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Chapter One

Discount Retailers and Sales Tax Collections:
Accounting for Competitive and Spatial Aspects

Nicole Leigh Cornell Sadowski
University of Oklahoma 
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Discount Retailers and Sales Tax Collections:
Accounting for Competitive and Spatial Aspects

Abstract

The impact of discount retailers on tax revenues, wages, and locally-owned 

businesses has been the topic of much recent debate.  This study analyzes the effect of 

three major discount retailers – Wal-Mart, KMart, and Target - on total sales tax 

collections and regional sales tax pull, incorporating an increasingly popular local 

revenue option – local option sales taxes.  The empirical analysis first tests for the 

potential endogeneity between location choice and community growth, which could bias 

estimates of interest.  Next, a two-stage, fixed-effects estimation is performed on county 

and municipal-level panel data for the State of New York. Consistent with previous 

research, the findings suggest that the presence of a discount retailer is positively related 

to a municipality’s sales tax collections and negatively related to collections of a 

competing retailer’s community.  The implication for rural communities and their relative 

proximity to the big three discount retailers is also analyzed.
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I. Introduction
Retail business activity is a major contributor to the overall economic prosperity 

of a community.  It produces jobs and a viable tax base for funding public goods.  In 

particular, local option sales taxes (LOSTs) imposed on retail business activity occurring 

within local jurisdictions are becoming increasingly important sources of tax revenues.  

Because LOST revenues capture the bulk of retail activity occurring within a jurisdiction, 

they are a good indicator of a community’s economic health.  This analysis investigates 

the empirical relationship between major discount retailers and sales tax collections in a 

regional context that accounts for competitive and spatial aspects. 

This study is particularly relevant for current policy-making given the increased 

use of LOST revenues as an alternative to increased property taxes, as well as the 

proliferation of large discount retailers across the country.  Because they are

interdependent, understanding the interaction between LOST revenues and big box 

discount retailers in a spatial context is important for taxpayers/public service users as 

well as investors in big box entities.  

The analysis makes several contributions.  It adds to the small body of literature 

analyzing the role that large discount retailers play in a regional economy.  Table 1 

identifies seven important previous studies that explicitly consider discount retailers.  

Only two investigate impacts across communities with and without a discount retailer.  

Stone (1995), in particular, found that in Iowa towns a new Wal-Mart store with $20 

million yearly revenues results in the loss of $12 million dollars of sales for small 

businesses within the community.  Stone also found the impact on surrounding 

communities to vary with their relative size to the Wal-Mart community: those of equal 
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or smaller size often experience large sales losses while only larger towns could 

experience continued growth in most retail sectors.

Similar to Stone, virtually all studies of this type analyze the effect of just Wal-

Mart. In contrast, this study deals with the combined effect from the three largest 

discount retailers: Wal-Mart, KMart, and Target.  Considering the competitive 

environment of regional retail sales markets is an important contribution of this study.  

Another contribution comes from using a large, diverse data set of counties and 

communities in New York State.  Except for Stone (1995) who uses cross-section, time-

series data at the community level for the state of Iowa, the majority of previous studies 

are conducted at the county level.  Similar to previous studies, spatial aspects are 

included to analyze effects on neighboring communities. The retail market areas, usually 

defined in terms of driving distance, are also measured using driving time.  Basker (2005) 

points out that the sub-county level effect of discount retailers on tax revenues has not yet 

been explored.  Taking another departure from existing literature, the analysis explicitly 

accounts for LOST policy by including LOST tax rates, which is important due to within-

community and cross-border tax rate elasticities.  

Another important contribution is the investigation of the potential endogeneity of 

a discount retailer’s location choice with previous economic growth trends.  The 

endogeneity test suggests that location choice of the big three discount retailers is not 

driven by community-specific per-capita income and sales tax growth rates.

Finally, the econometric analysis employs a two-stage, fixed effect model to 

exploit the panel data.  Consistent with previous research, the findings suggest that the 

presence of a discount retailer is positively related to a municipality’s sales tax 
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collections and negatively related to collections of a competitor’s community.  A 

discount retailer opening in a new community is associated with an increase of $329,972 

in yearly sales tax collections, while a competitor within 20 miles decreases a 

community’s pull on regional sales tax collections by 3%.

II. Literature Overview
Discount retailers and their impact on tax revenues, wages, and locally-owned 

businesses have been the topic of much recent debate.  With an increase in public 

sentiment toward supporting locally owned business, discount retailers with economies of 

scale, ability to cut costs, and high level of efficiency are seen as a direct threat to smaller 

community establishments.  

The impact of discount retailers on employment has specifically been the subject 

of media attention.  With Wal-Mart, KMart, and Target together accounting for over 

5,600 retail stores and over 1.59 million employees in the United States, discount retailers 

are unable to be ignored and are a large force in retail activity and employment within 

communities.  Clearly, they will reallocate the labor force within a community, but it is 

unclear whether more net jobs are created or destroyed by the location of a “big box” 

retailer within a community.

Studying these mass discount merchandisers has proven difficult and previous 

studies offer conflicting evidence concerning the above issues.  This analysis aims to 

quantify the impact of a discount retailer on both a county and community level in terms 

of their specific effect on sales tax collections.  This is the first known study to look at 

this particular aspect.  
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One of the discount retailers included in this analysis, Wal-Mart, has been the 

subject of particular recent media attention.  Critics contend that by cutting costs the 

flight of U.S. jobs overseas has been accelerated and Wal-Mart itself has admitted that a 

full-time worker may not be able to support a family.  Wal-Mart pays its grocery workers 

an estimated $10 less per hour in wages and benefits than other nationwide supermarkets. 

Only 48% of employees choose to enroll in the health insurance the company offers 

(Goldman and Cleeland 2003).  

Wal-Mart supporters respond with figures claiming that the 48% of employees 

covered by their health insurance plan is above the 44% national retail sector average.

Additionally, 2/3 of its management started as hourly associates. They contend that Wal-

Mart provides a career ladder otherwise nonexistent for some citizens.  Some U.S. 

economists contend that by cutting costs, Wal-Mart has not only helped its own bottom 

line and consumers (groceries are 17% to 39% cheaper at Wal-Mart than at competing 

grocers), but helped hold down inflation for the entire country.  McKinsey Global 

Institute estimated that between 1995 and 1999, 4% of the growth in U.S. productivity 

was due to Wal-Mart’s efficiency alone, while no other single company had a measurable 

impact (Goldman and Cleeland 2003).

These issues are also debated at the global level, as many of Wal-Mart’s suppliers 

are companies outside of the United States.  Wal-Mart is the most powerful corporate 

citizen in Bangladesh even though there are no Wal-Mart stores in the country (Cleeland, 

Ititani, and Marshall 2003).  Wal-Mart is so important to the economies of some 

developing nations that these countries send delegates to Bentonville, Arkansas (where 

Wal-Mart’s headquarters are located) as if it were a nation of its own.



7

Sales tax collections are but one of the ways in which discount retailers affect a 

community.  By no means will the results of this analysis decide whether these large 

retailers are “good for” or “bad for” a community overall.  It will quantify how the low 

prices vs. high volume of these retailers affect sales tax revenues for the communities in 

which they operate.  

Why would discount retailers affect sales tax collections?  By attracting 

customers both inside and outside the community with low prices and a large selection of 

merchandise, discount retailers can be a valuable addition to a community’s tax base and 

its pull on regional sales tax collections.  

A measure of a municipality’s success is the “pull factor” introduced by Stone in 

1995.  A pull factor represents a county or community’s share of regional sales tax 

collections.  When a pull factor is less than one, the interpretation is that the community 

is selling to less than the full size of the community.  If a pull factor is greater than one, 

the community is capturing some of the retail market from its neighbors.  Stone found 

that an average Wal-Mart city’s regional sales pull factor had increased by 5.6% within 5 

years of Wal-Mart’s opening.  Gruidl and Andrianacos (1994) found similar results, with 

a Wal-Mart increasing pull factors by 3%.  Eathington and Swenson (2002) found that for 

non-metro areas the presence of a Wal-Mart was more important than population when 

determining changes in the share of regional sales.  

Stone also found that a Wal-Mart store has a negative impact on retail sales in 

surrounding communities.  He found that stores within 20 miles of a Wal-Mart saw their

sales decrease by 25% within 5 years of Wal-Mart’s opening, with rural businesses 

exhibiting the largest losses.  Snodgrass and Otto (1990) came to a similar conclusion.  



8

Specifically, the distance between a rural community and alternative shopping locations 

plays an important role.  Supporting this contention, Gruidl and Andrianacos (1994) find

that better access to highways weakens rural trade.  This is in addition to their finding 

that retail trade, in general, shifted away from rural areas in the 1980’s.  

Chervin, Edmiston, and Murray (2001) conclude that substantial erosion of the 

local sales tax bases (inferred from per capita sales) occurs in communities without 

expanded shopping facilities as consumers take advantage of this alternative in other 

jurisdictions.  This erosion of the tax base decreases a community’s ability to collect tax 

revenues sufficient to fund the desired level of public goods and services.  Harris and 

Shonkwiler (1997) propose that the economic strength of rural communities can be 

enhanced by the creation of expanded retail facilities.  

LOST Popularity

Another increasingly popular option for local sales tax revenues are local option 

sales taxes (LOSTs).  Not only do LOSTs help alleviate the issue presented above, they 

are also a popular alternative to increasing property taxes.  As Lewis (2001) pointed out, 

municipalities have been increasingly attempting to diversify their revenue base, due to 

the unpopularity of the property tax coming in the form of a lump-sum payment.   In 

contrast, a sales tax is paid over time.  Jung (2001) found that communities imposing 

LOST had lower property taxes and were more likely to increase their general 

expenditures.  

In the pursuit of new or increased revenue sources some communities establish 

land uses (zoning ordinances) based on the net tax revenues they will generate for the 
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city.  This process was termed land fiscalization by Kotin and Peiser (1997).   Lewis 

(2001) found that sales tax revenues are the leading motivation for land use decisions and 

that, specifically, retail development is the most favored land use.  

Schrag (1998) contends that through land fiscalization, municipalities court

relatively low-paying retail businesses (i.e. discount retailers) to locate within their 

community.  They choose these companies over other potential employers, even those 

which can offer better jobs to the community residents, such as those in manufacturing.  

The preference for retailers is driven by the desire to maximize sales tax revenue.

The focus on retail development poses several problems.  The attempts made by 

local officials to be overly generous regarding retail development zones implies that other 

land uses, such as housing, will be underzoned.  Some argue that current zoning practices 

in suburban areas lead to the exclusion of minority and poorer residents.  Others argue 

that current land use regulations restrict the rights of property owners and disrupt real 

estate markets, making quality housing less affordable.  Almost all of the literature in this 

area agree that current zoning to encourage retail development excludes multi-family 

housing (Flesichmann 1989).

Additionally, as Lewis (2001) points out, municipal policy makers’ attempts to 

attract retail development are often in vain.  A retail tax base, or retail activity on the 

consumer level, is not going to just occur within a community based on local government 

incentives for retailers (rerouting traffic, etc.) or their land use decisions.  Retailers are 

more likely to select given locations regardless of local government intervention.  The 

problem that lies therein is the relatively fixed amount of regional retail sales.
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Therefore, local governments are left to compete for tax revenues to provide 

public goods efficiently, in an effort to attract new residents and retain the existing.  This 

problem of interjurisdictional competition, where residents “vote with their feet” in terms 

of which towns they choose to live in and shop in, leads to local governments fighting for 

their share, or more than their share, of the regional sales tax base.

Chervin, Edmiston, and Murray (2001) contest that an important trend that has 

likely affected the interjurisdictional migration of the sales tax base among communities 

is the rapid growth of large retailers, discounters, and shopping malls.

Figure 1 helps clarify how the above literature is connected.  Discount retailers, 

the subject of this analysis, play an important role in local and regional economies.  This 

analysis aims to specifically look into the role of discount retailers in rural areas.

As rural areas struggle to find tax revenues, recent studies point out that the local 

option sales tax has become a popular option (Rogers 2004), as have land fiscalization 

policies (Lewis 2001).  Discount retailers have often been found to lie at the heart of 

interjurisdictional competition for tax revenues, due to their effect on sales tax 

collections.

This analysis incorporates issues from several of these literature areas, 

specifically discount retailers and their effect on a local economy in general, local option 

sales taxes, and the effect of both in rural areas.
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III. Overview of Big Three Discount Retailers and LOST in New York

Big Three in New York Communities 

Focusing on the State of New York offers advantages. The number of discount 

retailers operating within its borders is one of the highest in the nation.  Additionally,

New York State tracks sales taxes by point of collection, even at the local level.1 There is 

special focus on rural areas which are often ignored, mostly due to lack of community

level data, and New York State has one of the highest numbers of citizens living in rural 

areas.2  The analysis will highlight the impact on rural communities when a large 

discount retailer opens.

The period 1990-2002 was chosen for the study based on tax data availability.  In 

2002, New York State had the following breakdown of discount retailers:  Wal-Mart and 

K-Mart were almost even with 84 and 82 stores, respectively, while Target operated 36 

stores. 

There are 1294 municipalities in the State of New York.3  Availability of sales tax 

collection data excluded some communities from this study.  Sales tax revenues were 

obtained for each community from the New York State Office of the State Comptroller 

for the period 1990-2002.  273 communities listed on the Report of Government Finance 

1 Most states do not track sales taxes by point of collection at the local level.
2 A rural area is defined as an area with a population density less than 1,000 persons per square mile (U.S. 
Census), not included in a Metropolitan Statistical Area (Office of Management and Budget), or having an 
urban-influence code between 4 and 9 (U.S. Department of Agriculture).    
3 All incorporated communities, those with a tax-collecting local government, are characterized as a city, a 
town, or a village in New York State.  Communities have been classified as such according to historical 
factors, as with other older states. Cities and towns are independent areas, while villages are, often densely 
populated, areas within a town.  Although one community may be separated into both a city and a village 
(such as Batavia, NY) or a city and a town (such as Binghamton, NY), and thus reported separately on the 
New York State Special Report of Government Finances, for the purpose of this analysis it makes sense to 
count both together as one economic municipality, summing their revenues and expenditures.  Therefore, 
although there are a total of 1525 separate reporting municipalities, only 1294 of them appear as separate 
“dots on a map.”



12

never reported any sales tax collections during this 13-year period and were thus omitted.  

Another 371 were also omitted due to missing data.4  This brings the total number of 

New York communities included in the study to 650.  Over the 13-year period, this 

accounts for 8,450 time-series, cross-sectional community-level observations.  Of these 

650 towns, 74 have one or more discount retailers in operation during at least a portion of 

the study period.  For the county-level analysis, the 5 counties which include New York 

City are omitted.5  The remaining 57 counties are included, accounting for 741 time-

series, cross-sectional county-level observations.

LOST policy in New York

New York State currently imposes a 4.25% sales tax.6,7  State policy determines 

the extent of autonomy granted to local jurisdictions regarding LOST.  All counties and 

communities are authorized to impose LOST, but the aggregate rate is not to exceed 4% 

for any municipality.8

The 5 counties that comprise New York City determine their LOST rates 

collectively as a city.  In 2005, only 1 of the 57 remaining counties does not impose a 

LOST.  Only one county imposes the maximum rate of 4% (Albany).  57% impose a 

3.5% rate and 34% impose a rate of 3%.  24 communities impose LOST, although a total 

4 There is no systematic reason for missing data.
5 New York City, and the counties it comprises, are omitted because they are not representative of an 
average city or counties in New York State.  They are economically and geographically different from the 
rest of the State.
6 .25% expires at the end of May 2005
7 States neighboring New York do not impose LOST
8 Sales taxes in New York are determined by New York State Consolidated Law Services, Article 28, 
Section 1101 et seq.  The values for tax rates used in this analysis were acquired from New York State 
Department of Taxation and Finance Publication 718-A.
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of 36 have utilized it at some point since the statewide institution of sales taxes in 1965.  

58% of the communities currently imposing LOSTs impose a rate of 1.5%.  

A special vote can eliminate the 4% maximum county/community rate. For 

example, Nassau and Suffolk counties themselves impose a 4.25% rate.  This also implies 

that a county imposing a high rate doesn’t necessarily infringe, at least legally, on the 

ability of the communities within its borders to impose at the municipal level.    The 

community of Fulton imposes a 4% rate in addition to the 3% imposed by its county and 

the 4.25% state rate.  

By studying New York State, this analysis further enhances ideas presented by 

Stone in the most closely related study.  LOST policy in Iowa, the focus of Stone’s 

analysis, allows LOST within part or all of a county jurisdiction with voting held on a 

county-wide level.  New York LOST policy allows for voting and imposition at both the 

county and municipal level.  Therefore, a study of cross tax elasticities between the 

county and municipal rates can be performed here, which was not possible with Stone’s 

analysis.

Rogers (2005) contends that establishing a connection between local policy 

choices and community network characteristics is a potentially important aspect policy 

analysis, especially for rural communities.

Retail Market Areas

Following the typical approach, a twenty-mile radius was drawn around each 

discount retailer town to find all the communities in the retail market area (Stone 2001).  

A large percentage of the 650 communities in the study were within 20 miles of a 
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discount retailer for most of the study period.  Figure 2 shows the decrease in the number 

of communities outside the market area of a discount retailer and the increase in those 

near more retailers over the study period.  

The number of communities within 20 miles of 5-9 discount retailers has 

increased dramatically over the sample period, from roughly 60 communities to nearly 

200.  Although most of the communities were within 20 miles of 1-4 discount retailers, 

the number of communities in this group fell by 120 over the sample period.  1995 

appears to be a significant year.  The number of communities with 0 discount retailers 

within 20 miles tapers off, as no stores were opened in “new” areas after 1995.  Instead,   

discount retailers seem to be opening more stores in areas already serviced by discount 

retailers, as the number of communities within 20 miles of 14+ discount retailers 

increases.

IV. Empirical Specification

Endogeneity Test

The relationship of interest is that between total sales tax collections9 and the 

number of discount retailers that exist within proximity.  If discount retailers base their 

location decisions on an existing trend in sales tax collections, the empirical analysis 

would be undermined.  The resulting estimates would not be informative about the 

impact of discount retailers on retail sales tax collections due to the endogeneity of 

locational choice to the dependent variable of interest.

9 TaxRate)LocalSalessTaxRateCountySalesTaxRate(StateSalesRetailSalesCollectionSalesTax ++∗=
Data obtained from New York State Comptroller.
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To address this issue, an endogeneity test similar to that of Hicks and Wilburn 

(2001) and Franklin (2001) is performed.  First, the income and sales tax collection 

growth rates for towns with no discount retailers and those with discount retailers were 

compared for the period of time covered in the study.  They were virtually the same. 10

Second, a logit model was constructed with a dummy variable for the decision to 

locate (1) or decision not to locate (0) in community i in year t as the dependent variable.  

This was tested on a constant and the one and two-year lagged income and sales tax 

collection growth rates.11  Results are reported in Table 3.  Neither coefficient estimate 

was significant in any of the specifications, suggesting that income and sales tax 

collection growth and lagged growth measures have no significant effect on the decision 

to enter a market area.12  Hicks and Wilburn (2001) suggest that discount retailers 

location decisions depend more on rival locations.  In any case, endogeneity bias of the 

focal relationship does not appear to be a concern.13

Fixed-Effect Specification

An estimation utilizing sales tax collections or a related measure would need to 

capture effects that are both time-specific, such as sales tax rates and income, and time 

10 Sales tax collection one and two-year lagged growth rates were 9.62% and 9.82% (no discount retailer) 
and 8.14% and 8.67 (with discount retailers).  Income growth rates were 3.28% and 3.39% (no discount 
retailer) and 4.04% and 4.11% (with discount retailers).
11 Results are reported assuming a normal distribution.  Results were robust assuming binomial or negative 
binomial distributions.
12 Longer lag periods could be explored to determine whether a “pre-program dip” exists. (Heckman and 
Smith 1999)
13 A test was also performed to account for the possibility of sales tax rates being endogenous to sales tax 
collection growth.  Table 4 reports the results of this test.  There was no statistically significant relationship 
between the sales tax rate on the municipal level, county level, or the two combined and sales tax collection 
growth over the past three years.
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invariant, such as the area of the county or community.  A model similar to the following 

could be used.
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where y is estimated separately as either annual sales tax collections in real dollars14 or 

the pull factor for a county or community i in time t.15  Following Stone (1995), Harris 

and Shonkwiler (1997), and others, the pull factor (PF) is calculated as

[PFit] = per capita sales tax collectionsit / regional per capita sales tax collectionsit.

Region is defined as contiguous counties for the county-level analysis and the 

sum of all communities within the county and contiguous counties for the community-

level analysis.16 Cit is a vector of k1 county or community variables that vary over time 

and place; Ui is a vector of k2 county or community-specific variables that are invariant 

over time. T is the total number of time periods and N is the total number of 

communities or counties.

An estimation such as this including many county or community-specific 

variables has an error structure containing a fixed, county or community-specific term, εit

= λi +υit.  To account for this, the following fixed effects model is used,    

14 The dependent variable sales tax collections is expressed in levels because it is assumed that policy 
makers at the community level are most concerned with real dollar values.  Further analysis will consider 
sales tax collections per capita and the log percentage change in sales tax collections.  The pull factor 
measure currently gives insight into per capita effects.  
15 Basker (2005) tests for unit roots in county-level employment data by running a Dickey-Fuller test on 
each county series separately.  Following Basker, a Dickey-Fuller test was run separately on each county 
sales tax collections series.  By construction, a 5% or less rejection rate is expected at the 95% confidence 
level if the series contains unit roots.  The rejection rate was 16% for these series suggesting that county-
level sales tax collection data does not contain unit roots.
16  Region is defined as it is above as a starting point.  Later results consider an alternative region definition, 
the Bureau of Economic Analysis’s Economic Areas.
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The equation cannot be estimated in the form outlined by equation (2), as the time 

invariant variables in the vector Ui can’t be separated from the community-specific error, 

λi .  Therefore, equation (2) is estimated as 
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Equation (3) is estimated in Stage One.  In Stage Two, the estimated coefficients 

for the county or community fixed effects, *iλ , are used as the dependent variable in an 

estimation on Ui, the vector of k2 time invariant variables.17 This specification provides 

insight into the effect of both the time-changing and time-unchanging county and 

community-specific variables on sales tax collections and sales tax pull factors.18

Variables included in vector Cit and Ui for both the county and community-level 

analyses are outlined below. C indicates county and M indicates municipal.

17 Similar to that outlined by Hsiao (1986).
18 Descriptive statistics for these variables can be found in Table 2.
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Time Variant Factors:

tCC = f ( BIG3C , POPC , CORATEC , RECC , HWMILESC , URATEC , INCOMEC , ESTC )

tMC =  f ( POPM , MRATEM , CORATEC , RECM , HWMILESM , INCOMEC )

Time Invariant Factors:

CU = f ( AREAC , COLC , AIRC , UINFC , TYPEC )

MU = f ( AREAM , COLM , AIRM , UINFC , TYPEC )

Data Description and Sources

� Y = sales tax collections or sales tax pull factors, MRATE = municipal sales tax rate, 

CORATE = county sales tax rate, REC = municipal recreational expenses, and AREA

= land area, in square miles

(county and municipal data; Source: New York State Comptroller)

� BIG3 = number of the big three discount retailers, by county and municipal location

(Source: corporate websites / calls to the individual stores)

� POP = population, INC = per capita income in real dollars, and URATE = annual 

unemployment rate, (county and municipal data; Source: author estimation based on 

decennial U.S. Census values)

� HWMILES = total local and state-owned highway miles within the jurisdiction

(county and municipal data; Source: New York State Department of Transportation)

� EST = number of retail establishments

(county data; Source: County Business Patterns)

� COL = number of colleges and AIR = number of airports

(county and municipal data; Source: www.epodunk.com)
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� UINF = urban influence code dummy variables and TYPE = typology code dummy 

variables

(county level data; Source: Economic Research Service/U.S. Department of

Agriculture)

These variables were chosen based on previous research dealing with sales tax 

collections.  Snodgrass and Otto (1990), for example, used the municipal sales tax rate, 

income, population, retail employment, and other community attributes when modeling 

sales tax revenue.  Gruidl and Andrianacos (1994) used income, the unemployment rate, 

the number of retail establishments, and the numbers of discount retailers to model pull 

factors.  

