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CHAPTER I 
 

 

INTRODUCTION 

 

Profitability of cattle production could be increased by reducing maintenance 

energy requirements and feed costs for cows.  Since feed is the greatest cost in cattle 

production, any improvement in efficiency could improve profitability.  Maintenance 

energy requirement (MR) of cows accounts for approximately 50% of the total energy 

required for beef production from birth to slaughter (Ferrell and Jenkins, 1984) and is 

moderately heritable (Benyshek and Marlowe, 1973; Carstens et al., 1989; Hotovy et al., 

1991).  It is not practical to feed cows individually to estimate MR and it does not 

simulate normal management conditions.  Metabolic hormones regulate biological 

processes and concentrations may be related to some of the variation in MR.  Energy 

homeostasis and body temperature are influenced by thyroid hormones.  Plasma 

concentrations of thyroxine and IGF-I are related to nutrient intake in cattle (Richards et 

al., 1995; Ciccioli et al., 2003; Lents et al., 2005).  Technologies, such as ruminal boluses 

that measure body temperature, allow real time data collection without an increase in 

animal handling.  Body temperature is influenced by physiological functions.  Body 

temperature decreases prior to parturition in cattle (Wrenn et al., 1958; Aoki et al., 2005;
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Prado-Cooper et al., 2011) and sheep (Ewbank, 1969), and body temperature is increased 

at estrus (Wrenn et al., 1958; Clapper et al., 1990; Prado-Cooper et al., 2011).  Sickness 

increases body temperature (Prado-Cooper et al., 2010; Rose-Dye et al., 2010).  

Maintenance energy requirements of mice (Kgwatalala et al., 2004) and cattle (Derno et 

al., 2005) are related to body temperature. 

 A practical method to evaluate MR of cows has not been developed.  Use of 

technology such as radioimmunoassay of hormones or ruminal temperature boluses may 

allow determination of specific biomarkers for efficiency of energy use by cows.  The 

long-term goal of this research is to identify biomarkers that can be used to identify 

animals that are more efficient and require less energy for maintenance of BW.  

Identification of cows that are energetically more efficient could improve the profitability 

of beef production. 
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

FEED EFFICIENCY OF BEEF COWS  

 

Philosophers, such as Antoine-Laurnet Lavoisier (1743-1794), have long believed 

that life is primarily a combustion process (Johnson et al., 2003).  Many new ideas and 

devices were invented to determine the use and combustion of feedstuffs.  Metabolisms 

of proteins, fats, and carbohydrates are different, so Baron Justus Von Liebig (1803-

1873) decided composition of feedstuffs should be partitioned (Johnson et al., 2003).  

Lavoisier’s ice calorimeter was used to determine calories by measuring the amount of 

water collected from the heat from the test material.  Pierre Eugene Berthelot’s 

development of the adiabatic bomb calorimeter allowed for reproducible and accurate 

assessments of the chemical energy of an organic substance (Armsby, 1903; Johnson et 

al., 2003).  Max von Pettenkofer (1818-1901) developed the open-circuit respiration 

apparatus to determine the composition of expelled gases (Armsby, 1903).  In 1965, the 

Brouwer equation used oxygen consumption, respiration, urinary nitrogen, and methane 

production to calculate heat production, which led to the end of the open-circuit 

respiration apparatus (Johnson et al., 2003).  Much of the chemical energy of feed is loss
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by the body and therefore metabolizable energy is defined as the gross energy of feed 

minus the gross energy of excreta (Armsby, 1917) or as heat production plus retained 

energy since metabolizable energy can appear in only those two forms (NRC, 1996).   

 Maintenance energy (MR) is defined as the minimum energy required to maintain 

life (Armsby, 1917) or as the amount of feed energy intake that will result in no net loss 

or gain of energy from tissues of the animal’s body (NRC, 1996).  Approximately 50 % 

of the feed consumed by cattle is required for maintenance (Armsby, 1917).  According 

to Ferrell and Jenkins (1987) 70 % of the total metabolizable energy intake is required for 

maintenance by mature, producing cows and approximately 90 % by breeding bulls 

(NRC, 1996).  Lofgreen and Garrett (1968) separated maintenance requirements from the 

requirements for body weight gain and expressed a net energy value for the two 

functions.  The fasting animal has a heat production proportional to metabolic body 

weight (BW0.75), which is then used in an equation to determine net energy maintenance 

(Lofgreen and Garrett, 1968). 

Measurement of Efficiency  

 The estimate for MR can be determined by such methods as comparative 

slaughter, feeding trials, and calorimetric methods. Comparative slaughter methods were 

first used by Lawes and Gilbert (1861) to demonstrate the use of carbohydrates as a 

major source of energy for fat synthesis (NRC, 1996).  Lofgreen and Garrett (1968) used 

comparative slaughter methods to propose the California Net Energy System, which was 

adopted by the NRC.  Comparative slaughter measures metabolizable energy and retained 



 

5 

  

energy to determine heat energy.  When retained energy is equal to zero the 

metabolizable energy intake provides an estimate for MR (NRC, 1996). 

 A large group of animals are maintained under similar conditions in feeding trials.  

A known amount of feed with a known amount of energy is used to maintain the animals 

BW.  The quantity of feed is adjusted until the animal is in a state of BW equilibrium.  

Thus a known amount of energy, to maintain an animal’s weight for an extended period 

of time, can be determined.  In practice it is easier to use a regression model to determine 

the actual energy required for BW equilibrium, because it is easier to allow animals to 

lose or gain weight than maintain body weight (McDonald et al., 2002).  A regression 

equation with feed intake and body weight can then be used to determine MR. 

 Lavoisier was one of the first to use calorimetric methods to determine the 

chemical energy of an organic substance (Armsby, 1917).  Calorimetry is used to 

measure the fasting heat production, and with the measurement of urinary energy lost, 

allows for fasting metabolism to be determined.  Fasting metabolism is equal to the net 

energy value for maintenance.  Calorimetry methods are not feasible and are not very 

easily adjusted to practical feeding scenarios (NRC, 1996). 

 Residual Feed Intake 

   Animals with the same BW and level of production require different amounts of 

feed (Byerly, 1941).  Koch et al. (1963) was the first to conceptualize the idea of residual 

feed intake (RFI).  Residual feed intake measures the variation in dry matter intake and 

efficiency, and uses the residual determined by comparing expected feed intake to actual 

feed intake at a certain production level.  Production is independent of RFI, which 
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suggest that it may show variation in basic metabolic processes (Herd and Arthur, 2009).  

The residual is then used to classify cattle as high efficiency (negative RFI) or low 

efficiency (positive RFI).  Heifers that are more efficient as weanlings are more efficient 

as cows (Herd et al., 2003).  Variations in feed efficiency can be caused by variations in 

feed intake, feed digestion, metabolism, activity, and thermoregulation (Herd and Arthur, 

2009).  Protein turnover, tissue metabolism, and stress accounted for approximately 37% 

of the variation in RFI (Herd and Arthur, 2009).  Residual feed intake is positively 

correlated with gain in empty body fat (Herd et al., 2003; Basarab et al., 2003), carcass 

marbling, metabolizable energy intake, retained energy, and heat production (Basarab et 

al., 2003).  Negative RFI animals, in a feedlot scenario, have increased DM digestibility 

(Richardson et al., 1996; Nkrumah et al., 2006), which may result in decreased methane 

production (Nkrumah et al., 2006).  Adenosine triphosphate (ATP) is used as energy in 

the body.  Mitochondria produce the majority of cellular ATP, but negative and positive 

RFI steers have similar ATP production (Kolath et al., 2006).  Kolath et al. (2006) also 

determined that mitochondrial polymorphisms are not related to RFI in Angus steers.  

Many mechanisms are associated with RFI and further research is needed to determine 

the mechanisms responsible for variation in RFI.  Physiological information coupled with 

molecular genetic information will become the basis for commercial identification of 

more efficient cattle (Herd and Arthur, 2009). 

Factors Effecting Efficiency  

 Several factors such as breed, sex, age, physiological state, and season affect MR 

of cows.  Blaxter and Wainmann (1966) found that Ayrshire steers had 20% greater 

fasting heat production (FHP) than Angus type cattle, when based on metabolic body 
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weight.  Holstein steers require more feed than Hereford steers to maintain body weight 

(Garrett, 1971).  Simmental heifers and bulls require 19% more feed than Hereford 

heifers and bulls to maintain energy stasis (Ferrell and Jenkins, 1985a).  Cattle that have 

been selected for beef production have a lesser MR than cattle that have been selected for 

milk production (Blaxter and Wainmann, 1966; Garrett, 1971).  Cow breeds that produce 

large amounts of milk (Jersey cross and Simmental cross) have greater maintenance 

requirements than breeds (Angus x Hereford cross and Charolais cross) that produce less 

milk (Ferrell and Jenkins, 1984).  Cow types that were similar in milk production but 

differed in size had similar MR (Ferrell and Jenkins, 1984).  When MR is determined by 

metabolic body weight, cow size does not cause variation (Klosterman et al., 1968; 

Ferrell and Jenkins, 1984).   

