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ABSTRACT: Foodborne illnesses caused by non-O157 Shiga toxin-producing 
Escherichia coli (STEC) and Salmonella enterica (SE) are significant health concerns 
and economic burdens worldwide. While SE is an established pathogen, causing more 
illnesses, hospitalizations, and deaths in the United States than any other foodborne 
bacterial pathogen, non-O157 STEC are emerging pathogens of growing concern.  
Multistate and multinational outbreaks of foodborne illness are frequently associated with 
SE and non-O157 STEC contaminated food.  Effective surveillance of foodborne 
illnesses and investigations of foodborne illness outbreaks rely on rapid, robust, and 
sensitive methods for pathogen detection and strain discrimination. The objectives of this 
research were 1) to evaluate the effect on PCR sensitivity of adding a short, AT-rich 
overhanging nucleotide sequence (flap) to the 5’ end of PCR primers specific for the 
detection of Salmonella and E. coli O157:H7 and 2) to develop a multiple-locus variable-
number tandem repeat (VNTR) analysis (MLVA) method for strain discrimination of 6 
major serogroups of non-O157 STEC.  When targeting individual pathogens, end-point 
PCR assays using flap-amended primers were more efficient than non-amended primers, 
with 20.4% and 23.5% increases in amplicon yield for Salmonella and E. coli O157:H7, 
respectively.  In multiplex PCR assays, a 10- to 100-fold increase in detection sensitivity 
was observed when the primer flap sequence was incorporated. The MLVA method 
developed for non-O157 STEC used 12 VNTR loci that were amplified in 3 multiplex 
PCR reactions and sized by multicolor capillary electrophoresis.  All serogroups were 
differentiable by the method, as 4 of the 6 serogroups were clustered separately in a 
minimum spanning tree.  The developed MLVA method was more discriminatory for 
serogroups O26, O111, O103, and O121 than it was for O45 and O145.  Compared to 
pulsed-field gel electrophoresis (PFGE), the “gold standard” bacterial pathogen subtyping 
technique, the MLVA method exhibited higher discriminatory power for serogroup O26, 
a similar level of discrimination for serogroups O111, O103, and O121, and a lower level 
of discrimination for serogroups O45 and O145.  The methods developed in this research 
have potential applications in the food and agricultural industries, foodborne outbreak 
surveillance and investigations, and biosecurity and microbial forensics. 
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CHAPTER I 
 

 

INTRODUCTION 

 

 Foodborne illnesses caused by Shiga toxin-producing Escherichia coli (STEC) 

and Salmonella enterica (SE) are significant health concerns and economic burdens 

worldwide (Voetsch et al., 2004; Lynch et al., 2009; Mathusa et al. 2010; Newell et al., 

2010).  In the United States alone, approximately 1.2 million illnesses, 43,000 

hospitalizations, and 400 deaths occur each year as a result of STEC and nontyphoidal 

Salmonella infections (Scallan et al., 2011).  The fecal-oral route is the primary mode of 

transmission for these bacterial pathogens among humans and illness is usually a result of 

consumption of contaminated food or water (Tauxe, 2002; Viazis and Diez-Gonzalez, 

2011; Karmali, 1989).  While meat or animal products are most often implicated, in 

recent years an increasing incidence of STEC and SE infections have been linked to 

consumption of fresh produce and other plant products.  Contamination of food products 

by human pathogens can occur at any point throughout the field production, harvesting, 

processing, transport, storage, and preparation steps involved in the increasingly global 

food supply.  Multistate and multinational outbreaks of foodborne illness as a result of 

such contamination are not uncommon (Scallan et al., 2011). Positive identification of 

the point of contamination through outbreak investigations by epidemiologists and public
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health officials is often difficult and the tools necessary for timely correlation of clinical, 

environmental, and food isolates are not available for all foodborne pathogens, especially 

for emerging pathogens. 

 Effective surveillance of foodborne pathogens and investigations of foodborne 

illness outbreaks rely on rapid, robust, and sensitive methods for pathogen detection and 

strain discrimination. Traditional culture techniques and molecular-based methods, such 

as polymerase chain reaction (PCR), are commonly used for detecting foodborne 

pathogens in clinical, environmental, and food samples.  Due to their speed and 

sensitivity, PCR-based methods provide distinct advantages in time sensitive outbreak 

investigations and are continually being improved to allow fewer target pathogens to be 

detected in less time (Levin, 2009).  Small modifications in PCR methods can sometimes 

lead to significant improvements in foodborne pathogen detection speed and sensitivity. 

 In addition to detection, discrimination of highly clonal pathogenic bacteria at the 

strain level is critical for epidemiological investigations.  Pulsed-field gel electrophoresis 

(PFGE) is the current “gold standard” bacterial pathogen strain discrimination technique.  

Although the strain discrimination capability of PFGE is well documented, the technique 

has several drawbacks.  PFGE is a time-consuming and laborious method requiring a 

high level of technical skill and rigorous standardization to allow inter-laboratory data 

sharing.  At times, PFGE also fails to provide optimal discrimination among closely 

related bacterial isolates (Hyytia-Trees et al., 2006).   PCR-based discrimination methods 

allow higher sensitivity, increased assay speed, simplified interpretation of results, and 

increased discriminatory power than PFGE.   
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 Multiple locus variable-number tandem-repeat (VNTR) analysis (MLVA) is a 

PCR-based strain discrimination technique now being used by the Centers for Disease 

Control and Prevention (CDC) to augment PFGE data.  MLVA often allows a higher 

level of strain discrimination than is possible by PFGE alone (Hyytia-Trees et al., 2006).  

MLVA assays have been developed and validated for STEC O157:H7, Salmonella 

Typhimurium, and Salmonella Enteritidis.  However, the numbers of illnesses caused by 

over 380 non-O157 STEC serotypes and over 1500 other SE serotypes have been 

increasing in the U.S. and worldwide and these serotypes have been involved in multiple 

disease outbreaks (World Health Organization, 1999; Mathusa et al., 2010).  In many 

countries, these serotypes cause the majority of STEC and SE infections (Johnson et al., 

2006; CDC, 2008).  As of yet, no MLVA assay has been developed specifically for non-

O157 serogroups or for most other significant SE serovars.  Such methods would have 

been useful during a recent outbreak of foodborne illness originating in Germany 

involving a newly emerging STEC serogroup (Bezuidt et al., 2011) and a recent outbreak 

of illness attributed to Salmonella Montevideo in the U.S. in which strain discrimination 

by PFGE  was difficult (Lienau et al., 2011).  

 The objectives of this research were 1) to improve the sensitivity of PCR for 

detection of E. coli O157:H7 and Salmonella using AT-rich 5’ flap sequences on PCR 

primers and 2) to develop a MLVA assay for discrimination of 6 major serogroups of 

non-O157 STEC.  The developed methods allow sensitive multiplex detection of STEC 

O157 and Salmonella as well as inter- and intra-serogroup discrimination of non-O157 

STEC.  The developed assays will be valuable in outbreak surveillance, outbreak 

investigations, and agricultural biosecurity and microbial forensics applications. 
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CHAPTER II 
 

 

LITERATURE REVIEW 

 

Foodborne illness   

 As defined by the World Health Organization (WHO), foodborne illnesses are 

diseases caused by infectious or toxic agents that enter the body through contaminated 

food (WHO, 2007).  Foodborne illness can be caused by bacteria, parasites, viruses, or 

toxins and poses a significant health concern and economic burden in the U.S. and 

worldwide (Hird et al., 2009).  Approximately 9.4 million illnesses, 55,961 

hospitalizations and 1,351 deaths occur each year in the U.S., associated with 31 major 

foodborne pathogens (Scallan et al., 2011).  Direct and indirect annual costs associated 

with foodborne illness in the U.S. have been estimated to approach 35 billion dollars 

(Buzby and Roberts, 2009; Hoffman et al., 2012).  Nontyphoidal Salmonella enterica 

(SE) and Shiga toxin-producing E. coli (STEC) are two of the most commonly implicated 

bacterial foodborne pathogens (Voetsch et al., 2004; Rangel et al., 2005), causing an 

estimated 1,026,561 and 175,905 illnesses, respectively, in the U.S. annually (Scallan et 

al., 2011).  The rates of morbidity and mortality caused by SE and STEC are very similar.  

While STEC are slightly more virulent, the occurrence of illnesses caused by SE is much 

higher.  SE has a moderate domestic mortality rate (estimated at 0.5% in the U.S.) but the   
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large number of infections results in this pathogen annually causing approximately 28% 

of foodborne related deaths in the U.S.  SE causes more hospitalizations and deaths in the 

U.S. than any other foodborne pathogen (Scallan et al., 2011). 

 

 Salmonella.  Salmonella are rod-shaped, Gram-negative, peritrichous, non-spore 

forming, facultative anaerobic bacteria in the family Enterobacteriaceae.  They are fairly 

ubiquitous in nature but the primary habitat is the intestinal tract of a variety of birds, 

reptiles, and mammals.  According to the current nomenclature system used by the CDC 

and WHO, the genus Salmonella is divided into two species: Salmonella enterica and 

Salmonella bongori (Reeves et al., 1989; Popoff and Le Minor, 1997), with S. enterica 

containing six subspecies (Brenner, 1998).  The subspecies are designated by the Roman 

numerals I, II, IIIa, IIIb, IV, and VI corresponding to subspecies enterica, salamae, 

arizonae, diarizonae, houtenae, and indica, respectively.   

 Strains of Salmonella are characterized into serotypes or serovars (serological 

variants) according to antisera agglutination profiles corresponding to somatic (O) and 

flagellar (H) antigens.  The O antigen is a polysaccharide component of 

lipopolysaccharides and the H antigen is the filamentous portion of flagella, composed of 

the protein flagellin. Differences in flagellin and the O antigen sugar identities, linkages, 

and bonding profiles provide the variability that allows subtyping (CDC, 2008).  

Salmonella commonly exhibits phase variation—a random switching between two 

flagellar phenotypes.   As a result, a single genetically identical serovar may express 

either of two different H antigens at any given time, designated as Phase 1 or Phase 2 
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(CDC, 2006).  Salmonella serovars often have unique names correlating to the location 

where they were first isolated. 

 While over 2500 serovars of Salmonella have been identified, the majority of 

human infections are caused by strains of Salmonella enterica subsp. enterica (Popoff 

and Le Minor, 1997; 2001), a taxon that includes over 1500 serovars (Popoff et al., 

2004).  Unless otherwise noted, the names of clinically important serovars usually refer 

to Salmonella enterica subsp. enterica (SE).  For example, Salmonella Typhimurium is 

the simplified form of Salmonella enterica subsp. enterica serovar Typhimurium.   

 The primary clinical syndromes associated with SE infection are enteric fever 

(also known as typhoid and paratyphoid fever) and gastroenteritis (also known as 

salmonellosis) (Miller and Peages, 2000; Ohl and Miller, 2001).  Enteric fever, caused by 

Salmonella Typhi and Paratyphi, is the most serious syndrome but has been largely 

eradicated in the developed world (Crump et al., 2004).  Salmonellosis, caused by 

nontyphoidal SE, such as S. Enteritidis and S. Typhimurium, is the most common 

syndrome, and is usually associated with cellular internalization of the bacterium in the 

intestines (Francis et al., 1992, 1993) and subsequent massive neutrophil recruitment to 

the infected cell (McCormick et al., 1995; Santos et al., 2001).  These events result in 

localized cell death and significant water flow into the intestinal lumen, causing diarrhea 

(Hersch et al., 1999; Cookson and Brennan, 2001).  Other symptoms include fever, 

abdominal cramping, vomiting, and nausea (Coburn et al., 2007).  Severe infections and 

death are usually associated with the very young, very old, and immune-compromised 

(Celum et al., 1987).  Nontyphoidal SE cause more illnesses, hospitalizations, and deaths 
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than any other bacterial pathogen and no significant decline in illness occurrence has 

been observed in recent years (Scallan et al., 2011).   

 According to the most recent annual CDC summary on Salmonella surveillance, 

the 10 most common nontyphoidal SE serovars in the U.S. in recent years are 

Typhimurium, Enteritidis, Newport, Heidelberg, Javiana, I4,[5],12:i:-, Montevideo, 

Muenchen, Oranienburg, and Mississippi, in the order of highest to lowest isolation 

frequency (CDC, 2008).  Serovars Typhimurium, Enteritidis, Newport, and Heidelberg 

have been the most common serotypes since 1995, and SE serovars Typhimurium and 

Enteritidis have remained the most frequently isolated serovars since 1997.  Although the 

total numbers of SE isolates in the U.S. have increased since 1996, isolation of 

Typhimurium and Enteritidis has substantially decreased, possibly as a result of 

preventative measures aimed at food sources commonly associated with these serovars 

(Mason, 1994; Houge et al., 1997).  Since foodborne pathogen surveillance began in the 

U.S. in 1996, the occurrence of nontyphoidal SE infections has remained relatively 

constant, while illnesses caused by similar foodborne pathogens have decreased (Scallan 

et al., 2011). 

 

 Shiga toxin-producing E. coli (STEC).  Escherichia coli are also rod-shaped, 

Gram-negative, peritrichous, non-spore forming, facultative anaerobic bacteria in the 

family Enterobacteriaceae.  Six species of Escherichia exist but only E. coli is of 

significant clinical importance and associated with human illness (Chaudhury et al., 

1999).  As with Salmonella, strains of E. coli are characterized into serogroups or 

serotypes according to antisera agglutination profiles corresponding to somatic (O), 
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flagellar (H), and sometimes capsular (K) surface antigens (Edwards and Ewing, 1972).  

The E. coli serogroup designation refers only to O antigen agglutination profiles while 

the serotype designation refers to O, H, and sometimes K antigen agglutination profiles. 

 A majority of E. coli serogroups are commensal in humans and are important 

constituents of the natural gut micro flora.  However, several virulent E. coli subtypes 

exist and exhibit one of at least 5 different modes of pathogenesis in humans (Todar, 

2012; Nataro and Kaper, 1998).  Based on the mode of pathogenesis, virulent E. coli 

subtypes are referred to as Enterohemorrhagic E. coli (EHEC), Enteroaggregative E. coli 

(EAEC), Enteroinvasive E. coli (EIEC), Enterotoxigenic E. coli (ETEC), or 

Enteropathogenic E. coli (EPEC) (CDC, 2012).  The most severe E. coli-induced human 

illness is caused by Shiga toxin-producing E. coli (STEC), a designation that can include 

both EHEC and EAEC (Scheutz et al., 2011).  STEC strains are associated mainly with at 

least two potent verocytotoxins (Nataro and Kaper, 1998), also called Shiga-like toxins 

due to their similarity to the primary toxin produced by Shigella, a human-limited 

bacterial pathogen very similar to EIEC (Pupo et al., 1997).  The primary response to 

Shiga toxins in humans is thrombotic microangiopathy in the renal glomeruli and 

sometimes other organs (Karmali et al., 2010).  Over 380 serotypes of STEC have been 

identified (World Health Organization, 1999) and infections caused by STEC are usually 

associated with diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome (HUS) 

(Karmali et al., 1985; Karmali, 1989).   Similar to Salmonella infections, severe cases of 

STEC are usually associated with the very young, very old, and immune-compromised 

(Griffin et al., 1988, Karmali, 1989; Gould et al., 2009). 
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 Shiga toxin production and HUS were only relatively recently associated with E. 

coli O157:H7 (Karmali et al., 1983).  First identified and isolated from meat, this 

pathogen continues to cause significant morbidity and mortality worldwide and has been 

isolated from a variety of food sources (Rangel et al., 2005).  Costs associated with STEC 

O157:H7 illnesses alone have been estimated at 344 million dollars in the U.S. (Frenzen 

et al., 2005). Among STEC serotypes, O157:H7 causes the highest number of sporadic 

and outbreak related cases (Griffin and Tauxe, 1991) but causes a minority in the total 

number of illnesses caused by all other STEC serotypes (Johnson et al., 2006, Hadler et 

al., 2011).  In a recent population-based study using 10 years’ worth of data on the 

differences between O157 STEC and non-O157 STEC in regard to incidence of infection, 

severity of infection, and genetic similarities, it was found that (1) total incidence of all 

STEC infections decreased from 2000 to 2009, (2) the leading STEC serotypes are 

consistent in occurrence, (3) serotype O157 is associated with the most severe disease, 

and (4) there is a substantial amount of diversity in epidemiology and risk factors among 

the non-O157 STECs (Hadler et al., 2011).  Another recent report (Gilliss et al., 2011) 

showed that the occurrence of O157 STEC has decreased since active surveillance began 

in 1996, and that in 2010 the goal for low incidence was met.   

 

Salmonella and STEC surveillance  

 In the early 1990’s, a markedly increased incidence of foodborne illness was 

observed in the U.S. and led to national initiatives aimed at reducing the future health and 

economic burden of such illnesses (CDC, 1994). Foodborne illness surveillance systems 

were developed to meet this need and are defined by the CDC as systems that “collect 
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and analyze morbidity (rate of disease incidence), mortality (rate of diseases resulting in 

death), and other relevant data and facilitate the timely dissemination of results to 

appropriate decision makers” (Sosin, 2003).  FoodNet and PulseNet, two highly 

successful foodborne disease surveillance programs developed by the CDC in 1996, are 

the primary surveillance systems used in the U.S. and have been modeled by several 

other countries (Swaminathan et al., 2006).  Although the CDC began surveillance of 

foodborne bacterial pathogens in 1962, it was not until 1996 that a more complete 

understanding of the epidemiology and the true burden of STEC, SE, and many other 

foodborne pathogen infections in the U.S. became possible (Olsen et al., 2001). 

 FoodNet (the Foodborne Disease Active Surveillance Network) is an active 

national surveillance program targeting 7 bacterial and 2 parasitic pathogens that are 

known to cause foodborne illnesses, as identified by the CDC’s Emerging Infections 

Program, the U.S. Department of Agriculture (USDA), the U.S. Food and Drug 

Administration (FDA), and several state health departments.  Accurately estimating the 

burden of foodborne illness in the U.S., investigating the sources of infection in outbreaks 

and sporadic cases, and building public health infrastructure for dealing with emerging 

foodborne illnesses are the main objectives of this program (CDC, 1997; Angulo et al., 

1998; Voetsch et al., 2004). FoodNet personnel located at state health departments 

regularly contact several state and regional clinical laboratories to collect reports of 

infections diagnosed in residents of these areas. The FoodNet surveillance area includes 

about 15% of the U.S. population and the information gathered is used to assess the 

impact of food safety initiatives and the burden of foodborne illness (CDC, 2012) 
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 PulseNet (the National Molecular Subtyping Network for Foodborne Disease 

Surveillance) is a relatively passive surveillance system established by the CDC in 

collaboration with several cooperating state health departments.  Through molecular 

subtyping of pathogens, PulseNet helps monitor the national incidence of illnesses caused 

by foodborne pathogens.  The PulseNet database is made up of pulsed-field gel 

electrophoresis (PFGE) profiles submitted by state and local public health laboratories 

and federal food regulatory laboratories that perform molecular surveillance of foodborne 

infections (Swaminathan et al., 2006).  In recent years several countries in Europe, Latin 

America, Africa, and the Asia Pacific region have replicated or linked to the PulseNet 

network, thus providing an international approach for identification and response to 

international outbreaks of foodborne illness (Gerner-Smidt et al., 2006; Swaminathan et 

al., 2006). By maintaining and monitoring the PulseNet database, the CDC develops 

baselines of illness occurrence for specific strains of pathogens (correlating to specific 

PFGE profiles). Unexpected increases in the occurrence of specific PFGE profiles help 

epidemiologists identify clusters of foodborne illnesses that may or may not be 

epidemiologically related.  Further investigation is needed to determine if an outbreak of 

foodborne illness has occurred.  Accurate identification of sporadic as well as outbreak 

related illnesses are essential for improving this empirical system over time. 