The estimated coefficient on population (POP) is expected to have a positive sign.  

It is assumed that as more people live in a community, sales will increase and sales tax 

collections and pull factors will increase.  County per capita income (INC) is expected to 

be positively related to sales tax collections and pull factors.  As residents have higher 

incomes, we would expect them to spend more.  Similarly, the estimated coefficient on 

the unemployment rate (URATE) is expected to have a negative effect.  Including 

variables such as per capita income and the unemployment rate also act as additional 

controls for macroeconomic fluctuations during this time period (Chervin, Edmiston, and 

Murray, 2000).

Municipal and county retail sales tax rates (MRATE, CORATE) have ambiguous 

relationships with sales tax collections.  They could have a positive effect on tax 

revenues, since as the tax rate increases, tax revenues could also increase.  This would be 
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consistent with Snodgrass and Otto (1990).  On the other hand, if tax rates in a 

community are too high, consumers may choose to make their purchases in a community 

with a lower tax rate, thus decreasing tax revenues. This would also cause a negative 

effect on pull factors.19

Recreational spending (REC) is expected to have a positive estimated coefficient, 

as this would indicate a tourist area.  Land area (AREA) and the number of colleges 

(COL) and airports (AIR) are also expected to be positively related.  Several outcomes 

exist for the highway miles (HWMILES) relationship.  For those communities without

discount retailers, more highway miles would allow easier access to other areas with a 

discount retailer, having a negative effect on sales tax collections.  For those communities 

with a discount retailer, more highway miles could facilitate patronage from neighboring 

community citizens (producing a positive effect on sales tax collections) or they can 

allow easier access to competitor stores (producing a negative effect).

The effect on sales tax collections and pull factors based on the area’s 

classification as a metro area, or its proximity to a metro area, are captured by the urban 

influence code (UINF). 20  A lower value represents a more urban area, while a higher 

value represents a rural area.  Therefore, a negative estimated coefficient sign would 

mean that a more rural area would be expected to have lower tax collections and less pull, 

while the opposite exists for an urban area (as in Stone 1995).  We could expect a 

negative sign if rural areas are associated with relatively less businesses and less 

spending in terms of population.  We would expect a positive estimated coefficient if, as 

19 Often referred to as “the border city problem.” See Fisher (1980)
20 See Appendix Tables E.1 and E.2 for a full description urban influence and typology codes
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Lewis (2001) stated, urban centers are attracting an increasingly unfavorable proportion 

of regional sales tax revenues.

Three county typology code (TYPE) dummies represent whether the county has 

been designated as dependent on manufacturing (MANF), services (SERV), or federal or 

state government (FSGOV).  The two remaining dummy variables indicate whether the 

county has been designated as a population loss county (POPLOSS) or a housing stress 

county (HOUSE).  Negative estimated coefficients are expected for each of these dummy 

variables. 

Lastly, the impact of the number of retail establishments (EST) is also ambiguous.  

A positive coefficient would suggest that more businesses mean more sales and more tax 

revenues.  An alternative explanation suggests either inefficiency in the retail sector or 

that there is an optimal number of retail establishments for a given level of population 

and exceeding that level simply leads to increased competition and prices so low that tax 

revenues decrease.

V. Results

County-Level Analysis

Table 5 presents the results for the county-level analysis.  In stage one, the 

coefficient for the variable of interest, the number of discount retailers, is highly positive 

and significant in both cases, supporting the opinion that discount retailers play a large 

role in local and regional economies.  The estimated coefficient for the BIG3 variable 

suggests that the presence of an additional discount retailer itself, as well as the rest of the 

retail outlets it attracts through its role as an anchor store, increases predicted sales tax 
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collections at the county level by $10,093,26021, which represents 20% of the overall 

county mean.  Each additional retailer increases the county’s share of regional sales tax 

collections by an estimated 1.7%.  

The tax policy implication given the estimated coefficient of the county tax rate 

variable is that consumers are still on the left-hand side of a sales tax Laffer curve. This is 

consistent with Snodgrass and Otto (1990).  The results suggest that an increase in county 

tax rates will increase sales tax collections, as well as be positively related to a county’s 

pull on regional sales tax collections over time.  However, given the magnitude of the 

estimated coefficient ($3,889,791), increasing the county tax rate by 1% has less of an 

effect on sales tax collections than the presence of an additional discount retailer.

As expected, the estimated coefficients for population, recreational expenditures, 

and income are positive and significant in at least one of the specifications.  The presence 

of a college has a small, yet unexpected, negative estimated coefficient in the collections 

estimation.  Highway miles are positively associated with sales tax collections and sales 

tax pull factors, perhaps due to providing better access to a county’s retail outlets.22

In both estimations, the negative coefficient for the number of retail 

establishments suggests that increased competition decreases a county’s sales tax 

collections and sales tax pull factors.  In stage two, the estimated coefficient for urban 

influence codes is negative for sales tax collections, suggesting that more influence from 

an urban area increases sales tax collections.  The estimated coefficient for designation as 

a housing distress county is also negative.  However, both estimated effects would have 

little impact.

21 Stone (1995) states that an average Wal-Mart store is expected to have yearly sales of $20,000,000.
22 Another possible explanation could be that highways are built in counties and communities where the 
bulk of retail activity exists.  Potential endogeneity will be explored in future analysis. 
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Community-Level Analysis

The analysis is first performed for all communities.  Then, to account for potential 

unobserved variable bias, three separate estimations are performed.  The three groups 

include communities that (i) did not have a discount retailer, (ii) had a discount retailer, 

and (iii) did not have a discount retailer at the beginning of the sample period but gained 

one throughout.  Additionally, the variables 20MILES, representing the number of 

discount retailers outside the community but within a 20-mile radius, and 20MINS, 

representing the number of discount retailers outside the community but within a 20-

minute drive, are added to each estimation separately.  

As stated earlier, previous literature uses drive distance to define market areas.  

Drive time is also considered because it can be assumed that consumers also care about 

minimizing costs associated with travel and time.23  The impact of a discount retailer 

outside a community greatly depends on the road network between the two.  The travel 

and time costs are highly different if there are 15 miles of unimpeded highway versus 15 

miles of crowded city streets or a body of water.  The results are reported in Table 6 for 

all communities, Table 7 for communities with a discount retailer, Table 8 for 

communities without a discount retailer, and Table 9 for communities that experienced 

the opening of a discount retailer for the first time during the sample period.

The results show again that discount retailers increase sales tax collections.  In the 

estimation for communities that did not have a discount retailer at the beginning of the 

sample period but did at the end, hereafter referred to as those with “changing status”, the 

opening of a store is associated with an increase in sales tax collections of $329,972, 

23 Drive time is calculated using the software Microsoft Office Streets and Trips.
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which is 12.5% of the mean for this subsample.24 BIG3 is also positively associated with 

pull factors.  It is estimated that communities in general with discount retailers are able to 

capture an additional 1.79% of the regional sales tax collections.  Those with changing 

status were estimated to have increased their pull on regional sales tax collections by 

3.645%.  25

A higher county sales tax rate is predicted to increase tax collections and pull 

factors in communities, as in the county-level analysis.  Although the county sales tax 

rate coefficient is not statistically significant in the overall community analysis, its 

estimated coefficient is positive in the remaining estimations.  The county tax rate also 

has a positive estimated coefficient in the pull factor estimation for communities with 

changing status.  However, for communities without a discount retailer, higher county tax 

rates are negatively associated with the share of regional collections over time, indicating 

that without extensive shopping facilities, consumers are more likely to be deterred by a 

higher sales tax rate.

Interestingly, the municipal sales tax rate estimated coefficient is significant in 

only the estimation for communities with changing status.  In general, this is consistent 

with Wong’s (1996) finding that the municipal tax rate is not related to retail sales per 

capita.  It also indicates that the only communities that have been able to truly use 

municipal sales taxes (LOST) as an expanded source of revenue are those that recently 

had new discount retailer stores open their doors.26,27

24 BIG3 was omitted from the “with” estimation to make this estimation more comparable to the “without” 
estimation.
25 The difference between the two could be attributed to the attractiveness of shopping in a “new” store.  
Additionally, most of the openings during the sample period were Wal-Mart store openings.  Wal-Mart is 
the largest of the three retailers included in this analysis.
26 Again, endogeneity of sales tax rates may be an issue here.  Mu and Rogers (2005) analyze the 
relationship between LOST and fiscal decentralization.  They address the endogeneity issue of whether 
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There is a clear distinction between communities with and without a discount 

retailer for the variables representing highway miles and the number of discount retailers 

nearby (in terms of both drive distance and travel time).  For communities with a discount 

retailer, proximity of competitors and highway miles are negatively related to tax 

collections but the effect on pull factors is unclear.  The opposite is true for communities 

without a discount retailer – highway miles are positively associated with tax revenues 

but negatively associated with pull factors.  Discount retailer proximity is positively 

associated with both sales tax collections and pull factors.

A possible explanation for this outcome could be that especially in more rural 

areas, which in New York are virtually the only places without a discount retailer28, 

having a discount retailer nearby or within reasonable driving distance could make living 

there much more attractive to potential residents.  Attracting more residents could offset 

the decrease in sales tax collections due to a large competitor being close by.

As expected, POP and INCOME have positive estimated coefficients in 

essentially each estimation, for both outcome measures.  Different from the county-level 

analysis, recreational expenditures now have a negative coefficient with respect to sales 

tax collections, with the exception of the estimation for those communities with changing 

status.

Many of the estimated coefficients for the variables in the second stage are 

insignificant or have ambiguous results.  The estimated coefficient for AREA is 

states with LOSTs are inherently more decentralized by running a logit model which includes historical 
revenue and expenditure values. Their results greatly reduce LOST rate endogeneity concerns, as the 
historical values are statistically insignificant in their model.
27 Worded otherwise, these communities imposed LOST simply because they had something to tax.  
28 See Figure 4 for a map of the location of discount retailers in relation to Interstate Highways and metro 
areas.  
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significant in only the estimation for communities with changing status, where there is a 

positive association. COLLEGE is positive and significant only for communities without 

a discount retailer.  Several of the county typology codes (MANF, FSGOV, HOUSE, and 

POPLOSS) are negative and significant, as expected, in several estimations.

UINF has a negative and statistically significant estimated coefficient, as 

expected, in several of the estimations.  Since lower numbers are assigned to more urban 

areas, this indicates that higher sales tax collections are associated with more urban 

influence.

VI. Estimation Extensions 
The empirical specification can be extended in numerous ways.  They include 

exploring the implications of rurality, the effect of LOST on property tax collections, the 

effect of decomposing the proximity variables into 5 and 10 mile or minute increments, 

utilizing an alternative estimation technique to test for robustness,  a preliminary 

investigation into tax rate elasticities, and defining a “region” with the Bureau of 

Economic Analysis’s Economic Areas.  All extensions and their results are presented 

below.

Estimations for Rural Communities 

The estimation is extended to further investigate the implications of rurality and 

having less urban influence.  Rural communities are often overlooked in analyses and 

many of these communities could greatly benefit from new revenue sources to fund 

public goods.  Rogers (2004) finds that communities on the urban fringe appear to have 
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different abilities to use LOST policy to generate additional revenues compared to their 

metro and rural counterparts.  Additionally, she finds that places with little urban 

influence (i.e. rural areas) may have a greater ability to use LOST rates to increase 

additional revenues.  

Because LOST, discount retailers, and the combination of the two may have a 

highly different impact in rural communities, these estimations look only at communities 

where most of the community is classified as highly rural and then, further narrowing the 

scope, only those without a discount retailer.  The results are reported in Tables 10 and 

11.

In Stage One for all rural communities, the variable of interest BIG3 has an 

unexpected negative estimated coefficient, which is inconsistent with previous results.  A 

possible explanation for this is that of the 62 communities included in the rural sample, 

only one community had a discount retailer throughout the entirety of the sample period.  

Only three others had discount retailers open during the sample period.  This small 

number may cause bias in the estimated coefficient.  

An alternative explanation is that, and this is unknown since the number of retail 

establishments data has only been calculated at the county level, a discount retailer in a 

rural community may be so detrimental to the pre-existing small stores (by pricing their 

products much lower than these small stores are able) that there is a general decrease in 

sales tax revenues.

The county tax rate, CORATE, and recreational expenditures, REC, coefficient 

estimates are again positively significant in the sales tax collections estimation.  The 

municipal tax rate, MRATE, is positive and significant in the estimation for all rural 
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communities.29  This is important since, as explained previously, many rural communities 

could benefit greatly from alternative sources of revenue and at this time not many rural 

communities have implemented a local option sales tax.

The number of highway miles in the community, per capita income, and 

recreational expenditures are found to be positively related to both sales tax collections 

and pull factors, as in previous estimations.  Population again has a positive estimated 

coefficient in the estimation for only communities without a discount retailer, but an 

unexpected negative estimated coefficient in the estimation for all rural communities.  

The coefficient estimates for 20MILES is statistically insignificant.  This is 

consistent with Eathington and Swenson (2002) who found that in Iowa, the geographical 

distance from a Wal-Mart was statistically insignificant in terms of regional retail sales 

share for a rural, non-metro community. However, 20MINS  has positive estimated 

coefficients for sales tax collections in both estimations and is significant in terms of pull 

factors only in the estimation for all rural communities. 30  The same explanation as that 

proposed previously would apply here.  It is possible that due to the remoteness of these 

areas, consumers being able to drive to a discount retailer would increase the 

attractiveness of living there.

In the second stage, the estimated coefficient for the number of airports is both 

positive and significant for the estimations for both subsamples, implying that rural 

29 MTR is excluded from the estimation for rural communities without a discount retailer since no 
communities in this subsample imposed local option sales taxes.
30 There is a distinct difference between the coefficient magnitude and significance for drive time and drive 
distance in these estimations, inconsistent with previous estimations. A possible explanation is that based 
on the geographic remoteness of these communities (mountainous, highly forested {see Figure 4}) only 
11% of the discount retailers within 20 miles are within 20 minutes.  This is compared to 28% for all 
communities without a discount retailer and 20% for communities with a discount retailer.  This would 
have more impact on gross sales tax receipts than pull factors, as most areas within the defined region 
would be similar geographically.
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communities served by regional airports have higher sales tax bases.31 COLLEGE is 

statistically insignificant for sales tax collections in the estimation for all rural 

communities and unexpectedly is associated with a negative impact on pull factors over 

time.  

In the same estimation, AREA is negatively associated with both sales tax 

collections and pull factors.  Although it seems natural to assume that a larger community 

would have higher sales tax receipts, for rural communities, since population is already 

accounted for, an increase in area would just mean that residents are even more spread 

out geographically making it less likely that large shopping areas will open. 

Property Tax Estimation

Lewis (2001) states that due to the unpopularity of the property tax, municipalities 

have been diversifying their revenue base towards other taxes and fees, including local 

option sales taxes.  Whether this is the case for communities imposing LOST in New 

York is explored here.

Following Jung (2001) it is assumed that a prior year’s LOST collections are used 

to determine a current year’s property tax millage rate.  Specific LOST collection is not 

available, therefore, the municipal tax rate is introduced into the estimation as a lagged 

value. If the imposition of a LOST is being utilized as a viable alternative to raising 

property taxes, a negative sign on the estimated coefficient would be indicated.  Table 12

reports the results.

31 Urban influence and county typology codes were not included in this estimation due to the homogeneity 
of communities in the sample.
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Population, total local government expenditures, median home values, highway 

miles, the presence of a college, and urban influence codes are included as explanatory 

variables in this estimation and are all expected to have a positive relationship to property 

tax collections. The percent of the population classified as rural would be expected to 

negatively affect property taxes due to less retail and residential development.32

As expected, population, total municipal expenditures, median home values,

highway miles, and urban influence are positively associated with property tax 

collections.  The presence of a college has a negative coefficient estimate, as most 

colleges are not subject to property taxes.  The county tax rate and rural population 

coefficients are statistically insignificant.

 The estimated coefficient for the lagged municipal tax rate variable is negative 

and significant at the 10% level, suggesting that the imposition of a 1% LOST is 

associated with decreases in property tax collections of $63,171 (2.5% of the mean, 

approximately $5.70 per capita) in the State of New York.  This is consistent with Jung’s 

(2001) finding that per capita property tax collections in Georgia counties imposing 

LOST were $12 lower than in non-LOST counties.

Estimations Decomposing the Proximity Variables

Another way to extend the model is to again consider the number of discount 

retailers within 20 miles and within 20 minutes, but with the drive distances and drive 

times in incremental values.  Estimations, using the same explanatory variables and 

technique as in the previous estimations, were performed for communities with and 

without a discount retailer.  Tables 13 and 14 report the results for these incremental 

32 The estimation was performed using ordinary least squares (OLS) and, after positively testing for 
heteroscedasticity, White’s standard errors.
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value variables.  Other variables are omitted from the tables in an effort to conserve 

space, as there were no noteworthy changes.  

The results, in terms of which variables’ estimated coefficients were statistically 

significant and whether these variables were positively or negatively associated with the 

dependent variables, were identical for both outcome measures.  The results suggest that 

discount retailers outside the community33 but within very close proximities have no 

significant relationship to sales tax collections or sales tax pull factors. Only the rural 

community estimation produced a statistically significant estimate for the 0-5MILE

variable.  It suggests that a discount retailer outside of a rural community but within 5 

miles will decrease that community’s pull on regional sales tax collections by 6%.  

As the distance increases, there is a positive relationship, possibly due to 

urbanization effects.  This was the case for all subsamples and there was no significant 

distinction or trend between the 6-10 mile and 11-20 mile increments.  The only 

inconsistency with these results and the previous is for communities with a discount 

retailer.  In the prior estimations, another discount retailer within 20 miles from a 

community with a discount retailer of its own was associated with a negative impact on 

sales tax collections, as would be expected.  However, that negative effect does not show 

up here when the proximity values are decomposed.  

Estimation Utilizing an Alternative Estimation Technique

Heckman (1979) discusses a general model to deal with problems involving a 

treatment and an outcome.  In this study, the treatment is the presence of a discount 

retailer and the outcome is sales tax collections (or sales tax collection pull factors).

33 Except when aggregated across all communities
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Applying the general model developed by Heckman and discussed in Johnston 

and DiNardo (1997), the simplest way to model the effect of discount retailers in the 

communities in which they are located would be to fit the following model on the sample 

of communities with a discount retailer:

iii Xy 1εβ += (5)

 where y is sales tax collections and X is a vector of explanatory variables such as 

population and tax rates.  Since the sample in the above estimation is the group of 

communities with a discount retailer, it is not a random sample of New York 

communities, which may bias coefficients.  To correct for this, Heckman proposed a two-

step estimator utilizing a participation equation.

The participation equation, whether or not a discount retailer chooses to locate 

within the community, can be written as

),0( 0 >+= iii ZifT εγ 0 otherwise (6)

where Z is a vector of explanatory variables for discount retailer location choices.  A 

discount retailer will locate within a community if Ziγ > ε0i.

Heckman proposed to first run a probit model of the treatment on the vector Z to 

obtain estimates of γ/σ0, where σ0 is the standard error of ε0i .  Then, use these estimates to 

construct an omitted variable, sometimes called the Mills ratio,
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where φ is the standard normal density and Φ is its cumulative distribution function.  
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Lastly, run an ordinary least squares estimation on X using the estimated Mills 

ratio as an additional regressor, transforming (5) into
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Given the endogeneity test performed earlier in this analysis, where a discount 

retailer’s decision to locate was tested on sales tax collection and income growth rates 

and no association was found, those variables are excluded from Z.  Included in Z are the 

municipal tax rate, the county tax rate, population, recreational expenditures, the 

unemployment rate, highway miles, and the number of discount retailers outside the 

community but within a 20 mile radius.  Following Hicks and Wilburn’s suggestion 

(2001) that a discount retailer’s location choice depends largely on the location of their 

competitors, a dummy variable indicating a competitor already located within the 

community is also included in Z.  

As explained above, the results from this estimation are used to obtain estimates 

of γ/σ0, which were then used to construct the Mills ratio.  The Mills ratio is then used as 

an additional regressor in the estimation of sales tax collections, using the same 

explanatory variables that were used throughout the study.

For the purpose of comparison, the results from the two-stage, fixed effects

estimation (reported in Table 7) are also reported in Table 15.   The results are largely 

robust across the two estimation techniques.  The fixed effects model still seems most 

appropriate, however, due to the prominent county and community specific variables in 

this dataset.
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Preliminary Investigation of Cross-Tax Elasticities

An interesting extension of this analysis would be a thorough investigation of the 

cross tax elasticity between county sales tax rates and municipal tax rates for 

communities both with and without discount retailers.  Although a thorough investigation 

is beyond the scope of the current analysis, an initial estimation is included here.

Table 16 reports results from an estimation using the same explanatory variables 

and technique as the previous estimations, but extending the definition of sales tax rates.  

A two-stage fixed effects model is employed, with sales tax collections and pull factors 

regressed, separately, on the time-changing variables and fixed effects.  In stage two, the 

estimated coefficients from the fixed effects are regressed on the time-invariant variables.  

In addition to CORATE and MRATE used in the previous estimations, an 

interaction term between the two (INTRATE) is also included.  The value of including 

INTRATE, where MRATECORATEINTRATE ∗= , is to determine how the two tax rates 

interacting with each other affect sales tax revenues.  If the estimated coefficient for 

INTRATE is positive, as would be expected, the interpretation is that if both CORATE and 

MRATE are increased there will be an increase in total sales tax collections or the pull 

factor.  Furthermore, a larger increase in CORATE will amplify the effect of an increase 

in MRATE on sales tax collections.34

Consistent with the previous results, the estimated coefficient for CORATE is 

positive and statistically significant in all sales tax collection estimations except when 

aggregated across all communities.  It is also positive in the pull factors estimations, 

except for those communities without a discount retailer in which higher county sales tax 

34 Other variables are excluded from the table as there were no noteworthy changes.



35

rates are associated with lower pull on regional sales taxes over time.  The pull factor 

results are also consistent with the previous results.

The estimated coefficient for MRATE was largely statistically insignificant in the 

previous estimations and this, again, is the case.  MRATE was, however, positive and 

statistically significant previously for communities with changing status and is here, as 

well.  