 Fasting heat production (FHP) did not differ between steers and heifers (Garret, 

1980).  Ferrell and Jenkins (1985a) found that FHP was similar for Hereford heifers and 

bulls, while Simmental bulls had a greater FHP than Simmental heifers.  Bulls have a 

15% greater MR compared with heifers and steers (ARC, 1980).   

 It is generally considered that MR declines with age of cattle and sheep when 

measured per unit of size (Blaxter, 1962; Graham et al., 1974).  Graham et al. (1974) 

determined that MR decreases 8% a year in sheep from birth to greater than two years of 

age.  When initial MR was determined at 6 years of age, it was found that MR decreased 

3% a year (Corbett et al., 1985; CSIRO, 1990).  Age (15-81 wk) did not influence MR of 

steers (Blaxter et al., 1966).  When beef heifers were studied from 275 to 475 kg, there 

was a 14% increase in metabolizable energy per MBW (Tyrrell and Reynolds, 1988). 
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 Total heat production increases during gestation (Brody, 1945), however a direct 

increase in maintenance requirements does not occur (Ferrell et al., 1976).  Lactating 

Hereford cows have a 30% greater MR than non-lactating Hereford cows (Neville and 

McCullough, 1969) and NRC (1996) determined that lactating cows have 20% greater 

MR than non-lactating cows.   

 Christopherson et al. (1979) and Webster et al. (1982) found decreased MR for 

cattle and bison during the fall (Christopherson et al., 1979), when compared with winter 

and spring.  Fasting heat production of Hereford steers was approximately 10% less in 

the fall compared with the summer (Birkelo et al., 1989).  Laurenz et al. (1991) noted that 

Angus and Simmental cattle have greater energy requirements to maintain weight in the 

summer compared with winter, potentially due to the fact that empty body fat increased 

in the summer.    

METABOLIC HORMONES AND MAINTENANCE REQUIREMENTS OF COWS 

 Metabolic hormones may influence MR since hormones are involved in 

regulating appetite and metabolism.  Greater plasma concentrations of leptin have been 

related to decreased intake (Foster and Nagatani, 1999), while greater leptin has also been 

associated with increased feed intake (Ciccioli et al., 2003).  Dietary energy and protein 

intake influence plasma concentrations of insulin, insulin like growth factor-I (IGF-I), 

and thyroxine (Hayden et al., 1993; Ciccioli et al., 2003; Lents et al., 2005).  Increased 

plasma concentrations of growth hormone are associated with a negative energy balance 

in cattle (Richards et al., 1991; Keisler and Lucy, 1996) 
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Thyroid Hormones 

 Thyroid hormones, such as thyroxine (T4) and triiodothyronine (T3), influence 

metabolic processes in most tissues.  Thyroid hormones mediate metabolism of 

carbohydrates, lipids, and proteins.  Thyroxine and T3 increase metabolic rate and 

therefore reduce body weight due to protein breakdown or the loss of lean body mass 

(Moreno et al., 2008).  Plasma concentrations of T4 and T3 are related to ambient 

temperature (Yousef et al., 1967; Pratt and Wettemann, 1986).  Differences in residual 

feed intake are not related to plasma thyroxine and free triiodothyronine in cattle (Kelly 

et al. 2010).  Thyroxine did not influence average daily gain, feed intake, or carcass 

composition of ram lambs.  When T4 and growth hormone (GH) were given alone or in 

combination, T4 negated the stimulatory effect of GH on gain of carcass protein and 

muscle in ram lambs (Rosemberg et al., 1989).  Muir and Wien (1983) found that T4 

reduced ADG and carcass protein in lambs.  Type 2 iodothyronine deiodinase (D2) 

converts T4 to T3 in muscle tissue.  In murine muscle tissue, D2 mRNA differs between 

fast and slow twitch muscle and increases during hypothyroidism, potentially allowing 

for greater T3 action in muscle tissue (Marsili et al., 2010).  Type 3 iodothyronine 

deiodinase, an inactivating enzyme, regulates concentrations of active T4 and T3 through 

inner ring deiodination (Ng et al., 2010; Dentice and Salvatore, 2011).  Administration of 

T3 increased food consumption in rats (Oppenheimer et al., 1991).  Feed intake in cattle 

(Richards et al., 1995; Ciccioli et al., 2003) and sheep (Dukes and Swenson, 1970; 

Abecia et al., 2001) is positively associated with plasma concentrations of T4.  Ngongoni 

et al. (1987) determined that exogenous increases in T4 increased gut motility and rumen 

outflow.  Increased thyroxine concentrations in sheep increase wool production (Donald 
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et al., 1994) and local changes in hypothalamic T3 and T4 appear to control photoperiod 

induced changes in reproduction (Bechtold and Loudon, 2007; Smith and Clarke, 2010).  

Consumption of thyroxine increases milk production in dairy cattle (Graham, 1934), and 

treatment with T4 increased milk yield and milk protein of cows (Davis et. al, 1988) and 

ewes (Singh et al., 1956).  However, dairy heifers genetically selected for greater milk 

yields, had lesser concentrations of thyroxine during gestation compared with heifers 

chosen to produce less milk (Bitman et al., 1984) and multiparous cows produced more 

milk and had greater T3 and T4 concentrations compared with primiparous cows (Meikle 

et al., 2004).     

Thyroid Binding Protein 

 Thyroid binding globulin or thyroxine binding globulin (TBG) is the major 

binding protein for T4 and T3 (Snyder et al., 1976). Thyroxine binding globulin is 2 times 

greater in pregnant women compared with non-pregnant women (Glinoer, 1997).  Less 

than 1 % of thyroid hormones in the body are unbound.  Thyroid binding proteins may be 

present to assure that every tissue in the body is exposed to a uniform concentration of 

thyroid hormones because thyroid hormones bind to cells in the first deficient tissue 

contacted (Mendel et al., 1987).  Affinities of thyroid binding globulin differs among 

breeds of swine (Nonneman et al., 2004).  Thus, TBG influences the availability of 

thyroid hormones to cells.  

Insulin-like Growth Factor-I Function 

 Insulin-like growth hormone I (IGF-I), also known as somatomedin C, is 

primarily produced by the liver in response to secretion of growth hormone.  Insulin-like 



 

11 

  

growth factor I may be useful to select efficient cattle since it is highly heritable (Davis 

and Simmen, 1997.)  Increased nutrient intake increases concentrations of IGF-I in 

plasma of cattle (Houseknecht et al., 1988; Lents et al., 2005; Brito et al., 2007).  

Concentrations of IGF-I are positively correlated with growth rate in bulls (Lund-Larsen, 

1977) and sheep (Olsen et al., 1981).  Skottner et al. (1987) found that exogenous IGF-I 

increased weight of rats.  Skeletal protein synthesis is increased in response to IGF-I 

production in ruminants (Lobley, 1992).  Angus cattle with greater serum concentrations 

of IGF-I have greater BW and greater feed conversion efficiency compared with cattle 

with less IGF-I (Bishop et al., 1989).  Cattle that have been selected for negative RFI 

(efficient) have decreased plasma concentration of IGF-I and there is a moderate positive 

correlation between RFI and IGF-I (Moore et al., 2005).  There is a positive correlation in 

Angus bulls between RFI and IGF-I and the correlation is negative in Angus heifers 

(Lancaster et al., 2008).  Serum concentrations of IGF-I are correlated with animal 

weight, and may not be predictable of growth rate or rate of gain (Davis and Simmen, 

2006). 

Insulin-like Growth Factor Binding Protein 

 Currently there are six insulin like growth factor binding proteins.  These proteins 

have a higher affinity for IGF than the affinity of receptors and therefore regulate IGF 

availability to cells (Jones and Clemmons, 1995).  Insulin like growth factor binding 

protein 3 (IGFBP-3) binds 70-90% of all IGF-I (Yamada et al., 2010).  Yamada et al. 

(2010) concluded that IGFBP-3 knockout mice were heavier and had a lower resting 

metabolic weight, and decreased feed intake.  Insulin-like growth factor binding protein 3 

may act independently of IGF by binding to cell surface molecules unrelated to IGF and 
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inhibits the growth of breast cancer epithelial cells (Oh et al., 1993).  The IGFBP’s may 

effect the ability of IGF-I to influence MR. 

FACTORS EFFECTING BODY TEMPERATURE 

 Body temperature can be increased by many factors and the most important factor 

is ambient temperature above the thermoneutral zone of animals.  An increase in relative 

humidity increases the effect of greater ambient temperature, therefore increasing rectal 

temperature (Arrillaga et al., 1952).  Body temperature decreases prior to parturition in 

cattle (Wrenn et al., 1958; Aoki et al., 2005).  Ewbank (1969) noticed similar decreases in 

body temperature of sheep prior to parturition.  Rectal temperature of swine increase 

prior to and after parturition (Hendrix et al., 1978).  Lammoglia et al. (1997) observed 

that cows carrying bulls had greater body temperature than cows carrying heifer calves.  