 

 Sporadic cases.  Like illnesses caused by many other foodborne pathogens, those 

caused by SE and STEC are usually sporadic in nature with only a small percentage of 

cases being part of an outbreak.  For example, between 1998 and 2002 a total of 164,044 

SE infections were reported to the National Salmonella Surveillance System, of which 
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only 16,821 were outbreak associated (Lynch et al., 2006). According to these data, as 

well as those from previous years, more than 80% of Salmonella infections are not 

associated with outbreaks.  Similarly, sporadic cases of E. coli O157:H7 infections have 

been estimated to cause as much as 90% of the total E. coli O157:H7 infections in some 

developed countries (Thomas et al., 1996).  Even though sporadic cases make up the 

majority of observed cases in the U.S., it is often difficult or impossible to find the 

specific source of infection.  Sporadic cases mainly help establish a baseline of 

background illness occurrence for more rapid identification of illness outbreaks.  It is 

primarily through the investigation of foodborne illness outbreaks that the sources of 

foodborne infection and contaminated foods can be identified.  Identification of the 

source of contamination and/or the route of contamination can help public health officials 

and regulatory agencies implement appropriate policies that will reduce the likelihood of 

similar illnesses occurring in the future. 

 

 Foodborne illness outbreaks.  An outbreak can be defined as the occurrence of 

two or more cases of foodborne illness that can be traced to a common source. In most 

developed countries, outbreaks are usually detected and monitored by surveillance 

systems. In the U.S., bacterial foodborne disease outbreaks are identified primarily by the 

PulseNet network.  A statistically significant increase in the number of PFGE profiles 

added to the PulseNet database over a given time and/or area (a cluster) is usually the 

first indicator of a potential outbreak.  However, the addition of a new PFGE profile to 

the database requires that an infected individual have symptoms severe enough to cause 

the patient to seek medical attention, and a physician to culture and identify the bacteria, 
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and to report the isolate to a PulseNet-participating laboratory for PFGE profiling.  As a 

result of the multiplicity of steps in this process, many cases of bacteria-induced 

gastroenteritis go unreported.   

 Recent outbreaks of foodborne illnesses caused by STEC and SE have been 

correlated to a variety of food sources.  Traditional sources commonly associated with SE 

and E. coli contamination include poultry, beef, eggs, pork, and fresh produce (Benenson 

and Chin, 1995; Griffin and Tauxe, 1991).  Both SE and STEC have been associated 

recently with major foodborne outbreaks involving diverse foods such as cantaloupe, 

alfalfa sprouts, red and black pepper, turkey burgers, bologna, hazelnuts, and cheese 

(Maki, 2009; CDC, 2011a).  Alfalfa sprouts are among the foods most commonly 

contaminated by SE and STEC; comprising the source of at least 30 separate illness 

outbreaks since detailed surveillance began in 1996.  The ability to accurately identify 

and characterize the primary source of contamination in foodborne illness outbreaks 

allows greater insight into the natural history, epidemiology, and evolution of foodborne 

pathogens, all of which facilitate efforts to improve public health (Foley et al., 2007).   

 

Foodborne illness outbreak investigations 

 According to the CDC (2011b; 2011c), foodborne outbreak investigations consist 

of 7 key steps: 1) detecting a possible outbreak, 2) defining and finding cases, 3) 

generating hypotheses about likely sources, 4) testing the hypotheses, 5) finding the point 

of contamination and the source of the food, 6) controlling the outbreak, and 7) 

determining when the outbreak is over.  None of these steps can be accomplished without 

robust capabilities to detect and discriminate the causative strains of pathogens.  The 

http://www.cdc.gov/outbreaknet/outbreaks.html
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cornerstone of effective epidemiological surveillance and outbreak identification for 

foodborne pathogens lies in accurate discrimination among related isolates.  A high level 

of pathogen strain discrimination allows better identification and monitoring of outbreaks 

and provides a higher probability of locating the source of an outbreak (Jones et al., 

2004).   

 Foodborne illness outbreak traceback in the U.S. is usually a collaborative effort 

involving the CDC, the USDA, and/or the FDA, depending on the type of food 

implicated.  The investigation is usually initiated with detailed interviews of the infected 

individuals to determine candidate food sources that may have been contaminated.  Once 

a potential source is identified, the entire pathway of the food production, transportation, 

and preparation is investigated for possible points of contamination, and samples from 

each node of this process may be assessed for the presence and type of the pathogen.  If 

the pathogen is detected in any of these samples, the isolates are compared to the 

outbreak strain.  Based upon the specific circumstances and progress of the investigation, 

the investigators may notify the general public of the outbreak and of a certain food or 

food group that may be contaminated (CDC, 2011b; 2011c).  It is optimal if the exact 

source and means of contamination can be identified, but this is not always possible.   

 The primary means by which an outbreak can be traced back to the source is by 

pathogen strain discrimination, which allows epidemiologists to correlate clinical isolates 

with food or environmental isolates.  Strain discrimination among foodborne pathogenic 

bacteria can be assessed by multiple phenotypic and genotypic methods, the effectiveness 

of which relies on three key factors—discriminatory power, typeability, and 

reproducibility.  Discriminatory power refers to the ability of a method to separate 
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nonrelated strains by some measureable characteristic, typeability refers to the ability of a 

method to produce an interpretable result for all strains typed, and reproducibility refers 

to the ability of a method to produce consistent results with successive testing (Bush and 

Nitschko, 1999). PFGE is widely known as the bacterial subtyping “gold standard” and in 

most cases provides the discriminatory power, typeability, and reproducibility necessary 

for efficient and effective outbreak traceback (Gerner-Smidt et al., 2006).  However, the 

need for improvement exists, especially for discrimination between sporadic and 

outbreak cases or when an outbreak strain has a very common PFGE profile, as 

demonstrated by a recent SE-induced illness outbreak involving salami.  

 Beginning in July 2009, an increased occurrence in the number of Salmonella 

Montevideo profiles uploaded to PulseNet was identified and an outbreak investigation 

was initiated.  Because the PFGE profile of the outbreak strain of S. Montevideo was the 

most common PFGE profile for this serovar in the database, distinguishing outbreak 

cases from sporadic cases was difficult.  As a result, it was difficult for investigators to 

accurately identify the contaminated food source.  Initially, sliced salami in variety packs 

produced by a particular manufacturer were implicated and recalled.  Subsequent 

investigations then indicated that red and black pepper used for seasoning the salami was 

the real culprit and Salmonella isolates obtained from the peppers more closely resembled 

the outbreak strain than any other samples.  Ultimately, another subtyping technique, 

single nucleotide polymorphism (SNP) analysis, was used by the FDA to confirm the 

source to be black pepper and crushed red pepper (Lienau et al., 2011).   

 The salami/pepper-associated illness outbreak, causing 272 illnesses and 52 

hospitalizations, was significant in that it highlighted the need for a pathogen subtyping 
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method with a higher level of discriminatory power than currently possible with PFGE.  

Since PFGE was not able to provide the level of pathogen strain discrimination necessary 

to trace back this outbreak, investigators were forced to resort to a more costly and time 

consuming method (SNP analysis) and the resulting delay may have been to blame for 

additional illnesses (CDC, 2012).   

 Another major limitation of the use of PFGE during investigations of foodborne 

illness outbreaks is time; two days are usually required to complete the entire process.  

Even if PFGE did provide the necessary discriminatory power for successful foodborne 

pathogen traceback, the amount of time required could mean that more illnesses may 

occur than if a more rapid strain discrimination method was used.  The speed limitation 

of PFGE was emphasized by another recent foodborne illness outbreak involving STEC 

O104 and fenugreek sprouts. 

 In the summer of 2011, a severe and highly publicized outbreak of foodborne 

illness began in Germany and later affected individuals in other European countries and 

the U.S. (Scheutz et al., 2011).  Initially, a clear correlation with a particular food source 

was particularly difficult to identify (Park, 2011).  The outbreak strain previously was 

only rarely associated with HUS and Shiga-toxin production and was found to carry 

genes previously associated exclusively with EAEC.  As a result, this strain showed 

greater virulence and a higher percentage of HUS development than is typical of other 

STEC (Mellmann et al., 2011).  Although next-generation whole-genome sequencing of 

the outbreak strain was completed early in the outbreak investigation, this information 

was not sufficient to pinpoint the source of the contamination until late in the 

investigation due to the time required for analysis (Frank et al., 2011; Park, 2011). 

http://www.cdc.gov/salmonella/montevideo/index.html
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Overall, 4,137 illnesses were confirmed, including 830 cases of HUS and 46 deaths (Wu 

et al., 2011; Mellmann et al., 2011).  In the case of emerging pathogens such as STEC 

O104:H4, rapid strain discrimination methods are critical. Although PFGE data greatly 

aided the investigation process, it is likely that had a more rapid and more discriminatory 

subtyping method been available at the first stages of the investigation, the outbreak 

source could have been more expediently identified. 

 

Foodborne pathogens, biosecurity, and forensic microbiology 

 Outbreaks of foodborne illness have the potential to be naturally, unintentionally, 

and deliberately incited.  Foodborne bacterial pathogens have been and remain attractive 

agents for weaponization for the purpose of bioterrorism and biocrime (Christopher et al., 

1997). Biosafety in Microbiological and Biomedical Laboratories (BMBL) guidelines 

established by the CDC list nontyphoidal SE and STEC as documented hazards to 

laboratory personnel and specify that their handling must be done in strict compliance 

with BSL-2 practices, containment equipment, and facilities (CDC, 2009).  However, 

since these pathogens are not select agents and USDA Animal and Plant Health 

Inspection Service (APHIS) permits are generally not required for their transport, 

knowledgeable actors wishing to inflict harm may be able to obtain these bacteria with 

relative ease.  Food supplies are often transported widely and are largely unguarded, 

allowing ease of access and difficulty in identifying the point of contamination.  

Additionally, outbreaks of foodborne illness often cause general fear of specific food 

items and panic by the population, as well as potentially severe, localized economic 

repercussions (CDC, 2011b).  
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 Salmonella has already been used as a bioweapon on several occasions.  The most 

notable case was the first incidence of known bioterrorism enacted on American soil and 

is one of the largest known acts of bioterrorism to date.  In 1984, members of the Oregon 

based Rajneeshee cult, under the direction of the religious guru Bhagwan Shree Rajneesh, 

contaminated 10 restaurant salad bars in The Dalles, Oregon with Salmonella 

Typhimurium with the intent of influencing a local election. Local authorities reported 

751 confirmed illnesses and 45 hospitalizations.  At the time, this outbreak was thought 

to be of natural causes. Following the confessions a few individuals involved in the attack 

a year later, clinical isolates of the outbreak strain were found to be identical to isolates 

obtained from a laboratory in the commune (Török et al., 1997; Carus, 2005, 1999).  A 

robust surveillance system and better strain discrimination techniques could have allowed 

this outbreak to be detected more rapidly and may have allowed it to be identified as 

intentional much sooner. 

 During and after World War II, several countries, including the U.S, invested in 

programs aimed at the research and development of biological weapons (Christopher et 

al., 1997).  One of the most extensive bioweapons R&D programs was supported by the 

Imperial Japanese Army and included mass production of Salmonella enterica (Harris, 

1992).  The infamous biological warfare research facility code-named Unit 731 was 

located in occupied China and was the center of the Japanese bioweapons development 

program.  Extensive testing of pathogen effectiveness and dissemination techniques using 

animal and human subjects was carried out in this facility (Christopher et al., 1997; 

Klietmann and Ruoff, 2001).  Salmonella Typhi, along with many other pathogens, 

reportedly was used to contaminate water sources and food supplies and may have been 
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dispersed in aerosol form by aerial spraying and the dropping of small, specially designed 

bombs (Klietmann & Ruoff, 2001).  Multiple outbreaks of typhoid fever, as well as 

several other diseases, were attributed to this program (Harris, 1992) and may have been 

major contributors in the deaths of up to 580,000 Chinese civilians (Barenblatt, 2004).  

 Determining whether an outbreak was naturally or deliberately incited is a critical 

first step when investigating a potential case of criminal bioweapon use.  Answering this 

question will allow investigators to decide if a crime has been committed and is a 

prerequisite for attribution (Budowle et al., 2005).  The ability to differentiate between 

natural and deliberate outbreaks, however, requires the establishment of baselines of 

illness occurrence within a population based on thorough surveillance.  The need for 

baselines of illness occurrence is especially important for commonly occurring outbreaks 

such as those caused by Salmonella and STEC.  Ultimately, determining whether 

outbreaks are natural or intentional requires evidence unique to each situation, much like 

any other type of forensic investigation.  Evidence of this nature often allows 

investigators to correlate separate items of evidence, all with the goal of attribution 

(Budowle et al., 2005).  In the case of foodborne outbreaks, the acquisition of unique 

evidence requires capabilities allowing highly sensitive pathogen detection and the 

highest possible levels of strain discrimination.  

 

 Microbial forensics.  Budowle et al. (2003) define microbial forensics as a 

scientific discipline dedicated to analyzing evidence from a bioterrorism act, biocrime, or 

inadvertent microorganism/toxin release for attribution purposes.  At the heart of 

microbial forensics is a deep and thorough understanding of the microbes used in such an 
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event in an attempt to identify individual characteristics that will allow attribution 

(Budowle et al., 2005).  A critical aspect of microbial forensics is the potential and 

probability that evidence and methods of evidence analysis will be presented in courts of 

law.  As a result, exceptionally high levels of stringency, validation, and resolution are 

necessary for confident attribution (Budowle, 2004).  According to the Daubert standard 

of 1993 regarding the admissibility of evidence in courts, expert testimony must be 

reliable, relevant, and based on scientific knowledge obtained via proper use of the 

scientific method.  Additionally, methods used to analyze evidence must be testable, 

subjected to peer review, have an established error rate, have specified standards, and be 

generally accepted by the scientific community.  Forensic methods used for the analysis 

of microbes implicated in biocrime and bioterrorism must meet or exceed these 

requirements (Budowle, 2004).  The methods of critical importance to microbial 

forensics are high confidence level molecular typing of microbes associated with 

biocrime or bioterrorism events (Fletcher et al., 2006).  These methods allow the 

individual characteristic evidence necessary for successful attribution. 

 One very important component of agricultural biosecurity is food biosecurity.  A 

comprehensive “Food Protection Plan” developed by the FDA mentioned that food must 

be considered as a potential vehicle for intentional contamination (FDA, Food Protection 

Plan, 2007).  From the perspective of plant pathology, food biosecurity includes the study 

of the interactions, survival, and proliferation of human pathogens on plants and how 

they interact with the natural flora on and within plants.  Much research is needed to 

elucidate these relationships in an attempt to better understand and prevent unnecessary 

human infection.  Many outbreaks of foodborne illness are associated with the 
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consumption of plants or plant products (CDC, 2011).  When such outbreaks occur it is 

essential to rapidly identify both the responsible pathogen and the implicated food as 

specifically as possible.  Such typing must allow discrimination between infections 

caused by outbreak related strains and non-outbreak related strains.  In the case of 

intentionally released pathogens, this subtyping capability must provide a confidence 

level that allows successful traceback and criminal attribution. 

 

Detection of foodborne pathogens 

 Successful detection of foodborne pathogens in a variety of backgrounds is a 

critical first step in studying foodborne pathogens and is the key to prevention and 

identification of the health and economic burdens of foodborne illness (Velusamy et al., 

2009).  Pathogen detection methods can be broadly separated into conventional methods 

and molecular-based methods.  While the success and accuracy of conventional detection 

methods has been well documented and demonstrated, conventional detection methods 

primarily suffer from a lack of speed (Malorny et al., 2003a).  Rapid detection of 

foodborne pathogens is of critical importance when human illness is involved. 

 

 Conventional detection methods.  Traditional or conventional detection methods 

used for pathogenic bacteria are dependent upon phenotypic, biochemical, or 

immunologically based characteristics.  Following a pre-enrichment step, bacteria are 

usually plated onto selective media and identified by specific characteristics of colony 

growth and morphology.  Biochemically based tests differentiate bacteria based on some 

biochemical trait, such as carbon utilization, and immunologically based methods use 
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antigen-antibody interactions for detection (Velusamy et al., 2010).  Although 

conventional methods are among the most reliable and accurate techniques for foodborne 

pathogen detection, a major drawback of these methods is the time necessary for positive 

detection.  The facts that pre-enrichment is often necessary, 2-3 days are usually required 

for initial results, and a further 7-10 days are needed for confirmation and additional tests, 

are significant disadvantages in foodborne illness outbreaks where time is critical 

(Velusamy et al., 2010).  An additional drawback of conventional detection methods is 

the inability to detect viable but non-culturable pathogen cells.  

  

 Molecular-based detection methods.  Molecular-based pathogen detection 

methods have the potential to overcome many of the drawbacks of conventional methods.  

Pathogenic E. coli and SE strains were among the first pathogens for which molecular 

detection methods were developed (Nataro and Kaper, 1998).  The polymerase chain 

reaction (PCR) is the foundation of many molecular-based detection methods, fulfilling 

most of the requirements for widespread use and is becoming one of the primary means 

by which foodborne pathogens are detected in clinical and environmental samples 

(Malorny et al., 2003a).  PCR generally requires multiple cycles of a template DNA 

denaturing step, a primer to template DNA annealing step, and a primer elongation step.  

PCR allows amplification of a very specific DNA sequence to a level that can be easily 

visualized in agarose or polyacrylamide gels following electrophoresis.  PCR-based 

detection assays mainly target genes that are expressed exclusively in a single genus or 

species.  Virulence associated genes, antibiotic resistance genes, and genes acquired by 
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horizontal gene transfer are targeted most often.  The presence or absence of an amplified 

DNA fragment allows detection of a specific pathogen. 

  Many variations of the traditional PCR method have been developed, mainly 

with the goal of increasing assay speed and sensitivity. Reducing the limit of detection 

allows pathogens to be detected at lower titers in food and clinical isolates, a feature very 

useful for enteric bacteria that have low infective doses (DuPont et al., 1989).  Multiplex 

PCR allows multiple primer sets to amplify fragments of multiple DNA sequences in a 

single assay.  From the perspective of pathogen detection, multiplex PCR allows multiple 

pathogens to be detected simultaneously and therefore reduces the time and materials 

necessary for similar results using singleplex PCR procedures. 

 Other PCR detection assays have been developed with the intention of 

overcoming selective isolation and identification problems associated with the presence 

of normal background flora and other cellular components in isolates (Clark, 1980).  

