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CHAPTER 1 

 
Literature Review 

 

Introduction 

 During the past twenty years, Listeria monocytogenes has emerged as 

significant food borne pathogens.  Listeria monocytogenes has been identified as 

a human pathogen since the 1920’s (Schlech, 2000).  However, food borne 

transmission was not implicated until 1981, when Schlech et al. (1983) reported 

the isolation of Listeria monocytogenes, serotype 4b from coleslaw that had been 

consumed by a patient that had an infection with serotype 4b. 

 

General Characteristics of Listeria monocytogenes  

The genus Listeria is a Gram-positive bacteria consisting of 6 genera: L. 

monocytogenes, L. ivanovii, L. innocua, L. welshimeri, L. grayi and L. seeligeri.  

While L. monocytogenes is not the only Listeria spp. capable of causing 

infection, L. monocytogenes is responsible for virtually all cases of foodborne 

human listeriosis (Ryser and Marth, 1991).  L. monocytogenes can grow at 

temperatures between 1 and 45°C with an optimum growth temperature 

between 30 and 37°C.  It is capable of growth between pH 6 and 9, and can 

grow in nutrient broth supplemented with up to 10% (w/v) NaCl.  Although L. 

monocytogenes is an aerobic, mesophilic organism, it is capable of growing well 

when some oxygen is replaced with carbon dioxide, but it will not grow under 

strict anaerobic conditions.   
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 All Listeria spp. possess the following biochemical traits:  catalase (+), 

oxidase (-), urease (-), and esculin and sodium hippurate are hydrolyzed.  

However, species differentiation can be made, in part, based upon acid 

production from mannitol, rhamnose, and xylose, as well as the CAMP test using 

Staphylococcus aureus and Rhodococcus equi.  L. monocytogenes is capable of 

fermenting rhamnose but cannot ferment xylose or mannitol.  It is β-hemolytic on 

sheep blood agar, and hemolysis is enhanced by the S. aureus CAMP factor.   

Further identification of L. monocytogenes can be performed using 

serotyping.  There are currently 13 serotypes of L. monocytogenes. 

Approximately 90% of the clinical isolates belonging to serotypes 1/2a, 1/2b, and 

4b.  The remaining serotypes are 1/2c, 3a, 3b, 3c, 4a, 4ab, 4c, 4d, 4e, and 7.  

There are also various somatic (O) and flagellar (H) structures that can be used 

in serotyping (Ryser and Marth, 1991).  Other identification and characterization 

procedures may include use of the Polymerase Chain Reaction, DNA 

fingerprinting, phage-typing, and ribo-typing. 

 

Persistence of L. monocytogenes within the  

Animal Production Environment 

Listeria monocytogenes presents a unique concern for the processor of 

ready-to-eat (RTE) meats, because it is not considered an adulterant in raw meat 

products but is considered an adulterant of finished RTE products.  However, this 

organism can present a concern from the standpoint of it entering the processing 

environment at the time of slaughter (Fenlon et al., 1996).  Another concern is 
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dissemination through the agriculture production environment.  An example of 

this dissemination would be if this organism was being shed in animal feces and 

the manure was then used as fertilizer.  Vegetables could become contaminated 

with Listeria monocytogenes (Van Renterghen et al., 1991) and cause illness that 

could potentially be traced back to the production facility (Schlech et al., 1983). 

 Van Renterghen et al. (1991) studied the prevalence of L. monocytogenes 

within the agriculture ecosystem.  They examined the prevalence of Listeria spp. 

in environmental samples from pig and cattle feces as well as manure piles, soil 

and ground water.  Listeria spp. was found in 16% (4 of 25) and 20% (5 of 25) of 

pig and cattle feces samples, respectively, while no Listeria spp. were isolated 

from 10 manure or 17 soil samples.  However, one of five ground water samples 

was positive for Listeria spp.  The author also examined the survivability of L. 

monocytogenes when inoculated into cattle and pig feces, as well as soil.  In 

experimentally inoculated pig feces, L. monocytogenes was able to survive 

between 3 and 4 weeks, while in cattle feces, L. monocytogenes was not 

recovered after 8 weeks.   

 Husu (1990b) investigated 249 dairy herds for shedding of Listeria spp.  A 

total of 3,878 fecal samples were collected, of which 373 (9.6%) were positive for 

one or more Listeria spp.  On a herd basis, at least one animal was shedding 

Listeria spp. in 114 of the 249 (45.8%) herds sampled.  On average, 2.12% of the 

animals in any given herd were shedding Listeria spp.  In a second phase of the 

study, fecal, milk and feed samples were collected from 80 dairy farms and 

examined for Listeria.  A total of 314 fecal samples were collected, with L. 
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monocytogenes and L. innocua isolated from 68 (21.7%) and 23 (7.3%) samples, 

respectively.  A total of 314 tank milk samples were collected, of which 7 (2.2%) 

and 6 (1.9%) were positive for L. monocytogenes and L. innocua, respectively.  

When 295 feed samples (grass silage or pasture grass) were tested, Listeria 

monocytogenes was recovered from 62 (21.2%) and L. innocua was recovered 

from 33 (11.2%) samples.  Burrow et al. (1996) found higher numbers of L. 

monocytogenes present in animal feces, as 33% of the cattle, 8% of the sheep, 

5.9% of the swine and 8% of the hens they sampled were found to be positive. 

 In a second study, Husu et al. (1990a) investigated 4 farms for the 

presence of Listeria spp.  The study revealed that 4 of 59 fecal samples (6.8%) 

were positive for Listeria monocytogenes while 3 of 59 (5.1%) were positive for L. 

innocua.  Feed samples were collected, including silage, hay concentrates and 

other feed ingredients.  Listeria spp., either L. innocua or L. monocytogenes was 

isolated from 1 of 8 feed samples, 5 of 8 hay samples, 8 of 8 oat meal or crossed 

oats samples, 2 of 2 oat mash and 2 of 2 straw samples.  Environmental samples 

that were Listeria spp. positive (L. innocua or L. monocytogenes) included the 

feed passage (14 of 16), water cups (24 of 46), walls (4 of 16), floors (12 of 16) 

and windows (1 of 8).   

 While dairy farms have been a major focus of the Listeria research 

conducted in the agricultural ecosystem primarily due to the risk of milk being 

contaminated by Listeria monocytogenes, the feedlot environment has also been 

investigated to better understand the survival of this organism within the animal 

production environment.  Siragusa et al. (1993) collected both composite and 
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individual fecal grab samples over a 3-month period.  A total of 69 composite 

fecal samples were collected with 14 (20%) positive for either L. innocua or L. 

welshimeri and one sample (1.4%) was positive for Listeria monocytogenes.  In 

addition to the composite samples, a total of 138 individual samples were 

collected, with 13 (9.4%) cattle positive for L. innocua or L. welshimeri and again, 

1 sample positive for L. monocytogenes.   

In this study, Siragusa et al. (1993) also investigated the impact of a silage 

diet on the shedding of Listeria.  Initially, 23 cattle were being fed a grass diet, 

and no Listeria were isolated.  However, when these cattle were switched to a 

silage diet, Listeria monocytogenes was isolated from 8 of 27 cattle and 

additional Listeria species were isolated from another 8 animals.  Electrophoretic 

typing (ET) revealed the same L. monocytogenes isolate was recovered from 

both silage and cattle.  These results are consistent with other research that has 

linked a silage diet to the shedding of Listeria spp. (Siragusa et al., 1993).   

 Fenlon et al., (1996) performed an extensive investigation into Listeria and 

the livestock production environment that included avian fauna, farm ducks and 

domestic farm animals.  Of the 23 samples collected, 3 (13%) were found to be 

shedding Listeria monocytogenes and 5 (21.7%) were shedding Listeria innocua.  

Grass and silage were also sampled, and while no L. monocytogenes was 

isolated from the grass pre-harvest, 3 of 10 samples were positive for L. innocua 

and L. seeligeri.  However, within 24 hours of harvesting the grass (to make 

silage) 9 of the 10 samples collected were positive for L. monocytogenes. 
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 Listeria spp. has been isolated from animals in the production environment 

in a range of 9.6% to 33% incidence.  However, little research has focused upon 

factors that may be associated with the shedding and dissemination of this 

organism.  Silage, when not fermented properly, appears to be a source of 

Listeria monocytogenes (Husu et al., 1990a).  However, other sources may need 

to be considered, such as other feedstuffs, or equipment that is used within the 

production facility.  Another phenomenon observed in research is that Listeria 

innocua is found as often, or more than, any other Listeria spp. in the production 

environment (Siragusa et al., 1993).   

 

Factors Associated with Preharvest and Postharvest  

Carcass Contamination  

 At the time of slaughter, a processor is faced with multiple carcass 

contamination concerns.  Research has demonstrated that the stress associated 

with shipping livestock from the production facility to the slaughter facility can 

increase the shedding of pathogens in the feces (Fenlon et al., 1996).  Other 

sources of contamination that must be considered include hide and hair (Korsak 

et al., 1998) and equipment used by employees such as knives, gloves and 

aprons (Reagan et al., 1996).  Larger pieces of equipment such as those used 

for hide removal and carcass breaking can also present contamination concerns 

(Gill and Jones, 1999b).  

 When cattle are shipped to slaughter, they undergo a great deal of stress.  

If L. monocytogenes have already colonized the intestinal tract of these animals, 
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they may begin shedding these pathogens in their feces.  Fenlon et al. (1996) 

investigated the shedding of L. monocytogenes before and after transport to 

slaughter, transportation as well as the effect that distance may have on the 

shedding of this organism.  The slaughter facilities that were used for the study 

were either less than 25 km or greater than 125 km from the production facility.  

The author found that, in cattle traveling less than 25 km, the incidence of 

shedding was not significantly increased.  However, when transported greater 

than 125 km, shedding increased significantly.  In research with Salmonella 

typhimurium, Puyalto et al., (1997) were able to demonstrate an increased 

shedding of this organism during shipping.  Prior to shipping, 8% of the cattle 

being transported to slaughter had S. typhimurium in their feces.  However, after 

arrival at the slaughter facility, 25% of the animals were shedding this organism. 

 Increased shedding of pathogens in the feces as well as mud and manure 

(commonly referred to as ‘tag’) that may be attached to the hide can present 

contamination risks.  Donkersgoed et al. (1998) investigated the association of 

tag with carcass contamination by enumerating total bacteria by aerobic plate 

count (APC), total coliforms, and E. coli.  The authors found no consistent 

association of tag with bacterial contamination of carcasses, as removing tag or 

slowing the line speed resulted in minimal reductions of <0.5 log10 CFU/cm2 for 

APC, coliforms and E. coli.  Aerobic plate count results by McEvoy et al., (2000) 

comparing ‘clean’ cattle to ‘dirty’ cattle showed carcasses from animals with little 

to no tag had between 0.53 and 0.62 fewer log10 CFU/cm2 than carcasses from 

animals with excessive tag.  This was also similar to the results found by Ridell 
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and Korkeala (1993), in which cattle with excessive tag had an average 0.68 

log10 CFU/cm2 higher bacterial counts. 

 Elder et al. (2000) investigated the incidence of E. coli O157:H7 on the 

hide and in the feces of cattle at the time of slaughter, as well as sampling of 

carcasses pre- and post-evisceration and post-processing.  A total of 327 fecal 

samples and 355 hide samples were collected with 91 (27.8%) and 38 (10.7%) 

positive isolates, respectively.  Pre-evisceration carcass swabs identified 148 of 

341 (43.4%) positive carcasses.  Only 59 of 332 (17.8%) carcasses were positive 

post-evisceration and 6 of 330 (1.8%) were positive post-processing.  Of the 

carcasses that were positive, 95 were positive only pre-evisceration while 47 

were positive both pre-evisceration and post-evisceration, and 10 carcasses 

were only positive post-evisceration.  All 6 of the post-processing positives were 

positive post-evisceration and three were positive pre-evisceration. 

