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ABSTRACT 

Correlation and regression analysis are widely used in all kinds of data mining 

applications. However many real world data have the characteristic of vagueness; the 

classical data analysis techniques have limitation in managing this vagueness 

systematically. Fuzzy sets theory can be applied to model this kind of data. New concepts 

and methods of correlation and regression analysis for data with uncertainty are presented 

in this dissertation. Recently, fuzzy correlation and regression have been applied to many 

applications. Successful examples include quality control, marketing, image processing, 

robot control, medical diagnosis etc. The purpose of this dissertation is to revisit the 

ongoing research work that people have already done on this issue and to develop some 

new models related to fuzzy data correlation and regression. In this dissertation, we 

define and conceptualize the correlation and regression concepts within the fuzzy context. 

Then the presently available methods are explored in light of their limitations. Then new 

concepts and new models are presented. Throughout this dissertation, a number of test 

data sets are used to verify how our ideas are implemented. Suggestions for further 

research will be provided. 

The first half of the dissertation focuses on the motivation and concept of fuzzy 

correlation. Fuzzy data will be formulated in a mathematical way, and then we will build 

models of two types of fuzzy correlations, their computation methods are also presented 

in this dissertation. For the first type of fuzzy correlation problem we proposed an 

approximate bound as well as a number of computationally efficient algorithms. Monte 

Carlo sampling method is used to compute the second type of fuzzy correlation problem. 

The results provided by the second type of fuzzy correlation are more informative than 



 xvi

the result of the classical correlation. 

In the second part of the dissertation, eight fuzzy regression models are discussed. In 

order to enhance the central tendency and remove outliers which have important impact 

on the regression result, different techniques are used to improve the original model. The 

fuzzy regression method presented in this dissertation also applies to crisp data regression 

cases. Numerical examples are given for all the fuzzy correlation and fuzzy regression 

models we explored in this dissertation for illustration and verification purpose. 

Some application examples are given at the end. Fuzzy regression models could be 

applied in short term stock price prediction. Intel Corp. 2003 stock price data are used in 

this demo.  The Dosage-film response is estimated with a fuzzy regression model, this 

procedure is presented in detail in the last section. It is found that fuzzy regression gives 

more consistent results than the conventional regression model since it successfully 

models the inherent vagueness which exists in the application by formulated form. 

 

 
 
 



 1

 

 

 

 

 

 

 

CHAPTER 1 

 

Introduction 
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Situations arise where the data under consideration consists of pairs of 

measurements. The essential feature of the data is that one observation can be paired 

with another observation for each member of the group, e.g. the input/output 

membership of an unknown system and the model. Studies of this type have two 

closely related aspects, correlation and regression.  

 

1.1 Crisp Data and Fuzzy Data 

Crisp data is also called precise data; it is very common in our everyday life. For 

example, when we say a student’s high school GPA is 3.5, it is a single value without 

any ambiguity. Another example, if a weather station tells us that it is co30 outside for 

the time being, although it is possible there could be some small difference for the 

temperature measurement in different places, we still think it is precise information.  

The traditional science and technology pursuit for certainty in all its manifestations and 

almost all the mathematical theories are developed for handling such kind of data. 

Figure 1.1 shows the definition of crisp data in terms of a membership plot between 

a linguistic variable and the independent variable. If the weather can be categorized of 

cold, warm and hot, then it is possible to say that when temperature is below co15 , it is 

cold, when temperature is between co15  and co25 , it is warm, and when temperature is 

above co30 , it is hot. Note that the boundaries between cold, warm and hot are precise. 

Based on the definition, the weather can be cold or warm or hot. In other words, the 

weather is well defined by the temperature.  
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Fig. 1.1 Illustration of crisp data 

 

However, uncertainty is not always avoidable. In many applications, data has the 

characteristic of vagueness or uncertainty. This is the case when data is derived from 

imprecise measurement instruments or from the description of human domain experts. 

In the presence of vagueness and uncertainty, precise boundaries as in the case of crisp 

data lose meaning. 

The concept of “fuzzy” variable was first proposed by Dr. Lotfi Zadeh in 1965 [36]. 

He proposed that fuzzy set can be applied to represent data which has the characteristic 

of vagueness. This vagueness can be represented by the degree of participation to a set 

called a membership function. In contrast, a crisp data can either belong or not belong 

to a particular set.  

We can think of a fuzzy variable as linguistic terms or some data coming out from 

Cold Warm Hot 

Temperature 

15o 25o

1 

A(x) 
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imprecise measurement. In order to analyze the fuzzy data or explore the data 

relationship under a fuzzy environment, new concepts and new methods have to be 

developed to meet the challenges. Fuzzy data expresses the concept of  “gradual 

transition”, so it is natural to think about a membership function instead of a precise 

value to present a fuzzy data. A fuzzy set is an extension of the classical set theory, and 

it is characterized by a membership function which maps X into the interval [0, 1]. The 

value 0 means that the member does not participate in the given set, 1 indicates full 

participation. The membership function of a fuzzy set is denoted by µA, 

]1,0[: →XAµ  

where X is the domain the fuzzy data could locate, each fuzzy data is completely and 

uniquely defined by one particular membership function, the membership function 

may also be used as the label for the associated fuzzy data.  

Natural phenomenon can be described more accurately by fuzzy data. For instance, 

we want to explore the property dark in a grayscale image. In classical set theory, we 

have to determine a threshold, all gray levels below the threshold will be thought as 

“dark”, but the darkness is in fact a matter of degree. So, a fuzzy set can describe this 

data much better. Human languages do not express exact information either. When we 

state that somebody is tall, a context is necessary to describe the height. A tall person 

may be only 3 feet among preschool age group, but in an adult group, a tall person 

could be over six feet. Human mind can interpret information based on the context 

automatically, but computers can not handle imprecise information in the same way. 

We have to build an appropriate mathematical model to tell the computer about this 
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imprecise information.  Another example of imprecise data is data with measurement 

error. It is not always possible for us to measure a particular data very precisely; 

sometimes we only know that the value falls into an interval. This type of data is called 

fuzzy data. The uncertainty of a fuzzy data maybe uniformly distributed, Gaussian 

distributed or distributed in other forms. The exact distribution can be modeled by a 

fuzzy membership function. 

Figure1.2 gives an illustration of fuzzy data in describing temperature. We use 

linguistic terms such as “cold”, “warm” or “hot”. These terms can be related to 

temperature by a fuzzy membership function. The “cold” membership function is seen 

in Figure 1.2, so that when the temperature is below co20 , some people will consider 

the temperature to be cold. As the temperature drops, more people will consider the 

weather to be cold. When the temperature is below co10 , everyone will consider the 

weather to be cold. 

 
Fig. 1.2 Membership function for temperature 

Cold Warm Hot 

A(x)

temperature

15o 25o

1 

10o 20o
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In Figure 1.2, three fuzzy sets are employed to capture the linguistic concepts cold, 

warm and hot temperatures. The fuzzy data facilitates gradual transition between states, 

hence the membership functions have a natural capability to express and handle 

observation and measurement uncertainties while the traditional crisp variables do not 

have such capability. So the fuzzy data are more attuned to reality than the crisp data. 

Obviously the fuzzy data in Figure 1.2 provides us more information than the crisp data 

in Figure 1.1. For example, according to the fuzzy classification in Figure 1.2, at a 

temperature of 15 °C the weather could be considered half warm and half cold, while 

with crisp data concept , 14.9°C is classified as cold and 15.1°C is classified as warm 

which is obviously not indicative of the actual situation. 

 

1.2 Crisp Correlation and Fuzzy Correlation 

Correlation is a measure of the association between two variables; it is a very 

important part of statistics. One of the most fundamental concepts in many applications 

is the concept of correlation. If two variables are correlated, this means that you can use 

information about one variable to predict the values of the other variable. 

It is very common in statistical analysis of data to find the correlation between 

variables, the correlation defined on conventional crisp sets has been discussed in the 

classical statistics. However, the classical statistics cannot manage the data with 

uncertainty very well, new concepts and new methods have to be developed to find the 

correlation between fuzzy data. 

Data with vagueness (or fuzzy data) can be modeled by a fuzzy set. Fuzzy sets have 



 7

an advantage over the crisp representation in environments with a high degree of 

inaccuracy or uncertainty. We can define fuzzy measurements and mathematically 

manipulate those measurements with operations. For example, if the correlation 

coefficient on a fuzzy data set is defined, then we can know how the co-varying 

relationship between two variables will take on with the inherent uncertainty. 

In this dissertation, I work on two types of fuzzy correlation models. The fuzzy data 

set, fuzzy correlation model is called Type I fuzzy correlation model in this dissertation. 

This model was reported in the literature [7], I propose six theorems to systematically 

elaborate the properties of Type I fuzzy correlation. I also develop three approximate 

methods; they are computationally efficient and the results are very close to the 

theoretic approach. The crisp data set, fuzzy correlation model is called Type II fuzzy 

correlation model in this dissertation; I develop the original idea and computation 

method of this model. Fuzzy correlation obtained from our model tells us not only the 

strength of the relationship between the random variables, but also the distribution of 

this correlation. The value of the correlation coefficient for our method also lies 

between the interval [-1, 1]. 

 

1.3 Crisp Regression and Fuzzy Regression 

Correlation describes the strength of association between two random variables, 

and it is completely symmetrical, that is, the correlation between A and B is the same as 

the correlation between B and A. If the two variables are related it means that when one 

changes by a certain amount the other changes on an average by a corresponding 
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amount. If we use y to represent the dependent variable and x the independent variable, 

this relationship could be described as the regression of y on x, and in the simplest case 

this is assumed to be a straight line. The slope of the line depends on whether the 

correlation is positive or negative.  

Regression goes beyond correlation by adding prediction capabilities. For example, 

university admission office might want to use SAT score, high school GPA 

(independent variables) to predict a student’s college GPA (dependent variable). The 

purpose of applying the regression is to find the relationship between the dependent 

variable and the independent variables. Then we can use that formula to predict values 

for the dependent variable when only the independent variables can be directly 

measured or observed.  

There are many situations where observations cannot be described accurately, e.g., 

the observations resulting from human language or imprecise machine. In such cases, 

we only can give an approximate description about them. Classical statistical theory 

focuses on a kind of uncertainty which is called randomness, but we are concerned with 

another kind of uncertainty that is sometimes referred to as vagueness. When the data 

with vagueness (or fuzzy data) is analyzed through nonfuzzy techniques, it is regarded 

as if it is precise and the original vagueness is not taken into account in the analysis. So 

the model based on fuzzy data accommodates more information than models that just 

ignore the intrinsic vagueness of the data. Fuzzy set theory has been applied to manage 

the vagueness of the data and has been successfully demonstrated in many applications, 

such as: reliability, quality control, economical development forecast, etc.  

Regression analysis has been a very popular method with many successful 
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applications. The regression analysis dealing with fuzzy data is usually called fuzzy 

regression analysis. The aim of this dissertation is to develop regression models among 

fuzzy data variables. There are two motivations for developing fuzzy regression 

analysis. The first motivation results from the realization that it is not often realistic to 

assume that a crisp function of a given form can be used to represent the relationship 

between the given variables. Fuzzy relationship which is even though less precise 

seems intuitively more realistic. The second motivation results from the fact that the 

nature of data in many cases have inherent characteristic of uncertainty. Eight 

categories of regression models will be discussed in this dissertation including all the 

combinations of data characteristics in the input, the regression parameter and the 

output. 
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2.1 Crisp Correlation Coefficient 

The Pearson product-moment correlation coefficient (r) or correlation coefficient is 

a measure of the degree of linear relationship between two variables. The correlation 

coefficient possesses a number of interesting properties [5]. 

Firstly, the correlation coefficient takes on any value between plus and minus one.  

11 ≤≤− xyr
 

where rxy denotes the correlation between the variables x and y.  

Secondly, the sign of the correlation coefficient (+, -) defines the direction of the 

relationship. A positive correlation coefficient means that as the value of one variable 

changes, the value of the other variable changes in the same direction; A negative 

correlation coefficient indicates that as one variable changes, the other changes in the 

opposite direction.  

Thirdly, the absolute value of the correlation coefficient measures the strength of 

the relationship. Thus, a correlation coefficient of zero (rxy=0.0) indicates the absence 

of a linear relationship and correlation coefficients of rxy=+1.0 and rxy=-1.0 indicate a 

perfect linear relationship.  

Fourthly, the correlation coefficient may be interpreted by a data set scatter plot. 

The scatter plots perhaps best illustrate how the correlation coefficient changes as the 

linear relationship between the two variables is altered. When rxy=0.0 the points scatter 

widely about the plot without any perceivable trend. As the linear relationship 

increases, the region containing all the data points becomes more and more elliptical in 
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shape until the limiting case is reached (rxy=1.00 or rxy=-1.00) and all the points fall on 

a straight line.  

2.2 Crisp Data, Crisp Correlation 

In correlation analysis area, four cases are considered. The first case is to use crisp 

data to get a crisp correlation thus is the subject of classical correlation estimation.   

The correlation coefficient can be formulated as follows. 
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              (2.1) 

where i ranges from 1 to m, m is the cardinality of data set, (xi, yi ) is the i-th variable 

pairs,     is the mean of the independent variable,      is the mean of the dependent 

variable. We can use a statistical calculator or a computer program to compute the 

correlation coefficient for the given data set (xi, yi ). 

When the input data is crisp and a crisp correlation is derived, then the Pearson 

correlation coefficient formula in (2.1) can be used. 

 

2.3 Fuzzy Data, Crisp Correlation 

Ding-An Chiang and Nancy P. Lin [8] developed a crisp correlation coefficient 

between two fuzzy sets. The crisp correlation coefficient lies in the interval [-1, 1]. 

Their method takes a random sample from a crisp set, with corresponding pairs of 

membership functions of the two fuzzy sets to compute the correlation between those 

x y
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two fuzzy sets. The formula used in this study is Pearson’s product-sum correlation 

coefficient; a pair of membership function values replaces the original data values as 

follows. 
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where n is the size of sample, BA µµ ,  are membership function values for each sample 

respectively. 

 The correlation defined by their approach is in the interval [-1, 1]. As we have just 

described, the resultant correlation is a crisp value.  

A major contribution of this model is the development of partial correlation of 

fuzzy sets. If a random sample with multiple fuzzy attributes, Chiang and Lin’s method 

can compute the correlation coefficient between the two fuzzy attributes. For example, 

according to their theory, a correlation coefficient is calculated between each pair of 

the attributes A, B and C, so that we have rAC, rBC and rAB, then the formula to compute 
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the first-order partial correlation coefficient between the fuzzy attributes A and B 

holding fuzzy attribute C constant is defined in terms of the simple correlation 

coefficients: 

2
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             (2.3) 

A limitation of the method is that it only applies when the membership functions of 

the fuzzy sets are well behaved, the left side (and the right side) of the membership 

function is monotonically increasing (decreasing). 

Chaudhuri and Bhattacharya [12] also proposed a formula to measure fuzzy set 

association; his method qualifies the correlation relationship between two fuzzy 

attributes with crisp observation data. In fact, their correlation coefficient describes the 

similarity between two fuzzy sets.  
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where an element Xx∈  belong to set A with membership value µ and to set B with 

membership value η. The resultant correlation BAr ,  lies in the interval [0, 1] for 

all Xx∈ . 

 

2.4 Fuzzy Correlation Coefficient 

There are two general ways to develop fuzzy correlation model: models where the 

size of data set is small and re-sampling or bootstrapping gives fuzzy results and 
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models where the variables themselves are fuzzy. Both of these models are explored in 

this chapter. We call the first model Type I fuzzy correlation and the second model 

Type II fuzzy correlation. In this section, we focus on models where the data points are 

fuzzy.  

If the input data is fuzzy, then according to the Extension Principle, the correlation 

coefficient which is a function of the input data should also be fuzzy and is called a 

fuzzy correlation coefficient (FCC) and is denoted as )(αxyr , where α is the α-cut value. 

The notion of fuzzy data is formalized by introducing the concept of a fuzzy number 

based on the fuzzy set theory; fuzzy data can be represented by a membership function. 

Assume that rxy(α) is the correlation coefficient at each α level. Because every fuzzy 

data has its own membership function (in both the x and y directions), two intervals are 

generated in both directions for each observation if we take the α-cut on the 

membership functions: 

([x αL, x αU]j  [y αL, y αU]j   )   j=1,2,….,m 

where m is the cardinality of data set A, x αL is the lower bound of the α-level for the x 

coordinate of jth fuzzy data, x αU is the upper bound of the α-level for the x coordinate 

of jth fuzzy data, y αL is the lower bound of the α-level for the y coordinate of jth fuzzy 

data, y αU is the upper bound of the α-level for the y coordinate of jth fuzzy data. 

Now each of our data has been converted to a rectangular region. If α equals to 1, 

the fuzzy data degenerates to a single crisp value, and the fuzzy correlation coefficient 

degenerates to the crisp correlation coefficient accordingly. With increasing α, the 

rectangular region becomes bigger, and rxy (α) is no longer a single value, but an 

interval. 
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rxy (α) =[ min rxy (α),  max rxy (α)] 

Figure 2.1 shows a crisp data set when both x and y data points are crisp. Figure 2.2 

shows that a crisp correlation coefficient is generated with the data set given in Figure 

2.1. Figure 2.3 shows a data set when uncertainty exists in both the x and y directions. 

Figure 2.4 shows the resultant interval correlation coefficient. Figure 2.5 shows a fuzzy 

data set when there is a membership function describing the data points in both the x 

and y direction. Figure 2.6 shows the resultant fuzzy correlation coefficient. 
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Fig. 2.1.  A crisp data set 
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Fig. 2.2 A crisp correlation coefficient 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

rxy 

1

)( xyrµ

0

x 

y 

Fig. 2.3 An interval data set 
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Fig. 2.4 An interval correlation coefficient 
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Fig. 2.5  A fuzzy data set with triangular membership function 
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Extension principle 

The extension principle is one of the most basic ideas of fuzzy set theory. It goes 

back to Zadeh in 1965 and provides a general method for extending crisp mathematical 

concepts in order to deal with fuzzy quantities. The extension principle can be 

described as follows. 

For any given function YXf →: , Zadeh proposed the fuzzy mapping f~  from the 

fuzzy set A(x) to the fuzzy set B(y). If we have 

)()(:~ yBxAf →  

and the inverse fuzzy mapping         )()(:~ 1 xAyBf →−  

Based on the extension principle, a mapping from x to y can be extended to the 

mapping of the fuzzy set A (x) to B(y). 

)(sup))]((~[)(
)(|

xAyAfyB
xfyx =

==   for all )(xAx∈  

Fig. 2.6 A fuzzy correlation coefficient 

rxy 

α
FCC 
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The extension principle is illustrated in Figure 2.7. Obviously the output result is a 

nonlinear mapping of the original fuzzy data according to the mapping function. 

 

 

 

Fig.2.7 Extension principle 

 

Assume f: xyryx →),(  , A is the fuzzy data set, and B is the fuzzy correlation 

coefficient, n is the size of the data set. Let 
^

xyr  be the fuzzy correlation coefficient for a 

fuzzy data set A(x,y). Then based on the extension principle, 
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Hence, the mathematic model of fuzzy correlation coefficient could be summarized 

as the following constrained optimization problem: 

∑
∑∑=

==

−−

−−
=

n

i
n

i
i

n

i
i

iiL

yyxx

yyxx
r

1

1

2

1

2 )()(

))((
minα                             (2.6)     

   ∑
∑∑=

==

−−

−−
=

n

i
n

i
i

n

i
i

iiU

yyxx

yyxx
r

1

1

2

1

2 )()(

))((
maxα                                (2.7) 

                   s.t.               U
ii

L
i XxX αα )()( ≤≤  

U
ii

L
i YyY αα )()( ≤≤   

This model is a pair of nonlinear programs with bounded constrains. If we have two 

possibility levels α1 and α2 and 10 12 ≤<< αα , the feasible region determined by α1 is 

a subset of the region determined by α2. So the resultant interval of FCC determined by 

α1 is a subset of the interval determined by α2. Assume that L(r) and R(r) are the left leg 

and the right leg of the FCC respectively, the membership function for the FCC can be 

formulated as 
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Since Pearson’s formula is used in the objective function of fuzzy correlation 

coefficient model, it is not surprising the value of fuzzy correlation coefficient lies in 
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the range of [-1, 1]. More detailed analysis of the fuzzy correlation coefficient and its 

properties are presented in the next chapter. 

 

2.5 Crisp Data, Fuzzy Correlation 

Early fuzzy correlation [6, 25, 27, 28, 32] is defined on the intuitive fuzzy sets and 

the value of the fuzzy correlation coefficient falls in the interval [0, 1]. This makes it 

difficult to degenerate the fuzzy data to crisp data which is a highly desirable property. 

Pedrycz [2, 3] develops the concept of a granular correlation; the information 

granules are defined as fuzzy sets in his paper. Suppose the two variables of interest 

come as pairs of data{ } Nkkykx ,...,2,1,)(),( = , Rkykx ∈)(),( . The two information 

granules, fuzzy sets A and B are defined for the value of x and y respectively. Pedrycz’s 

approach abandons a global look at the overall data and concentrates on revealing 

meaningful relationship on a local level. Since Pedrycz’s fuzzy correlation reveals the 

local dependency by using fuzzy sets, it can help evaluate fuzzy associations from the 

statistical point of view, and is particularly useful in linguistic-driven data mining 

applications. 

Given two fuzzy sets A(x) and B(y), Pedrycz’s method for computing the fuzzy 

correlation can be summarized in the following steps: 

1. Start with the possibility level α=0.0. 

2. Obtain all elements P(x, y) for which x belongs to αA  and y belongs to αB , the 

subset at each α level is denoted as })(,)(|),{( ααα ≤≤= yBxAyxP . 

3. Compute the correlation coefficient r (α) for αP . 
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4. Determine the number of the elements involved in the computations of the 

correlation coefficient for the statistical relevance testing. 

5. Increase the possibility level α by a fixed increment until it reaches the value 1. 

Repeat step (2) through (4).  

In the above algorithm, as the numeric data are activated by fuzzy sets to a certain 

degree, the correlation is computed to reflect the data relationship at different 

possibility level. This leads to the idea of the correlation coefficient that becomes a 

fuzzy set. The membership function of the fuzzy correlation depends on the location 

and size of the linguistic granules in the study. Pedrycz’s method manages the 

association of two information granule. This method only applies to crisp data sets. 

