2.4 ± 0.5ab 2.5 ± 0.3abcd 
P3-Q278 2.7 ± 0.3b 2.9 ± 0.2ab 2.7 ± 0.4abc 
F(10, 33) 7.56 5.48 7.17 
Pr > F† < 0.0001 < 0.0001 < 0.0001 
F(9, 30) 6.18 1.05 2.91 
Pr > F‡ <0.001 0.4239 0.0134 

Table 11. Mean disease scores of three different Medicago host plants inoculated with 
mycelial fragments of three P. medicaginis isolates and their transformants after 6 dpi 
 

Day 6 a 
Bead beat isolates M. truncatula* 42 IQ Vernal 

Agar control 1.8 ± 0.6b 1.0 ± 0.5b 0.1 ± 0.1b 
P1bb 4.0 ± 0.0a 3.8 ± 0.2a 3.6 ± 0.1a 

P1-E90 4.0 ± 0.0a 3.6 ± 0.1a 3.6 ± 0.3a 
P2bb 4.0 ± 0.0a 2.6 ± 0.9a 2.9 ± 0.9a 

P2-P262 3.8 ± 0.2a 2.6 ± 0.5a 2.7 ± 0.1a 
P3bb 4.0 ± 0.0a 3.9 ± 0.1a 4.0 ± 0.0a 

P3-T347 4.0 ± 0.0a 3.5 ± 0.2a 3.4 ± 0.1a 
F(6, 21) 6.48 4.81 15.88 
Pr > F† 0.0006 0.0031 < 0.0001 
F(5, 18) 1.00 1.55 1.26 
Pr > F‡ 0.4457 0.2246 0.3224 

* Based on 0 – 4 disease scale as described in Materials and Methods.  
** Agar plugs colonized by strains of P. medicaginis were bead-beated with glass beads and suspended in 

spreader-sticker solution (see above) 
a Means followed by the same lowercase letter in a column are not significantly different (P < 0.05). 
† Significance level determined from ANOVA of square roots of all disease scores, including controls. 
‡ Significance level determined from ANOVA of square roots of all disease scores, excluding controls. 
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Table 12. Mean disease scores of three different Medicago host plants inoculated with 
conidia of three P. medicaginis isolates and their transformants after 8 dpi  
 

Day 8 a Isolate M. truncatula* 42 IQ Vernal 
Control 2.5 ± 0.3b 1.1 ± 0.3c 1.3 ± 0.5b 

P1 4.0 ± 0.0a 3.8 ± 0.2a 3.9 ± 0.1a 
P1-A3 4.0 ± 0.0a 4.0 ± 0.0a 3.9 ± 0.1a 
P1-A17 4.0 ± 0.0a 3.5 ± 0.3ab 3.8 ± 0.2a 

P2 4.0 ± 0.0a 3.6 ± 0.2a 4.0 ± 0.0a 
P2-65 4.0 ± 0.0a 3.1 ± 0.4ab 3.9 ± 0.1a 
P2-70 4.0 ± 0.0a 3.6 ± 0.4a 4.0 ± 0.0a 

P2-N234 4.0 ± 0.0a 3.7 ± 0.2a 3.6 ± 0.2a 
P3 4.0 ± 0.0a 2.7 ± 0.7b 4.0 ± 0.0a 

P3-A6 4.0 ± 0.0a 3.9 ± 0.1a 3.7 ± 0.1a 
P3-Q278 4.0 ± 0.0a 3.8 ± 0.2a 3.9 ± 0.1a 
F(10, 33) 17.87 7.98 13.36 
Pr > F† < 0.0001 < 0.0001 < 0.0001 
F(9, 30) - 1.76 1.29
Pr > F‡ - 0.1194 0.2851

Table 13. Mean disease scores of three different Medicago host plants inoculated with 
mycelial fragments of three P. medicaginis isolates and their transformants after 8 dpi 
 

Day 8 a 
Bead beat isolates M. truncatula* 42 IQ Vernal 

Agar control 2.6 ± 0.9 1.7 ± 0.6b 0.2 ± 0.1b 
P1bb 4.0 ± 0.0 4.0 ± 0.0a 4.0 ± 0.0a 