These include both clinical (Stone et al., 1994) and food isolates including but not limited 

to chicken (Soumet et al., 1994), shellfish (Bej et al., 1994), swine (Nucera et al., 2006; 

Nowak et al., 2007), raw oysters (Vazquez-Novelle et al., 2005), alfalfa seed (Liao and 

Schollenberger, 2003), seeded alfalfa sprouts (Johnston et al., 2005), cantaloupe 

(Espinoza-Medina et al., 2006), tomatoes (Guo et al., 2000), animal feeds (Lofstrom et 

al., 2004), and other complex food matrices (Lampel et al., 2000).  

 Quantitative real-time PCR (qPCR) allows visualization of the product 

amplification in real time as the PCR is underway.  qPCR procedures also allow 

colorimetric or chemiluminescent molecules to be used to visualize the amplification and 

allows large numbers of samples to be run simultaneously while maintaining high 
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sensitivity and remaining relatively easy to perform (Wahlberg et al., 1990). Several 

researchers have worked to optimize qPCR detection assays with modifications aimed at 

increasing sensitivity or reducing the assay run time by decreasing or eliminating 

enrichment steps.  Examples include examining the effects of selective vs. nonselective 

enrichment (Eyigor et al., 2002), eliminating enrichment (Wolffs et al., 2006), using 

buoyant density gradient centrifugation to separate bacterial cells and reduce the need for 

enrichment (Fukushima et al., 2007), overcoming background inhibition in meats (Wang 

et al., 2004; Notzon et al. 2006) and milk (Van Kessel et al., 2003; Karns et al., 2005; 

Nam et al., 2005), and using immuno-magnetic bead qPCR assays (Mercanoglu and 

Griffiths, 2005; Notzon et al., 2006) to name a few.  qPCR allows levels of sensitivity 

and specificity unparalleled by many other detection methods (Swaminathan and Feng, 

1994). 

 Nested PCR assays, in which a second primer set amplifies a fragment contained 

within a larger amplified fragment, have been found to increase detection sensitivity 

(Rychlik et al., 1999; Waage et al., 1999).  Other PCR variations that reduce the limit of 

detection include the use of immuno-magnetic beads (Fluit et al., 1993), magnetic bead 

separation combined with slot blots (Li et al., 2000), and adding an enrichment step prior 

to PCR (Myint et al., 2006). Additionally, 16S ribosomal DNA (rDNA) has been used to 

reduce the limit of detection since rDNA is highly expressed in most cells, thus providing 

more template DNA per cell for amplification (Lin et al. 2004). 

 Loop-mediated isothermal amplification (LAMP), a newly developed PCR-based 

method that allows all PCR steps to be carried out at a single temperature and with a very 

short assay time, shows great promise in detection of foodborne pathogens, especially in 

http://www.sciencedirect.com/science/article/pii/S0956566399000391#bbib201
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field applications (Hara-Kudo et al., 2005; Okamura et al., 2008; Chen et al., 2011).  In 

some cases, LAMP has outperformed qPCR in sensitivity (Parida et al., 2005).  Although 

not PCR-based, microarrays are being used with increasing frequency for pathogen 

detection and bring new levels of efficiency and reliability with high throughput 

(Mumford et al., 2006).  Additionally, there is much interest in the further development 

and refinement of biosensors for rapid detection of foodborne pathogens (Arora et al., 

2011; Velusamy et al., 2010). 

 Small changes in PCR methods can sometimes lead to significant improvements 

in sensitivity or specificity.  Afonina et al. (2007) found that by adding short, 

noncomplementary, AT-rich nucleotide sequences to the 5’ end of PCR primers, the 

sensitivity of real-time PCR was increased, especially when applied to templates 

otherwise difficult to amplify such as viral and bisulfite-treated DNA.  These short 5’ 

additions to PCR primers have been used to add restriction sites (Espelund and Jacobsen, 

1992 ) or universal detection sites (Li et al., 2006) to PCR products in addition to 

reducing the number of errors when sequencing short PCR products (Binladen et al., 

2007).   

 PCR-based detection of SE and STEC.  One of the most common and most 

validated, highly specific primer sets used in conventional PCR assays for detection of SE 

was developed by Rahn et al. (1992), amplifying a 284 bp fragment of the invA gene 

(Aabo et al. 1993). This primer set has been used by numerous investigators for both 

detection and enumeration, and is often used as a standard for comparison when new 

primer sets are developed (Levin, 2009; Malorny et al., 2003b).  Other extensively-used 

primer sets include those targeting the Salmonella origin of replication (Widjojoatmodjo 
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et al., 1991; Malorny et al., 2003b), the his gene encoded within a histidine transport 

operon (Cohen et al., 1993), the afgA gene encoding a component of thin aggregative 

fimbriae (Doran et al., 1993; Craciunas et al., 2010), the fimA gene encoding the major 

fimbrial unit of aggregative type 1 fimbriae (Cohen et al., 1996), the ompC gene 

encoding the outer membrane protein C (Kwang et al., 1996), the iroB gene encoding a 

protein involved in iron regulation (Baumler et al., 1997), and the sirA and hilA genes 

encoding positive regulators of other Salmonella invasive genes (Guo et al., 2000), 

among others.  

 PCR-based STEC detection is primarily focused on virulence associated genes 

(Nataro and Kaper, 1998).  Specifically, Shiga toxin 1 (stx1), Shiga toxin 2 (stx2), and 

intimin (eae), an intestinal adherence factor, are the primary targets used for PCR 

detection of STEC (Nataro and Kaper, 1998).  All three of these genes were recently 

incorporated into a single multiplex PCR assay developed by Fratamico et al. (2011) 

which was very specific and sensitive for STEC detection.  Another useful multiplex 

PCR assay developed recently targets different parts of the O-antigen flippase genes 

(wzx) of the 6 most commonly isolated STEC serogroups in the U.S. and allows 

simultaneous identification of all 6 serogroups.  It was found to be very specific, with 

clearly distinguishable agarose gel bands for each serogroup (DebRoy et al., 2011). 

 

 Foodborne pathogen detection needs.  An increasingly globalized food supply 

with the ability to transport food products around the world in a matter of hours 

necessitates the development of the most robust, sensitive, and rapid pathogen detection 

methodologies possible. Rapid and sensitive identification of the foodborne pathogens 
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causing human illness are important in outbreak investigations and help discriminate true 

positives from the inevitable false positives and reduce the number of false negatives 

(Gracias and McKillip, 2004).  

 The major limitation associated with conventional PCR detection methods relates 

to the time required to isolate and culture pathogens, extract DNA, perform the PCR 

assay, and visualize the results via agarose gel electrophoresis.  This process is generally 

too time-consuming for widespread standardized use and the lack of the capability for 

automation allows inter-laboratory variation that may make the interpretation of results 

difficult (Malorny et al., 2003a). Additionally, the process of visualization on agarose 

gels is not suited for high throughput detection in food quality-control laboratories 

(Swaminathan and Feng, 1994). 

 However, PCR-based methods for detecting foodborne pathogens are still among 

the most sensitive, rapid, and robust detection methods currently available for widespread 

use.  The primary focus should be on improving the basic PCR procedures in innovative 

and creative ways that allow fewer target pathogens to be detected in less time while 

minimizing the effects of PCR inhibitors.  Accomplishing this goal may be possible even 

with small PCR modifications, such as the addition of AT-rich non-complementary 

nucleotide sequences to the 5’ end of PCR primers (Afonina et al., 2007). 

 

Discrimination of foodborne pathogens 

 Methods used for discrimination of foodborne pathogens can target either 

phenotypic or genotypic characteristics (Foley et al., 2007).  Phenotypic typing methods 

are based on patterns of gene expression that may or may not be observed in a given 

http://www.sciencedirect.com/science/article/pii/S0956566399000391#bbib201
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strain, while genotypic typing methods are based on the DNA sequence of the bacteria 

and are independent of gene expression (Arbeit, 1995).    

 Serotyping, the traditional method of differentiating isolates of foodborne 

bacteria, is the basis of the Salmonella and E. coli serovar classification system 

established by Kauffman (1966) and White (1926).  Other phenotypic methods for strain 

discrimination are based on antimicrobial resistance patterns, susceptibility to 

bacteriophages (phage typing), or charge and migration variations of key enzymes in an 

electric field (multi-locus enzyme electrophoresis) (Foley et al., 2007).  However, due to 

limited numbers of O and H antibodies and phages, in addition to widespread 

antimicrobial resistance, phenotypic methods often lack the discriminatory power 

necessary to differentiate closely related strains of clinically important bacteria (CDC, 

2000; USDA, 2000).  

 Genotypic typing methods have progressed from those that require no former 

knowledge of the genomic DNA sequence of a particular pathogen to those that require 

extensive prior knowledge of it.  As more and more bacterial genomes are being 

sequenced, a better understanding of microbial phylogenies and the genotypic differences 

between similar strains is likely to increase (Wu et al., 2009).  Current genotypic typing 

methods incorporate restriction enzyme digestion, PCR, and sequencing (Foley et al., 

2007).  Those that require no prior knowledge of the genome sequence include PFGE, 

plasmid analysis, ribotyping, amplified fragment length polymorphism analysis (AFLP), 

and randomly amplified polymorphic DNA (RAPD) analysis.   Methods that require prior 

knowledge of the genomic DNA sequence include multi-locus sequence typing (MLST), 
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single nucleotide polymorphism (SNP) analysis, and multiple-locus variable number 

tandem repeat (VNTR) analysis (MLVA). 

 Plasmid analysis.  Plasmid analysis relies on the assessment of variations in 

number, size, content, and the presence of plasmids in bacterial isolates.  The method 

requires that plasmid DNA be isolated separately from chromosomal DNA (Birnboim 

and Doly, 1979; Kado and Liu, 1981; Foley et al., 2007).  Following isolation, plasmids 

(whole or restricted) are electrophoretically separated.  The resulting plasmid profile can 

be used for bacterial strain typing (Nauerby et al., 2000).  Plasmid profiling with 

Salmonella and STEC has limited effectiveness since some strains lack plasmids, gain 

and loss of plasmids can occur frequently, and low copy numbers might hinder isolation 

(Hoszowski and Wasyl, 2001; Liebana et al., 2001; Kumao et al., 2002).  Thus, plasmid 

profiling is usually used only for Salmonella and STEC typing in short-term 

epidemiological studies (reviewed by Foley et al., 2007). 

 Ribotyping.  Ribotyping, a form of restriction fragment length polymorphism 

(RFLP) analysis, allows bacterial discrimination based on variations in the number and 

locations of gene sequences of ribosomal RNA (rRNA) digested with restriction enzymes 

and visualized by blotting and DNA hybridization following gel electrophoresis.  As 

described by Bouchet et al. (2008), the DNA polymorphisms that allow strain 

discrimination are usually a result of variations on the housekeeping genes flanking 

chromosomal rRNA gene sequences, rather than variation in the rRNA gene itself.  

Although ribotyping is highly reproducible, has the potential for automation, and 

produces easily interpreted results, a restricted number of rRNA genes in some serotypes 

limit the overall potential of this method (Bouchet et al., 2008). Ribotyping of Salmonella 
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serotypes might not discriminate among unrelated isolates within a serotype, a major 

limiting factor of this method when applied to outbreak surveillance (Kumao et al., 

2002).  However, since this method identifies minor polymorphisms in the genes flanking 

the highly conserved rRNA genes, ribotyping can be of great value for elucidating the 

evolution of closely related strains (Bouchet et al., 2008). 

 Randomly amplified polymorphic DNA analysis (RAPD).  In RAPD analysis, 

short, random PCR primers that anneal to and amplify random fragments of genomic 

DNA are used to generate a genetic profile (Busch and Nitschko, 1999).  These methods 

require no prior knowledge of the genome sequence, only a small amount of DNA is 

required, results can be obtained relatively rapidly, and more sets of primers can be used 

to increase discrimination.  Disadvantages include poor reproducibility due to the use of 

nonspecific primers and possible minor variations in PCR reaction conditions and 

reactant concentrations (Foley et al., 2007).  Thus, RAPD analysis has limited value for 

Salmonella and STEC strain discrimination. 

 Amplified fragment length polymorphism analysis (AFLP).  AFLP identifies 

polymorphisms within restricted and PCR-amplified DNA fragments.  Following 

restriction digestion, DNA fragments with sequences complementary to the restriction 

sites are ligated to the free DNA ends.  These “linker” sequences subsequently serve as 

targets for PCR primers, and amplified fragment profiles correspond to different strains.  

Since PCR primers are based on the linker sequences, no previous knowledge of the 

genomic sequence is necessary.  Overall, AFLP is usually highly reproducible (Janssen et 

al., 1996; Reche et al., 2003), allows automation when labeled PCR primers are used 

(Tamada et al., 2001; Deswai et al., 2001), requires only a small amount of genomic 
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DNA due to PCR amplification (Vos et al., 1995), and provides relatively thorough 

coverage of the entire genome (Foley et al., 2007).  When used to discriminate 

Salmonella and STEC strains it provides good differentiation with reasonable accuracy 

(Lindstedt et al., 2000; Scott et al., 2001; Heir et al., 2000).  However, potential problems 

with this method include the necessity to produce small enough restriction fragments for 

PCR amplification and electrophoretic separation and also the necessity of an automated 

DNA sequencer for consistent results (Tamada et al., 2001).  Some laboratories might not 

have the resources available for such equipment and the use of different sequencing 

platforms can hinder inter-laboratory comparison (Fry et al., 2005).  However, with 

careful standardization and validation, AFLP analysis shows promise for Salmonella and 

STEC strain discrimination. 

 Multiple locus sequence typing (MLST). MLST is based on polymorphisms in 

multiple, highly conserved genes.  Genetic differences in five to ten highly conserved 

housekeeping genes encoding basic cellular functions provide variation for strain 

discrimination.  Target genes are amplified by PCR and then sequenced to identify and 

compare nucleotide polymorphisms within the same genes in different strains.  MLST 

can provide very high discriminatory power for many species of bacteria and is useful in 

outbreak epidemiology (Urwin and Maiden, 2003).  In the case of Salmonella and STEC, 

MLST is attractive because it analyzes variation in the actual DNA sequence rather than 

the size of amplified fragments, has high inter-laboratory reproducibility, and is 

conducive to electronic data sharing, all of which add to the accuracy and usefulness of 

this method while allowing it to be unambiguous and portable (Maiden et al., 1998; 

Cooper and Feil, 2004). However, due to small degrees of genomic variation in many 
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Salmonella and STEC strains, MLST is not as useful as PFGE for strain discrimination 

(Fakhr et al., 2005).  In such cases, genes that are under higher selective pressure and 

exhibit more genetic variation, such as virulence genes, can be used to improve 

discrimination (Maiden et al., 1998).  Online MLST databases for multiple species of 

bacteria, including Salmonella and STEC, facilitate rapid sharing of MLST data (Enright 

and Spratt, 1999). A thorough knowledge of the bacterial genome is required for this 

method, a possible limitation in emerging outbreak analyses.  Identifying genes with 

sufficient variation, that are also flanked by stable sequences that allowing the use of  a 

common PCR primer set for all strains is essential (Cooper and Feil, 2004).  Additionally, 

the requirements of PCR amplification and sequencing add time as well as equipment 

expense and further reduce its usefulness as a rapid and widespread strain discriminatory 

method for foodborne outbreak related cases.  

 Pulsed field gel electrophoresis (PFGE).  PFGE is a molecular technique used 

to differentiate similar strains of bacteria based on the patterns that occur in DNA 

fragments separated by electrophoresis on agarose gels when bacterial genomic DNA is 

digested with rare cutting enzymes (Smith et al., 1987).  PFGE was developed originally 

to resolve large DNA fragments that cannot be separated by standard gel electrophoresis 

(Schwartz and Cantor, 1984) by using an alternating voltage gradient.  By periodically 

changing the direction of the field, DNA fragments of varying lengths react to the change 

at different rates.  The larger fragments take longer to align to the changing fields and 

thus move more slowly through the gel.  Over time and constantly changing fields, the 

bands separate more and more.  Using this method, the upper resolution limit of DNA 

fragment size is over 10Mb, about twice as large as the SE and E. coli genomes.  As a 
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result, entire SE and E. coli chromosomes can be analyzed.  The voltage, time intervals 

between angle changes, and other variables are adjusted appropriate to the species under 

investigation (Goering, 2010; Olson, 1989).  The resulting PFGE band profile can be 

compared with those of other strains (Tenover et al., 1995).  With restriction enzyme 

optimization for specific species, this method is highly reproducible at both the intra- and 

inter-laboratory level.   PFGE, currently the “gold standard” bacterial strain 

discrimination technique, is the basis of the CDC’s PulseNet database (Swaminathan et 

al., 2001).  However, PFGE is time consuming and expensive, requires a high level of 

skill, may yield different results among operators, may not provide optimal separation in 

all parts of the gel, and may yield bands that contain fragments of different size 

(Swaminathan and Barrett, 1995).  Multiple PFGE runs using different restriction 

enzymes may be needed to adequately type some strains (Joyner and Kincaid, 2006; Zhao 

et al., 2006; Brown and Keys, 2006).  In some cases PFGE is not a true phylogenetic 

measure and some strains remain untypeable by this method.   

 Single nucleotide polymorphism (SNP) analysis.  SNP analysis is based on 

single nucleotide polymorphisms between strains on a genome wide basis and potentially 

provides the highest level of bacterial strain discrimination (Holt et al., 2008).  Multiple 

SNP locations throughout the genome are usually identified and compared between 

isolates in order to evaluate the genetic variation of outbreak and non-outbreak related 

strains.  While SNP analysis is exceptionally useful for bacterial strain discrimination, it 

is not currently practical for epidemiological studies of foodborne illness outbreaks where 

time is an important factor (Ahmed et al., 2008).  The equipment necessary for SNP 

analysis is also very costly and unobtainable by many laboratories.  With new 
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developments in technology, the ever decreasing speed and costs of DNA sequencing, 

and improvements in analysis software, SNP analysis may be heavily relied upon in the 

future for high confidence strain discrimination of outbreak related bacteria. 

 Multiple-locus variable-number tandem repeat (VNTR) analysis (MLVA).  

MLVA is a discriminatory method based on the polymorphisms in multiple VNTR 

locations throughout a genome.  VNTRs are segments of tandemly repeated short DNA 

sequences ranging from just a few base pairs to several hundred.  The locations and 

sequences of VNTRs are usually well conserved in a species but differences in the 

numbers of repeated units may be highly variable among closely related strains.  These 

regions are believed to be among the most rapidly evolving segments of DNA and might 

be of great value in elucidating the level of evolutionary divergence between species, 

subspecies, and strains. MLVA has gained popularity in the forensic science community 

and is commonly referred to as “DNA fingerprinting” due to its highly individualistic 

discriminatory capability (Jeffreys et al., 1985).  MLVA is performed by PCR 

amplification of multiple VNTR loci of known repeat length and identity followed by 

accurate sizing of the amplified fragments in order to determine the repeat copy numbers.  