Two discrepancies exist for MRATE estimated coefficients when INTRATE is 

added to the model.  In the sales tax collections estimation for communities with a 

discount retailer, the MRATE coefficient was previously insignificant and is now positive 

and significant.  The estimated coefficient is positive and represents almost 4% of the 

median sales tax collections in these communities.  This suggests that despite higher sales 

tax rates, consumers still choose to shop where they can take advantage of large discount 

retailers and the other retailers that usually open as a result.  This makes municipal sales 

tax rates a viable option for raising revenues in these communities, allowing them to 

increase sales tax revenues due to the discount retailer itself, the other retailers it attracts 

through its role as an anchor store, and from this additional revenue option.

Additionally, for rural communities35, MRATE previously had a positive and 

significant estimated coefficient.  Here it is still significant but has a negative association 

with sales tax collections.  This subsample estimation is also the only one where 

INTRATE is statistically significant.  For rural communities, county tax rates have a 

positive association with sales tax collections, while sales taxes imposed at the municipal 

level have a negative association.  The cross elasticity between the two is positive, 

35 Rural communities without discount retailers are omitted from this extension since no LOST are imposed 
within this subsample.
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implying that decreasing municipal sales tax rates will lead to an increase in overall sales 

tax collections in these communities. However, several counties in New York do not 

impose county sales taxes, so LOST would be more viable in these areas.

Since INTRATE was statistically insignificant in most of the estimations, another 

set of estimations were run to attempt to get further insight into the effect of a change in 

the sales tax rates in these communities.  Rather than using the variables CORATE, 

MRATE, and INTRATE, a rate representing the total sales tax rate, TRATE, is used, where 

MRATECORATETRATE += .

TRATE is positive and statistically significant in all of the sales tax collections 

estimations, again, except when aggregated across all communities.  This implies that 

increasing the overall tax rate, whether it be in the form of an increase in CORATE or 

MRATE as it makes no difference to consumers, will result in an increase in sales tax 

collections.  This is important because, as expressed earlier, it suggests that consumers 

are still on the upward-sloping side of a sales tax Laffer Curve and raising sales tax rates 

is still an option, although not necessarily the best, for raising sales tax revenues.  

An important distinction is that what has been identified here is best described as 

a short-run Laffer curve, as outlined by Buchanan and Lee (1982).  There are two 

assumptions in their model:  that government always seeks to obtain additional sales tax 

revenues and that political decision makers have lives shorter than the time it takes for 

the private sector to adjust to a change in taxes.  They identify both a short and long-run 

Laffer Curve, where in the short-run an increase in the sales tax rate leads to an increase 
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in sales tax revenues.  They also identify a political equilibrium which is the peak of the 

short-run curve, as well as where it intersects the long-run curve.36

The intersection is still on the upward-sloping side of the long-run curve.  

Therefore, Buchanan and Lee point out that anyone arguing that government would never 

(or should never) operate on the downward-sloping side of a Laffer curve has adopted a 

short-run attitude.  Anyone arguing that a decrease in the sales tax rate will lead to 

supply-side responses and increasing sales tax collections has adopted a long-run 

perspective.

What has been identified in the analysis in this chapter is a short-run Laffer curve, 

where increasing sales tax rates will lead to increases in sales tax collections.  In the long-

run, however, discount retailers and consumers alike will adjust to the tax increase.  

Discount retailers may choose to locate in “edge cities,” those just outside communities 

with higher sales tax rates, if they feel higher sales tax rates are detrimental to their 

business.  Therefore, in the long-run communities may not be able to capture the increase 

in sales tax revenues from discount retailers found in earlier estimations if sales tax rates 

are increasingly high.

Defining Regions Using Economic Areas

In the previous estimations a region is defined for the pull factor analysis as 

contiguous counties.  For the county level analysis, countyi’s region is defined as those 

that share a border with it.  For the community level analysis, communityi’s region is 

defined all those communities within the same county and within counties sharing a 

border.  Using the Bureau of Economic Analysis’s Economic Areas to define a region is 

36 Agglomeration benefits will also play a role.
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an alternative definition.  A map of these statistical areas for New York is given in Figure 

5.  

The Economic Areas consist of a “node”, a metro area that serves as a center of 

economic activity, and the surrounding counties that are economically related to the node.  

Since the labor force of an economic area should work and reside within that area, 

commuting patterns are the main factor used in determining which surrounding counties 

are included in the area of a given node.

There are both advantages and drawbacks associated with using these areas as a 

definition for the pull factor ratio.  The advantage is clear.  The BEA states that data for 

these areas are used by government agencies for planning public-sector projects and 

programs, by businesses in determining plant locations and sales territories, and by 

university and other research groups for doing regional economic studies.  

However, with this definition, contiguous counties are often separated and 

proximity is obviously very important in determining consumer shopping patterns.  The 

results for the pull factor estimations using BEA Economic Areas are presented in Tables 

17-21.  Differences between these results and those estimated with the previous pull 

factor definition are discussed below.  

For the county level analysis, there are few differences.  HWMILES and EST

coefficients were positively and negatively significant, respectively, with the previous 

pull factor definition.  Neither is significant here.  The biggest difference occurs with the 

INCOME variable coefficient, which was positive and significant previously but 

negatively significant here.  For the estimation testing all communities, the only 
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difference is that in the Economic Area estimation the number of discount retailers within 

20 minutes coefficient is now negative and significant.

For communities with a discount retailer, several coefficient estimates that are 

statistically significant when analyzing contiguous counties are not when the analysis 

uses Economic Area levels.  This is the case for REC, INCOME, 20MILES, 20MINS, and 

HOUSE coefficients.

For communities without a discount retailer, there are more discrepancies.  Again, 

several variables which were statistically significant with the previous pull factor 

definition (INCOME, 20MINS, COLLEGES, and AIRPORTS) are not significant in this 

estimation.  Several coefficients that were not significant with the prior definition are 

significant now that the analysis is expanded geographically.  Three county typology 

code coefficients are now, as expected, negative and significant (MANF, SERV, and 

HOUSE).  REC and, unexpectedly, POPLOSS, are now both positive and significant.  

The most significant changes are those for the sales tax rates variables.  The 

county tax rate coefficient was negative and significant when the pull factor definition 

only included contiguous counties.  Now, when expanded to include the entire Economic 

Area, it is positive and significant.  The municipal tax rate coefficient, which was 

previously insignificant, is now positively significant.  

For the “all rural” estimation the only differences that exist are the estimated 

coefficients for REC and INCOME.  Both were positive and significant previously and 

are now both are insignificant.  Also, 20MILES, which had an insignificant coefficient 

previously, is now positively significant.  Looking at only the rural communities without 

discount retailers, there are only two differences.  The CORATE coefficient, which was 
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previously insignificant, is now negative and significant.  The HWMILES coefficient is 

significant with both definitions of pull factor, but the sign of the estimated coefficient 

changes.  When considering only contiguous counties, highway miles are estimated to 

have a positive association with pull factors.  When considering the entire Economic 

Area, the number of highway miles in a rural area without a discount retailer has a 

negative association.

Lastly, for those communities where the number of discount retailers has changed 

there are, again, few differences.  BIG3 and CORATE coefficients, which were both 

previously positive and significant, are not insignificant.  The COLLEGES coefficient,

which was previously insignificant, is now positively significant.

In summary, the only clear trend that exists with the switch between the two 

definitions is for INCOME and REC.  Both of these variables were positively associated 

with sales taxes in most cases when considering only contiguous counties and on a more 

expanded level have no significant impact on pull factors. REC, specifically, would be 

expected to “wash out” when considering a larger area, as a tourist attraction is highly 

localized.

VI. Conclusions and Additional Research
Discount retailers and their impact on tax revenues, wages, and locally-owned 

businesses within communities have been the topic of much recent debate.  Other studies 

focusing on the role of discount retailers, for example, have analyzed the effect on 

employment and the overall number of retail establishments.  This paper uses a thirteen-

year cross-section time-series analysis to investigate the impact of discount retailers on 
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regional economies, specifically in the context of sales tax collections.  To consider the 

competitive environment, the combined effect from the Big 3 discount retailers is 

analyzed. Potential endogeneity of the location decision is tested.  A two-stage, fixed-

effect estimation technique is used, with the Heckman Correction Method as a check for 

robustness.  

The results are particularly relevant for local policymakers wishing to increase 

their sales tax collections to better fund public goods within the community.  The results 

suggest that having a discount retailer located within a community has a strong positive 

association with sales tax collections and sales tax collection pull factors.  Sales tax 

collections in communities with discount retailers are diminished if there are other 

discount retailers nearby.  This is consistent with previous research.  In contrast to 

previous research, however, my results are ambiguous regarding the impact on 

communities without a discount retailer but close to a community with one.  

Also relevant to local policymaking decisions are the sales tax rate results.  In all 

estimations an increase in sales tax rates is associated with an increase in sales tax 

revenues, identifying that the communities included in this study are on the upward-

sloping side of a short-run Laffer curve.  LOSTs appear to be a viable option for raising 

sales tax revenues, but only for those communities with a discount retailer or, 

specifically, for rural communities without high county tax rates.  This builds on 

Rogers’s (2004) discussion of urban fringe tax elasticities.

 LOSTs show a negative association with property tax revenues, suggesting they 

can and are being utilized as a substitute for raising property taxes.  Specifically relevant 
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for rural communities are the results suggesting that when these communities are serviced 

by a regional airport there is a positive association with sales tax collections.  

This research can be extended in many ways.  A straightforward extension 

includes calculating a spatial weighted average to compare the effect of each 

community’s tax rate in relationship to the tax rates of surrounding communities.   An 

analysis of local land fiscalization would also be interesting given adequate data.  As 

Lewis (2001) pointed out, fiscal motivations are often assumed to shape local 

government’s land use decisions.  Further study, for instance, could analyze the role of 

discount retailers in community zoning decisions.

Additionally, cities often offer incentives to attract discount retailers, such as tax 

breaks and new traffic patterns to accommodate customers.  Further analysis could test

whether these incentives pay for themselves with higher tax revenues.
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Safer Hurricanes and the Role of Mitigation: 
Analyzing Population Growth 

and Damage in Coastal Counties

Abstract

The rising cost of hurricanes and other natural hazards has long been a concern to 

policy makers and insurance industry executives.  A heretofore over-looked explanation 

of rising hurricane damages is offered here – improved hurricane forecasts and more 

extensive evacuations have made hurricanes less lethal and reduced the full cost of living 

on hurricane prone coasts, paradoxically increasing damages.  A time varying measure of 

hurricane lethality is estimated for land falling hurricanes in the mainland U.S. between 

1940 and 1999, showing the decrease in fatalities over time.  Results from this estimation 

are used to confirm that the reduction in fatalities in coastal counties has played a role in 

increasing both population and hurricane damages in these areas.  The significant role 

that mitigation can play in reducing damages is also analyzed.
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I. Introduction
The United States has seen the costs of natural hazards and disasters rise 

dramatically over the past several decades.  The costliest natural hazards in U.S. history, 

the Northridge Earthquake and Hurricane Andrew, have occurred within the last dozen 

years, and seven of the ten worst have occurred since 1989.  Average annual losses from 

all natural hazards have increased from $20 million per million residents in 1975 to $1 

billion per million residents in 1994 (in constant 1994 dollars; Mileti 1999).  

The nation has invested millions of dollars specifically to understand and forecast 

hurricanes.  Research efforts led by the National Hurricane Center (Simpson 1998) have 

succeeded in making land falling hurricanes less deadly.  In the 1990s the modernization 

of the National Weather Service, featuring the installation of the Advanced Weather 

Interactive Processing System to process data from radar, satellites and surface 

observations at high speeds and a nationwide network of Doppler weather radars,

contributed to improved forecasts of weather hazards (Friday 1994).  Annual hurricane 

fatalities have fallen from .5 per million residents nationally during the 1950s to .05 per 

million residents during the 1980s and 1990s.  Kunkel et al. (1999) attribute the decline 

to improved hurricane forecasts. 37

Although hurricanes have become less deadly over time, like hazards in general, 

the resulting damages have increased - particularly in recent years.  By 1995 hurricane 

damage in the 1990s had already exceeded total damage in the 1970s and 1980s 

37 The National Hurricane Center maintains a continuous watch for tropical cyclones throughout hurricane 
season, May 15 through November 30.  The Center issues watches and warnings for hurricanes threatening 
landfall, and orders evacuations based on the warnings.  Throughout the remainder of the year the Center 
provides training for emergency managers from the U.S. and other countries affected by tropical storms and 
conducts research on hurricanes and forecasts.
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combined.  This escalation has lead to interest among policy makers and researchers 

about the causes of increasing hurricane damages.  This chapter considers an explanation 

which has not been widely discussed, namely the very reduction in hurricane lethality.  

This analysis is timely given that between August 13th and September 26th, 2004 

four hurricanes hit Florida and Alabama.  Effects of these storms were felt along both the 

Gulf and Atlantic Coasts of the United States and well into the Eastern and Northeastern 

States.  Collective damages from these hurricanes are expected to exceed those from 

Hurricane Andrew, the costliest disaster in United States history.

Researchers have spent years attempting to devise plans to reduce damages from 

these storms before they have a chance to occur.  This analysis also looks at mitigation 

efforts and the role they play in reducing damages, outlining several mitigation tools 

deemed most effective over the past several decades.  It highlights the important role that 

communities, counties, states, and insurance companies have in encouraging, sometimes 

reluctant or unable, homeowners to actively mitigate and reduce the role of insurance. 

Presumably, the most effective way to encourage mitigation is by quantifying its 

benefits.  The problem that lies therein is that although mitigation is widely considered to 

reduce damages, there is no data on mitigation measures undertaken, making it 

impossible to quantify their benefits. Cutter (1993) and others point out that awareness of 

prevention strategies often makes little difference to homeowners since hurricane, as well 

as other disaster, preparedness is not viewed as a “here-and-now” issue.  Adoption of 

prevention measures depends mainly on past experience with the hazard in question.  

Therefore, one can assume that if a county has experienced a prior hurricane, 

mitigation measures have been taken.  Based on this, this analysis uses a past hurricane as 
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a proxy for mitigation measures to quantify their effect on damages, helping to alleviate 

the issue of missing data.

This study is obviously most relevant to those communities located in hurricane 

prone areas, but also has important implications at the national level.  The rising cost of 

natural disasters and the demonstrated potential for catastrophes with costs in excess of 

$20 billion pose a threat to the insurance industry.  Catastrophe losses are not 

independent and thus threaten the financial viability of insurance companies, which turn 

to reinsurance and U.S government reinsurance subsidization.

Section two looks at proposed causes of increased hurricane damages, followed 

by a section presenting a model where the decrease in hurricane lethality increases the 

utility of living on the coast.  Section four discusses the role of mitigation.  Section five 

models fatalities from hurricanes and the remaining three sections build upon that model 

to estimate population growth in coastal counties, damages from hurricanes, and the role 

mitigation can play in reducing damages.

II.  Proposed causes of increased hurricane damages
Increasing hurricane damages has lead to interest among policy makers and 

researchers to identify the causing factors.  Some observers attribute rising damages to an 

increase in the number and severity of hurricanes.  For instance, a 1995 Congressional 

report asserts that hurricanes “have become increasingly frequent and severe over the last 

four decades as climatic conditions have changed in the tropics” (cited in Pielke and

Landsea 1998, p.623).  This explanation, however, is simply false.  Katz (2002) for 

instance finds no statistically significant increase in the number of land falling hurricanes 



49

over time.38  And the period from 1991 to 1994 had the fewest tropical storms of any four 

year period in the last fifty years.

Increasing societal vulnerability, namely more people and wealth along hurricane 

prone coasts, seems to explain increasing hurricane damages.  Figure 6 illustrates the 

increase in coastal county populations.  The figure graphs population growth rates by 

decade for 130 U.S. counties on the Atlantic and Gulf coasts along with the overall U.S. 

population growth rate in each decade.  As illustrated, the coastal counties grew faster 

than the nation in each decade of the 20th Century.  A wealthier population will also have 

more property vulnerable to destruction by a hurricane.  Pielke and Landsea (1998), 

Changnon et al. (2000), and Katz (2002) find no time trend for hurricane damages after 

normalizing for changes in population and wealth in addition to inflation.

An understanding of increasing hurricane losses requires an explanation for the 

increase in coastal county populations, and several have been advanced.  One is the rising 

standard of living in the U.S.: wealthier people will spend more on luxuries, like living 

near the ocean.  

Another possibility involves low probability event bias.  Considerable evidence 

suggests that people do not behave according to expected utility theory with respect to 

low probability, high consequence events like hurricanes.  Instead of considering the 

expected cost of these events, which is considerable, people act as if such events 

“couldn’t happen to me” and treat the low probability as a zero probability (Kunreuther 

1978, Camerer and Kunreuther 1989).  

38 See also Table 22 reporting land falling hurricanes in the U. S. by decade.
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Finally, a number of government policies, including subsidized insurance, disaster 

assistance, and structural mitigation measures (e.g. rebuilding roads and restoring 

beaches after storms) contribute to over building on hurricane prone coasts (Platt 1999).39

As stated, this chapter considers an alternative explanation which has not been 

widely discussed, namely the very reduction in hurricane lethality.  By reducing the 

probability of fatalities from hurricanes, improved hurricane warnings, better evacuation, 

and engineering advances reduce the expected cost of living along hurricane exposed 

coasts.  At least a part of the increase in coastal populations is then a consequence of the 

law of demand.

Evidence is provided of the impact of reduced hurricane fatalities on damages 

using a database of land falling hurricanes in the U.S. between 1940 and 1999.  It is not 

argued that reduced lethality is the exclusive cause of increasing hurricane damages, only 

that is a contributing and over-looked factor.  This explanation is a familiar one to 

economists, an example of offsetting behavior in response to an exogenous change in the 

riskiness of an activity, as first proposed by Peltzman (1975) for automobile safety.

III. Hurricane Forecasts and Locational Choice

The Theory 

Do people consider natural hazards and other natural amenities in making location 

decisions?  Considerable prior research says they do.  Labor market studies find that 

wages across different cities include premiums for workers living in bad weather cities 

(those with more snow and colder January temperatures).  A study of the real estate 

39 Garrett and Sobel (2003) document political influence on presidential disaster declarations and the 
dollar value of disaster assistance provided under the Stafford Act.
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market in Los Angeles found that people would have to pay a premium for a house in an 

area of the city with higher air quality (Brookshire et al. 1982).  Brookshire et al. (1985) 

found that houses in California in state designated special seismic zones near earthquake 

fault lines sold at a discount compared to homes at a safer distance from fault lines.  

Beron et al. (1997) found that the discount for homes in the seismic zones declined after 

the 1989 Loma Prieta earthquake, which did not cause as much death and destruction as 

an earthquake of that magnitude had been expected to.

Improvements in safety lower the expected cost of dangerous or reckless activity.  

An increase in the recklessness is expected to follow as a consequence of the law of 

demand.  Such offsetting behavior was first identified by Peltzman (1975) in the behavior 

of drivers in response to automobile safety regulations in the 1960s.  It is also related to 

the problem of moral hazard in insurance, because coverage against a loss reduces the 

return to effort to avoid the loss.

A hazard can be made less deadly in three distinct ways which yield different 

predictions regarding damages.  A hazard could be made less dangerous by reducing the 

probability of the hazard occurring.  For example, weather modification efforts offer the 

promise of reducing the frequency of damaging hailstorms.  Alternatively, a hazard can 

be made less dangerous by reducing its severity, such as the removal of underbrush 

reducing the severity of wild fires.  Lastly, structures in the hazard area could be 

strengthened to withstand the hazard, as with earthquake resistant buildings and elevating 

homes located on a flood plain.  The example offered here assumes that the probability of 

fatality or injury conditional on the hazard occurring is reduced but the probability of the 

hazard and its destructive effect on property is not affected.  
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All three methods of reducing the lethality of hazards will increase the at-risk 

population, but only in the third case will damage definitely be expected to increase.  In 

the first two cases the effect on total damages is indeterminate because the reduction in 

expected damages per household in the hazard area offsets the increase in the exposed

population.  Asserted here is the expectation that the reductions in hurricane lethality fit 

the third category - due to more timely and accurate warnings and evacuations, while 

damage to structures in the hurricane’s path is not reduced.  

The Model

In this section a simple model of household location choice is examined to derive 

testable predictions concerning hurricane lethality and damages.  Consider a 

representative household’s choice to live on a hurricane exposed coast.  Let π be the 

probability of a hurricane and let σ be the probability that the household suffers a 

casualty given that a hurricane strikes the household’s residence on the coast.  Let I be 

the household’s income, which is assumed to be independent of location decision, and let 

L be the dollar value of property losses which occur if the household lives on the coast 

and their residence is struck by a hurricane.  The household can purchase insurance 

against property damage.  Let x be the dollar value of coverage purchased and let p be the 

price per dollar of coverage.  The household’s total premium is p*x and they receive a 

payment of x if a hurricane loss occurs.  Let y denote the disposable income spent on 

consumption goods. 

Utility is a function of disposable income y, the location decision, and the 

household’s health state.  Let θ denote the household’s state of health, with θ h indicating 
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full health and θ i indicating that the household has suffered a hurricane casualty.40 It is 

assumed that utility is lower (and the marginal utility of income higher) when the 

household suffers a hurricane casualty.  Let a superscript on the utility function designate 

the household’s location choice, with c representing the hurricane vulnerable coast and o

the location away from the coast.  Let ),( θyU c  be the household’s expected utility if 

they choose to live on the coast, which can be written
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It is assumed that x is the household’s expected utility maximizing insurance 

purchase.  Utility if the household chooses to live inland is ),( ho yU θ , which is the 

household’s reservation utility level.  The household will live on the coast if

),(),( hoc yUyU θθ ≥ .

Next the comparative statics of the household’s location decision are examined.  

Consider first the effect of a change in the probability of a casualty, σ.  Forecasts allow 

residents to evacuate in advance of an approaching hurricane, so improved warnings will 

reduce σ, but not the probability of a hurricane, π.  A change in σ does not affect the 

reservation level of utility, ),( ho yU θ .  Thus the effect on ),( θyU c is

),(),([*/ hcicc xpxLIUxpxLIUU θθπσ +−−−+−−=∂∂ , (2)

which is negative given that the marginal utility of income is higher when the household 

suffers an injury, ),(),( hcic yUyU θθ > , a typical assumption.  A reduction in the 

probability of injury from a hurricane raises expected utility from living on the coast and 

40 In this simple formulation all casualties are considered equivalent.  Gradations of casualties could be 
introduced but would not affect the testable hypotheses derived here.
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will, ceteris paribus, increase the population on the vulnerable coast.  If all households, 

including the new residents, suffer similar losses, L, the increase in population will 

increase the property damage from a hurricane.  From (2) it is seen that the effect on 

utility of a reduction in σ depends on the probability of a hurricane.  Thus a reduction in 

hurricane fatalities will have a greater impact on coastal population and hurricane 

damages in coastal areas facing a greater risk of hurricane landfall.41  This is the main 

testable prediction of the analysis.

An increase in income also affects the household’s location choice.  An increase 

in income increases the household’s reservation level of utility, 0/ >∂∂ IU o .  The 

effect of an increase in income on the utility of living on the coast (ignoring the effect of 

the change in I on losses from a hurricane or insurance purchase) can be written
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An increase in income raises the utility of living on the coast.  With the standard 

assumptions of diminishing marginal utility of income and higher marginal utility of 

income given a lower state of health, then it follows that IUIU oc ∗∗>∗∗ // and an 

increase in income will increase coastal populations and hurricane property damage.