P1-E90 4.0 ± 0.0 4.0 ± 0.0a 4.0 ± 0.0a 
P2bb 4.0 ± 0.0 2.9 ± 1.0ab 4.0 ± 0.0a 

P2-P262 4.0 ± 0.0 3.1 ± 0.4ab 3.6 ± 0.3a 
P3bb 4.0 ± 0.0 3.9 ± 0.1a 4.0 ± 0.0a 

P3-T347 4.0 ± 0.0 4.0 ± 0.0a 3.9 ± 0.1a 
F(10, 33) 2.13 3.09 170.62 
Pr > F† 0.0920 0.0251 < 0.0001 
F(9, 30) - 1.36 2.49
Pr > F‡ - 0.2859 0.0696

* Based on 0 – 4 disease scale as described in Materials and Methods.  
** Agar plugs colonized by strains of P. medicaginis were bead-beated with glass beads and suspended in 

spreader-sticker solution (see above) 
a Means followed by the same lowercase letter in a column are not significantly different (P < 0.05). 
† Significance level determined from ANOVA of square roots of all disease scores, including controls. 
‡ Significance level determined from ANOVA of square roots of all disease scores, excluding controls. 
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Cytology of infection of Medicago spp. by P. medicaginis 

Microscopic analysis of leaves of Medicago spp. inoculated with P3-A6 showed 

that conidia of P. medicaginis germinated within 24 hpi.  Specialized penetration 

structures such as appressoria were not observed.  Conidia also attached to the leaf hairs 

of M. truncatula. Spores which were spread more diffusely germinated more rapidly 

than spores in aggregates or clusters  

 

During infection, P. medicaginis entered the host leaf by directly penetrating the 

epidermal cells and guard cells, and occasionally through the stomata (especially on 

cotyledons).  Infected epidermal cells penetrated by the conidial germ tube and adjacent 

epidermal cells were frequently observed to be autofluorescent (Fig. 8.3) at the earlier 

stages of host cell infection, prior to the blackening of the invaded cell (see below).  

Between 48 to 72 hpi, thick primary hyphae were observed in individual or groups of 

epidermal cells.  These hyphae appeared to be confined to only a few host cells.  Hyphae 

were also observed directly infecting the guard cells (Fig. 8.5).  In these initial 72 hpi (3 

dpi), leaves remained asymptomatic and symptoms like black spot and chlorosis were not 

yet observed.  The epidermal cells and other host cells harboring these primary hyphae 

eventually darkened after the initial autofluorescence (Fig. 8.4).   

 

At 96 hpi (4 dpi), thin secondary hyphae spread to adjacent epidermal cells. 

Macroscopically, black spots and slight chlorosis became visible.  These symptoms were 

frequently seen four to five dpi.  On older leaves, pycnidial primordial were observed as 

early as 5 dpi on senescent tissues (Fig. 9.10).  
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After 6 dpi, black spots coalesced, leaflets became chlorotic, and also showed 

some degree of water soaking.  Green islands were frequently observed surrounding the 

black spots in chlorotic areas.  Hyphae were also observed in vascular tissue of the midrib 

petiole and petioles (Figs. 9.9 and 10.14).  On detached leaves the pathogen had 

completed its life cycle in 7-10 days, by forming pycnidia producing spores.  Disease 

progressed more quickly on older leaves, which appeared to be more susceptible to the P. 

medicaginis.

On whole plants, symptoms appeared more slowly than on detached leaves.  

Young, apical leaves in the upper canopy appeared to be more resistant than older leaves 

occurring in the lower canopy.  On the young upper leaves, germinating conidia were not 

observed until 4 dpi, 3 d after conidia had germinated on detached leaves.  Secondary 

hyphae were not formed as rapidly and black spots appeared only intermittently on young 

leaves.  In contrast, conidia germinated rapidly on the older, lower leaves and sometimes 

pycnidia appeared as early as 5 dpi (Fig. 9.12). 

 

Inoculated cotyledons were hand sectioned at different stages of infection. 

Transverse sections of cotyledons showed the hyphae in epidermal cells (Fig. 8.6) and 

penetrating though stomata into the substomatal cavities and surrounding mesophyll (Fig. 