 

2.6 Fuzzy Data, Fuzzy Correlation 

  If the input data is fuzzy, Liu [7] gives us a fuzzy number correlation coefficient 

with domain from -1 to 1. His approach is in essence to apply the extension principle to 

compute the correlation coefficient on fuzzy data at different possibility level. The 

model is based on a pair of nonlinear programs with bounded constraints which are 

given in equation (2.6) and (2.7),  

A commercial nonlinear programming solver is turned to when multiple fuzzy 

observations are involved. Nonlinear optimization is an intractable problem 

mathematically; the algorithm usually becomes inefficient when the size of data set is 

large. Moreover, although a fuzzy correlation coefficient reflects the uncertainty of the 

data, sometimes a crisp value is desired to have a summarized knowledge of the data 

association. One must take different action depending on whether this value exceeds 
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the threshold or not.    

In chapter 3, a mathematical model is developed to calculate the fuzzy correlation 

coefficient of fuzzy observation. In order to make this model practical, two 

computationally efficient algorithms are provided for the model. Simulation results in 

chapter 4 show that the presented algorithms give better performance than standard 

commercial software with large data set size.  

 

2.7 Summary and Research Goal 

There are four problems based on the input-correlation relationship in fuzzy 

correlation analysis: 1) Crisp input, crisp correlation. 2) Crisp input, fuzzy correlation, 

3) Fuzzy input, crisp correlation, 4) Fuzzy input, fuzzy correlation. Pearson’s 

product-sum formula has been widely accepted to compute the correlation coefficient 

between two crisp random variables. This chapter starts by discussing the recent 

research work that had been developed and had been applied in engineering practice. 

While most of these works concentrate on the analysis of fuzzy attributes, very few 

works have been done to analyze the correlation of fuzzy data.  
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CHAPTER 3 

 

Fuzzy Correlation Analysis 
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This chapter deals with the definition and analysis of the fuzzy correlation 

coefficient. The mathematical model of the fuzzy correlation coefficient will be 

discussed, as well as its properties. This chapter presents a number of computationally 

efficient methods for calculating the FCC. 

 

3.1 Properties of the Crisp Correlation Coefficient 

Based on the computational formula given in (2.1), Pearson’s crisp correlation 

coefficient rxy has the following properties. 

1 Range of correlation coefficient is between -1 and 1, 11 ≤≤− xyr   
 

2 If one random variable x is independent of the other random variable y, then 

rxy=0 

3 For linear relationship y=ax+b 

⎩
⎨
⎧
−

=
1

1
xyr  

4 If two random variables x and y co-vary in the same direction, then rxy >0; if 

they co-vary in the opposite direction, then rxy<0. 

We have to realize that the crisp correlation coefficient reflects the linear 

association between the two random variables; it does not mean causality exists 

between the two random variables. 

 

3.2 Definitions 

The uncertainty of data has many sources. If we stress impreciseness and vagueness 

then it is reasonable to model the data by fuzzy sets. In many cases, it is of interest to 

0>a

0<a
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have suitable measures of vagueness. The uncertainty can be manifested in different 

forms and these forms represent distinct types of uncertainty. 

Two measures of uncertainty are most widely computed today. The two uncertainty 

types are: (1) nonspecificity which is related to the cardinalities of sets of relevant 

alternatives and (2) fuzziness that results from the imprecise boundaries of fuzzy sets.  

 

3.2.1 Nonspecificity of Fuzzy Sets   

In crisp set theory, Hartley [1] used (3.1) as a measure of uncertainty in terms of a 

subset of a universal set.  

                                                AAU 2log)( =                                                              (3.1) 

where |A| denotes the cardinality of a countable nonempty set A, this 

measurement of uncertainty has the unit of bits.                                                                                           

The Hartley function is a measure of uncertainty associated with available 

alternatives in the set. We can see that full specificity is obtained when all alternatives 

are eliminated except one. Hence this measure is also called nonspecificity. Hartley 

function has been generalized from the classical set theory to the fuzzy set theory in the 

early 1980s. For any nonempty fuzzy set A defined on a countable universal set X, the 

generalized Hartley function has the form 

αα dA
Ah

AU
Ah

∫=
)(

0
2log

)(
1)(               (3.2) 

where Aα  denotes the cardinality of the α-cut of A and h (A) is the height of A. Fuzzy 

sets are equal if when normalized, they have the same nonspecificity as measured by 

the function U. Given a nonempty fuzzy set A defined on R and if the α-cuts are 
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uncountable sets, then (3.2) can be modified as 

∫ +=
)(

0

)](1log[
)(

1)(
Ah

dA
Ah

AU αµ α              (3.3) 

where Aα  is a measurable and Lebesgue-integrable function,  )( Aαµ  is defined by the 

Lebesgue integral of the characteristic function Aα .  

 

3.2.2 Fuzziness of Fuzzy Sets 

In general, the measure of fuzziness of a function is a mapping from a fuzzy set to a 

crisp value [1]. 

+→ RxAf )(:               (3.4) 

where A(x) denotes a fuzzy set. For a given fuzzy set A, this function assigns a 

nonnegative real number f (A) that expresses the degree to which the boundary of A is 

not sharp. The function f must satisfy three requirements in order to qualify as a 

meaningful fuzziness measure.  

1. f(A)=0 iff (if and only if) A is a crisp set 

2. f(A) reaches its maximum value iff A(x)=0.5 for all Xx∈  

3. )()( BfAf ≤  If the membership function of fuzzy set A is obviously sharper 

than the membership function of fuzzy set B. 

Two methods are widely accepted to measure fuzziness that satisfies all the three 

important requirements. One way is to measure fuzziness of a fuzzy set A by a distance 

between its membership function and the nearest crisp set. Another more practical 

method is to consider the fuzziness of a set A comes from the lack of distinction 

between its membership function and its complement. The less a set differs from its 
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complement, the fuzzier it is. 

We assume only the standard fuzzy complement is used, we also choose the 

Hamming distance, so the local distinction of a given set A and its complement is 

measured by 

1)(2))(1()( −=−− xAxAxA  

and the lack of each local distinction is measured by 1)(21 −− xA . If the fuzzy set is 

defined on a countable set, the measure of fuzziness is then obtained as: 

)1)(21()( ∑
∈

−−=
Xx

xAAf  

The range of function f is X,0[ ]; If the fuzzy set is defined on an uncountable but 

bounded subsets of R, for example X= [a, b], then the formula needs to be modified as 

follows: 

∫∫ −−−=−−=
b

a

b

a

dxxAabdxxAAf 1)(2)1)(21()(             (3.5) 

The nonspecificity and fuzziness are distinct types of uncertainty and they are 

totally independent of each other. 

 

3.2.3 Defuzzification 

Defuzzification is the process of mapping a fuzzy set onto a crisp value, a number 

of defuzzification methods are proposed in the literature [1]. The most widely used 

ones are the center of area method and the center of maxima method. 

1 Center of Area Method 

Suppose the membership function of a fuzzy data is A(x), the support of A(x) is in 
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the interval [-c, c]. The defuzzified value dCA is defined as the value of variable x for 

which the area under the curve of A is divided into two equal sub areas. 

∫

∫

−
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c
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dxxA

xdxxA
Ad

)(

)(
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              (3.6) 

2 Center of Maxima Method 

The defuzzified value dCM (A) is defined as the average of the smallest value and 

the largest value of x for which A(x) equals to the height h(A) of A. 

2
supinf)( MMAdCM

+
=                (3.7) 

where [ ]{ })()(|, AhxAccxM =−∈=  

 

3.3 Theorems of Fuzzy Correlation Coefficient 

The proposed measurement of FCC satisfies the following theorems. 

Theorem1.  Fuzzy correlation coefficient depends on input data membership 

function  

According to FCC’s definition, suppose minx , maxx  are the low and upper bounds of 

the interval generated by taking α-cut on the input data membership function in x 

direction, and miny , maxy  are the low and upper bounds of the interval generated by 

taking α-cut on the input data membership function in y direction, then we have 

f:  [ minx , maxx ; miny , maxy ]α→  )(αxyr  

f is a mapping from input data to fuzzy correlation coefficient at possibility level α.  

Since different input data membership function will generate different intervals at α 
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level, it is trivial that FCC depends on input data membership function. # 

Theorem2.  Given a fuzzy data set x, let µ(x) be its membership function. Let 

X and Y be two fuzzy data sets, x and y are any data in the data sets X and Y. If 

)()( yx µµ ⊆∀  YyXx ∈∈∀ , , Then ))(())(( YFCCXFCC µµ ⊆   

From the condition, we know at each α level, X is a subset of Y, so all the data 

points which are involved in computing FCC(X) is a subset of the data points involved 

in computing FCC(Y). The resultant correlation coefficient of X is accordingly the 

subset of correlation coefficient of Y. # 

Theorem3. Fuzzy correlation coefficient rxy(α) ranges from -1 to 1 

At each α level, we use Pearson’s formula to compute the corresponding measure. 

Since Pearson’s formula always yields a coefficient between -1 and 1, so  -1≤ rxy(α)≤1 , 

MAX(rxy(α)) and MIN (rxy(α)) must also be between -1 and +1. # 

Theorem4.  If the input data are fuzzy numbers, then the fuzzy correlation 

coefficient is also a fuzzy number. 

To be a fuzzy number, a number of requirements must be met [3]: 

1.  The fuzzy set is a normal set, i.e. the height of the membership function is 1. 

2. The α-cut is a closed interval. 

3. The support of the membership function must be bounded. 

4. AA 21 αα ⊆   For 21 αα ≥ (monotonic)  

As for the first condition, since we have restricted in this dissertation to discuss 

fuzzy number data set, it is straightforward to see that the correlation coefficient which 

is computed with those fuzzy data is also a normal set.  

Since the input data are fuzzy numbers, α-cuts of each fuzzy number are also closed 
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intervals of real numbers. When two fuzzy numbers are cut at α level, the result 

produces two closed intervals [a b] and [d   e]. According to interval analysis theory, we 

have 

[a   b] + [d   e]=[a+d    b+e] 

[a   b] - [d   e]=[a-e   b-d] 

[a   b] * [d   e]=[min(ad,ae,bd,be)    max(ad, ae, bd, be)] 

[a   b] / [d   e]=[min(a/d, a/e, b/d, b/e),  max( a/d, a/e, b/d, b/e)] 

Four arithmetic operations on close intervals also produce close intervals. Since the 

computation of fuzzy correlation coefficient is in essence a combination of four 

arithmetic operations, the result should also be a close interval. So the second condition 

for a fuzzy number is satisfied. 

According to Theorem 3, the fuzzy correlation coefficient ranges from -1 to 1, 

hence the value is bounded. Since the input data set A is composed of only fuzzy 

numbers, then for any two possibility levels 21 αα ≥ , we have AA 21 αα ⊆ . According to 

Theorem 2, we have ))(())(( 21 AFCCAFCC αα µµ ⊆  . Hence the fourth condition holds 

for the fuzzy correlation coefficient. 

Since all four conditions are satisfied, our proposed measure for a fuzzy correlation 

coefficient is a fuzzy number.  # 

Theorem5.  Given a fuzzy data x, let U(x) be its nonspecificity measurement. 

Let X and Y be two fuzzy data sets, and x and y are any data in data sets X and Y. 

If   )()( yx µµ ⊆∀   YyXx ∈∈ , , then U (FCC(X)) < U (FCC(Y))    

Proof:  We assume that the input data has a triangle membership function without 

loss of generality. The support of the membership function is [x0-xl, x0+xr] 
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From the above equation, we can see that if U(x) <U(y), then )()( rlrl yyxx +<+ . 

In other words, the support of the membership function of x is less than the support of 

membership function of y. According to Theorem 2, we 

have ))(())(( YFCCXFCC µµ ⊆ , so the support of FCC(X) at each level is less than 

the support of FCC(Y).This implies that ))(()(( YFCCUXFCCU <  # 

Theorem6.  Given a fuzzy data set x, let f(x) denote its fuzziness measurement. 

Let X and Y be two fuzzy data sets, and x and y be any data in data sets X and Y. 

If   )()( yx µµ ⊆∀   YyXx ∈∈ , , then f (FCC(X)) < f (FCC(Y))    

Proof:  Without loss of generality, let us assume that the input data has triangular 

membership function. The support of the membership function is [x0-xl, x0+xr] 
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So if U(x) <U(y), this implies that )()( rlrl yyxx +<+ . In other words, the support 

of the membership function of x is less than the support of membership function of y. 
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According to Theorem 2, we have ))(())(( YFCCXFCC µµ ⊆ , so the support of 

FCC(X) at each level is less than the support of FCC(Y). This implies 

that ))(()(( YFCCfXFCCf < . # 

 

3.4  Direct Method 

Based on the description of the fuzzy correlation coefficient in (2.3), one can easily 

see that the computation is in fact an optimization problem with bounded constraints. 

In theory, the constrained variable metric method and the reduced gradient method are 

very effective and efficient for solving this type of problems [31]. Those methods are 

widely used by commercial optimization software. However, the commercial software 

usually can not take advantage of the characteristics of a specific problem. Furthermore, 

as the number of unknowns increases according to the size of data set, the search space 

also becomes very complicated due to the dimension and nonlinearity of the problem. 

So in this dissertation we intend to develop some approximate methods to obtain 

computationally efficient solutions. These methods often give fast and effective 

approximations to complicated problems.  

Since general purpose nonlinear optimization software does not take advantage of 

the characteristic of a specific problem, it is unrealistic to expect them to work 

efficiently for every kind of nonlinear model. Instead, we try to select a model that fits 

the specific problem at hand. In this case it is hard to transform the problem to a general 

Linear Programming or Quadratic Programming format. Hence, general purpose 

software is not likely to provide an efficient solution. 

Widely used commercial nonlinear optimization software packages include 
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Large-Scale GRG Solver Engine, LINDO systems, MATLAB optimization toolbox etc. 

If n is the size of the data set, usually the computational complexity of those algorithms 

is greater than O (n2). 

 

3.5 Random Search Method 

The random search method is a direct simulation approach. Instead of solving the 

problem analytically, one seeks to find a good solution by randomly sampling the 

search space. 

 

3.5.1 Monte Carlo Sampling 

Monte Carlo methods have been used for a long time; it provides approximate 

solutions to a number of complex applications by conducting statistical sampling 

techniques on a computer. Monte Carlo is now used widely in many different fields, 

from the simulation of complicated prototype physical system to the ordinary life.  

It is required by Monte Carlo sampling that the targeted system should be 

formulated by the probability density functions (pdfs). Once the probability density 

functions are given, sampling can be taken on those pdfs randomly. The desired result 

will be obtained by averaging over the number of observations. People usually can 

compute the statistical error for this result and estimate the number of trials that are 

needed to achiever a predetermined error.  
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The typical components included in a Monte Carlo application include: probability 

distribution functions (pdfs), random number generator, sampling rule design, output 

computation and error estimation etc.  

In the section 2.4 we have presented a constrained optimization model for the 

computation of fuzzy correlation coefficient. Each fuzzy data could locate on any point 

in the corresponding interval. Although our concern is about the possibility instead of 

the probability, the idea of random sampling in Monte Carlo simulation also can be 

applied to obtain the “possible result”.  

 

3.5.2 Algorithm Description 

We assume that the actual value of the data follows a uniform distribution in the 

above defined rectangular region. Hence, at each α level, for every fuzzy observation 

data points (Xi, Yi) that are generated randomly (i=1, 2…m), we will get one sample 

value of rxy (α). If the number of samples is big enough, we will obtain an interval to 

represent the correlation coefficient at a particular α level. 

rxy (α) = [ min rxy (α),  max rxy (α)] 

After the membership function of correlation coefficient is computed, it is not 

difficult to derive a crisp value which reflects the association between two fuzzy data 

(this step is usually referred as defuzzification). If a crisp correlation coefficient is 

desired, then defuzzification should be applied. 

In general, the data interval included in computing with a bigger α is a subset of 

data interval included in the calculation with a smaller α, so the above defined 
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correlation coefficient provides us a complete view of the data characteristics with 

different uncertainty.  

The algorithm can be described in pseudo code as follows: 

1. Let α=0.0 

2. Obtain [X αL, X αU]i  [Y αL, Y αU]i.  i=1, 2…n (size of the data set)  

3. Randomly select a crisp point from each fuzzy region  

U
i

L
ii XXx αα λλ )1( −+=  

                                
U
i

L
ii YYy αα λλ )1( −+=  

i=1, 2…n, λ is a random number between 0 and 1 

4. Compute the Pearson correlation coefficient (PCC)  

5. Store this PCC value in an array 

6. Repeat (3), (4), (5) a predetermined number of times    

7. Compute                                               and   

8. Increment ααα ∆+=  

9. Repeat (2) ~ (8) until α=1.0 

10. Defuzzify using the center of area approach if a crisp value is desired. 

 

3.5.3 Computational Complexity 

For the sake of simplicity, we consider every addition, subtraction, multiplication, 

division, and square root as one indistinguishable operation. Suppose the number of 

fuzzy data in the data set is n. If the FCC is computed with L different α levels, for each 

level K random samplings are taken. Step 2 needs 2*4*n=8n operations, and step 3 

)(max)(max αα xyiixy rr = )(min)(min αα xyiixy rr =
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needs 2*3n=6n. Step 4 needs 10n+3 operations, and step 10 takes 3L-1 operations. The 

total number of operations = (8n+ (6n+10n+3)*K)*L+3L-1= (16K+8) Ln+3KL+3L-1.  

So the computational complexity of the above random sampling method is O (LKn). 

In general L is not small and K cannot be a small number in order to get good results. 

So this method is not efficient with big data set for real life applications. 

 

3.6 Approximate Bounds Method 

In often times, the exact value for the fuzzy correlation coefficient is not needed, 

only the bound for the FCC is desired. The bound gives the instinct where the FCC 

could lie. 

 

3.6.1 The Derivation of Approximate Bounds 

We can derive an approximate bound for rxy (α). 
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at each α level, xi, yi are the i-th random variables distributed in the interval [X αL, X αU]i  

[Y αL, Y αU]i , here we assume that they follow the uniform distribution without losing 

generality, and n is the size of data set.  

Let (xi0, yi0) be the i-th data point when α  equals to 1. For large data set, according 

to the Central Limit Theorem we have 
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This average value for xi0 and yi0 can be thought of as constants for a given data set. Let 

               and                  , also let                         ,                       then Pearson’s 

correlation coefficient can be reformulated as below.    
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where (X0, Y0) denotes all data points in this data set when α  equals to 1. Expanding 

rxy in a Taylor series around the values (X0, Y0) and omitting those terms above the 

second order in the variation, (3.8) becomes: 
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Let             

 

 

 

 

Max: 

rxy (α)≈  

  

Min: 
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3.6.2 Computational Complexity 

Using the same assumption as in the random sampling method, the total number of 

operations of the above formula is 10n+3+(2(4n+4)+2)*L+3L-1= (10+8L) n+13L+2, 

where L is the number of possibility levels and n is the number of data points. The 

computational complexity of the approximate bounds is O (Ln). 

 

3.7 Heuristic Method 

In this section we will consider a heuristic method. The object of the heuristic 

method is to use reasoning to quickly determine the location of data points that will 

contribute to the minimum and maximum values of the fuzzy correlation coefficient.  

 

3.7.1 Algorithm Description 

This method is best illustrated in Figure 3.1. First we set  α  value to 1 and pick the 

corresponding data points. Then we apply the linear regression model to those data so 

we will obtain a straight line which represents the linear relationship of the data set 

(α =1) in the minimum mean square error sense. This is shown as the dotted line in 

Figure 3.1. 
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Next we need to explore the impact of data fuzziness on the regression model. Here 

we have several cases: 

1)  The regression line goes through the region composed of [X αL, X αU]j  [Y αL, Y 

α
U]j. Depending on the sign of the regression line slope, the point contributing to the 

maximum (or minimum) of rxy(α ) is any point on the straight line and in the  region. 

Hence the point contributing to the minimum (or maximum) must be the corner point 

of the region that has the largest deviation from the regression line in y coordinate. 

2) If the regression straight line does not pass through the region just like the case 

for most fuzzy data in Figure 3.1, then one can use the corner points of the region.  It is 

intuitively reasonable that the point which has the smallest or largest deviation from the 

line contributes to the maximum (or minimum) value of rxy(α ), and the corner point 
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Fig. 3.1 Heuristic method illustration
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with the largest ( or smallest) deviation from the line contributes to minimum (or 

maximum) value. 

This process could be expressed by the following pseudo code: 

1. Set α=1.0 

2. Compute the regression line                       based on the crisp data points which 

can be obtained by setting the possibility level α of the data set to 1.  

  

 

 

 

 

 

 

where n is the size of the data set. 

3. Set up two sets P and Q, data points in P set contribute to the maximum                

 and data points in Q set contribute to the minimum            respectively. 

Eventually all data points belong to either P or Q depending on their locations. The two 

sets are initially empty. 

4.   Find the corner points of each data region and determine if they contribute to the 

maximum set or the minimum set. For example, if the data region is above the 

regression line, then the upper corner points contribute to minimum correlation and the 

lower corner points contribute to the maximum correlation.  
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where corner point (X, Y) distance to regression line=  

},,|,{| UULUULLL YyYyYyYyMAX αααααααα −−−−  

5b.   If the regression lines is above or below the data region, we have 

)},{( 11 YXPP +=  

where corner point (X1, Y1) distance to regression line = 

},,|,{| UULUULLL YyYyYyYyMIN αααααααα −−−−    

and             )},{( 22 YXQQ +=  

where Corner point (X2, Y2) distance to regression line= 

},,|,{| UULUULLL YyYyYyYyMAX αααααααα −−−−    

6. Compute the maximum and minimum values of the fuzzy correlation coefficient. 

  
                                                        

 
 

   
 

 
 
 

   
 

 

 

where n is the size of the data set. 

7. Increment the α-cut value, ααα ∆+=  . 
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8. Repeat step (4) through (7) until α=1.0 

9.    Defuzzification if a crisp value is required. 

 

 

where L is the number of possibility levels involved in the computation. 

In theory, the fuzzy correlation coefficient ranges from -1 to 1. When searching for 

a possible solution for this problem, we can assume that those points with the biggest 

deviation from the regression line will contribute to the minimum absolute  correlation 

coefficient value and those points with the smallest deviation will contribute to the 

maximum  absolute value.  