Finally, the effect of a change in the price of insurance, ignoring the effect on the 

quantity of insurance purchased, is

41 Frontsin and Holtman (1994) argue that an ability to evacuate from an approaching hurricane 
encourages residents to substitute lower quality construction, which would provide an additional method by 
which improved forecasts can increase damages.  Note that the effect of a decrease in the probability of 
hurricane casualties for a household on the overall number of casualties is theoretically ambiguous due to 
the Peltzman (1975) offsetting behavior effect.
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An increase in the price of insurance lowers the utility of living on the coast, and the 

impact of the price change on the quantity of insurance purchased does not alter this 

result.  Thus, a tax payer subsidy or cross-subsidization in regulated insurance rates also 

increases coastal populations and hurricane damages.  No direct measure of coastal 

county insurance subsidies over time exists.  States regulate insurance companies, which 

suggests the value of including state fixed effects in the analysis of hurricane damage.

The reduction in hurricane lethality apparent in the raw time series data of 

hurricane fatalities was noted earlier.  Presumably, improved forecasts and better 

evacuations are responsible for declining fatalities.  However, an improvement in 

construction techniques, which allow buildings to better withstand hurricanes, could also 

produce lower fatalities.  Improved construction techniques would reduce both σ and L; 

more households would locate on hurricane exposed coasts but lower losses per 

household imply that damages may not increase.  Fronstin and Holtman (1994), however, 

found that newer subdivisions suffered greater damage in Hurricane Andrew which 

indicates that building techniques, at least as employed, have not improved significantly.

IV.  Hurricane Mitigation

Overview of Mitigation Tools

Although hurricanes do not occur as often as some natural hazards, they are 

among the most damaging and lethal.  Substantial literature has focused on what can be 

done to reduce damages from hurricanes.  Cutter (2001) suggests that that the first step 
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toward creating disaster-resistant communities is to establish the current level of 

vulnerability.  From there, a crucial step is a shift in public policy from a mindset focused 

on post-disaster assistance, to a more proactive mindset fostering mitigation efforts and 

pre-disaster planning.

Mileti (1999) outlines five mitigation techniques that have proven to be the most

effective over the course of the last two decades: land use planning, building codes, 

insurance, engineering, and warnings.  He states that land use planning, creating higher-

density communities with flexible long-term plans, is the newest approach and currently 

shows the most promise.  However, there is no overall federal policy to coordinate this 

effort in hazardous areas.  

By establishing minimum requirements for materials used, based on climate and 

geology, building codes are collections of laws and ordinances that help structures

withstand disasters.  Advancements in engineering, often using sophisticated technology, 

make the strengthening of building codes possible.  Burby (1998) points out building 

codes have been the principal mitigation effort used, however they only apply to new 

construction and can do little to help existing buildings.  

Insurance companies providing coverage in hazardous areas can help facilitate the 

mitigation effort.  Insurance companies can help educate and provide information to the 

public, participate in the strengthening of building codes, offer financial incentives to 

policyholders performing their own mitigation efforts42, and limit the amount of 

insurance available in hazardous areas.  Because it subsidizes people and firms in 

hazardous areas, Burby (1998) states that readily available insurance can produce 

42 However, they are quite limited by regulation.
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complacency.43  He points out that in recent years insurance companies began reaching 

out to builders in hazard-prone areas, asking them to acknowledge that the structures they 

build are at risk and to mitigate accordingly.  

Community audio warning systems are suggested as another mitigation tool.  

However, the vast improvements in hurricane forecasting makes it possible for 

forecasters to predict with 50% accuracy exactly where a hurricane will hit within 24 

hours.  A prediction with 80% confidence can be made 12 hours before a hurricane strike 

(Mileti 1999).  Because the greatest focus has been on supporting evacuation planning 

rather than mitigation (Burby 1998), forecasting improvements have made communities 

reluctant to purchase audio warning systems for cost-benefit reasons.

Public Mitigation Sentiment

Individuals do not always process hazard information in rational ways.  Because 

natural hazards, such as hurricanes, are low probability high consequence events, people 

often do a poor job of using the available information to evaluate their surroundings and 

the consequences of their actions.  Individuals often choose easy and inexpensive 

mitigation measures over those that might be more effective (Mileti 1999).

Godschalk, Brody, and Burby (2003) found lack of public interest in hazard 

mitigation in a case study of 5 hazard-prone areas.  Citizens in community groups felt 

they lacked the necessary knowledge to provide input on technical issues such as 

engineering and building codes.  They were also found to be most interested in “here-

and-now” issues like traffic congestion, rather than with hazard mitigation efforts.  

43 This point is contended by Burby, as well as others.  However, it should be made clear that insurance in 
and of itself does not involve subsidization.  Some states set price controls, causing policies to be 
underwritten with rates that involve subsidization.  
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Simmons, Kruse, and Smith (2002) point out that there has been a general consensus 

among disaster experts that homeowners will not voluntarily adopt mitigation measures.

Storm shutters for windows and glass doors are a popular mitigation measure to 

protect homes from flying debris and “envelope” a home to prevent roof damage.  

Peacock (2003) found in a random survey of Florida homeowners that while 27% of the 

respondents stated they either have storm shutters or some type of coverage for 100% of 

all glass on the home, only 11% have something that would fall within building codes.  

Just over half of those without any coverage said they felt they just didn’t need it.

Why do some people simply fail to mitigate?  Risk perception has already been 

outlined above.  Income is another issue.  A positive relationship usually exists between 

household income and preparedness measures (Mileti 1999).  Anbarci, Escaleras, and 

Register (2005) use income in their model of earthquake fatalities, assuming that the 

relatively wealthy self-insure while the relatively poor are left to the mercy of the 

earthquake.

Peacock (1998) found that new home buyers are sensitive to hurricane issues but 

that after the financial stress of purchasing a home are unable to afford shutters.  

Additionally, many times homeowners bear the entire cost of mitigation.  Insurance 

companies are sometimes unable to grant discounts in premiums for mitigation, which 

could subsidize measures.

Another possibility is that mitigation may not be efficient.  There is not a lot of 

evidence that mitigation passes a cost-benefit test.
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Despite their relative disinterest in mitigation and the financial issues associated 

with many of the more effective measures, there is substantial evidence that people living 

in hazardous areas do mitigate.  This is especially the case when they have experienced a 

hurricane or live in an area with a hurricane history.  Simmons, Kruse, and Smith (2002) 

found that homeowners in a community with a long history of hurricanes place a positive 

value on self-insurance.  In Godschalk, Brody, and Burby’s (2003) survey, only counties 

that had recently experienced losses had a strong interest in mitigation.

Peacock (2003) finds that both experience and knowledge seem to lead 

individuals to take mitigation actions of some sort.  Cutter (1993) states that awareness of 

prevention strategies tends to make little difference and that it is past experience that 

determines the actual adoption of prevention measures.  As previously discussed, 

warning systems are often decided against based on cost-benefit issues.  When they are 

adopted, it is usually based on humanitarian sentiments following another disaster (Mileti 

1999).

Not having a past hurricane experience can lead to extensive damages from even 

a relatively minor hurricane.  For twenty years before Hurricane Hugo hit South Carolina 

in 1989, engineers had been recommending that buildings be designed to withstand 

hurricane force winds.  One of the counties hit, Georgetown, had not been hit by a 

hurricane during modern recording.44 Thus, the suggestions of the engineers were not 

accepted.  Even though Hugo was not severe, Georgetown County suffered extensive 

damage.

44 Recording of hurricanes and resulting fatalities is comprehensive from 1900 to the present.  
Comprehensive recording of damages experienced commenced near 1940.
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Community Involvement

Lack of adequate preparation and coordination of services are endemic (Burby 

1998).  In many communities within the United States, simple mitigation measures are 

suggested over longer-term and, in some planners’ opinions, more effective measures.45

Mileti (1999) attributes this to the fact that they are less expensive and easier to sell 

politically.  Evidence exists that community involvement in mitigation efforts enhances 

individual effort.  Beyond that, community plans proposed under state mandates are of 

higher quality (Berke, Roenigk 1996). 

 Burby (1998) defines a mitigation plan as a county or community’s statement of 

intent.  It should give specific courses of action and commit the community to that 

course.  The power of local governments to foster mitigation varies according to their 

goals and the methods available.  These include their regulatory power to design and 

enforce building codes, fiscal power to first acquire tax revenue and then fund proposed 

projects, and, in some cases, their power of acquisition to use eminent domain to gain 

control over particularly hazardous areas.  

The community effort can be aided by state government involvement.  For 

example, a 1998 Florida law encouraged each county to develop a separate local 

mitigation strategy that would be updated on a yearly basis.  Community plan quality has 

been found to vary with the wealth of the community, just as individual mitigation varies 

with income.  However, Berke and Roenigk (1996) found that if there is a state mandate 

in place, community wealth is not a factor in community plan quality.

As more state and local initiatives and requirements are put in place, mitigation 

becomes contagious.  Peacock (2003) found that communities with local regulations have 

45 There is no credible evidence to support the contention that longer-term measures are indeed more 
effective.
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more homeowners that mitigate.  Furthermore, households in areas where most of the 

neighbors mitigate have higher quality mitigation measures.

The Effect of Mitigation on Damages 

It is a well-known that mitigation efforts reduce damages.  However, the evidence 

is mainly anecdotal.  For example, the Lighthouse Resort in Ft. Meyers, Florida 

experienced seven hurricanes over the last two decades resulting in $100,000 of repair 

costs per storm.  Following a 2002 joint State, Federal, local, and owner mitigation 

project, despite feeling the direct effects of Hurricane Charley in 2004, the Lighthouse 

Resort remained undamaged and experienced no flooding (FEMA 2004).

In order to quantify the effect mitigation has on damages and further encourage 

individuals and government planners to mitigate, the amount of mitigation needs to be 

known.  And unfortunately it is not.  Mileti (1999) points out that there is no database on 

mitigation efforts – what they are, where they occur, or how much they cost – to 

determine their effect on damages and then provide a baseline for local cost-benefit 

analysis.  

To quantify the effect of mitigation on damages, while mitigation itself is 

unknown, this analysis uses a proxy for mitigation measures undertaken.  The experience 

of a prior hurricane, the previously discussed factor that appears to be the most influential 

in determining mitigation, is used as the proxy.

V. Data and Stage One Econometric Specification and Results
Improved forecasts, better preparation and evacuation, and improved engineering 

might all reduce the expected number of deaths from a given hurricane, but the prediction 
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would be expected to hold only ceteris paribus, that is, holding the strength and location 

of the hurricane constant.  Consequently, the number of persons killed in the last 

hurricane or the last ten hurricanes can not be used as a measure of lethality.  Instead, a 

regression model of hurricane fatalities is first estimated in order to produce a time 

varying estimate of lethality. Fatalities directly caused by a hurricane are first estimated 

as a function of storm strength and other control variables.  The model also includes 

decade dummy variables to allow the lethality of hurricanes to vary over time.  

Results from this estimation are then used to model population growth, damages, 

and the role of mitigation. There is first an estimation to test how fatality reductions have 

affected coastal county populations.  Then the determinants of hurricane damages are 

estimated to see if a change in hurricane lethality affects damages.  Additionally, this 

same estimation is performed to test for the effect of mitigation measures by including a 

variable representing mitigation measured undertaken.

The data set is taken from the National Hurricane Center’s archive of land falling 

hurricanes in the United States.46  Hurricanes during 1940-1999 are included in the 

fatalities regression.  Table 22 reports the breakdown of land falling hurricanes by 

category on the Saffir-Simpson scale and by decade.  The Saffir-Simpson scale measures 

the intensity of the hurricane and its destructive potential.  Ratings on the scale are 

integer values from 1 to 5, with a category 5 hurricane the most intense, and are based on 

wind speed, storm surge and potential damage. 47, 48  A total of 94 hurricanes made 

35 The hurricane archive was accessed at http://www.nhc.noaa.gov/pastall.shtml.
47 A category 1 storm is a minimal hurricane and has sustained wind speeds of 74-95 miles per hour and a 
4-5 foot storm surge, while a category 5 hurricane has sustained winds in excess of 155 miles per hour and 
a storm surge in excess of 18 feet.  Note that the damages corresponding to the five categories do not 
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landfall between 1940 and 1999, with 73 striking between 1950 and 1999.  Category 1 

hurricanes (at landfall) were most common (32 of 94), while only 7 storms reached 

Category 4 and two were rated Category 5.  Mean fatalities were 24 with a median of 3 

and a range of 0 to 394.  Mean damages were, in constant dollars, $1.54 billion with a 

median of $242 million and a range of $1.14 million to $28.8 billion (Hurricane Andrew 

in 1992).

The fatalities regression estimates the determinants of the number of persons 

killed by a hurricane.  The number of persons killed by hurricane i is modeled as follows:

)80,70,60,50,40,,( iiiiiiii DDDDDDensityCategoryfFatalities = (5)

Fatalities is the number of persons directly killed by hurricane i and does not include 

deaths from inland flooding.  Category is the rating of the hurricane on the Saffir-

Simpson Hurricane scale at the time of landfall.  Density is the average population 

density in persons per square mile of the counties struck by the hurricane, as listed in the 

National Hurricane Center’s hurricane archive.  The population for a county in a given 

year was estimated using linear interpolation from the decennial censuses.  A higher 

population density of the storm path should increase the number of fatalities.  

D40, D50, D60, D70 and D80 are dummy variables which equal one if the 

hurricane occurred in the decades 1940s, 1950s, 1960s, 1970s or 1980s respectively, or 

zero otherwise, with the 1990s the omitted decade.  Thus, the lethality of hurricanes is 

allowed to vary over the decades, with the decade dummies capturing the effect of 

improved hurricane warnings and public dissemination of these warnings.  It is expected 

increase in linear fashion; a category 4 hurricane would be expected to cause 100 times the damage of a 
category 1 hurricane

48 For details on the Saffir-Simpson scale see www.nhc.noaa.gov/aboutsshs.shtml.
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that hurricanes have become less lethal over time; with the 1990s as the omitted decade, 

positive estimated coefficients are expected on the decade dummy variables, with the 

magnitude of the coefficients becoming smaller over time.

The number of fatalities produced by a hurricane is a count variable, taking on 

integer values with a high proportion of zeros.  Of the 94 hurricanes in the sample, 23 

produced no direct fatalities, and the median number of fatalities is 3 compared with a 

mean of 24.3.  Thus the fatalities function is estimated using a Poisson regression 

(Greene 2000, pp.880-886).  The Poisson model assumes that the number of persons 

killed by hurricane i, Yi, is distributed as a Poisson random variable.  The probability of a 

given number of fatalities is

Prob ,!/)( i
y

i
i

ii yeyY iλλ ∗== K,2,1,0=iy (6)

The parameter λi depends on the vector of independent variables xi described above.

Fatalities Results

Table 23 presents the Poisson estimates of hurricane fatalities.  Not surprisingly, 

the estimated coefficient for Category is a positive and highly significant determinant of 

fatalities; a one category increase in the strength of a hurricane almost triples expected 

casualties.  Density also has a positive estimated coefficient, which is significant at better 

than the 1% level.  As expected, hurricanes which strike more highly populated coastal 

areas are more deadly.  

The decade dummy variables are all statistically significant at better than the 1% 

level, except D70 which is significant at only the 10% level.  All of the decade dummies 

are positive except D80, which is negative and significant.  Roughly speaking, a 
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downward trend in hurricane lethality is evident, as the coefficients on D40 and D50 are 

the largest, while the 1980s and 1990s are the least lethal decades.  The differences 

between the decade dummy variables are significant at the 5% level as well, so from the 

1950s through 1980s there are consistent and statistically significant reductions in 

lethality each decade.

Alternative Fatalities Specification

Using a linear time trend rather than decade dummies is an alternative way to 

specify the Fatalities equation.

),,( iiii TimeTrendDensityCategoryfFatalities = (7)

The last column of Table 23 presents the results for this specification.  The signs of the 

estimated coefficients for Category and Density are the same as when decade dummy 

variables were used, as is their approximate magnitude.  The negative sign on the 

estimated coefficient for TimeTrend suggests that hurricanes have, as suggested, become 

less lethal over time.

VI.  Modeling the Determinants of Coastal County Growth 
A model of population growth in coastal counties is estimated to test whether a 

decline in the hurricane fatality rate causes an increase in coastal county population.  The 

data set for this estimation is a panel of decennial population changes in 146 counties in 

15 states along the Atlantic and Gulf of Mexico coasts between 1950 and 2000, 

accounting for a total of 730 observations.  Two dependent variables are employed:  the 

change in the number of persons living in the county during the decade, ∆Pop, and the 
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percentage change in the county population during the decade, %∆Pop.  The first 

measure indicates society’s total vulnerability while the second indicates the proportional 

change in vulnerability.

County population changes are estimated using the following models:

StateUSPopPHurricaneHit

AreapInititalPoRFRPop
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The independent variable of interest is the recent fatality rate, the RFR, which is 

constructed based on the time varying measure of hurricane fatalities estimated in the 

previous section.  A reduction in hurricane lethality is expected to increase coastal 

populations, but only with a lag as it will take time for people to recognize the reduction 

in lethality and then move their residence.  Consequently the dummy variable for the 

previous decade is used as the hurricane lethality variable for the current decade, so for 

population growth between 1960 and 1970, RFR is the coefficient of D50 from Table 23.

The other control variables are as follows.  InititalPop is the population of the 

country at the start of the decade.  Area is the land area of the county in square miles; a 

larger county has more land to accommodate new residents, holding constant the initial 

population.  Thus a positive estimated coefficient is expected for Area.  Density is the 

population density of the county in thousands of persons per square mile at the start of the 

decade.  This captures whether the county is already highly populated at the start of the 

period and is included in place of InitialPop and Area in the percentage growth 

regression.
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Hit is a dummy variable which equals one if the county was struck by a hurricane 

during the decade of the observation.  A hurricane during the decade will damage 

existing homes, businesses and infrastructure.  The diversion of resources to 

reconstruction is expected to reduce county growth.  A current hurricane could also 

affect residents’ (or potential residents’) perception of hurricane risk, so a negative 

estimated coefficient is expected for Hit.  

PHurricane is the annual probability of a major hurricane striking the county, as 

reported in Sheets and Williams (2001).  A major hurricane is defined as a hurricane of 

Category 3 or higher on the Saffir-Simpson scale.  A higher probability of a hurricane 

increases expected hurricane damages, provided that residents pay the full cost of damage 

through higher insurance premiums or out-of-pocket after a loss.  A higher probability of 

a landfalling hurricane should reduce county growth.  But this measure, which does not 

change for a county over time, might also capture other characteristics which increase the 

desirability of living in the county.  

USPop is the U.S. population in millions at the start of the decade.  If the country 

as a whole grows faster in a decade, all counties should grow faster, as well, coastal 

counties included.  The model is estimated with state dummy variables; Florida, for 

instance, equals one if the county is located in Florida and zero otherwise.  The state 

dummy variables capture differences in the desirability of different states’ coast lines as 

well as any state policies like insurance subsidies or land use regulations which inhibit or 

encourage coastal development.  Virginia is the omitted state (last alphabetically of the 

15 coastal states) so the estimated coefficients on the state variables indicate the effect 

relative to Virginia.
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Population Estimation Results

Table 24 presents the regression results for county population.  The estimates 

employ White’s heteroskedasticity-consistent standard errors.  For each model RFR has a 

negative and significant estimated coefficient, indicating that reductions in hurricane 

fatalities are positively associated with population growth.  Note that in the ∆Pop model 

RFR is significant at only the ten percent level, but is significant at the one percent level 

in the %∆Pop model.  Overall, the model performs much better for ∆Pop than %∆Pop as 

indicated by the adjusted R2. 49

Of the other control variables, note that Hit has a negative estimated coefficient in 

both specifications but is not significant, so counties did not grow significantly slower in 

a decade in which they were struck by a hurricane. InitialPop and Area have positive 

estimated coefficients and are significant determinants of ∆Pop but Density is 

insignificant in the specification for %∆Pop.  The state fixed effects are reported in Table 

25, although no consistent pattern of significance emerged for any state across the two 

specifications, indicating that certain coastal states are not growing inherently faster than 

others.

VII.  Modeling Hurricane Damages
The determinants of property damage caused by a hurricane are estimated in 

another estimation.  Damage estimates are missing for a number of hurricanes prior to 

1950, so those during 1950-1999 are included in this regression.  Damages are modeled 

as follows:

49 .4427 compared with .0704



69

iiiii

iiii

PHRFRPHRFR

YearIncomeDensityCategoryDamage

εβββ
βββββ

+++
+++++=

***

****

76*5

43210
(10)

Damage is the value of property damage caused by the hurricane in millions of dollars, 

adjusted for inflation using the GDP deflator.  Category is the rating of the hurricane on 

the Saffir-Simpson scale; it is expected that stronger hurricanes will produce more 

damage, β1 > 0.  

Density is the population density of the counties affected by the hurricane and is 

expected to increase damages, β2 > 0.  Income is the per capita income of the counties 

struck by the hurricane.  Since the value of real and personal property on a high income 

coastal area is higher, the dollar value of damage should be higher, β3 > 0.  But higher 

income individuals will also spend more to protect themselves and their property against 

hazards, which would reduce damage.  Thus either a positive or negative sign for 

coefficient could be observed.  Year is a time trend included to capture any effects of 

improved construction techniques or changes in building codes over time which might 

affect property damage.  

RFR is the time varying measure of the deadliness of hurricanes, based on the 

coefficient point estimate of the decade dummy variable from the Fatalities estimation.  

A decline in hurricane fatalities reduces the cost of living on a hurricane prone coast, so it 

is expected that this will increase coastal population and damages.  Again, a lag is 

required for people to recognize that hurricanes have become less deadly and move into 

hurricane exposed coasts.  Consequently the coefficient from the previous decade’s 

dummy variable is used as the RFR for a hurricane in year t.  Thus the coefficient on D70
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in the fatalities regression is the value of RFR for any hurricane occurring during the 

decade of the 1980s.  

The strength of the hurricane must be controlled for and a limit must be set for 

recent hurricanes due to the randomness in the occurrence of land falling hurricanes.  PH

is an estimate of the annual probability of a major hurricane at different points along the 

coast line.  This variable was taken from estimates for various cities along the Atlantic 

and Gulf coasts contained in Sheets and Williams (2001). 

In the expected utility model, an increase in π, ceteris paribus, reduces the utility 

of living on the coast, but different π’s are observed at different locations so the utility of 

living on these different stretches of coast may differ, rendering a prediction for PH

difficult.  The expected present value of hurricane loss reduction mechanisms, for 

instance, will depend on the annual probability of a hurricane.  If more hurricane-prone 

areas employ better building techniques or other loss reduction mechanisms, PH will 

have a negative sign.  Alternatively, if hurricane prone states subsidize or cross-subsidize 

hurricane insurance, PH could have a positive sign. 

RFR*PH is an interaction term capturing the combined effect of the recent fatality 

rate and probability of a hurricane.  A decrease in hurricane lethality will have its greatest 

impact on damages in the most hurricane prone coastal areas.  A negative sign on this 

interaction term, β7 < 0, provides the sharpest test of the damage augmenting effect of 

hurricane forecasts and warnings.
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Results of Modeling Hurricane Damages

Table 26 presents the least squares estimation of hurricane damages.50  The first 

column displays estimates using the point estimates of the dummy variables from Table 

23 as the RFR variable.  All of the control variables are significant at the 10% level or 

better.  The Category and Density coefficients, as expected, have positive signs, so a 

stronger hurricane striking a more densely populated coast will cause greater damage, as 

expected.  A one category increase in the strength of a land falling hurricane increases 

expected damages by about $1.4 billion dollars, which is just less than the mean damage 

of all hurricanes in the sample of $1.54 billion.  