Estrus increases body temperature (Wrenn et al., 1958; Clapper et al., 1990).  Rectal 

temperature increases due to tall fescue toxicity in Holstein calves (Hemken et al., 1981) 

and sheep (Aldrich et al., 1993).   Prado-Cooper et al. (2009) and Rose-Dye et al. (2010) 

noted an increase in ruminal temperature due to sickness.  Maintenance energy 

requirements are related to body temperature of mice selected for high or low heat loss 

(Kgwatalala and Nielson, 2004).  Derno et al. (2005) suggested that body temperature 

could be used to determine MR in Hereford steers.     

Ruminal Temperature 

 Ruminal temperature is correlated with rectal temperature (Rose-Dye et al., 

2010).  Ruminal temperature may be greater than rectal and tympanic temperatures 

(Prendiville et al., 2002).  Water consumption decreases ruminal temperature for several 
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hours depending on the quantity and temperature of water that is consumed (Brod et al., 

1982; Bewley et al., 2008; Boehmer et al., 2009).  Cattle exposed to Mannheimia 

haemolytica had an increase in ruminal temperature of approximately 1°C (Rose-Dye et 

al., 2010) and about a 2 °C increase in rectal temperature (Burciaga-Robles et al., 2010a).  

Ruminal boluses can be used in the cattle industry to determine estrus or disease. 
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CHAPTER III 
 

 

MAINTENANCE ENERGY REQUIREMENTS, RUMINAL TEMPERATURE, WALKING 

ACTIVITY, AND PLASMA CONCENTRATIONS OF IGF-I, THYROXINE, AND 

TRIIODOTHYRONINE OF GESTATING BEEF COWS 

 

ABSTRACT: Three experiments with spring calving, Angus cows (Exp. 1, n = 40; Exp. 

2, n = 32; Exp. 3, n = 32) were conducted to determine the effects of maintenance energy 

requirement (MR) on plasma concentrations of insulin-like growth factor I, thyroxine 

(T4), and triiodothyronine (T3), walking activity, and ruminal temperature (RuT).  Cows 

(4 - 7 yr; 5 - 7 mo gestation) with BW of 553 ± 5.9 kg, 556 ± 5.9 kg, 539 ± 8.0 kg for 

Exp. 1, 2, and 3, respectively, were individually fed a complete diet.  Cows were initially 

fed a diet calculated to supply MR (Model 1, NRC 1996).  Body weight was maintained 

for 21, 31, and 36 d for Exp. 1, 2, and 3, respectively.  Blood samples were collected 

before and after consumption of feed on 2 d when cows consumed MR (gestation) and 

when cows had ad libitum prairie grass (lactation) (Exp. 1 and 2).  Ruminal temperature 

was recorded hourly, using ruminal boluses (Smart Stock, LLC), for 4 consecutive days 

when cows consumed MR and when cows had ad libitum
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roughage (Exp. 2).  Walking activity was recorded for 24 h using pedometers (Omron 

Healthcare, Inc.; Exp. 3).  Cows were classified based on MR as low (> 0.5 SD less than 

mean, LMR), moderate (± 0.5 SD of the mean, MMR) or high (> 0.5 SD greater than 

mean, HMR).  Average MR were 80.7 (SD = 4.84), 94.4 (SD = 8.00), and 95.5 (SD = 

7.10) Kcal�kg-0.75
�day-1 for Exp. 1, 2, and 3, respectively.  The differences between the 

least efficient and most efficient cow were 33, 32, and 35% for Exp. 1, 2, and 3, 

respectively.  When cows had ad libitum prairie grass, LMR had greater concentrations 

of T4 compared with HMR (P = 0.05) at1 h postprandial in Exp. 1.  Ruminal temperature 

during maintenance and during ad libitum roughage was not influenced by MR.  In Exp. 

2 when cows consumed MR and were exposed to cooler temperatures (-5 °C), LMR cows 

had greater plasma T4 (P ≤ 0.03) compared with MMR and HMR.  When exposed to 

warmer temperatures (15 °C), HMR cows had greater plasma T3 compared with LMR 

and MMR (P ≤ 0.05).  During early lactation MMR had greater concentrations of T4 

compared with HMR cows (P = 0.05).  When cows had ad libitum roughage during early 

lactation, HMR had greater (P = 0.05) plasma concentrations of IGF-I compared with 

LMR cows, and HMR had greater (P = 0.04) concentrations of IGF-I compared with 

LMR cows 1 h postprandial.  Walking activity was not related to the amount of energy 

needed to maintain BW.  Thyroxine, T3, and IGF-I may have the potential to be 

biomarkers for MR.  Identification of cows with lower MR could improve the 

profitability of beef production. 

Keywords: beef cows, IGF-I, rumen temperature, thyroxine, triiodothyronine 
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INTRODUCTION 

Profitability of cattle production can be increased by reducing maintenance 

energy requirements and feed costs.  Maintenance energy requirement (MR) of cows 

accounts for approximately 50% of the total energy required for beef production (Ferrell 

and Jenkins, 1984) and is moderately heritable (h2 = 0.45 – 0.52; Benyshek and Marlowe, 

1973; Carstens et al., 1989; Hotovy et al., 1991).  

  Metabolic hormones regulate biological processes and may influence MR.  

Energy homeostasis is influenced by thyroid hormones (Muir and Wien, 1983; Moreno et 

al., 2008) and ambient temperature alters thyroid function  (Yousef et al., 1967; Pratt and 

Wettemann, 1986).  Thyroxine (T4) and triiodothyronine (T3) increase metabolic rate and 

reduce body weight by protein mobilization and loss of lean body mass in mice (Moreno 

et al., 2008) and cattle (Cowley et al., 1971; Novakofski and Kauffman, 1981).  

Concentrations of T3 are positively related to food consumption of rats (Oppenheimer et 

al., 1991) and cattle (McGuire et al., 1991). 

 Insulin-like growth factor-I (IGF-I) is produced by the liver in response to 

secretion of growth hormone.  Insulin like growth factor-I is highly heritable (Davis and 

Simmen, 1997) and is positively correlated with growth rate of cattle (Lund-Larsen, 

1977) and sheep (Olsen et al., 1981).  Serum concentrations of IGF-I are greater in cattle 

with greater BW and greater feed conversion efficiency (Bishop et al., 1989).  Greater 

nutrient intake increases concentrations of IGF-I in plasma of cattle (Houseknecht et al., 

1988; Lents et al., 2005). Cattle selected for negative residual feed intake (efficient) have 

decreased plasma concentrations of IGF-I compared with cattle selected for positive 

residual feed intake (Moore et al., 2005). 
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 Physiological processes influence deep body temperatures of cattle.  Body 

temperature decreases prior to parturition in cattle (Wrenn et al., 1958; Aoki et al., 2005; 

Prado-Cooper et al., 2011) and sheep (Ewbank, 1969), and body temperature is increased 

at estrus (Wrenn et al., 1958; Clapper et al., 1990; Prado-Cooper et al., 2011).  Body 

temperature was positively related to maintenance energy requirements of Hereford steers 

(Derno et al., 2005).   

 A biomarker for MR of cows has not been identified.  The objectives of this 

research were to determine MR of beef cows during mid-gestation and the effect of MR 

on ruminal temperature, walking activity, and plasma concentrations of IGF-I, thyroxine, 

and triiodothyronine. 

MATERIALS AND METHODS 

Animals and Determination of Maintenance Energy Requirements  

 The Oklahoma State University Animal Care and Use Committee approved all 

experimental procedures in this study.  Angus cows (4 to 7 yr of age) were artificially 

inseminated to a single Angus sire after synchronizing estrous cycles with treatment of 

PGF2α (Lutalyse, 25 mg, intramuscularly; Pfizer and Upjohn Co., New York, NY).  

HeatWatch (DDx Inc., Denver, CO) was used to determine estrus and cows were 

inseminated 12 h after the onset of estrus.  If estrus was not detected after treatment with 

PGF2α, cows were given a second treatment with PGF2α 11 d later, estrus was detected, 

and cows were inseminated.  Cows were inseminated during the month of June (Exp. 1 

and 2) and July (Exp. 3).  Pregnancy was determined by fetal heartbeat at 30 d after 

insemination using ultrasonography (Aloka 500-V with a 7.5-MHz probe; Corometrics 
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Medical Systems, Wallingford, CT).  The number of non-lactating, gestating (4-8 mo), 

cows used were 40, 32, and 32 for Exp. 1, 2, and 3, respectively.  The duration of Exp. 1, 

2, and 3 was 72, 88, and 88 d, respectively.  Experiment 1, 2, and 3 began Oct. 27, Oct. 

27, and Oct. 22, respectively, and concluded Jan. 9, Jan. 25, and Jan. 20, respectively.  

Body condition scores (1 = emaciated, 9 = obese; Wagner et al., 1988) were 4.9 ± 0.1, 4.4 

± 0.1, and 4.3 ± 0.1 and BW were 553 ± 6, 556 ± 6, and 539 ± 8 kg for Exp. 1, 2, and 3, 

respectively. 