 

3.7.2 Computational Complexity 

Now let us compute the total operation of this algorithm. Step 2 needs 6n+9 

operations, step 4 needs 8n operations, step 6 needs 2*(10n+3)=20n+6 operations, step 

7 needs one operation and step 9 needs 3L-1 operations. So the total number of 

operations =6n+9+L*(8n+20n+6+1) +3L-1= (28L+6) n+10L+8. It is obvious that the 

time required is only O (Ln); however this solution is only an approximate one. 
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CHAPTER 4 

 
Simulation Studies of Fuzzy Correlation 
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In this chapter a number of test data sets are designed to test the proposed methods. 

Suppose we want to know the correlation coefficient of a set of n fuzzy observations. 

Assume that each observation has a symmetric triangular membership function for 

convenience without loss of generality. The algorithms presented in the last chapter 

were applied to the data sets; the fuzzy correlation coefficients were computed at each 

possibility level. 

 

4.1 Data Preparation 

Figure 4.1 is the data set we will use in this simulation study. This data set is 

generated by the relationship            with additive white Gaussian noise                .                            

If all data are crisp, the correlation coefficient can be computed directly by Pearson’s 

formula. The crisp data points are fuzzified by assuming that a membership function 

exists for both the x and y coordinates. The membership function is assumed to be 

triangular. The support of the membership function is set at 10% of the maximum data 

set value. The points appearing on the curve in Figure 4.1 are the centers of each 

membership function; i.e. the original crisp value. 

 

 

 

 

 

  

2xy = )1,0( 2 =σN
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Fig. 4.1   Test data set 1: y=x2+N (0, 12 =σ ) 

 

4.2 Complexity Comparison 

In the last chapter, the computational complexity of each method was presented. In 

summary, the computational complexity of the random sampling method, the heuristic 

method and the analytical method are O (n) and the direct method is usually bigger than 

O (n2). In this section, some empirical results are given via simulation. 

The algorithms were executed on an HP pavilion zt1270 notebook at 1.6 G HZ with 

256M SRAM. By observing the execution time of algorithms, we may obtain some 

intuition about the performance of the proposed methods. 

x

y
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Fig. 4.2 Computational complexity comparison of four methods 

 

Figure 4.2 gives the performance comparison of four methods respectively. The X 

axis of those plots represent the size of the data set, the y axis represent the execution 

time of these algorithms. The dash-dot line with star curve, solid line curve, dash-dot 

line curve and dash line with circle curve describe the performance of the heuristic 

method, the random search method, the direct method using the MATLAB 

optimization toolbox, and the approximate bounds method respectively.   

In general, the direct method needs more time to finish the task. This is expected as 

the execution time grows significantly with increasing size of the problem. Heuristic 

method gives solution that is quite close to the direct method, but with much less time. 

Approximate bound method is an analytical method, and it requires the least execution 
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time. The random search method has a lackluster performance. When the data set is 

large, the heuristic method is a powerful tool to estimate the fuzzy correlation 

coefficient. 

 

4.3 Fuzzy Correlation Coefficient Computed by Four Methods 

Figure 4.3 shows the simulation result for the fuzzy correlation coefficient for this 

fuzzy data set. It is clear from Figure 4.3 that the correlation coefficient is a single value 

when α=1 which means that there is no uncertainty at all in the data set. In that case the 

fuzzy data is boiled down to the crisp data, therefore the fuzzy estimation degenerates 

to the classic Pearson’s correlation coefficient. In other words, Pearson’s correlation 

coefficient is a special case of the fuzzy correlation coefficient. When α decreases, the 

uncertainty of the data increases. So the correlation coefficient becomes more widely 

distributed. This membership function shape intuitively matches our expectation. 
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Fig. 4.3 Fuzzy correlation at data membership support = 10% ×max(y) 

 

 There are four curves in Figure 4.3, we assume that the solution provided by the 

standard optimization software gives the correct solution, for comparison the heuristic 

method yields a solution that is very close to this, the random search method solution is 

apparently different from the other two. The jagged curves can be attributed to 

insufficient samples. The approximate bounds described by the dash-circled curve 

behave worst since all the high order terms are omitted.  

 

4.4  Data Membership Function Impaction: Different Support 

In this simulation, we explore the effect of the fuzzy correlation coefficient 

membership function shape due to different support of the membership function of the 

data points. The support of the membership functions for the data points were increased 
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from 5% of the maximum measurement of data set to 20%. The computing process was 

repeated and results were shown in Figure 4.4 and Table 4.1.  

 

Table 4.1 Comparison of the four methods 

Method 5% 10% 15% 20%  

Direct Method [0.856, 0.961] [0.77, 0.985] [0.68,0.99] [0.57, 1] 

Heuristic Method [0.856,0.960] [0.77, 0.98] [0.68,0.99] [0.572,1] 

Random Search [0.883,0.940] [0.847,0.952] [0.8,0.96] [0.77,0.96] 

Approximate Bounds [0.865,0.97] [0.82, 1] [0.79,0.96] [0.71, 1] 

 

 

Fig. 4.4 Fuzzy correlation at data membership support = 20% ×max(y) 

 

According to Table 4.1, the support of the fuzzy correlation increases with the 
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increasing support of the input data. In Figure 4.4 it is observed that the spread of the 

fuzzy correlation of 20% support case is bigger than the 10% support case. According 

to the Theorem 2 in the last chapter, these simulation results are exactly within our 

expectation. The performance of the four methods of 20% support case is similar to that 

in the 10% support case. The heuristic method is very close to direct method. The 

random search method and the approximate bounds method show somehow slightly 

different curves.  

 

4.5 Data Membership Function Impaction: Different Shape 

In this experiment, we present the effect of different membership function shapes 

of the data set on the membership function shapes of the fuzzy correlation coefficient. 

Instead of the membership function of the input data being of the triangle shape, we use 

a trapezoidal shape, we then apply the algorithms proposed in the last section, and the 

results are shown in Figure 4.5. 
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Fig. 4.5 Fuzzy correlation: trapezoidal data membership support =10% ×max(y)   

When α equals to 1, since the input data is an interval, accordingly an interval will 

appear in the fuzzy correlation coefficient.  In this case, we can not decide where the 

exact input data locates at any possibility level, classical correlation theory does not 

work at all, and fuzzy correlation has to be resorted to. Again from the plot we find that 

the heuristic method works well when compared to the standard optimal software.  

 

4.6 Nonspecificity & Fuzziness 

If we return back to the triangle shape membership function and increase the 

support of the membership function from 5% to 25%, and repeat the same 

computational steps we used before.  The 20% support case is shown in Figure 4.4. 

Comparing the Figure 4.3 to Figure 4.4, it is obvious the two legs of FCC become more 
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widely spread in 20% support case than 10% support case which is intuitively 

reasonable. The nonspecificity measurement of FCC is shown in Table 4.2. 

 

Table 4.2 Nonspecificity of input data and FCC with different membership function 

support 

Support of input data  Nonspecificity of input data Nonspecificity of FCC 

5% 0.027 0.0565 

10% 0.0532 0.1092 

15% 0.0785 0.1584 

20% 0.1030 0.2047 

25% 0.1268 0.2491 

 

According to Table 4.2, the nonspecificity measurement of input data increases 

monotonically with the increasing support of its membership function, so does the 

nonspecificity measurements of its FCC. This relationship can be plotted in Figure 4.6, 

the solid line is the regression line that predicts the nonspecificity of FCC based on the 

nonspecificity of input data, this line is represented by Y= 0.00578+1.92799X. 
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Fig. 4.6 Nonspecificity relationship between input data and FCC 

 

Using the same data set as in nonspecificity computation, the fuzziness 

measurement of FCC is summarized in Table 4.3.  

Table 4.3 Fuzziness of input data and FCC with different membership function support 

Support of input data  Fuzziness of input data Fuzziness of FCC 

5% 0.025 0.0532 

10% 0.05 0.1063 

15% 0.075 0.1590 

20% 0.1 0.2113 

25% 0.125 0.2648 
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Observing Table 4.3, when the support of input data increases, both the fuzziness 

measure of the input data and the FCC increase. Also we can find the fuzziness of fuzzy 

correlation coefficient is bigger than the fuzziness of the original data. This relationship 

between the fuzziness of input data and the fuzziness of FCC can be plotted in Figure 

4.7, the solid line is the regression line that predicts the fuzziness of FCC based on the 

fuzziness of input data, this line is represented by Y=0.0046+2.1128X. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.7 Fuzziness relationship between input data and FCC 

 

4.7 Defuzzified Values 

If a crisp correlation coefficient is desired, the fuzzy correlation coefficient can be 

defuzzified to yield a crisp value. This has been done for this test data set. Some of the 

defuzzified values are listed in Table 4.4. 
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Table 4.4 Defuzzified values of different shape membership function 

Data Set  Pearson’s 

method 

Direct method heuristic method random search 

10% 

support(triangle) 

0.9195 0.8911 0.8902 0.9008 

10% 

support(trapezoid) 

0.9195 0.9203 0.9190 0.9185 

10% support (bell 

curve) 

0.9195 0.9040 0.9033 0.9144 

 

All the data sets have membership functions with the same support but different 

shapes. The first column of the above table lists the different cases we have just tested; 

the second column is Pearson’s correlation coefficient for each data set if they are crisp. 

The next several columns provide defuzzified values based on the direct method, the 

heuristic method and the random search method respectively. 

Defuzzified correlation coefficient value of a fuzzy data set is surely different from 

their crisp counterparts. Since it reflects the inherent data characteristic in the context 

of fuzzy environment, it can provide us a more realistic view about the data set.   

Exploring the simulation result, we find that the correlation coefficient membership 

function is in essence a nonlinear mapping from membership function of fuzzy data 

according to extension principle. Since our membership function of the data set is a 

fuzzy number, the correlation coefficient is also a fuzzy number with the domain in the 

interval [-1, +1]. If the fuzzy correlation coefficient is +1 or -1, the two random 
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variables co-vary perfectly. 

 

4.8 Varied Support Data Set  

In the previous simulations we set a fixed support for all data points of a data set. 

Now let us consider a varied support fuzzy data set. We still use the symmetric 

triangular membership function for each data point. Suppose all the data points except 

one have a 10% uncertainty, but one data point has a 20% uncertainty. The resultant 

fuzzy correlation coefficient is presented in the next four graphs for each of the four 

methods. 

 

Fig. 4.8 Varied support fuzzy correlation 

In each of the four cases, the current data set yields a FCC that is between all data 
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points with 10% uncertainty and the case when all data points have 20% uncertainty.  

4.9 Crisp Data and Fuzzy Correlation  

Suppose we are measuring the correlation between two variables x and y drawn 

from a system with measurement errors. Suppose we sample the system with N points 

and compute the Pearson’s correlation coefficient. Now if we draw another pair xN+1, 

yN+1 and include the new pair in the computation of the correlation coefficient, it is 

quite possible that the computed correlation coefficient will be different from the 

original one. In fact if we take a random sample of the collected data points and 

compute the relevant correlation coefficient, we will find that they form some kind of 

distribution for the correlation coefficient values. Hence a single computation of the 

correlation coefficient does not actually reflect the real distribution. The actual 

correlation between the two random variables is best illustrated by the distribution.  

The data set can be thought of as a fuzzy system. The correlation coefficient of the 

data set generated by this system is also fuzzy; we proposed the following method to 

derive a membership function of the correlation coefficient. Suppose the size of the 

data set is N, first pick three data points and compute the corresponding correlation 

coefficient, then continue this process till all the combinations of three data points are 

finished. Then pick 4,5…,N data points and following the same procedure, finally we 

will obtain a whole set of rxy. Since this set of correlation coefficients come from the 

same system, if we consider the rxy as independent variable and normalized the 

occurrence of each rxy as the dependent variable, the relationship should reflects the 

characteristic of the system.  

As we have known, the probability property is a subset of the possibility property 
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for a system, so the normalized distribution function can also be formulated as the 

membership function of the correlation. According to the computation procedure, we 

can see that the distribution is a normal fuzzy set , its α-cut is a closed interval for every 

∈α [0, 1] and the support is bounded within [-1 1], so it is also a fuzzy number. This 

measurement is more informative than a single correlation value since it provides us 

not only with the value but also the occurrence distribution of each value. When α 

equals to 1 that means all the data information must be available to get the correlation, 

the range of the data correlation becomes wider with more missing data, possibility 

level α will decrease in this case. Pedryz’s fuzzy correlation coefficient is also based on 

crisp observations; however, his method measures the correlation of two fuzzy sets so 

that the result relied heavily on the definition of membership functions of those two 

fuzzy sets. No systematic methods for this have been developed up to now. 

This combinatorial problem is one of the classes of “NLP” problem. It is intractable 

for large data set size N. Monte Carlo simulation is used to solve this problem.  

As an example, assume we have a data set y=-0.2x2+5x and the samples are 

corrupted by additive measurement noise which is a zero mean uniform noise with a 

standard deviation σ of 2, and this additive noise can be denoted as µ(0, 42 =σ ) . 

Repeatedly select the data points from the original data set and compute the correlation 

coefficient of the selected data set, and then we can obtain the probability density 

function of the FCC. We refer to this data set as test data set 2. The data set and the 

result are shown in Figure 4.9 and Figure 4.10 respectively.    It can be observed that the 

correlation coefficient of this system is an approximately symmetric distribution with 

the mean FCC value of 0.91.  
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Fig. 4.9 Test data set 2: y=-0.2x2+5x+µ (0, 42 =σ ) 

Fig. 4.10 Correlation probability density function of test data set 2 
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Figure 4.11 is the membership function of the fuzzy correlation coefficient. It is 

observed that this fuzzy correlation can be considered an approximation of the true 

probability density function of the true crisp correlation coefficient. What we also can 

observe is that the correlation coefficient with the presence of the whole data set is 

around but not necessary actually at the peak of the fuzzy correlation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consider the system with additive white Gaussian noise N ( 0=µ , 42 =σ ). We 

refer to this data set as test data set 3. The raw data set and the corresponding 

probabilistic density function of correlation are plotted in Figure 4.12 and Figure 4.13. 

It can be observed that the correlation probabilistic density function of this data set 

follows an approximate Gaussian distribution with mean value 0.91 and Figure 4.14 is 

Fig. 4.11 Fuzzy correlation of test data set 2 
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the fuzzy correlation coefficient of this data set. It is obvious that the fuzzy correlation 

is very close to the probability density function of the input data set correlation. From 

the simulation results on test data set 2 and 3, we believe the fuzzy correlation can be 

used as an approximation of the correlation probabilistic density function of the raw 

data set. This hypothesis can be experimentally verified by testing more data sets. Note 

also that as the added measurement noise increases, the pdf of the crisp correlation 

coefficient (CCC) also gets wider, this of course is expected. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 4.12 Test data set 3: y=-0.2x2+5x+N (0, 42 =σ ) 
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Fig. 4.13 Correlation probability density function of test data set 3 

Fig. 4.14 Fuzzy correlation of test data set 3 
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It can also be observed that the peak of the pdf coincides with the CCC for the 

noiseless case. In this experiment, the CCC for data set y=-0.2x2+5x is 0.92, and the 

peaks of the pdfs in Figure 4.10 and Figure 4.13 are both around 0.92.  

 

4.10 Correlation and Spread 

We want to know whether there is any relationship between the support of the 

fuzzy correlation coefficient and the correlation coefficient of the whole data set.  The 

function we use in this simulation is y=x, with additive zero mean uniform distribution 

noise.  Figure 4.15 and Figure 4.17 are two examples with standard deviation 1 and 2. 

We refer to those two data sets as test data set 4 and test data set 5 respectively. Figure 

4.16 and Figure 4.18 are their corresponding fuzzy correlations.  

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.15 Test data set 4: y=x+µ(0, 12 =σ ) 
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Fig. 4.16 Fuzzy correlation of test data set 4 

Fig. 4.17 Test data set 5: y=x+µ(0, 42 =σ ) 
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Seventeen data sets are generated by y=x with additive zero mean uniform 

distribution noise and the standard deviation of the distribution ranges from 1 to 8. The 

result is plotted in Figure 4.19. The x axis represents the correlation coefficient of the 

whole data set and the y axis represents the standard deviation of the probability 

density function of the correlation coefficient which is computed by crisp data, fuzzy 

correlation method we proposed in 4.9. 

 

 

 

 

 

Fig. 4.18 Fuzzy correlation of test data set 5 
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We can see that when the correlation increases, the spread of the fuzzy correlation 

becomes smaller. It is intuitively reasonable to see that this is the case because for a 

perfect straight line no matter how many data points are missed, its fuzzy correlation is 

always one. But when the data set becomes more widely spread, more combinations 

with different correlation values can be obtained which makes the spread of the fuzzy 

correlation wider. 

 

4.11 Raw Data Set Shape and Fuzzy Correlation Shape 

In test data set 4 and 5, the additive measurement noise is roughly symmetric and 

all data points have the same support in the membership function. As a result, we find 

that the corresponding fuzzy correlation distributions also present roughly symmetric 

Fig. 4.19 Correlation versus spread curve 
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characteristic.  

Figure 4.20 is a data set approximately symmetric to y=x, the shape of this data set 

looks like a heart, and the wider end of the data set is close to the origin of the 

coordinate system and the narrow end extends in both the up and the right direction. 

The data set illustrated in Figure 4.22 has similar orientation and similar shape to the 

data set in Figure 4.20. However the narrow end of the data set in Figure 4.22 is close to 

the origin of the coordinate system and the wide end extends to the up and right 

direction. We refer to these two data sets in Figure 4.20 and Figure 4.22 as test data set 

6 and test data set 7. The fuzzy correlations of test data set 6 and 7 are plotted in Figure 

4.21 and Figure 4.23 respectively. It can be observed fuzzy correlations for those two 

data sets are very close; both take on roughly symmetrical distribution around the peak 

which is between 0.4 and 0.6. The result is within our expectation since both data sets 

are symmetrically distributed to y=x and the deviations from y=x in both data sets are 

very close.   
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Fig. 4 .21 Fuzzy correlation of test data set 6 

Fig. 4.20 Test data set 6 
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Fig. 4.22 Test data set 7 

Fig. 4 .23 Fuzzy correlation of test data set 7 
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Figure 4.24 is a data set with quadratic form; we refer to this data set as test data set 

8. Figure 4.25 is its fuzzy correlation plot. It is obvious that the fuzzy correlation of this 

data set is strongly skewed. In contrast to this data set, the data set in Figure 4.26 shows 

the skewing in the opposite direction to Figure 4.24, and its corresponding fuzzy 

correlation also has the opposite skewing direction to Figure 4.25. The reason for this 

phenomenon is that in Figure 4.24, most of data points are positively correlated and we 

only get negative correlation cases occasionally, so there is a peak on the high 

correlation side and a long tail towards the left side of x axis. However in Figure 4.26, 

the situation is exactly the contrary. From these simulation results, we can summarize 

that there is a relationship between the shape of the original data set and the shape of 

the fuzzy correlation. It is therefore positive to estimate the distribution of fuzzy 

correlation according to its original data set although a lot of research work must be 

performed in this direction. 
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 Fig. 4 .25 Fuzzy correlation of test data set 8 

Fig. 4 .24 Test data set 8: y=-0.5 (x-10)2+10+x 
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Fig. 4 .26 Test data set 9: y=0.5(x-10)2+10-x 

Fig. 4 .27 Fuzzy correlation of test data set 9 
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4.12 Summary  

In this chapter, we designed a number of test data sets, and the fuzzy correlation 

coefficient is computed on those data sets. Then we perform a series of simulation to 

compare the four methods which are proposed in chapter 3. Firstly empirical execution 

time is plotted against the size of data set for four methods; it was found that direct 

method needs much more time in the case of big size data set. Next we change the 

memberships with different supports and different shapes, fuzzy correlation 

coefficients are plotted under all these cases and we found that the fuzzy correlation 

coefficient reflects the changes in the membership function of the original data set. In 

order to see if the computed fuzzy correlation coefficient satisfies the mathematical 

properties presented by chapter 3, nonspecificity measurement, fuzziness measurement 

and defuzzified value are computed and tabulated. Observing those results, it can be 

concluded that the simulation results meet the theoretical expectations. The method to 

generate the fuzzy correlation coefficient from a crisp data set is proposed, the result is 

a probability density function of the correlation coefficient of the crisp data set when 

some information is missing. Test data sets are designed with different type random 

noise and different shape to explore how those factors impact the corresponding fuzzy 

correlation. It turns out that the support of fuzzy correlation is in inverse proportion to 

the correlation coefficient of the whole data set. It is also observed that if the original 

data set is in symmetric shape, then the fuzzy correlation takes on roughly symmetric 

distribution; otherwise, the membership function of the fuzzy correlation is askew 

distributed. 
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CHAPTER 5 
 

Background of Fuzzy Regression 
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Fuzzy regression provides an alternative modeling approach to evaluate the 

relationship between the independent variables and the dependent variables in typical 

data mining applications when the data on hand is vague and uncertain. Such 

phenomenon is particularly significant for the situations when a large amount of data is 

required to show the underlying pattern. However, not much research has been done on 

this issue. Because of its increasing importance in the industries, we investigated the 

different types of fuzzy regression models based on whether the input parameters, the 

regression coefficients, or the output parameters are fuzzy or not. The different 

regression models can be applied to a variety of applications. The purpose of this 

chapter is to revisit the fuzzy regression models of the ongoing studies and to discuss 

issues which have yet to be done in this area. This discussion is not meant to be 

exhaustive but intended to point out some of the most important considerations. 

In ordinary regression analysis, the unfitted errors between the regression model 

and observation are generally assumed to be random error with normal distribution 

having zero mean and constant variance. In fuzzy regression analysis, the unfitted error 

is viewed as the error of model structure. A handful of studies addressing regression 

analysis for fuzzy data have been reported. In the next several sections, I will review 

some of the landmark work by Tanaka [47-53], who initially developed the idea of 

fuzzy regression. His result powerfully excites a new application area for fuzzy data 

mining. Other main contributors in this area include Celmins [66, 67], Diamond [69], 

Ishibuchi [51, 53, 70, 72, 73], Savic and Pedrycz [63] etc.  
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5.1 Compatibility of Two Fuzzy Sets 

Given two fuzzy sets A and B, the extension principle allows evaluating the 

compatibility of the fuzzy set A with a fuzzy set B. If com (A, B) denotes this 

compatibility, we could have 

),min(sup),( BABAcom
Ry∈

=  

The compatibility concept will be used in comparing two fuzzy sets in the 

definition of fuzzy regression model. 