Income is negatively associated with damages.  Although the value of real and 

personal property is higher in higher income areas, wealthier residents seem to take more 

precautions to mitigate hurricane losses.  Since wind-borne debris is a major contributor 

to structural damage, destruction of poorly constructed homes can damage other 

structures in the neighborhood.  The negative sign on the Income coefficient is actually 

consistent with Fronstin and Holtman’s (1994) result that subdivisions with higher 

average home prices suffered less damage in Hurricane Andrew.  

Year has a positive coefficient, so, ceteris paribus, more recent hurricanes have 

been causing greater damage, which is also consistent with Fronstin and Holtman’s 

(1994) finding that newer subdivisions suffered greater damage in Hurricane Andrew.  

Year may be capturing the effect of increasing wealth over time, with the Income variable 

capturing the cross-sectional impact of wealth on losses.  

50 A Breusch-Pagan heteroscedasticity test failed to reject the null hypothesis of homoscedasticity at even 
the 10% significance level.  The test statistic was 44.44, with p-value of .1085.
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The coefficient on PH, the probability of a major hurricane, is positive and 

significant.  After controlling for Category, population Density, and Income, regions with 

a higher probability of a hurricane still suffer greater damages.51    This is a surprising 

result since durable loss reduction measures like strengthened building techniques and 

hurricane shutters have higher expected benefits in more hurricane prone regions and thus 

should be more likely to be installed (or their installation mandated).  This result is 

consistent with possible insurance cross subsidization or weak enforcement of building

codes in hurricane prone regions.

Of most significance to the hypothesis investigated here, the recent hurricane 

fatality rate, RFR, has a positive direct effect on damages, but a negative effect when 

interacted with the probability of a major hurricane.  The RFR variable is significant at 

only the 5% level but the interaction term significant at the 1% level.  The interaction 

coefficient provides the strongest test of the role of reducing the lethality of hurricanes or 

hurricane damages, and a reduction in the lethality of hurricanes does increase damages 

over the next decade in more hurricane prone regions.  

The marginal effect of a decrease in RFR becomes positive when the annual 

probability of a major hurricane exceeds about 3.9%, a threshold exceeded in most 

counties of south Florida and along the Texas gulf coast.  The magnitude of the impact of 

the declining fatality rate on damages is quantitatively quite significant.  The increase in 

expected damages due to the observed decline in the fatality rate is $5.1 billion when the 

51 Note that due to the interaction term the partial effect of hurricane probability on damages becomes 
negative if RFR is greater than 1.21, which it is with the 1950s value.  The damages model was also 
estimated using an estimate of the probability of any hurricane also reported in Sheets and Williams (2001), 
since it is not know a priori what measure of hurricane risk people might use in estimating B.  The signs of 
the estimated coefficients were the same as reported in Table 26, but the model overall did not perform as 
well with an adjusted R2 of only .199.  Consequently it is concluded that the probability of a major 
hurricane seems to approximate the public’s subjective measure of hurricane risk.
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probability of a major hurricane is 7% and $10.9 billion when the probability of a major 

hurricane is at its maximum of 10.5%.52,53

The damage model was also estimated using the lower bounds and upper bounds 

of the 95% confidence intervals for the estimates of the coefficients of the decade dummy 

variables to determine if the results were robust to plausible changes in the estimated 

lethality of hurricanes.  The second and third columns of Table 26 present the results.  

The results are not affected in any substantial way.  The estimated impact of the observed 

decrease in hurricane lethality with a 7% probability of a major hurricane is $4.8 billion 

with the lower bounds estimate and $5.5 billion with the upper bounds.

Estimating Damages with State Fixed Effects

The potential for state policies, particularly regulation of the insurance industry, 

to create subsidies for living on hurricane exposed coasts was noted earlier.  To explore 

this possibility, state fixed effect variables were created.  Because some hurricanes struck 

more than one state, the state variables were defined to equal the fraction of the 

population of the area struck by the hurricane living in that state, based on the counties 

listed for each storm.  The fourth column of Table 26 presents this estimation, which uses 

52 The observed reduction in the hurricane fatality rate is assumed to equal the difference between mean of 
the point estimates of D40 and D50 and the point estimate of D80 and the omitted decade, the 1990s, so 
∆RFR = -1.38.

53 The use of an estimated parameter from the first stage as the RFR variable creates the potential for a 
generated regressor bias as noted by Pagan (1984), which could bias the estimate of the standard errors 
downward.  Unfortunately there is no widely accepted correction for this type of bias in this type of model.
To examine the robustness of the results, the models were estimated using Newey-West and White’s 
standard errors.  The interaction term remained significant in both cases, at the 10% level using Newey-
West standard errors and at the 10% level in a one-tailed test with White’s standard errors.
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the point estimates of the decade dummy variables for the RFR variable, with the state 

variables reported in Table 27 separately.

Inclusion of state effects does not affect the estimates very much at all, and the 

state variables are both individually and jointly insignificant.54  The state fixed effects 

model does produce a slightly higher estimate of the impact of the observed reduction in 

hurricane lethality on damages of $5.6 billion (with a 7% probability of a hurricane), 

compared to $5.1 in the model in column 1.

Damages Estimated Using Alternative Recent Fatality Rate

The Damages equation can also be estimated building on the alternative 

specification of the Fatalities estimation given in equation (7).  This utilized a linear time 

trend rather than decade dummy variables to measure the decreasing lethality of 

hurricanes over time.  As the decade dummy variables were used to create the RFR

variable for the Damages estimation, using this alternative specification necessitates the 

creation of a different lethality measure.  This alternative specification offers another 

advantage, beyond serving as a check for robustness.

Recall that RFR in the Damages regression is the estimated coefficient of the 

previous decade’s dummy variable from the Fatalities regression, while the new measure 

of lethality, NewRFR, will be the year effect from ten years prior.  A potential cause for 

concern with the decade dummy variables specification is that RFR for a hurricane 

occurring in 1978, for example, will be the same as RFR for a hurricane occurring in 

54 Both Wald and F-tests failed to reject the null hypothesis of joint insignificance of the state variables at 
even the 10% level.  The test statistic for the Wald test was 14.82 with 13 degrees of freedom and a p-value 
of .3185, while the test statistic for the F-test was 1.140 with a p-value of .3488.
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1971.  Both RFR’s will be the decade dummy variable for the 1960’s from the Fatalities

estimation.  Here, a hurricane occurring in 1979 will have a NewRFR of “68,” while the 

1971 hurricane will have a NewRFR of “61.”

Since a linear time trend is now part of the lethality measure, the time trend is 

now removed from the Damages equation so that 

iiiii

iiii

PHRFRPHNewRFR

IncomeDensityCategoryDamage

εβββ
ββββ

+++
++++=

****

***

654

3210
(11).

The last column of Table 26 reports the results. The results are similar with this new 

specification, but, most importantly, the interaction term in negative and significant at the 

1% level.  

VIII.  Mitigation Revisited

Defining a “Previous” Hurricane

The Damages analysis is now extended to look at past hurricanes.  A past 

hurricane is used as a proxy for mitigation measures, since there is no available data.  

This is appropriate if communities really do mitigate after the fact.  As there is no 

obvious way how to define what should be considered a “prior hurricane,” several 

definitions will be tested.  The estimation results will help decide how best to define this 

variable.  Each definition has both advantages and drawbacks.

The first issue when defining a past hurricane is whether all hurricanes should be 

considered or only major hurricanes.  Both will be tested.  A “past hurricane” could be 

defined as the total number of prior hurricanes that have hit the affected counties, or, 

similarly, using a dummy variable to indicate whether any of the affected counties had 
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been hit by a prior hurricane, where the value would be one if the counties had and zero 

otherwise. 

The definition of a “past hurricane” may also need to account for how many of 

the counties directly affected by the current storm have been hit by a previous hurricane.  

For example, in 2004 Hurricane Frances made landfall first in Florida with a very large 

eye, crossed the entire state, and later made landfall again in Alabama.  Many counties 

were directly affected; some had been hit by a previous hurricane, some not.  Although 

this recent storm is not included in the data set for this analysis, similar situations have 

occurred in the past where some, but not all, of the counties involved were hit by a 

previous hurricane.  Based on this, yet another possibility for defining a prior hurricane 

could be the percent of all counties directly hit that had experienced prior hurricanes.  

Similarly, a dummy variable could be used to indicate whether a majority (75%) 

of the counties directly affected by the storm were hit with any hurricanes at least ten 

years prior.  Different percentage cutoff points (50%) and (90%) for the indication of a 

positive binary value will also be tested, as well as varying time intervals (5+ years and 

15+ years).

Lastly, there is the possibility that the effect of being hit by a hurricane begins to 

“wear off” after a certain amount of time.  Perhaps within the first five or ten years after a 

hurricane hit residents are wary and continue to mitigate even without subsequent storms.  

If no other storms are experienced, as new residents move in and long-time residents 

become less wary, mitigation may significantly taper off.  To test for this, the last 

definition of a “past hurricane” will account for whether any of the counties hit by a 

current storm were previously hit with 5 years, within 10 years, or within 15 years.
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Using the same specification that was used to model damages, but including the 

variable for a past hurricane, PastH, the effect of mitigation measures will be modeled as

iiiii

iiiii

PHRFRRFRPHIncome

YearDensityCategoryPastHDamage

εββββ
βββββ

++++
+++++=

*****

****

8765

43210

(12)

Listed below are the 63 ways PastH was defined.

5 or more 
years ago

10 or more 
years ago

15 or more 
years ago

w/i 5 
years

w/i 10 
years

w/i 15 
years

Total previous 
hits

All and 
Major Only

All and 
Major Only

All and 
Major Only

All and 
Major 
Only

All and 
Major 
Only

All and 
Major 
Only

% of counties 
previously hit

All and 
Major Only

All and 
Major Only

All and 
Major Only

All and 
Major 
Only

All and 
Major 
Only

All and 
Major 
Only

Dummy 
variable if 
previously hit

All and 
Major Only

All and 
Major Only

All and 
Major 
Only

All and 
Major 
Only

All and 
Major 
Only

All and 
Major 
Only

Dummy 
variable if 50% 
previously hit

All and 
Major Only

All and 
Major Only

All and 
Major Only

All All All

Dummy 
variable if 75% 
previously hit

All and 
Major Only

All and 
Major Only

All and 
Major Only

All All All

Dummy 
variable if 90% 
previously hit

All and 
Major Only

All and 
Major Only

All and 
Major Only

All All All

Mitigation Results

Tables 28 through 39 report the results from the ordinary least squares estimation 

testing the effect of mitigation measures, proxied through a variable representing a prior 

hurricane, and its effect on damages sustained from hurricanes.  All other explanatory 

variables are significant in each estimation, at least at the 10% level.  These are excluded 

from the results tables as there are no noteworthy changes from the model for damages in 

terms of the estimated coefficients’ signs, statistical significance, or magnitude.
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PastH, the variable of interest, is significant in only four of the 63 estimations.  

However, two of those are also the same two estimations with the highest R-squared 

values, indicating that they are likely the most effective definitions of a past hurricane.

These two definitions use dummy variables to indicate whether 75% of the 

counties were hit ten or more years ago and whether 90% of the counties were hit 15 or 

more years ago.   In both estimations PastH has a negative estimated coefficient, 

indicating that a previous hurricane far enough into the past for effective mitigation 

measures to be put in place effectively decreases damages.  The estimated coefficient for 

PastH indicates that a prior hurricane 10 years or more in the past reduces damages by

$1.38 billion dollars.  Interestingly, the estimated coefficient for Category indicates that a 

one-category increase in storm strength leads to an increase in damages of $1.49 billion 

dollars.  This suggests that effective mitigation measures after a past hurricane can reduce 

damages from a subsequent hurricane by one Saffir-Simpson scale category.  For 

example, a category 3 hurricane hitting a county that had been previously hit results in 

the same damage that would be caused by a category 2 storm in a similar county that had 

not experienced any prior storms.

Why was PastH insignificant in the other estimations?  The definition which 

included the total number of past hurricanes could pose endogeneity issues.  Correlation 

could exist between this variable and the probability of a major hurricane, also included 

in the estimation. Clearly, how many hurricanes have hit an area in the past would be 

highly related to the probability of a hurricane making landfall in that area.

Defining a “past hurricane” by utilizing a dummy variable to indicate whether the 

affected counties had been hit by a prior hurricane poses some considerations.  First, 
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there is a minimum amount of time necessary for mitigation measures to be taken.  Cutter 

(2001) asserts that creating disaster-resistant communities takes time.  Using the entire 

sample period does not account for this.  For example, Santa Rosa County in Florida was 

hit by two hurricanes in 1995, Erin in early August followed by Opal in October.  Using a 

dummy variable to indicate a previous hurricane and using the entire sample set would 

mean indicating Santa Rosa County had been hit by a previous hurricane for the 

Hurricane Opal observation.  However, 1995 was the first year in the twentieth century 

that Santa Rosa County had experienced a hurricane.

Again, the purpose of indicating a prior storm is to proxy mitigation measures.  If 

a county had not been hit by a hurricane in over a century, there would not be any real,

effective mitigation measures put in place over the course of a few months.  Following 

the same method utilized earlier in this analysis, using a previous decade’s measure of 

hurricane lethality when modeling the lag time for citizens to recognize hurricanes have 

become less lethal and the subsequent affect on damages, it makes more sense to look at 

whether the counties were hit with a hurricane ten or more years ago.  This would allow 

ample time for effective mitigation measures, if any, to be put in place 

A third aspect of the definition is the percent of all counties in the storm path that 

had experienced prior hurricanes.  In many cases, counties may have to work together to 

put effective mitigation measures in place.    For example, Peacock (2003) found that 

households in communities that were included in the South Florida Building Code 

(Miami-Dade, Broward, and Monroe) had sufficiently higher quality mitigation measures 

than other counties.  Godschalk, Brody, and Burby (2002) found that although Florida’s 
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planning mandate is largely beneficial, many individual communities or even counties 

were unable to alone implement the broad-based incentives specified at the state level.  

Using a percent measure would imply that there should be more mitigation effort 

if, for example, 33% of the counties were previously hit than if only 25% were hit.  This 

is, most likely, not the case since it appears broader cooperation among counties is 

necessary for anything substantial to be put in place.  Additionally, high exposure would 

be necessary for the insurance companies offering plans within the area to become 

involved in the mitigation effort.

For the 63 possible definitions of PastH, the overall results were split in terms of 

the sign for the estimated coefficients.  However, the three cases in which PastH was 

negative and positively significant had very similar points estimates (-1349.25, -1388.21, 

and -1718.81), supporting the idea that mitigation can play a significant role.

IX.  Conclusions
Previous research has established that rising costs of natural hazards are, for many 

hazards, due to increased societal vulnerability; that is, the costs for many hazards have 

not been increasing when normalized for changes in population and wealth as well as 

inflation.  Explanations for rising damages for these natural hazards then must address 

why more people and property are located in hazard prone areas.  A seemingly 

paradoxical cause for increasing vulnerability has been presented here – the investments 

by society to reduce the lethality of hazards.

The probability of being killed or injured is part of the price people must pay to 

live in a hazard prone area and so as a hazard becomes less deadly more people should 
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live in the hazard area.  This proposition was tested for hurricanes.   A reduction in the 

lethality of hurricanes, as estimated in a regression analysis of fatalities from landfalling 

hurricanes in the continental U.S., increases population growth in Atlantic and Gulf coast 

counties, everything else equal.  As Mileti (1999) argues, natural hazards interact with the 

built environment in a complicated manner.  The analysis here illustrates one dimensions 

of the complexity.

Economists since Peltzman (1975) have identified a number of offsetting 

behaviors, that as technology or regulation reduce the full cost of risky behavior, people 

will engage in more of the risky behavior.  Considered here is an application of offsetting 

behavior to natural hazards, specifically hurricanes. Advances in meteorology, 

engineering and emergency management have combined to make hurricanes less deadly 

over time.  Yet if hurricanes are less likely to produce fatalities and injuries, living along 

an exposed coast becomes more inviting and coastal populations should increase.  

Hurricanes will kill fewer people but produce more property damage.  Evidence is 

offered here for this proposition through an analysis of land falling hurricanes in the U.S. 

between 1940 and 1999.  The results suggest that the reduction in hurricane lethality has 

a statistically significant and quantitatively large effect on damages on the portions of the 

coast most prone to hurricanes. Only the case of hurricanes has been examined here, but 

future research could examine the lethality/damage tradeoff for other hazards.  Future 

research can also incorporate other explanatory variables (such as the age distribution of 

the affected areas) and analyze the effect of a “late-strengthening” hurricane. 

A reduction in the lethality of hurricanes may increase expected hurricane 

damages but still raise social welfare.  If the risk to life and limb deterred some 
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prospective residents from living along a hurricane exposed coast, this is also a social 

cost of hurricanes in addition to property damage.  But the risk to life and limb is one 

borne by residents, while other costs of hurricanes can be externalized.  If the regulation 

of insurance or disaster relief subsidizes coastal living, however, making hurricanes less 

deadly can lower social welfare. As hurricanes become less deadly, the cost to society of 

socializing property losses increases.

Increasing populations along exposed coasts provide a potential new hurricane 

hazard.  As Dow and Cutter (2002) stress, the growth of coastal populations threaten to 

exceed the capacity of the highway infrastructure to allow timely evacuation.  Indeed, the 

prospect of massive traffic jams affected residents’ evacuation decision in advance of 

Hurricane Floyd in 1999.  Traffic congestion is a negative externality which households 

are unlikely to take into account the impact of their decision to live along the coast on 

others’ ability to evacuate.  Thus even if residents bear the full expected cost of hurricane 

damage, an evacuation externality might result in greater than optimal coastal 

populations, and be exacerbated as hurricanes become less deadly.

Mitigation efforts are thought, since evidence is mainly anecdotal, to reduce 

damages, especially when encouraged by state and local governments and insurance 

companies.  Despite this as well as their knowledge of living in a hazardous area, many 

individuals and homeowners, based on the relative low probability of hurricane damage, 

are reluctant to mitigate.  

The results suggest that as the percent of counties hit by the current storm 

increases, the category of the storm has less of an effect on damages, indicating that a 

prior hurricane does affect resident behavior.  Specifically, if three quarters of the 
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counties hit were hit previously, it effectively reduces damages to a point where the 

damages experienced are those that would be experienced in similar counties for a storm 

of one category less strength.

There is no significant effect from mitigation measures if the past hurricane hit 

within ten years of the current hurricane.  Most likely this is due to the cost of retrofitting 

the existing housing stock.  It could be efficient to incorporate new technology and 

building codes into future construction but not to tear down older structures.   
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Tables

Table 1: Seven important studies dealing with discount retailers
Stone
(1995)

Franklin
(2001)

Ozment
And 
Martin
(1990)

Gruidl
and
Andrianacos
(1994)

Chervin,
Edmiston,
Murray
(2000)

Hicks and 
Wilburn
(2001)

Basker
(2004)

Dependent
Variable

Retail Sales
Pull factor for Wal-Mart 
and non Wal-Mart towns 
(categorized by retailer 
types)

Wal-Mart
Supercenter
market
share

Retail Sales,
Employment,
Establishments 
(categorized by 
retailer types)

Retail Sales
Pull factor

Per capita 
Sales (pcs)

Employment, 
Number of 
Retail
Establishments

Retail
Employment

Independent
Variables

Household 
income,
Population,
year

Income,
Population,
U rate,
Retail,
# of discount
retailers

Income, U Rate,
Tax Diff., Retail,
65 +, Commuters,
Distance, Pop. 
density, Poverty, 
Family size, State pcs

Wal-Marts,
Distance,
U rate,
Labor force

Urban,
Year,
County,
Wal-Marts

Empirical
Analysis

Comparison of means OLS Comparison of 
means

OLS Cross-section, time-
series – AR(1)

Cross-section, time-
series – spatial 
weights

OLS

Level of 
Analysis

Community Metro County County County County County

Geography Iowa National AR, MO, OK Illinois Tennessee West
Virginia

National

# of Years 5 1 5 5 36 months 11 23

Observations 170 54 820 380 756 555 40,227
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Table 2: Descriptive Statistics
County Communities Rural Communities

All With
Discount Retailer

Without
Discount Retailer

Changing Status All Without
Discount Retailer

Discount
Retailers

2.21
(2.00)

0.14
(0.00)

1.55
(1.00)

0.71
(1.00)

.06
(0.00)

0.00
(0.00)

Population 190,724
(82,313)

11,102
(3,480)

44,459
(26,301)

8,036
(3,039)

21,024
(15,337)

4,732
(2,295)

3,639
(2,182)

Sales Tax
Collections

48,795,459
PC: 191.38

1,191,651
PC: 93.50

7,098,324
PC: 146.51

665,208
PC: 88.20

2,636,230
PC: 117.39

382,700
PC: 90.42

236,314
PC: 76.96

Debt 118,420,165
PC: 324.83

6,486,112
PC: 347.49

31,266,705
PC: 685.57

3,844,493
PC: 315.12

12,433,246
PC: 523.48

1,346,698
PC: 402.37

767,292
PC: 378.00

Property Tax
Collections

53,470,021
PC: 240.29

2,510,763
PC: 179.59

10,288,201
PC: 276.17

1,681,686
PC: 170.63

4,697,982
PC: 212.73

611,285
PC: 151.91

472,440
PC: 149.83

Total
Expenditures

245,809,666
PC: 1136.64

8,195,374
PC: 570.48

37,725,111
PC: 942.26

5,047,495
PC: 532.85

17,913,641
PC: 862.36

2,946,583
PC: 590.75

1,657,017
PC: 599.12

Area 823
(693)

32
(35)

29
(29)

32
(34)

29
(35)

44
(44)

44
(42)

Recreation 
Expenditures

4,758,724
PC: 13.21

557,205
PC: 29.49

2,407,945
PC: 54.16

215,603
PC: 26.83

987,310
PC: 44.53

134,040
PC: 25.21

71,983
PC: 19.78

County Tax 
Rate

3.26
(3.00)

3.18
(3.00)

3.24
(3.00)

Municipal 
Tax Rate

0.07
(0.00)

0.30
(0.00)

0.03
(0.00)

0.44
(0.00)

0.05
(0.00)

0.00
(0.00)

Per Capita 
Income

17,150
(16,406)

16,827
(15,901)

17,925
(17,000)

16,659
(15,748)

18,429
(17,560)

15,772
(15,067)

15,802
(15,026)

*  Mean (Median) Mean Per Capita (PC) Values in Italics
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Table 3: Endogeneity Test Results – Effect of Income and Sales Tax Collection Growth on Discount 
Retailer Location Choice

Lagged growth rate 2-year lagged growth rate
INCOME 
(GINC)

0.0129
(0.3915)

0.0120
(0.3175)

SALES TAX COLLECTIONS
(GSTC)

-0.0029
(-1.4096)

-0.0018
(-1.0073)

Probit Models used

22210

12110

−∗+−∗+=
−∗+−∗+=

itgstcitgincitLocate

itgstcitgincitLocate

βββ
βββ

Table 4: Test for Endogeneity of Sales Tax Rates to Sales Tax Revenues

Municipal 
Tax Rate
(MRATE)

County Tax 
Rate

(CORATE)

Total Tax 
Rate

(TRATE)
Sales Tax 
Collections
Growth
(GSTCit)

-6.92 E-05
(-1.1197)

-5.78 E-05
(-0.6019)

-0.0001
(-1.4627)

Sales Tax 
Collections
Growth,Lag
(GSTCit-1)

-7.13 E-05
(-1.1532)

-2.59 E-05
(-0.2698)

-9.72 E-05
(-1.1211)

Sales Tax 
Collections
Growth, 2-
year Lag
(GSTCit-2)

-6.07 E-05
(-0.9830)

-6.38 E-05
(-0.6596)

-0.0001
(-1.4219)

Models Used

231210

231210

231210

−∗+−∗+∗+=
−∗+−∗+∗+=
−∗+−∗+∗+=

itGSTCitGSTCitGSTCitTRATE

itGSTCitGSTCitGSTCitCORATE

itGSTCitGSTCitGSTCitMRATE

ββββ
ββββ
ββββ
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Table 5: County Level Analysis
Stage One Results

Sales Tax Collections Sales Tax Pull 
Factors

CONSTANT -4.8 E+07***
(-4.4055)

-0.2555***
(-4.7908)

BIG3 10093260***
(12.8674)

0.0167***
(4.2806)

POP 1661.52***
(16.1842)

CORATE 3889791*
(1.7424)

0.1067***
(9.4974)

REC 1.1129***
(5.5216)

2.91 E-09***
(2.8976)

HWMILES 7472.32***
(8.5512)

9.20 E-06**
(2.1218)

URATE -1280555
(-0.5667)

0.0014
(0.1233)

INCOME -113.022
(-0.3071)

4.42 E-05***
(23.9802)

EST -1317.17***
(-4.4117)

-4.41 E-06***
(-2.9343)

Stage Two Results Stage 1: N = 741
AREA -37358

(-0.3676)
1601.83
(1.0093)

COL -1.2 E+08***
(-3.5056)

-347785
(-0.642)

AIR 348123
(0.0107)

484351
(0.9544)

UINF -2.5 E+08**
(-2.3221)

1199937
(0.7080)

MANF -8.2 E+07
(-0.7019)

2338991
(1.2863)

SERV 6805706
(0.0548)

2610583
(1.3474)

FSGOV 36908954
(0.2929)

2300681
(1.1691)

HOUSE -5.1 E+08***
(-3.5996)

23184
(0.0106)

POPLOSS 18969269
(0.1715)

25622
(0.0148)

Stage 2: N = 57
Fixed effects also estimated in Stage One but not reported in table.