 Cows were individually fed a complete diet once daily at 0730 h.  The diet 

consisted of (as fed) dry rolled corn (36%), alfalfa pellets (35%), cottonseed hulls (22%), 

soybean meal (4%), cane molasses (3%), salt (0.2%) and vitamin A (0.01%).  Calculated 

(NRC, 1996) CP and NEm for the diet were 11.2% and 1.43 Mcal/kg, respectively.  

Samples of the ration were taken weekly for analyses and ground using a Wiley mill with 

a 2 mm screen.  Subsamples (200 g) of the weekly samples, within experiment, were 

combined and analyzed in duplicate (Dairy One Laboratory, Inc., Ithaca, NY).  Analyzed 

values of the ration (as fed) for CP and NEm were 13.0% and 1.40 Mcal/kg, 14.2% and 

1.61 Mcal/kg, and 15.4% and 1.93 Mcal/kg for Exp. 1, 2, and 3, respectively.  Mineral 

supplement (46.1% NaCl, 50.0% dicalcium phosphate, 0.4% copper sulfate, 0.5% zinc 

oxide and 3.0% mineral oil) was fed for targeted consumption of 1 oz./head/d and ad 

libitum water.   

 Metabolic body weight (BW0.75) was calculated based on initial shrunk BW, after 

removal of feed (23 h) and water (14 h). Shrunk BW was recorded twice a week during 

the experiments.  Body condition score was recorded at the start and end of the 
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experiment.  Calf BW was recorded at birth, mid-lactation (2 mo), and at weaning (7 

mo).  

 The diet was adjusted if cows gained or lost weight after consumption of the 

calculated MR for 2 wk.  Additional adjustments in diet, at 2 wk or greater intervals, 

were made to maintain a constant BW.  When BW increased or decreased (≥ 3 

consecutive weights) the ration was decreased or increased (respectively) by 0.45 or 0.90 

kg feed/d.  Regression analyses (SAS Institute Inc., Cary, NC) were used to determine 

constant BW.  Maintenance energy requirement was determined when BW was constant 

for 21, 31, and 36 consecutive days for Exp. 1, 2, and 3, respectively.   After calving, 

cows were managed as a group on native prairie pasture (Andropogon scoparius, 

Andropogon gerardii) and were supplemented with 1.8 kg of 38% CP when adequate 

forage was not available. 

 Mean BW and daily dietary energy (NEm) intake were used to determine MR 

during the days when BW was constant, and MR was expressed as Kcal�kg-0.75
�day-1. 

Cows were classified based on MR as low (> 0.5 SD less than mean, LMR), moderate (± 

0.5 SD of the mean, MMR) and high (> 0.5 SD greater than mean, HMR). 

Blood sampling and analyses 

 Blood samples were collected via caudal venipuncture on 2 d when cows 

consumed MR and on 2 d during early lactation when cows had ad libitum prairie grass.  

In Exp. 1, samples were collected from cows at 0700 and 1500 h on two consecutive days 

during both periods.  Maximum ambient temperature was 2 and 13 °C for d 1 and 2, 

respectively, during the MR period, and 26 and 28 °C for d 1 and 2, respectively, during 
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early lactation.  For Exp. 2, samples were collected at 0700 and 1500 h on a day during 

MR when maximum ambient temperature was -5°C, and 2 wk later at the same times 

when maximum ambient temperature was 15°C.  Samples were collected during early 

lactation at 0700 and 1500 h on two consecutive days when maximum ambient 

temperature was 32 and 28 °C for d 1 and 2, respectively.  Blood samples collected at 

0700 h during maintenance, for Exp. 1 and 2, were obtained after consumption of water 

was restricted for 14 h and feed consumption was restricted for 23 h.  Cows had ad 

libitum water prior to samples collected at 1500 h and had consumed daily diets 7 h 

previously.  During early lactation cows were gathered from native pasture and sampled 

at 0700 h and consumption of feed and water was restricted for 8 h before sampling at 

1500 h.  Blood samples (10 mL) were collected into evacuated tubes containing EDTA 

and placed on ice.  Samples were centrifuged (2,500 g) within 2 h for 20 min at 4 °C, 

plasma was aspirated and stored at -20 °C until analyses. 

 Plasma samples collected during MR or lactation, within an experiment, were 

assigned to laboratory assay blocks based on MR and day of sample.  The samples 

collected after consumption of feed, or after feed and water restriction, on the 2 collection 

days for a cow were analyzed in the same assay block and each block contained a similar 

number of cows from each treatment (LMR, MMR, and HMR).  Plasma concentrations 

of thyroxine (T4) were quantified with a solid phase RIA (Coat-A-Count Total T4 kit, 

Diagnostic Products Corp.; Ciccioli et al., 2003).  Intra and interassay CV were 3% and 

10%, respectively.  Concentrations of triiodothyronine (T3) were quantified with a solid 

phase RIA (Coat-A-Count T3 kit, Diagnostic Products Corp.). The addition of 0.2, 0.5, 

1.0, and 2.0 ng/mL of triiodothyronine (n = 3) to plasma resulted in the recovery of 95, 
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106, 105, and 99 %, respectively.  When 37.5, 50, and 75 µL of bovine plasma were 

assayed, the concentrations of triiodothyronine (T3) were parallel to the standard curve.  

Intra and interassay CV were 3% and 8%, respectively.  Concentrations of IGF-I in 

plasma were quantified using RIA after acid ethanol extraction (Echternkamp et al., 

1990). Intra and interassay CV were 4% and 9%.  

Ruminal Temperature 

 A balling gun was used to place ruminal temperature (RuT) boluses into the 

rumen of each cow during the period of the experiment when cows consumed the 

maintenance diet. Data were collected with the Smart Stock system (SmartStock®, LLC, 

Pawnee, OK).  The system consisted of a radio-frequency RuT bolus (8.25 cm x 3.17 cm; 

114 g), antennas for data collection and transmission, a receiver antenna for transmitted 

data, and a computer for data storage.  Three data collection antennas were strategically 

placed at the perimeter or in the drylot (60 x 80 m) where cows were maintained for 23.5 

h/d.  Cows were less than 50 m from an antenna while in the drylot.  Date, time, cow 

identification, and RuT were recorded every hour.  Ruminal temperature data were 

collected for four consecutive days during MR and four consecutive days when cows had 

ad libitum prairie grass hay in January.  

Measurement of activity 

 Activity was determined using GOsmartTM pedometers (Omron Healthcare, Inc., 

Kyoto-shi, Kyoto, Japan).  Pedometers were placed in cloth pouches and glued on the 

lumbar region of cows for 24 h to record activity.   

Statistical analyses 
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 Plasma concentrations of hormones were analyzed using the MIXED procedure 

(SAS).  Samples obtained during MR and early lactation were analyzed separately.  The 

statistical model for T4, T3, and IGF-I included MR, day, sample, and the interactions.  

Assay block was included as a random function.  To identify the best goodness of fit 

statistics, six covariance structures (variance component, compound symmetry, Huynh-

Feldt, first-order autoregressive, Toepliz, and unstructured) were tested.  The covariance 

test with the best goodness of fit were Toepliz for T4, variance component for T3, and 

unstructured for IGF-I.  If treatment or interaction was significant, least squares means 

were compared using LSD (SAS).   

 Ruminal temperature was analyzed with the MIXED procedure (SAS).  Data 

collected during MR were analyzed separately from data collected during ad libitum 

roughage.  Average RuT for a cow was determined each day during MR and ad libitum 

roughage.  It was required that cows had at least six readings per day to be included in 

analyses.  To ensure that water drinking events did not influence RuT, values less than 

37.72°C were excluded from data (Bewley et al., 2008; Boehmer et al., 2009; Prado-

Cooper et al., 2011).  The statistical model for RuT included MR, day, and the 

interaction.  The best goodness of fit statistic was identified using six covariance 

structures (variance component, compound symmetry, Huynh-Feldt, first-order 

autoregressive, Toepliz, and unstructured).  The covariance test with the best goodness of 

fit was Huynh-Feldt for RuT during MR and first-order autoregressive during ad libitum 

prairie hay.  If treatment or interaction was significant least squares means were 

compared using LSD (SAS). 
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Activity was collected for 24 h for 20 % of the cows (n = 21) in each MR group 

on one of 5 d during Exp. 3.  Data were analyzed with the GLM procedure (SAS) and the 

model included MR, with day as a covariate. 

Calf birth weight and 205 d adjusted weaning weight were analyzed using the 

GLM procedure (SAS).  The statistical model for birth weight included MR and sex as a 

covariate.  The statistical model for 205 d adjusted weaning weight included MR.  Calf 

205 d adjusted weaning weight was calculated by determining ADG from birth to day of 

weaning and then adjusting to 205 d of age.  The model included MR, sex, and the 

interaction.    

Correlations between T3, T4, IGF-I, and MR were determined using the CORR 

procedure (SAS).  Plasma concentrations of hormones within experiment were averaged 

during MR period and early lactation for correlations with MR. 