 The potential for carcass contamination from the hide and feces presents 

a problem that several approaches tried to address.  Several different procedures 

have been utilized in an attempt to remove tag from the hide of the animal.  A 

simple approach has been a pre-slaughter washing of the animal prior to 

stunning.  Another, more complex system, has consisted of chemically dehairing 

the animal after stunning, prior to bleeding.  Byrne et al. (2000) inoculated 30 

heifers with 200 ml of manure inoculated with E. coli NCTC 12900 that was 

streptomycin sulphate resistant.  The fecal inoculum was allowed to dry for 24 

hours on the cattle prior to slaughter.  The cattle were then slaughtered, with 10 

head unwashed, 10 head washed for 1 minute and 10 head washed for 3 
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minutes utilizing a power hose at a pressure of 150 psi.  The inoculum level 

dropped significantly after 24 hours from an initial 6.6x103 CFU/cm2 to 1.9x102 

CFU/cm2.  After the 1 minute wash there was no significant change in the level of 

E. coli present on the hide.  However, after the 3 minute wash the level of E. coli 

had been significantly reduced to 2.3 CFU/cm2.  When finished carcasses were 

sampled, the control averaged 8.13 CFU/cm2 while the 1 and 3 minute washes 

averaged 2.07 and 0.29 CFU/cm2, respectively. 

 Chemically removing the hair from cattle prior to initiating hide removal 

has also been investigated as a method to reduce carcass contamination.  

Schnell, et al. (1995) examined the effects of dehairing on the bacterial counts of 

the carcass, overall carcass cleanliness and trimming required to meet zero 

tolerance requirements.  Carcasses were dehaired using a method patented by 

Bowling and Clayton (1992).  The dehairing solution was a 10% sodium sulfide 

solution while 3% hydrogen peroxide was used as a neutralizer.  No significant 

difference was found between conventional slaughtered and de-haired cattle for 

aerobic plate count and E. coli.  The dehaired carcass had lower APC (4.00 log 

CFU/cm2 versus 4.14 log CFU/cm2 ) and E. coli counts (1.21 log CFU/cm2 versus 

1.14 log CFU/cm2) but had higher total coliform counts (1.96 log CFU/cm2 versus 

1.64 log CFU/cm2) than the conventional slaughtered carcasses.  Also, Listeria 

monocytogenes was isolated from both a conventionally slaughtered animal and 

a dehaired animal, but no Salmonella were recovered from either.  Overall, 

dehairing did increase the visual cleanliness of the carcass, but it did not reduce 

the microbial contamination of the finished carcasses.   
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Results by Castillo et al., (1998a), differ considerably from those of 

Schnell et al. (1995). In this study, pieces of hide were collected from the abattoir 

and coated with feces inoculated with rifampicin resistant S. typhimurium, E. coli 

O157:H7, or uninoculated feces.  Hide samples were treated with the same 

process used by Schnell et al. (1995).  Aerobic plate counts, coliforms and E. coli 

were enumerated, as well as S. typhimurium and E. coli O157:H7.  Dehairing 

resulted in a 3.4 log10 CFU/cm2 reduction of APC, a 3.9 log10 CFU/cm2 reduction 

of coliforms and a >4.3 log10 CFU/cm2 reduction of E. coli.  S. typhimurium was 

reduced by >4.6 log10 CFU/cm2 and E. coli O157:H7 was reduced by >4.8 log10 

CFU/cm2.  It should be noted however, that artificial fecally contaminated 

carcasses may not have the tenacity as natural tag which could indicate better 

resultes than could actually be achieved in the processing facility. 

These studies demonstrate that either washing or dehairing of hides could 

be useful in reducing the microbial load borne by the animal at the time of 

slaughter and hide removal.  The dramatic differences between Castillo et al. 

(1998a), and Schnell et al. (1995) are not expounded upon in the literature.  

However, Schnell et al. (1995) did state several possibilities as to why there were 

no significant differences between the conventional and dehaired carcasses.  

The authors stated that the facility was not designed to process dehaired cattle, 

therefore aerosol, human and equipment contamination could have contributed 

to contaminating the carcasses.  It was also observed that de-haired cattle 

required more handling and hide removal was complicated because the hide was 

‘slippery and soapy’ from the dehairing process.  Even though the authors’ 

10 



research did not demonstrate a significant reduction in the bacterial load of the 

carcasses, the authors’ did theorize that, over a period of time, in a properly 

designed facility, the removal of dirt and fecal matter from the hide should be 

useful in reducing carcass contamination with pathogens. 

While the hide of the animal can be a source of carcass contamination, it 

is also possible for carcasses to become contaminated during subsequent 

breaking procedures.  The carcass can become contaminated from equipment 

such as saws and knives or through contact with hands or protective equipment 

worn by the plant employee (Gill and Jones, 1999b).  Gill and Jones investigated 

the carcass breaking process, and randomly selected and swabbed 25 

carcasses and enumerated aerobic bacteria, coliforms and E. coli, then re-

swabbed the loins after the carcass breaking process had been completed.  The 

average aerobic count on the carcasses was 2.01 log 10 CFU/cm2, while 

coliforms and E. coli were not detectable from 24 and 25 of the samples, 

respectively.  However, after breaking, the loins had mean aerobic counts of 2.15 

log 10 CFU/cm2, coliforms averaged 1.92 log 10 CFU/cm2 and E. coli counts 

averaged 1.70 log 10 CFU/cm2.   

Further investigation by Gill and Jones (1999b) found that approximately 

5% of the carcasses entering the breaking facility had E. coli counts >2 log10 

CFU/cm2 on the anal region.  They also found that procedures such as sawing 

through the backbone, removing the ribs and sternum and injecting nitrogen 

between the shoulder muscles could increase aerobic counts, but did not 

significantly influence coliform counts.  Other trimming procedures were not 
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found to significantly impact the microbial load of the carcass, with the exception 

of the anus region, in which they found that trimming could reduce coliforms and 

E. coli by an average of approximately 1 log.   

Gill et al., (1999a) investigated inadequately cleaned equipment used in 

the breaking of sheep carcasses.  The equipment sampled included the blade 

and guard of the carcass saw, the forequarter table surface, the band saw table, 

guard and drive wheels, the meat contacting surface of conveyor belts, conveyor 

belt support bars, cutting boards and mesh gloves.  The equipment was sampled 

prior to work commencing for the day.  Total aerobes, coliforms and E. coli were 

enumerated from the shoulder, loin and leg, and swabs were collected before 

breaking, after sawing or after trimming.  No significant difference in aerobic 

counts was observed during the breaking process, as the shoulder, loin and leg 

had initial log counts of 2.81, 2.80 and 2.56 CFU/cm2, respectively, prior to 

breaking and 2.79, 2.57 and 3.32 CFU/cm2, respectively, after sawing and 

trimming.  Coliforms did not increase significantly on the shoulder during 

processing but both the loin and leg saw significant increases in coliforms and E. 

coli after trimming.  No coliforms were recovered from the sampled equipment.  

However, mesh gloves, which were the responsibility of individual plant 

personnel to clean, had coliform and E. coli counts of 5.54 and 4.73 log10 CFU 

per glove, respectively.  Therefore, the authors observed inadequately cleaned 

mesh gloves worn by plant employees can present a significant contamination 

source. 
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In another study published by Gill et al., (1999c) inadequately cleaned 

equipment was identified and E. coli was found to persist and proliferate in 

equipment that was considered to be well-cleaned.  The authors observed that 

this persistence could lead to contamination of product by E. coli O157:H7 or 

other pathogenic strains of E. coli, if present and was supported by the increase 

of coliforms and E. coli on loins and chucks that passed through the 

contaminated equipment.  Initial carcass swabs for coliforms and E. coli were 

below detectable levels.  However, subsequent sampling of loins had an increase 

of coliforms and E. coli to 2.39 and 2.33 log10 CFU/cm2 while chucks increased to 

1.16 and 0.58 log10 CFU/cm2, respectively. 

These results led Gill and McGinnis (2000) to investigate the 

contamination of beef trimmings with E. coli from equipment and gloves.  

Aerobes were recovered at levels as high as 105 CFU/cm2 per sample from 

swabs of pooled water on cleaned equipment.  Steel mesh gloves and 

inadequately cleaned equipment had counts as high as 108 CFU/cm2 per sample.  

Coliforms were not recovered from the water samples, and while coliforms were 

recovered from gloves and equipment, less than 10% of the coliforms recovered 

were E. coli.  However, in meat trimmings, E. coli was the predominant coliform.  

Thus, the authors concluded that carcass contamination may occur when a 

localized contamination site exists, and the carcass breaking process then 

distributes the contamination throughout the product. 

Mesh gloves can present a contamination hazard, as has already been 

demonstrated.  Legg et al. (1999) wanted to determine if wearing neoprene 
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gloves would provide an advantage at reducing cross contamination when 

compared to using bare hands.  They compared bare hands to gloved hands 

rinsed at 40°C and gloved hands rinsed at 60°C.  The bacterial culture was 

obtained by swabbing hides of cattle and using that to inoculate the growth 

medium.  A bare or gloved hand was dipped in the culture for 30 seconds, then 

allowed to ‘drip’ for 10 seconds.  A 5-cm2 area of the palm was swabbed and 

plated on nonselective media.  The hand was then rinsed with 40° or 60°C water 

for 5 seconds and allowed to drip for another 10 seconds prior to another swab 

adjacent to the previous swab area. 

The bare hand had a mean pre-rinse of 12.8 CFU/cm2.  After rinsing with 

40°C water, the mean was 1.0 CFU/cm2.  The gloved hand had an initial 

inoculum mean of 21.3 CFU/cm2 prior to the 40°C rinse and 23.6 CFU/cm2 prior 

to the 60°C rinse.  Post-rinse counts were 0.5 and 0.1 CFU/cm2, respectively.  

There was no statistical difference between the three methods after rinsing, even 

though the inoculum level was significantly higher for the gloved hands.  The 

author observed that this study did not account for build up of residues on the 

glove or bare hand or the possibility of increasing the bacterial load of the gloves 

throughout the day.  It was also observed that the rinse water flow rate would 

probably have an impact upon removal of the build up.  

 Research has shown that carcass contamination occurs in many forms, 

and there is no single step that can be taken to eliminate contamination.  

However, it has been demonstrated that, if various steps such as removing dirt 

from cattle prior to slaughter, proper cleaning of equipment, and proper care of 
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gloves are taken throughout the slaughter process, then microbial load born by 

the carcass may be reduced. 

 

Carcass Decontamination 

 Despite processors making various attempts to prevent carcass 

contamination, there is no single ‘magic bullet’ solution.  Therefore, further steps 

are needed to reduce or eliminate any carcass contamination that may occur 

during the slaughtering process.  Knife trimming has typically been the first line of 

defense.  Also, cold and hot water rinses have been shown to reduce 

contamination.  Other pasteurization or decontamination methods have also 

been investigated and include the use of very hot water (>82°C), steam 

vacuuming, steam cabinets, and acid washes (Phebus et al., 1997). 

 Phebus et al., (1997) investigated a steam pasteurization process 

patented by Frigoscandia Food Process Systems and compared it to other 

methods.  In the laboratory, freshly slaughtered beef tissue was inoculated with 

feces containing E. coli O157:H7, S. typhimurium and L. monocytogenes.  

Treatments included trimming, washing, vacuuming and steam.  Washing gave 

the least reduction, with a mean reduction of 0.75, 1.23 and 1.28 log10 CFU/cm2 

for E. coli O157:H7, S. typhimurium and L. monocytogenes, respectively.  