***significant at the 1% level;
**significant at the 5% level; 
*significant at the 10% level 
Number in parentheses is t-stat.  

Stage One:   Sales Tax Collections regressed on time-variant variables, fixed effects
Stage Two:  Fixed effects coefficients regressed on time-invariant variables
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Table 6: All Communities
Stage One Results

Sales Tax 
Collections

Sales Tax 
Collections

Sales Tax Pull 
Factors

Sales Tax Pull 
Factors

CONSTANT -583287***
(-2.5159)

-470961**
(-2.0431)

0.0298
(1.0030)

0.0239
(0.8064)

BIG3 1172165***
(22.7584)

1161592***
(22.6115)

0.0174***
(2.6662)

0.0179***
(2.7414)

POP -49.5481***
(-5.7346)

-41.1314***
(-4.7272)

MRATE 19235
(0.7461)

21619
(0.8409)

0.0048
(1.4650)

0.0050
(1.4514)

CORATE -8093.38
(-0.4959)

-6847.42
(-0.4209)

3.44E-05
(0.0164)

7.96E-05
(0.0381)

REC 0.2104***
(14.8304)

0.2040***
(14.3867)

-2.80E-09
(-1.5929)

-2.75E-09
(-1.5670)

HWMILES 9421.06**
(2.0609)

7536.77*
(1.6578)

-0.0025***
(-4.3831)

-0.0024***
(-4.2462)

INCOME 36.1061***
(8.1483)

35.0874***
(9.5498)

2.58E-05***
(45.5877)

2.61E-05***
(55.6663)

20MILES 23228***
(3.1725)

0.0007
(0.7808)

20MINS 129039***
(7.4873)

-0.0013
(-0.6093)

Stage Two Results Stage One: N = 8450
AREA -5455.13

(-0.8410)
-5102.26
(-0.8139)

0.0001
(0.2337)

0.0001
(0.2420)

COL 289025
(0.6376)

270230
(0.6168)

-0.0213
(-0.6042)

-0.0214
(-0.6144)

AIR -346585
(-0.6595)

-303226
(-0.5970)

-0.0328
(-0.8033)

-0.0326
(-0.8098)

UINF 115160
(0.2552)

99076
(0.2271)

0.0092
(0.2613)

0.0101
(0.2907)

MANF 333035
(0.6523)

353766
(0.7169)

-0.0038
(-0.0957)

-0.0050
(-0.1288)

SERV 521464
(1.0242)

546867
(1.1114)

-0.0112
(-0.2846)

-0.0123
(-0.3126)

FSGOV 541650
(0.9464)

548519
(0.9917)

0.0654
(1.4732)

0.0650
(1.4822)

HOUSE -396205
(-0.6961)

-363642
(-0.6610)

-0.0482
(-1.0902)

-0.0476
(-1.0885)

POPLOSS -79685
(-0.2015)

-94797
(-0.2480)

0.0126
(0.4090)

0.0128
(0.4230)

Stage 2: N = 650
Fixed effects also estimated in Stage One but not reported in table.

***significant at the 1% level; 
**significant at the 5% level; 
*significant at the 10% level 
Number in parentheses is t-stat.  

Stage One:   Sales Tax Collections regressed on time-variant variables, fixed effects
Stage Two:  Fixed effects coefficients regressed on time-invariant variables 
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Table 7:  Communities With a Discount Retailer
Stage One Results

Sales Tax 
Collections

Sales Tax 
Collections

Sales Tax Pull 
Factors

Sales Tax Pull 
Factors

CONSTANT -2.5 E+07***
(-8.2253)

-2.3 E+07***
(-7.4465)

-0.8956***
(-4.5710)

-0.7929***
(-3.9300)

POP 253.5468***
(23.0243)

251.2008***
(21.9358)

MRATE 118545
(0.1356)

25144.75
(0.0281)

-0.0121
(-0.2102)

-0.0185
(-0.3127)

CORATE 1630576***
(2.9030)

1248658**
(2.1633)

0.0779**
(2.1134)

0.0563
(1.4807)

REC -0.3815***
(-5.0200)

-0.3468***
(-4.4365)

2.12 E-08***
(4.7123)

2.21 E-08***
(4.6693)

HWMILES -21864***
(-5.7198)

-22765***
(-5.7386)

-0.0002
(-1.6092)

-0.0003**
(-2.4447)

INCOME 760.3441***
(13.6241)

641.1286***
(12.0084)

4.62 E-05***
(13.4965)

3.89 E-05***
(11.6670)

20MILES -484974***
(-9.0199)

-0.0291***
(-8.6957)

20MINS -726060***
(-7.2173)

-0.0390***
(-6.4188)

Stage Two Results Stage 1: N = 572
AREA 8658.714

(0.8393)
4583.583

(0.4403)
-0.0002

(-0.2093)
-0.0004

(-0.5238)
COL 296213.4

(1.4463)
340530
(1.6479)

-0.0131
(-0.8935)

-0.0104
(0.6791)

AIR -164359
(-0.4837)

-267583
(-0.7804)

0.00098
(0.4034)

0.0042
(0.1629)

UINF -980826*
(-1.7112)

-1144824*
(-1.9795)

0.0705*
(1.7144)

0.0615
(1.4300)

MANF -2215175***
(-3.2705)

-2506658***
(-3.6679)

-0.0523
(-1.0748)

-0.0719
(-1.4150)

SERV -948193
(-1.4385)

-1173291*
(-1.7642)

0.0289
(0.6112)

0.1247
(0.2522)

FSGOV -3290631***
(-3.1076)

-3737576**
(-3.4982)

-0.1152
(-1.5160)

-0.1420*
(-1.7882)

HOUSE -252120
(-0.3894)

-423949
(-0.6489)

-0.1117**
(-2.4022)

-0.1228**
(-2.5297)

POPLOSS -1005305*
(-2.0144)

-1173564**
(-2.3306)

-0.0491
(-1.3691)

-0.0574
(-1.5324)

Stage 2: N = 44
Fixed effects also estimated in Stage One but not reported in table.

***significant at the 1% level; 
**significant at the 5% level; 
*significant at the 10% level 
Number in parentheses is t-stat.  

Stage One:   Sales Tax Collections regressed on time-variant variables, fixed effects
Stage Two:  Fixed effects coefficients regressed on time-invariant variables 
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Table 8:  Communities without a discount retailer
Stage One Results

Sales Tax 
Collections

Sales Tax 
Collections

Sales Tax Pull
Factors

Sales Tax Pull 
Factors

CONSTANT -1410342**
(-2.0804)

-1489005**
(-2.2278)

0.1757**
(2.1508)

0.1748**
(2.1410)

POP 50.8284***
(23.6799)

49.2547***
(23.3595)

MRATE 157283
(0.2429)

213136
(0.3339)

-0.1226
(-1.5708)

-0.1203
(-1.5429)

CORATE 273618***
(2.9694)

299824***
(3.3004)

-0.0256**
(-2.3021)

-0.0247**
(2.2236)

REC -0.1443***
(-6.4580)

-0.1325***
(-6.0145)

-8.29 E-10
(-0.4901)

-7.50 E-10
(-0.4439)

HWMILES 3600.381***
(5.7319)

3837.723***
(6.2279)

-0.0001*
(-1.7500)

-0.0001*
(-1.8251)

INCOME 2.6954
(0.4899)

-4.0061
(-0.7614)

7.95 E-06***
(12.0055)

7.99 E-06***
(12.4320)

20MILES 53661***
(6.2937)

0.0024**
(2.4176)

20MINS 299541***
(15.4615)

0.0080***
(3.3838)

Stage Two Results Stage 1: N = 7488
AREA 633.9571

(0.6435)
440.9179
(0.4451)

-4.20 E-05
(-0.3903)

-4.81 E-05
(-0.4456)

COL 221739*
(1.4129)

229285*
(1.4742)

0.0286**
(2.0320)

0.0286**
(2.0283)

AIR 2765.784
(0.0452)

12678
(0.2141)

-0.0192*
(-1.6909)

-0.0190*
(-1.6722)

UINF -208912***
(-3.2771)

-200477***
(-3.0882)

0.0013
(0.1617)

0.0015
(0.1905)

MANF 78056.94
(1.3489)

93205
(1.6210)

0.0026
(0.2947)

0.0030
(0.3364)

SERV -93778
(-1.3113)

-102530
(-1.4352)

0.1287
(1.4737)

0.0126
(1.4351)

FSGOV 78333
(0.9565)

90390
(1.0783)

-0.0146
(-1.5383)

-0.0141
(-1.4820)

HOUSE 291191**
(2.3834)

281167**
(2.2566)

0.0013
(0.1320)

0.0009
(0.0962)

POPLOSS -188884***
(-3.5573)

-204096***
(-3.8081)

-0.0003
(-0.0388)

-0.0007
(-0.1047)

Stage 2: N = 576
Fixed effects also estimated in Stage One but not reported in table.
Stage Two, columns 1 and 2, are estimated with White’s standard errors after rejecting homoscedasticity.  

Test stats:  2.8147, 2.9189

***significant at the 1% level; 
**significant at the 5% level; 
*significant at the 10% level 
Number in parentheses is t-stat.  

Stage One:   Sales Tax Collections regressed on time-variant variables, fixed effects
Stage Two:  Fixed effects coefficients regressed on time-invariant variables
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Table 9: Changing Communities
Stage One Results

Sales Tax 
Collections

Sales Tax 
Collections

Pull Factors Pull Factors

CONSTANT 3191660***
(2.7608)

3116180***
(2.6321)

0.9750***
(8.4486)

0.9041***
(7.8228)

BIG3 352324***
(3.6342)

307621***
(3.0596)

0.0365***
(3.5548)

0.0364***
(3.4480)

POP 90.0722*
(1.8792)

47.8403
(0.9049)

MTR 771683***
(4.0732)

756989***
(3.9470)

0.0772***
(3.7689)

0.0789***
(3.7894)

CORATE 399029***
(3.3286)

337003***
(2.7468)

0.0465***
(3.6033)

0.0439***
(3.3268)

REC 0.3395***
(3.2270)

0.4094***
(3.8748)

1.17E-08
(1.0481)

1.72E-08
(1.5378)

HWMILES -38077***
(-0.6055)

40830***
(-4.5400)

-0.0071***
(-7.6345)

-0.0071***
(-7.1963)

INCOME 2.7167
(0.1781)

20.6867
(1.4306)

1.00E-05***
(6.0639)

1.20E-05***
(7.5887)

20MILES 158717***
(-4.3784)

0.0145***
(4.1772)

20MINS 519069***
(4.0456)

0.0295**
(2.3745)

Stage Two Results Stage 1: N = 330
AREA 126994***

(3.6258)
145098***

(3.3201)
0.0202***
(3.6269)

0.0198***
(3.5647)

COL 1994374
(1.5282)

2508689*
(1.4492)

0.3195
(1.6158)

0.2970
(1.5094)

AIR -1839971
(-1.0244)

-2091839
(-0.9809)

-0.1292
(-0.5640)

-0.1204
(-0.5286)

UINF -2102615
(-1.4794)

-1724490
(-1.0178)

-0.3463
(-1.3335)

-0.2646
(-1.0241)

MANF -2211936
(-1.5860)

-2486847
(-1.3765)

-0.3229
(-1.0141)

-0.3174
(-1.0018)

SERV -2124664
(-1.4249)

-2050160
(-0.9798)

-0.2591
(-0.7660)

-0.2212
(-0.6572)

FSGOV 292099
(0.0875)

444251
(0.1114)

-0.1538
(-0.4284)

-0.1814
(-0.5079)

HOUSE -3027999
(-1.4669)

-2420391
(-0.9698)

-0.3489
(-0.7101)

-0.2934
(-0.6001)

POPLOSS 34852
(0.0289)

43368
(0.0300)

0.0666
(0.3006)

0.0761
(0.3452)

Stage 2: N = 30
Fixed effects also estimated in Stage One but not reported in table.
Stage Two, columns 1 and 2, are estimated with White’s standard errors after rejecting homoscedasticity.  

Test stats:  3.5719, 3.5812

***significant at the 1% level; 
**significant at the 5% level; 
*significant at the 10% level 
Number in parentheses is t-stat.  

Stage One:   Sales Tax Collections regressed on time-variant variables, fixed effects
Stage Two:  Fixed effects coefficients regressed on time-invariant variables
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Table 10: All Rural Communities
Stage One Results

Sales Tax 
Collections

Sales Tax 
Collections

Pull Factors Pull Factors

CONSTANT -407468***
(-4.5807)

-359682***
(-4.2035)

-0.3177***
(-5.7521)

-0.2969
(-5.5717)

BIG3 -112148***
(-3.6160)

-114088***
(-3.7456)

-0.0047
(-0.2395)

-0.0044
(-0.2254)

POP -110.8719***
(-11.4692)

-114.2170***
(-11.9874)

MTR 225670***
(7.1878)

230029***
(7.4500)

-0.0063
(-0.3400)

-0.0065
(-0.3534)

CORATE 41711***
(3.5263)

47170***
(4.0516)

0.0344***
(4.4347)

0.0369***
(4.7969)

REC 0.4025***
(10.5234)

0.3962***
(10.5327)

5.18E-08**
(2.0483)

4.91E-08**
(1.9590)

HWMILES 16367***
(3.8822)

16826***
(4.0630)

0.0069***
(2.5013)

0.0072***
(2.6378)

INCOME 10.2587***
(6.4073)

9.3404***
(6.3388)

1.47E-05***
(13.8832)

1.43E-05***
(14.6509)

20MILES 10629
(1.5248)

0.0062
(1.3378)

20MINS 95404***
(5.2529)

0.0474***
(3.9008)

Stage Two Results Stage 1: N = 806
AREA -17447***

(-3.4181)
-17858***
(-3.3875)

-0.004
(-0.2864)

-0.0058*
(-1.8347)

COL 747034
(1.5540)

774234
(1.5904)

0.2156
(1.4756)

-0.3327***
(3.2570)

AIR 1386850***
(2.9665)

1413145***
(2.9701)

-0.0505
(-0.3461)

-0.2198**
(-2.2894)

UINF -325900***
(-3.7097)

-318417***
(3.5531)

0.0156
(0.2855)

-0.1037***
(-2.6209)

Stage 2: N = 62
Fixed effects also estimated in Stage One but not reported in table
Stage Two, columns 1, 2, and 4, are estimated with White’s standard errors after rejecting

homoscedasticity.  
Test stats:  118.4688, 128.2673, 53.1907

***significant at the 1% level;
**significant at the 5% level; 
*significant at the 10% level 
Number in parentheses is t-stat.  

Stage One:   Sales Tax Collections regressed on time-variant variables, fixed effects
Stage Two:  Fixed effects coefficients regressed on time-invariant variables
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Table 11:  Rural Communities without discount retailers
Stage One Results

Sales Tax 
Collections

Sales Tax 
Collections

Sales Tax Pull 
Factors

Sales Tax Pull 
Factors

CONSTANT -346155***
(-6.5972)

-334044***
(-6.1541)

-0.0489
(-0.7378)

-0.0474
(-0.7149)

POP 6.6867***
(2.7498)

11.5827***
(4.8038)

CORATE 43057.3***
(3.1712)

26420.2*
(1.8690)

-0.0128
(-0.7421)

-0.0042
(-0.2402)

REC 0.6868***
(11.1145)

0.6108***
(9.7013)

-8.13 E-08
(5.32 E-08)

-8.53 E-08
(-1.6059)

HWMILES 1708.145***
(11.0517)

1408.362***
(8.8208)

0.0007***
(4.6603)

0.0007***
(4.0369)

INCOME 5.4728***
(3.7592)

7.6743***
(5.2050)

1.14 E-05***
(6.2080)

1.11 E-05***
(6.1595)

20MILES -140.082
(-0.0331)

-0.0075
(-1.4327)

20MINS 77332.38***
(7.0047)

-0.0172
(-1.2758)

Stage Two Results Stage 1: N = 754
AREA -295.368

(-0.8586)
-373.717
(-1.0957)

0.0013
(0.8463)

0.0013
(0.8479)

COL -54702.1*
(-1.7285)

-38670.7
(-1.2325)

0.1270
(0.8686)

0.1337
(0.9186)

AIR 81602.74**
(2.0776)

94635.23**
(2.4301)

-0.1984
(-1.0937)

-0.2029
(-1.2285)

UINF 13890.66
(0.5904)

13595.46
(0.5828)

-0.1901*
(-1.7491)

-0.1916*
(-1.7702)

Stage 2: N = 58
Fixed effects also estimated in Stage One but not reported in table.

***significant at the 1% level; 
**significant at the 5% level; 
*significant at the 10% level 
Number in parentheses is t-stat.  

Stage One:   Sales Tax Collections regressed on time-variant variables, fixed effects
Stage Two:  Fixed effects coefficients regressed on time-invariant variables
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Table 12:  Property tax collections

Property Tax Collections

CONSTANT -1260766***
(-3.6079)

POP 220.9684***
(17.9874)

CORATE -2170.73
(-0.1003)

MRATE LAG -63171.3*
(-1.8519)

TOTAL EXP 0.1588***
(52.9137)

RURAL 28.6235
(1.5418)

MHOME 6.9458***
(4.9262)

HW MILES 38705.19***
(5.7669)

COL -1 E+07***
(-18.6958)

UINF 212306.8*
(1.7762)

N = 650, T = 13
***significant at the 1% level; 
**significant at the 5% level; 
*significant at the 10% level
Number in parentheses is t-stat
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Table 13: Sales Tax Collections Increments
0-5MILES 6-10MILES 11-20MILES 0-10MINS 11-20MINS

1A.  ALL 
COMMUNITIES

86235**
(2.1708)

91009***
(5.0610)

-3861.76
(-0.4197)

1B. ALL
COMMUNITIES

63898
(1.0199)

134799***
(7.3144)

2A. WITHOUT
BIG3

92389
(0.7418)

88278
(1.5401)

64800***
(2.6002)

2B. WITHOUT
BIG3

305738
(1.6271)

104091*
(1.8360)

3A. WITH
BIG3

1072722
(1.4849)

-202023
(-0.7063)

716314***
(3.9425)

3B. WITH
BIG3

6873.15
(0.0042)

565654**
(2.1834)

4A. CHANGING
STATUS

N/A 1060975***
(9.9280)

20646
(0.6110)

4B. CHANGING
STATUS

N/A 519069
(0.0001)

5A. RURAL 
COMMUNITIES

-40793
(-0.7785)

121192***
(5.4199)

6773.48
(0.8317)

5B. RURAL
COMMUNITIES

N/A 95404***
(5.2529)

6A. RURAL W/O
BIG3

68807
(0.9810)

-38311
(-1.2843)

684.30
(0.0660)

6B. RURAL W/O
BIG3

N/A 77332***
(7.0047)

1A and B: N = 741; 2A and B: N = 8450; 3A and B: N = 7488; 
4A and B: N = 330; 5A and B: N = 806; 6A and B: N = 754

***significant at the 1% level; 
**significant at the 5% level; 
*significant at the 10% level
Number in parentheses is t-stat
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Table 14: Pull Factor Increments
0-5MILES 6-10MILES 11-20MILES 0-10MINS 11-20MINS

1A. ALL 
COMMUNITIES

-0.0028
(-0.5528)

0.0015
(0.6409)

0.0008
(0.6828)

1B. ALL
COMMUNITIES

0.0028
(0.3448)

-0.0020
(-0.8445)

2A. WITHOUT
BIG3

-0.0027
(-0.1822)

0.0057
(0.8238)

-0.0027
(-0.8846)

2B. WITHOUT
BIG3

0.0281
(0.9211)

-0.0050
(-0.7282)

3A. WITH
BIG3

0.0186
(0.3885)

-0.0017
(-0.0921)

0.0285**
(2.3768)

3B. WITH
BIG3

0.1221
(1.1383)

0.0183
(1.0805)

4A. CHANGING
STATUS

N/A 0.0587***
(5.4694)

0.0057
(1.4513)

4B. CHANGING
STATUS

N/A 0.0295**
(0.0181)

5A. RURAL 
COMMUNITIES

-0.0680*
(-1.9420)

0.0586***
(3.9423)

0.0084
(1.5443)

5B. RURAL
COMMUNITIES

N/A 0.0472***
(3.9008)

6A. RURAL W/O
BIG3

-0.0504
(-0.5870)

0.0435
(1.2056)

0.0073
(0.5711)

6B. RURAL W/O
BIG3

N/A -0.0172
(-1.2758)

1A and B: N = 8450; 2A and B: N = 7488; 3A and B: N = 572; 
4A and B: N = 330; 5A and B: N = 806; 6A and B: N = 754

***significant at the 1% level; 
**significant at the 5% level; 
*significant at the 10% level
Number in parentheses is t-stat
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Table 15: Communities with a Discount Retailer , Alternative Estimation Technique

N = 572 Stage 1: N = 572; Stage 2: N = 44
***significant at the 1% level; **significant at the 5% level; *significant at the 10% level
Number in parentheses is t-stat