 

5.2 Crisp Input, Crisp Parameter and Crisp Output 

The derivation of the regression equation is based on the principle of minimum 

mean square error. Given paired samples {(xi, yi)}, i=1,…,n, where xi belongs to the set 

of independent variable X and yi belongs to the set of dependent variable Y, n is the 

size of data set, the linear regression model postulates that [81] 

                                                     ε++= bXaY                     (5.1) 

where ε  is often referred as residual and it is a random variable with zero mean.  The 

coefficients a and b are determined by the condition that the sum of the square residuals 

is as small as possible. The regression model is illustrated in Figure 5.1. 
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Fig. 5.1 Classical regression model illustration 

 

The following assumptions are widely used in formulating a classical regression 

problem: 

1. The mean value of ε  is assumed to be 0. i.e., E (ε ) =0.  

2. The variance of ε  for each sample of X is the same. Namely 
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3. The samples are independent, so the value of the ε s for two different samples 

of X are uncorrelated, i.e.   
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For a particular xi, the prediction of yi can be computed as 

ii bxay +=ˆ  

Our goal is to find the regression coefficients a and b that minimize the total 

squared residue   ∑ −−= 2)( bXaYS . If we take the partial derivatives and set them 

equal to 0, the regression coefficients can be computed by solving the resulting 

equations. The formulas for b and a are shown in (5.2). 
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In the case of multiple linear regressions, there are several independent variables 

used to predict a single dependent value with a linear combination. Suppose we have 

p-1 independent variables (X1,…,Xp-1), a single dependent variable Y, and n 
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observations. The samples can be describe as in the form of a vector 

{(x11,…,x(p-1)1,y1),…,(x1n,…,x(p-1)n, yn )}, then a general form of a multiple linear 

regression model can be written as 

εβ += XY  

where Y is an 1×n vector of observations, X is an pn× matrix from the given samples 

where the first column is all 1s and the other columns are xj1… xjn for j=1… p-1. β is a 

1×p  vector of regression coefficients, and ε  is an 1×n vector of residual errors. The 

regression coefficients can be computed based on the least square principle as  

)()( 1 YXXX ′′= −β  

 So the residual can be computed as YXYY −=−= βε ˆ  for any given X.  

One of the most widely used statistics that tells how a regression model can help 

explain the variance of the model is the coefficient of determination. It is also called the 

R2 statistic, and it is the ratio of the total regression variance divided by the total 

variation. In fact R2 provides the proportion of the total variation that could be 

explained by the regression model.  
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                                                  (5.3) 

The coefficient of determination equals to the square of the correlation coefficient 

of the data set. Its value may vary from zero to one. However it has the advantage over 

the correlation coefficient in that it is interpreted directly as the proportion of variance 
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in the dependent variable that can be explained by the regression equation.  

 

5.3 Crisp Input, Crisp Parameter and Fuzzy Output 

In this case, the input data is crisp, and we try to use crisp regression coefficient to 

figure out the relationship between the input data and output data and to produce a 

fuzzy output. To my knowledge, this case remains completely uninvestigated up to 

now. We will explain more about this case in chapter 6.  

Figure 5.2 is an illustration of this type of fuzzy regression model. The regression 

result computed with classical method is denoted by the dotted line, and the pair of 

solid lines illustrates the interval that regression equations could lie. 

 

 

 

 

 

 

 

Fig. 5.2 Illustration of crisp linear regression 
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5.4 Crisp Input, Fuzzy Parameter and Crisp Output 

Fuzzy linear regression analysis was introduced by Tanaka [47], unlike the 

ordinary regression model, the unfitted errors between the fuzzy regression model and 

the observed data are viewed as the fuzziness of the model structures. The goal of the 

fuzzy regression analysis is to find a regression model that fits all observed fuzzy data 

within a specified fitting criterion. Different fuzzy regression models are derived 

according to different fitting criterion. Figure 5.3 is an illustration of this fuzzy linear 

regression model. The small circles in Figure 5.3 represent crisp data points, the dotted 

line is the regression line computed by the classical method, and the pair of solid lines 

denotes regression lines derived by the method we will present in this section. 

 

 

 

 

 

 

 

Fig. 5.3 Illustration of crisp input, fuzzy parameter, crisp output linear 
regression 
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Tanaka’s regression coefficients are fuzzy numbers, so the predicted value is also a 

fuzzy number.  

XAAY 10
~~ˆ +=  

where ( )iii scA ,~
=  is described as a symmetrical triangular membership function 

which has the center ci and the fuzzy half-width si. 

Given the crisp input-output data (xj, yj), Tanaka formulated the fuzzy regression 

problem based on the minimum fuzziness principle which means that the uncertainty 

within the fuzzy prediction should be minimized; the crisp output and the fuzzy 

prediction should be compatible at some given possibility level. His method can be 

formulated as the following linear programming problem: 

Minimize         ∑
=

=
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j
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t xsJ
1

 

St.                     jj
t

j
t yxshxc ≥−+ )1(  

                             jj
t

j
t yxshxc ≤−− )1(           j=1, 2… m     

             0≥is ,                                    i=1, 2…n           (5.4) 

where m is the size of data set, n is the number of independent variables, xj is a vector 

{xj1,xj2,…,xjn}which denotes j-th observation. s is a vector {s1,s2,…,sn}which denotes 

the half spreads of fuzzy regression coefficients, c is a vector {c1,c2,…,cn}which 

denotes the center of fuzzy regression coefficients. h is a possibility level 

predetermined by a decision-maker. 
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Problems connected with this approach are the influences of different trends and 

the problem of outliers. In order to overcome these limitations, Tanaka and Ishibuchi 

[51, 53] introduced an interval regression based on the Quadratic Programming (QP) 

approach. They claimed in [51] that the obtained result by QP has better central 

tendency than the results of former studies, and this approach can be effectively applied 

for data set with outliers. The model can be formulated as following: 

∑ ∑
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         0≥ic                         i=0,1,…,n          (5.5) 

where h is the possibility level on which the crisp output data is included in the 

predicted interval, k1 and k2 are two weighting factors and they are used to balance the 

least-squares principle and the minimum fuzziness fitting criteria. The meanings of 

other parameters are the same as in (5.4). 

Tanaka’s model can be reduced to a crisp least square regression equation when 

there is no fuzziness in the system. The weights k1, k2 take an important role in the 

regression model. Tanaka proposed two kinds of method to remove an outlier. If a 

person has enough knowledge on the data set, he or she can give different h-values to 

each data and determine the acceptable h-level set of estimated fuzzy output.  Another 

way is to divide the data in two groups: reliable and suspicious groups. The dividing 
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criterion is based on the standard deviation of the data set. By dividing into two groups 

different strategies can be applied for those groups. 

To compare fuzzy regression analysis and statistical analysis of conventional 

regression model, Tanaka and Ishibuchi [53] proposed an exponential possibility 

regression, in which the result of fuzzy regression corresponds to the probabilistic 

regression. 

The main shortcoming of all these methods is that the concept of least square is not 

utilized. It is intuitively reasonable that the fuzzy regression model should approach the 

conventional regression model when the fuzziness of the system tends towards zero.  

 

5.5 Crisp Input, Fuzzy Parameter and Fuzzy Output 

Different aspects of fuzzy least-squares regression were investigated by Celmins 

[66, 67], Diamond [69], Savic and Pedrycz [63] and Chang and Ayyub [45, 46]. 

Celmins [66] proposed an approach for fuzzy least-squares regression based on the 

compatibility measurement between the observed data Y (j) and a fitted model Yj. The 

objective of data fitting according to this approach is to find a model such that the 

overall compatibility between the output data and the fitted model prediction is 

maximized. 

Savic and Pedryz [63] formulated the fuzzy regression method by combining the 

least-squares principle and the minimum fuzziness criterion. Their method is 

performed in two consecutive steps. The first step uses ordinary least-squares 

regression to find the fuzzy center values of the fuzzy regression coefficients. The 
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second step uses the minimum fuzziness criterion to find the fuzzy widths of the fuzzy 

regression coefficients. 

Another fuzzy regression method is called the interval regression proposed by 

Ishibuchi [70]. The fuzzy regression coefficients are determined such that all fuzzy 

outputs are within a fuzzy regression model. The constraint in this model 

becomes )( jj xFY ⊂ , where Yj is the j-th fuzzy number output and F (xj) is the j-th 

fuzzy prediction. 

In this regression model, we consider the observations {xj, Y(j)} where xj is the crisp 

independent data and Y(j) is the fuzzy number output data. Let us assume that it is 

symmetric triangular fuzzy number coefficients for convenience. The coefficient Ai is 

denoted by its center ci and width si as Ai= (ci,si) as shown in Figure 5.4. Ai can also be 

described as ),,( U
ii

L
ii acaA =  where                           . 

2
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Fig. 5.4   Symmetric triangular fuzzy number coefficient Ai 

 

The aim of this regression problem is to find the regression coefficients such that 

the fuzzy linear function fits the given fuzzy data as best as possible. Two criteria of 

goodness are usually employed. According to the first criterion, the total difference 

between the areas of the actual fuzzy observation Y(j) and the areas of the fuzzy number 

Yj obtained from the regression equation should be minimized. According to the 

second criterion, the fuzzy data Y(j) and Yj should be compatible at least to some given 

degree. 
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In the case of symmetrical triangular fuzzy number coefficients, the predicted 

fuzzy output should also be a fuzzy number with symmetrical triangular membership 

as shown in Figure 5.4. The fuzzy data with the dotted line triangular membership is 
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the fuzzy output.  The aim of the regression model is to minimize the difference 

between the prediction and observation with the compatibility level at certain 

acceptable level. 

According to the fuzzy arithmetic principle for fuzzy numbers, the fuzzy linear 

regression model can be calculated as follows [47]: 

)...,...())(),(()( 110110
)(

nnnn
sc xsxssxcxccxfxfxFY ++++++===  

where )()( xf c
and )()( xf s

are the center and the spread of the fuzzy linear model F(x) 

respectively. 

If the fuzzy data points (xj,Yj) j=1, 2… m, are given, the constraint condition can be 

formulated as an inclusion relation [53]. 

jnhnjhhhjhj xAxAAxFY ][...][][)]([][ 110 +++=⊂             j=1, 2… m 

This inclusion relationship is illustrated in Figure 5.5. We need to be cautious that 

this relationship does not hold for all possibility levels. The described fuzzy regression 

problem can be formulated in terms of the following formula: 

         Min  ∑
=

m

j
j

s xf
1

)( )(  

    St. hjhj xFy )]([][ ⊂            j=1,2,…,m  (5.6) 

where h is the preset threshold for inclusion relationship between the predicted value 

and the observations. yj is the j-th observation, and F(xj) is the j-th prediction. 
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Fig. 5.5. Fuzzy regression model with symmetric triangular coefficients 

 

Non-Symmetric Fuzzy Number Coefficients 

If the regression coefficients have nonsymmetrical membership function, the 

output from the fuzzy linear regression can be calculated as a non-symmetric fuzzy 

number by the fuzzy arithmetic operations. In order to determine the non-symmetric 

fuzzy number coefficients                               , i=0, 1… n, the following method is 

proposed by Diamond [69]: 

1. Determine the center of the fuzzy linear model by least square regression. 

2. Determine the lower limit and the upper limit of the fuzzy linear model by 

solving the following linear programming problem. 
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   Or  hjj xFy )]([⊂              j=1,2,…,m                    (5.7) 

where m is the size of the data set, n is the number of independent variables, h is the 

preset threshold for inclusion relationship between the predicted values and the 

observations. yj is the j-th observation, and F(xj) is the j-th prediction. 

Figure 5.6 is an illustration of the regression model of this category. Since the data 

point has the crisp input, fuzzy output characteristic, it is represented with a short 

vertical line which is a crisp value in X axis and an interval in Y axis. The dotted line 

denotes the regression line computed by the classical method and the pair of solid lines 

is the regression model derived from the method we presented in this section.  

 

 

 

 

 

 

 

 

 

 

Fig.5.6 Illustration of crisp input, fuzzy parameter, fuzzy output linear 
regression 
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5.6 Fuzzy Input, Crisp Parameter and Crisp Output 

To the best of my knowledge, nobody has worked on this topic. The situation could 

be illustrated in Figure 5.7. The horizontal short lines represent the fuzzy input while 

the output is crisp. The dotted line describes the regression equation we are supposed to 

get. In some applications, the input data has a certain amount of uncertainty or 

measurement error, hence the input is fuzzy. But the output is categorical, hence the 

output is crisp. 

 

 

Fig. 5.7 Illustration of fuzzy input, crisp parameter, crisp output linear regression 

 

 

5.7 Fuzzy input, Crisp parameter and Fuzzy output 

This case is rather common as a direct extension of the traditional regression case 

X 
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and is also called the fuzzy least square method [69, 75]. If uncertainty is to be 

accommodated, then fuzzy input is used in a regression model with crisp parameters, 

the output of this model is clearly fuzzy. 

In the case of fuzzy input data, we need to consider fuzzy least-squares regression 

model. It could be expressed by the form: 

nn XaXaXaY +++= ...2211  

where the {X1,X2,…,Xn} are fuzzy independent variables and {a1,a2,…,an} are 

real-valued parameters. The difference between the observations and predictions can 

be formulated as below. 
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where m is the size of the data set, )( jY  and jY  are j-th observation and prediction 

respectively. Our goal is to minimize J and at the same time let the fuzzy prediction and 

the fuzzy observation be compatible to a given degree. 

If we assume that the membership function of fuzzy data is in the form of 

symmetric and triangle shape with center {x1,x2,…,xn}or {y1,y2,…,yn} and half spread 

{s1,s2,…,sn} and the size of the data set is m, j is the index of observations, the 

regression model can be written as: 
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Another method is to convert both fuzzy input and fuzzy output to crisp values by 

some kind of defuzzified method, and then apply the classical regression method to 

obtain the crisp regression coefficients. 

Figure 5.8 is an illustration of the regression model of this case. Since the data point 

has the characteristic of fuzzy input and fuzzy output, it is reasonable to use a small 

rectangle to represent a data point which is an interval in both X and Y axis. The dotted 

line is computed by the classical method and the solid line is derived by the regression 

method we presented in this section. 

 

 

Fig. 5.8 Illustration of fuzzy input, crisp parameter, fuzzy output linear regression 

 

5.8 Fuzzy Input, Fuzzy Parameter and Crisp Output 

No literature is available on this topic as far as I know. This situation could be 
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illustrated in Figure 5.9. The horizontal short lines represent the fuzzy input and crisp 

output data, the dotted line describes the regression equation obtained by applying 

convention crisp regression method  under the condition that  we only use the α=1 data 

point of the fuzzy input data as the independent variable. The pair of solid lines is the 

fuzzy regression equations we want to get. This case is similar to the fuzzy input, fuzzy 

parameter and fuzzy output case except the output is defuzzified data. 

 

Fig. 5.9 Illustration of fuzzy input, fuzzy parameter, crisp output linear regression 

 

 

5.9 Fuzzy Input, Fuzzy Parameter and Fuzzy Output 

In 1992, Sakawa and Yano [78] considered the fuzzy linear regression models with 

fuzzy outputs, fuzzy parameters and also fuzzy inputs. They formulated the 

multiobjective programming methods for the model estimation along with a 
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linear-programming-based approach. Figure 5.10 is an illustration of this model; the 

pair of solid lines is derived regression equations. 

 

Fig. 5.10 Illustration of fuzzy input, fuzzy parameter, fuzzy output linear regression 

Assume the fuzzy input data, fuzzy output and fuzzy parameter all have symmetric 

triangular membership functions. The regression equation can be formulated as 

nn XAXAXAAY ++++= ...22110  

where Ai(mi,ci), Xi(ai,si) and Y are fuzzy numbers. 

The objective is based on the minimum fuzziness principle, we want to make the 

uncertainty of the fuzzy predictions as small as possible, and the constraints are 

generated by considering the set inclusion relationship between the fuzzy output and 

the fuzzy prediction to be compatible at least to a given degree. The following 
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mathematical model is proposed by Sakawa and Yano. 
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where m is the size of data set, R
j

c
j

L
j YYY ,, are the left leg, the center and the right leg of 

the j-th fuzzy prediction; h is the preset threshold for inclusion relationship between the 

predicted value and the observation. yi is the j-th observation, and F(xj) is the j-th 

prediction., j is the index of observations. 

 

5.10 Fuzzy Nonlinear Regression 

Fuzzy nonlinear regression (FNR) modeling differs from classical nonlinear 

regression in that the output of a FNR model is a fuzzy number. The assumption of a 

linear relationship between the variables is not always appropriate; instead nonlinearity 

may be the proper relationship. This can be detected by the lack of fit by the model or 

the data set scatter plot. 

Fuzzified neural networks which have real number inputs and fuzzy number 

connection weights are usually used to extend the fuzzy linear regression methods to 

fuzzy nonlinear regression analysis [71-73]. The network relationship can be 

formulated as follows:  

Input units:     pipi xO =  ,   i=1,2,…,n 
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Hidden units:   )( pjpj NetfO = , j=1,2,…,nH 
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         (5.10) 

 where real numbers and fuzzy numbers are denoted by lowercase and uppercase 

respectively. The connection W and biases θ are fuzzy numbers, n is the number of 

input unit, nH is the number of hidden unit. 

 

5.11 Summary 

The fuzzy regression model can be used to evaluate the functional relationship 

between the dependent and independent variables in a fuzzy environment. Fuzzy 

regression models can be categorized into eight classes based on the fuzzy (or crisp) 

characteristic of the input, fuzzy (or crisp) parameters and fuzzy (or crisp) output data. 

In general, there are two approaches in the analysis of fuzzy regression models: 

minimum fuzziness methods and the fuzzy least-squares methods. Those approaches 

are used to model fuzzy regression equations for a variety of cases.     
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Although statistical regression has many applications, problems with regression 

can occur in many situations. For example, the number of observations is inadequate, 

there is difficulty verifying distribution assumptions, there is vagueness in the 

relationship between input and output variables, or there is ambiguity associated with 

the event etc. These are the situations that a fuzzy regression has to address. Based on 

the components of the regression equations, there are eight categories of regression 

models. We have discussed the previous work already in the previous chapter. In this 

chapter we propose a method to solve the fuzzy linear regression problem, the 

presented approach is more efficient and the result is more informative than the 

classical model. We have also extended the minimum fuzziness principle to the fuzzy 

input, crisp parameter, crisp output case and the fuzzy input, fuzzy parameter, crisp 

output case which are rarely discussed in the literature.  

 

6.1 Crisp Input, Crisp Parameter and Fuzzy Output 

6.1.1 Introduction 

Given a crisp data set, it is a common practice to try to apply a regression model to 

explore the relationship between the independent variables and the dependent variables. 

The classical regression model assumes that the observation errors follow the normal 

distribution and the fitting criterion is the minimum mean square error principle. In this 

section we will present a new regression method which generates a fuzzy prediction. 

Assume that we have a fuzzy system with N crisp input and fuzzy output 

observations (X, Y). Firstly let us consider that all data information is available, so 
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there is no uncertainty in this system. We can set the possibility level α of the prediction 

to be 1. A regression model can be derived with classical method and the corresponding 

output data can be provided with this model. Next consider the case when one of the N 

data information is missing, a new regression equation will be obtained based on those 

remainder N-1 data points. There could be N new regression equations for this case and 

N output data are generated with those models. Next, assume two data points are 

missing, in which case N*(N-1)/2 new regression equations and new predictions will 

be generated…, repeat this process till only three data points are left. Summarize the 

output results and put them in histogram format by setting the output value as the x-axis 

and the number of occurrence of each value as the y-axis. Finally, one can obtain the 

probability density function of the prediction data which can be seen as the 

membership function of the output fuzzy data after normalization. It is obvious that this 

output fuzzy data is more informative than the traditional crisp prediction. In addition, 

in classical regression theory, we have to collect many data samples to satisfy the 

statistical condition; however, only a single data set realization is needed in this 

method. 

Figure 6.1 shows an illustration of the fuzzy number prediction computed by this 

method. When α equals to 1, that is the case when all the data information are available. 

There is no vagueness in the system. So the prediction value is the same as the one 

generated by the classical regression model. Then when more and more data 

information becomes unavailable, the uncertainty of this system becomes bigger and 

bigger. We can see that the prediction value is no longer a single value but an interval. 

This fuzzy number reflects the inherent data set characteristic which is determined by 
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the system and it gives us more information than the classical regression models. 

Fig. 6.1 Illustration of fuzzy number prediction 

 

6.1.2 Algorithm Description 

From the above description, our goal is to explore the correlation of a data set under 

the condition that some data points are missing. Assume the size of the data set is n, and 

we consider only those subsets of the original data set which have at least three data 

points, then the number of subsets we could obtain should be: 
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 where n
iC  denotes the number of combinations of n things taken i at a time. We need 

to compute the correlation coefficient for each subset; the results can be plotted as the 

probability density function (pdf) of the correlation coefficient of the original data set.  
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We can see that it can be classified as a combinatorial problem. It has intractable 

characteristic for large data set. We will use the Monte Carlo based method to obtain an 

approximate solution for this problem. 

The number of possible combinations for a subset is determined by the number of 

data points which are missing; for example, we can get  nC n
n =−1   possible 

combinations for subsets which miss one data point from the original data set. If we 

want to consider subsets which miss two data points, the possible combinations equals 

to 
2

)1(
2

−
=−

nnC n
n  . In order to let Monte Carlo sampling reflect the possible 

combinations of a subset, our strategy is to let the number of subsets that are taken into 

the computation is related to the number of missing data points. The size of the subset 

under consideration is denoted by m, and the number of subsets (with the same size) we 

use in the computation is referred as K. 

In summary, assume that the original data set is P= {(x1, y1), (x2, y2)… (xn,yn)}, n is 

the size of the original data set, we have the following steps: 

1. Initialize the size of the subset: let m=n 

2. Initialize the number of loops: count=1 

3. Randomly pick up m data points from the original data set P to form a subset  Q 

4. Generate a regression model with the classical method on the current data set Q  

5. Increment count, record the regression model computed in (4) 

6. Repeat step (3) through (5) until count=K 

7. Decrement m 

8.  Repeat step (2) through (7) until m=3  

9. Compute the fuzzy number prediction with the recorded regression coefficients 
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10. The output result is normalized and plotted in a histogram format. 

Notice that when the number of missing data points increases, there are more 

possible combinations available to pick out a subset Q from the original data set P. It is 

desired to consider K as a variable that is in proportional to the theoretic possible 

combinations.   