Trimming had reductions of 3.10, 2.72 and 2.54 log10 CFU/cm2, vacuuming 

resulted in reductions of 3.11, 3.37 and 3.33 log10 CFU/cm2 and steam gave 

reductions of 3.53, 3.74 and 3.44 log10 CFU/cm2 for E. coli O157:H7, S. 

typhimurium, and L. monocytogenes, respectively. 
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 Phebus et al., (1997) also compared combined treatments of trimming-

washing-2% lactic acid spray-steam pasteurization to vacuuming-washing-2% 

lactic acid spray-steam pasteurization and found no significant difference 

between the two sets of decontamination steps for all three pathogens, as 

reductions between 4.14 to 5.31 log10/cm2 were obtained.  The author concluded 

that, while trimming and vacuuming have the potential to reduce microbial 

contamination, they depend upon visible contamination to be effective.  Lactic 

acid and steam were found to give comparable results, but it was pointed out that 

lactic acid may corrode equipment and could present more of a safety hazard to 

employees, problems that were not found with a steam cabinet. 

Nutsch et al. (1998) further investigated this process by sampling 40 

carcasses before treatment and 40 carcasses post treatment.  Before treatment, 

the midline had the highest aerobic plate count (4.5 log10/100 cm2).  The inside 

round, brisket and neck had average counts of 3.8 log10/100 cm2 and the loin 

averaged counts of 3.4 log10/100 cm2.  After treatment, all counts were reduced 

significantly, as the round, loin and brisket had counts of approximately 2.6 

log10/100 cm2 and the midline and neck had counts of 3.1 and 3.3 log10/100 cm2, 

respectively.  Generic E. coli populations were low throughout the study.  

However, before treatment, 32% of the carcasses had E. coli counts below the 

detectible limit of 5.0 CFU/100 cm2, whereas after pasteurization, 85% of the 

carcasses had E. coli populations below the detectible limit. 

 Cutter et al., (1997) investigated multiple aspects related to using a 2% 

acetic acid solution compared to water.  Prerigor, postrigor, and frozen beef 
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carcass tissue gave similar results when inoculated with E. coli O157:H7 mixed 

into sterile feces.  All three meat types had between a 1.74 and 2.23 log10 

reduction using either water or acetic acid solution.  The research also examined 

the difference between the attachment and survival of cells suspended in 

physiological saline and beef feces.  While the feces gave slightly higher 

inoculum levels (4.87 vs. 4.53 log10 CFU/cm2), than cells suspended in saline, 

the feces resulted in a better reduction of inoculum when washed with water, with 

a reduction of 2.8 log10 CFU/cm2 compared to 1.7 log10 CFU/cm2 reduction for 

the saline.  Similar results were observed for the acid wash, as the saline 

inoculum had a 2.8 log10 reduction while the fecal inoculum had a 3.0 log10 

reduction.  However, no statistical differences were observed between the two 

methods. 

 Cutter and Siragusa (1994) compared various concentrations (1%, 3% 

and 5%) of lactic acid, acetic acid and citric acid on reducing a 3 strain mixture of 

E. coli O157:H7 attached to inoculated beef carcass tissue.  No statistical 

difference was observed between acid types.  However, concentration and tissue 

type were observed to be significant, as adipose tissue gave greater log10 

reductions of E. coli O157:H7 than did lean tissue, and increasing the 

concentration of the acid also gave the greatest reductions.   

 Dorsa et al. (1997) evaluated water, 1.5% and 3.0% glacial acetic acid, 

1.5% and 3% lactic acid and 12% trisodium phosphate (TSP) for the ability to 

reduce levels of L. innocua, and E. coli O157:H7 on inoculated tissue, as well as 

determine the effectiveness of the treatments over 21 days.  Total aerobic 
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bacteria were initially reduced by 1.3 to 2.0 log CFU/cm2 by all wash treatments.  

However, after 2 days, the water and TSP washed tissue total plate count had 

increased by greater than 1 log cycle and after 21 days, the population had 

increased to 8 log10 CFU/cm2 while the control had increased to 8.5 log10 

CFU/cm2.  All acid treatments resulted in an initial reduction of approximately 1.5 

log10 CFU/cm2.  After 21 days, a population of 5.5 log10 CFU/cm2 was observed.  

This was significantly less than the untreated controls, water or TSP. 

 The acid and TSP reduced E. coli O157:H7 to below detectible levels (1.3 

log10 CFU/cm2) from an initial level of 4.0 log10 CFU/cm2.  After 21 days the 

control had increased to 5.8 log10 CFU/cm2, while all treated samples (except 

water) remained undetectable.  The water washed sample was initially reduced 

by 1.8 log cycles, and after 21 days, the water washed sample was still 1.5 log 

lower than the control.  Similar results were observed with L. innocua with the 

exception of TSP and water.  Initially, L. innocua was reduced by >4 log cycles 

for all 4 acid treatments to undetectable levels.  The control increased to >8 log 

CFU/cm2 after 21 days while the acid treated samples remained undetectable.  

The population of TSP treated samples was significantly less than the population 

of the untreated or water washed sample after 21 days, although some growth 

was observed. 

Dorsa et al. (1998a) observed similar results in a study using beef 

shortplates.  Using a low inoculum (<2 log10) of L. innocua, E. coli O157:H7 and 

S. typhimurium, growth was either suppressed or no organisms were recovered 

from lactic or acetic acid treated samples.  TSP also exhibited some growth 
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suppression, but not to the extent of the acid treatments.  Another study by Dorsa 

et al., (1998b) was performed on meat that was inoculated, treated and then 

ground and stored for 21 days.  Treatments included water, 95°C hot water, 2% 

lactic acid, 2% acetic acid and 12% trisodium phosphate.  No significant 

reduction was observed for either total lactic acid bacteria or aerobic mesophils 

at initial treatment or during the 21 day trial.  However, E. coli O157:H7 and L. 

innocua were significantly reduced by the acid and TSP washes both initially and 

during storage.  The hot water wash did reduce both organisms, as reductions 

were statistically significant, but the reduction was not as good as with the 

antimicrobial agents. 

Water wash, trimming and combined hot water and 2% lactic acid 

treatments were compared by Castillo et al. (1998b) for the reduction of E. coli 

O157:H7 and S. typhimurium.  Hot water (95°C) gave reductions from 4.0 to >4.8 

log10 CFU/cm2 While the 2% lactic acid spray gave reductions from 4.6 to >4.9 

log CFU/cm2.  In combination, lactic acid spray followed by hot water, or hot 

water followed by lactic acid spray, gave reductions similar to those observed for 

the individual treatments. 

Dickson et al. (1994) investigated the use of 8%, 10% and 12% trisodium 

phosphate and found no significant difference between these concentrations.  

Reductions of 1 to 1.5 log cycles were observed for both E. coli O157:H7 and S. 

typhimurium on lean tissue.  Greater reductions were observed with adipose 

tissue, as reductions between 2 and 2.5 log cycles were obtained.  Other 

research demonstrating significant reductions of E. coli O157:H7 have been 

19 



obtained with 3% hydrogen peroxide and 0.1% chlorhexadine, providing 4-log10 

and 5-log10 reductions, respectively.  However, 5% acetic acid was the least 

effective in this study, as it only gave a 1-log10 reduction (Delazari et al., 1998).   

Research has shown that washing with water can be an effective first step 

in reducing carcass contamination and the beneficial effects of the initial 

reduction of bacteria should not be lost over time (Dorsa et al., 1998a).  

However, research has also demonstrated the effectiveness of steam as well as 

antimicrobial compounds such as lactic acid, acetic acid, citric acid and TSP in 

reducing food borne pathogens on inoculated meat products  Tissue type has 

also been shown to be an important variable, as lean tissue consistently gives a 

lower reduction than does adipose tissue.  While reductions of 1 to 2 log cycles 

may not be sufficient to meet zero tolerance standards, organic acid spray 

treatments (Cutter and Siragusa, 1994) and TSP (Dickson et al., 1994) could be 

beneficial as part of a hazard analysis critical control point program.  Nutsch et al. 

(1998) concluded that the effectiveness of a carcass pasteurization process 

would only be effective if proper handling practices were followed, and if raw 

product was not contaminated during further processing.  In addition, the FSIS 

Final Rule states that antimicrobial treatments such as acids, trisodium 

phosphate and chlorine, as well as spray-vacuum devices that apply pressurized 

steam or hot water, and then vacuum it off, are effective for reducing bacteria on 

carcasses (Anonymous, 1996). 
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Microbial Contamination of Raw Retail Meats 

 In recent years, there has been an increased concern regarding the safety 

and quality of meat products.  In response to these concerns, the USDA-FSIS 

declared E. coli O157:H7 an adulterant in raw ground beef.  Currently, the 

USDA-FSIS collects samples of finished ground beef at both inspected 

processing facilities and retail establishments and tests for the presence of this 

organism.  As well, complying with Hazard Analysis-Critical Control Point 

(HACCP) has involved sampling raw product and enumerating aerobic 

mesophilic bacteria, coliforms, and E. coli.  However, reducing the microbial load 

of the raw product has the added benefit of potentially increasing the shelf life of 

the finished product (Dixon et al., 1991, and Scanga et al., 2000). 

Reducing the microbial load of the carcass at the time of slaughter and 

preventing or reducing further contamination during breaking has the potential to 

not only reduce overall microbial contamination but also reduce the risk of E. coli 

O157:H7 contamination.  Dixon et al. (1991) investigated the effect of sanitation 

on increasing the shelf life of raw beef products.  The author compared 

conventional slaughtering and fabrication techniques to the use of strict sanitary 

procedures, which included the use of clean garments, sterile disposable gloves, 

cleaned and sanitized work area and knives that were flamed with 95% ethanol.  

Also, cattle being slaughtered were thoroughly washed to remove tag and 

carcasses were treated with a 1% lactic acid spray both prior to evisceration and 

prior to entering the chill cooler.  Finished carcasses from the conventional 

process had mean aerobic plate counts between 2.8 and 3.8 log10 CFU/cm2 
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while the ‘treated’ carcasses had APCs between <0.2 to 1.2 log10 CFU/cm2.  The 

mean APCs for treated and control subprimals were 1.5 and 2.7 log10 CFU/cm2, 

respectively.  The mean APCs for steaks prepared from the subprimals were 2.8 

and 5.3 log10 CFU/cm2 for the treated and controls, respectively.   

A study by Gill and McGinnis (1993) examined the change in microflora of 

beef from the processor to the retail display case.  At the slaughtering plant, 

trimmings had a flora between 103 and 105 CFU/g, with 58% of the samples 

yielding approximately 4.0 log10 ± 0.5 CFU/g.  A similar range was observed from 

the trimmings upon arrival at the retail outlet.  However, 66% of the samples had 

counts of 3.5 log10 ± 0.5 CFU/g.  After grinding, the samples yielded higher 

counts with a range of 104 to 107 CFU/g and slightly over half (58%) averaged 

approximately 5.0 log10 ± 0.5 CFU/g.  Display product had a similar range, but 

75% of the samples had counts of 6.0 log10 ± 0.5 CFU/g. 

Another study by Gill et al. (1997) investigated the hygienic performance 

of hamburger patties at both production and retail.  The author collected both 

frozen and chilled samples from three plants as well as four and three retail 

outlets, respectively.  The counts for total aerobic plate count, coliforms and E. 

coli for chilled patties from the manufacturer ranged from 4.12 to 4.69, 0.66 to 

1.06, and 0.22 to 0.92 log10 CFU/g, respectively.  The frozen patties ranged from 

3.93 to 4.45, 0.51 to 1.20, and 0.03 to 0.83 log10 CFU/g, respectively.  The frozen 

patties from retail outlets ranged from 3.31 to 6.98, below detectable levels to 

3.52, and below detectable levels to 1.28 log10 CFU/g, respectively.  The chilled 

patties had levels from 4.39 to 7.36, 1.62 to 3.75 and 0.88 to 1.25 log10 CFU/g, 
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respectively.  The authors concluded that the hygienic condition of ground beef 

could be improved through more hygienic procedures within the plant as well as 

retail outlets improving the management of chilled patties. 