9.7).   
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Figure 8.  M. truncatula leaves and cotyledons inoculated with P3-A6 showing the initial 
stages of the disease.  1. Germinating conidium with 3-4 cells in an epidermal cell (60×).  
2. Germ tubes of individual conidia that have penetrated epidermal cells and stomata 
(20×).  3. Multicellular primary hypha inside autofluorescent epidermal cells (40×).  4. 
Primary hypha in an epidermal cell, that turned dark after infection (40×).  5. Primary 
hyphae inside two guard cells surrounding a stoma of a cotyledon.  6. Transverse section 
of a cotyledon showing green hyphae inside and exiting an epidermal cell (40×).  
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Figure 9.  M. truncatula leaves and cotyledons inoculated with P3-A6.  7. Transverse 
section of a cotyledon showing hyphae inside the mesophyll tissue (40×).  8. Hyphae 
penetrating and colonizing epidermal cells.  Red autofluorescent host cells correspond to 
the presence of infecting fungal hyphae, and likely represent a host response to the 
hyphae (20×).  9. Green hyphae inside the vascular tissue of the mid vein of a detached 
leaf (10×).  10. An old, attached M. truncatula leaf that has been colonized by P3-A6. 
Bright green spots are the developing pycnidia (4×).  11. Mature pycnidium from picture 
10 (20×).  12.  Scanned image of a senescing leaflet.  Brownish-black spots are pycnidia. 
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Figure 10. Symptoms on detached leaves. 13. Detached leaflet of M. truncatula scanned 
7 dpi.  Black spots, chlorosis and water soaking on either side of the mid vein were 
visible.  14. Hyphae growing towards the apex of the leaf inside the vascular tissue (4×).  
15. Detached leaflet of M. sativa cv. 42 IQ 8 dpi.  Necrosis can be observed at the leaf’s 
margins of and spreading acropetally along the mid vein of the leaflet. 16. Cropped area 
of the leaflet in 15 to showing the necrotic area. 17. Hyphae inside the vascular tissue of 
the mid vein of 42 IQ leaflet pictured in 15 (4×).  18. Necrotic spot on the margin of 42 
IQ leaflet pictured in 15, colonized by the mycelia of P3-A6  (4×). 
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Figure 11. Scanned images of inoculated leaves of M. truncatula and M. sativa 
illustrating the disease progression on attached and detached leaves.  A and A’,  Attached 
leaves of M. truncatula and M. sativa, respectively at 24 hpi (1 dpi).  B and B’, Attached 
leaves of M. truncatula and M. sativa at 3 dpi.  C and C’, Attached leaves of M. 
truncatula and M. sativa at 5 dpi. Disease symptoms were not observed on attached 
leaves at 1, 3 & 5 dpi.  D and E, Attached leaves of M. truncatula at 8 dpi. D was a 
senescing leaf with black spots and green patches.  F and F’ Detached leaves of M. 
truncatula and M. sativa at 7 dpi showing disease.  G and G’ Detached leaves of M. 
truncatula and M. sativa at 8 dpi showing disease. 
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Discussion 
 
Detached leaf Assay 
 

Significant differences in virulence were not found among the transformants and 

wild type strains of P. medicaginis. Possible reasons for this may have been due to 

uneven spore load and/or the variability of the detached leaves used for the assay.  Chung 

et al. (3) found that high conidial concentrations inhibited germination.  The droplet 

inoculation method may have resulted conidial aggregations, which would have reduced 

germination and biased the findings.  Since older leaves are more susceptible than 

younger leaves, then the age variability of the leaves used in these assays could have 

introduced sufficient experimental error to prohibit mean separations.  The greater 

susceptiblity of older leaves may be due to the decreasing levels of phytoalexins, such as 

medicarpin, which decline with leaf age (8).  The levels of medicarpin might be low in 

detached leaves, hence they are more susceptible to the pathogen.  

 

Cytology of disease 

Phoma medicaginis enters leaf tissues primarily by directly penetrating into the 

epidermal cells and only occasionally penetrating the through stomata.  Stomata were 

more frequently penetrated by conidial germ tube inoculated on cotyledons. Similar 

findings were previously reported by Schenck et al. (18).  Contrary to our findings, 

Castell-Miller (1) reported that P. medicaginis was never observed entering the host’s 

leaf through stomatal openings.  Other foliar pathogens, related to P. medicaginis, such as 

Stagonospora nodorum, A. rabiei, L. maculans, and M. graminicola also entered their 
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hosts’ leaves through the stomata.  Conidia of S. nodorum germinated in three hours on 

detached wheat leaves and penetrated of host epidermal cells between 8-12 hrs  (21). 

 

Specialized penetration structures such as well-defined appressoria were not 

observed being produced by P. medicaginis in this study or previous studies (1).  