RESULTS 

Cow and calf performance 

 Cows were fed a complete diet for 10, 17, and 13 wk for Exp. 1, 2, and 3 

respectively.  Body weight was maintained for 21, 31, and 36 d for Exp. 1, 2, and 3 

respectively.  Body weight was maintained for 27, 25, and 22 cows for Exp. 1, 2, and 3, 

respectively.  Average maximum ambient temperatures during the MR period were 9.4 ± 

1.7, 4.4 ± 1.3, and 6.5 ± 1.1 °C for Exp. 1, 2, and 3, respectively.  Average minimum 

ambient temperatures were -4.5 ± 1.1, -5.5 ± 1.1, and -6.0 ± 1.0 °C for Exp. 1, 2, and 3, 

respectively. 
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 Initial BW was not influenced by MR for Exp. 1 and 2 (Table 1).  Low MR cows 

had greater initial BW (P = 0.04) in Exp. 3, compared with MMR and HMR cows.  

Maintenance energy requirements tended to influence final BW in Exp. 1 (P = 0.06) and 

2 (P = 0.09); MMR cows had greater final BW compared with LMR and HMR in both 

experiments.  In Exp. 3 LMR, cows had greater (P = 0.05) final BW compared with 

MMR and HMR cows, however the percentage change from initial to final BW was not 

influenced by MR.  Initial BCS was not influenced by MR for Exp. 1, 2, and 3 (P ≥ 0.10) 

(Table 1).  Final BCS was not influenced by MR in Exp. 1 and 2.  In Exp. 3, HMR had 

less BCS compared with LMR and MMR cows (P ≤ 0.01).  Average MR for all cows 

was 80.7 ± 4.8, 94.4 ± 8.0, and 95.5 ± 7.1 Kcal�kgBW-0.75
�d-1 for Exp. 1, 2, and 3, 

respectively (Table 2).  The differences between the least efficient and most efficient 

cows were 33, 32, and 33% for Exp. 1, 2, and 3, respectively (Figure 1, Figure 2, and 

Figure 3).  Within the 3 experiments the daily amount of energy required to maintain a 

constant BW differed for LMR, MMR, and HMR groups (P ≤ 0.001).   

 Maintenance energy requirement of cows did not influence birth or 205 d adjusted 

weaning weight of calves in Exp. 1 and 2 (P ≥ 0.23; Table 3).  Birth weight of calves in 

Exp. 2 was greater (P < 0.001) than birth weight of calves in Exp. 1.  There was a sex 

effect (P = 0.001) for 205 d adjusted weaning weights with steers having a greater 

adjusted weaning weight.  Average daily gain of calves from birth to weaning was not 

influenced by MR in Exp. 1 and 2 (P = 0.37).  Average daily gain from birth to weaning 

was similar for Exp. 1 and 2 (P = 0.32). 
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Experiment 1 

 Plasma concentrations of T3 during MR were not effected by MR x day x sample 

(P = 0.36), MR x day (P = 0.94), or MR x sample (P = 0.67).  During early lactation 

plasma concentrations of T3 were not influenced by MR x day x sample (P = 0.98), MR x 

day (P = 0.88), or MR x sample (P = 0.82).   Concentrations of T3 in plasma were not 

influenced by MR when cows consumed actual MR (P ≤ 0.62) or ad libitum prairie grass 

during early lactation (P ≤ 0.94; Table 4). 

 Neither MR x day x sample (P = 0.84), MR x day (P = 0.38), nor MR x sample (P 

= 0.62) influenced plasma concentrations of T4 during MR.  During early lactation MR x 

day x sample (P = 0.85) and MR x day (P = 0.99) did not effect concentrations of T4 in 

plasma.  Plasma concentrations of T4 were not influenced (P = 0.58) by MR when cows 

consumed actual MR (Table 4).  During early lactation when cows consumed ad libitum 

roughage, there was a MR x sample effect on plasma T4 (Figure 4).  After consumption of 

ad libitum roughage (1 h postprandial), LMR cows had greater concentrations of plasma 

T4 compared with HMR cows (P = 0.05).  Concentrations of T4 in plasma were not 

influenced by MR at 6 h postprandial (P ≥ 0.62). 

 Plasma concentrations of T3 were correlated with plasma concentrations of T4 

during the MR period and early lactation for Exp. 1 (r = 0.49, P < 0.001; r = .47, P < 

0.001, respectively) and 2 (r = 0.41, P < 0.001; r = 0.22, P = 0.03, respectively).  

Concentrations of T4 were correlated (r = 0.45, P = 0.02) with MR in Exp. 1 when cows 

consumed MR, but not during early lactation (r = 0.30, P = 0.12). 

Experiment 2 
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 Concentrations of T3 in plasma were not influenced by MR x day x sample (P = 

0.42) or MR x sample (P = 0.51) during MR.  When cows had ad libitum roughage, MR 

x day x sample (P = 0.13), MR x sample (P = 0.87), and MR x day (P = 0.62) did not 

effect plasma concentrations of T3.  There was a MR x day effect (P = 0.05) on 

concentrations of T3 in plasma when cows consumed MR (Figure 5). Concentrations of 

T3 in plasma were not influenced by MR when ambient temperatures were cooler (-5 °C).  

However when ambient temperatures were warmer ( 15 °C) and cows consumed MR, 

HMR had greater concentrations of T3 compared with LMR and MMR cows (P ≤ 0.05).  

Plasma concentrations of T3 were not influenced (P = 0.27) by MR when cows consumed 

ad libitum roughage during early lactation (Table 5).   

 Neither MR x day x sample (P = 0.49) nor MR x sample affected (P = 0.29) 

plasma concentrations of T4 during MR. Concentrations of T4 in plasma were not 

influenced by MR x day x sample (P = 0.35) or MR x sample (P = 0.96) during early 

lactation.  There was a MR x day effect when cows consumed MR; when ambient 

temperature was cooler (-5 °C), LMR had greater (P = 0.03) concentrations of plasma T4 

compared with MMR and HMR cows (Figure 6).  Concentrations of T4 were not 

influenced by MR when ambient temperature was warmer (15 °C; P = 0.22).  There was 

a treatment x day effect on concentrations of T4 during early lactation when cows had ad 

libitum prairie grass; MMR had greater (P = 0.01) concentrations of T4 compared with 

HMR cows on day 1 and MR did not influence (P ≤ 0.11) concentrations of T4 in plasma 

on day 2 (Figure 7). 

 Concentrations of IGF-I in plasma were not influenced by MR x day x sample (P 

= 0.63), MR x sample (P = 0.78), or MR x day (P = 0.85) when cows consumed MR. 
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Insulin-like growth factor-I concentrations in plasma were not effected by MR when 

cows consumed MR (P = 0.58; Table 5).  Concentrations of IGF-I in plasma were not 

influenced by MR x day x sample when cows had ad libitum prairie grass (P = 0.41).  

When cows had ad libitum roughage during early lactation there was a MR x day effect 

on plasma concentrations of IGF-I; HMR had greater (P = 0.05) plasma concentrations of 

IGF-I compared with LMR cows on day 2 and MR did not influence (P > 0.14) 

concentrations of IGF-I on day 1 (Figure 8).  There was a MR by time after feeding effect 

on IGF-I in plasma when cows had ad libitum roughage; HMR had greater (P = 0.04) 

concentrations of IGF-I compared with LMR cows 1 h postprandial but MR did not 

influence (P > 0.18) IGF-I concentrations 6 h postprandial (Figure 9).  

In Exp. 2, concentrations of T4 were correlated with MR when cows consumed 

MR and when cows had ad libitum roughage (r = - 0.47, P = 0.02; r = - 0.45, P = 0.03, 

respectively).  Concentrations of IGF-I were positively correlated with maintenance 

energy requirements (r = 0.41, P = 0.04) when cows consumed MR, but not during early 

lactation (r = 0.19, P = 0.39). 

Ruminal temperatures (RuT) associated with water consumption (< 37.72 °C, < 1 

SD of the mean) were removed before data were analyzed.  There was a MR x day effect 

(P = 0.05) for RuT when cows consumed MR, however this was a difference in 

magnitude of the response not a difference in direction of response (Figure 10).  

Maintenance energy requirement did not influence (P = 0.81) RuT of cows during 

consumption of ad libitum roughage for four consecutive days in late gestation (Figure 

11).  Daily average ambient temperatures ranged from 4 to 10 °C during collection of 
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RuT when cows consumed MR in January and  -6 to 7 °C during collection of RuT when 

cows had ad libitum roughage during January. 

Experiment 3 

 Walking activity evaluated during 24 hr period when cows consumed MR was not 

influenced by maintenance energy requirements of cows (P = 0.66; Figure 12). 