Multiple VNTR loci are used in order to increase the level of discrimination since 

variation in some loci might not be present.  Therefore, a successful MLVA assay 

requires careful selection of VNTR loci, good PCR primer and multiplex PCR design, 

and an accurate method for amplicon sizing.  MLVA assays are advantageous to other 

methods in that they are fairly rapid, allow high discrimination, and have the potential for 

automation when fluorescently labeled primers are used with capillary gel 

electrophoresis.  In the case of bacteria, MLVA has been successfully used to 
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discriminate epidemiologically related strains of Francisella tularensis (Johansson et al., 

2001), Bacillus anthracis (Keim et al., 2000), Yersinia pestis (Klevytska et al., 2001), 

STEC O157 (Hyytia-Trees et al., 2006; Lindstedt et al., 2003a, 2004a; Noller et al., 

2003; Keys et al., 2005) and Salmonella enterica (Lindstedt et al., 2003b, 2004b; 

Ramisse et al., 2004; Witonski et al., 2006; Cho et al., 2007; Boxrud et al., 2007; 

Malorny et al., 2008), among others.  Recently, MLVA assays for S. Typhimurim, S. 

Enteritidis, and STEC O157:H7 have been added to PulseNet International and are being 

used in addition to PFGE when investigating and monitoring outbreaks involving these 

serovars.  A major limitation to developing more MLVA assays for more serovars is that 

in many cases it appears to be necessary to select different VNTR loci for each serotype, 

requiring a thorough prior knowledge of the genome sequence of each serotype.  With 

careful selection of conserved VNTR loci, it may be possible to develop a single MLVA 

assay that could discriminate multiple serotypes. While MLVA has great potential in 

Salmonella and STEC genotyping, the lack of more genome sequence information may 

be the limiting factor for increased MLVA assay development.  Despite this minor 

drawback, MLVA is one of the most attractive methods for Salmonella and STEC strain 

discrimination. 

 

 Foodborne pathogen discrimination needs.  Rapid, high-confidence strain 

discrimination is of utmost importance when investigating the source of foodborne 

outbreaks of Salmonella and STEC.  It is likely that the best understanding of the 

epidemiology and characteristics of such outbreaks cannot be obtained through a single 

discrimination method, but a combination of several.  Phenotypic and genotypic methods 
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should be used in tandem for the highest level of strain discrimination (Foley et al., 

2007).  Of these, genotypic methods are generally more rapid and discriminatory and 

should be carried out first.  Among genotypic methods, MLVA and SNP analysis show 

the most promise for a rapid, high-confidence epidemiological assessment of Salmonella 

outbreaks.  MLVA has been used for subtyping the most common serovars of Salmonella 

enterica (Lindstedt et al., 2003b, 2004b; Ramisse et al., 2004; Witonski et al., 2006; Cho 

et al., 2007; Boxrud et al., 2007; Malorny et al., 2008; Beranek et al., 2009) and STEC 

O157 (Hyytia-Trees, et al., 2006; Lindstedt et al., 2003a, 2004a; Noller et al., 2003; Keys 

et al., 2005).  Recently, a standardized approach to the use of MLVA assays has been 

established (Hopkins et al., 2011).  The effective use of MLVA, however, may be limited 

to a single serovar at a time and also requires a very thorough knowledge of the genome 

of the infecting serovar, usually requiring very expensive, specialized equipment.  The 

development of new MLVA assays that could allow the discrimination of two or more 

serovars in a single assay, while still maintaining high levels of standardization and inter-

laboratory reproducibility, would be of great value. 
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CHAPTER III 
 

 

PRIMERS WITH 5’ FLAPS IMPROVE THE EFFICIENCY AND SENSITIVITY OF 
MULTIPLEX PCR ASSAYS FOR THE DETECTION OF SALMONELLA AND 

ESCHERICHIA COLI O157:H7 

 

ABSTRACT 

Foodborne illnesses caused by Salmonella enterica and Escherichia coli O157:H7 are 

worldwide health concerns.  Rapid, sensitive, and robust detection of these pathogens in 

foods and in clinical and environmental samples is essential for routine food quality 

testing, effective surveillance, and outbreak investigations. The aim of this study was to 

evaluate the effect on PCR sensitivity of adding a short, AT-rich overhanging nucleotide 

sequence (flap) to the 5’ end of PCR primers specific for the detection of Salmonella and 

E. coli O157:H7.  Primers targeting the invA gene of Salmonella and the rfbE gene of E. 

coli O157:H7 were synthesized with or without a 12-bp, AT-rich 5’ flap (5’-

AATAAATCATAA-3’).  Singleplex PCR, multiplex PCR, and real-time PCR sensitivity 

assays were conducted using purified bacterial genomic DNA and crude cell lysates of 

bacterial cells. The effect of background flora on detection was evaluated by spiking 

tomato and jalapeno pepper surface washes with E. coli O157:H7 and Salmonella 

Saintpaul. When targeting individual pathogens, end-point PCR assays using flap- 
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amended primers were more efficient than thos using non-amended primers, with 20.4% 

and 23.5% increases in amplicon yield for Salmonella and E. coli O157:H7, respectively.  

In multiplex PCR assays, a 10- to 100-fold increase in detection sensitivity was observed 

when the primer flap sequence was incorporated. This improvement in both singleplex 

and multiplex PCR efficiency and sensitivity can lead to improved Salmonella and E. coli 

O157:H7 detection. 

 

 

INTRODUCTION 

 Foodborne illnesses cause significant worldwide morbidity and mortality each 

year (Flint et al., 2005).  In the United States, 31 major foodborne pathogens are 

estimated to cause 9.4 million illnesses, 55,961 hospitalizations, and 1,351 deaths 

annually (Scallan et al., 2011).  Alleviating the significant health and economic burden 

caused by foodborne pathogens requires effective methods for disease surveillance, 

outbreak investigations, and contaminated food source identification.  Accurate detection 

of foodborne pathogens is of critical importance but continues to be a challenge.  

Strategies for detecting human foodborne pathogens should allow detection of most or all 

strains of a pathogen and should allow accurate identification in a variety of substrates or 

media.  Ideal detection methods should be sensitive, specific, rapid, robust, reproducible, 

and cost effective, and have the potential for automation (Malorny et al., 2003).   

Improved detection techniques are needed also for biosecurity and microbial forensics 

applications, in which rapid and robust detection methods are essential.  In the event of 
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an intentionally-incited disease outbreak, detection is likely to be the first and most 

critical step in traceback and attribution (Breeze et al., 2005). 

 Although the International Organization for Standardization (ISO) supports the 

use of several traditional detection methods for major foodborne pathogens (Anonymous, 

1993; Anonymous, 2001), significant limitations exist with many of these culture-based 

methods (Malorny, 2003). PCR is commonly used for detection of bacterial pathogens in 

food and clinical samples and has several advantages over traditional methods including 

decreased detection times, the reliance on genotypic rather than variably expressed 

phenotypic characteristics, and the ability to detect viable-but-nonculturable cells 

(Malorny, 2003).  Additionally, PCR has become increasingly more popular for human 

pathogen detection because of its sensitivity, diagnostic accuracy, high detection 

probability, high robustness, and general acceptance due to user-friendly protocols for 

application and interpretation (Khan et al., 2011; Malorny, 2003, Malorny et al., 2003; 

Velusamy et al., 2010).  Many techniques for bacterial subtyping also rely on PCR 

(Wattiau et al., 2011).  Improvements in PCR for pathogen detection are primarily in the 

areas of specificity, sensitivity, and efficiency.   

 Strains of Salmonella enterica subsp. enterica and Escherichia coli O157:H7, 

which are among the most important foodborne bacterial pathogens in the United States 

(Rangel et al., 2005; Voetsch et al., 2004), have both recently been associated with major 

foodborne outbreaks (CDC, 2011).   Rapid identification of foodborne pathogens is 

essential to minimize further infections, and reducing detection time and increasing 

sensitivity have been the foci of recent research.  The development of multiplex PCR, 

which allows multiple pathogens to be detected in a single assay, and real-time PCR, 
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which combines amplification and detection in a single step that can be evaluated in real 

time, have allowed pathogens to be detected more rapidly and at lower titer.  Sometimes 

even small changes in a PCR procedure can improve the effectiveness of the assay.  

Afonina et al. (2007) found that the addition of short, noncomplementary, AT-rich 

nucleotide sequences (“flaps”) to the 5’ end of PCR primers increased the sensitivity of 

real-time PCR, especially when used with templates difficult to amplify, such as viral and 

bisulfite-treated DNA (Afonina et al., 2007).  Primer flaps were used previously to add 

restriction sites (Espelund and Jacobsen, 1992) or universal detection sites (Li et al., 

2006) to PCR products, and reduce the number of errors when sequencing short PCR 

products (Binladen et al., 2007). The aim of this study was to evaluate the effect of 

adding a 5’ flap to PCR primers specific for the detection of Salmonella enterica and E. 

coli O157:H7 on PCR efficiency and sensitivity.  The procedure was assessed in 

conventional singleplex and multiplex PCR assays, and in a singleplex real-time PCR 

assay. 

 

 

MATERIALS AND METHODS 

 Bacterial strains, culture media, growth conditions.  The bacterial strains used 

in this study were Salmonella enterica subspecies enterica serovar Typhimurium 

(cantaloupe isolate), Salmonella enterica subspecies enterica serovar Saintpaul (produce 

isolate), Escherichia coli O157:H7 K3995 (spinach-associated illness outbreak isolate), 

and Escherichia coli O157:H7 ATCC-43888 (attenuated, without stx genes).  The 

bacteria were grown aerobically with 100 RPM shaking at 37°C for 24 h in 5 mL Luria-
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Bertani broth (LB broth, Difco, Sparks, MD). Serial dilutions of overnight cultures were 

prepared in sterile 0.1% peptone (Difco, Sparks, MD) to the desired titers, which were 

confirmed by dilution plating (in sterile 0.1% peptone) on tryptic soy agar (TSA, Difco, 

Sparks, MD) and incubating at 37°C for 24 h. 

 DNA template preparation.  Pure genomic DNA was extracted from 1 mL 

overnight LB broth cultures of approximately 109 CFU/mL using the Qiagen Blood and 

Tissue Kit (Qiagen, Valencia, CA) with an RNase treatment.  DNA concentration of the 

pure genomic DNA was measured with a NanoDrop v. 2000 spectrophotometer (Thermo 

Fisher Scientific Inc., Wilmington, DE).  Salmonella and E. coli O157:H7 genomic DNA 

copy numbers were calculated based on the published genome sizes of Salmonella 

serovar Typhimurium (4.9 Mb plus 94 kb virulence plasmid) (McClelland et al., 2001) 

and E. coli O157:H7 (5.5 Mb plus two plasmids of 90 kb and 6 kb) (Hayashi et al., 

2001).  Purified genomic DNA was then 10-fold serially diluted from approximately 50 

ng/µL (109 genomic DNA copies/mL) to approximately 50 ag/µL (100 genomic DNA 

copies /mL). Crude cell lysates of each strain were obtained by boiling 0.5 mL each of 9 

10-fold serial dilutions (109 to 100 CFU/mL) from overnight culture for 10 min.  Cellular 

debris was eliminated at 10,000 rpm for 3 min and supernatant was used for PCR. 

 Spiked fresh produce background test.  To test whether the presence of other 

niche-sharing bacteria would affect assay results, surface washes from fresh tomatoes and 

jalapeno peppers were spiked with Salmonella and E. coli O157:H7.   Eighteen tomatoes 

and 18 jalapeno peppers were locally purchased, weighed, and added three at a time to 

sterile 400 ml stomacher bags.  Fifty ml of Universal Preenrichment Broth (UPB, Difco, 

Sparks, MD) was added to each of 12 bags (6 bags for each fruit).  Each bag was shaken 
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by hand for 1 min, the surface of each tomato/pepper was then massaged in the bag by 

hand for 1 min, and finally each bag was again shaken by hand for 1 min.  Wash fluid 

was transferred to sterile containers, serially diluted 10-fold with 0.1% sterile peptone, 

and plated in duplicate on plate count agar (PCA, Difco, Sparks, MD) for total aerobic 

counts.  Overnight cultures of Salmonella and E. coli O157:H7 were serially diluted 10-

fold in wash fluid from tomato or jalapeno pepper. Crude cell lysates of each spiked wash 

fluid were obtained by boiling 0.5 mL each of nine 10-fold serial dilutions (109 to 100 

CFU/mL) for 10 min.  Cellular debris was eliminated at 10,000 rpm for 3 min. 

 PCR primers.  Commonly used and sensitive PCR primer sets from the 

published literature were used to evaluate the effects of 5’ flap addition.  PCR primers 

targeting the invA gene, encoding a protein component of a type three secretion system 

associated with cellular invasion, were chosen for detection of Salmonella.  Forward 

primer, 139 (5’-GTG AAA TTA TCG CCA CGT TCG GGC AA-3’), and reverse primer, 

141 (5’-TCA TCG CAC CGT CAA AGG AAC C-3’), amplify a 284 bp fragment (Rahn 

et al., 1992).  PCR primers targeting the rfbE gene, encoding an enzyme involved in the 

synthesis of a component of the O antigen complex specifically binding with the O157 

antibody, were chosen for detection of E. coli O157:H7 strains.  Forward primer, Gi-

O157-I (5’-CGA GTA CAT TGG CAT CGT G-3’), and reverse primer, Gi-O157-II (5’-

ATT GCG CTG AAG CCT TTG-3’), amplify a 479 bp fragment (Abdulmawjood et al., 

2003).  All primers were synthesized by Integrated DNA Technologies (Coralville, IA) 

with and without the 12-bp 5’ flap sequence (Table 1), and were validated in silico, 

against available sequences of Salmonella enterica subsp. enterica and E. coli O157:H7, 

in the GenBank database using BLASTn (Altschul et al., 2007).   



64 

 

 PCR amplification.  Identical PCR protocols were used to compare the 

sensitivity and total amplified PCR yield using primers with and without 5’ flaps.  

Twenty µL PCR reaction mixtures contained 1 µL of 10-fold serially diluted template 

DNA (at concentrations equivalent to 108 CFU/mL to 100 CFU/mL), 1 µL of each 

forward and reverse primer (5µM), 10 µL GoTaq Green Master Mix (2X GoTaq Green 

reaction buffer, 400 µM of each 4 dNTPs, and 3 mM MgCl2) (Promega, Madison, WI), 

and 7 µL nuclease free water.  The PCR program consisted of initial denaturation at 94°C 

for 3 minutes and 35 cycles of the following: denaturation at 94°C for 60 sec, annealing 

at 60°C for 60 sec, and extension at 72°C for 60 sec, and followed by a final extension at 

72°C for 7 min. PCR amplicons were visualized on 1.5% agarose gels containing SYBR 

Safe DNA gel stain (Invitrogen, Carlsbad, CA).  PCR products amplified using primers 

with and without 5’ flaps were visualized on a single 1.5% agarose gel. Water as a 

negative control (NTC; non-template control) was included in each PCR assay.  

 PCR product quantification.  The amplicons obtained using PCR primers with 

and without 5’ flaps were eluted from agarose gels using Quantum Prep Freeze ‘N 

Squeeze Spin Columns (Bio-Rad, Hercules, CA).  The concentrations of eluted 

amplicons were determined using a NanoDrop v. 2000 spectrophotometer. Average DNA 

concentrations from 3 separate singleplex PCR assays were calculated and compared for 

both Salmonella Typhimurium and E. coli O157:H7 K3995, with and without flap-

amended primers. 

 Real time PCR.  SYBR Green real-time PCR assays were performed using 

primers with and without 5’ flaps in 20 µL reaction mixtures containing 10 µL of 

Platinum SYBR Green real-time PCR SuperMix-UDG (Invitrogen, Carlsbad, CA), 0.80 
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µL (5 µM) of each primer, 0.12 µL of bovine serum albumin (BSA, 50 mg/µL) 

(Invitrogen, Carlsbad, CA), 1 µL of template DNA, and 7.28 µL of nuclease free water. 

Template DNA used for qPCR was at concentrations equivalent to 108, 105, and 103 

CFU/mL for Salmonella Typhimurium and E. coli O157:H7 K3995. A negative control 

(water) was included in each PCR assay, and each reaction was performed in three 

replicates. Cycling parameters included two initial holds, 2 min at 50°C and 2 min at 

95°C, followed by 35 cycles at 95°C for 15 sec, followed by 60°C for 60 sec. The real-

time PCR assays were performed in a Rotor-Gene 6000 thermocycler (Corbett Research, 

Sydney, Australia). The threshold fluorescence for calculating the cycling threshold 

number (Ct) was set at 0.2. 

 Multiplex PCR.  Genomic DNA of Salmonella Saintpaul and E. coli O157:H7 

K3995 was combined and amplified together in an endpoint multiplex PCR assay using 

primers with and without 5’ flaps: the 139-141 primer set for Salmonella and the Gi-

O157-I- Gi-O157II primer set for E. coli O157:H7.  Two µL of genomic DNA at a 

concentration equivalent to 109 genomic DNA copies/mL (approximately 50 ng/µL) for 

each strain was combined and 10-fold serially diluted to 100 genomic DNA copies/mL 

(approximately 50 ag/µL) for sensitivity analysis. PCR component concentrations and 

conditions remained the same as in singleplex PCR except that the effect of MgCl2 

concentration in the multiplex PCR was tested at concentrations of 1.5, 2.5, 3.0, 3.5, 4.0, 

and 4.5 mM in separate assays with Salmonella Saintpaul and E. coli O157:H7 K3995 

genomic DNA.   

 Sensitivity analysis.  PCR sensitivity was determined based on amplicon 

detection in conventional PCR assays (presence of band as well as PCR product 
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quantification by elution) and fluorescence intensity in SYBR Green qPCR assays.  

Detection was designated as positive in the presence of a band after amplicon 

electrophoresis in 1.5% agarose gels. Sensitivity was expressed as the lowest DNA 

concentration equivalent to cellular titer detected in each PCR reaction.   

 Statistical analysis.  Six replicate trials were conducted for each experiment.  

Data were analyzed using general linear model procedures of the Statistical Analysis 

software version 9.3 (SAS Institute, Inc., Cary, N.C).  Duncan’s multiple range test was 

used to determine the significant difference among the groups (p<0.05).  

 

 

RESULTS AND DISCUSSION 

 Addition of 5’ flaps to PCR primers.  The target genes and primers used in this 

study were selected based on their wide applications and inter-laboratory validation 

(Abdulmawjood et al., 2003; Malorny et al., 2003; Rahn et al., 1992).   The in silico 

analysis of the primers using BLASTn were evaluated against all sequences in the NCBI 

database before and after the incorporation of 5’ flaps to the primers. No non-specific 

binding of the primers was predicted with any relevant microorganism sequences in the 

NCBI database after the incorporation of the 5’flaps.  