 

6.1.3 Computational Complexity 

Let us count the number of additions, subtractions, multiplications, divisions and 

square root operations as individual operations. Assume that the current data set size is 

m, then according to (5.2), in order to obtain the regression coefficients, we need 

(m+1)+ (m+1) + (2m+m+1) + (2m+m+1) +3=8m+7 operations for computing the 

classical regression. Step (5) and step (7) need 2 additional operations. So the total 

number of operations is 
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Hence the computational complexity of the method presented in 6.1.2 is O (Kn2).  

 

6.2 Fuzzy Input, Crisp Parameter and Crisp Output 

6.2.1 Introduction 

This combination of fuzzy regression model has not been addressed by the present 

literature. In fact, this problem can be solved by extending the minimum fuzziness 
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fitting criterion to this specific case. Assume that the fuzzy input data has the 

symmetric triangular membership function with ci as the central point and si as the half 

spread. The regression equation can be formulated as 

                          nn XaXaXaaY ++++= ...22110                                     (6.1) 

where n is the number of independent variables, {a0, a1… an } are the crisp regression 

coefficients, {X1,X2,…,Xn} are the fuzzy predictor variables and Y is the predicted 

variable.  

If we assume that the membership function of the fuzzy input data is in the form of 

symmetric and triangle shape with center {c1,c2,…,cn} and half spread {s1,s2,…,sn},  m 

is the size of the data set, j is the index of the observations. Based on the minimum 

fuzziness principle, we can minimize the uncertainty in the prediction data. The 

following mathematical model is proposed. 
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where J is the summation over spreads of all fuzzy prediction, yj is j-th crisp output data. 

The constraints indicate the inclusion relationship between the crisp output and fuzzy 

prediction, in this case, the crisp output should be located in the interval which is 
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generated by taking a cut on the membership function of the fuzzy prediction at the 

possibility level h. Figure 6.2 is an illustration of this inclusion relationship, the triangle 

denotes a fuzzy prediction, after taking a cut at the possibility level h, we get an interval 

[ j
t

j
t sahca )1( −− , j

t
j

t sahca )1( −+ ]. The crisp output observation represented by 

a small circle should locate at this interval. 

 

 

Fig. 6.2 Illustration of inclusion relationship 

 

The selection of h is critical in fuzzy regression modeling. If h is too big, it will be 

hard to generate a precise model for the decision maker, but if h is too small, some 

observations could not be covered in this interval and the decision maker will be too 

optimistic about the estimation. Thus an appropriate value of h is desired. 
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Of course the membership functions of input data could be given in another shape, 

but we can use the same regression model described by (6.2). We want to minimize the 

overall system fuzziness under the condition that the observations have to be within 

intervals which are generated by fuzzy linear regression models at some possibility 

level. 

 

6.2.2 Computational Complexity 

According to the above discussion, the fuzzy input, crisp parameter, crisp output 

type of fuzzy regression problem can be formulated as (6.2). Observing (6.2), both the 

objective function and the constraints are in linear forms. So this is a linear 

programming (LP) model. The Simplex method is widely used to solve LP problem. 

Assume we have a standard form LP problem which has m equality constraints and 

n variables, the computational needed by the Simplex method can grow as fast as 2m. 

People also have found some laboratory cases where the Simplex method exhibits its 

exponential growth with the size of the data set. However in practice, the Simplex 

method for linear programming has usually worked pretty well (see Appendices), its 

computational complexity seems to grow linearly with the size of the data set.  
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6.3 Fuzzy Input, Fuzzy Parameter and Crisp Output 

6.3.1 Introduction 

Assume the fuzzy input data has a symmetric triangular membership function with 

ci as the central point and si as the half spread. The regression equation in this case can 

be formulated as 

nn XAXAXAAY ++++= ...22110                                     (6.3) 

where Ai(ci,mi), Xi(xi,si)  i=1,2…,n and Y are fuzzy numbers. 

The approach for this method is based on the minimum fuzziness principle, our 

goal is to minimize the uncertainty of the fuzzy prediction, the crisp output and the 

fuzzy prediction should be compatible to some degree. The following mathematical 

model is proposed. 
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where R
j

c
j

L
j YYY ,, are the left, the center and the right leg of the j-th fuzzy prediction, m 

is the size of the data set, the parameter h is the value determined by the decision-maker, 

and yj is the j-th crisp output. 

The fitting criterion of this problem is to minimize the fuzziness of the predicted 
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data. Since both the input and the parameters are fuzzy numbers, the prediction is no 

longer in a triangular shape.  We have 
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   j=1, 2…, m            (6.7) 

where xji is the i-th component of j-th input data. 

We can see that when both regression coefficients and input data become crisp, i.e. 

mi=0 and si=0, i=1,2…,n. the fuzzy prediction degenerates to a crisp value which can 

be computed by the classical regression method.  

In order to satisfy the constraints in (6.4), the crisp output has to be included in the 

interval by taking a cut on the membership function of the fuzzy prediction. Figure 6.3 

is an illustration of this inclusion relationship; we can see that the membership function 

of the fuzzy prediction is not in a triangular shape. Crisp output yi which is represented 

by a small circle should locate at the interval ],[ R
j

L
j YY  and this interval is generated by 

taking a cut on the membership function of the fuzzy prediction at the possibility level 

h.  
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Fig. 6.3 Constraints of fuzzy input, fuzzy parameter and crisp output case 

 

6.3.2 Computational Complexity 

The model in (6.4) is also a linear programming model. We can use the Simplex 

method to solve the problem. If the size of data set is m, the computational complexity 

of the Simplex method could be 2m . However, this method works pretty well in 

practice, the computation seems to grow linearly with the size of the data set. 
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Simulation of Fuzzy Regression 
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Numerical examples are used in this chapter to illustrate the fuzzy regression models 

that are discussed in chapter 5 and chapter 6. For convenience, we assume all membership 

functions of the fuzzy data are in the symmetric triangular shape. 

 

7.1 Crisp input, Crisp parameter and Crisp output 

This type is the classical linear regression case. Assume we have a data set Y=1+2X 

and the samples are corrupted by additive measurement noise which is a zero mean 

Gaussian noise with a standard deviation σ of 2, and this additive noise can be denoted as 

µ(0, 42 =σ ) ,  we modify this data set to introduce abnormal values. This data set is shown 

in Table 7.1; the 6th data point is an abnormal value. 

Table 7.1 Crisp input, crisp parameter and crisp output test data set 

x 1 2 3 4 5 6 7 8 9 10 

y 1.2 6.2 8.0 12.1 12.3 25.2* 15.7 14.9 18.9 20.9 

where * indicates an outlier which is an the abnormal value 

 

Based on the classical linear regression method, the regression line can be computed 

from the data set and is shown in Figure 7.1. In the figure, the small circles denote data 

points and the dash-dotted line is the regression model. The computed regression line is Y 

= a + b X where a= 2.72 and b= 1.97. The determination of coefficient R2 = 0.83 which 

means the regression line only can explain around 83% data variation which is not very 

satisfactory. 

In Figure 7.1, the dashed line pairs represent the lower limit and the upper limit of the 
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95% confidence bands; a 95% confidence band implies a 95% chance that the true 

regression line fits within the confidence bands. Observe that in Figure 7.1, it is apparent 

that the 6th data point is an outlier and it has a big impact on the value of regression 

coefficients. 

 

 

 

 

 

 

 

 

 

Fig. 7.1 Crisp input, crisp parameter, crisp output linear regression 

 

Now suppose we removed the outlier and recomputed the regression line. The 

regression coefficients for the new regression line is a= 1.93 and b= 1.89, the regression 

equation is Y=a+bX. The determination of coefficient R2 = 0.97, the regression line now 

reflects the data variation more precisely. The new result is shown in Figure 7.2.  We can 

see that the 95% confidence interval of this case is much narrower after the outlier is 

removed. This is reasonable since now the regression line is very close to the true 

relationship and there is little variation in the estimation of regression coefficients. 
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Fig. 7.2 Crisp input, crisp parameter, crisp output regression-outlier removed 

 

The comparison of the observed output y with the predicted output y)  with this model 

is shown in Table 7.2. The first row of Table 7.2 is the input data, the second row is the 

observed output values, and the third row is the predicted output values. We can see that 

the predicted values are very close to the observations.  

 

Table 7.2 Comparison between observations and predictions (CCC) 

x 1 2 3 4 5 6 7 8 9 10 

y 1.2 6.2 8.0 12.1 12.3 25.2 15.7 14.9 18.9 20.9 

y)  3.8 5.7 7.6 9.5 11.4 13.3 15.2 17.0 18.9 20.8 
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7.2 Crisp Input, Crisp Parameter and Fuzzy Output 

Suppose we have a crisp input, fuzzy output data set generated by a system. The data 

set can be described by the equation y= 1.5×x with additive white Gaussian noise N (0, 4). 

We want to know the distribution of the prediction. The raw data set is shown in Figure 7.3. 

Let us set x=16 and see the prediction provided by the model. The result is plotted in Figure 

7.4. 

If we apply the classical regression model to this data set, our prediction for x=16 is 

23.77, and the 95% confidence level prediction is at the interval [18.86   28.67]. The fuzzy 

regression prediction gives us the whole distribution of the prediction instead of a single 

value so it is more informative than the classical statistical method. The defuzzified 

prediction value of this case is 23.72 and this value is very close to the classical regression 

prediction however the distribution has provided more information. In addition to that, in 

classical regression theory, it is assumed that the observation errors follow zero mean 

Gaussian distribution; we can see that the distribution shape in Figure 7.4 gives a good 

approximation to the distribution derived by the classical method in Figure 7.5. We have to 

collect many groups of data to get the distribution with the classical method; however, only 

a single data set realization is needed when this proposed method is used. 
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Fig. 7.3 Crisp input, crisp parameter, fuzzy output test data set 

Fig. 7.4 Fuzzy regression prediction at X=16 
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Fig. 7.5 Classical regression prediction at X=16 

 

7.3 Crisp Input, Fuzzy parameter and Crisp output  

In this experiment we will use the data set given by Table 7.1. If we consider the data 

variation as a result from the fuzziness of the system instead of the randomness of the 

process, we may need to consider a fuzzy regression coefficient model. Crisp input, fuzzy 

parameter, crisp output model we presented in (5.4) is applied in this case, let h=0, the 

fuzzy regression coefficients with triangular shape membership functions are computed 

as )0,72.2(~
0 =A  and )77.1,97.1(~

1 =A , the regression equation is XAAY 10
~~

+= . 

The result is shown in Figure 7.6. In Figure 7.6, small circles are original data points, 

the dash-dotted line denotes the regression line computed by the classical method and the 
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pair of dashed lines represents the fuzzy regression model. We can see that the fuzzy 

regression lines include most of the observations. It is not surprising outliers have more 

impaction on the fuzzy regression model than the crisp regression model since it is the 

common practice that the decision-maker wants most observations are included in the 

estimated intervals.  

 

 

 

 

 

 

 

 

 

 

Again let us remove the outlier and the resultant regression lines are shown in Figure 

7.7. The fuzzy regression coefficients with triangular shape membership functions are 

computed as )2,93.1(~
0 =A  and )15.0,89.1(~

1 =A , the regression model is XAAY 10
~~

+= .  

Now we can see that the interval between regression lines becomes much narrower, if the 

interval is too wide, the regression model is not very meaningful in explaining data 

variations, so the outlier removal is a big concern in formulating the fuzzy regression 

Fig. 7.6 Crisp input, fuzzy parameter, crisp output linear regression 
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model.  

 

 

Compare Figure 7.1, 7.2 with Figure 7.6, 7.7, It is obvious that fuzzy regression lines 

are different from 95% confidence intervals. Although both input and output data are crisp 

in the two cases, the assumptions and fitting criterion to solve the problems are totally 

different. In classical regression case, we consider the difference between observations and 

predictions to come from the observation errors or the random noise. In fuzzy regression 

we think the system has the characteristic of uncertainty and it is unrealistic to figure out 

the true relationship between the dependent variable and the independent variables. 

Observation errors are not considered in this case. 

The regression coefficients in this case are fuzzy data, so the predictions are also 

Fig. 7.7 Crisp input, fuzzy parameter, crisp output regression- outlier removed 
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supposed to be fuzzy. In order to obtain a crisp predicted value, defuzzification methods 

should be applied. 

We have assumed that the membership function of the fuzzy data is in a triangular 

shape, if the fuzzy prediction is defined as (Yil,Yim,Yir), where Yil, Yim, Yir are the left, the 

middle and the right corner point of the triangle respectively, i is the index of the predicted 

data, then we can defuzzify Y by the centroid method [61]. The defuzzified value Yic is: 

 

   The comparison of the observed output y with the predicted defuzzified output y)  

with this model is shown in Table 7.3. The first row of Table 7.3 represents the crisp input 

data, the second row is the observed output, and the third row is the predicted output values. 

We can see that predicted values are very close to the observations, they are even more 

close to the “true relationship” Y=1+2X than the corrupted observations. 

Table 7.3 Comparison between observations and predictions (CFC) 

 

7.4 Crisp Input, Fuzzy Parameter and Fuzzy Output  

In this case, the input data is crisp; the regression coefficients are fuzzy so it yields a 

fuzzy output, i.e. 

X 1 2 3 4 5 6 7 8 9 10 

y 1.2 6.2 8.0 12.1 12.3 25.2 15.7 14.9 18.9 20.9 

y)  3.8 5.7 7.6 9.5 11.4 12.8 15.2 17.1 19.0 20.9 

XAAY 10
~~ˆ +=

)(
3
1

irimilic YYYY ++=
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where A and Y are fuzzy numbers and X is a crisp input variable. 

Suppose we have a data set Y=1+2X, by adding 3.0±  to Yi i=1,2…,n (n is the size of 

the data set) the crisp data set is fuzzified to produce the case of crisp X and fuzzy Y data 

set as in Table 7.4.  

Table 7.4 Crisp input, fuzzy parameter and fuzzy output test data set 

Obs. x Y 

1 1 (2.7, 3.0, 3.3) 

2 2 (4.7, 5.0, 5.3) 

3 3 (6.7, 7.0, 7.3) 

4 4 (8.7, 9.0, 9.3) 

5 5 (10.7, 11.0, 11.3) 

 

First we have to check the existence of outliers in this data set; there are many ways to 

solve this problem. For example, outliers can be removed based on abnormal residuals to a 

simple fitted model. If the outlier is outside of a particular probability limit (95 or 99), then 

we need to locate if there is something missing from the model. If not, just remove it. In 

this example no outlier is found. The regression model presented in (5.6) can be applied to 

this case, let h=0 and the resultant regression line is Y= (1, 0.3) + (2, 0) X. The result is 

shown in Figure 7.8, the pair of dashed lines represents the regression model and the 

input-output pairs are plotted as a short vertical line which is a crisp value in x direction 

and an interval in y direction. 
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Fig. 7.8 Crisp input, fuzzy parameter, fuzzy output linear regression 

 

The comparison of the observed output y with the predicted output y)  with this model 

is shown in Table 7.5. We can see that the predicted intervals and the fuzzy outputs are 

exactly the same. 

Table 7.5 Comparison between observations and predictions (CFF) 

Obs. x y y)  

1 1 (2.7, 3,3.3) (2.7, 3,3.3) 

2 2 (4.7, 5,5.3) (4.7, 5,5.3) 

3 3 (6.7, 7,7.3) (6.7, 7,7.3) 

4 4 (8.7, 9, 9.3) (8.7, 9, 9.3) 

5 5 (10.7, 11,11.3) (10.7, 11,11.3) 
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7.5 Fuzzy Input, Crisp Parameter and Crisp Output  

Suppose we have a data set Y=1+2X, by adding 3.0±  to Xi i=1,2…,n (n is the size of 

the data set) the crisp data set is fuzzified to produce the case of fuzzy X and crisp Y data 

set as in Table 7.6.  

Table 7.6 Fuzzy input, crisp parameter and crisp output test data set 

Obs. X Y 

1 (0.7,1,1.3) 3 

2 ( 1.7, 2, 2.3) 5 

3 (2.7, 3, 3.3) 7 

4 (3.7, 4, 4.3) 9 

5 (4.7, 5, 5.3) 11 

6 (5.7, 6, 6.3) 13 

 

First we need to check if there is any outlier existing in this data set, we consider using 

only those center points in X, and follow the same checking process which is discussed in 

7.2. We find there is no outlier in this data set. Next, we apply (6.2) to this data set and let 

h=0, the result is shown in Figure 7.9. The regression model denoted by the dashed line is 

Y= 2+ 1.746X, the short horizontal lines represent the fuzzy input data which is a crisp 

value in y direction and an interval in x direction. 
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Fig. 7.9 Fuzzy input, crisp parameter, crisp output linear regression 

 

The comparison of the observed output y with the predicted output y)  with this model 

is shown in Table 7.7. The fifth column is the defuzzification value of the predicted output. 

 

Table 7.7 Comparison between observations and predictions (FCC) 

Obs. x y y)  y) (defuzzification) 

1 (0.7,1,1.3) 3 (3.2,3.7,4.2) 3.7 

2 ( 1.7, 2, 2.3) 5 (5.0,5.5,6.0) 5.5 

3 (2.7, 3, 3.3) 7 (6.7,7.2,7.7) 7.2 

4 (3.7, 4, 4.3) 9 (8.5,9.0,9.5) 9.0 

5 (4.7, 5, 5.3) 11 (10.2,10.7,11.2) 10.7 

6 (5.7, 6, 6.3) 13 (12.0,12.5,13) 12.5 



 126

7.6 Fuzzy Input, Crisp Parameter and Fuzzy Output  

The regression model of this case can be described as:  

 

 

where {ai, i=0,1…n}are the crisp regression coefficients. {Xi, i=1,2…n} are the fuzzy 

input and Y is the fuzzy output. The problem is to find the estimations for the regression 

coefficients that can provide the best explanation for the relationship between the predictor 

variables and the dependent variables. 

For convenience, assume the membership function of the fuzzy data is in the triangular 

shape. (Xil,Xim,Xir) and (Yil,Yim,Yir) denote the independent variable Xi and dependent 

variable Y respectively; Xil, Xim, Xir are the left, the middle and the right vertex of the 

triangular membership function of the fuzzy input data Xi,  Yil, Yim, Yir are the left, the 

middle and the right vertex of the triangular membership function of the fuzzy output data 

Yi. We consider applying the classical least squares method, first we need to defuzzify the 

fuzzy data to crisp value, many defuzzification methods have been discussed in the 

literature. Here we use the centroid method, let Xic and Yic be the defuzzified values of Xi 

and Yi, and then we have [61] 

 

 

 

After both fuzzy input and fuzzy output are converted to crisp values, the classical 

regression method can be applied.  Suppose we have a data set Y=1+2X, by adding 1.0±  

nn XaXaXaaY ++++= ...22110

)(
3
1

irimilic XXXX ++=

)(
3
1

irimilic YYYY ++=
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to Xi and 3.0±  to Yi , i=1,2…,n (n is the size of the data set), the crisp data set is fuzzified 

to produce the case of fuzzy X and fuzzy Y data set as in Table 7.8.  

Table 7.8 Fuzzy input, crisp parameter and fuzzy output test data set 

Obs. X Y 

1 (0.9, 1.0, 1.1) (2.7,3.0,3.3) 

2 (1.9, 2.0,2.1) (4.7,5.0,5.3) 

3 (2.9,3.0,3.1) (6.7,7.0,7.3) 

4 (3.9,4.0,4.1) (8.7,9.0,9.3) 

5 (4.9, 5.0,5.1) (10.7,11.0,11.3) 

6 (5.9,6.0,6.1) (12.7,13.0,13.3) 

7 (6.9,7.0,7.1) (14.7,15.0,15.3) 

8 (7.9,8.0,8.1) (16.7,17.0,17.3) 

 

In order to check if there is any outlier existing in this data set, we consider using only 

those center points in both X and Y, i.e. the points with possibility level as 1, just follows 

the checking process we discussed in 7.3, finally we find there is no outlier in this data set. 

The regression model is computed as Y=1+2X. The result is plotted in Figure 7.10; the 

dashed line denotes the regression model, the fuzzy input- fuzzy output data is denoted by 

a solid square which is an interval in both x and y direction . Because of the uncertainty in 

the data set is symmetric; the resultant regression model is the same as the model computed 

with the classical method.  

 

 



 128

 

 

 

 

 

 

 

 

Fig. 7.10 Fuzzy input, crisp parameter, fuzzy output linear regression 

 

The comparison of the observed output y with the predicted output y)  with this model 

is shown in Table 7.9. Since the membership function of the fuzzy input is in a symmetric 

triangular shape, and regression coefficients are crisp values, the uncertainty in the 

predicted value is scaled by the regression coefficients with regard to the uncertainty in the 

fuzzy input. In this example, since the half spread of the fuzzy input is 0.1, so the half 

spread of the fuzzy prediction is 0.2 since the regression model is Y=1+2X.    
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Table 7.9 Comparison between observations and predictions (FCF) 

Obs. x y y)  

1 (0.9,1,1.1) (2.7,3.0,3.3) (2.8, 3.0, 3.2) 

2 (1.9, 2,2.1) (4.7,5.0,5.3) (4.8, 5.0,5.2) 

3 (2.9, 3,3.1) (6.7,7.0,7.3) (6.8,7.0,7.2) 

4 (3.9, 4,4.1) (8.7,9.0,9.3) (8.8, 9.0,9.2) 

5 (4.9, 5,5.1) (10.7,11.0,11.3) (10.8,11.0,11.2) 

6 (5.9, 6,6.1) (12.7,13.0,13.3) (12.8, 13.0,13.2) 

7 (6.9,7.0,7.1) (14.7,15.0,15.3) (14.8, 15.0,15.2) 

8 (7.9,8.0,8.1) (16.7,17.0,17.3) (16.8, 17.0,17.2) 
 

 

7.7 Fuzzy Input, Fuzzy Parameter and Crisp Output 

Let us work on the test data set in Table 7.6. Apply (6.4) to this data set, let h=0 and we 

can obtain the following regression equation Y= (1, 0.01) + (2, 0.09) X. The result is shown 

in Figure (7.11), the pair of dashed lines denotes the regression model, and the horizontal 

short line denotes the fuzzy input-crisp output data which is an interval in x direction and a 

crisp value in y direction. Since the regression coefficient is a fuzzy data, according to 

equations (6.5), (6.6), the j-th prediction should locate at the interval  

[∑
=

−
n

i
jiii xmc

0
)( ,∑

=

+
n

i
jiii xmc

0
)( ]    

where (ci,mi) is the center and the half spread of the regression coefficient, xji is the 

defuzzified value of the j-th fuzzy input data, and n is the number of independent variables. 
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The estimated output equals to ∑
=

n

i
jii xc

0
 at the possibility level 1. We can defuzzify the 

fuzzy prediction value to obtain a crisp estimation. 