 

DISCUSSION 

 Maintenance requirements were 80.7 ± 4.8, 94.4 ± 8.0, and 95.5 ± 7.1 Kcal 

NEm�kgBW-0.75
�d-1 for Exp. 1, 2, and 3, respectively.  In previous experiments conducted 

in our laboratory using the same methods, average MR ranged between 89.2 (Prado-

Cooper, 2009) to 93.0 (Bailey, 2009) Kcal NEm�kgBW-0.75
�d-1.  Other estimated MR for 

mature, non-lactating, non-gestating Angus cows range from 91.4 to 156.7 Kcal 

ME�kgBW-0.75
�d-1 (Ferrell and Jenkins, 1985; Solis et al., 1988; DiCostanzo et al., 1990; 

Laurenz et al., 1991).  In the current experiments, and other studies conducted in our 

laboratory, MR was calculated using NEm of the feed.  When retained energy and 

physical activity of an animal is equal to zero (maintenance) then heat production is equal 

to metabolizable energy. Net energy requirement for maintenance is equal to heat 

production of a cow with zero feed intake (NRC, 1996).  Differences in estimated MR 

between studies are influenced by environmental conditions and methods used to 

determine MR.  Maintenance energy requirements are greater for cattle when ambient 

temperature is below the lower critical temperature (Young, 1981; Christopherson and 

Young, 1986; Robinson et al., 1986).  Productivity decreases due to decreased feed intake 
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and increased MR when ambient temperature is greater than the upper critical 

temperature (NRC, 1996).   

 Average maximum ambient temperature during MR was 5 °C greater in Exp. 1 

compared with Exp. 2 and 2.9 °C greater compared with Exp. 3.  Greater ambient 

temperature and less required heat production could be related to less energy required for 

maintenance in Exp. 1 compared with Exp. 2 and 3.  The differences in NEm between the 

least efficient and most efficient cows were 33, 32, and 35% for Exp. 1, 2, and 3, 

respectively.  In previous studies at our laboratory, with a similar experimental design, 

differences between the least efficient and most efficient cows ranged between 24 and 

29% (Prado-Cooper, 2009; Bailey, 2009).  Other studies found that ME for maintenance 

varied 27% in Angus cows (DiCostanza et al., 1990) and 23% in Hereford steers.  

Differences in MR of cows may change due to season and physiological state. Seasonal 

differences have been observed in MR for Simmental and Angus cows; cows had greater 

requirements during summer compared with the winter (Laurenz et al., 1991).  Neville 

and McCullough (1969) found a 30% increase in MR of lactating Hereford cows 

compared with non-lactating cows.  Maintenance energy requirement is a moderately 

heritable trait (h2 = 0.45 – 0.52; Benyshek and Marlowe, 1973; Carstens et al., 1989; 

Hotovy et al., 1991).  This supports the idea that MR differs between cows, and 

producers could potentially select and breed to increase efficiency within a herd.  

Differences in MR among cows are apparent but may change over the duration of a year 

due to seasonal changes or physiological change.            

 Final body weight in Exp. 1 and 2 tended to be influenced by MR as MMR had 

greater BW compared with LMR and HMR cows.  The differences in final BW of cows 
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may be associated with greater BW of the cows at the initiation of the experiment.  The 

percentage change in BW of cows in Exp. 3 was similar for all treatments.  Body 

condition score at the end of the MR period was not influenced by MR in Expt. 1 and 2.  

However in Expt. 3, LMR and MMR had greater BCS compared with HMR cows.  This 

may indicate that cows with greater MR have greater lean tissue mass.  When cows have 

similar body fat, those with greater lean mass have higher maintenance requirements with 

approximately 89% of MR being used to maintain lean tissue (DiCostanza et al., 1990).  

Cows with greater fat tissue had lower MR (Klostermann et al., 1968; Thompson et al., 

1983).  Cows with greater body condition may have lesser MR due to differences in 

tissue turnover rate caused by the percentage of fat in the body (Wagner et al., 1988).  

Sheep with greater body fat had lesser MR compared with sheep with lesser body fat 

(Lambourne and Reardon, 1962).  Similarly, Pullar and Webster (1977) observed that rats 

with greater body fat had lower MR.  Cows with a greater percentage of lean mass may 

use a greater amount of MR for protein maintenance and lesser amounts of energy may 

be available to be stored as fat tissue.  Alternatively, since the percentage change in BCS 

was similar for all treatments in Exp. 3, the differences in BCS could be related to less 

BCS for HMR cows at the initiation of the experiment.   

Residual feed intake (RFI) measures variation in dry matter intake and efficiency.  

Residual feed intake is determined by comparing expected feed intake to actual feed 

intake of an animal at a specific production level.  Production is independent of RFI, 

which suggest that it may indicate variation in basic metabolic processes (Herd and 

Arthur, 2009).  Mitochondrial production of adenosine triphosphate is not influenced by 

RFI, indicating that cellular energy production is similar between feed efficient and 
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inefficient cattle (Kolath et al., 2006).   Residual feed intake is typically used to evaluate 

the feed efficiency of growing animals, however heifers that have negative RFI as 

weanlings continue to have negative RFI when mature (Herd et al., 2003).  Residual feed 

intake may not influence reproductive performance of heifers (Lancaster, 2008).  

However, Shaffer et al. (2011) found that heifers selected for negative RFI had a greater 

age at puberty compared with heifers selected for positive RFI.  Protein turnover, tissue 

metabolism, and stress accounted for approximately 37% of variation in RFI (Herd and 

Arthur, 2009).  Further research should be conducted to determine if cows with low MR 

also have a negative RFI. 

 Calf birth and 205 d adjusted weaning weights were not influenced by MR.  

Previous work in our laboratory also determined that calf birth and 205 d adjusted 

weaning weights were not influenced by MR of cows (Prado-Cooper, 2009; Bailey, 

2009).  This indicates that the most efficient cows produce the same quantity and quality 

of milk as the least efficient cows.  Milk production is the single most important factor 

that influences calf growth and weaning weight (Rollins and Gilbert, 1954; Clutter and 

Nielsen, 1987) and accounts for approximately sixty percent of the variation in calf 

weaning weight (Neville, 1962; Rutledge et al., 1971).  Maintenance requirement is 

related to the potential for milk production of cows, as breeds with greater milk 

production have greater MR during lactation compared with breeds with lesser milk 

production (Blaxter and Wainman, 1966; Ferrell and Jenkins, 1984; Montano-Bermudez 

et al., 1990).  Calf growth is related to milk production of dams, and current evidence 

indicates that cows can be selected for feed efficiency without sacrificing calf growth.    
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 Maintenance energy requirements influenced plasma concentrations of T4  in 

cows.  Concentrations of T4 were greater in LMR compared with HMR cows during early 

lactation when cows had access to ad libitum forage (1 h postprandial) in Exp. 1.  In Exp. 

2 plasma concentrations of T4 were greater in LMR compared with HMR cows when 

cows were exposed to cool (-5 °C) ambient temperatures and consumed MR.  However 

when ambient temperatures were warmer (15 °C) concentrations of T4 were similar 

among MR groups.  Concentrations of T4 in plasma are positively associated with 

nutrient intake of cows (Richards et al., 1995; Ciccioli et al., 2003) and sheep (Dukes and 

Swenson, 1970; Abecia et al., 2001).  In the present experiment, cows with greater feed 

intake had less plasma concentrations of T4.  In the current experiments all cows were fed 

to maintain BW, whereas in the studies of Richards et al. (1995) and Ciccioli et al. (2003) 

cows on different treatments received large differences in feed intake.  Thyroxine has a 

major role in the metabolism of carbohydrates, lipids, and proteins in tissues such as 

liver, muscle, and adipose tissue.  Increased concentrations of T4 are associated with 

increase gut motility and rumen outflow leading to increased feed intake (Ngongoni et 

al., 1987).  Ambient temperatures are negatively related to plasma concentrations of T4.  

Similar to results of this study an increase in ambient temperature was associated with 

decreased plasma concentrations of T4 in cows (Yousef et al., 1967; Magdub et al., 1982; 

Pratt and Wettemann, 1986).    

 Concentrations of T3 in plasma were influenced by MR at only one sampling day.   

Concentrations of T3 were greater in HMR compared with LMR and MMR cows when 

ambient temperatures were warmer in Exp. 2 and cows received maintenance diets.  

Similar to results in the present study, Pratt and Wettemann (1986) and Magdub et al. 
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(1982) found that ambient temperatures influence plasma concentrations of T3 in cattle.  

Residual feed intake, a predictor of feed efficiency, was not related to concentrations of 

free T3 in plasma of heifers (Kelly et al., 2010).  Pethes et al. (1985) demonstrated that 

cows fed maintenance had decreased plasma concentration of T3 compared with cows 

with ad libitum diets.  Minimal concentrations of T3 in cows fed maintenance has been 

attributed to decreased energy requirements by decreasing the catabolism of protein 

(Carter et al., 1975).  Administration of T3 to sheep (DiPierro et al., 1996) and rats 

(Ojamaa et al., 1993) increased contractions of smooth muscle in the heart without 

increasing oxygen consumption, indicating that increased concentrations of T3 in plasma 

may improve energy efficiency of smooth muscle.  Thyroid hormones have roles in 

metabolism and temperature homeostasis, however, the relationship of thyroid hormones 

with energy efficiency is not established. 