Scanga et al. (2000) analyzed both fresh and frozen beef trimmings.  The 

fresh trimmings (n=191) had slightly higher aerobic plate counts than did the 

frozen (n=111) with counts of 3.3 log10 CFU/g and 2.9 log10 CFU/g, respectively.  

Total coliform counts were equal with both having a mean of 1.2 log10 CFU/g.  E. 

coli had similar counts with a mean of 1.1 log10 CFU/g.  Listeria monocytogenes 

was isolated from 3 (1.6%) of the fresh and 7 (6.3%) of the frozen samples, while 

Salmonella was recovered from 6 (3.1%) of the fresh trimmings.  Significant 

aerobic plate count differences were found between processing facilities, as the 

lowest mean APC was 2.0 log10 CFU/g while the highest was 4.5 log10 CFU/g.  

However, less than one log difference was found for both coliforms and E. coli 

between all 8 facilities.  Core samples were compared to combo-bin purge 

samples, and it was found that those with a high (>3 log10 CFU/g) mean combo-

bin core APC had similar combo-bin purge counts.  However, when levels were 

<3 log10 CFU/g, the purge sample could be as much as 1 log cycle higher.  

However, correlation coefficients revealed that the APC of core sample to purge 

samples were highly related (r=0.80) but coliform (r=0.45) and E. coli (r=0.43) 

counts were not strongly related.  The authors observed the need for processors 

to focus efforts upon reducing the microbial load of incoming raw products as 

well as addressing Listeria monocytogenes contamination of raw product. 
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Mohamood et al. (1992) tested 36 ground beef samples for Listeria 

monocytogenes using a gene probe.  Listeria spp. was identified in 6 (16.6%) of 

the samples, of which 4 (11%) were confirmed L. monocytogenes.  Johnson et 

al. (1990) sampled 50 beef, 50 pork and 10 lamb roasts for Listeria ssp. of which 

3 beef and 3 pork roasts were positive.  Of the isolates recovered, 5 were L. 

monocytogenes, as well as one each of L. innocua and L. welshimeri.  Forty 

meat samples (20 beef and 20 poultry) were analyzed by Amoril and Bhunia 

(1999) for L. monocytogenes, with 6 and 7 positive samples, respectively.   

These results demonstrate that better hygienic practices are necessary to 

reduce the contamination of meat products during further processing and at the 

retail counter.  Scanga et al. (2000) as well as Gill et al. (1997) observed a need 

for reducing the microbial load borne by meat destined for or within the retail 

market and Amoril and Bhunia (1999) expressed a concern that inadequately 

cooked raw meat could present a source of infection for Listeria monocytogenes.  

Dixon et al. (1991) was able to demonstrate that improving the sanitation of 

equipment, reducing cross contamination and utilizing an acid wash system 

could reduce the contamination of retail meats.  The authors proposed the 

implementation of ante-mortem washing, improving the sanitary procedures 

during slaughter and carcass breaking as well as utilizing an acid wash system to 

improve the microbial quality of meat products. 
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USDA Methods for the Identification of Listeria monocytogenes  

 Many methods have been created to identify and characterize Listeria 

monocytogenes.  The USDA/FSIS Microbiology Laboratory Guide Book (1998) 

established standardized isolation and identification procedures; in October 

1999, revisions were released superceded previously published protocols.  

These changes included the implementation of ‘new’ technology such such as 

Polymerase Chain Reaction (PCR) to rapidly confirm negative samples, and 

DNA fingerprinting. 

Testing for L. monocytogenes utilizing the USDA/FSIS methodology 

normally takes 7 to 10 days, depending upon the steps required to recover and 

identify isolates.  The first step involves taking 25 grams of the product being 

sampled and adding it to 225 ml of University of Vermont Medium (UVM).  This is 

incubated at 30°C for 22 hours.  After initial enrichment, 0.1 ml is transferred to 

10 ml Fraser broth (UVM + 0.5% Ferric Ammonium Citrate) and incubated at 

35°C for 26-28 hours.  After 24 hours incubation, all Fraser broth tubes must be 

struck to Modified Oxford Agar (MOX) that has been supplemented with 

moxalactam and incubated at 35°C for 24-48 hours.  Incubation of the Fraser 

broth tubes that were struck to MOX must be continued for another 24 hours.  

After 24 hours, the MOX plates should be examined for distinctive 1-2 mm round 

colonies surrounded by black zones of esculin hydrolysis.  If no colonies are 

present, the 48-hour Fraser broth should be struck to MOX again, incubated, and 

examined after 24 hours.   
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 Suspect colonies should be selected, and re-streaked to MOX to ensure 

purity.  Purified colonies should then be struck to horse blood overlay agar, 

incubated for 19 hours at 35°C and examined for β-hemolysis.  It is also 

necessary that the CAMP test be performed using a commercially available β-

lysin disk, or, S. aureus and R. equi can be streaked in parallel on sheep blood 

agar, with the presumptive isolate struck horizontally between the two cultures.  

Listeria monocytogenes will give a zone of clearing with the β-lysin disk or with  

S. aureus while L. innocua will give no reaction with the disk or with S. aureus but 

it will have a zone of clearing with the R. equi.  Other required tests include 

motility testing using either a phase-contrast microscope or motility medium to 

examine the motility of the culture, and the catalase test using 3% H2O2, as 

Listeria monocytogenes is catalase positive.  Biochemical testing includes 

inoculating rhamnose, xylose and mannitol with the suspect isolate, and 

examining for rhamnose fermentation, as both L. monocytogenes and L. innocua 

are able to utilize rhamnose but not xylose or mannitol, while other species of 

Listeria can ferment either xylose or mannitol but not rhamnose. 

 In the 1999 revision to the Microbiology Laboratory Guidebook (MLG), 

several modifications were made to the procedures, most of which were geared 

toward decreasing the time required to achieve a negative or presumptive 

positive.  The first change involves the addition of streaking or direct plating the 

UVM enrichment broth to MOX in addition to the continued use of Frasier Broth.  

The second change allows the use of screening systems, including 

immunoassay, nucleic acid-based assay or ‘other’ rapid methods.  However, 
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these rapid systems must be utilized in conjunction with the MOX plate that was 

struck initially, and only samples that were negative for both the screening 

procedure and the MOX are considered negative.  The third change includes the 

recommendation that commercially available tests be utilized to examine the 

biochemical characteristics of isolates.  The MLG requires that atypical isolates 

be confirmed via commercially available RNA or DNA-based tests, and 

recommends the use of these tests for typical isolates.  In April 2002, a “Notice of 

Change” was published by the USDA identifying the BAX™ PCR system 

produced by Dupont as an acceptable DNA screening method (Anonymous, 

2002).  Pulsed-field gel electrophoresis is recommended, but not required, to 

subtype isolated strains.  The original procedure is shown in Figures 1 and 2, and 

the revised procedure is shown in Figure 3. 
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Figure 3.  USDA/FSIS MLG Listeria monocytogenes Isolation Procedure 
(Revision 2; 11/08/99) 
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Identification of Listeria monocytogenes  

Utilizing the Polymerase Chain Reaction 

 The 1999 revision to the Microbiology Laboratory Guidebook allowed the 

use of nucleic acid based analysis of products being examined for Listeria 

monocytogenes.  Research has shown that the Polymerase Chain Reaction 

(PCR) can be a rapid and effective method to determine the presence or 

absence of an organism in a food product as well as identification or 

characterization of isolates recovered via traditional isolation methodology.  PCR 

has also been made more ‘user friendly’ with the advent of commercially 

available kits such as the BAX™ kit for Listeria monocytogenes that provide all 

the components necessary for cell lysis and PCR amplification. 

Research utilizing PCR to identify Listeria monocytogenes have included 

the use of primers specific for the listeriolysin O (hly A,), the Dth 18 gene and the 

invasion associated protein (iap) gene (Thomas et al., 1991; Baek et al., 2000) 

as well as the internalin genes (inlA, inlB) (Ericsson et al., 1995).  In a study by 

Baek et al. (2000) primers that amplified a 719 base pair fragment of the 

listerioysin O gene were used to confirm suspect Listeria monocytogenes 

isolates from a variety of fresh and frozen food products.  A total of 1,537 food 

samples were tested, of which 122 (7.9%) were positive.   

Thomas et al. (1991) examined 5 combinations of forward and reverse 

primers for the hlyA gene and identified a 520 base pair (bp) fragment that was 

most specific to L. monocytogenes.  This primer set was tested against 47 

isolates representing 17 genera of bacteria as well as other Listeria spp., with no 
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false positives.  After enrichment, the procedure could detect an initial inoculum 

as low as 25 CFU of  L. monocytogenes from milk or meat samples.   

 Duffy et al. (1999) investigated the use of a polycarbonate membrane that 

was dipped in the enriched food samples for 15 minutes.  The membrane was 

solubulized to release attached bacteria and the DNA was purified with 

phenol/chloroform extraction.  PCR was then performed using the primers 

developed by Thomas et al. (1991).  When compared with a standard enrichment 

and plating method, this procedure identified all positive Listeria monocytogenes 

samples, with no false positives, and this procedure provided a result in 30 

hours, while the plating method took 96 hours. 

The listeriolysin O gene (hlyA) and invasion-associated protein (iap) were 

used in a multiplex PCR by Niederhauser et al. (1992) to examine naturally 

contaminated foods.  The hlyA primers yielded a 234 bp fragment and the iap 

primers yielded a 131 bp fragment.  A total of 330 naturally contaminated food 

samples were tested to compare the multiplex PCR and traditional isolation 

techniques.  The same 20 samples (6.0%) were positively identified by both 

procedures.   

 Lawrence and Gilmour, (1994) developed a multiplex PCR that utilized not 

only the hlyA gene, but also two sections of the 16S rRNA, one specific to the 

genus Listeria and the other being highly conserved in all bacteria, regardless of 

genus.  The protocol developed by the authors utilized an enrichment followed by 

plating on selective media.  Suspect colonies were then picked from the plate 

and subjected to the multiplex PCR.  When visualized in an agarose gel, Listeria 
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monocytogenes would have three bands present, Listeria spp. would have 2 

bands present and a non-Listeria spp. would have one band present. 

 Reverse Transcription-PCR was investigated by Klein and Juneja (1997) 

to identify samples contaminated with viable Listeria monocytogenes.  Primers 

for the iap, hly and prfA genes were tested, with the iap primers giving the best 

results.  When tested in artificially contaminated cooked ground beef, only a 2 

hour sample enrichment was required for a positive result in cooked meat.  The 

procedure was able to detect an initial inoculum level as low as 3 CFU/g.  The 

procedure, which included amplicon detection by Southern hybridization with 

digoxigenin labeled gene probes could be completed in approximately 54 hours. 

Colorimetric detection using a PCR-ELISA procedure has also been used 

to rapidly detect Listeria monocytogenes.  Scheu et al (1999) utilized the mpl 

(metalloprotease) gene.  A biotinylated capture probe was bound to a 

streptavidin-coated microtiter plate and the hybridization was performed with the 

PCR product.  Digoxigenin-labeled hybridization products were identified with 

horseradish peroxidase conjugates.  Diluted antiDIG-POD was added, the plate 

was incubated and then rinsed with a wash buffer that contained a blocking 

agent.  A chromogenic substrate solution was then added and the plate was 

incubated.  After the reaction was stopped, the absorbance was measured at 450 

nm.  A total of 103 strains of Listeria monocytogenes as well as 73 other Listeria 

and non-Listeria strains were tested, with no false positives or negatives 

observed.  These were similar to the results obtained by Wang and Hong (1999), 

in which the iap gene was utilized and alkaline phosphatase-conjugated 
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flourescein was added to the plate and the absorbance was determined at 405 

nm.  The authors also investigated the used of the procedure on artificially 

contaminated milk and fish, and identified a detection limit of 20 CFU/ml for the 

milk and 1-2 CFU/g for the fish without the need of an enrichment step. 