 Although the139-141 primer set is commonly used and well validated, it was 

observed previously to amplify non-specifically a homologous gene in some E. coli 

strains, and did not allow detection of some Salmonella Saintpaul strains (1 out of 20 

tested Salmonella Saintpaul strains was not detected) (Malorny et al., 2003; Rahn et al., 

1992).  However, no non-specific fragments or failure to detect Salmonella Saintpaul was 
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observed in this study, whether 5’ flap-amended primers were used or not.  Additionally, 

no difference in detection sensitivity was observed between Salmonella Saintpaul and 

Typhimurium when using the 139-141 primer set, or between E. coli O157:H7 K3995 

and E. coli O157:H7 ATCC-43888 when using the Gi-O157-I-Gi-O157-II primer set. 

 Singleplex PCR. Singleplex endpoint PCR sensitivity with 5’ flap-amended 

primers was not different from PCR assays using primers without flaps when using 

purified genomic DNA (Figure 1) or 10-fold serially diluted crude cell lysate (data not 

shown).  The limit of detection was 102 CFU/mL (ca.5.0 fg/µL) for Salmonella and 103 

CFU/mL (ca. 50 fg/µL) for E. coli O157:H7. However, detection was always possible at 

103 CFU/mL for Salmonella (10 copies of genomic DNA per reaction, approximately 50 

fg) and 104 CFU/mL for E. coli (100 copies of genomic DNA per reaction, approximately 

500 fg).  These results are comparable to previous studies using the 139-141 primer set 

for Salmonella detection (Malorny et al., 2003) and the Gi-O157-I-Gi-O157-II primer set 

for E. coli O157 detection (Abdulmawjood et al., 2003). 

 The efficiency of the Salmonella and E. coli O157:H7 singleplex PCR assays 

using primers with and without flaps was further evaluated by quantifying the 

concentration of DNA from eluted bands.  A 23.5%, and 20.4% increase in yield was 

observed when 5’ flaps were added to primers specific for E. coli O157:H7 and 

Salmonella, respectively (Table 2). Although the 12 bp flap sequence is incorporated into 

the amplified fragment sequence after the first few PCR cycles, this would account for 

only an approximately 5-10 percent yield increase.  Increased primer specificity to 

template DNA when 5’ flaps are used may account for the increase in yield.  These results 
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indicate that amending the 139-141 and Gi-O157-I-Gi-O157-II primer sets used in this 

study with 5’ flap sequences increased the amplification efficiency. 

 Spiked fresh produce background test.  Background flora washed from the 

surfaces of locally purchased tomatoes and jalapeno peppers had no effect on the 

detection sensitivity of Salmonella Saintpaul and Typhimurium or of E. coli O157:H7 

K3995 and ATCC-43888. Background bacteria at a concentration of 106 CFU/tomato and 

107 CFU/pepper were present in surface washes before spiking the washes with 

Salmonella or E. coli O157:H7 (data not shown).    

 Real-time PCR.  Real-time PCR assays using genomic DNA from E. coli 

O157:H7 K3995 and Salmonella Typhimurium, at concentrations equivalent to 108, 105 

and 103 CFU/mL, and primers with and without 5’ flaps showed an increase in 

fluorescence intensity when 5’ flaps were used (Figure 2).  However, the Ct values 

between amplification with 5’ flap amended and non-amended primers at each 

concentration were not significantly different (p > 0.01, data not shown).  The increased 

fluorescent signal with 5’ flap amended primers may be a combined result of the 24 bp 

(from the flap) larger amplicon size and the increased PCR amplicon yields shown above. 

 Multiplex PCR.  Initial multiplex PCR assays using GoTaq Green master mix 

(containing 1.5 mM MgCl2) yielded little amplification of E. coli O157:H7 at lower cell 

concentration, with or without 5’ flap-amended primers.  Subsequent optimization of the 

MgCl2 concentration to 3.0 mM for multiplex PCR resulted in increased assay sensitivity 

for both pathogens but particularly for E. coli O157:H7 with 5’ flaps (Figure 3).  

Optimization of the annealing temperature in multiplex was not attempted since extensive 

optimization studies for the rfbE primer set (Abdulmawjood et al., 2003) and the invA 
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primer set (Rahn et al., 1992) have previously been done.  There was a 10-and 100-fold 

increase in the detection limit for E. coli O157:H7 and Salmonella, respectively, in 

multiplex PCR with 5’ flaps (Figure 4A).  The detection limit of multiplex PCR with 5’ 

flaps also increased for each pathogen compared to singleplex PCR.    When only one 

primer set was used with the mixture of Salmonella and E. coli O157:H7 genomic DNA, 

no non-specific binding was observed and the level of detection observed was the same 

for each pathogen (Figure 4B). The reason for the 10- to 100-fold increase in multiplex 

PCR sensitivity is unknown, but was observed repeatedly.  The limit of detection 

observed in multiplex was 102 CFU/mL for E. coli O157:H7 and 101 CFU/mL for 

Salmonella (Figure 4).  These concentrations correspond to 1 and 0.1 genomic copies per 

PCR reaction for E. coli and Salmonella, respectively (assuming 100% recovery of 

purified genomic DNA).  These results may represent the highest level of sensitivity 

possible for the detection of the foodborne pathogens Salmonella and E. coli O157:H7. 

 Increased MgCl2 concentration in singleplex PCR from 1.5 mM to 3.0 mM 

resulted in no difference in PCR sensitivity and detection probability (data not shown).  

Increased assay sensitivity with optimized MgCl2 concentration was observed only in 

multiplex PCR.  Mg+2 ions form complexes with dNTPs in PCR reactions, allowing 

proper elongation by Taq polymerase, and promote DNA/DNA interactions.  The increase 

in sensitivity may be a result of increased efficiency of primer to target annealing when 

Mg+2 concentrations are optimal. 

 In summary, the addition of a 12 bp AT-rich 5’ flap sequence to PCR primers 

specific for Salmonella and E. coli O157:H7 increased the detection sensitivity 10- to 

100-fold in multiplex PCR compared to that of assays done using primers without flaps.  
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In singleplex PCR, 5’ flap addition to PCR primers led to no significant difference in 

sensitivity but allowed higher amplicon yield using the selected primer sets.  The results 

suggest that adding AT-rich 5’ flap sequences to PCR primers may improve detection of 

pathogens by multiplex PCR.    The method has potential applications in the food and 

agricultural industries, foodborne outbreak surveillance, pathogen identification and 

traceback, and biosecurity and microbial forensics. 
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TABLES  

Table 1. PCR primers, with and without 5’ flap sequences, targeting the invA gene of 
Salmonella and the rfbE gene of E. coli O157:H7 strains, used in this study. 

Primer name 
Target 

gene 
Sequence (5’—3’) 

Amplicon 

size (bp) 
Reference 

139 

invA 

GTGAAATTATCGCCACGTTCGGGCAA 
284 

Rahn et al., 
1992 

141 TCATCGCACCGTCAAAGGAACC 
139-F aAATAAATCATAA GTGAAATTATCGCCACGTTCGGGCAA 

308 
141-F aAATAAATCATAA TCATCGCACCGTCAAAGGAACC 

Gi-O157-I 

rfbE 

CGAGTACATTGGCATCGTG 
479 

Abdulmawjood 
et al., 2001 

Gi-O157-II ATTGCGCTGAAGCCTTTG 
Gi-O157-I-F aAATAAATCATAA CGAGTACATTGGCATCGTG 

503 
Gi-O157-II-F aAATAAATCATAA ATTGCGCTGAAGCCTTTG 

a Bold font indicates 5’ flap sequence. 

 

 

Table 2.  Concentration of amplicon DNA in agarose gel bands eluted after singleplex 
PCR using primers with and without 5’ flap sequences, quantified by a NanoDrop 
spectrophotometer. 

Pathogen Primers 

Avg. 

[DNA] 

(ng/µl) 

Avg. 

Eluted 

Vol. (µl) 

Avg. [DNA] 

(ng/band) 

Standard 

Deviation Difference 
p 

value 

% 

increase 

in yield 

E. coli 

O157:H7 

rfbE 9.27 98.07 897.03 53.86 
210.4 0.011 23.5 

rfbE-Flap 9.47 117.4 1107.37 61.50 
         

Salmonella 
Typhimurium 

invA 12.40 116.37 1403.60 84.25 
286.0 0.010 20.4 

invA-Flap 14.4 118.73 1689.57 69.14 
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FIGURES  

 

Figure 1.  Singleplex PCR detection of E. coli O157:H7 K3995 (A) and Salmonella 
Typhimurium (B) 10-fold serially diluted purified genomic DNA, amplified with and 
without 5’ flap amended primers.  Lane NTC: no template control.    
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Figure 2.   Real-time PCR amplification of genomic DNA of Salmonella Typhimurium 
(A) and E. coli O157:H7 K3995 (B).  Template DNA, isolated from cultures at cellular 
concentrations of 108 CFU/ml (1), 105 CFU/ml (2), and 103CFU/ml (3), was amplified in 
duplicate, with and without 5’ flap amended primers.   
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Figure 3.  MgCl2 concentration titration using Salmonella Saintpaul (284 bp) and E. coli 
O157:H7 K3995 (479 bp) in multiplex using primers with and without 5’ flaps.  MgCl2 

concentration is marked under the lanes.  Lane NTC: no template control.   
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Figure 4.  (A) Multiplex detection of 10-fold serially diluted Salmonella Saintpaul and E. 

coli O157:H7 K3995 genomic DNA using PCR reaction mixtures with 3.0 mM MgCl2, 
and primers with and without 5’ flaps.  (B) Detection of E. coli using rfbE primers, with 
and without flaps, in a serially diluted mixture of E. coli O157:H7 K3995 and Salmonella 
Saintpaul.  (C) Detection of Salmonella using invA primers, with and without flaps, in a 
serially diluted mixture of E. coli O157:H7 K3995 and Salmonella Saintpaul.  Lane NTC: 
no template control.     

 

 



79 

 

CHAPTER IV 
 

 

MULTIPLE-LOCUS VARIABLE-NUMBER TANDEM REPEAT ANALYSIS          
FOR STRAIN DISCRIMINATION OF NON-O157 SHIGA TOXIN-PRODUCING 

ESCHERICHIA COLI 

 

ABSTRACT 

Non-O157 Shiga toxin-producing Escherichia coli (STEC) are emerging pathogens of 

growing worldwide concern.  Recent multistate and multinational outbreaks of foodborne 

illness have been attributed to consumption of non-O157 STEC-contaminated food.  

Rapid and sensitive molecular based strain discrimination methods are critical for quick 

identification of outbreaks and fast traceback to the contaminated food source, hence 

controlling the number of future infections.  The objective of this study was to develop a 

multiple-locus variable-number tandem repeat (VNTR) analysis (MLVA) assay for intra- 

and inter-serogroup discrimination of 6 major non-O157 STEC serogroups: O26, O111, 

O103, O121, O45, and O145.  The developed MLVA method consists of 12 VNTR loci 

in 3 multiplex PCR reactions.  Sixty five unique MLVA types were obtained among 84 

clinical non-O157 STEC isolates comprised of geographically diverse sporadic and 

outbreak related strains.  Four of the 6 serogroups clustered separately in a minimum 

spanning tree.  The developed MLVA method allowed a higher level of discrimination 

among serogroups O26, O111, O103, and O121, with discriminatory powers of 1.0, 0.96,
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0.97, and 0.97, respectively, than it did for serogroups O45 and O145, with 

discriminatory powers of 0.90 and 0.82, respectively.  Compared to pulsed-field gel 

electrophoresis (PFGE), a higher level of discrimination was possible for serogroup O26, 

a similar level of discrimination was observed for serogroups O111, O103, and O121, 

and a lower level of discrimination was observed for serogroups O45 and O145.  The 

developed non-O157 STEC MLVA method for discrimination of epidemiologically 

related, highly clonal non-O157 STEC isolates needs to be further validated with more 

outbreak related isolates and compared to PFGE. 

 

 

INTRODUCTION 

 Escherichia coli is a very diverse enteric bacterial species that is an important 

constituent of the natural gut micro flora of warm-blooded organisms.  Most E. coli 

strains are harmless (commensal), but some are pathogenic to humans.  Based on the 

pathogenic mechanisms, at least 5 different pathogenic types of virulent E. coli strains 

exist: Enterohemmorhagic E. coli (EHEC), Enteroaggregative E. coli (EAEC), 

Enteroinvasive E. coli (EIEC), Enterotoxigenic E. coli (ETEC), and Enteropathogenic E. 

coli (EPEC) (CDC, 2012; Todar, 2012; Nataro and Kaper, 1998).   The most severe 

human illness, caused by EHEC, is associated with the production of one or more Shiga 

toxins (encoded by the genes stx1 and/or stx2) and a few other virulence determinants 

encoded within the locus of enterocyte effacement (LEE) (O’Brien et al., 1992; Ethelberg 

et al., 2004, Gyles, 2007).  Symptoms of Shiga toxin-producing E. coli (STEC) infections 

include severe gastroenteritis, hemorrhagic colitis, or the life-threatening hemolytic 
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uremic syndrome (HUS) (Besser et al., 1999; Tarr et al., 2005).  Of over 100 STEC 

serogroups associated with human illness by the World Health Organization, STEC O157 

is the most commonly isolated in the United States and causes the highest percentage of 

illnesses (WHO 2012, Scallan et al., 2011; Johnson et al., 1996; CDC, 2012).  However, 

an increased prevalence of non-O157 STEC-induced illnesses has been observed in 

recent years and non-O157 STEC serogroups may be considered emerging pathogens 

(Brooks et al., 2005; Johnson et al., 2006; Bettelheim, 2007).  Between 2000 and 2005, 

the global occurrence of non-O157 STEC serogroups causing human illness increased by 

60.5% (Coombes et al., 2008).  In the United States, the prevalence of non-O157 STEC 

infections increased steadily from 2000 to 2007 but have remained fairly constant in 

recent years, while STEC O157 isolation rates are at their lowest since 1998 (CDC, 

2012b). 

 The most commonly isolated non-O157 STEC serogroups associated with human 

illness vary by year and location (Brooks et al., 2005; CDC, 2012b; CDC, 2012c; 

Bettelheim, 2007), but serogroups O26, O111, O103, O121, O45, and O145 are usually at 

the top of the list and are often referred to as the ‘big 6’ non-O157 STEC serogroups 

(Karmali et al., 2003).  In September of 2011, the United States Department of 

Agriculture (USDA) Food Safety and Inspection Service (FSIS) identified the ‘big 6’ 

non-O157 STEC serogroups as official meat adulterants and the requirement for routine 

verification tests for these pathogens in raw beef manufacturing trimmings was 

implemented in June of 2012 (77 Fed. Reg. 105, 31 May 2012).  Non-O157 STEC 

serogroups have been isolated from cattle in multiple studies (Wells et al., 1991; Cray et 

al., 1996; Renter et al., 2005; Cho et al., 2006; Rhoades et al., 2009) and ruminants are 
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believed to be the primary STEC reservoirs.  In addition to consumption of contaminated 

meat products, outbreaks of foodborne illness caused by non-O157 STEC serogroups 

have been associated with milk, cheese, water, and fresh produce (Kaspar et al., 2010). 

 As with most other bacterial foodborne pathogens, sporadic cases of non-O157 

STEC infections greatly outnumber outbreak-related cases (Hundley and Cameron, 2004, 

McPherson et al., 2008; Nielsen et al., 2006; Rivas et al., 2008).  Molecular subtyping 

methods are essential to outbreak investigations from the initial identification of an 

outbreak to traceback of contamination sources.  The PulseNet network coordinated by 

the Centers for Disease Control and Prevention (CDC) is a national and international 

molecular subtyping network that functions as a foodborne illness cluster detection tool.  

Epidemiological investigation of illness clusters allows identification of foodborne illness 

outbreaks (Swaminathan et al., 2006).  The primary molecular subtyping method used by 

PulseNet is pulsed-field gel electrophoresis (PFGE), commonly referred to as the gold 

standard subtyping method for pathogenic foodborne bacteria (Swaminathan, 2001).  

Although the subtyping usefulness and bacterial strain discriminatory capability of PFGE 

is well documented and demonstrated by the success of the PulseNet network, the 

technique has several drawbacks.  PFGE is a time-consuming and laborious method 

requiring a high level of technical skill and rigorous standardization to allow inter-

laboratory data sharing.  In some cases PFGE does not always allow optimal 

discrimination among closely related bacterial isolates (Hyytia-Trees et al., 2006).  To 

overcome these limitations, PulseNet has begun to augment PFGE data of outbreak-

related bacterial isolates with DNA sequence-based methods.   
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 Multiple-locus variable-number tandem repeat (VNTR) analysis (MLVA) is a 

molecular subtyping method based on differing numbers of tandem repeats within several 

VNTR loci throughout a bacterial genome (Keim et al., 2000).  Following PCR 

amplification of VNTR loci, the amplified DNA fragments are sized or sequenced and 

compared among different strains.  The size and tandem repeat copy number of each 

VNTR locus can be designated as a discrete allele number, allowing data comparison 

among multiple laboratories over extended periods of time (Hyytia-Trees et al., 2006). 

MLVA is currently used by PulseNet to help discriminate among highly clonal isolates of 

Salmonella Typhimurium (Lindstedt et al., 2003; Lindstedt et al., 2004), Salmonella 

Enteritidis (Cho et al., 2007; Boxrud et al., 2007), and STEC O157 (Hyytia-Trees et al., 

2006), with MLVA protocols for Listeria monocytogenes and Salmonella Newport in 

active development and validation.   

 The current STEC O157 MLVA protocol used by PulseNet (Hyytia-Trees et al., 

2006), an optimized and modified 9-locus version of the MLVA method developed by 

Keys et al. (2005), has proven to be useful, allowing a high level of discrimination in 

conjunction with PFGE.  However, this protocol was developed specifically for STEC 

O157 (especially STEC O157:H7) and does not provide the discriminatory power 

necessary to discriminate among non-O157 STEC serogroups (Izumiya et al., 2010; 

Lindstedt et al., 2007).   Most previously developed MLVA methods target a single 

serogroup or serotype and development of a MLVA method for multiple serogroups 

poses notable challenges (Karma and Gyles, 2010).  Discriminatory power at the serotype 

level is likely to be decreased if multiple serogroups are targeted in a single protocol.   
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 A MLVA genotyping assay that discriminates among many E. coli serogroups 

(not just STEC) was recently developed by Lindstedt et al. (2007).  The method was used 

to type all members of the E. coli reference (ECOR) collection and 61 human pathogenic 

E. coli and Shigella isolates.  This novel adaptation of MLVA allowed similar or better 

discriminatory capability than PFGE with the added benefits of increased assay speed and 

greater automation.  This MLVA method was used to help identify the sources and 

epidemiological characteristics of an outbreak of STEC O103:H25 (Schimmer et al., 

2008) and an outbreak of O145:H28 (Wahl et al., 2011), both in Norway.  It was used 

also by Bustamante et al. (2010) and Franci et al. (2011) to assess the ability of the 

method to type and genetically characterize non-O157 STEC serogroups isolated from 

food, humans, cattle, and beef products in Argentina with a high level of inter-serogroup 

discrimination.  Another MLVA method designed specifically for subtyping of STEC 

O157, O111, and O26 was developed by Izumiya et al. (2010) by essentially adding 9 

VNTR loci to the MLVA protocol developed by Hyytia-Trees et al. (2006).  In both 

MLVA methods, the complete genomic sequences of one or more STEC O157:H7 

serotypes were used to identify VNTR loci, with (Izumiya et al., 2010) or without 

(Lindstedt et al., 2007) additional comparison with the completed genome sequences of 2 

non-O157 STEC serogroups.  However, STEC O157 has been shown to form a distinct 

monophyletic clade among most other E. coli serogroups (Reid, 2010) and although a 

large number of virulence genes are shared, O157 and non-O157 STEC serogroups have 

independently acquired large numbers of serotype-specific genes by lateral gene transfer 

(Ogura et al., 2007).  It is likely that non-O157 STEC serogroups are evolutionarily more 

similar to one another than they are to STEC O157 (Donnenberg and Wittam, 2001).  To 
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our knowledge, no MLVA assay has yet been developed specifically for non-O157 STEC 

serogroups. 