 
 

 

 

 

 

 

 

 

 

 

 

Fig. 7.11 Fuzzy input, fuzzy parameter, crisp output linear regression 

 

The comparison of the observed y with the predicted output y)  with this model is 

shown in Table 7.10. The fourth column denotes the fuzzy output derived from the 

regression model, and the fifth column denotes the defuzzification value of the fuzzy 

output. It can be observed the defuzzified values are exactly the same as the observed 

values. Since only fuzzy errors are considered in this example, and those fuzzy errors are 

symmetrically distributed and they just cancel out each other, it is not surprising the 

observations and the estimations are the same. 
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Table 7.10 Comparison between observations and predictions (FFC) 

Obs. x y y)  y) (defuzzification) 

1 (0.7,1,1.3) 3 (2.9,3,3.1) 3 

2 ( 1.7, 2, 2.3) 5 (4.8,5,5.2) 5 

3 (2.7, 3, 3.3) 7 (6.7,7,7.3) 7 

4 (3.7, 4, 4.3) 9 (8.6,9,9.4) 9 

5 (4.7, 5, 5.3) 11 (10.5,11,11.5) 11 

6 (5.7, 6, 6.3) 13 (12.4,13,13.6) 13 

 

 

7.8 Fuzzy Input, Fuzzy Parameter and Fuzzy Output 

The data set in Table 7.8 is used for this simulation, we apply (5.9) to this data set. Let 

h=0 and we obtain Y= (1, 0.1) + (2, 0) X. The result is shown in Figure (7.12), the pair of 

dashed lines is the regression model, and fuzzy input-output data is denoted by a solid 

square which is an interval in both x and y direction. It can be observed that the fuzzy data 

locate around the regression lines and they are compatible to some degree. 
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Fig. 7.12 Fuzzy input, fuzzy parameter, fuzzy output linear regression 

 

In order to predict the output data with the regression model, we can defuzzify the input 

data, and then multiply the defuzzified input data by fuzzy regression coefficients.  

The comparison of the observed output y with the predicted output y)  with this model 

is shown in Table 7.11. The third and the fourth column are observed outputs and the 

predicted fuzzy output data respectively. It is observed that this model does not change the 

center vertex of the fuzzy observations, however, the uncertainty in the input data is taken 

into account, that makes the spread of the predicted fuzzy output data is somewhat different 

from the spread of the observed output. 
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Table 7.11 Comparison between observations and predictions (FFF) 

Obs. x y y)  

1 (0.9,1,1.1) (2.7, 3, 3.3) (2.9,3,3.1) 

2 (1.9, 2,2.1) (4.7, 5,5.3) (4.9,5,5.1) 

3 (2.9, 3,3.1) (6.7, 7,7.3) (6.9,7,7.1) 

4 (3.9, 4,4.1) (8.7, 9,9.3) (8.9,9,9.1) 

5 (4.9, 5,5.1) (10.7, 11,11.3) (10.9,11,11.1) 

6 (5.9, 6,6.1) (12.7, 13,13.3) (12.9,13,13.1) 

7 (6.9,7.0,7.1) (14.7, 15,15.3) (14.9,15,15.1) 

8 (7.9,8.0,8.1) (16.7, 17,17.3) (16.9,17,17.1) 

 

7.9 Summary 

In this chapter, eight categories of fuzzy regression models are simulated, the 

classification is made based on the characteristic of the input, the parameter and the output 

data. Any of the input, the parameter and the output could be a crisp value or a fuzzy value. 

In general, minimum fuzziness criterion is applied to the fuzzy regression models, and we 

also need to consider the prediction and the observation to be compatible to some given 

degree. Numerical examples in this chapter are designed to test the methods we discussed 

in chapter 5 and chapter 6. In the crisp input, crisp parameter and crisp output case, only 

random errors are considered, and then we focus on exploring the fuzzy errors for the other 

seven cases. Simulation results show our methods work very well on the test data sets by 

comparing the observations and the predicted values. 

 



 134

 

 

 

 

 

 

 

CHAPTER 8 
 

Applications of Fuzzy Regression 



In this chapter, two applications are given showing how a fuzzy regression can be used. 

 

8.1 Stock Price Forecast  

The fuzzy regression models developed in the preceding section can be used in real 

applications. To illustrate, we will apply a fuzzy regression model to predict the short-term 

stock market price. 

Fuzzy regression model is an alternative to evaluate the relation between the 

independent variables and the dependent variables among the forecasting models when the 

relationship is not obvious. Such phenomenon is significant especially for seasonal 

variation data when large amount of data are required to show the pattern. Because of its 

increasing importance in industries, in this study, we propose a method of applying fuzzy 

regression model for this purpose. By using two independent variables of the historical 

periodical data and the time index, the developed model shows the pattern of the short term 

stock price variation. 

Forecasts can be generated in many different ways using many different approaches. 

Some forecasts are purely based on intuition and human judgment, while others require 

complex mathematical and computer based models. 

Though approaches and techniques of forecasting come from many different 

disciplines including economics, mathematics, engineering, psychology and statistics, it 

has only been reality that fuzzy forecasting has become an identifiable and serious area for 

study.  
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Common forecast techniques include regression, pattern recognition, and time series 

analysis etc. Time series analysis includes moving average (MA), exponential smoothing 

and double exponential smoothing etc. Other forecasting method includes autoregressive 

method (AR), autoregressive and moving average method (ARMA), autoregressive and 

integrated moving average method (ARIMA) etc. 

 

8.1.1 Experimental Setup and Data Preparation 

In this section, we apply fuzzy regression model to predict the short term stock price 

based on the last few days’ historical data. The stock price used in this study is selected 

from Intel Corporation (INTC) in the year of 2003. The historical stock price data is shown 

in Figure 8.1, our concern is to predict the closing price by taking advantage of both the 

low price and the high price from historical data. 

The Table 8.1 shows two of the weekly reports of Intel Corporation in the year 2003, as 

shown by Figure 8.2. Observing the price curve, it is intuitively reasonable to assume a 

linear regression model to solve the problem. 

 

Date Time Open High Low Close Volume 
20030818 1600 25.0137 26.1399 24.9639 26.1 59081000
20030819 1600 26.2803 26.4498 25.8319 26.38 55966300
20030820 1600 26.0508 26.6487 26.0408 26.27 47210300
20030821 1600 26.599 26.6887 25.9213 26.3 66434900
20030822 1600 28.0675 28.9446 27.2302 27.3 1.21E+08
20030825 1600 27.4689 27.6683 26.9806 27.15 52037500
20030826 1600 26.8724 27.6499 26.5933 27.62 65213400
20030827 1600 27.5213 27.9898 27.3319 27.93 58217200
20030828 1600 28.0007 28.2498 27.7516 28.2 48631600
20030829 1600 28.0814 28.5498 27.9419 28.49 41986600

 

Table 8.1 Weekly price report of Aug. 2003 [9] 
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Fig. 8.1 INTC price report (03/2003 – 12/2003) 

Fig. 8.2 INTC weekly price report (Aug. 18-29, 2003) 
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Since the daily stock price is an interval data which fluctuates between the low price 

and high price. It is more realistic to estimate an interval for closing price rather than an 

exact number.  So the problem can be processed as a fuzzy input, crisp parameter, fuzzy 

output regression model which is defined in (5.8). The support of both fuzzy input and 

output data are an interval which is determined by the high price and the low price. 

 

8.1.2 Procedure & Results 

The procedure is described as follows. 

1. The goal is to use the past three days’ price to predict tomorrow’s price, hence the 

objective function becomes Y=m0×x0+m1×x1+m2×x2+m3. where Y is tomorrow’s price, 

x0,x1 and x2 are past three days’ price respectively, m0,m1,m2 and m3 are crisp regression 

coefficients.  

2. Put all the week’s data (or longer time) into the constraints in (5.8) 

3. Minimize the sum of errors which come from the difference between the 

predictions and the observations and obtain the optimized solution. 

Apply the above process to the data set given in Table (8.1). The goal is to predict the 

closing price of Aug.29 which is the dependent variable, the price data of Aug. 26, Aug. 27, 

and Aug. 28 are used as predictor variables and the whole two weeks’ data are put into the 

constraints. We can obtain the simulation result: 

Y=0.6139x0+0.0382x1+0.0874x2+7.7119 

and the predicted closing price is (27.51, 28.19, 28.22) which represents a fuzzy data with 

triangle membership function, the support of the data is in the interval [27.51, 28.22] and 

the defuzzified value is 27.98. 
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According to Table 8.1, the price of Aug. 29 fluctuates in the interval [27.94, 28.55], 

and the closing price is 28.49. 

Define the prediction error %100*
nobservatio

predictionnobservatioe −
=  

We have closing price prediction error = 1.8%
49.28
27.98)-.4982(

=  

 

8.2 Dosage-Film Response Analysis 

Increasing concern for the potentially high radiation dose in interventional radiological 

procedures has led to the use of radiochromic films in the imaging modality. The 

GafChromic XR-Type R Dosimetry film has been used in this study. In this section, the 

whole experiment procedure will be described in detail. 

 

8.2.1 Experimental Setup and Data Preparation 

The x-ray photons incident on the film carries a statistical variation of fluctuations in 

the photon arrival rate at a given pixel point. This phenomenon is known as photon noise 

and follows Poisson distribution. Additionally, other inherent noise sources resulting from 

imaging system, film, and scanner also need to be taken into account. The goal of this 

application is to compute the dosage with given X-Ray images. In order to do that, first we 

need to know the relationship between the image intensity and the dosage. We create a 

series of calibration patterns and each of them corresponds to a specific dosage. In fact, 

pixel values in each calibration pattern are not homogeneous;   it is common practice to 

take the average intensity value as the reference for the corresponding dosage.  
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To study the film response, an x-ray machine (Philips Optimus V5000, Philips Medical 

Sytems, Andover, MA) was used to create a calibration tablet. Pieces of the GafChromic 

film were exposed to different amounts of radiation with a maximum air kerma of 13.88Gy. 

This tablet was stored in a dark room under normal room temperature and humidity. 

This created tablet was then scanned by a flatbed reflective-type scanner (Microtek 

ScanMaker 4800), as well as images with different dosage levels. The calibration patterns 

are shown in Figure 8.3. The goal of this application is to estimate the dosage based on the 

image and calibration patterns. 

 

 

 

Fig. 8.3 Calibration patterns and film image 
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8.2.2 Scatter Plot of Dosage-film Response 

From Figure 8.4, it is obvious the relationship between film response intensity and 

dosage is a nonlinear relationship. In the low intensity area, a small amount change in 

intensity could result in a big variation in the dosage computation. We have to be very 

careful about those low intensity   pixel values since they are sensitive to our method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.2.3 Curve Fitting  

Measured data is often accompanied by noise. A process of quantitatively estimating 

the trend of the output is known as curve fitting, and it is widely used. The curve fitting 

Fig. 8.4 Measured dosage-film response 
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process fits equations of approximate curves to the data. The fitting curves are not unique 

for a given set of data. A curve with a minimal deviation from all data points is usually 

desired. The best-fitting curve can be obtained by the method of least squares. 

In our study we will use least squares polynomials fitting. Polynomials are one of the 

most commonly used types of curves in regression. Suppose the least-squares m-th degree 

polynomials are used in curve fitting, it can be formulated as 

m
m xaxaxaaxfy ++++== ...)( 2

210 to approximate the given set of data (x1, y1), (x2, 

y2)… (xn, yn) where  

The best fitting curve should have the least square error, i.e.,  
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To obtain the least square error, we take the first derivative of (8.1), with respect to 

unknown coefficients a0, a1,…,am, we set the gradients to zero. 
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By solving the above linear equations, the unknown coefficients can be obtained. In 

this study, we reform the above curve fitting on the dosage-film response with a third order 

polynomials. 
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8.2.4. Interpolation 

In many real applications, data collected from the field are usually discrete and the 

physical meanings of the data are not always well known; the process of estimating the 

outcomes between sampled data points is called interpolation; most popular interpolation 

techniques include polynomial interpolation, rational function interpolation and cubic 

spline interpolation etc.  

Given a set of data (x1,y1),(x2,y2),…,(xn,yn) where nxxx ≠≠≠ ...21  .The Lagrange’s 

formula of polynomial interpolation is 

 

The cubic spline interpolation technique is used for the interpolation of the dosage-film 

response curve. Given a data set (x0, f(x0)), (x1, f(x1))… (xn, f (xn)), assume that 
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The cubic function for each interval is then modeled as: 
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fuzzy errors come from the inherent uncertainty of the system. Both randomness and 

fuzziness have to be considered in this process. In order to compute the dosage, first we 

need to find the relationship between the pixel intensity and dosage. Let dosage be the 

independent variable and intensity be the dependent variable, since the pixel intensity in 

each calibration pattern has some variation; it can be processed as a fuzzy data. Here we 

use triangle membership function, the vertex is the average intensity value, and the support 

is determined by the minimum and maximum intensity value. So this problem becomes a 

fuzzy input, fuzzy parameter, crisp output regression problem. 

We combine both the probability theory and the possibility theory together in this study, 

and propose the following algorithm: 

Step1: preprocessing the calibration pattern 

Since calibration pattern is scanned with black reference, it is possible that some lower 

pixel readings in the pattern is the black reference itself instead of the film. One must deal 

with those pixels or it will severely distort the estimation since the darker area means a high 

dosage level.  

Outliers have significant impact on the regression equation, it is important to remove 

them before we do a proper regression analysis. Based on the intensity histogram for each 

calibration pattern, we remove those points whose frequency count is less than 5% of the 

total events. 

Step2: Consider random errors 

Determine the center of the fuzzy regression coefficient by the least square method. In 

this study a 4th order polynomial curve fitting technique is used. 

Step3: Consider fuzzy errors 
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Since there is only one independent variable, and all the other Xn terms are highly 

correlated with the X term, we set spreads of those high order regression coefficients as 

zero. 

By solving the linear programming problem, the lower limit and the upper limit 

dosage-film response curves can be computed. The true dosage value will be within this 

estimated interval. 

Step 4: Compute the dosage for each image using dose- film response curve 

Now we have obtained the dosage-intensity relationship curves. It is straightforward to 

compute the dosage by interpolating or extrapolating this curve if X-Ray images are 

available.  

Step 5: Defuzzification 

We use the centroid method in this case. This method weighs all the values with 

different possibility levels to form a single value. In our case, let Xic and Yic be the 

defuzzified values of Xi and Yi, the following formulas define the defuzzification values 

[61]: 
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patterns. Four images were randomly picked from those films and the dosage level of each 

image was computed. Finally we compared those results with the values given by the X-ray 

machine. 

Figure 8.5 and Figure 8.6 describe the resultant dosage-film response for h equals to 0 

and 0.9 respectively. As we can see, the estimation becomes fuzzier with the increasing h. 

If the estimated interval is too wide, it will be hard to provide precise estimation for the 

decision maker, but if it is too narrow, some observations could not be covered in this 

interval, the decision maker will be too optimistic about the estimation. Thus an 

appropriate value is desired. In our case, even when h equals to 0, the estimation has 

covered all the observations (after data preprocessing), it is still reasonably informative 

when h increases to 0.9.  

 

 

Fig. 8.5. Dosage- film response at h=0 

 
 

 

 

 

 

 

 

 

Fig. 8.5 Dosage- film response at h=0 
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Fig. 8.6 Dosage- film response at h=0.9 

Table 8.2 Performance comparison between classical regression model and fuzzy 

regression model  

No. Machine value CLR Error  FLR(h) Error 

1 79.3 86.20 8.7% 87.44 (0) 10.26% 

2 584 763.83 30.79% 681.69 (0.9) 16.73% 

3 748 929.95 24.32% 777.32(0.9) 3.92% 

4 1124 1007.7 -10.35% 948.12 (0.5) -15.65% 

 

Finally we list the experiment result as the Table 8.2. It is the results obtained by 

applying the method we proposed in this paper to the four test film images. If we only 

consider the random errors of this process, we will get results which are listed in column 3. 
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Column 5 gives results which have considered both the random errors and the model errors. 

From Figure 8.4, we find that most of the data in the calibration patterns is focused on the 

dosage range 0~8 Gy; while there is almost no reference data in the range between 8Gy 

and14 Gy. So those pixels with value between 30 and 40 are unreliable in the computation 

and it is a major error source especially when those data correspond to a high dosage level. 

Note that we have assumed those pixels with value less than 30 are black background and 

they have nothing to do with dosage. If the image has a large amount of unreliable data, 

then the model errors can not be ignored. So it is intuitively reasonable that we should set a 

relatively bigger h for the data set whose histogram has a large part of low pixels. Figure 

8.7, 8.8, 8.9, 8.10 are histograms of the four test images in this study. We can see that the 

first image has almost no low value pixels except those black backgrounds. And the other 

three images have more or less amount of low value pixels that is the reason why they use 

high h value. 

 

Fig. 8.7 Histogram of 08/06 image 

 

 

 

 

 

 

 

 
Fig. 8.7 Histogram of 08/06 image 
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Fig. 8.9 Histogram of 10/15 image 

 

 

 

 

 

 

Fig. 8.8 Histogram of 08/20 image 

Fig. 8.9 Histogram of 10/15 image 
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Of course, besides the distribution the accuracy of the scanned data also plays an 

important role in the final result. From Table 8.2, it is obvious that the 8/20 and 11/19 

images have relatively good image quality. Although the 11/19 image has some low pixel 

part, the estimation error is still acceptable. The 8/20 image has the lowest random error. In 

those last two images, the randomness phenomenon dominates this process. Degradation in 

the fuzzy regression error is observed; in the 8/6 and 10/15 images, if only random errors 

are considered, unbearable errors were observed. In this case fuzzy regression method 

improves the performance significantly. In general, the fuzzy regression method generates 

a more consistent result than the classical method. 

Both opportunity and challenge exist in applying fuzzy regression model to data 

analysis. It can take advantage of expert knowledge to improve the model which is hard to 

Fig. 8.10 Histogram of 11/19 image 
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be implemented by classic probability theory, however, the decision about the possibility 

of a data set is very flexible. If a bad decision has been made, the result would not improve 

much even gets worse in some cases. So it is still a research topic about how to make a 

good support system which can eliminate the random factor in decision making process as 

much as possible. It is now under development for our future research.      
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CHAPTER 9 
 

Summary 
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Fuzzy set theory is widely applied to a variety of data mining applications recently 

[95-105]. Those are data sets with imperfect knowledge. For example human language, the 

data from imprecise measuring instruments etc. This dissertation contributes to the 

application of fuzzy set theory on classical correlation and regression analysis. I presented 

two types of fuzzy correlation models. In the first type of fuzzy model we consider the data 

points are fuzzy, our method works more efficiently than the methods recently reported in 

the literature. The influence of the fuzziness and the shape of data membership functions 

are investigated, simulation results verify our theoretic derivation.  

 I developed the concept and the model of the second type of fuzzy correlation for 

the first time and presented simulation results for a variety of data sets with different 

parameters. The results show the relationship between the raw data sets and the distribution 

of fuzzy correlations, and also show the good possibility that fuzzy correlations can be a 

good approximation to probabilistic density functions of the correlation coefficient for data 

sets generated by the same system.  The proposed model saves people a lot of work to 

collect data samples in order to get statistical information. 

 A family of fuzzy regression models was developed based on different 

combinations of input, output and regression parameters. Those models are formulated as 

the linear programming problems. I complemented three categories of models which have 

not been filled in the previous work. In crisp input, crisp parameter, fuzzy output case, 

experimental results show our method will give more informative result than the classical 

regression estimation. Fuzzy regression is based on the possibility instead of the 

probability theory; however, it can give us a good approximation to the estimation derived 

from the statistical theory.   
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 Two application cases are given in the last section of this dissertation. The first is 

short term stock price prediction. A fuzzy regression model is built to predict next day’s 

stock price based on the last two weeks’ price trend. The result generated by the fuzzy 

regression model is a range instead of a single value, and it gives the decision maker a more 

realistic view about his or her investment. In the dosage-film response estimation example, 

fuzzy regression model also provides us a more realistic and consistent result than the 

traditional methods since the model has formulated the uncertainty characteristic of the 

system in a mathematical way. 

 The research in applying fuzzy set theory to correlation and regression analysis is 

ongoing. The relationship between the statistical probability density function and the fuzzy 

correlation, the relationship between the classical regression prediction and the fuzzy 

regression prediction has yet to be addressed seriously. More theoretic work is still under 

development at this time.   

 It is a common starting point to assume linear relationship between variables, for 

some cases, a nonlinear function can be expressed as a straight line by appropriate 

transformation. However, not all data sets can be or transformed into linear relationship. 

Nonlinear regression models have to be developed to fit nonlinear data sets. To my 

knowledge not much work has been done on this issue, future research will explore the 

modeling and usage of fuzzy nonlinear regression models in many applications. 
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A. Linear Programming Introduction 

As we have described, fuzzy linear regression model is based on linear programming. 

A Linear Program (LP) is a problem that can be expressed as following standard form:  

Minimize   ct x 

Subject to Ax = b 

0≥x  

where x is the vector of variables to be solved for, A is a matrix of known coefficients, and 

c and b are vectors of known coefficients. The matrix A is generally not square, hence you 

do not solve an LP by just inverting A. Usually A has more columns than rows, and Ax=b 

is therefore quite likely to be under-determined, leaving great latitude in the choice of x 

with which to minimize ct x. 

The importance of linear programming derives in part from its many applications and 

in part from the existence of good general-purpose techniques for finding optimal 

solutions. 

Two families of solution techniques are in wide use today. Both visits a progressively 

improving series of trial solutions, until a solution is reached that satisfies the conditions 

for an optimum. Simplex methods, introduced by Dantzig [107,108] about 50 years ago, 

visit "basic" solutions computed by fixing enough of the variables at their bounds to reduce 

the constraints Ax = b to a square system, which can be solved for unique values of the 

remaining variables. Basic solutions represent extreme boundary points of the feasible 

region defined by Ax = b, 0≥x , and the simplex method can be viewed as moving from 

one such point to another along the edges of the boundary. Barrier or interior-point 

methods, by contrast, visit points within the interior of the feasible region. These methods 
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derive from techniques for nonlinear programming that were developed and popularized in 

the 1960s by Fiacco and McCormick [109], but their application to linear programming 

dates back only to Karmarkar's innovative analysis in 1984.  