While a variety of reliable PCR methods have been developed for use in 

analyzing food products, Qualicon has created a commercially available BAX™ 

kit for the detection of Listeria monocytogenes.  This procedure includes both an 

initial and a secondary enrichment be performed prior to the DNA extraction and 

PCR analysis being performed.  Stewart and Gendel (1998) investigated the 

specificity and sensitivity of the kit.  The authors found that the system was 

specific for L. monocytogenes and gave no reaction with other Listeria species or 

genera tested, and the detection level of the assay was determined to be 105-106 

CFU/ml.  Norton et al., (2000) compared the BAX™ kit to conventional isolation 

procedures as well as confirmation using either an API test kit or primers 

targeting the hlyA gene.  A total of 89 samples were positive with the 

conventional isolation procedure and 80 were positive with the BAX™ procedure.  

However, the 9 negative BAX™ samples from which isolates were obtained 

using the traditional method were positive with the BAX™ system when the pure 

culture was tested.  This led the authors to believe that the false-negative results 

were the result of low Listeria numbers after the initial enrichment step, as they 

only used the initial enrichment broth, not the secondary enrichment for the 

analysis, and they theorized that the two step enrichment procedure required by 

Qualicon would increase the sensitivity of the procedure. 
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The BAX™ procedure has been improved with the development of a real 

time PCR assay.  The amplification of the target DNA generates a fluorescent 

signal.  This signal is detected by the BAX fluorometer, and a result of positive or 

negative is determined based on the fluorescence of the amplified DNA.  The 

BAX™ system was further given a boost when the ‘stamp of approval’ was given 

by the USDA when use of the BAX™ system was included in the Microbiology 

Laboratory Guidebook on April 29, 2002 (Anonymous, 2002). 

 

Genetic Characterization of Listeria monocytogenes 

by Pulsed-Field Gel Electrophoresis 

 Genetic characterization of Listeria monocytogenes can be performed 

utilizing a variety of restriction enzymes.  Restriction endonuclease analysis 

(REA) and pulsed-field gel electrophoresis (PFGE) have been utilized to 

characterize strains of Listeria monocytogenes isolated from outbreaks as well as 

the production environment.  While both REA and PFGE utilize restriction 

enzymes to cleave the DNA, REA typically utilizes restriction enzymes, such as 

HindIII, PstI, BamHI or EcoRI and the resulting fragments are separated with a 

traditional horizontal electrophoresis chamber (Nocera et al., 1990).  While REA 

is useful for separating small DNA fragments (<50 Kb), REA will not separate 

DNA fragments that are larger than 50 Kb.  To separate and visualize these 

bands, PFGE is required. 

PFGE will typically use a restriction enzyme such as ApaI, AscI, NotI or 

SmaI, which has a large target sequence and occurs less frequently in a 
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genome, therefore producing large DNA fragments.  These fragments are 

separated using a contour-clamped homogeneous electric field (CHEF) unit 

(Buchrieser et al., 1992; Brosch et al., 1994).  The unit functions by continuously 

switching the direction of the electrical field.  This switching results in the DNA 

‘snaking’ it’s way through the agarose gel, and the smaller fragments will travel 

further down the gel than the larger ones, resulting in identifiable separate bands 

of DNA being present.  While both procedures are useful in typing Listeria 

monocytogenes, the literature indicates that genomic fingerprinting utilizing 

PFGE is a very discriminating and reproducible method (Proctor et al., 1995). 

 Howard et al. (1992) investigated the use of PFGE to differentiate Listeria 

monocytogenes from the other species of Listeria.  The author’s research 

identified ApaI, AscI, NotI and SmaI as the most useful in separating large sized 

(>50 Kb) DNA fragments.  Of these four enzymes, AscI was found to give the 

best results, as it resulted in more discernable fragments than NotI, while ApaI 

and SmaI were found to give some fragments that were the result of partial 

digestion.  The authors research also identified a strain of L. monocytogenes that 

had been isolated from a patient was genetically different from the isolate 

recovered from cheese associated with that illness, although other typing 

methods had identified them as the same strain.  Similar results were observed 

by Buchrieser et al. (1992), as strains found indistinguishable by phage typing 

and electrophoretic typing differed upon evaluation by PFGE.   

 PFGE has also been used in an attempt to correlate DNA patterns with 

serovar.  Brosch et al., (1994) examined 176 strains of L. monocytogenes with 
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AscI and ApaI, and identified 63 and 72 unique restriction endonuclease profiles 

(REDP), respectively.  The authors also examined 22 other Listeria strains and 

identified 18 AscI and 19 ApaI profiles.  Analysis of these profiles resulted in two 

genomic divisions being identified, of which division I contained serovar’s 1/2a, 

3a, 3c and 1/2c and division II was found to contain 1/2b, 3b, 4b, 4d, and 4e.  

One strain of L. monocytogenes, ATCC 19116, could be digested with AscI, but 

was not restricted by ApaI.  A similar observation was made by Danielsson-Tham 

et al., (1993), as they were unable to digest some strains of Listeria innocua with 

ApaI but were able to digest the DNA utilizing SmaI.  Neither Brosch et al., nor 

Danielsson-Tham et al. were able to identify the reason these cultures were not 

digested by ApaI, and neither offered any theories as to the reason certain 

cultures were indigestible. 

 Pulsed-field gel electrophoresis has proven useful in evaluating the 

relatedness of isolates associated with foodborne Listeria monocytogenes 

outbreaks.  Proctor et al., (1995) evaluated recalled chocolate milk and cases of 

Listeriosis to establish a link between the Listeriosis and the milk.  The authors 

also evaluated cultures recovered from several sporadic, but unassociated cases 

of Listeriosis.  The 4 cases associated with the outbreak were found to have the 

same REDP as isolates recovered from two products produced in the implicated 

dairy, as well as isolates from an environmental sample of the facility.  However, 

one of the sporadic cases was found to have a 90% similarity to the isolates 

recovered from the outbreak. 
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 Pereira et al. (1994) characterized 21 isolates of Listeria monocytogenes  

of both food and human origin.  The isolates had been previously divided into 

serogroups 1/2 and 4 , and phage-typing separated them into 8 phagovars, while 

PFGE further divided the isolates into 12 groups.  One of the food isolates, as 

well as several human isolates that had been phage-typed were ‘non-typeable’.  

However, PFGE revealed the food and human isolates to be the same strain.  

The authors observed that serotyping, phage typing, and DNA analysis should be 

performed in combination to properly evaluate isolates of L. monocytogenes. 

 While PFGE is a powerful tool in evaluating isolates associated with 

outbreaks, it can also be used to evaluate the sources of Listeria contamination 

within the processing environment.  Autio et al., (1999) investigated the incidence 

of L. monocytogenes at various production stages of cold smoked salmon and 

performed PFGE utilizing AscI and SmaI.  After digestion, the restriction patterns 

were grouped together into ‘pulsotypes’ .  A total of 9 pulsotypes were identified 

from the production environment, equipment, and finished product.  However, 

pulsotype I was recovered most frequently (201 of 303 isolates), as this REDP 

was recovered from the skinning, brining, smoking, slicing and packaging areas.  

The authors concluded the contamination of the final product was associated 

with the brining and slicing procedures.  Based on these results, the processing 

plant implemented hot steam, hot air, and hot water processes to control Listeria 

monocytogenes, and subsequently recovered no Listeria monocytogenes from 

94 samples collected in a 5 month follow up. 
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 In another PFGE study, Listeria monocytogenes was isolated and 

characterized from an ice cream production facility over a 7-year period of time.  

AscI, ApaI and SmaI were used to evaluate the recovered isolates by PFGE.  A 

total of 12 PFGE pattern types were identified, with type II being the dominate 

isolate (26 of 41 isolates).  While other isolates of differing patterns were only 

recovered sporadically, type II was recovered repeatedly over the 7-year 

sampling period.  The authors theorized that the majority of the sporadic isolates 

recovered were mutants of the type II isolate, as they only differed by one or two 

bands.  The authors also stated that AscI resulted in the best PFGE profile for 

visual comparison, with more discriminatory patterns than those obtained by ApaI 

or SmaI (Miettinen et al., 1999). 

 Senczeck et al., (2000) collected environmental and product samples from 

a meat processing facility over a 2-year period of time.  After digestion with ApaI 

and SmaI, 89 isolates of L. monocytogenes were grouped into 15 distinct PFGE-

types.  As has been observed in other research, 2 of the 15 identified strains 

persisted within the processing environment and contaminated finished product, 

while a majority of the isolates were only recovered a single time.  Daupin et al. 

(2001) observed similar results in a fish processing plant, as digestion of DNA 

recovered from L. monocytogenes with SmaI and ApaI revealed the persistence 

of a single strain within the environment that was recovered during production, 

after sanitation, and from the finished product. 

 Pulsed-field gel electrophoresis has proven very useful in subtyping 

strains of Listeria monocytogenes related to both food outbreaks and the 
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persistence of this organism within the food processing environment.  However, 

PFGE has traditionally taken several days for plug preparation and endonuclease 

restriction of the prepared plugs, as well as another 20 to 24 hours for the gel 

electrophoresis.  A standardized protocol developed for the PulseNet DNA 

Fingerprint Database program has reduced the preparation, digestion  

and electrophoresis time to 30 hours.  The procedure includes the use of AscI 

and ApaI for the restriction digestion and the use of L.monocytogenes  H2446 as 

the control strain  serves as the DNA fragment size standard.  The importance of 

this procedure lies in the time saved over other published methods that may take 

4 to 5 days as well as providing a standardized protocol for participating 

PulseNet laboratories (Graves and Swaminathan, 2001). 
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Chapter 2 

 

INCIDENCE OF LISTERIA SPECIES IN CATTLE HOLDING FACILITIES, 

FECES, HIDES AND FINISHED BEEF CARCASSES 

 

Abstract 

This study investigated the incidence of Listeria species in environmental 

samples of automatic watering systems, composite fecal samples from cattle 

production facilities, direct fecal samples from cattle at both the production facility 

and at slaughter, the hides of the cattle during the slaughter process as well as 

the finished carcasses.  Environmental sampling of the abattoir was also 

performed for Listeria species both before and after slaughter.  A total of 870 

samples were collected, of which 97 (11.1%) were positive for Listeria species 

and 1 (0.11%) was positive for Listeria monocytogenes.  In the livestock 

production environment, samples collected included 22 water troughs, 91 

composite fecal from the holding pens and 360 individual fecal samples.  Of 

these, 1, 16 and 11 were positive for Listeria species, respectively, and 1, a 

composite fecal sample, was positive for Listeria monocytogenes.  At the 

abattoir, 119 individual fecal, 33 hide, 106 carcass and 139 environmental 

samples were collected, of which 21, 26, 9 and 13 were positive for Listeria 

species, respectively.  Pulsed field gel electrophoresis (PFGE) utilizing restriction 

enzymes Sma I and Asc I demonstrated that specific strains of Listeria have the 

ability to survive and persist in the production environment, be shed in the feces 
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of cattle, and ultimately contaminate carcasses.  Even though a direct 

progression of isolates from the feedlot to the carcass may not always be 

evident, the fact remains that isolates were recovered from the animal production 

environment were found on finished carcasses, indicating the need for 

intervention steps for the finished beef carcasses. 

 

Keywords:  Listeria; pulsed field gel electrophoresis; Sma I; Asc I; cattle 
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1.  Introduction 

 Listeria monocytogenes presents a unique concern for the processor of 

ready-to-eat (RTE) meats, because it is not considered an adulterant in raw meat 

products but is considered an adulterant of finished RTE products.  However, this 

organism can present a concern from the standpoint of it entering the processing 

environment at the time of slaughter (Fenlon et al., 1996) and the subsequent 

contamination of finished beef carcasses and the finished cuts of meat from 

those carcasses.  Another concern is dissemination through the agriculture 

production environment.  An example of this dissemination would be if this 

organism was being shed in animal feces and the manure was then used as 

fertilizer.  Vegetables could become contaminated with Listeria monocytogenes 

(Van Renterghen et al., 1991) and cause illness that could potentially be traced 

back to the production facility (Schlech et al., 1983). 