 The objective of this study was to develop a robust and highly discriminatory 

MLVA assay for the 6 major non-O157 STEC serogroups—O26, O111, O103, O121, 

O45, and O145.  The concordance of the MLVA data with PFGE data is presented and 

the MLVA assay is also used to type STEC O157, generic E. coli, and EPEC for 

comparison.  The PulseNet MLVA protocol for STEC O157 developed by Hyytia-Trees 

et al. (2006) is one of the most robust and extensively validated MLVA assay for 

subtyping pathogenic E. coli.  The technical aspects and details of the PulseNet MLVA 

protocol for STEC O157 were followed as closely as possible to allow streamlined 

modification and adaptation of this protocol should it prove useful for molecular 

subtyping of epidemiologically significant non-O157 STEC serogroups and be adopted 

by PulseNet. 

 

 

MATERIALS AND METHODS 

 Bacterial strains.  A total of 92 E. coli strains were used in this study.  Initial 

assay development and optimization was done with 24 non-O157 STEC strains obtained 

from the STEC Center of Michigan State University as part of a non-O157 STEC 

reference set.  This set includes 4 individual strains of each of the 6 major non-O157 

STEC serogroups (O26, O103, O111, O121, O145, and O45) isolated from humans 

(Table 1).   Further validation was carried out with 60 non-O157 STEC isolates obtained 

from CDC (10 strains from each of the big 6 non-O157 serogroups).  All 60 strains were 
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clinical isolates associated with outbreaks or sporadic cases (Table 2).  Epidemiological 

information for all 60 strains and PFGE data for 34 strains were provided by CDC.  In 

addition to the 84 non-O157 STEC isolates, 5 isolates of STEC O157:H7, 2 isolates of 

EPEC (O55 and O119), and 1 strain of generic E. coli K-12 were also analyzed for 

comparison (Table 3).   

 VNTR locus selection.  To identify potentially useful VNTR loci for inter- and 

intra-serogroup discrimination of the non-O157 STECs, the published genomes of non-

O157 STEC strains O26 (GenBank accession number NC_013361.1), O103 (GenBank 

accession number NC_013353.1), and O111 (GenBank accession number NC_013364.1) 

were scanned for tandem repeats using the Tandem Repeats Finder software (Benson, 

1999).  Selection of a VNTR locus was based on several criteria: a locus had to be 

present in at least two of the three strains, had to have a high number of tandem repeat 

percent matches (>80 %), and had to have a low percentage of indels (<3 %).  Following 

initial selection of possible loci, the flanking sequences of each of the VNTR loci were 

aligned with ClustalW.  Only VNTR loci having highly similar flanking sequences were 

selected to allow optimal primer design and minimize the need for degenerate primers.  

Additionally, VNTR loci exhibiting differences in tandem repeat copy numbers among 

the 3 strains were preferentially selected.  The more diverse loci (larger difference in 

copy number) were selected to help discriminate closely related strains within serogroups 

while the less diverse loci (smaller difference in copy number) were selected to help 

discriminate among serogroups (Keys et al., 2005).  The final selection included 12 

VNTR loci, designated SVL (STEC VNTR locus)-1 – SVL-12 (Table 4).  One locus, 
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SVL-11, which was plasmid-located and present only in O111, was selected to evaluate 

the usefulness of plasmid-located VNTR loci for inter-serogroup discrimination. 

 The presence and diversity of the selected loci in STEC O157:H7 strains were 

evaluated also by comparing each selected VNTR locus with the Tandem Repeats Finder 

results of four published STEC O157:H7 genomes (E. coli EDL933 (NC_002655.2), E. 

coli Sakai (NC_002695.1), E. coli EC4115 (NC_011353.1), and E. coli TW14359 

(NC_013008.1)).  All loci except SVL-10 and SVL-12 were present also in STEC 

O157:H7.  Locus SVL-1 was previously described by Keys et al. (2005) (named O157-

2), and SVL-4 by Lindstedt et al. (2007) (named CVN004), and SVL-3 was described 

first by Keys et al. (2005) (named O157-11) and later by Lindstedt et al. (2007) (named 

CVN014).  

 DNA preparation.  Bacterial strains were grown overnight at 37°C on trypticase 

soy agar (TSA).  Two to three colonies were suspended in 100 µL of sterile distilled 

water and boiled for 10 min at 100°C.  The suspension was cooled briefly and 

centrifuged at 10,000 rpm (8165 x g) for 10 min.  The undiluted supernatant was used as 

template DNA for PCR amplification and stored at -20°C. 

 Primer design and PCR amplification.  PCR primers for amplification of 

selected VNTR loci were designed using Primer3 software (Rozen and Skaletsky, 2000) 

followed by an evaluation of primer thermodynamics using the Mfold web server 

(Zucker, 2003), and a BLAST search against the NCBI database for primer specificity 

analysis.  PCR primers were designed to minimize multiplex reactions and to allow all 

multiplex PCR reactions to occur at the same cycling conditions.  Therefore, all primers 

were designed with minimal 3’ self-complementary sequences and with similar lengths, 
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GC contents and melting temperatures.  Although loci SVL-1, SVL-3, and SVL-4 were 

identified previously and used in MLVA protocols for STEC O157:H7, the primers were 

redesigned to have characteristics similar to those of all other primers in this study.  

Additionally, MultiPLX 2.1 (Kaplinski et al., 2005) was used to evaluate the potential for 

primer dimer formation among all 12 primer sets.  Since the size range of the amplified 

fragments for each VNTR locus were unknown, all primers were designed to allow 

multiplexing of any combination of primer sets. Initial screening of the amplification 

effectiveness of the 12 primer sets was carried out with the 24-isolate non-O157 STEC 

reference set and visualized by agarose gel electrophoresis.   Based on the amplicon sizes, 

the primer sets were combined into three multiplex PCR reactions (R1, R2, and R3).  

Reaction 1 contained primer sets SVL-1, SVL-3, SVL-4, and SVL-8, reaction 2 

contained primer sets SVL-2, SVL-6, SVL-10, and SVL-12, and reaction 3 contained 

primer sets SVL-5, SVL-7, SVL-9, and SVL-11.  Forward PCR primers were then 

fluorescently labeled to allow accurate sizing by multicolor capillary electrophoresis 

(Table 4).  

 Unlabeled forward and reverse primers were synthesized by Integrated DNA 

Technologies (Coralville, IA) and fluorescently labeled forward primers were synthesized 

by Applied Biosystems (Foster City, CA).  The PCR amplification conditions were 

designed to mimic, as closely as possible, the PCR reaction conditions and reagent 

concentrations currently used for MLVA by the PulseNet network of the CDC (Hyytia-

Trees et al., 2006; Lindstedt et al., 2004; Boxrud et al., 2007).  PCR amplification was 

performed in final volumes of 10 µL consisting of 1.5 µL of 5X Colorless GoTaq 

Reaction Buffer with 1.5 mM MgCl2 at the 1X concentration (Promega, Madison, WI), 
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0.4 µL of 50mM MgCl2 (bringing final MgCl2 concentration to 2.0 mM), 1.0 U of GoTaq 

DNA Polymerase (Promega), 0.2 mM of PCR Nucleotide Mix (Promega), and 1.0 µL of 

DNA template.  Primer concentrations were adjusted to allow optimal peak heights for 

confident size calling.  The amplification conditions consisted of an initial denaturation 

step at 95°C for 5 min, followed by 35 cycles of 95°C for 30 sec, 58°C for 45 sec, and 

72°C for 45 sec, with a final extension step at 72°C for 5 min. 

 Fragment analysis.  Amplified PCR products were diluted 1:60 in sterile distilled 

water.  A 1.0 µL aliquot of the diluted PCR product was added to 9 µL of Hi-Di 

Formamide (Applied Biosystems) and 0.4 µL of GeneScan 600LIZ size standard 

(Applied Biosystems).  PCR products were sized using an ABI 3730 Genetic Analyzer 

(Applied Biosystems). 

 Pulsed-field gel electrophoresis.  PFGE was performed by PulseNet according to 

the standardized PulseNet protocol (Ribot et al., 2006).  Among the 60 non-O157 STEC 

isolates provided by CDC, 36 were analyzed using XbaI restriction enzyme (Roche 

Applied Science, Indianapolis, IN) and 18 were analyzed using BlnI restriction enzyme 

(Roche Applied Science).  PFGE patterns were analyzed with BioNumerics software 

version 4.0 (Applied Maths, Kortrijk, Belgium), uploaded to the PulseNet PFGE pattern 

database, and named according to the standard nomenclature system (Swaminathan, 

2001).  The names of the PFGE patterns were provided with the isolates by CDC. 

 Data analysis.  Fragment data were evaluated with GeneMapper software 

(Applied Biosystems) and fragment size lists were imported to BioNumerics software 

version 6.6 (Applied Maths) for analysis.  BioNumerics links fragment data to 

corresponding isolate information previously imported.  The tandem repeat (TR) copy 
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number of each locus is calculated based on the fragment size in comparison to the offset 

size.   Partial repeats were rounded up or down to the closest complete TR number in 

accordance with Hyytia-Trees et al. (2006).  For each locus, alleles were named 

according to the number of TRs, whereas null alleles, as no PCR amplification at a given 

locus, are designated as -2.0 to differentiate between null alleles and VNTR loci with no 

TRs.  The diversity index (DN) for each locus was calculated based on Simpson’s 

diversity index according to the formula DN = 1-Σ (allelic frequency)2 * 100 (Weir, 

1990).  Dendrograms were constructed with BioNumerics using a categorical multi-state 

coefficient and UPGMA (unweighted pair group method with arithmetic mean) 

clustering.  Isolates having indistinguishable MLVA types were compared to PFGE data 

to determine the discriminatory capability of the developed non-O157 STEC MLVA 

method in comparison to PFGE. 

 

 

RESULTS 

Selection of VNTR loci 

 The first step in MLVA development is to search for and identify candidate 

VNTR loci in targeted genomes, which was accomplished in this study by using the free 

online Tandem Repeats Finder software (Benson, 1999).  Several program parameters 

can be adjusted when searching for tandem repeats within a DNA sequence.  Smith-

Waterman style local alignment weights for matches, mismatches, and indels, the 

maximum period size to report, and the minimum alignment score to report can all be 

adjusted by the user.  The alignment score is calculated according to the selected weights 
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for matches, mismatches, and indels among the tandem repeats comprising the VNTR 

array and the period size is the length of the entire VNTR array.  Candidate VNTR loci 

for MLVA assays should have as few mismatches and indels within tandem repeat arrays 

as possible and have a high alignment scores, representing well-conserved VNTR loci.   

 In this study, the completed genomic sequences of 3 non-O157 STEC strains 

(O26, O103, and O111) were screened for candidate VNTR loci with Smith-Waterman 

alignment weights for matches, mismatches, and indels set at 2, 7, and 7, respectively.  

The minimum alignment score to report was set at 40, and maximum period size was set 

at 500.  These parameters were chosen to narrow the number of reported tandem repeat 

arrays to those that had larger tandem repeat sequences (> 3 nt), larger copy numbers 

with minimal mismatching and indels, and period sizes less than 500 nt since capillary 

electrophoresis with a 600 nt size standard was to be used for sizing of PCR-amplified 

VNTR loci.   

 Interestingly, a comparison of short tandem repeat structures reported for 4 STEC 

O157:H7 strains, 2 generic E. coli strains, and 3 non-O157 STEC strains revealed that 

there are many more tandem repeats having a copy number greater than 5.0 in STEC 

O157:H7 strains than in all of the others, while the total number of tandem repeats 

reported were similar between STEC O157:H7 strains and non-O157 STEC strains 

(Table 5).  When searching for candidate VNTR loci for strain discrimination, higher 

copy numbers within conserved tandem repeat arrays are desirable since tandem repeat 

arrays with lower copy numbers are likely to be less variable.  As a result, fewer VNTR 

loci within non-O157 STEC strains were easily identifiable as candidates for MLVA as 

compared to those in STEC O157:H7 strains.  The number of tandem repeats having 
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higher copy numbers among the non-O157 STEC strains was more similar to those found 

in 2 strains of generic E. coli K-12, which has an approximately 800 Kb smaller genome.  

A total of 12 VNTR loci, exhibiting differing levels of diversity among the genomic 

sequences of the 3 non-O157 STEC strains, were selected for further evaluation and 

characterization of their diversity among the big 6 non-O157 STEC serogroups (Table 4). 

 

Characteristics of selected VNTR loci 

 Since the majority of bacterial genomes code for proteins, it was expected that 

most VNTR arrays would be located within genes.  Of the 12 selected VNTR loci 

evaluated, 10 are located on the bacterial chromosome and 2 on plasmids.  According to 

BLAST searches against the NCBI database, all chromosomal VNTR loci are located 

within sequences coding for known or putative proteins but the plasmid located VNTR 

loci had no known functions (Table 4).  Of special interest was SVL-6, which had 

flanking sequences very similar to a stx2 converting phage, stx2 being one of the major 

virulence factors of STEC.  In addition to being located within genes, VNTR loci would 

also be expected to occur in multiples of 3 so that the reading frame is not disrupted.  It 

has been previously noted that a preponderance of 6 nt repeats exist throughout STEC 

O157:H7 genomes (Keys et al., 2005).  Additionally, it was hypothesized that tandem 

repeats that do not disrupt the open reading frame and are multiples of 3 are more likely 

to be of random origin than those that are not, resulting in more diversity.  Accordingly, 

most of the selected loci were 6 nt in length or multiples of 3 (Table 4).  Three of the 12 

selected loci contained tandem repeats that were not multiples of 3 to see if less intra-

serogroup diversity was observed in those cases.  
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Evaluation of selected VNTR loci and optimization of multiplex PCR 

 Initial screening of the 12 selected VNTR loci and VNTR-specific primer sets 

was done with 24 isolates from the non-O157 STEC reference set (Table 1).  All primer 

sets, except SVL-11, allowed amplification of the target VNTR loci in at least 4 of the 6 

non-O157 STEC serogroups.  All loci were polymorphic, ranging from 2 to 11 alleles per 

locus (Table 6) and no 2 isolates of different serogroups had the same MLVA type.  

Compared to previous MLVA studies (Hyytia-Trees et al., 2006; Lindstedt et al., 2004; 

Boxrud et al., 2007), a relatively high number of null alleles, a result of VNTR locus and 

flanking sequence absence or polymorphism at priming sites, were observed in 

serogroups O145, O45, and O121.  This result was logical since only one strain each 

from serogroups O103, O111, and O26 were available for multiple sequence alignment 

during primer design.  Nucleotide variations in priming sites may not have allowed 

optimal PCR amplification of serogroups O145, O45, and O121 at some loci. Yet, null 

alleles are still treated as alleles and can aid discrimination, particularly for inter-

serogroup discrimination.  Based on the ranges of band sizes in agarose gels for each of 

the 12 loci, 3 multiplex PCR reactions with fluorescently labeled forward PCR primers 

were tested and optimized for fragment analysis.  Reaction 1 contained primer sets SVL-

1, SVL-3, SVL-4, and SVL-8, reaction 2 contained primer sets SVL-2, SVL-6, SVL-10, 

and SVL-12, and reaction 3 contained primer sets SVL-5, SVL-7, SVL-9, and SVL-11.  

Optimization of peak heights in fragment analysis was accomplished by adjusting the 

concentrations of PCR primers in multiplex reactions. 



94 

 

 The usefulness of the selected VNTR loci for MLVA typing of multiple 

serogroups of non-O157 STEC was further tested using 10 isolates from each of the ‘big 

6’ serogroups that were obtained from CDC and consisted of epidemiologically related 

outbreak cases as well as non-epidemiologically related sporadic cases (Table 2).  It was 

expected that less discrimination would be possible among the closely related outbreak 

associated isolates than among the sporadic isolates.  A similar level of diversity was 

observed for each of the 12 loci when comparing both sets of isolates (Table 6).  A 

moderate to high diversity index was observed for most of the selected loci.  Among all 

84 non-O157 STEC isolates, SVL-3 had the highest diversity index, followed by SVL-6 

and SVL-8.  SVL-1 was the most polymorphic locus with 18 different alleles (Table 7).  

However, SVL-1 had only a moderate diversity index (59.8) due to the lack of 

amplification of the locus in serogroups O121, O45, and O145.  Loci SVL-6, SVL-3, and 

SVL-2 also exhibited high levels of polymorphism with 15, 13, and 9 alleles, respectively 

(Table 7).  Only loci SVL-7, SVL-9, and SVL-11 had relatively low diversity indices at 

47.6, 17.4, and 32.0, respectively (Table 7).  Locus SVL-7 had the largest allelic range 

(1-38 tandem repeats) within serogroup O145 but had a low overall diversity.  Locus 

SVL-9 had the lowest overall level of diversity and aided in discrimination only within 

serogroup O121.  Locus SVL-11 was highly polymorphic only within serogroup O111, as 

was expected since this locus is plasmid located.   

 Several loci exhibited little or no intra-serogroup diversity but had distinct inter-

serogroup diversity, helping discriminate between serogroups (Table 7).  For example, 

locus SVL-4 contained 12 tandem repeats in all 14 O26 isolates, 9 tandem repeats in 13 

of 14 O111 isolates, and 10 tandem repeats in 13 of 14 O121 isolates.  Among the 
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individual serogroups, the characteristics of the 12 loci varied considerably and it may be 

possible to tailor the MLVA method for each serogroup by retaining the most diverse loci 

and discarding the least diverse.  However, when typing all 6 serogroups simultaneously, 

discarding any of the 12 loci, except SVL-9, decreased the inter-serogroup discriminatory 

capability. 

 O26.  The highest level of discriminatory capability was achieved in serogroup 

O26.  All 14 isolates tested exhibited a unique MLVA type that differed from all other 

O26 isolates by 1 or more tandem repeats at 2 or more loci.  Twelve different alleles were 

observed in locus SVL-1 alone.  This high level of discrimination was achieved with just 

4 loci (Table 7).  Omitting all loci except SVL-1, SVL-2, SVL-3, and SVL-6 had no 

effect on the discriminatory capability.  Therefore, a STEC O26-specific MLVA assay 

may be possible when loci SVL-1, SVL-2, SVL-3, and SVL-6 are targeted.  Additionally, 

these 4 loci can be combined in a single multiplex PCR reaction using the existing 

fluorescent labels with no fragment overlap with the same label. 