Simplex-based LP efficiently detects when no feasible solution is possible; some early 

interior-point codes could not detect an infeasible situation as reliably, but remedies for 

this flaw have been introduced. The source of infeasibility is often difficult to track down. 

It may stem from an error in specifying some of the constraints in your model, or from 

some wrong numbers in your data. A useful approach is to forestall meaningless 

infeasibilities by explicitly modeling those sources of infeasibility.  

The importance of linear programming derives from its many applications and 

existence of good techniques for finding optimal solutions. Those techniques take as input 

an LP in the above standard form, and they are fast and reliable over a substantial range of 

problem sizes and applications. 
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B. MATLAB Codes 

Crisp data, fuzzy correlation 
 
close all; 
clear all; 
 
% Pdffuzzy.m  is used to compute the fuzzy correlation 
% data set 1    small circle 
%   x=[6.3 6.5 7.0 7.5  8.0 8.5 9.0  9.5 6.5    7.0    7.5    8.0    8.5    9.0    9.3]; 
%   y=[6.2  7.18  8.07  8.95  8.62  10.18   10.14   10.24 5.82  5.93  6.04  7.38  6.82  7.86  9]; 
% big circle  
% x=[6.3 6.5 7.0 7.5  8.0 8.5 9.0  9.5 6.5    7.0    7.5    8.0    8.5    9.0    9.3]; 
%  y=[6.47 9.38 11.38  9.59  12.78   10.89 13.57 12 3.62  2.62  5.41 3.22  8.10 4.7 7.8];   
% data set3   ------ quadratic form 
%   x2=0.5:0.5:15; 
%   x=zeros(1,15); 
%   y=zeros(1,15); 
%   count=1; 
%   for i=1:30 
%       y2(i)=-0.5*(x2(i)-8)^2+10+x2(i); 
%       if mod(i,2)==0 
%           x(count)=x2(i); 
%           y(count)=y2(i)+(-1+2*rand)*5; 
%           count=count+1; 
%       end     
%   end 
%  y=[ -11.6 -4.1 0.8 5.1 9.6 13.2 15.8   22.4  20.2 14.3  16.5 18.8 5.9   9.6  4.2]; 
%  figure(1); 
%  plot(x,y,x2,y2) 
 
% ------another trend quadratic form 
  x2=0.5:0.5:15; 
  x=zeros(1,15); 
  y=zeros(1,15); 
  count=1; 
  for i=1:30 
      y2(i)=-0.2*x2(i)^2+5*x2(i); 
      if mod(i,2)==0 
          x(count)=x2(i); 
          y(count)=y2(i)+(-1+2*rand)*2; 
          count=count+1; 
      end     
  end 
 figure(1); 
 plot(x,y,x2,y2) 
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% data set 4   -- down big-up small 
%   x=[3.7 4.5  6.0  3.5  7.0  7.5   9.0  8.5  5.0  4.1  6.0 6.5 7.0 7.5 8.0]; 
%   y=[7.2 7.9  8.0  3.4  8.0  8.2   9.0   8.5  2.6  4.1  2.8 3.5 4.7  6.3 7.6]; 
%  figure(1) 
%   plot(x,y,x,x,'r--') 
 
% down small-up big 
%  x=[3.5 3.7  4.5  5.0  5.4   6.7  7.5  5.5  2.4  4.5  5.0  5.5  6.0  7    8.3];  
%  y=[3.5 4.6 5.8  6.5   7.2   5.7  6.5    8.5  2.4  3.6  3.9  4.0  4.5  4.8  5.2]; 
%  figure(1) 
%  plot(x,y,x,x,'r--')  
 
% test r and spread 
%  x2=0.5:0.5:15; 
%  y2=x2; 
%  x=zeros(1,15); 
%  y=zeros(1,15); 
%  count=1; 
%  sigma=10; 
%  for i=1:30 
%      if mod(i,2)==0 
%          x(count)=x2(i); 
%          y(count)=y2(i)+(-1+2*rand)*sigma; 
%          count=count+1; 
%      end     
%  end 
%  plot(x,y) 
 
%  x=[9.5677    8.3457    6.5451    4.4774    2.5   0.9549    0.1093    0.1093    0.9549   2.5    
4.4774    6.5451    8.3457    9.5677   10];  
%  y=[2.0337    3.7157    4.7553    4.9726    4.3301    2.9389    1.0396   -1.0396   -2.9389  
-4.3301   -4.9726   -4.7553   -3.7157   -2.0337   0]; 
 
peason=xcov(x,y,0,'coeff') 
n=length(x);  
testnum=n; 
 
total=0; 
loopnum=zeros(1,1); 
amp=1; 
for num=3:n 
if num==8 || num==7 
      loopnum=6435*amp; 
  elseif num==9|| num==6 
      loopnum=5005*amp; 
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  elseif num==10 || num==5  
      loopnum=3003*amp; 
  elseif num==11 || num==4 
      loopnum=1365*amp; 
  elseif num==12 || num==3 
      loopnum=455*amp; 
  elseif num==13 
      loopnum=105*amp; 
  elseif num==14 
      loopnum=15*amp; 
  elseif num==15 
      loopnum=1*amp; 
   end  
 rxy=zeros(1,loopnum); 
 
  for i=1:10000 
    if i>loopnum 
         break; 
     end    
   count=0; 
   index=zeros(1,num); 
    for k=1:150 
        if num==n 
            index=1:n;  
            break; 
        end 
        i1=floor(1+rand*(n-1)); 
        flag=0; 
        for j=1:count 
            if i1 == index(j) 
                flag=1; 
                break; 
            end 
        end 
        if flag==0 
            count=count+1; 
            index(count)=i1; 
        end 
        if count==num 
            break; 
        end 
    end 
    for k=1:num 
        temp=index(k); 
        x1(k)=x(temp); 
        y1(k)=y(temp); 
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    end 
    rxy(i)=xcov(x1,y1,0,'coeff'); 
 end 
 rxy1(total+1:total+loopnum)=rxy; 
 total=total+loopnum; 
end 
 
[pe,xout]=hist(rxy1,50); 
pe=pe./max(pe); 
spread=std(xout) 
figure(2) 
bar(xout,pe); 
title('correlation distribution') 
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Fuzzy Correlation - Approximate Bound 
 
close all; 
clear all; 
 
%  bounds.m is used to compute the approximate bounds of fuzzy correlation 
%input data set 
x=[0  0.0714  0.1429  0.2143  0.2857  0.3571  0.4286  0.5000  0.5714  0.6429  0.7143    
0.7857    0.8571    0.9286    1.0000]; 
y =[0.0108 0.1057 0.0249  0.0344  -0.0015  0.1485 0.0474  0.3041 0.4625  0.3255  0.5638  
0.7026 0.5442  0.6793 1.0000]; 
N=length(x); 
variation=0.1; 
diav= variation*max(abs(y(:))); 
xmean=mean(x); 
ymean=mean(y); 
x1=zeros(N,1); 
y1=zeros(N,1); 
x1(:)=x(:)-xmean; 
y1(:)=y(:)-ymean; 
 
 
x2sum=0; 
y2sum=0; 
xysum=0; 
for i=1:N 
    x2sum=x2sum+x1(i)^2; 
    y2sum=y2sum+y1(i)^2; 
    xysum=xysum+x1(i)*y1(i); 
end 
 
rxy0=xcov(x,y,0,'coeff'); 
 
alphanum=11; 
rxyb1_b=zeros(alphanum,1); 
rxya1_b=zeros(alphanum,1); 
alphaa=zeros(alphanum,1); 
alpha=0; 
for j=1:alphanum 
    sx0=0; 
    sy0=0; 
    for i=1:N 
        sx0=sx0+abs(y1(i)*x2sum-x1(i)*xysum)/((x2sum^1.5)*(y2sum^0.5)); 
        sy0=sy0+abs(x1(i)*y2sum-y1(i)*xysum)/((y2sum^1.5)*(x2sum^0.5)); 
    end  
        % triangle membership function 
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       rxyb1_b(j)=rxy0+sx0*(1-alpha)*diav+sy0*(1-alpha)*diav; 
       rxyb1_b(j)=min(rxyb1_b(j),1); 
       rxya1_b(j)=rxy0-sx0*(1-alpha)*diav-sy0*(1-alpha)*diav; 
       rxya1_b(j)=max(rxya1_b(j),-1); 
        % trapezoid membership function 
%         
rxyb1_b(j)=rxy0+abs(sx0*(diav-0.75*diav*alpha))+abs(sy0*(diav-0.75*alpha*diav)); 
%         rxyb1_b(j)=min(rxyb1_b(j),1); 
%         
rxya1_b(j)=rxy0-abs(sx0*(diav-0.75*alpha*diav))-abs(sy0*(diav-0.75*alpha*diav)); 
%         rxya1_b(j)=max(rxya1_b(j),-1); 
 
    alpha=j/(alphanum-1); 
end 
 
for i=1:alphanum 
    alphaa(i)=(i-1)/(alphanum-1); 
end 
 
plot(rxya1_b,alphaa,'b-',rxyb1_b,alphaa,'r-') 
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Fuzzy Correlation -Heuristic Method 
 
close all; 
clear all; 
 
% heuristicmethod.m is used to compute fuzzy correlation with heuristic method 
% input data set 
x=[0  0.0714  0.1429  0.2143  0.2857  0.3571  0.4286  0.5000  0.5714  0.6429  0.7143    
0.7857    0.8571    0.9286    1.0000]; 
y =[0.0108 0.1057 0.0249  0.0344  -0.0015  0.1485 0.0474  0.3041 0.4625  0.3255  0.5638  
0.7026 0.5442  0.6793 1.0000]; 
N=length(x); 
ymax=zeros(1,N); 
xmax=zeros(1,N); 
ymin=zeros(1,N); 
xmin=zeros(1,N); 
 
variation=0.1; 
diav= variation*max(abs(y(:))); 
gamma=diav; 
 
X=[ones(size(x')) x']; 
a=X\y'; 
N=length(x); 
alphanum=11; 
% Nonspecificity of original data 
nonspecificity0=0; 
for alpha=0:1/(alphanum-1):1 
    nonspecificity0=nonspecificity0+1/(alphanum-1)*log(1+2*diav*(1-alpha)); 
end 
nonspecificity0 
 
rxy=zeros(2, alphanum); 
alpha=0; 
tic 
for i=1:alphanum 
     for k=1:N 
   % triangle membership function 
      yl=y(k)-(1-alpha)*diav; 
      yu=y(k)+(1-alpha)*diav; 
      xl=x(k)-(1-alpha)*diav; 
      xu=x(k)+(1-alpha)*diav; 
      % trapezoidal membership function 
%         if(abs(alpha-1)<1e-5) 
%            yl=y(k)-0.25*diav; 
%            yu=y(k)+0.25*diav; 
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%            xl=x(k)-0.25*diav; 
%            xu=x(k)+0.25*diav; 
%        else 
%            yl=y(k)-(diav-0.75*alpha*diav); 
%            yu=y(k)+(diav-0.75*alpha*diav); 
%            xl=x(k)-(diav-0.75*alpha*diav); 
%            xu=x(k)+(diav-0.75*alpha*diav); 
%        end 
        % bell curve membership function 
    %    if alpha==0 
    %        alpha=0.05; 
    %    end 
    %    xl=x(k)-diav*sqrt((log(1/alpha))*sqrt(2))/3; 
    %    xu=x(k)+diav*sqrt((log(1/alpha))*sqrt(2))/3; 
    %    yl=y(k)-diav*sqrt((log(1/alpha))*sqrt(2))/3; 
    %    yu=y(k)+diav*sqrt((log(1/alpha))*sqrt(2))/3; 
    %%%%%%        
        t=a(1)+a(2)*[xl xu]; 
        tmean=(t(1)+t(2))/2; 
        if  t(1)<t(2)  
            if t(2)<yl 
                xmax(k)=xu; 
                ymax(k)=yl; 
                xmin(k)=xl; 
                ymin(k)=yu; 
            elseif t(1)>yu 
                xmax(k)=xl; 
                ymax(k)=yu; 
                xmin(k)=xu; 
                ymin(k)=yl; 
            elseif t(1)>=yl & t(2)<=yu 
                xmax(k)=(xl+xu)/2; 
                ymax(k)=tmean; 
                if (yl+yu)/2>tmean 
                    xmin(k)=xl; 
                    ymin(k)=yu; 
                 else 
                    xmin(k)=xu; 
                    ymin(k)=yl; 
                 end 
             elseif t(1)>=yl & t(2)>yu 
                    xmax(k)=xl; 
                    ymax(k)=t(1); 
                    xmin(k)=xu; 
                    ymin(k)=yl; 
             elseif t(2)<=yu & t(1)<yl 
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                    xmax(k)=xu; 
                    ymax(k)=t(2); 
                    xmin(k)=xl; 
                    ymin(k)=yu; 
             elseif t(1)<yl & t(2)>yu 
                 xmax(k)=(yl+yu-2*a(1))/(2*a(2)); 
                 ymax(k)=(yl+yu)/2; 
                 if abs(t(1)-yu)>abs(t(2)-yl) 
                     xmin(k)=xl; 
                     ymin(k)=yu; 
                 else 
                     xmin(k)=xu; 
                     ymin(k)=yl; 
                 end 
             else 
                xmin(k)=x(k); 
                ymin(k)=y(k); 
                xmax(k)=x(k); 
                ymax(k)=y(k); 
             end 
          elseif t(1)>t(2) 
            if t(2)>yu 
                xmin(k)=xu; 
                ymin(k)=yu; 
                xmax(k)=xl; 
                ymax(k)=yl; 
            elseif t(1)<yl 
                xmin(k)=xl; 
                ymin(k)=yl; 
                xmax(k)=xu; 
                ymax(k)=yu; 
            elseif t(1)<=yu & t(2)>=yl 
                xmin(k)=(xl+xu)/2; 
                ymin(k)=tmean; 
                if (yl+yu)/2>tmean 
                    xmax(k)=xu; 
                    ymax(k)=yu; 
                 else 
                    xmax(k)=xl; 
                    ymax(k)=yl; 
                 end 
             elseif t(1)<=yu & t(2)<yl 
                    xmin(k)=xl; 
                    ymin(k)=t(1); 
                    xmax(k)=xu; 
                    ymax(k)=yu; 
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             elseif t(2)>=yl & t(1)>yu 
                    xmin(k)=xu; 
                    ymin(k)=t(2); 
                    xmax(k)=xl; 
                    ymax(k)=yl; 
             elseif t(1)>yu & t(2)<yl 
                    xmin(k)=(yl+yu-2*a(1))/(2*a(2)); 
                    ymin(k)=(yl+yu)/2; 
                    if abs(t(1)-yl)<=abs(t(2)-yu) 
                        xmax(k)=xu; 
                        ymax(k)=yu; 
                    else 
                        xmax(k)=xl; 
                        ymax(k)=yl; 
                    end 
             else 
                xmin(k)=x(k); 
                ymin(k)=y(k); 
                xmax(k)=x(k); 
                ymax(k)=y(k);         
            end 
         else 
             xmin(k)=x(k); 
             ymin(k)=y(k); 
             xmax(k)=x(k); 
             ymax(k)=y(k); 
         end 
    end 
        rxy(1,i)=xcov(xmax,ymax,0,'coeff');             
        rxy(2,i)=xcov(xmin,ymin,0,'coeff');      
        xmin=zeros(1,N); 
        xmax=zeros(1,N); 
        ymin=zeros(1,N); 
        ymax=zeros(1,N); 
        alpha=i/(alphanum-1); 
 end 
 
theuristic=toc 
alphaa=zeros(1,alphanum); 
rxya=zeros(1, alphanum); 
rxyb=zeros(1, alphanum); 
 
alpha=0; 
for i=1:alphanum 
    alphaa(i)=alpha; 
    alpha=alpha+1/(alphanum-1); 
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    rxya(i)=min(rxy(:,i)); 
    rxyb(i)=max(rxy(:,i)); 
end 
%plot(rxya,alphaa,'-b',rxyb,alphaa,'-b') 
rxya_h=rxya; 
rxyb_h=rxyb; 
%xlabel('Rxy') 
%ylabel('\alpha') 
%Grid; 
%title('\alpha Versus Rxy') 
 
%Nonspecificity 
h=1; 
nonspecificity=0; 
for i=1:alphanum 
    nonspecificity=nonspecificity+1/(alphanum-1)*log(1+rxyb(i)-rxya(i)); 
end 
nonspecificity_h=nonspecificity/h 
%  defuzzification 
sum1=0; 
sum2=0; 
for i=1:alphanum 
    sum1=(rxyb(i)-rxya(i))*1/(alphanum-1)+sum1; 
end 
 
dr_h=sum1+min(rxya(:)) 
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Fuzzy Correlation – Direct Method 
 
close all; 
clear all; 
 
x=[0  0.0714  0.1429  0.2143  0.2857  0.3571  0.4286  0.5000  0.5714  0.6429  0.7143  
0.7857    0.8571    0.9286    1.0000]; 
y =[0.0108  0.1057  0.0249  0.0344  -0.0015 0.1485  0.0474 0.3041 0.4625  0.3255 0.5638 
0.7026 0.5442 0.6793  1.0000]; 
N=length(x); 
 
variation=0.1; 
diav= variation*max(abs(y(:))); 
alphanum=11; 
 
% Nonspecificity of original data 
nonspecificity0=0; 
for alpha=0:1/(alphanum-1):1 
    nonspecificity0=nonspecificity0+1/(alphanum-1)*log(1+2*diav*(1-alpha)); 
end 
nonspecificity0 
 
rxya_m=zeros(alphanum,1); 
rxyb_m=zeros(alphanum,1); 
xl=zeros(N,1); 
xu=zeros(N,1); 
yl=zeros(N,1); 
yu=zeros(N,1); 
xx0(1:N)=x; 
xx0(N+1:2*N)=y; 
alpha=0; 
tic 
for i=1:alphanum 
    % triangle membership function 
   xl=x-(1-alpha)*diav; 
   xu=x+(1-alpha)*diav; 
   yl=y-(1-alpha)*diav; 
   yu=y+(1-alpha)*diav; 
    % trapezoidal membership function 
%     if (abs(alpha-1)<1e-5) 
%         yl=y(:)-0.25*diav; 
%         yu=y(:)+0.25*diav; 
%         xl=x(:)-0.25*diav; 
%         xu=x(:)+0.25*diav; 
%     else 
%         yl=y(:)-(diav-0.75*alpha*diav); 
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%         yu=y(:)+(diav-0.75*alpha*diav); 
%         xl=x(:)-(diav-0.75*alpha*diav); 
%         xu=x(:)+(diav-0.75*alpha*diav); 
%     end 
    % bell curve membership function 
    %if alpha==0 
    %    alpha=0.05; 
    %end 
    %xl=x(:)-diav*sqrt((log(1/alpha))*sqrt(2))/3; 
    %xu=x(:)+diav*sqrt((log(1/alpha))*sqrt(2))/3; 
    %yl=y(:)-diav*sqrt((log(1/alpha))*sqrt(2))/3; 
    %yu=y(:)+diav*sqrt((log(1/alpha))*sqrt(2))/3; 
    %%%%%% 
    lb(1:N)=xl; 
    lb(N+1:2*N)=yl; 
    ub(1:N)=xu; 
    ub(N+1:2*N)=yu; 
    [xx1,rxya_m(i)]=fmincon(@corrfun,xx0,[],[],[],[],lb,ub); 
    [xx2,rxyb_m(i)]=fmincon(@maxcorr,xx0,[],[],[],[],lb,ub); 
    rxyb_m(i)=-rxyb_m(i); 
    alpha=i/(alphanum-1); 
end 
rxya_m(alphanum)=corrfun(xx0); 
rxyb_m(alphanum)=rxya_m(alphanum); 
toptimal=toc 
alphaa=zeros(1,alphanum); 
alpha=0; 
for i=1:alphanum 
    alphaa(i)=alpha; 
    alpha=alpha+1/(alphanum-1); 
end 
 
%plot(rxya_m,alphaa,'b',rxyb_m,alphaa,'b') 
%xlabel('Rxy') 
%ylabel('alpha') 
%Grid; 
%title('Alpha Versus Rxy') 
 