 Husu (1990a) investigated 249 dairy herds for shedding of Listeria spp. in 

feces, and on average, 2.12% of the animals in any given herd were shedding 

Listeria.  In a second study, Husu et al. (1990b) found that 6.8% of the fecal 

samples were positive for L. monocytogenes and 5.1% were positive for L. 

innocua.  This study also found that environmental factors such as feed 

ingredients and facilities can be contribute to the persistence of Listeria within the 

animal production environment. 

 The purpose of this study was to isolate Listeria spp. from fecal samples 

collected at the Oklahoma State University Willard Sparks Research Facility from 

both the animal production environment in the form of composite samples and 
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directly from the animals as individual fecal grab samples.  Samples were also 

collected from animals at the time of slaughter at the Oklahoma State University 

Food and Agriculture Products Center abattoir.  These samples included 

collection of fecal samples from the individual animal as well as swabbing the 

hides and finished beef carcasses. 

 

2.  Materials and Methods 
 
 Water and fecal samples were collected at the Willard Sparks Research 

Facility at Oklahoma State University while fecal, hide and carcass swabs were 

collected in the abattoir of the Food and Agricultual Products Center.  Water was 

collected in sterile 250 ml oak ridge bottles from water troughs at the Willard 

Sparks Research Facility, and held on ice until transported back to the 

laboratory.  Once transported back to the laboratory, the samples were 

centrifuged at 9715 x g for 10 minutes to pellet any cells in the water.  The water 

was decanted, and the ‘pellet’ was resuspended with the enrichment media, and 

enrichment procedures were begun. 

 Composite fecal samples were collected from 10 animal droppings within 

a pen using a sterile tongue depressor, and placed in a Whirl-Pak bag.  Individual 

samples were collected directly from the animal as a ‘fecal grab’ using a sterile 

1.5 inch by 3 inch Whirl-pak sponge to swab or physically remove the sample 

from the rectum of the animal, either while held in a working chute, or 

immediately after stunning, but prior to bleeding.  Hide swabs were collected 

from animals after the hocks had been removed, but prior to the hide on the belly 

52 



being opened up for removal.  Whirl-pak sponges were rehydrated with 0.1% 

Buffered Peptone Water (Difco, Franklin Lakes, NJ), and as much of the hide as 

was reasonably possible was swabbed.  However, priority was given to areas in 

which initial incisions were made, such as the centerline of the animal. 

 Carcass swabs were collected using sterile Whirl-pak sponges rehydrated 

with approximately 15 ml of buffered peptone water (Difco).  An individual sponge 

was used for each half of the carcass, with both sponges being combined for 

enrichment.  Swabs were collected from the rump, centerline and brisket areas 

immediately after final trimming and prior to the carcass being washed.  

Environmental samples were collected with sterile Whirl-pak sponges rehydrated 

with approximately 15 ml of Neutralizing Buffer (Difco).  Environmental samples 

included drains, the hock cutter, and the carcass saw.  After collection, the 

abattoir samples were immediately transported to the laboratory, and enrichment 

procedures were begun. 

2.1  Detection of Listeria monocytogenes 

 Isolation protocols were obtained from the USDA-FSIS Microbiology 

Laboratory Guidebook (USDA, 1998).  Water samples, fecal samples, carcass 

swabs, hide swabs, and environmental samples were enriched in University of 

Vermont Medium (UVM) broth (Difco) for 24 hours at 30°C.  After 24 hours, 1 ml 

of the initial enrichment was transferred to 9 ml of Fraser broth (UVM with 0.5% 

Ferric ammonium citrate) and incubated for another 24 hours at 30°C.  Black 

tubes were considered a presumptive positive and were subsequently streaked 

onto Modified Oxford (MOX) Agar (Difco) and incubated for 48 to 72 hours at 
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30°C.  Isolates exhibiting ’typical’ colony morphology (white colony with indented 

center and esculin hydrolysis evident in agar) were restreaked to MOX agar to 

purify.  Individual isolated colonies were then inoculated into Brain Heart Infusion 

(BHI) broth for further biochemical testing.   

Typical Listeria colonies were further examined for catalase production, 

hemolysin production on 5% Sheep Blood Agar plates (Fisher Scientific, 

Houston, TX); CAMP test utilizing the ß-lysin disk (Remel, Lenexa, KS), and 

carbohydrate fermentation patterns on xylose, rhamnose, and mannitol.  Isolates 

from MOX agar found to be Gram-positive, catalase-positive, capable of 

fermenting rhamnose and exhibiting hemolysis were considered to be potentially 

Listeria monocytogenes.  Isolates that exhibited typical morphology but did not 

produce hemolysin were also considered potential Listeria monocytogenes 

because of possible weak hemolysis reactions.  Isolates that produced hemolysin 

and fermented xylose were considered to be Listeria ivanovii.  Isolates were 

confirmed as Listeria monocytogenes utilizing the BAX™ PCR kit for Listeria 

monocytogenes (Qualicon, Wilmington, DE).  Isolates were stored as frozen 

stocks for further analysis by centrifuging 10 ml of cells grown overnight in Brain 

Heart Infusion Broth (Difco) at 7649 x g for 10 minutes.  The pellet was 

resuspended with 2 ml BHI broth supplemented with 10% glycerol and frozen at -

75°C.  When enough isolates were recovered, DNA fingerprinting with Asc I and 

Sma I was conducted to determine the relatedness of recovered isolates. 
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2.2.  PCR Analysis of Isolates 

Polymerase chain reaction (PCR) analysis utilizing the BAX™ kit was 

performed with the only modification of the procedure being the use of a 24 hour 

culture grown in BHI broth, whereas the BAX™ PCR kit is designed for use in 

association with an enrichment procedure using MOPS-BLEP.  The BAX™ kit 

comes with its own protease and buffer, of which 62.5 µl of protease solution is 

added to 5 ml of buffer solution.  After mixing, 200 µl of lysis solution was 

transferred to sterile PCR tubes, and 5 µl of the cell culture was added to the 

lysis buffer and gently mixed.  The solution was heated at 55°C for 60 minutes 

then at 95°C for 10 minutes to complete the lysis and inactivate the protease.  

The tubes were then cooled to 4°C prior to use.  After completion of the lysis 

procedures, the DNA lysate can be stored for 2 weeks at 4°C. 

The next step in performing the BAX PCR was the addition of 50 µl of 

lysate to the PCR tubes.  The PCR tubes are supplied with a pellet that contains 

all the necessary ingredients for performing the PCR.  After the pellet had 

dissolved the tubes were loaded into a DNA Engine thermocycler (MJ Research, 

Reno, NV) and the PCR was performed utilizing the program in Table 1. 

Step Temperature Time (Minutes) 
1 90°C 0:01 
2 93°C 2:10 
3 94°C 0:25 
4 69°C 3:10 
5 Repeat step 3 & 4 37 times   
6 4°C Indefinite 

 
Table 1:  Program for BAX PCR Analysis 
 

55 



After completion of the PCR, 20 µl of the PCR product was loaded into a 2% 

agarose gel at and run at 100V for 60 minutes.  The gel was stained utilizing 0.01 

mg/ml concentration of ethidium bromide and the PCR product was visualized 

using a Gel Doc 1000 (Bio-Rad, Hercules, CA). 

2.3  Pulsed Field Gel Electrophoresis 

 Pulsed field gel electrophoresis procedure was done according to Graves 

and Swaminathan (2001).  Cultures were spread on BHI agar and incubated at 

30°C overnight to obtain a lawn.  The cells were harvested from the BHI agar by 

adding 1 ml of T10E1 (10mM Tris; 1 mM EDTA) buffer and using a ‘hockey stick’ 

or sterile cotton swab to suspend the cells.  This cell suspension was pipetted 

from the plate, and the total volume was adjusted to 3 ml using T10E1.  The A610nm 

was then adjusted to 1.3 using a Spectronic 20 spectrophotometer (Thermo 

Electron Corporation, West Palm Beach, FL).  After adjusting the OD, 240 µl of 

the cell suspension was transferred to a microcentrifuge tube, and 60 µl of a 10-

mg/ml lysozyme solution was added and mixed by gently aspirating the solution.  

The lysozyme/cell suspension was then incubated at 37°C for 10 minutes. 

 During the incubation period, 10 ml of a 1.2% Seakem Gold Agarose 

suspension was melted in sterile deionized water in a microwave and tempered 

to 56°C.  After the cell suspension finished incubating, 267 µl of the agarose, 3 µl 

of a 10 mg/ml lysozyme solution and 30 µl of pre-warmed (56°C) 10% SDS 

solution were combined for each sample to be tested, mixed with the lysozyme-

treated cell suspension by aspiration several times, and dispensed into 

disposable 10-well plug molds (Bio-Rad).  Each well was filled with 45 µl of the 

56 



melted agarose cell suspension, and refrigerated at 4°C for 10 minutes to 

solidify. 

 Cell lysis solution (50 mM Tris, pH 8.0; 50 mM EDTA, pH 8.0, 1% 

Sarcosyl) was prepared by combining 25 ml of 1M Tris-HCL (pH 8.0), 50 ml of  

0.5 M 2Na EDTA (pH 8.0) and 50 ml of a 10% sarcosyl solution, and 

volumetrically adjusting the volume to 500 ml with ultra pure water.  Each plug 

mold was emptied into a sterile 50 ml centrifuge tube, to which 4 ml of lysis 

solution and 30 µl of proteinase K (20 mg/ml) had been previously added.  The 

plugs were then incubated with shaking at 56°C for 2 hours.  After incubation, the 

cells were washed twice with 15 ml of pre-heated (50°C) sterile water for 10 

minutes with shaking.  The plugs were then washed twice with 15 ml of 

preheated (50°C) T10E1 with shaking at 50°C and twice with room temperature 

T10E1 solution.  The plugs could then be used immediately, or stored at 4°C until 

needed. 

2.4   Restriction with Sma I.   

The plugs selected for digestion were first washed in 150 µl of 1X Sma I 

(Fisher Scientific) buffer solution supplemented with 1x-strength Bovine Serum 

Albumin for 10 minutes at 25°C.  This was accomplished by placing one 

prepared plug in a 1 ml microcentrifuge tube and adding the buffer solution.  After 

incubation, the buffer was aspirated from the tube, and 1x buffer containing 5 U 

of Sma (Fisher Scientific, Houston, TX) was added to the tube and incubated for 

a minimum of 4 hours at 25°C.  A 0.5x TBE solution was utilized as the buffer in 
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the electrophoresis chamber and as the solution in which the agarose was 

melted.   

Digested plugs were loaded into a 15 well gel mold (Bio-Rad) containing 

1% Seakem Gold Agarose, and covered with molten agar to prevent the plugs 

from coming out during the electrophoresis.  The agarose gel was loaded into the 

electrophoresis chamber containing 3000 ml of chilled (15°C) buffer with a flow 

rate of 0.75 liters per minute.  The ramp times for Listeria monocytogenes 

digested with Sma I were obtained from research by Boerlin et al. (1997).  The 

electrophoresis control module was a CHEF DR III (Bio-Rad) set to a ramp time 

of 1.0 second to 9.0 seconds, a run time of 18 hours and 6.0 V/cm.  After 

completion of electrophoresis, the gel was visualized using ethidium bromide 

staining (0.01 mg/ml) and a Gel Doc 1000 (Bio-Rad).  Analysis was performed 

using DNA Fingerprinting Plus software (Bio-Rad). 