However, Hijano et al. (9), reported appresoria were seen at the tips of penetrating 

hyphae.  Also, appressoria were not observed in S. nodorum (21).  When compared to the 

conidia of S. nodorum, conidia of P. medicaginis germinated and penetrated host cells 

more slowly.  Medicago epidermal cells exhibited autofluorescence when penetrated by 

the germ tubes of P. medicaginis. This penetration-associated autofluorescence of host 

cells also has been reported in the host cells of L. maculans (19) and S. nodorum. Yellow 

autofluorescence of plant cells is thought to be indicative of the accumulation of 

phenolics and/or the lignification of cell walls (7). 

S. nodorum completes its life cycle on detached wheat leaves in 7 days, forming 

pycnidia in necrotic sectors of chlorotic leaves.  On detached leaves, P. medicaginis 

completed its life cycle in 6-8 days.   

 

M. graminicola, which causes leaf blotch of wheat, enters the host primarily 

through stomatal openings and germ tubes of spores oriented towards stomata (4).  

Unlike M. graminicola, the germ tubes of L. maculans did not exhibit preferential growth 

towards stomata (11).  However, L. maculans germ tubes entered stomata during an 

incompatible interaction with Indian mustard, Brassica juncea, resulting in the necrosis 
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of the guard cells, deposition of callose, and accumulation of phenolics (2).  The 

ascospores and pycnidiospores of L. maculans germinated at different rates with the 

former germinating as quickly as 4 hpi, while the latter germinated only after 24 hpi.   

 

A. rabiei, a necrotrophic pathogen of chick pea, also penetrates its host both 

directly and through stomatal openings (10).  During infection, the pathogen secretes 

toxins such as solanapyrones and cytochalasins.  Solanapyrones are also present in the 

spore germination fluid, and may play a role in the initial stages of infection.  

 

As shown in this study, infection by P. medicaginis causes chlorosis and necrosis 

of leaf tissue.  Phytotoxins produced by P. medicaginis likely play an important role in 

the necrotizing development of the black spot phase.  One such toxin produced by P. 

medicaginis, brefeldin A (BFA) has phytotoxic, mycotoxic and antibiotic activities in 

vitro (22).  It inhibits Golgi-dependent secretion and vacuolar protein transport in plant 

cells (12).  Even though BFA interferes with this crucial intracellular transport, high 

levels (20 µg) failed to affect alfalfa leaves, four days after application (24).  But a 

derivative of the toxin, 7-dehydrobrefeldin A, disrupted Golgi stacks of sycamore maple 

cells and produced leaf spots with diameters greater than 3 mm.  Though the toxin is 

hypothesized to be involved in the development of spots on infected leaves, BFA’s role 

in the early stages of black stem leaf spots has not been thoroughly investigated.  A 

scanning electron microscopy study rejected BFA’s role in early development of leaf 

spots because they did not observe any Golgi disruptions in the epidermal cells where 

leaf spots are initiated.  The matrix surrounding conidia and hyphae on the host may also 
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play a role in the development of spots in the early stages of the disease (3).  Putative 

toxins may also play a role in the later stages of the disease when leaf chlorosis leads to 

leaflet abscission (6).  Other species of Phoma are known to produce toxins which induce 

chlorosis (6) and the necrosis of plant tissues (23).  

 

Results from this study indicated that older leaves were more susceptible to P. 

medicaginis than younger leaves.  Levels of antimicrobial compounds, such as 

medicacarpin, a phytoalexin, decrease with age in leaves.  Intermediates of the 

phytoalexin pathway accumulate when alfalfa plants are inoculated with P. medicaginis .  

The age-related decrease of phytoalexin levels in grape berries, results in the increased 

susceptibility to Rhizopus stolonifer (17).   

 

Colletotrichum lindemuthianum (Sacc. & Magnus) Briosi & Cavara, a hemi-

biotrophic pathogen of bean (Phaselous vulgaris L.) displayed distinct biotrophic and 

necrotrophic phases (15).  It produced thick primary (biotrophic) hyphae in the initially 

infected epidermal cell followed by cell-to-cell invasion of adjacent cells by thin, narrow 

secondary (necrotrophic) hyphae.  The thick primary hyphae have large diameters, which 

are thought to help reduce the total surface area in contact with the host.  The thick wall 

is also thought to protect the pathogen from the cell wall-degrading enzymes of the host.  

The thin, narrow secondary hyphae then increases the surface area of the fungus, and 

likely helps it to absorb nutrients from the host and secrete phytotoxins and enzymes 

(15).  A similar infection pattern was shown for C. destructivum, a pathogen of tobacco, 

Nicotiana tabacum (20). 
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