%Nonspecificity 
h=1; 
nonspecificity=0; 
for i=1:alphanum 
    nonspecificity=nonspecificity+1/(alphanum-1)*log(1+rxyb_m(i)-rxya_m(i)); 
end 
nonspecificity_t=nonspecificity/h 
% Fuzziness 
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fuzziness=0; 
alpha=0; 
for i=1:alphanum-1 
    
fuzziness=fuzziness+(1-abs(2*alpha-1))*abs(rxya_m(i+1)-rxya_m(i))+(1-abs(2*alpha-1)
)*abs(rxyb_m(i)-rxyb_m(i+1)); 
    alpha=alpha+1/(alphanum-1); 
end 
fuzziness 
%  defuzzification 
sum1=0; 
sum2=0; 
%sum1=(rxyb_m(1)-rxya_m(1))*0.05; 
for i=1:alphanum 
    sum1=(rxyb_m(i)-rxya_m(i))*1/(alphanum-1)+sum1; 
end 
dr_t=sum1+min(rxya_m(:)) 
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Fuzzy Correlation – Random Search Method 
 
close all; 
clear all; 
x=[0  0.0714  0.1429  0.2143  0.2857  0.3571  0.4286  0.5000  0.5714  0.6429  0.7143  
0.7857  0.8571  0.9286  1.0000]; 
y =[0.0108 0.1057  0.0249  0.0344  -0.0015  0.1485  0.0474  0.3041  0.4625  0.3255  0.5638  
0.7026 0.5442  0.6793 1.0000]; 
N=length(x); 
variation=0.1; 
diav= variation*max(abs(y(:))); 
 
lemdanum=200; 
alphanum=11; 
 
rxy=zeros(lemdanum, alphanum); 
alpha=0; 
tic 
for i=1:alphanum 
   for j=1:lemdanum 
       for k=1:N 
            lemda1=randn; 
            if lemda1<-1 
                lemda1=-1; 
            elseif lemda1>1 
                lemda1=1; 
            end 
             
            lemda1=(lemda1+1)/2; 
            lemda2=randn; 
            if lemda2<-1 
                lemda2=-1; 
            elseif lemda2>1 
                lemda2=1; 
            end 
            lemda2=(lemda2+1)/2; 
            % triangle  
           yl=y(k)-(1-alpha)*diav; 
           yu=y(k)+(1-alpha)*diav; 
           xl=x(k)-(1-alpha)*diav; 
           xu=x(k)+(1-alpha)*diav; 
          % trapezoidal membership function 
%             if(abs(alpha-1)<1e-5) 
%                 yl=y(k)-0.25*diav; 
%                 yu=y(k)+0.25*diav; 
%                 xl=x(k)-0.25*diav; 
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%                 xu=x(k)+0.25*diav; 
%             else 
%                 yl=y(k)-(diav-0.75*alpha*diav); 
%                 yu=y(k)+(diav-0.75*alpha*diav); 
%                 xl=x(k)-(diav-0.75*alpha*diav); 
%                 xu=x(k)+(diav-0.75*alpha*diav); 
%             end 
             % bell curve membership function 
 %           if alpha==0 
 %               alpha=0.05; 
 %           end 
 %           xl=x(k)-diav*sqrt((log(1/alpha))*sqrt(2))/3; 
 %           xu=x(k)+diav*sqrt((log(1/alpha))*sqrt(2))/3; 
 %           yl=y(k)-diav*sqrt((log(1/alpha))*sqrt(2))/3; 
 %           yu=y(k)+diav*sqrt((log(1/alpha))*sqrt(2))/3; 
    %%%%%%        
            yy(k)=(1-lemda1)*yl+lemda1*yu; 
            xx(k)=(1-lemda2)*xl+lemda2*xu; 
        end 
        rxy(j,i)=xcov(xx,yy,0,'coeff'); 
    end 
      alpha=i/(alphanum-1); 
end 
 
trandsearch=toc; 
rxya_r=zeros(1, alphanum); 
rxyb_r=zeros(1, alphanum); 
alphaa=zeros(1,alphanum); 
alpha=0; 
for i=1:alphanum 
    rxya_r(i)=min(rxy(:,i)); 
    rxyb_r(i)=max(rxy(:,i)); 
    alphaa(i)=alpha; 
    alpha=alpha+0.1; 
end 
alpha_plot(1:11)=alphaa; 
alpha_plot(12:22)=alphaa; 
rxy_plot(1:11)=rxya_r; 
rxy_plot(12:22)=rxyb_r; 
%plot(rxy_plot(1:11),alpha_plot(1:11)) 
%hold on 
%plot(rxy_plot(12:22),alpha_plot(12:22)) 
%xlabel('Rxy') 
%ylabel('\alpha') 
%Grid; 
%title('\alpha Versus Rxy') 
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%hold off 
 
%Nonspecificity 
h=1; 
nonspecificity=0; 
for i=1:10 
    nonspecificity=nonspecificity+0.1*log(1+rxyb_r(i)-rxya_r(i)); 
end 
nonspecificity=nonspecificity/h 
 
%  defuzzification 
sum1=0; 
sum2=0; 
sum1=(rxyb_r(1)-rxya_r(1))*0.05; 
for i=2:alphanum 
    sum1=(rxyb_r(i)-rxya_r(i))*0.1+sum1; 
end 
 
dr=sum1/0.95+min(rxya_r(:)) 
 
 
Plot 
 
xplot1=[ 0  0.1  0.2  0.3  0.4  0.5    0.6    0.7    0.8    0.9    1.0]; 
xplot2=[1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0]; 
alphaa=[xplot1 xplot2]; 
len=length(rxyb_m); 
temp_m=rxyb_m; 
temp_h=rxyb_h; 
temp_b=rxyb1_b; 
temp_r=rxyb_r; 
for i=1:len 
    rxyb_m(i)=temp_m(len-i+1); 
    rxyb_h(i)=temp_h(len-i+1); 
    rxyb1_b(i)=temp_b(len-i+1); 
    rxyb_r(i)=temp_r(len-i+1); 
end 
               
rxy_m=[rxya_m' rxyb_m']; 
rxy_h=[rxya_h rxyb_h]; 
rxy_b=[rxya1_b' rxyb1_b']; 
rxy_r=[rxya_r  rxyb_r]; 
plot(rxy_m,alphaa,'-.b',rxy_h,alphaa,'-.r*',rxy_r,alphaa,'g-',rxy_b,alphaa,'--yo') 
title('\alpha Versus Rxy') 
h=legend('Direct method','Heuristic method','Random search','Approximate bound',2); 
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Regression Application – Dosage Estimation 
 
close all; 
clear all; 
 
Q=imread('Aug20','bmp'); 
[m,n]=size(Q); 
y=[205.1317  181.6161  114.7314   88.8306   68.9454   52.8702   49.5915  45.3762   
39.8489]; 
y_low=[201.4537  178.2575  111.9650   85.5300   66.2175   48.7200   46.7625  42.0225   
36.3533]; 
y_high=[208.7263  185.0025  117.4650   91.9375   71.7325   57.0000   52.4600  48.7300   
43.2400]; 
%y=[v1 v2 v3 v4 v5 v6 v7 v8]; 
%y_low=[v1_low v2_low v3_low v4_low v5_low v6_low v7_low v8_low]; 
%y_high=[v1_high v2_high v3_high v4_high v5_high v6_high v7_high v8_high]; 
% preprocessing 
y_low=log10(y_low); 
y_high=log10(y_high); 
y=log10(y); 
x=[0 0.1543 0.9651 1.9242 2.8879 4.7537 6.1744 7.6131 13.88]; 
p=4; 
datalen=length(x); 
c=polyfit(x,y,p); 
ypredict=polyval(c,x); 
 
% fuzzy curve fitting 
 yp_low=zeros(datalen,1); 
 yp_high=zeros(datalen,1); 
 
  deltal=(y-y_low); 
  deltar=(y_high-y); 
   h=0; 
   A=zeros(2*datalen,4); 
   b=zeros(2*datalen,1); 
   m=1; 
   for i=1:datalen 
       A(m,1)=-(1-h); 
       A(m,2)=-(1-h)*x(i); 
       A(m+1,3)=-(1-h); 
       A(m+1,4)=-(1-h)*x(i); 
       b(m)=-(1-h)*deltal(i)+y(i)-ypredict(i); 
       b(m+1)=-(1-h)*deltar(i)+ypredict(i)-y(i); 
       m=m+2; 
  end    
    lb=0.001;    ub=5; 
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    initial=zeros(4,1); 
    for i=1:4 
        initial(i)=lb*rand; 
    end 
    s=fmincon(@newfun, initial,A,b,[],[],lb,ub); 
    
   for i=1:datalen 
       yp_low(i)=ypredict(i)-s(1)-x(i)*s(2); 
       yp_high(i)=ypredict(i)+s(3)+x(i)*s(4); 
    end 
    temp=0; 
    for i=1:datalen 
        if yp_low(i)>yp_high(i) 
            temp=yp_low(i); 
            yp_low(i)=yp_high(i); 
            yp_high(i)=temp; 
        end 
    end 
    y_low=10.^(y_low); 
    y_high=10.^(y_high); 
    y=10.^(y); 
    yp_low=10.^(yp_low); 
    yp_high=10.^(yp_high); 
    ypredict=10.^(ypredict); 
figure(1); 
%plot(x,y_low,'g-',x,y_high,'r') 
%h=legend('Measured low bound','Measured upper bound',2); 
 
plot(x,y,'g+',x,ypredict,'r--') 
title('Intensity versus dose') 
xlabel('dose') 
ylabel('intensity') 
h=legend('Expected value','Predicted value',2); 
 figure(2)     
plot(x,y_low,'y-',x,y_high,'g-',x,yp_low,'r--',x,yp_high,'b--') 
title('Intensity versus dose') 
xlabel('dose') 
ylabel('intensity') 
h=legend('Measured lower bound','Measured upper bound','Predicted lower 
bound','Predicted up bound',2); 
 
minvalue=floor(y_low(datalen)); 
maxvalue=floor(y_high(1)); 
dose_low=zeros(maxvalue,1); 
dose_high=zeros(maxvalue,1); 
dose=zeros(maxvalue,1); 
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for i=minvalue:maxvalue 
    dose_low(i)=interp1(yp_low,x,i,'spline','extrap'); % calculate dose of pixel_value 
belongs to [37,255] 
    if dose_low(i)<0 
        dose_low(i)=0; 
    elseif dose_low(i)>x(datalen) 
        dose_low(i)=x(datalen); 
    end 
    dose_high(i)=interp1(yp_high,x,i,'spline','extrap'); % calculate dose of pixel_value 
belongs to [37,255] 
     
    if dose_high(i)<0 
        dose_high(i)=0; 
    elseif dose_high(i)>x(datalen) 
        dose_high(i)=x(datalen); 
    end 
   dose(i)=interp1(y,x,i,'spline','extrap'); % calculate dose of pixel_value belongs to 
[37,255] 
    if dose(i)<0 
        dose(i)=0; 
    elseif dose(i)>x(datalen) 
        dose(i)=x(datalen); 
    end 
end 
 
sum1_low=0; 
sum1_high=0; 
sum1=0; 
for i=100:380 
    for j=100:430 
           if Q(i,j)>=minvalue&Q(i,j)<=maxvalue 
               sum1_low=sum1_low+dose_low(Q(i,j));  
                sum1_high=sum1_high+dose_high(Q(i,j)); 
                 sum1=sum1+dose(Q(i,j));  
            elseif Q(i,j)<minvalue & Q(i,j)>30 
              sum1_low=sum1_low+dose_low(minvalue); 
              sum1_high=sum1_high+dose_high(minvalue); 
               sum1=sum1+dose(minvalue);  
         end 
    end 
end 
 
sum2_low=sum1_low*0.00114 
sum2_high=sum1_high*0.00114 
sum2=sum1*0.00114 
finaldose=(sum2+sum2_low+sum2_high)/3 
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Fuzzy Regression Application - Stock Price Prediction 
 
close all; 
clear all; 
load INTC_1.txt; 
s=INTC_1; 
y=s(:,3:6); 
closeprice=y(:,4); 
highprice=y(:,2); 
lowprice=y(:,3); 
M=length(closeprice); 
x=1:M; 
plot(x,closeprice,'r-*',x,highprice,'b--',x,lowprice,'g:') 
xlabel('Time') 
ylabel('Closing Price') 
title('INTC Weekly Price Report(Aug/2003)') 
axis([1 10 0 35]) 
h=legend('closing price','high price','low price',2); 
 
x0=[0 0 0 0]; 
m=6; 
A=zeros(2*m,4); 
b=zeros(2*m,1); 
for i=4:9 
    A(i-3,1)=lowprice(i-3); 
    A(i-3,2)=lowprice(i-2); 
    A(i-3,3)=lowprice(i-1); 
    A(i-3,4)=1; 
    b(i-3)=closeprice(i); 
end 
for i=4:9 
    A(i+3,1)=-highprice(i-3); 
    A(i+3,2)=-highprice(i-2); 
    A(i+3,3)=-highprice(i-1); 
    A(i+3,4)=-1; 
    b(i+3)=-closeprice(i); 
end 
a=fmincon(@myfun,x0,A,b,[],[],0.1,10) 
% prediction 
close_pre=a(1)*closeprice(7)+a(2)*closeprice(8)+a(3)*closeprice(9)+a(4) 
low_pre=a(1)*lowprice(7)+a(2)*lowprice(8)+a(3)*lowprice(9)+a(4) 
high_pre=a(1)*highprice(7)+a(2)*highprice(8)+a(3)*highprice(9)+a(4)     
 
function f=myfun(a, highprice, lowprice) 
f=abs(a(1)*(highprice(1)-lowprice(1))+a(2)*(highprice(2)-lowprice(2))+a(3)*(highprice(
3)-lowprice(3))); 



 189

Crisp Input, Fuzzy Parameter, Fuzzy Output Linear Regression 
 
Close all; 
Clear all; 
x=[1 2 3 4 5]; 
y=[6.2 8.0  9.5 11.5 13.0]; 
y_low=[5.9 7.7  9.2 11.2 12.7]; 
y_high=[6.5 8.3 9.8 11.8 13.3]; 
n=length(x); 
x1=[ones(n,1)  x']; 
[c,cint,r,rint,stats] = regress(y',x1); 
 
% fuzzy regression 
% con: condition 
A=zeros(2*n,2); 
h=0; 
b=zeros(2*n,1); 
for i=1:n 
    b(i)=y_low(i)-c(1)-c(2)*x(i); 
    b(2*i)=-y_high(i)+c(1)+c(2)*x(i); 
    A(i,1)=-(1-h); 
    A(i,2)=-(1-h)*x(i); 
    A(2*i,1)=-(1-h); 
    A(2*i,2)=-(1-h)*x(i); 
end 
 
lb=0; 
ub=2; 
sumx=sum(x); 
f=[n  sumx]; 
xx= linprog(f,A,b,[],[],lb,ub); 
plot(x,y,x,y_low,'r--',x,y_high,'r--', 
x,c(1)-xx(1)+(c(2)-xx(2))*x,'g--',x,c(1)+xx(1)+(c(2)+xx(2))*x,'g--'); 
title('crisp input-fuzzy output, fuzzy parameter') 
%h=legend('central value','observed low bound','observed upper bound','predicted low 
bound','predicted upper bound',3); 
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Fuzzy Input, Crisp Parameter, Crisp Output Linear Regression  
 
Close all; 
Clear all; 
 
x=[1 2.2 3.1 4.5 6 7.6 ]; 
x_low=[0.8 2 2.9 4.4 5.7  7.3 ]; 
x_high=[1.2 2.4 3.3 4.6 6.3 7.9 ]; 
 
y=[1 2 3 4 5 6]; 
n=length(x); 
x1=[ones(n,1)  x']; 
c = regress(y',x1); 
A=zeros(2*n,2); 
h=0; 
b=zeros(2*n,1); 
for i=1:n 
    b(i)=-y(i); 
    b(2*i)=y(i); 
    A(i,1)=-1; 
    A(i,2)=-x(i)-(1-h)*(x(i)-x_low(i)); 
    A(2*i,1)=1; 
    A(2*i,2)=x(i)-(1-h)*(x(i)-x_low(i)); 
end 
lb=0; 
ub=2; 
deltax=x-x_low; 
sumx=sum(x); 
sumx1=sum(deltax); 
f=[1  2*sumx1]; 
xx= linprog(f,A,b,[],[],lb,ub); 
plot(x_low,y,'y',x_high,y,'b',x,c(1)+c(2)*x,'r--',x,xx(1)+xx(2)*x,'g--'); 
title('fuzzy input, crisp output, crisp parameter') 
 
 
 
 
 
 
 
 
 
 
 
 
 



 191

Fuzzy Input, Fuzzy Parameter, Crisp Output Linear Regression 
 
Close all; 
Clear all; 
x=[1 2.2 3.1 4.5 6 7.6 ]; 
x_low=[0.8 2 2.9 4.4 5.7  7.3 ]; 
x_high=[1.2 2.4 3.3 4.6 6.3 7.9 ]; 
s=x-x_low; 
 
y=[1 2 3 4 5 6]; 
n=length(x); 
x1=[ones(n,1)  x']; 
m = regress(y',x1); 
A=zeros(2*n,2); 
h=0.2; 
b=zeros(2*n,1); 
for i=1:n 
    b(i)=-y(i)+m(1)+m(2)*x(i)+(1-h)*m(2)*s(i); 
    b(2*i)=y(i)-m(1)-m(2)*x(i)+(1-h)*m(2)*s(i); 
    A(i,1)=-(1-h); 
    A(i,2)=-(1-h)*x_high(i); 
    A(2*i,1)=-(1-h); 
    A(2*i,2)=-(1-h)*x_low(i); 
end 
 
lb=0; 
ub=2; 
sumx=sum(x); 
f=[2*n  2*sumx];f 
xx= linprog(f,A,b,[],[],lb,ub); 
plot(x_low,y,'y',x_high,y,'b',x,m(1)-xx(1)+(m(2)-xx(2))*x_low,'g--',x,m(1)+xx(1)+(m(2)
+xx(2))*x_high,'g--'); 
title('fuzzy input, crisp output, fuzzy parameter') 
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Fuzzy Input, Fuzzy Parameter, Fuzzy Output Linear Regression 
 
Close all; 
Clear all; 
% 
x_low= [1.5 3   4.5 6.5 8.0 9.5 10.5  12.0]; 
x=     [2.0 3.5 5.5 7.0 8.5 10.5 11.0 12.5]; 
x_high=[2.5 4.0 6.5 7.5 9.0 11.5 11.5 13.0]; 
%  
y_low= [3.5 5   6.5 6.0 8.0 7.0 10.0 9.0]; 
y=     [4.0 5.5 7.5 6.5 8.5 8.0 10.5 9.5]; 
y_high=[4.5 6.0 8.5 7.0 9.0 9.0 11.0 10.0]; 
% 
sx=x_high-x; 
sy=y_high-y; 
n=length(x); 
x1=[ones(n,1)  x']; 
m = regress(y',x1); 
A=zeros(2*n,2); 
h=0.3; 
b=zeros(2*n,1); 
for i=1:n 
    b(i)=-y(i)+m(1)+m(2)*x(i)+(1-h)*m(2)*sx(i)-(1-h)*sy(i); 
    b(2*i)=y(i)-m(1)-m(2)*x(i)+(1-h)*m(2)*sx(i)-(1-h)*sy(i); 
    A(i,1)=-(1-h); 
    A(i,2)=-(1-h)*x_high(i); 
    A(2*i,1)=-(1-h); 
    A(2*i,2)=-(1-h)*x_low(i); 
end 
 
lb=0; 
ub=2; 
sumx=sum(x); 
f=[2*n  2*sumx]; 
xx= linprog(f,A,b,[],[],lb,ub); 
plot(x_low,y_low,'y',x_high,y_high,'b',x,m(1)-xx(1)+(m(2)-xx(2))*x_low,'g--',x,m(1)+xx
(1)+(m(2)+xx(2))*x_high,'g--'); 
title('fuzzy input, fuzzy output, fuzzy parameter') 
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Crisp Input, Fuzzy Parameter, Crisp Output Linear Regression 
 
Close all; 
Clear all; 
x=[1 2 3 4 5 6 7 8 9 10]; 
y=[1.5 2.3 2.7 4.4 9.4 6.3 6.5 7.8 8.5 10.5]; 
n=length(x); 
x1=[ones(n,1)  x']; 
[b,bint,r,rint,stats] = regress(y',x1); 
 
% fuzzy regression 
% con: condition 
A=zeros(2*n,2); 
h=0.4; 
con=zeros(2*n,1); 
for i=1:n 
    con(i)=-y(i)+b(1)+b(2)*x(i); 
    con(2*i)=y(i)-b(1)-b(2)*x(i); 
    A(i,1)=-(1-h); 
    A(i,2)=-(1-h)*x(i); 
    A(2*i,1)=-(1-h); 
    A(2*i,2)=-(1-h)*x(i); 
end 
 
lb=0; 
ub=2; 
sumx=sum(x); 
f=[n  sumx]; 
xx= linprog(f,A,con,[],[],lb,ub); 
plot(x,y,x,b(1)+b(2)*x,'r--',x,b(1)-xx(1)+(b(2)-xx(2))*x,'g--',x,b(1)+xx(1)+(b(2)+xx(2))*
x,'g--'); 
title('crisp input-output, fuzzy parameter') 
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Fuzzy Input, Crisp Parameter, Fuzzy Output Linear Regression 
 
Close all; 
Clear all; 
x=[2 3.5 5.5 7 8.5 10.5 11 12.5]; 
x_low=[1.5 3.0 4.5 6.5 8.0 9.5 10.5 12.0]; 
x_high=[2.5 4.0 6.5 7.5 9.0 11.5 11.5 13.0]; 
y=[4 5.5 7.5 6.5 8.5 8.0 10.5 9.5]; 
y_low=[3.5 5.0 6.5 6.0 8.0 7.0 10.0 9.0]; 
y_high=[4.5 6.0 8.5 7.0 9.0 9.0 11.0 10.0]; 
     
n=length(x); 
xc=(x_low+x+x_high)/3; 
yc=(y_low+y+y_high)/3; 
x1=[ones(n,1)  xc']; 
[c,cint,r,rint,stats] = regress(yc',x1); 
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Crisp Input, Crisp Parameter, Fuzzy Output Linear Regression 
 
close all; 
clear all; 
%%  pdfregrssion.m is used to compute the fuzzy prediction 
x=1:15; 
for i=1:15 
    y(i)=1.5*x(i)+(-1+2*rand)*2; 
end 
 
figure(1) 
plot(x,y) 
predictvalue=8; 
% classical predition 
xtest=[ones(15,1) x']; 
bb=regress(y',xtest); 
prediction=bb(1)+bb(2)*predictvalue 
n=length(x); 
total=0; 
testnum=n; 
total=0; 
amp=1; 
loopnum=zeros(1,1); 
for num=3:n 
if num==8 || num==7 
      loopnum=6435*amp; 
  elseif num==9|| num==6 
      loopnum=5005*amp; 
  elseif num==10 || num==5  
      loopnum=3003*amp; 
  elseif num==11 || num==4 
      loopnum=1365*amp; 
  elseif num==12 || num==3 
      loopnum=455*amp; 
  elseif num==13 
      loopnum=105*amp; 
  elseif num==14 
      loopnum=15*amp; 
  elseif num==15 
      loopnum=1*amp; 
   end 
   
 bcoeff=zeros(2,loopnum);   
 
 for i=1:10000 
     if i>loopnum 
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         break; 
     end 
   count=0; 
   index=zeros(1,num); 
    for k=1:150 
        if num==n 
            index=1:n;  
            break; 
        end 
        i1=floor(1+rand*(n-1)); 
        flag=0; 
        for j=1:count 
            if i1 == index(j) 
                flag=1; 
                break; 
            end 
        end 
        if flag==0 
            count=count+1; 
            index(count)=i1; 
        end 
        if count==num 
            break; 
        end 
    end 
    x1=zeros(1,num); 
    y1=zeros(1,num); 
    for k=1:num 
        temp=index(k); 
        x1(k)=x(temp); 
        y1(k)=y(temp); 
    end 
    x2=[ones(k,1)  x1']; 
    bcoeff(:,i)=regress(y1',x2); 
 end 
 bcoeff1(:,total+1:total+loopnum)=bcoeff; 
 total=total+loopnum; 
end 
 
ypredict=bcoeff1(1,:)+bcoeff1(2,:)*predictvalue; 
figure(2) 
[pe,xout]=hist(ypredict,50); 
pe=pe./max(pe); 
bar(xout,pe); 
% axis([0.96 1 0 1]) 
title('fuzzy prediction') 