2.5  Restriction with Asc I.   

Procedures for digestion with Asc I (New England Biolabs, Inc., Beverly, MA) 

differ from the procedure for Sma I in the buffer, ramp times and run times used. 

The plugs were washed in 150 µL of 1x NEBuffer 4 for 15 minutes.  After 

washing, the buffer was aspirated from the microcentrifuge tube, and replaced 

with 1x NEBuffer 4 containing 1.25 U of Asc I.  The tube was incubated for a 

minimum of 4 hours at 37°C.  The agar, chamber buffer and plugs were prepared 

the same as previously mentioned.  The electrophoresis control module was set 

to a ramp time of 4 seconds to 40 seconds, and a run time of 20 hours at 6.0 

V/cm.  The gel was visualized as previously mentioned. 
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3.  Results and Discussion 

 A total of 870 samples were collected and tested for Listeria spp. and 

Listeria monocytogenes during a 16-month period between April 12, 1999 and 

August 17, 2000.  These samples were collected from the OSU Willard Sparks 

Beef Research Facility and the Oklahoma Food and Agriculture Products 

Research and Technology Center (FAPC).  Samples collected from Willard 

Sparks included water from the animals shared water troughs, composite fecal 

samples collected from the feedlot environment in which multiple animals were 

penned, and ‘fecal grab’ samples collected from individual animals.  Samples 

collected from the FAPC included ‘fecal grab’ samples, hide swabs, carcass 

swabs and environmental swabs.  A total of 870 samples were collected, of 

which 97 (11.1%) were identified as Listeria spp. and 1 (0.11%) was identified as 

Listeria monocytogenes. 

3.1  Listeria Sampling Results.   

A total of 473 samples were collected at the Willard Sparks Research Facility 

(Table 2).  Water troughs that were sampled each supplied water to two pens.  

Municipal water was supplied to an ‘open’ type trough, in which the water filled 

an open trough that was exposed to the production environment.  However, only 

one Listeria spp. isolate was recovered from the 22 (4.5%) samples that were 

collected.  This is considerably lower percentage positive than that found by 

Husu et al. (1990a), in which they found 54% of the water cups sampled were 

positive for Listeria spp. 
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 Composite fecal samples were collected 91 times, with Listeria 

monocytogenes recovered once (1.1%) and Listeria spp. recovered on 16 

(17.6%) occasions (Table 5).  This is similar to the results found by Siragusa et 

al. (1993) in which 1.4% of the composite samples collected were positive for    

L. monocytogenes and 20% were positive for Listeria spp.  However, different 

results have been found by Husu et al. (1990b) in which 6.8% of the composite 

fecal samples were positive for L. monocytogenes and 5.1% were positive for    

L. innocua.  In another study, Husu et al. (1990b) recovered L. innocua and       

L. monocytogenes from 21.7% and 7.3% of the composite samples collected, 

respectively.  It is important to note, however, that the samples collected by Husu 

et al. (1990a) and Husu et al. (1990b) were from dairy farms, not a feedlot 

environment, thus, different feeding or handling practices could contribute to the 

observed differences. 

Facility Name Sample Type 
# of 

Samples 
Listeria 

spp. 
Listeria 

monocytogenes
       
Willard Sparks Water 22 1 0 
  Composite Fecal 91 16 1 
  Fecal Grab 360 11 0 
FAPC Abattoir Fecal Grab 119 21 0 
  Hide Swab 33 26 0 
  Carcass Swab 106 9 0 
  Environmental 139 13 0 

  Total= 870 97 1 
 
Table 2:  Facilities sampled for Listeria spp. and  Listeria monocytogenes 
 
 Individual, or ‘direct fecal grab’, samples were collected from 360 head of 

cattle being fed for slaughter at the Willard Sparks Research Facility (Table 2).  

Listeria spp. were recovered from 11 (3.1%) of these animals while L. 
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monocytogenes was not recovered from any of the samples.  While it was 

surprising that L. monocytogenes was not recovered from the cattle, these data 

confirm those of Siragusa et al. (1993) who sampled 138 head of cattle and only 

recovered L. monocytogenes once (0.72%). 

 When cattle were slaughtered at the Food and Agriculture Products 

Research and Technology Center (FAPC), the cattle to be harvested were 

received from multiple sources, including local producers as well as the Willard 

Sparks Research Facility.  Fecal samples collected from the FAPC had a higher 

percentage positive than those from the Willard Sparks Research Facility, as 

Listeria spp. was isolated 21 times from 119 (17.6%) samples.  However, as in 

the samples from Willard Sparks, L. monocytogenes was not recovered.  The 

increase in the number of samples positive for Listeria spp. could be a result of a 

variety of factors, including the environment in which the animals had resided 

prior to transport and the stress related to transport to the facility. 

 Hide swabs were collected from 33 animals, of which 26 (78.8%) were 

positive for Listeria spp.  However, L. monocytogenes was not recovered from 

any hide swabs.  The percent positive for Listeria species on hides was much 

greater than that found in the feces.  This difference between incidence in feces 

and on hides is not unique to Listeria spp.  In research by Elder et al. (2000), 

examining fecal samples and hides for E. coli O157:H7, 27.8% of the hide swabs 

were positive for E. coli O157:H7 while only 10.7% of the direct fecal samples 

were positive.  This phenomenon can lend itself to the observation that the feces 
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from one animal is contaminating the hide of not only itself, but also those of 

other animals either in the livestock production facility or during shipping. 

 After the carcasses were split, but before washing, carcass swabs were 

collected.  A total of 9 out of 106 samples (8.5%) were positive for Listeria spp.  

When compared to the number of hides in which Listeria spp. were identified, the 

importance of hygienic practices are exemplified.  Elder et al. (2000) found that 

while 27.8% of the cattle hides sampled were contaminated with E. coli O157:H7, 

only 1.8% of the carcasses were positive post processing.  However, the fact that 

carcasses can still become contaminated demonstrates the need for further 

carcass decontamination steps, such as acid washes or steam pasteurization to 

further reduce carcass contamination.  In fact, the USDA-FSIS issued Notice 44-

02 (USDA, 2002) that advised facilities of their obligation to reassess their 

HACCP plans and determine if E. coli O157:H7 is a hazard likely to occur, and if 

identified as such, then appropriate Critical Control Points such as acid washes 

or steam pasteurization will be required for controlling this hazard.  Also, the 

USDA-FSIS has mandated that monitoring of carcasses for the presence of fecal 

contamination or ingesta is a required CCP. 

 Environmental samples were collected from the abattoir both before and 

after slaughter to evaluate the environment for the presence of Listeria spp.  A 

total of 139 samples were collected with 1 (0.72%) sample positive pre-slaughter 

and 12 (8.6%) positive after production was complete but prior to sanitation 

beginning.  Environmental samples included drains, the hock cutter, the carcass 

saw, wizard knifes, inedible barrels and drum dolly wheels.  Of the areas that 
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were positive, Listeria spp. was recovered once from a drain prior to the start of 

slaughter while the remaining positives were recovered from the hock cutter (3 

times) and various drains (9 times) after production was complete.   

Molecular characterization was performed on the environmental samples, 

and a majority of the isolates recovered from environmental samples did not 

closely match (>90% similarity) the fingerprint of isolates recovered from the 

fecal, hide or carcass swabs.  These results are not easily explained, and several 

different scenarios could exist for the results that were obtained.  The first 

possibility is that these isolates were present prior to slaughter and were not 

recovered during the pre-production sampling.  It is also possible that these 

strains were in low enough numbers in the feces or on the hide in relation to the 

other strains of Listeria that they were not recovered from the hide or fecal 

samples.  These strains could also have been easily displaced from the hide or 

feces of the animal, thereby allowing their recovery from the environment.   

3.2  Molecular Characterization.   

Isolates recovered from all facilities that were rhamnose-positive were tested 

by polymerase chain reaction (PCR) to determine if the isolate was L. 

monocytogenes.  A total of 97 isolates were tested, of which 1 was confirmed L. 

monocytogenes.  This sample was a composite fecal sample collected from a set 

of pens at the Willard Sparks Research Facility that housed cattle only once 

during the time samples were collected.  These pens were located on the North 

side of the facility barn, and designated as ‘N MP 18’.  Due to the large number 

of negative samples (i.e., few positive samples), DNA fingerprinting was 
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performed on all samples for which Listeria spp. were obtained.  After grouping 

the isolates by PFGE analysis, one PCR sample from each pulsotype grouping 

was re-run on an agarose gel.  These results are shown in Figures 4, 5, and 6.  

 All samples were DNA fingerprinted using the procedure of Graves and 

Swaminathan (2001).  The only modifications to the procedures provided by 

Graves and Swaminathan was the use of Sma I as a restriction enzyme for use 

in PFGE.  This enzyme was used because Apa I resulted in incomplete digestion 

of the DNA of many of our isolates, a phenomenon also observed by Brosch et 

al. (1994) and Danielsson-Tham et al. (1993).  Digestion with Asc I resulted in 23 

different patterns while Sma I gave 29 different patterns.  After analysis with Bio-

Rad’s DNA Fingerprinting Plus software, each different pattern was assigned a 

letter, ranging from A to W for Asc I and A to CC for Sma I.  The individual 

sample and the ‘pulsotype’ for Asc I and Sma I are shown in Tables 6A, 6B, and 

6C.   

Groupings were determined by evaluating the results of the Fingerprinting 

Plus software, which has a built in function that will identify the visible bands on 

the gel image, then automatically group the fingerprints based on the relatedness 

of the DNA bands present in the gel image.  Any fingerprints showing greater 

than 90% similarity were grouped together.  A total of 39 different PFGE 

groupings were identified among the 97 strains after analysis and sorting.  

Grouping of Asc I isolates was simplified by the low frequency of cuts, as well as 

the clarity of the digested DNA fragments.  Sma I, on the other hand, frequently 
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resulted in 18 to 20 bands, that had a tendency to contain a number of relatively 

‘unclear’ fragments when compared to the Asc I fingerprints. 

3.3  Groupings by Pulsotype.   

A total of 39 pulsotype groupings were identified when the DNA fingerprints 

for each restriction enzyme were combined (Table 3A, 3B & 3C).  The most 

frequently recovered isolated was identified as pulsotype FS, as this particular 

strain of Listeria was recovered 33 times over the 16 month sampling period.  

This strain demonstrated the ability to survive in the production environment, and 

was recovered from both composite and direct fecal samples at Willard Sparks 

as well as from fecal and hide swabs from cattle being slaughtered at the FAPC.  

However, as often as this organism was recovered from the animal (20 fecal, 11 

hide samples), it was never recovered from a carcass swab. 

Pulsotypes NE, NF, NG and NH fell outside the 90% standard established 

for the grouping of pulsotypes generated by both enzymes to be the same 

organism.  However, these similar isolates had an 85% overall relatedness with 

the Sma I enzyme.  Therefore, while they may not be identical, the isolates 

appear to be highly related.  These groupings (NE, NF, NG and NH) account for 

11 of the 97 (11.3%) isolates recovered.  These 11 isolates were all recovered 

from hides (9 isolates) or fecal (3 isolates) samples, with no positive carcass 

samples for this strain of Listeria.   

On April 25 to 27, 2000, samples were collected from animals slaughtered 

in the FAPC abattoir that had been housed at the Willard Sparks Research 

Facility.  A total of six isolates were recovered from the carcass swabs that 
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matched composite fecal samples collected at Willard Sparks on June 9, 1999 

and June 15, 1999 as well as a carcass swab collected on October 14, 1999.  

These isolates were all identified as pulsotype grouping WZ.  Similar results were 

observed from samples collected on April 5, 2000.  Two fecal samples and one 

carcass sample were positive, and DNA fingerprinting revealed they had the AD 

pulsotype grouping.  These sampling results subsequently led to the inclusion of 

hide sampling in an attempt to link the hide as a source of contamination, as 

these carcasses were positive, but the fecal samples collected from them did not 

result in this organism being recovered.  These results further suggest that 

Listeria spp. could maintain a population in an animal pen environment (11 

months or more) even when animals were not kept within that environment the 

entire time. 