 O111.  Serogroup O111 had a low percentage of null alleles and the highest 

diversity indices, even though little or no diversity was observed in 7 loci (SVL-4, SVL-

5, SVL-7, SVL-8, SVL-9, SVL-10, and SVL-12) and omitting these 7 loci had little 

effect on discrimination.  The remaining 5 loci had a relatively high level of diversity, 

ranging from 74.7 to 90.1 (Table 7).  A total of 11 unique O111 MLVA types were 

observed, with two groups of identical MLVA types.  Isolates K6807, K6808, K6809, 

and K7091 were all from a single cluster of illnesses isolated in Oklahoma.  Isolates 

K6807, K6809, and K7091 were indistinguishable by MLVA, but isolate K6808 had null 

alleles at loci SVL-11 and SVL-12.  It is expected that among closely related isolates 
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MLVA types would differ by only a few tandem repeats at 1 or 2 loci, not by the absence 

of the entire VNTR region.  It is more likely that a polymorphism within one or both of 

the priming sites at each locus accounted for the null alleles in isolate K6808.  The 

second group of identical O111 MLVA types occurred between 2 isolates from an 

outbreak occurring in a Colorado prison. 

 O103.  Serogroup O103 exhibited only moderate diversity.  Only locus SVL-3 

had a high diversity index at 87.5.  Only loci SVL-3, SVL-4, SVL-5, and SVL-12 were 

required to provide the observed level of discrimination (Table 7).  Three pairs of 

identical MLVA types were observed among 11 unique MLVA types for the 14 O103 

isolates tested.  The first pair of identical isolates, PT91-24 and TB154A, were from the 

non-O157 reference set from the STEC Center and both were isolated from Washington.  

However, the two strains were isolated a year apart and were of different serotypes 

(different H antigens).  As a result, it is unlikely that an epidemiological connection 

existed.  Isolates K3530-1 and K3529-1, isolated in association with goats in Nebraska, 

were indistinguishable by MLVA.  The third pair of O103 isolates identical by MLVA, 

2010C-3251 and 2010C-3219, both were isolated from Iowa and an epidemiological 

connection cannot necessarily be ruled out from the data provided by CDC. 

 O121.  Only 3 loci exhibited moderate to high diversity in serogroup O121.  Only 

SVL-3, SVL-6, and SVL-9 were needed to provide the observed level of discrimination 

(Table 7).  Twelve unique MLVA types were observed among the 14 O121 isolates.  One 

group of 3 isolates (K5313, K5316, and K5323) were indistinguishable by MLVA.  All 3 

strains were isolated from patients in Colorado and an epidemiological connection cannot 

be ruled out by the data provided by CDC. 
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 O45.  Low levels of diversity were observed for the 12 selected loci with 

serogroup O45.  No PCR amplification of loci SVL-1, SVL-2, SVL-6, and SVL-11 

occurred and although amplification was possible for loci SVL-7, SVL-8, SVL-9, SVL-

10 and SVL-12, no allelic variation was observed (Table 7).  Among the 14 isolates 

tested, 9 unique MLVA types were observed with 2 groups of identical MLVA types.  

The first group consisted of isolates K3472, 3095-04, and MI05-14, isolated from North 

Carolina, Maine, and Michigan, respectively.  The second group consisted of isolates 

3506-04, 3093-04, MI01-88, and DA-21, isolated from Michigan, Maine, Michigan, and 

Florida, respectively.  No epidemiological connection is likely for each of these two 

groups. 

 O145.  Low diversity indices were observed also for all 12 loci with serogroup 

O145.  PCR amplification was not possible at locus SVL-11, and little or no diversity 

was observed for loci SVL-4, SVL-5, SVL-8, SVL-9, SVL-10, and SVL-12 (Table 7).  

Of 14 isolates tested, 8 MLVA types were observed with 2 groups of identical MLVA 

types.  Isolates 4865/96 and GS-G5578620, isolated in Germany and Nebraska, 

respectively, were of different serotypes and had no logical epidemiological connection.  

The second group of identical O145 MLVA types consisted of isolates 2010C-3513, 

2010C-3515, 2010C-3507, 2010C-3508, and 2010C-3526c1 and were all isolated from 

Michigan and Ohio and associated with a single cluster of illnesses. 

 

Comparison with generic E. coli, EPEC, and STEC O157 

 Five STEC O157:H7 strains (C7927, EO144, F4546, K3995, and SEA-13B88), 2 

EPEC strains (O119 and O55), and 1 strain of generic E. coli K-12 were MLVA typed 
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with the selected loci and compared to the MLVA types of the 24-isolate non-O157 

STEC reference set (Table 3).  All 8 strains exhibited unique MLVA types with low to 

moderate diversity indices, when amplification was possible (data not shown).  Among 

the 5 O157:H7 isolates, no PCR amplification was possible for loci SVL-10 and SVL-12.  

Among the 2 EPEC isolates and K-12 strain, no PCR amplification was possible at loci 

SVL-1, SVL-2, SVL-6, SVL-10, SVL-5, and SVL-7.  The same tandem repeat number 

was observed in all 8 isolates for locus SVL-9, located within a gene coding for a 

chaperonin protein.  SVL-9 was also present in all 84 non-O157 STEC isolates and had 

the lowest diversity index of all loci.  A minimum spanning tree of the 32 isolates used in 

this comparison grouped STEC O157:H7 isolates in a separate cluster (Figure 1).   

 

Correlation of MLVA data with PFGE data for 36 CDC isolates 

 Twenty one unique MLVA types were observed among the 24-isolate non-O157 

STEC reference set.  Since each of the 4 isolates from the 6 serogroups were not 

epidemiologically related and original isolations were separated temporally, spatially, and 

sometimes by serotype, it was expected that each isolate would produce a unique MLVA 

type.  However, 3 pairs of isolates were indistinguishable by MLVA—isolates MI01-88 

and DA-2 (O45), TB154A and PT91-24 (O103), and 4865/96 and GS-G5578620 (O145).  

Interestingly, each pair of isolates was composed of different serotypes.  Unfortunately, 

PFGE data is not available for the 24-isolate non-O157 STEC reference set from the 

STEC Center and comparison of MLVA data with PFGE data for these isolates was not 

possible.   
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 A total of 65 unique MLVA types were identified among the 84 non-O157 STEC 

isolates tested.  For the most part, serogroups clustered together in a minimum spanning 

tree (Figure 2) and by UPGMA (Figure 3).  All serogroups differed from each other by 1 

or more tandem repeats at 3 or more loci, except for among O103, O45, and one isolate 

of O111 (Figure 2).  A similar or slightly better level of discrimination was observed 

when typing the isolates in this study by MLVA and PFGE, according to the information 

provided by CDC.  For serogroup O26, the developed MLVA method was able to 

discriminate among two isolates (2009EL1049 and K5537) that had an identical XbaI 

PFGE pattern.  MLVA types for serogroups O121 and O103 were in accordance with the 

PFGE data provided—two O103 isolates indistinguishable by MLVA were also 

indistinguishable by PFGE with XbaI and BlnI.  In serogroup O111, 2 outbreak 

associated isolates (2010EL-1239 and 2010EL-1240) were distinguishable by PFGE with 

XbaI but not with BlnI or MLVA.  Another group of outbreak associated isolates in 

serogroup O111, composed of 4 isolates (K6807, K6808, K6809, and K7091), were 

indistinguishable by PFGE with BlnI, but one isolate (K7091) had a different Xbal 

pattern.  However, MLVA types for isolates K7091, K6807, and K6808 were 

indistinguishable and K6809 had a different MLVA type.  In serogroups O145 and O45, 

a lower level of discrimination was possible than with PFGE.  Two identical O45 isolates 

by MLVA had different PFGE patterns and 6 identical O145 isolates by MLVA had 4 

different XbaI patterns and 3 different BlnI patterns. 
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DISCUSSION 

 In this study, a MLVA assay was developed for strain discrimination among the 6 

most commonly isolated serogroups of non-O157 STEC.  The assay was designed based 

on 12 VNTR loci and validated by fingerprinting a collection of 84 strains of the big 6 

serogroups of non-O157 STEC.  A total of 65 unique MLVA types were observed among 

84 non-O157 STEC isolates (14 from each serogroup).  The MLVA results clustered the 

epidemiologically related isolates together and differentiated the nonrelated isolates, also 

providing a discriminatory power similar to slightly better than that of PFGE.  

Discrimination by MLVA was greater in serogroup O26, similar in serogroups O103, 

O121, and O111, and decreased in serogroups O45 and O145 when compared to PFGE.  

The developed MLVA method was simple, rapid, and reproducible with easy-to-interpret 

and portable results.  Closely mimicking the current CDC protocols for MLVA, the 

developed method should be easy to standardize, facilitating data exchange.  Non-O157 

STEC, as emerging pathogens, are being isolated more frequently in association with 

human illness (Johnson et al., 2006; Coombes et al., 2008), and a rapid and highly 

discriminatory subtyping technique, such as the MLVA method developed in this study, 

would be valuable to augment PFGE in outbreak investigations. 

 Since multiple serogroups were targeted in this study, potentially highly diverse 

VNTR loci were chosen to aid in intra-serogroup discrimination and potentially less 

diverse VNTR loci were chosen to aid in inter-serogroup discrimination.  All 

chromosomally located VNTR loci were contained within DNA sequences coding for 

known or putative proteins (Table 4).  Tandem repeat arrays that are located within genes 

and have repeat lengths in multiples of 3, therefore not altering the open reading frame, 
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are likely to be more conserved than those located outside of gene sequences (Keys et al., 

2005).  We speculate that while the number of tandem repeats may be highly variable 

within genes, the tandem repeat array and flanking sequences within genes are likely to 

be present in most serogroups and this feature was an important consideration when 

selecting VNTR loci in this study.  Three of the selected VNTR loci (SVL-7, SVL-8, and 

SVL-10) contained tandem repeats that were not multiples of 3.  It was expected that a 

lower level of diversity would be observed with these loci.  As expected, the 3 loci 

exhibited a low to moderate intra-serogroup diversity but a moderate to high inter-

serogroup diversity.  The rate of tandem repeat loss or addition among tandem repeat 

lengths that are not multiples of 3 is likely less frequent and helped discriminate among 

serogroups in this study.  The locus having the lowest overall diversity index (SVL-9) 

had a tandem repeat length of 9 and was located within a gene coding for a chaperonin 

protein, suggesting that less tandem repeat variation may be favored within more 

conserved genes coding for proteins that have critical structure and function.  Two of the 

selected VNTR loci were plasmid located to allow for evaluation of the diversity among 

multiple serogroups.  Locus SVL-12 was amplified by PCR in all non-O157 STEC 

serogroups except O145 and both EPEC strains, but was not amplified in O157:H7 or E. 

coli K-12, and only a moderate level of diversity was observed.  PCR amplification of 

locus SVL-11, on the other hand, was possible only in serogroup O111 and one isolate of 

O103.  SVL-11 was highly diverse among O111 and was useful in strain discrimination 

among this serogroup.  VNTR loci located on plasmids, if present, may serve as useful 

serogroup identifiers when multiple serogroups are targeted in a single MLVA assay. 
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 The genomic locations of loci SVL-6 were of special interest.  Based on a BLAST 

search against the NCBI database, SVL-6 was located within a gene sharing high 

homology to a stx2 converting phage (Smith et al., 2012).  Stx2 is one of the major 

virulence factors of STEC and is frequently associated with the development of HUS 

(Nataro and Kaper, 1998).  It is believed that the stx2 gene can be acquired by STEC 

following contact with stx2 converting phages and subsequent incorporation of the 

sequence into previously non-pathogenic or less pathogenic E. coli genomes (Scheutz et 

al., 2011).  As expected,  SVL-6-specific PCR primers were able to generate amplicons 

in serogroups O157, O26, O111, O103, O121, and O145—the serogroups most 

commonly associated with Shiga toxin production—but not in 2 EPEC strains or in E. 

coli K-12.  A recent major outbreak of human illness was caused by an EAEC strain that 

acquired the stx2 gene, giving it an increased level of virulence (Scheutz et al., 2011).  

Non-O157 STEC are difficult to distinguish from non-pathogenic E. coli by cultural 

methods and detection of non-O157 STEC in the clinical setting is often a challenge 

(Werber et al., 2008).  Candidate non-O157 STEC colonies are often selected for PCR-

based detection of virulence genes prior to serological confirmation.  By including a 

VNTR region within a gene having high homology to an stx2 converting phage in a non-

O157 STEC MLVA assay, it may be possible to identify isolates with the potential to 

express Stx2, further validating an isolate as non-O157 STEC even before serological or 

biotyping data may be available.  While MLVA methods specifically targeting virulence 

genes have been developed for other bacterial pathogens, more VNTR loci located within 

virulence associated genes may be especially useful for non-O157 STEC.  Additionally, 



103 

 

SVL-6 exhibited a high level of overall diversity among the 84 non-O157 STEC isolates 

tested. 

 A total of 65 unique MLVA types were observed among 84 non-O157 STEC 

isolates (14 isolates from each serogroup), all of which were clinical isolates associated 

with outbreaks or sporadic cases.  All serogroups had distinctly different MLVA types 

that differed by at least 3 loci, except for a few isolates of O103 and O45, which differed 

by one locus (Figure 2).  For the most part, serogroups clustered together in a minimum 

spanning tree and most identical MLVA types were composed of epidemiologically 

related isolates.  Less serogroup clustering was observed in the dendrogram by UPGMA 

(Figure 3), which was expected since MLVA is not well suited for evolutionary or 

phylogenetic studies (Lindstedt et al., 2007), especially when multiple serogroups are 

evaluated.  Genome-wide subtyping methods that are based on genetic changes that occur 

more slowly, such as PFGE, MLST, and multi-locus enzyme electrophoresis (MLEE), 

are better suited for studies of evolutionary relatedness.  The MLVA assay developed in 

this study was successful in that it allowed inter- and intra-serogroup discrimination of 6 

serogroups of non-O157 STEC. 

 The developed MLVA assay was more useful in fingerprinting some serogroups 

than others.  High discriminatory power was observed for multiple loci in serogroups 

O26 and O111, and moderate to high discriminatory power for serogroups O103 and 

O121. The Simpson’s diversity indices for these serogroups were comparable to other 

MLVA assays that have been proven to be useful in outbreak investigations, providing 

higher strain discrimination than with PFGE alone (Hyytia-Trees et al., 2006; Lindstedt 

et al., 2004; Boxrud et al., 2007).  Among serogroups O26, O111, O103, and O121, only 
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one pair of identical MLVA types (PT91-24 and TB154A) had no logical 

epidemiological connection.  Most of the discriminatory power for these serogroups was 

provided by only 4 to 5 loci and development of a MLVA assay with 1 multiplex PCR 

reaction for serogroups O26, O111, and O111 may be possible with VNTR loci SVL-1, 

SVL-2, SVL-3, and SVL-6.  A lower level of diversity was observed with the selected 

loci among serogroups O145 and O45.  Several groups of identical MLVA types were 

identified among serogroups O145 and O45 composed of isolates that had no 

epidemiological connection, suggesting that the VNTR loci selected in this study may not 

be well suited for epidemiological investigation of serogroups O145 and O45.  These 

results were expected since the only genomic sequences available for evaluation and 

selection of candidate VNTR loci were strains of serogroups O26, O111, and O103.  A 

high percentage of null alleles were observed when MLVA typing serogroups O121, 

O45, and O145, due to absence of the VNTR loci or sub-optimal PCR primer binding.  

The major limiting factor for developing a more discriminatory method is the lack of 

available non-O157 STEC genomes for analysis.  In silico comparison of multiple closely 

related strains would allow selection of the most polymorphic VNTR loci for the 

development of optimal MLVA assays.  More non-O157 STEC genomes may be 

available soon as a result of the 100 K Genome Project, a collaborative effort between 

government, academia, and industry to sequence 100,000 human pathogenic foodborne 

bacteria. 

 Comparison of the MLVA assay designed for non-O157 STEC with 5 STEC 

O157:H7 isolates, 2 EPEC isolates, and 1 isolate of generic E. coli K-12 revealed that the 

MLVA method developed in this study is not very useful for typing these groups of E. 
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coli. While 8 unique MLVA types were observed for the 8 isolates, PCR amplification 

was not possible for many of the loci and several non-specific fragments were observed 

for loci SVL-8, SVL-5, and SVL-7 when amplification was possible.  The same tandem 

repeat number was observed in all 8 isolates for locus SVL-9, located within a gene 

coding for a chaperonin protein.  Additionally, SVL-9 as present in all 84 non-O157 

STEC isolates tested and had the lowest overall diversity index of all 12 loci (Table 7).  

This gene and protein may be well conserved throughout E. coli and may serve as a 

useful identifier if unknown isolates are typed by the developed MLVA assay.  Only E. 

coli and Shigella had high alignment scores in a BLAST search against the NCBI 

database with the SVL-9 flanking sequences. 

 In conclusion, the MLVA method for the 6 major non-O157 STEC serogroups 

developed in this study provided an expected level of inter- and intra-serogroup strain 

discrimination, given that only genome sequences of O26, O111, and O103 were 

available during assay development.  Several highly diverse loci were identified that 

aided in discrimination of clinical non-O157 STEC isolates.  Subsets of the 12 selected 

loci may be individually tailored for each serogroup to provide a high level of intra-

serogroup discrimination.  However, a majority of the selected loci are needed for a 

highly discriminatory inter-serogroup MLVA assay.  Until more genome sequences are 

available for comparison, a higher overall level of discrimination may not be possible.  

Further validation of the developed method with more isolates from outbreak and 

sporadic cases is needed and should be compared to PFGE data for all isolates to gain a 

more complete understanding of the usefulness of this method for intra- and inter-

serogroup discrimination of epidemiologically related non-O157 STEC isolates. 
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TABLES 

 

Table 1.  The 24 strains in the non-O157 STEC reference set.* 

O H Host Isolation Location 
Isolation 

Date 
Clinical Manifestation 

26 11 Human 
Australia 

(Brisbane) 
1986 Diarrhea (bloody, acute) 

26 11 Human (F, 2y) USA (Idaho) 1997 HUS (expired) 
26  Human USA (Mont.) 1999-2000  

26 N 
Human (child, 

6y) 
USA (Wash.) 1991 Diarrhea (chronic) 

45 2 Human (M, 45y) USA (Mich.) 2003  
45 2 Human (F, 38y) USA (Mich.) 2001  
45 2 Human (M, 12y) USA (Mich.) 2006  
45 NM Human (F, 77y) USA (Fla.) 1999 Diarrhea (bloody) 

103 2 Human USA (Mont.) 1999-2000  
103 6 Human USA (Wash.) 1991 Diarrhea  
103 25 Human (F, 3y) USA (Idaho)   
103 N Human USA (Wash.) 1990  
111 2 Human (child) France 1992 HUS (outbreak) 
111 8 Human (F, 18y) USA (TX) 1999 HC (outbreak) 
111 11 Human USA (Conn.) 2003  
111 NM Human (M, 67y) USA (Neb.) 1985  
121 19 Human (F, 51y) USA (Mich.) 2000  
121 19 Human USA (Mont.) 1998  
121  Human USA (Mont.) 1999-2000  
121 [19] Human (F, 51y) USA (Mass.) 1998 Diarrhea (bloody) 
145 16 Human Canada 1987 HC (HUS) 
145 [28] Human Germany 1996 HUS 
145 NM Human USA (Neb.) 1998  Diarrhea  
145 NT Human Uruguay   

*Information provided by the STEC Center of Michigan State University 
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Table 2.  60 non-O157 STEC isolates from CDC.  