Heckman Correction 
Estimation

Two-Stage, Fixed Effects 
Estimation

CONSTANT -17883256***
(-8.4746)

-2.5 E+07***
(-8.2253)

POP 260.3143***
(25.0798)

253.5468***
(23.0243)

MRATE 537087
(1.3331)

118545
(0.1356)

CORATE 956980***
(2.5614)

1630576***
(2.9030)

REC -0.3826***
(-5.1128)

-0.3815***
(-5.0200)

HWMILES -23964***
(-6.5158)

-21864***
(-5.7198)

INCOME 760.3437***
(13.9573)

760.3441***
(13.6241)

20MILES -513947***
(-9.9100)

-484974***
(-9.0199)

AREA -7415.735
(-0.7970)

8658.714
(0.8393)

COL 69234
(0.3654)

296213
(1.4463)

AIR -190548
(-0.6362)

-164359
(-0.4837)

UINF -1458412***
(-2.7347)

-980826*
(-1.7112)

MANF -1615923***
(-2.5669)

-2215175***
(-3.2705)

SERV -1101769**
(-1.9692)

-948193
(-1.4385)

FSGOV -2829921***
(-2.6556)

-3290631***
(-3.1076)

HOUSE -67444
(-0.1164)

-252120
(-0.3894)

POPLOSS -1138301***
(-2.5566)

-1005305*
(-2.0144)
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Table 16:  Cross Tax Elasticities
Sales Tax Collections Pull Factors

All W/ BIG3 W/O BIG3 Changing Rural All W/ BIG3 W/O BIG3 Changing Rural

CORATE -9596.12
(-0.5742)

2886657***
(3.5625)

275869***
(2.9764)

488189***
(2.6435)

19928*
(1.6663)

-0.0001
(0.3546)

0.1328***
(2.4919)

-0.0246**
(-2.2060)

0.0426**
(2.1312)

0.0329***
(4.0374)

MRATE -2992.96
(-0.0506)

2770504*
(1.8312)

410569
(0.3183)

940811***
(2.8779)

-247673***
(-3.1862)

0.0027
(-0.0520)

0.1036
(1.0422)

-0.0183
(-0.1176)

0.0698**
(1.9768)

-0.0342
(-0.6525)

INTRATE 11599
(0.4180)

-115075
(-0.2270)

-115075
(-0.2270)

-50059
(-0.6351)

190686***
(6.6210)

0.0011
(0.3161)

-0.0370
(-1.4244)

-0.0474
(-0.7757)

0.0022
(0.2586)

0.0105
(0.5689)

1: N = 8450; 2: N = 7488; 3: N = 572; 4: N = 330; 5: N = 806
***significant at the 1% level; 
**significant at the 5% level; 
*significant at the 10% level
Number in parentheses is t-stat

All W/ BIG3 W/O BIG3 Changing Rural All W/ BIG3 W/O BIG3 Changing Rural

TRATE -4481.90
(-0.2796)

1157509**
(2.1891)

304720***
(3.1828)

419320***
(3.4832)

56785***
(4.8165)

0.0007
(0.3259)

0.0513
(1.4589)

-0.0260**
(-2.3454)

0.0320*
(1.7455)

0.0294***
(3.9753)

1: N = 8450; 2: N = 7488; 3: N = 572; 4: N = 330; 5: N = 806

***significant at the 1% level; 
**significant at the 5% level; 
*significant at the 10% level
Number in parentheses is t-stat
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Table 17:  County Level Analysis, BEA areas
Stage One Results

Sales Tax Pull
Factors

CONSTANT 1.1826***
(16.1545)

BIG3 0.0151***
(2.8326)

CORATE 0.1570***
(10.1833)

REC 2.87 E-09**
(2.0773)

HWMILES -6.64 E-06
(-1.1161)

URATE -0.0151
(-0.9726)

INCOME -2.14 E-05***
(-8.4321)

EST 2.79 E-07
(0.1353)

Stage Two Results N = 741
AREA 1601.83

(1.0093)
COL -347785

(-0.642)
AIR 484351

(0.9544)
UINF 1199937

(0.7080)
MANF 2338991

(1.2863)
SERV 2610583

(1.3474)
FSGOV 2300681

(1.1691)
HOUSE 23184

(0.0106)
POPLOSS 25622

(0.0148)
N = 57

***significant at the 1% level; 
**significant at the 5% level; 
*significant at the 10% level
Number in parentheses is t-stat

Stage One:   Sales Tax Collections regressed on time-variant variables, fixed effects
Stage Two:  Fixed effects coefficients regressed on time-invariant variables
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Table 18: All Communities, BEA Areas
Stage One Results

Sales Tax Pull
Factors

Sales Tax Pull
Factors

CONSTANT 1.0505***
(20.4943)

1.0361***
(20.2765)

BIG3 -0.0296***
(-2.6311)

-0.0277***
(-2.4597)

MRATE 0.0012
(0.2141)

0.0010
(0.1789)

CORATE 0.0052
(1.4511)

0.0052
(1.4381)

REC -3.28E-09
(-1.0822)

-3.02E-09
(-0.9980)

HWMILES -0.0059***
(-5.8348)

-0.0057***
(-5.6751)

INCOME 1.58E-05***
(16.2402)

1.62E-05***
(20.0379)

20MILES -0.0012
(-0.7135)

20MINS -0.0111***
(-2.9363)

Stage Two Results
AREA -0.0001

(-0.0987)
-0.0001

(-0.1167)
COL -0.0434

(-0.5424)
-0.0434

(-0.5489)
AIR -0.0542

(-0.5839)
-0.0563

(-0.6147)
UINF 0.0522

(0.6536)
0.0549

(0.6960)
MANF 0.0367

(0.4066)
0.0319

(0.3578)
SERV 0.0089

(0.0981)
0.0040

(0.0454)
FSGOV 0.0909

(0.8989)
0.0891

(0.8928)
HOUSE -0.1133

(-1.1244)
-0.1143

(-1.1487)
POPLOSS 0.0124

(0.1778)
0.0131

(0.1904)
N = 8450 N = 650

***significant at the 1% level; 
**significant at the 5% level; 
*significant at the 10% level
Number in parentheses is t-stat

Stage One:   Sales Tax Collections regressed on time-variant variables, fixed effects
Stage Two:  Fixed effects coefficients regressed on time-invariant variables
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Table 19: Communities With/Without Discount Retailers, BEA Areas
Stage One Results

Communities With Retailers Communities Without Retailers
CONSTANT 0.4859***

(5.0065)
0.4881***
(5.0295)

CONSTANT 1.2060***
(23.0855)

1.2058***
(23.0820)

MRATE 0.1212
(0.4266)

0.01197
(0.4210)

MRATE 1.1523***
(23.0927)

1.1517***
(23.0797)

CORATE 0.0693***
(3.7920)

0.0689***
(3.7629)

CORATE 0.0844***
(11.8855)

0.0842***
(11.8530)

REC 2.75 E-09
(1.2309)

2.74 E-09
(1.2023)

REC 2.20 E-09**
(2.0358)

2.15 E-09**
(1.9932)

HWMILES -5.08 E-05
(-0.7924)

-5.39 E-05
(-0.8516)

HWMILES -0.0001***
(-2.7699)

-0.0001***
(-2.7223)

INCOME 1.68 E-06
(0.9931)

1.51 E-06
(0.9424)

INCOME 3.34 E-07
(0.7880)

2.58 E-07
(0.6265)

20MILES -0.0006
(-0.3846)

20MILES -0.0008
(-1.2315)

20MINS -0.0007
(-0.2408)

20MINS 0.0015
(-1.0132)

Stage Two Results N = 572         N = 7488
AREA -0.0101

(-1.2491)
-0.0101

(-1.2500)
AREA 0.0009

(1.1592)
0.0009

(1.1613)
COL -0.0051

(-0.0319)
-0.0051

(-0.0316)
COL -0.0340

(-0.3512)
-0.0340

(-0.3508)
AIR 0.1368

(0.5135)
0.1367

(0.5132)
AIR -0.0465

(-0.5952)
-0.0465

(-0.5953)
UINF 0.1722

(0.3831)
0.1721

(0.3829)
UINF -0.0339

(-0.6333)
-0.0339

(-0.6340)
MANF 0.0544

(0.1025)
0.0539

(0.1015)
MANF -0.1201**

(-2.0083)
-0.1202**
(-2.0096)

SERV 0.6313
(1.2213)

0.6308
(1.2206)

SERV -0.1125*
(-1.8687)

-0.1125*
(-1.8676)

FSGOV -0.4402
(-0.5301)

-0.4408
(-0.5309)

FSGOV -0.0955
(-1.4552)

-0.0957
(-1.4579)

HOUSE -0.3834
(-0.7551)

-0.3837
(-0.7558)

HOUSE -0.1729***
(-2.5614)

-0.1728***
(-2.5605)

POPLOSS -0.2897
(-0.7402)

-0.2898
(-0.7407)

POPLOSS 0.1097**
(2.3439)

0.1098**
(2.3464)

N = 44 N = 576
***significant at the 1% level; **significant at the 5% level; *significant at the 10% level
Number in parentheses is t-stat

Stage One:   Sales Tax Collections regressed on time-variant variables, fixed effects
Stage Two:  Fixed effects coefficients regressed on time-invariant variables
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Table 20: Rural Communities, BEA Areas
Stage One Results

All Rural Communities Rural, Without Discount Retailers
CONSTANT -0.1950*

(-1.6646)
-0.1294*
(-1.1501)

CONSTANT 0.4552***
(7.578)

0.4566***
(7.6039)

BIG3 -0.0763*
(-1.8227)

-0.0761
(-1.8472)

BIG3

MRATE 0.0132
(0.3357)

0.0130
(0.3336)

MRATE

CORATE 0.0636***
(3.8708)

0.0707***
(4.3641)

CORATE -0.0343**
(-2.1774)

-0.0260*
(-1.6676)

REC 2.67E-08
(0.4985)

1.90E-08
(0.3594)

REC 1.56 E-08
(0.3235)

1.13 E-08
(0.2332)

HWMILES 0.0160***
(2.7236)

0.0167***
(2.8902)

HWMILES -0.0005***
(-3.5052)

-0.0005***
(-4.0562)

INCOME 6.21E-08
(0.0277)

-5.63E-07
(-0.2728)

INCOME 5.75 E-06***
(3.5058)

5.43 E-06***
(3.2620)

20MILES 0.0201**
(2.0494)

20MILES 0.0066
(1.3925)

20MINS 0.1294***
(5.0633)

20MINS 0.0185
(1.5147)

Stage Two Results N = 754  N = 806
AREA 0.0013

(0.8463)
0.0013

(0.8479)
AREA -0.0134***

(-5.3359)
-0.0141***
(-5.3409)

COL 0.1270
(0.8686)

0.1337
(0.9186)

COL -0.7067***
 (-3.1419)

-0.7067***
(-2.983501

AIR -0.1984
(-1.0937)

-0.2029
(-1.1229)

AIR -0.4472**
 (-1.9904)

-0.4692**
(-1.9831)

UINF -0.1901*
(-1.7491)

-0.1916*
(-1.7702)

UINF 0.4651***
(2.7852)

0.4383**
(2.4930)

N = 58 N = 62
***significant at the 1% level; **significant at the 5% level; *significant at the 10% level
Number in parentheses is t-stat

Stage One:   Sales Tax Collections regressed on time-variant variables, fixed effects
Stage Two:  Fixed effects coefficients regressed on time-invariant variables
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Table 21: Communities With Changing Status, BEA Areas
Stage One Results

Sales Tax Pull
Factors

Sales Tax Pull
Factors

CONSTANT 2.7149***
(16.6419)

2.7045
(16.922)

BIG3 0.0042
(0.2918)

-0.0004
(-0.0248)

MRATE 0.0836***
(2.8863)

0.0813***
(2.8215)

CORATE 0.0241
(1.3176)

0.0178
(0.9738)

REC -6.82E-09
(-0.4333)

-3.71E-09
(-0.2395)

HWMILES -0.0164***
(-12.4284)

-0.0172***
(-12.6556)

INCOME 4.23E-06*
(1.8094)

5.37E-06***
(2.4620)

20MILES 0.0144***
(2.9409)

20MINS 0.0615***
(3.5803)

Stage Two Results  N = 330
AREA 0.0450***

(3.5532)
0.0466***
(3.5972)

COL 0.7765*
(1.7260)

0.7927*
(1.7220)

AIR -0.3549
(-0.6810)

-0.3426
(-0.6426)

UINF -0.7718
(-1.3061)

-0.7201
(-1.1910)

MANF -0.7001
(-0.9662)

-0.7234
(-0.9756)

SERV -0.6818
(-0.8858)

-0.6714
(-0.8525)

FSGOV -0.3988
(-0.4882)

-0.4402
(-0.5266)

HOUSE -0.3654
(-0.3269)

-0.3317
(-0.2900)

POPLOSS 0.0399
(0.0791)

0.0562
(0.1089)

N = 30
***significant at the 1% level; 
**significant at the 5% level; 
*significant at the 10% level
Number in parentheses is t-stat 

Stage One:   Sales Tax Collections regressed on time-variant variables, fixed effects
Stage Two:  Fixed effects coefficients regressed on time-invariant variables
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Table 22: Landfalling U.S. Hurricanes by Saffir-Simpson Category by Decade

Category

Decade 1 2 3 4 5 Total

1940’s 5 8 7 1 0 21

1950’s 4 1 8 2 0 15

1960’s 4 5 3 2 1 15

1970’s 6 2 4 0 0 12

1980’s 8 2 4 1 0 15

1990’s 5 6 4 1 0 16

Total 32 24 30 7 1 94
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Table 23:  Poisson Regression of Hurricane Fatalities

Coefficient Standard 
Error

Lower 95% 
Confidence 

Interval

Upper 95% 
Confidence 

Interval

Coefficient
(Alternative

Specification)
Constant -.6580***

(-5.8247)
.1130 -0.8794 -0.4366 0.6819***

(8.3089)
Category 1.0813***

(42.3404)
.0255 1.0313 1.1314 1.0989***

(48.5480)
Density .0007***

(20.1708)
.0000 0.0006 0.0008 0.0007***

(20.5434)
D40 .9937***

(10.8945)
.0912 0.8149 1.1725

D50 1.3543***
(15.3218)

.0844 1.1811 1.5276

D60 .4865***
(5.0412)

.0965 0.2974 0.6757

D70 .2145*
(1.6890)

.1270 -0.0344 0.4634

D80 -.4082***
(-3.1749)

.1286 -0.6602 -0.1562

Time Trend -0.0281***
(-19.2398)

Pseudo R2 0.4614 0.4298
N = 93

***significant at the 1% level
**significant at the 5% level
*significant at the 10% level
Number in parentheses is z-stat
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Table 24: Determinants of Coastal County Population Growth

∆Pop %∆Pop
Constant 60973**

(2.0003)
1.9941**
(2.8412)

Lethality -12449*
(1.8632)

-0.2882**
(2.9542)

InitialPop .1158***
(5.4344)

Area 31.623***
(4.4825)

Density -0.1770
(1.1408)

U.S. Pop -0.0004***
(2.6737)

-0.0074*
(3.0401)

PHurricane 11209***
(4.5676)

0.0218
(1.4825)

Hit -1880
(0.3996)

-0.0433
(1.5153)

R2
Adjusted R2

.4580

.4427
.0947
.0704

N = 73
***significant at the 1% level
**significant at the 5% level
*significant at the 10% level
Number in parentheses is t-stat
Both models include state fixed effects reported in Table 25.
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Table 25: State Fixed Effects for Models in Table 24

***significant at the 1% level
**significant at the 5% level
*significant at the 10% level
Number in parentheses is t-stat

∆Pop %∆Pop
AL -59927***

(-4.7450)
-0.2153

(-1.1558)
FL -20036**

(-2.4304)
0.0679

(0.3713)
GA -10136***

(-2.7196)
-0.0889

(-0.4665)
LA -29469***

(-3.7544)
-0.1766

(-0.9405)
MAS -15571**

(-2.3012)
-0.1317

(-0.6942)
MD -5217

(-1.2923)
-0.2763

(-1.4267)
ME -14413**

(-2.1664)
-0.2367

(-1.2392)
MS -30966***

(-4.0416)
-0.1442

(-0.7783)
NC -38249***

(-4.2819)
-0.2796

(-1.5302)
NJ -1999

(-0.1772)
-0.1150

(-0.5236)
NY 10150

(0.1550)
-0.0758

(-0.3315)
RI -18835***

(-3.0679)
-0.2474

(-1.2794)
SC -28764***

(-4.1308)
-0.1822

(-0.9906)
TX -34860***

(-4.5191)
-0.2467

(-1.3594)
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Table 26:  Analysis of Hurricane Damages

Coefficients 
Using RFR 
estimates

Coefficients 
Using Lower 
RFR Bound

Coefficients 
Using Upper 
RFR Bound

Coefficients 
for 
Estimation 
With 
State FE

Coefficients 
for
Estimation
Using 
NewRFR as
Lethality
Measure

Constant -6037**
(2.2990)

-5189**
(-2.1957)

-6855**
(-2.3406)

-1234
(0.0631)

600.0612
(0.2722)

Category of 
Hurricane

1427***
(3.9802)

1427***
(3.9871)

1427***
(3.9742)

1386***
(3.6390)

1545***
(4.3307)

Population 
Density

1.3219**
(2.0879)

1.3101**
(2.0744)

1.3316**
(2.0969)

6.6393**
(2.8884)

1.3020**
(2.0491)

Income -3.1770**
(-2.1534)

-0.3194**
(-2.1676)

-0.3145**
(-2.1300)

-0.3737*
(2.0499)

-0.3298**
(-2.2447)

Year 141.397*
(1.9515)

147.736**
(2.0000)

133.559*
(1.8866)

160.231
(1.6567)

Fatality Rate 
(RFR)

4675**
(2.2793)

4601**
(2.3128)

4697**
(2.2310)

5609*
(2.1533)

766.526
(0.3972)

Prob.
Hurricane 
(PH)

1454***
(3.8960)

1462***
(3.9188)

1440***
(3.8636)

1767**
(4.1517)

-319.606
(-0.9748)

RFR*PH -1199***
(3.3941)

-1206***
(-3.4208)

-1186***
(-3.3564)

-1385**
(3.6231)

-1541***
(-3.1317)

R2
Adjusted R2

.3808

.3141
.3821
.3156

0.3788
0.3120

.5157

.3421
.3645
.3068

N = 73
***significant at the 1% level
**significant at the 5% level
*significant at the 10% level
Number in parentheses is t-stat
The first column presents estimates using the point estimates of the Recent Fatality Rate variable 
from Table 2, while the second and third columns use the upper and lower bounds of the 95% 
confidence interval of the estimates from Table 2.  
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Table 27: State Fixed Effects for Damages Estimation

State FE Coefficients
AL -3967

(-0.1997)
CT -19350

(-0.1622)
FL -6815

(-0.3547)
GA -9292

(-0.3137)
LA -4304

(-0.2241)
MAS -7072

(-0.3599)
ME -5686

(-0.2950)
MS -7792

(-0.4051)
NC -6540

(-0.3361)
NY -30357

(-1.3619)
SC -4929

(-0.2549)
TX -7299

(-0.3799)
N = 73

Number in parentheses is t-stat
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Table 28: “Prior” defined: total number of past hurricanes
5+ 10+ 15+ M5+ M10+ M15+

C -4762.29*
(-1.6569)

-4663.21
(-1.5828)

-4762.32
(-1.5742)

-5105.67*
(-1.7499)

-4832.10*
(-1.6333)

-4375.28
(-1.4502)

CAT 1372.30***
(3.7972)

1374.28***
(3.7979)

1381.38***
(3.8052)

1397.77***
(3.8642)

1386.42***
(3.8320)

1366.45***
(3.7768)

YV 133.19*
(1.8307)

131.802*
(1.8049)

132.686*
(1.8097)

135.989*
(1.8611)

133.272*
(1.8221)

130.746*
(1.7922)

PD 1.4086**
(2.2103)

1.4031**
(2.1999)

1.3748**
(2.1566)

1.3754**
(2.1511)

1.3778**
(2.1621)

1.3752**
(2.1698)

RFR 4206.16**
(2.0093)

4185.30**
(1.9884)

4218.59**
(1.9866)

4446.59**
(2.1369)

4367.72**
(2.0967)

4212.56**
(2.0165)

AI -0.3810**
(-2.4041)

-0.3824**
(-2.3846)

-0.3765**
(-2.3087)

-0.3694**
(-2.2586)

-0.3778**
(-2.3254)

-0.3981**
(-2.4269)

PRMH 1278.33***
(3.1469)

1287.18***
(3.1649)

1312.35***
(3.2095)

1355.05***
(3.4112)

1332.84***
(3.3518)

1295.04***
(3.2472)

INT1 -1138.92***
(-3.1875)

-1142.75***
(-3.1962)

-1149.32***
(-3.2019)

-1196.07***
(-3.3726)

-1193.58***
(-3.3715)

-1175.52***
(-3.3263)

PastH 124.896
(1.0842)

124.467
(1.0270)

116.928
(0.8543)

143.006
(0.7437)

172.019
(0.8899)

231.392
(1.1126)

R2
Adj. R2

0.3919
0.3159

0.3908
0.3147

0.3878
0.3112

0.3861
0.3093

0.3883
0.3119

0.3925
0.3166

N = 73
***significant at the 1% level
**significant at the 5% level
*significant at the 10% level
Number in parentheses is t-stat
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Table 29: “Prior” defined: dummy variable if counties were previously hit
D5+ D10+ D15+ MD5+ MD10+ MD15+

C -5885.68**
(-2.1277)

-6063.55**
(-2.2286)

-5949.67
(-2.2498)

-5926.45**
(-2.2310)

-6035.10**
(-2.2770)

-6035.10**
(-2.2770)

CAT 1443.00***
(3.8834)

1424.26***
(3.8987)

1468.87***
(3.9908)

1446.66***
(3.9747)

1427.47***
(3.8973)

1427.47***
(3.8973)

YV 143.136*
(1.9452)

140.844*
(1.8975)

153.859*
(2.0211)

148.078**
(1.9828)

141.562*
(1.9182)

141.562*
(1.9182)

PD 1.2617*
(1.7671)

1.3342*
(1.8967)

1.1699*
(1.6921)

1.2333*
(1.8350)

1.3192**
(1.9915)

1.3192**
(1.9915)

RFR 4644.44**
(2.2407)

4678.06**
(2.2617)

4692.12**
(2.2754)

4605.57**
(2.2239)

4672.34***
(2.2533)

4672.34**
(2.2533)

AI -0.3139**
(-2.0918)

-0.3184**
(-2.1267)

-0.3069**
(-2.0526)

-0.3112**
(-2.0845)

-0.3173***
(-2.1055)

-0.3173**
(-2.1055)

PRMH 1446.73***
(3.8297)

1454.89***
(3.8583)

1440.78***
(3.8338)

1446.00***
(3.8458)

1453.28***
(3.8535)

1453.28***
(3.8535)

INT1 -1186.28***
(-3.2692)

-1202.21***
(-3.3176)

-1154.54***
(-3.1709)

-1162.94***
(-3.1740)

-1198.12***
(-3.2707)

-1198.12***
(-3.2707)

PastH -286.669
(-0.1878)

59.474
(0.0415)

-783.083
(-0.5631)

-498.128
(-0.4144)

-16.5088
(-0.0154)