Subsequent samples collected in July and August of 2000 did result in the 

same pulsotype grouping (ES) being recovered from fecal, hide and carcass 

swabs.  A total of 8 isolates were recovered, of which 5 were fecal, 2 were hide 

and 1 was carcass.  The first isolate was recovered from a hide sample on July 

5, 2000.  The second isolate was recovered from a fecal sample on August 9, 

2000, and the remaining isolates were recovered on August 10, 2000.  This 

Listeria isolate was recovered from fecal samples of animals 9, 10, 11 and 12, as 

well as a carcass sample from animal number 12 and a hide sample from animal 

number 13.  However, pulsotype groupings FS and NG were also recovered from 

the feces, and FS, NG, NF, LW and GS were recovered from the hides.  
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Pulsotype NG was recovered from the hide of animal number 12, but pulsotype-

grouping ES was recovered from both the feces and carcass.   

The results obtained from the fecal, hide and carcass sampling are 

somewhat varied an unpredictable, as it would be anticipated that isolates 

recovered from the hide and/or fecal swabs would have a high probability of 

matching those recovered from carcasses.  However, this was not necessarily 

the case.  On July 5 and 6, 2000, a total of 12 animals (carcass, fecal and hide) 

were sampled.  Of those samples, 4 fecal samples were positive for Listeria, with 

the pulsotype groupings of strains isolated being FH, FT and FS.  All 12 hide 

samples were positive for Listeria with isolates recovered from pulsotype 

groupings FS, HU, NF, ES, NH, and AS.  Listeria was only recovered from one 

carcass swab, and it had a pulsotype grouping of BO, and while there is some 

relatedness shared between some of the hide and fecal samples, many of the 

recovered carcass isolates had little relatedness.  It is also important to note that 

pulsotype FS was recovered from the pen in which these animals were housed 

on the day of slaughter.   

When the sampling began in the processing environment, it was 

anticipated that isolates would be recovered from the processing environment 

that matched those recovered from the cattle being slaughtered.  However, while 

two of the isolates recovered were pulsotype group FS, the other 11 isolates 

recovered from the abattoir were not previously recovered from Willard Sparks or 

from sampled cattle.  Also, Listeria were not recovered from any pre-slaughter 

environmental samples, but were recovered during post-slaughter environmental 

67 



sampling.  Therefore, these isolates either were present and not recovered 

during the pre-slaughter sampling due to an unidentified niche, or they were 

present on the animals being sampled, and were not recovered through the 

isolation process from the feces or carcasses, but were recovered from the 

environment. 

A number of other isolates were recovered from fecal and hide swabs, 

from both Willard Sparks and the FAPC that were not subsequently recovered 

any other times (sporadic isolates).  These results were not particularly 

surprising, as it would be anticipated that some strains would enter the 

production environment for a short time, but not survive (i.e. transient strains), 

while other strains of Listeria would be able to survive within the environment and 

become persistent strains.   

4.  Conclusions 

A variety of strains of Listeria were isolated from the cattle at the Willard 

Sparks Research Facility as well as the Food and Agriculture Products Center.  It 

has been demonstrated that, while specific strains have the ability to survive and 

persist in the production environment, or be shed in the feces of cattle and 

contaminate the hides of cattle, these strains may not pose a serious threat to 

the contamination of the finished carcass, as 8 of the 9 carcass isolates 

recovered had a pulsotype that had only been recovered from the production 

facility on 3 occasions.  It has also ‘muddied the water’ as to the true source of 

carcass contamination, as the isolates recovered from a finished carcass may 

not match the isolates recovered from the feces or hide of the animal being 
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slaughtered or a sufficient number of ‘upstream’ isolates not recovered to ensure 

a ‘downstream’ match.  It is also highly probable that multiple strains may be 

present in the feces or hides but only one strain may be recovered during the 

isolation process.  It is possible that the contamination could be a result of cross 

contamination, from people contacting the hide or fecal material of one animal 

and transferring it to another animal or carcass or from the animals themselves 

coming in contact with each other during the transportation and slaughtering 

process. 

It is also important to realize that while a direct progression of a specific 

strain from the animal production facility to the feces, the hide and ultimately the 

carcass may not always be evident, the fact remains that if isolates are 

recovered from both the production environment and the carcass, there is a need 

to ensure that intervention steps are in place. 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 

   1000 bp 

   100 bp 

igu
Lane Asc I Sma I PCR Result 
1 F S Negative 
2 G V Negative 
3 T Y Negative 
4 K E Negative 
5 N E Negative 
6 W Z Negative 
7 J Q Negative 
8 P K Negative 
9 G S Negative 

10 F R Negative 
11 F AA Positive 
12 F G Negative 
13 O S Negative 
14 K S Negative 
15 V B Negative 
16 R C Negative 
17 D X Negative 
18 C J Negative 
re 4:  PCR results for Listeria monocytogenes. 
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F
 
 
 
 
 
 
 
 
 

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
   100 bp 

   1000 bp 
Lane Asc I Sma I PCR Result 
19 M P Negative 
20 A D Negative 
21 P M Negative 
22 R AA Negative 
23 F H Negative 
24 H U Negative 
25 F T Negative 
26 B O Negative 
27 N F Negative 
28 E S Negative 
29 N H Negative 
30 A S Negative 
31 E S Negative 
32 L. monocytogenes Scott A Positive 
33 L. innocua ATCC 33090 Negative 
igure 5:  PCR results for Listeria monocytogenes. 
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                 34       35     36      37      38      39      40      41       42     43     44 
 

   400 bp 

   800 bp 

   1,200 bp 

   2,000 bp 

  

ig
Lane Asc I Sma I PCR Result 
34 L. monocytogenes Scott A Positive 
35 L. innocua ATCC 33090 Negative 
36 Q E Negative 
37 F BB Negative 
38 I S Negative 
39 U BB Negative 
40 P L Negative 
41 N G Negative 
42 N F Negative 
43 L W Negative 
44 S CC Negative 
ure 6:  PCR results for Listeria monocytogenes. 
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Isolate Location Date Asc I Sma I
FAPC #821 F 4/5/2000 A D
FAPC #814 F 4/5/2000 A D
FAPC #2 C 4/5/2000 A D
FAPC 11 H 7/6/2000 A S
FAPC 2 C 7/5/2000 B O
FAPC Holding Pen Drain-post 3/28/2000 C J
FAPC Evisceration Drain-post 3/28/2000 D X
FAPC 5 H 7/5/2000 E S
FAPC 6 F 8/9/2000 E S
FAPC 9 F 8/10/2000 E S
FAPC 10 F 8/10/2000 E S
FAPC 11 F 8/10/2000 E S
FAPC 12 F 8/10/2000 E S
FAPC 12 C 8/10/2000 E S
FAPC 13 H 8/10/2000 E S
W.S. N MP 18 F 4/16/2000 F AA
FAPC Carcass Saw Drain-post 7/5/2000 F BB
W.S. Direct Fecal 11/8/1999 F G
FAPC 1 F 7/5/2000 F H
W.S. Direct Fecal 11/8/1999 F R
W.S. N 1 F 4/12/1999 F S
W.S. N 3 F 4/12/1999 F S
W.S. N 1 F 6/15/1999 F S
W.S. N 21 F 6/15/1999 F S
W.S. Direct Fecal 11/8/1999 F S
W.S. Direct Fecal 11/8/1999 F S
W.S. Direct Fecal 11/8/1999 F S
W.S. Direct Fecal 11/8/1999 F S
W.S. Direct Fecal 11/8/1999 F S
W.S. Direct Fecal 11/8/1999 F S
W.S. Direct Fecal 11/8/1999 F S
FAPC #3 F 2/11/2000 F S
FAPC #4 F 2/11/2000 F S

F= Fecal, C=Carcass swab, H=Hide swab, W=Water 
Pre=Pre-slaughter, Post=Post-slaughter 
 

Table 3A:  Sampling Location, PFGE Grouping and Organism Identification 
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Isolate Location Date Asc I Sma I
FAPC #3 F 2/15/2000 F S
FAPC Hock Cutter-post 4/5/2000 F S
FAPC 1 H 7/5/2000 F S
FAPC 6 F 7/5/2000 F S
FAPC 7 F 7/6/2000 F S
FAPC 7 H 7/6/2000 F S
FAPC  9 H 7/6/2000 F S
FAPC 10 H 7/6/2000 F S
FAPC 12 H 7/6/2000 F S
FAPC Bleeding drain-post 7/5/2000 F S
W.S. MP 5 F 7/6/2000 F S
FAPC 3 F 8/9/2000 F S
FAPC 7 F 8/10/2000 F S
FAPC 8 F 8/10/2000 F S
FAPC 1 H 8/9/2000 F S
FAPC 3 H 8/9/2000 F S
FAPC 4 H 8/9/2000 F S
FAPC 9 H 8/10/2000 F S
FAPC 11 H 8/10/2000 F S
FAPC 5 H 8/17/2000 F S
FAPC 2 F 7/5/2000 F T
W.S. Direct Fecal 11/8/1999 G S
FAPC 10 H 8/10/2000 G S
W.S. N 16 F 5/26/1999 G V
FAPC 2 H 7/5/2000 H U
FAPC Evisceration Drain-post 7/5/2000 I S
W.S. S 5/6 W 8/11/1999 J Q
W.S. N 30 F 6/9/1999 K E
W.S. Direct Fecal 11/8/1999 K S
FAPC 6 H 8/9/2000 L W
FAPC #3 F 4/5/2000 M P
W.S. N 32 F 6/9/1999 N E
FAPC 3 H 7/5/2000 N F
FAPC 4 H 7/5/2000 N F

F= Fecal, C=Carcass swab, H=Hide swab, W=Water 
Pre=Pre-slaughter, Post=Post-slaughter 
 

Table 3B:  Sampling Location, PFGE Grouping and Organism Identification 

74 



 

Isolate Location Date Asc I Sma I
FAPC 8 H 7/6/2000 N F
FAPC 5 H 8/9/2000 N F
FAPC 7 H 8/10/2000 N F
FAPC 5 F 8/9/2000 N G
FAPC 2 H 8/9/2000 N G
FAPC 8 H 8/10/2000 N G
FAPC 12 H 8/10/2000 N G
FAPC 6 H 7/5/2000 N H
FAPC #2 F 2/11/2000 O S
FAPC Red Angus F 10/7/1999 P K
W.S. MP 10 F 7/6/2000 P L
FAPC Holding Pen Drain-post 4/5/2000 P M
FAPC Hock Cutter Drain-post 7/5/2000 Q E
FAPC Holding Pen Drain-post 4/27/2000 R A
FAPC Hock Cutter Drain-post 3/28/2000 R C
FAPC Evisceration Drain-pre 8/15/2000 S CC
FAPC Hock cutter Drain-post 8/15/2000 S CC
W.S. N 19 F 5/26/1999 T Y
FAPC Evisceration Drain-post 7/6/2000 U BB
FAPC #815 F 3/28/2000 V B
W.S. N MP 13 & 14 F 4/16/2000 W S
W.S. N 23 F 6/9/1999 W Z
W.S. N 25 F 6/9/1999 W Z
W.S. N 19 F 6/15/1999 W Z
FAPC White Face C 10/14/1999 W Z
FAPC 6 C 4/25/2000 W Z
FAPC 7 C 4/25/2000 W Z
FAPC 8 C 4/25/2000 W Z
FAPC 2 C 4/26/2000 W Z
FAPC 3 C 4/27/2000 W Z

F= Fecal, C=Carcass swab, H=Hide swab, W=Water 
Pre=Pre-slaughter, Post=Post-slaughter 

 
Table 3C:  Sampling Location, PFGE Grouping and Organism Identification 
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