 Concentrations of T3 and T4 were positively correlated when cows consumed MR 

or had ad libitum roughage in Exp. 1 and 2. The thyroid gland in animals with normal 

thyroid production only produces approximately 20% of T3 in plasma, which indicates 

that deiodination of T4 provides the majority of T3 (Laurberg, 1984).  Thyroxine and T3 

are positively correlated due to T4 conversion to T3.  Thyroxine and T3 are positively 

correlated in humans (Laurberg, 1984; Varl and Pavlin, 1990) and rats (Frumess and 

Larsen, 1974).   

In Exp. 1 T4 concentrations were positively correlated with MR when cows were 

fed MR.  However, T4 and MR were negatively correlated in Exp. 2.  Concentrations of 

T4 were not correlated with MR when cows consumed ad libitum roughage.  Thyroxine 

concentrations are positively correlated with energy intake in heifers (Balzer and 
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McCartor, 1966).  Humans with greater caloric intake have greater concentrations of 

thyroxine (Reinehr, 2011).  Plasma concentrations of T4 are negatively associated with 

ambient temperature (Yousef et al., 1967; Magdub et al., 1982; Pratt and Wettemann, 

1986).  In Exp. 2, ambient temperatures were cooler compared with Exp. 1.  Plasma 

concentrations of T4 may have been negatively correlated with MR due to increased 

concentrations of T4 in LMR cows to maintain body temperature.  Similar to the present 

experiment, concentrations of T4 were not influenced by MR of mice that were fed ad 

libitum (Kgwatalala et al., 2004).  Plasma concentrations of IGF-I were positively 

correlated with MR when cows consumed actual MR.  Concentrations of IGF-I in plasma 

are positively correlated with nutrient intake (Donaghy and Baxter, 1996).  Plasma 

concentrations of IGF-I are regulated by nutrition; energy deficient humans have lesser 

concentrations of IGF-I due to the down regulation of growth hormone receptors in the 

liver (Thissen et al., 1994).  

 Thyroxine is converted to T3 by iodothyronine deiodinases.  Triiodothyronine is 

the active thyroid hormone and binds to nuclear receptors to initiate physiological 

functions (Oppenheimer et al., 1973; Jaffe and Means, 1977).  Messenger RNA for the 

iodothyronine deiodinase D2 differs between fast and slow twitch murine muscle and 

increases during hypothyroidism (Marsili et al., 2010).  Mammals contain two forms of 

thyroid hormone receptors, α and β, (Sap et al., 1986; Weinberger et al., 1986).  Each 

receptor performs specific functions but some crossover does occur in mice deficient in 

thyroid hormone receptors (Ercan-Fang et al., 1996; Forrest et al., 1996).  Brown adipose 

tissue is important in the regulation of body temperature in mammals (Seydoux et al., 

1982; Wellman et al., 1986; Ootsuka et al., 2009), through activation of uncoupling 
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protein (Carvalho et al., 1991), which is ultimately activated by the binding to thyroid 

receptor β (Ribeiro et al., 2010).  Mice that are deficient for thyroid hormone receptor α 

must consume a greater amount of feed to maintain body temperature when ambient 

temperature is less than thermoneutral zone (Pelletier et al., 2008).  Thyroid receptor 

specific ligands allow for the study of mechanisms of thyroid hormone within the body 

(Ribeiro and Bianco, 2011).  Study of molecules that only bind to one thyroid receptor 

could enhance understanding of the effects of thyroxine and triiodothyronine on 

metabolism and improvement in energy efficiency of cows. 

 Concentrations of IGF-I were influenced by MR x day and MR x time after eating 

when cows had ad libitum roughage during early lactation.  High maintenance 

requirement cows had greater concentrations of IGF-I on day 2 of sampling and 1 h 

postprandial compared with LMR cows.  The potential for greater feed intake of cows 

with greater MR is similar to other studies in which concentrations of IGF-I in plasma 

were positively related to nutrient intake in cows (Ciccioli et al., 2003; Lents et al., 2005) 

and heifers (Houseknecht et al., 1988; Armstrong et al., 1993; Yelich et al., 1996).  

Concentrations of IGF-I were positively associated with intake when animals were fed 

large differences in energy in other studies, but in the present study animals with different 

MR had ad libitum prairie grass.  Angus cattle with greater serum concentrations of IGF-I 

had a greater feed conversion ratio compared with cattle with lesser concentrations of 

IGF-I (Bishop et al., 1989).  The relationship between IGF-I and RFI in cattle is not 

clearly established, and has been reported to be positively (Moore et al., 2005) or 

negatively (Lancaster et al., 2008b) correlated.  Differing results between experiments 
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indicate that additional research should be conducted to determine the relationship 

between IGF-I and feed efficiency.   

 There was a MR x day effect on RuT when cows consumed MR.  Ruminal 

temperature differed over days within treatment, however there was no effect of MR on 

RuT within day.  This demonstrates that MR may be related to the ability of cows to 

retain heat formed by fermentation, as LMR cows consumed less feed compared with 

MMR and HMR.  Rectal temperatures are positively correlated with RuT (Prendiville et 

al., 2002; Rose-Dye et al., 2010).  In contrast with the present results, Derno et al. (2005) 

found that rectal temperatures were positively associated with MR when beef steers were 

fed roughage.  Greater heat loss was positively associated with increased feed intake and 

MR in mature mice selected for high or low heat loss (Nielsen et al., 1997).  Heat 

production is positively correlated with residual feed intake and cattle selected for 

positive residual feed intake have greater heat production compared with cattle selected 

for negative residual feed intake (Richardson et al., 2001; Basarab et al., 2003). 

 Walking activity was measured to determine if cattle that required more energy to 

maintain BW had greater activity compared with cattle that required less energy.  Energy 

requirement was not related to walking activity of cows.  In contrast, Voisinet et al. 

(1997) found that physical activity was positively correlated with ad libitum feed intake 

in cattle.  Tulloh (1960) observed that in a feedlot, cattle with less physical activity had 

increased live weight and increased ADG.  Physical activity accounted for approximately 

36% of the variation in feed intake in mice selected for high or low heat loss (Mousel et 

al., 2001).  Body condition is negatively correlated with the postpartum anestrus interval 

in cows and when body condition is less than 4 the postpartum interval to estrus is greater 
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compared with cows with greater body condition (Richards et al., 1986; Bishop et al., 

1994; Wettemann et al., 2003).  In contrast, differing amounts of physical activity did not 

influence the postpartum interval of cows consuming a constant ration, indicating that 

physical activity did not require a major increase in energy (Bellows et al., 1994). 

 

SUMMARY 

 The difference in Kcal NEm�kgBW-0.75
�d-1 between the most efficient and least 

efficient cow was 33, 32, and 35% for Exp. 1, 2, and 3, respectively.  With a measurable 

difference between efficient and inefficient cows, and a moderate heritability for MR, 

selection for more efficient cows may potentially increase profitability of beef 

production.  Greater MR of cows may be related to increased body protein, as protein 

tissue has a greater MR compared with fat tissue (Old and Garret, 1985).  The amount of 

energy required for maintenance did not influence growth of calves.  Energy 

requirements to maintain BW were not related to walking activity.  Ambient temperature 

influenced the effect of MR on concentrations of T3 and T4 in plasma of beef cows.  

Thyroid hormones and IGF-I may be related to energy efficiency and may have potential 

as biomarkers to identify more efficient cows.  Measurement of free thyroid hormones 

could give insight on the role of thyroid hormones in regulating MR.  Identification of 

cows with lower MR and greater efficiency could improve the profitability of beef 

production.   
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CHAPTER IV 

 

SUMMARY AND CONCLUSIONS 

 

 Improvements in cattle efficiency could result in greater profitability of beef 

production. Maintenance energy requirement (MR) of cows accounts for approximately 

50% of the total energy required for beef production from birth to slaughter (Ferrell and 

Jenkins, 1984).  Small improvements in energy efficiency could markedly increase 

profits since feed costs are the greatest cost of beef production.  Maintenance energy 

requirements are moderately heritable (Benyshek and Marlowe, 1973; Carstens et al., 

1989; Hotovy et al., 1991).  Maintenance requirements varied 32 % between the least 

efficient cow and most efficient cow in our research and did not effect calf growth.  This 

finding indicates that cattle can be selected for efficiency and production can be 

improved through selective breeding without negatively influencing output.  Cows with 

lower MR, that raise normal weight calves, will increase profitability of beef production.   

Thyroid hormones are regulators of metabolism and may have a role in energetic 

efficiency.  Plasma concentrations of thyroxine and triiodothyronine are influenced by 

ambient temperature (Yousef et al., 1967; Pratt and Wettemann, 1986) as well as by feed 

intake (Richards et al., 1995; Ciccioli et al., 2003; Lents et al., 2005).  The influence of 

ambient temperature on plasma concentrations of thyroid hormone makes it difficult to 

determine the effect MR may have on plasma concentrations of thyroid hormones in 

cows. 
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 Increased physical activity may be positively related to feed intake in feedlot 

cattle (Voisinet et al., 1997).  Feeder cattle with decreased physical activity have 

increased live weight and ADG compared with active cattle (Tulloh, 1960).  If cows 

utilize a greater amount of time walking this could increase the amount of energy needed 

to maintain BW.  Our study found that physical activity was not related to the amount of 

energy needed to maintain BW.  The lack of effect of walking activity on required energy 

may be related to the fact that physical activity accounted for approximately 10 % of the 

energy needed to maintain BW in dairy cows (Dairy NRC, 2001).  