-16.509
(-0.0154)

R2
Adj. R2

0.3811
0.3038

0.3808
0.3034

0.3838
0.3068

0.3824
0.3052

0.3808
0.3034

0.3808
0.3034

N = 73
***significant at the 1% level
**significant at the 5% level
*significant at the 10% level
Number in parentheses is t-stat
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Table 30: “Prior” defined: percent of counties previously hit
P5+ P10+ P15+ MP5+ MP10+ MP15+

C -6000.31**
(-2.2700)

-6346.21**
(-2.3999)

-6500.02**
(-2.4153)

-6066.93**
(-2.2945)

-5867.66**
(-2.1857)

-5479.60**
(-2.0017)

CAT 1452.47***
(3.9783)

1482.16***
(4.0861)

1497.42***
(4.0542)

1436.99***
(3.9733)

1396.53***
(3.7730)

1343.95***
(3.5740)

YV 147.255**
(1.9891)

159.120**
(2.1333)

153.098**
(2.0690)

145.847**
(1.9775)

135.219*
(1.8054)

127.939*
(1.7087)

PD 1.2876**
(2.0072)

1.2659**
(1.9916)

1.3117**
(2.0664)

1.2900**
(2.0090)

1.3412**
(2.0969)

1.3376**
(2.1044)

RFR 4756.92**
(2.2963)

4775.16**
(2.3253)

4919.17**
(2.3683)

4732.77**
(2.2871)

4632.89**
( 2.2402)

4440.42**
(2.1333)

AI -0.3212**
(-2.1611)

-0.3123**
(-2.1149)

-0.3058**
(-2.0583)

-0.3144**
(-2.1139)

-0.3210**
(-2.1574)

-0.3309**
(-2.2199)

PRMH 1457.66***
(3.8817)

1413.47***
(3.7660)

1431.05***
(3.8157)

1467.93***
(3.8917)

1451.18***
(3.8625)

1458.61***
(3.8954)

INT1 -1203.32***
(-3.3832)

-1141.83***
(-3.1886)

-1192.02***
(-3.3638)

-1204.39***
(-3.3841)

-1210.48***
(-3.3900)

-1195.09***
(-3.3700)

PastH -4.0837
(-0.4547)

-9.1844
(-0.9973)

-8.3205
(-0.8275)

-3.9251
(-0.4043)

3.5935
(0.3636)

8.0517
(0.7514)

R2
Adj. R2

0.3828
0.3056

0.3903
0.3140

0.3873
0.3107

0.3824
0.3051

0.3821
0.3048

0.3862
0.3095

N = 73
***significant at the 1% level
**significant at the 5% level
*significant at the 10% level
Number in parentheses is t-stat
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Table 31: “Prior” defined: dummy variable if  75% of counties were previously hit
D5+ (75%) D10+ (75%) D15+ (75%) MD5+ (75%) MD10+ (75%) MD15+ (75%)

C -6007.01**
(-2.2702)

-6329.16**
(-2.4398)

-6442.31**
(-2.4709)

-6006.24**
(-2.2689)

-5737.83**
(-2.1591)

-5275.28**
(-1.9705)

CAT 1432.73***
(3.9640)

1495.52***
(4.2056)

1468.99***
(4.1361)

1418.13***
(3.9148)

1363.32***
(3.7109)

1318.91***
(3.6035)

YV 143.707**
(1.9599)

161.123**
(2.2269)

158.061**
(2.1846)

139.508*
(1.9034)

130.605*
(1.7696)

121.126*
(1.6426)

PD 1.3067**
(2.0439)

1.1957*
(1.9025)

1.2543**
(2.0002)

1.3274**
(2.0806)

1.3334**
(2.1003)

1.3268**
(2.1067)

RFR 4730.16**
(2.2822)

4726.94**
(2.3378)

4980.16**
(2.4464)

4641.42**
(2.2430)

4605.07**
(2.2378)

4336.06**
(2.1081)

AI -0.3204**
(-2.1531)

-0.3054**
(-2.0971)

-0.3087**
(-2.1158)

-0.3181**
(-2.1409)

-0.3175**
(-2.1467)

-0.3261**
(-2.2200)

PRMH 1464.54***
(3.8819)

1380.48***
(3.7280)

1423.90***
(3.8569)

1446.16***
(3.8381)

1453.49***
(3.8858)

1469.22***
(3.9564)

INT1 -1209.55***
(-3.3854)

-1127.61***
(-3.2136)

-1203.10***
(-3.4451)

-1196.39***
(-3.3597)

-1222.54***
(-3.4402)

-1203.78***
(-3.4242)

PastH -237.293
(-0.3180)

-1388.21*
(-1.7024)

-1510.82
(-1.6014)

214.162
(0.2772)

712.100
(0.8245)

1249.61
(1.2998)

R2
Adj.R2

0.3818
0.3045

0.4076
0.3336

0.4046
0.3302

0.3815
0.3042

0.3873
0.3107

0.3967
0.3213

N = 73
***significant at the 1% level
**significant at the 5% level
*significant at the 10% level
Number in parentheses is t-stat
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Table 32: “Prior” defined: dummy variable if  50% of counties were previously hit
D5+ (50%) D10+ (50%) D15+ (50%) MD5+ (50%) MD10+ (50%) MD15+ (50%)

C -5937.79**
(-2.2457)

-6716.22***
(-2.5610)

-6912.78***
(-2.5893)

-6089.73**
(-2.3014)

-5963.23**
(-2.1964)

-5521.22**
(-2.0217)

CAT 1447.58***
(4.0005)

1515.84***
(4.2387)

1531.73***
(4.2274)

1427.27***
(3.9567)

1419.94***
(3.8885)

1354.63***
(3.6291)

YV 145.083**
(1.9856)

168.158**
(2.2954)

158.381**
(2.1776)

143.755**
(1.9652)

139.571*
(1.8727)

130.556*
(1.7581)

PD 1.2914**
(2.0233)

1.2778**
(2.0438)

1.3366**
(2.1297)

1.2997**
(2.0323)

1.3253**
(2.0753)

1.3052**
(2.0525)

RFR 4714.66**
(2.2863)

4811.93**
(2.3761)

5100.88**
(2.4842)

4729.10**
(2.2862)

4653.12**
(2.2431)

4467.42**
(2.1493)

AI -0.3187**
(-2.1498)

-0.3020**
(-2.0703)

-0.2901**
(-1.9675)

-0.3112**
(-2.0842)

-0.3195**
(-2.1387)

-0.3285**
(-2.2072)

PRMH 1460.10***
(3.8924)

1395.60***
(3.7743)

1419.12***
(3.8296)

1474.09***
(3.8913)

1449.61***
(3.8400)

1458.87***
(3.8947)

INT1 -1203.02***
(-3.3871)

-1099.77***
(-3.1091)

-1193.38***
(-3.4069)

-1208.20***
(-3.3908)

-1200.95***
(-3.3704)

-1199.45***
(-3.3816)

PastH -452.52
(-0.6048)

-1349.25*
(-1.6683)

-1311.89
(-1.4729)

-325.032
(-0.4100)

102.403
(0.1220)

648.384
(0.7218)

R2
Adj.R2

0.3843
0.3073

0.4066
0.3324

0.4011
0.3262

0.3824
0.3052

0.3809
0.3035

0.3858
0.3090

N = 73
***significant at the 1% level
**significant at the 5% level
*significant at the 10% level
Number in parentheses is t-stat
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Table 33: “Prior” defined: dummy variable if  90% of counties were previously hit
D5+ (90%) D10+ (90%) D15+ (90%) MD5+ 

(90%)
MD10+ 
(90%)

MD15+ 
(90%)

C -5992.05**
(-2.2644)

-6270.09**
(-2.4045)

-6712.84***
(-2.5633)

-6037.55**
(-2.2814)

-5964.90**
(-2.2365)

-5669.25**
(-2.0984)

CAT 1430.95***
(3.9640)

1435.27***
(4.0397)

1458.09***
(4.1214)

1427.34***
(3.9444)

1413.60***
(3.8614)

1384.53***
(3.7812)

YV 143.423**
(1.9611)

163.497**
(2.2284)

172.374**
(2.3386)

141.544*
(1.9355)

137.595*
(1.8315)

127.844*
(1.6847)

PD 1.2996**
(2.0303)

1.2042*
(1.9034)

1.2313**
(1.9657)

1.3205**
(2.0654)

1.3313**
(2.0823)

1.3456**
(2.1119)

RFR 4713.81**
(2.2802)

4897.94**
(2.4027)

5423.08***
(2.6210)

4676.89**
(2.2619)

4627.85**
(2.2272)

4403.22**
(2.0919)

AI -0.3188**
(-2.1460)

-0.3234**
(-2.2109)

-0.3343**
(-2.2936)

-0.3176**
(-2.1352)

-0.3142**
(-2.1018)

-0.3105**
(-2.0891)

PRMH 1461.16***
(3.8847)

1420.08***
(3.8325)

1465.42***
(3.9835)

1454.56***
(3.8610)

1447.47***
(3.8391)

1440.84***
(3.8380)

INT1 -1208.82***
(-3.3897)

-1159.50***
(-3.3004)

-1244.03***
(-3.5611)

-1199.90***
(-3.3670)

-1199.33***
(-3.3688)

-1180.24***
(-3.3122)

PastH -287.899
(-0.3781)

-1263.21
(-1.4710)

-1718.81*
(-1.7012)

-28.539
(-0.0366)

192.300
(0.2139)

650.419
(0.6320)

R2
Adj.R2

0.3822
0.3049

0.4010
0.3262

0.4076
0.3335

0.3808
0.3034

0.3812
0.3039

0.3846
0.3077

N = 73
***significant at the 1% level
**significant at the 5% level
*significant at the 10% level
Number in parentheses is t-stat
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Table 34: “Prior Hurricane” defined: total number of hurricanes to hit within a certain time period

w/i 5 w/i 10 w/i 15 Mw/i 5 Mw/i 10 Mw/i 15
C -6037.50**

(-2.2781)
-6156.97**

(2.3036)
-6230.53**
(-2.3546)

-6066.57**
(-2.2920)

-5977.89**
(-2.2415)

-5889.30**
(-2.2105)

CAT 1426.53***
(3.9495)

1425.13***
(3.9482)

1417.50***
(3.9406)

1425.45***
(3.9487)

1424.00***
(3.9404)

1416.76***
(3.9207)

YV 141.402*
(1.9330)

143.598**
(1.9587)

144.932**
(1.9901)

140.917*
(1.9305)

140.728*
(1.9252)

140.314*
(1.9233)

PD 1.3219**
(2.0714)

1.3294**
(2.0836)

1.3741**
(2.1513)

1.3434**
(2.0918)

1.3077**
(2.0339)

1.2768**
(1.9782)

RFR 4675.22**
(2.2396)

4761.22**
(2.2843)

4827.13**
(2.3355)

4710.52**
(2.2761)

4641.00**
(2.2363)

4570.03**
(2.1994)

AI -0.3177**
(-2.1163)

-0.3211**
(-2.1555)

-0.3273**
(-2.2040)

-0.3191**
(-2.1461)

-0.3160**
(-2.1209)

-0.3140**
(-2.1112)

PRMH 1453.73***
(3.8650)

1448.71***
(3.8519)

1419.80***
(3.7673)

1456.38***
(3.8742)

1451.32***
(3.8580)

1452.15***
(3.8673)

INT1 -1199.51***
(-3.3068)

-1212.28***
(-3.3833)

-1217.83***
(-3.4276)

-1214.78***
(-3.3737)

-1191.53***
(-3.3206)

-1171.34***
(-3.2411)

PastH 0.5178
(0.0011)

104.638
(0.3084)

191.758
(0.7713)

208.804
(0.2815)

-94.124
(-0.1775)

-183.214
(-0.4361)

R2
Adj.R2

0.3808
0.3034

0.3817
0.3044

0.3865
0.3098

0.3815
0.3042

0.3811
0.3037

0.3826
0.3054

N = 73
***significant at the 1% level
**significant at the 5% level
*significant at the 10% level
Number in parentheses is t-stat
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Table 35: “Prior” defined: dummy variable if counties were hit within a certain time period
Dw/i 5 Dw/i 10 Dw/i 15 DMw/i 5 DMw/i 10 DMw/i 15

C -6032.66**
(-2.2771)

-6511.40**
(-2.4131)

-6772.61**
(-2.4301)

-6070.86**
(-2.2954)

-5963.57**
(-2.2279)

-5865.44**
(-2.1415)

CAT 1426.05***
(3.9458)

1432.55***
(3.9852)

1443.40***
(4.0096)

1426.38***
(3.9536)

1422.07***
(3.9290)

1417.74***
(3.9072)

YV 141.531*
(1.9361)

148.890**
(2.0327)

150.431**
(2.0463)

140.707*
(1.9286)

140.088*
(1.9097)

139.387*
(1.8975)

PD 1.3226**
(2.0721)

1.3056**
(2.0554)

1.3367**
(2.1047)

1.3532**
(2.1061)

1.3063**
(2.0296)

1.2942**
(1.9976)

RFR 4673.58**
(2.2608)

4790.95**
(2.3238)

4996.08**
(2.3849)

4735.48**
(2.2870)

4627.90**
(2.2222)

4567.66**
(2.1617)

AI -0.3174**
(-2.1310)

-0.3244**
(-2.1891)

-0.3266**
(-2.2016)

-0.3206**
(-2.1559)

-0.3144**
(-2.0988)

-0.3150**
(-2.1134)

PRMH 1452.93***
(3.8582)

1438.15
(3.8387)

1463.38***
(3.9093)

1457.43***
(3.8790)

1451.51***
(3.8591)

1449.34***
(3.8516)

INT1 -1197.58***
(-3.3324)

-1196.87***
(-3.3774)

-1236.02***
(-3.4598)

-1223.04***
(-3.3879)

-1192.04***
(-3.3263)

-1182.02***
(-3.2547)

PastH -29.082
(-0.0384)

602.169***
(0.8041)

656.168
(0.8052)

334.042
(0.3841)

-139.062
(-0.1816)

-188.337
(-0.2420)

R2
Adj.R2

0.3808
0.3034

0.3870
0.3103

0.3870
0.3104

0.3822
0.3050

0.3811
0.3037

0.3813
0.3040

N = 73
***significant at the 1% level
**significant at the 5% level
*significant at the 10% level
Number in parentheses is t-stat
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Table 36:  “Prior” defined: percent of counties hit within a certain time period
Pw/i 5 Pw/i 10 Pw/i 15 PMw/i 5 PMw/i 10 PMw/i 15

C -5933.82**
(-2.2165)

-6223.46**
(-2.2711)

-6082.85**
(-2.1658)

-6468.06**
(-2.4125)

-5971.31**
(-2.1657)

-5651.10**
(-2.0047)

CAT 1418.38***
(3.9130)

1433.15***
(3.9601)

1428.87***
(3.9211)

1444.97***
(4.0152)

1420.50***
(3.8597)

1391.64***
(3.7465)

YV 139.400*
(1.8988)

144.285*
(1.9545)

141.731*
(1.9325)

147.770**
(2.0239)

140.421**
(1.9000)

137.075*
(1.8586)

PD 1.3379**
(2.0875)

1.3128**
(2.0554)

1.3222**
(2.0722)

1.4000**
(2.1831)

1.3135**
(2.0345)

1.2705*
(1.9531)

RFR 4588.41**
(2.1907)

4731.73**
(2.2777)

4693.79**
(2.2314)

5077.45**
(2.4059)

4645.45**
(2.2169)

4474.51**
(2.1046)

AI -0.3134**
(-2.0956)

-0.3183**
(-2.1416)

-0.3175**
(-2.1340)

-0.3289**
(-2.2153)

-0.3169**
(-2.1270)

-0.3166**
(-2.1314)

PRMH 1449.91***
(3.8545)

1445.35***
(3.8317)

1452.80***
(3.8587)

1498.02***
(3.9668)

1452.55***
(3.8605)

1453.21***
(3.8693)

INT1 -1185.76***
(-3.2927)

-1195.73***
(-3.3565)

-1201.01***
(-3.3583)

-1281.93***
(-3.4885)

-1196.38***
(-3.3427)

-1171.97***
(-3.2334)

PastH -2.4693
(-0.2509)

2.1996
(0.2599)

0.4269
(0.0484)

10.1465
(0.8426)

-0.8039
(-0.0853)

-3.7074
(-0.3944)

R2
Adj.R2

0.3814
0.3041

0.3814
0.3041

0.3808
0.3034

0.3876
0.3110

0.3808
0.3035

0.3823
0.3051

N = 73
***significant at the 1% level
**significant at the 5% level
*significant at the 10% level
Number in parentheses is t-stat
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Table 37:  “Prior” defined: dummy variable if 50% of counties were hit within a 
certain time period

Dw/i 5 (50%) Dw/i 10 (50%) Dw/i 15 (50%)

C -5905.85**
(-2.1981)

-6382.13**
(-2.3564)

-6255.13**
(-2.2882)

CAT 1414.45***
(3.8903)

1431.94***
(3.9731)

1430.50***
(3.9611)

YV 138.670*
(1.8833)

147.247**
(2.0018)

143.156**
(1.9563)

PD 1.3402**
(2.0906)

1.3003**
(2.0393)

1.3202**
(2.0706)

RFR 4564.08**
(2.1694)

4778.04**
(2.3085)

4780.96**
(2.2845)

AI -0.3133**
(-2.0971)

-0.3189**
(-2.1500)

-0.3167**
(-2.1316)

PRMH 1450.93***
(3.8595)

1434.43***
(3.8088)

1447.11***
(3.8453)

INT1 -1185.96***
(-3.3016)

-1185.05***
(-3.3274)

-1208.89***
(-3.3850)

PastH -248.77
(-0.2781)

428.377
(0.5691)

240.233
(0.3145)

R2
Adj.R2

0.3815
0.3042

0.3839
0.3069

0.3817
0.3044

N = 73
***significant at the 1% level
**significant at the 5% level
*significant at the 10% level
Number in parentheses is t-stat
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Table 38:  “Prior” defined: dummy variable if 75% of counties were hit within a 
certain time period

Dw/i 5 (75%) Dw/i 10 (75%) Dw/i 15 (75%)

C -5973.26**
(-2.2183)

-5319.02**
(-1.9605)

-4987.53*
(-1.8010)

CAT 1422.30***
(3.9220)

1374.75***
(3.8020)

1315.31***
(3.5555)

YV 139.36*
(1.8651)

128.367*
(1.7470)

134.125*
(1.8493)

PD 1.3336**
(2.0694)

1.3575**
(2.1425)

1.3194**
(2.0896)

RFR 4613.91**
(2.1759)

4310.05**
(2.0729)

4200.63**
(2.0142)

AI -0.3147**
(-2.0916)

-0.3083**
(-2.0873)

-0.3236**
(-2.1984)

PRMH 1452.33***
(3.8611)

1460.47***
(3.9162)

1469.35***
(3.9462)

INT1 -1192.87***
(-3.3160)

-1184.18***
(-3.3503)

-1163.78***
(-3.2899)

PastH -127.45
(-0.1285)

-835.830
(-1.0431)

-926.700
(-1.1656)

R2
Adj.R2

0.3809
0.3036

0.3911
0.3150

0.3936
0.3179

N = 73
***significant at the 1% level
**significant at the 5% level
*significant at the 10% level
Number in parentheses is t-stat
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Table 39:  “Prior” defined: dummy variable if  90% of counties were hit within a 
certain time period

Dw/i 5 (90%) Dw/i 10 (90%) Dw/i 15 (90%)

C -5947.14**
(-2.2257)

-5319.02**
(-1.9605)

-4987.53*
(-1.8010)

CAT 1422.48***
(3.9357)

1374.75***
(3.8020)

1315.31***
(3.5555)

YV 137.938*
(1.8539)

128.367*
(1.7470)

134.125*
(1.8493)

PD 1.3469**
(2.0841)

1.3575**
(2.1425)

1.3194**
(2.0896)

RFR 4567.55**
(2.1604)

4310.05**
(2.0729)

4200.63**
(2.0142)

AI -0.3120**
(-2.0725)

-0.3083**
(-2.0873)

-0.3236**
(-2.1984)

PRMH 1451.99***
(3.8624)

1460.47***
(3.9162)

1469.35***
(3.9462)

INT1 -1186.98***
(-3.2993)

-1184.18***
(-3.3503)

-1163.78***
(-3.2899)

PastH -244.422
(-0.2392)

-835.830
(-1.0431)

-926.699
(-1.1656)

R2
Adj.R2

0.3813
0.3040

0.3911
0.3150

0.3936
0.3179

N = 73
***significant at the 1% level
**significant at the 5% level
*significant at the 10% level
Number in parentheses is t-stat
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Figures

Figure 1: Current Analysis in Relation to Existing Literature
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Figure 2:

Number of Communities: 
By Proximity to BIG3
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Figure 3: Discount Retailer Locations in New York State

Figure 4: Rural Communities Without a Discount Retailer, Terrain Map
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Figure 5: BEA Economic Areas – New York State
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Figure 6:

Figure 6 
Population Growth by Decade - U.S. Average 

Compared to Coastal Counties
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Appendix  
The Economic Research Service/U.S. Department of Agriculture Urban Influence 

Codes distinguish metropolitan counties by size and non-metropolitan counties by the 

size of the largest city or town or by proximity to metro areas.  Since an area’s geography 

has a significant impact on its economic development, ERS developed this set of county-

level categories to capture differences among economic opportunities.   

Table A.1:  Urban Influence Codes

Code Description
Metropolitan counties:

1 In large metro area of 1+ million residents
2 In small metro area of less than 1 million 

residents
Nonmetropolitan counties:

3 Micropolitan* adjacent to large metro
4 Noncore** adjacent to large metro
5 Micropolitan adjacent to small metro
6 Noncore adjacent to small metro with own town
7 Noncore adjacent to small metro no own town
8 Micropolitan not adjacent to a metro area
9 Noncore adjacent to micro with own town
10 Noncore adjacent to micro with no own town
11 Noncore not adjacent to metro or micro with 

own town
12 Noncore not adjacent to metro or micro with no 

own town
(Source:  www.ers.usda.gov/Briefing/Rurality/urbaninf)
*micropolitan is defined as an area outside of a metro with an urban cluster of 10,000 or more people
**noncore areas are outside of a metro area without an urban cluster of 10,000 or more people

(ERS/USDA 2003)
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The Economic Research Service/U.S. Department of Agriculture county 

Typology codes were developed to reflect the importance of an area’s economic and 

social characteristics on its development and need for public programs.  County typology 

codes use binary values to classify counties as follows

Table A.2: Typology Codes

(ERS/USDA 2004)

Variable Description

farm Farm-dependent county indicator. 0=no 1=yes

mine Mining-dependent county indicator. 0=no 1=yes

manf Manufacturing-dependent county indicator. 0=no 1=yes

fsgov Federal/State government-dependent county indicator. 0=no 1=yes

serv Services-dependent county indicator. 0=no 1=yes

nonsp Nonspecialized-dependent county indicator. 0=no 1=yes

house Housing stress county indicator. 0=no 1=yes

loweduc Low-education county indicator. 0=no 1=yes

lowemp Low-employment county indicator. 0=no 1=yes

perpov Persistent poverty county indicator. 0=no 1=yes

poploss Population loss county indicator. 0=no 1=yes

rec Nonmetro recreation county indicator. 0=no 1=yes

retire Retirement destination county indicator. 0=no 1=yes