Serogroup Isolate Serotype 
Isolation 

Location 

Epidemiological 

Information 
XbaI Pattern BlnI pattern 

O145 

2010C-3517 O145:NM MI cluster 1004MIENM-1 ENMX01.0025 ENMA26.0018 

2010C-3515 O145:NM MI cluster 1004MIENM-1 ENMX01.0016 ENMA26.0017 

2010C-3507 O145:NM OH cluster 1004MIENM-1 ENMX01.0016 ENMA26.0017 

2010C-3508 O145:NM OH cluster 1004MIENM-1 ENMX01.0016 ENMA26.0017 

2010C-3526c1 O145:NM MI cluster 1004MIENM-1 ENMX01.0043 ENMA26.0018 

K6208 O145:NM ND STEC Broth   

2011EL-1210 O145:NM FL STEC Broth   

3060-04 O145:NM UT STEC Broth ENMX01.0003  

2010C-3513 O145:NM MI STEC Broth ENMX01.0113 ENMA26.0078 

K2387 O145:NM MD STEC Broth ENMX01.0030  

   
    

O111 

K6807 O111:NM OK 0808OKEXD-1 EXDX01.0050 EXDA26.0174 

K6808 O111:NM OK 0808OKEXD-1 EXDX01.0050 EXDA26.0174 

K6809 O111:NM OK 0808OKEXD-1 EXDX01.0050 EXDA26.0174 

K7091 CHROM 1 O111:H8 OK 0808OKEXD-1 EXDX01.0188 EXDA26.0174 

K5652 SMAC 11 O111:NM IN STEC Broth   

2009EL1340  O111:NM FL STEC Broth   

2010EL-1239 O111:NM CO 1005COEXD-1 EXDX01.0123 EXDA26.0077 

2010EL-1240 O111:NM CO 1005COEXD-1 EXDX01.0130 EXDA26.0077 

2010EL-2219 O111:H8 FL STEC Broth   

2010EL-2231 O111:H8 FL STEC Broth   

   
    

O26 

2009EL1049 O26:H11 OK STEC Broth EVCX01.0018  

2011EL-1012 O26:H9 IN STEC Broth   

2011EL-1138 O26:H11 AK STEC Broth   

2010EL-1372 O26:NM WA Daycare OB   

2009EL-1480 O26:H11 FL STEC Broth EVCX01.0676  

2011EL-1233 O26:H11 NV STEC Broth   

2010EL-2220 O26:H11 FL STEC Broth   

K3621 O26:H11 CO STEC Broth   

K3651 O26:H11 NC STEC Broth   

K5537 O26:H11 MO STEC Broth EVCX01.0018 EVCA26.0218 

   
    

O45 

05-3031 O45:H2 UT STEC Broth EH2X01.0133  

03-3300 O45:H2 MO STEC Broth EH2X01.0002  

K3472 O45:H2 NC STEC Broth   

K3523 O45:H2 FL STEC Broth   

3506-04 O45:H2 MI STEC Broth EH2X01.0005  

3001-04 O45:H2 MO STEC Broth EH2X01.0008  

3065-04 O45:H2 WI STEC Broth EH2X01.0013  

3093-04 O45:H2 MA STEC Broth EH2X01.0014  
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3095-04 O45:H2 MA STEC Broth EH2X01.0016  

3105-04 O45:H2 MI STEC Broth EH2X01.0017  

    
  

O103 

2009EL1342  O103:NM FL STEC Broth EXWX01.0537  

2009EL1295  O103:H2 IN STEC Broth EXWX01.0540  

3546-05 O103:H25 VA STEC Broth EXWX01.0146  

3409-05 O103:H25 VA STEC Broth EXWX01.0145  

K3530-1 O103:H2 NE Goat   

K3529-1 O103:H2 NE Goat   

K3435 O103:H2 MO STEC Broth   

2010C-3251 O103:H2 IA STEC Broth   

2010C-3219 O103:H2 IA STEC Broth   

2009EL-1899 O103:H2 FL STEC Broth   

   
    

O121 

K5363 O121:H19 CT STEC Broth   

K5316 O121:H19 CO STEC Broth   

K5313 O121:H19 CO 0707COEXK-1 EXKX01.0001 EXKA26.0001 

K5223 O121:H19 CO 0707COEXK-1 EXKX01.0001 EXKA26.0001 

K3673 O121:H19 FL STEC Broth   

K3663 O121:H19 CO STEC Broth EXKX01.0013 EXKA26.0002 

K2126 O121:H19 VT STEC Broth EXKX01.0041  

3294-06 O121:H19 WY STEC Broth EXKX01.0005 EXKA26.0001 

3326-06 O121:H19 NY STEC Broth EXKX01.0048 EXKA26.0002 

K2225 O121:H19 FL STEC Broth EXKX01.0044  

 

 

Table 3.  E. coli isolates used for comparison. 

E. coli Group Strain Epidemiological Information 

STEC 
O157:H7 

K3995 Spinach outbreak isolate 
C7927 Apple cider outbreak isolate 
F4546 Sprout-related outbreak isolate 
EO144 Meat isolate 
SEA-13B88 Clinical isolate from unpasteurized 

apple juice 
   

EPEC 
O119:H6  
O55:H6  

   
Generic K-12  
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Table 4.  Characteristics of the 12 VNTR loci used in this study. 

Locus 

name 

Repeat 

length (bp) 

Location in 

O111:H-    

(5’ end) 

Primers (5’-3’) 
Primer 

Tm (°C) 

Offset size 

in O111:H- 

(bp) 

Primer 

Concentraion 

(µM) 

Function 

SVL-1 6 250070 
F:  6FAM-ACCCAGCCATTTCGTCAG 
R:  ACGCAGATACCGTGGAG 

59.63 
61.65 

251 0.05 
Putative ATP-dependent Clp 
proteinase ATP-binding chain 

SVL-2 6 2913106 
F:  PET-ACGCAGATACCGTGGAG 
R: TCAGGAATGTGGTGGTCTGTT 

60.87 
60.42 

244 0.05 Hypothetical protein 

SVL-3 6 4662685 
F:  VIC-TGGCAAACAGCACTACCATC 
R:  GGACCAGTTAAGCCAGCAAA 

59.72 
60.25 

248 0.04 
Predicted protoheme IX synthesis 
protein HemY,  Predicted 
uroporphyrinogen III methylase 

SVL-4 15 810131a F:  PET-GGAAGAAGCAGCGAAGAAAG 
R:  CATCGGGTGCCAGTTTTATG 

59.34 
61.27 

270a 0.06 
Membrane anchored protein TolA in 
TolA-TolQ-TolR complex 

SVL-5 6 3051096a F:  VIC-GTCGTCTGTGGGATGCTCAA 
R:  CAGCAATAACAGCAGGACGA 

62.27 
60.01 

156a 0.05 
Hydrogenase 4, Membrane subunit 
HyfF 

SVL-6 9 2922513a F:  6FAM-GCAAGGGAAGTGGACAAA 
R:  CTCCCATCGTTTCTGTTTCC 

57.10 
59.53 

110a 0.07 
Putative adenine methylase, Putative 
integrase, stx2 converting phage 

SVL-7 8 774775 
F:  6FAM-CCTGGAAGCAGACAAATAACC 
R:  GGACAATGCTACCGCCATAC 

58.71 
60.36 

88 0.05 RhsC core protein with extension 

SVL-8 13 1865598 
F:  NED-TACAGAGCGCGAGAAACAGA 
R:  CCTGCCACCATCTCTTCAC 

59.89 
57.89 

102 0.06 
RhsE, IS677, Putative H repeat-
associated protein 

SVL-9 9 5160787 
F:  PET-CGTCGTCCGTGTCTGAATCT 
R:  CAACCGAAGAATACGGCAAC 

61.28 
60.50 

270 0.05 Chaperonin Cpn60 

SVL-10 7 3346927 
F:  VIC-TTTGATGCAATGGTGGAGTG 
R:  CACAAAGTGAGAGTCCGAAAA 

60.52 
57.99 

166 0.05 Putative integrase 

SVL-11 6b 35162b F:  NED-ATTCTGCTGTGGGCTTCTGT 
R:  AATCAGAGCGGCAGGAAAA 

59.87 
60.87 

90b 0.05 Plasmid located, no known function 

SVL-12 9c 52289c F:  NED-CCGCAAGGGAAGCAGAAG 
R:  TGCTGTTCCATCTCTTCTTCC 

62.02 
59.42 

197c 0.04 Plasmid located, no known function 

aLocation or estimated amplicon size in E. coli O103:H2 strain 12009 (NC_013353.1) 
bLocation or estimated amplicon size in E. coli O111:H- str. 11128 plasmid pO111_3 (NC_013366.1) 
cLocation or estimated amplicon size in E. coli O26:H11 strain 11368 plasmid po26_2 (NC_013362.1) 
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Table 5.  Comparison of genome size, number of reported tandem repeat arrays, and number of tandem repeat arrays with copy numbers greater 
than 5.0, according to Tandem Repeats Finder software, for 4 STEC O157:H7, 3 non-O157 STEC, and 2 E. coli K-12 strains. 

E. coli strain 
GenBank 

accession number 

Genome size 

(bp) 

Total number of 

tandem repeatsa 

Number of 

tandem repeats 

with copy 

number ≥ 5.0 

O157:H7 EC4115 NC_011353.1 5572075 302 20 

O157:H7 TW14359 NC_013008.1 5528136 296 25 

O157:H7 EDL933 NC_002655.2 5528445 285 23 

O157:H7 Sakai NC_002695.1 5498450 285 21 

     
O111:H- 11128 NC_013364.1 5371077 242 9 

O26:H11 11368 NC_013361.1 5697240 261 12 

O103:H2 12009 NC_013353.1 5449314 339 9 

     
K-12 DH10B NC_010473.1 4686137 175 7 

K-12 W3110 NC_007779.1 4646332 167 9 
a As reported by Tandem Repeats Finder software with custom parameter settings. 
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Table 6.  Comparison of VNTR loci characteristics between 60 clinical non-O157 STEC isolates and 24 isolates of a non-O157 STEC reference 
set. 

60 non-O157 STEC from CDC 

 R1  R2  R3 

 SVL-1 SVL-3 SVL-4 SVL-8 
 

SVL-2 SVL-6 SVL-10 SVL-12 
 

SVL-5 SVL-7 SVL-9 SVL-11 

Fragment range (nt) 303-444 276-365 387-452 155-209 
 

259-295 124-305 175-282 210-289 
 

169-210 98-392 306-315 105-160 

No. of alleles  14 11 5 5 
 

7 10 5 4 
 

7 4 2 8 

Null alleles (%) 63.3 0 6.6 18.3 
 

51.6 45.0 33.3 55.0 
 

1.6 1.6 0 80.0 

Allelic range 9-32 5-20 8-12 4-8 
 

3-9 2-22 1-16 2-10 
 

2-9 1-38 4-5 3-14 

Diversity index 59.4 89.5 63.6 69.4 
 

67.5 77.7 53.6 53.2 
 

53.4 51.4 15.5 35.6 

               

24 non-O157 STEC from MSU 

 R1  R2  R3 

 SVL-1 SVL-3 SVL-4 SVL-8 
 

SVL-2 SVL-6 SVL-10 SVL-12 
 

SVL-5 SVL-7 SVL-9 SVL-11 

Fragment range (nt) 309-400 270-371 418-452 155-259 
 

253-283 133-305 175-181 211-307 
 

169-186 98-106 306-315 147-153 

No. of alleles 10 10 3 4 
 

7 11 3 5 
 

5 3 2 3 

Null alleles (%) 62.5 0 0 29.2 
 

58.3 54.2 37.5 45.8 
 

4.2 8.3 0 87.5 

Allelic range 10-25 4-21 9-12 4-12 
 

2-9 3-23 1-2 2-12 
 

2-5 1-2 4-5 10-11 

Diversity index 62.0 86.6 47.5 69.9 
 

64.9 71.4 54.0 63.8 
 

54.3 36.6 22.8 23.6 
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Table 7.  Comparison of VNTR loci characteristics for 6 non-O157 STEC serogroups. 

O26 

 R1 
 

R2 
 

R3 

 SVL-1 SVL-3 SVL-4 SVL-8 
 

SVL-2 SVL-6 SVL-10 SVL-12 
 

SVL-5 SVL-7 SVL-9 SVL-11 

Fragment range 322-444 288-318 451-452 155-156 
 

259-295 124-160 175-176 289 
 

169 -170 97-98 306-307 132 

Number of alleles 12 6 1 1 
 

6 8 1 2 
 

1 1 1 2 

Null alleles (%) 0 0 0 0 
 

7.1 0 0 92.9 
 

0 0 0 92.9 

Allelic range (TR) 12--31 7--12 12 4 
 

3-9 2-6 1 10 
 

2 1 4 7 

Diversity index 97.8 86.8 0 0 
 

83.5 82.4 0 14.3 
 

0 0 0 14.3 

 
              

O111 

 R1 
 

R2 
 

R3 

 SVL-1 SVL-3 SVL-4 SVL-8 
 

SVL-2 SVL-6 SVL-10 SVL-12 
 

SVL-5 SVL-7 SVL-9 SVL-11 

Fragment range 322-365 299-365 407-408 167-168 
 

265-283 124-296 175-182 210-211 
 

169-170 106-107 306-307 135-160 

Number of alleles 7 8 2 2 
 

6 4 3 3 
 

1 2 2 6 

Null alleles (%) 7.1 0 0 7.1 
 

14.3 35.7 7.1 7.1 
 

0 0 0 14.3 

Allelic range 12-25 9-20 9 5 
 

3-6 2-20 1-2 2 
 

2 1-2 4-5 8-12 

Diversity index 84.6 90.1 14.3 14.3 
 

79.1 74.7 47.3 27.5 
 

0 14.3 26.4 74.7 

 
              

O103 

 R1 
 

R2 
 

R3 

 SVL-1 SVL-3 SVL-4 SVL-8 
 

SVL-2 SVL-6 SVL-10 SVL-12 
 

SVL-5 SVL-7 SVL-9 SVL-11 

Fragment range 303-309 282-318 405-452 167-168 
 

265 220 175-176 210-211 
 

135-210 97-98 306-307 105 

Number of alleles 3 6 2 2 
 

3 2 2 2 
 

3 1 1 2 

Null alleles (%) 78.6 0 0 14.3 
 

78.6 85.7 21.4 35.7 
 

14.3 0 0 92.9 

Allelic range 9-10 6-12 8-12 5 
 

4 12 1 2 
 

0--9 1 4 3 

Diversity index 38.5 85.7 36.3 26.4 
 

38.5 26.4 36.3 49.5 
 

38.5 0 0 14.2 
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O121 

 R1 
 

R2 
 

R3 

 SVL-1 SVL-3 SVL-4 SVL-8 
 

SVL-2 SVL-6 SVL-10 SVL-12 
 

SVL-5 SVL-7 SVL-9 SVL-11 

Fragment range 
0 293-353 418-419 208-209 

 
0 124-305 0 255 

 
169.3-
169.5 

98 306-315 132 

Number of alleles 1 6 2 2 
 

1 6 1 2 
 

1 1 2 2 

Null alleles (%) 100 0 0 42 
 

100 7 100 93 
 

0 0 no 93 

Allelic range n/a 6-18 10 8 
 

n/a 2-22 n/a 6 
 

2 1 4-5 7 

Diversity index 0 85.7 14.3 49.5 
 

0 60.4 0 14.3 
 

0 0 52.7 14.3 

 
              

O45 

 R1 
 

R2 
 

R3 

 SVL-1 SVL-3 SVL-4 SVL-8 
 

SVL-2 SVL-6 SVL-10 SVL-12 
 

SVL-5 SVL-7 SVL-9 SVL-11 

Fragment range 0 288-305 387-452 167-168 
 

0 0 175-176 210-211 
 

181-197 97-98 306 0 

Number of alleles 1 4 3 1 
 

1 1 1 2 
 

3 1 1 1 

Null alleles (%) 100 0 14 0 
 

100 100 0 0 
 

0 0 0 100 

Allelic range n/a 6-10 8-12 5 
 

n/a n/a 1 2 
 

4-7 1 4 n/a 

Diversity index 0 57.1 47.3 0 
 

0 0 0 0 
 

58.2 0 0 0 

 
              

O145 

 R1 
 

R2 
 

R3 

 SVL-1 SVL-3 SVL-4 SVL-8 
 

SVL-2 SVL-6 SVL-10 SVL-12 
 

SVL-5 SVL-7 SVL-9 SVL-11 

Fragment range 371 270-317 451-452 155-259 
 

253-277 151-160 278 281-307 
 

169 392 306 0 

Number of alleles 2 5 2 3 
 

4 4 4 3 
 

1 3 1 1 

Null alleles (%) 93 0 93 51 
 

29 yes yes yes 
 

no yes no yes 

Allelic range 20 4-12 12 5-12 
 

2-6 5-6 16 9-12 
 

2 38 4 n/a 

Diversity index 14.3 50.5 14.3 47.3 
 

62.6 67 39.6 27.5 
 

0 56 0 0 
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84 non-O157 STEC 

R1   R2   R3 

SVL-1 SVL-3 SVL-4 SVL-8   SVL-2 SVL-6 SVL-10 SVL-12   SVL-5 SVL-7 SVL-9 SVL-11 

Total fragment range 303-444 270-365 387-452 155-259 253-295 124-305 175-282 210-307 169-210 98-392 306-315 105-160 

Total # of alleles  18 13 5 5 9 15 5 6 7 4 2 8 

Null alleles yes no yes yes yes yes yes yes yes yes no yes 

Allelic range 9-32 4-21 8-12 4-12 2-9 2-23 1-16 2-12 2-9 1-38 4-5 3-14 

Total diversity index 59.8 89.1 59 69.5 67.3 75.9 53.1 55.8 53.1 47.6 17.4 32 
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FIGURES 

 

Figure 1. Minimum spanning tree of MLVA types from 24 non-O157 STEC isolates, 5 STEC O157:H7 
isolates, 2 EPEC (O119 and O55) isolates, and 1 generic E. coli K-12 isolate.  Each circle represents a 
single MLVA type with the size proportional to the number of isolates with that MLVA type.  Numbers 
on branches indicate the number of loci that differ between each MLVA type. 
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Figure 2. Minimum spanning tree of MLVA types from 84 non-O157 STEC isolates.  Each circle 
represents a single MLVA type with the size proportional to the number of isolates with that MLVA type.  
Numbers on branches indicate the number of loci that differ between each MLVA type. 
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Figure 3.  Cluster dendrogram of 84 non-O157 STEC isolates generated by BioNumerics using 
categorical coefficient and UPGMA clustering.
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