 Body temperature of cows can be influenced by factors such as ambient 

temperature (Arrillaga et al., 1952), parturition (Wrenn et al., 1958; Aoki et al., 2005), 

estrus (Wrenn et al., 1958; Prado-Cooper et al., 2011), or sickness (Rose-Dye et al., 

2011).  Maintenance energy requirement of Hereford steers was associated with rectal 

temperature (Derno et al., 2005).  However, our study found that RuT was not influenced 

by MR.  This indicates that MR may not be related to the ability of a cow to dissipate 

heat produced during ruminal fermentation and cows that consume greater amounts of 

feed dissipate heat faster than those that consume lesser amounts of feed. 

 Our results indicate that variation in MR of beef cows, without altered production, 

makes it possible to select beef cows that are energetically more efficient.  Development 

of methods to identify more efficient cows will increase the profitability of beef 

production. 
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Table 1. Least squares mean BW (kg) and BCS of cows with low (LMR), moderate 
(MMR), or high (HMR) maintenance energy requirements (MR) 

 MR1   
Item LMR MMR HMR SEM P - value 
Exp. 1      

    Cows, no. 8 10 9   
    BW Initial2 579 605 582 6 0.15 
    BW Final3 541 572 540 6 0.06 
    BCS Initial 4.8 5.0 4.8 0.1 0.57 
    BCS Final 4.9 4.8 5.0 0.1 0.45 
      

Exp. 2      

    Cows, no. 10 6 9   
    BW Initial4 549 581 551 7 0.18 
    BW Final5 556 595 556 7 0.09 
    BCS Initial 4.5 4.7 4.3 0.1 0.14 
    BCS Final 4.6 4.6 4.6 0.1 0.99 
      

Exp. 3      

    Cows, no. 9 7 6   
    BW Initial6 567a 517b 527b 9 0.04 
    BW Final7 571a 533b 522b 7 0.03 
    BCS Initial 4.4 4.4 4.1 0.1 0.10 
    BCS Final 4.8a 4.7a 4.4b 0.1 0.01 
1Cows were classified based on MR as low (> 0.5 SD less than mean, LMR), moderate (± 0.5 SD 
of the mean, MMR) and high (> 0.5 SD greater than mean, HMR).  
2Mean BW and BCS of cows on first day (Oct. 27, 2008) of feeding. 
3Mean BW and BCS of cows on last day (Jan. 9, 2009) of feeding MR. 
4Mean BW and BCS of cows on first day (Oct. 27, 2009) of feeding. 
5Mean BW and BCS of cows on last day (Jan. 25, 2010) of feeding MR. 
6Mean BW and BCS of cows on first day (Oct. 22, 2010) of feeding. 
7Mean BW and BCS of cows on last day (Jan. 20, 2011) of feeding MR. 
a,b Means within a row without a common superscript differ (P < 0.05). 
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Table 2. Least squares mean maintenance energy requirements (MR) of non lactating, 
pregnant beef cows with low (LMR), medium (MMR), or high (HMR) MR in Exp. 1 
(21d), Exp. 2 (31d), and Exp. 3 (36d) during the period of constant BW 

 MR1  
Item LMR MMR HMR SEM 
Exp. 1     
Cows, no. 8 10 9  
MR 75.95a 79.64b 86.24c 0.48 
     
Exp. 2     
Cows, no. 10 6 9  
MR 86.98a 92.74b 103.70c 0.60 
     
Exp. 3     
Cows, no. 9 7 6  
MR 89.24a 95.75b 104.59c 0.73 
1Maintenance energy requirements (MR, Kcal NEm�kgBW-0.75

�d-1).  Cows were classified based 
on MR as low (> 0.5 SD less than mean, LMR), moderate (± 0.5 SD of the mean, MMR) and 
high (> 0.5 SD greater than mean, HMR).  
a,b,c Means within a row without a common superscript differ (P < 0.001). 

 

 

 

 

 

 

 

 



 

 

Figure 1.  Maintenance energy requirements (MR, 
period of body weight maintenance in Exp. 1.  Each bar represents the MR of each cow that 
achieved maintenance. Cows were classified based on MR as
LMR), moderate (± 0.5 SD of the mean, MMR) and high (> 0.5 SD greater than mean, HMR). 
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ntenance energy requirements (MR, Kcal NEm�kgBW-0.75
�d-1) of cows during the 

period of body weight maintenance in Exp. 1.  Each bar represents the MR of each cow that 
achieved maintenance. Cows were classified based on MR as low (> 0.5 SD less than mean, 

(± 0.5 SD of the mean, MMR) and high (> 0.5 SD greater than mean, HMR). 

Cows (n = 27) 

Mean = 80.7

4.8

LMR

MMR

 

) of cows during the 
period of body weight maintenance in Exp. 1.  Each bar represents the MR of each cow that 

(> 0.5 SD less than mean, 
(± 0.5 SD of the mean, MMR) and high (> 0.5 SD greater than mean, HMR).  

HMR



 

 

Figure 2.  Maintenance energy requirements (MR, 
period of body weight maintenance in Exp. 2.  Each bar represents the MR of each cow that 
achieved maintenance.  Cows were classified based on MR as
LMR), moderate (± 0.5 SD of the mean, MMR) and high (> 0
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Figure 2.  Maintenance energy requirements (MR, Kcal NEm�kgBW-0.75
�d-1) of cows during the 

period of body weight maintenance in Exp. 2.  Each bar represents the MR of each cow that 
Cows were classified based on MR as low (> 0.5 SD less than mean, 

(± 0.5 SD of the mean, MMR) and high (> 0.5 SD greater than mean, HMR). 

Cows (n = 25)

Mean = 94.4

SD = 8.0

LMR

MMR

HMR

 

) of cows during the 
period of body weight maintenance in Exp. 2.  Each bar represents the MR of each cow that 

(> 0.5 SD less than mean, 
.5 SD greater than mean, HMR).  

HMR



 

 

Figure 3.  Maintenance energy requirements (MR, 
period of body weight maintenance in Exp
achieved maintenance. Cows were classified based on MR as
LMR), moderate (± 0.5 SD of the mean, MMR) and high (> 0.5 SD greater than mean, HMR). 
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Figure 3.  Maintenance energy requirements (MR, Kcal NEm�kgBW-0.75
�d-1) of cows during the 

period of body weight maintenance in Exp 3.  Each bar represents the MR of each cow that 
achieved maintenance. Cows were classified based on MR as low (> 0.5 SD less than mean, 

(± 0.5 SD of the mean, MMR) and high (> 0.5 SD greater than mean, HMR). 

Cows (n = 22)

Mean = 95.5

SD = 7.1

LMR

MMR

 

) of cows during the 
3.  Each bar represents the MR of each cow that 

(> 0.5 SD less than mean, 
(± 0.5 SD of the mean, MMR) and high (> 0.5 SD greater than mean, HMR).  

HMR



 

45 

  

Table 3. Body weight of calves born to cows with low (LMR), moderate (MMR), or 
high (HMR) maintenance energy requirements (MR) 

 MR1   
Item LMR MMR HMR SEM P - value 
Exp. 1      
    Calves, no. 8 10 9   
    Birth weight, kg 38.2 38.3 38.8 0.8 0.79 
      
Exp. 2      
    Calves, no.2 10 4 8   
    Birth weight, kg 44.7 48.6 45.4 0.8 0.23 
      
Exp. 1 and 2      
    205 d Adjusted BW, kg 229 229 235 3 0.53 
    ADG, kg3 0.92 0.92 0.96 0.01 0.37 
1Calves were classified based on MR of cows as low (> 0.5 SD less than mean, LMR), moderate 
(± 0.5 SD of the mean, MMR) and high (> 0.5 SD greater than mean, HMR). 
2Two cows died shortly after calving and calves were sold.  
3Average daily gain from birth to weaning. 
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Table 4. Concentrations of thyroxine and triiodothyronine in plasma of cows with low 
(LMR), moderate (MMR), or high (HMR) maintenance energy requirements (MR) fed 
MR or with ad libitum roughage in Exp. 1 
 MR1   
Item LMR MMR HMR SEM P - value 
MR period2      
    Cows, no. 8 10 9   
    T4, ng/mL 38.3 35.7 37.1 3.5 0.58 
    T3, ng/mL   0.58 0.57 0.60 0.02 0.62 
      
Early lactation3      
    Cows, no. 8 10 9   
    T3, ng/mL   0.72 0.72 0.71 0.03 0.94 
1Cows were classified based on MR as low (> 0.5 SD less than mean, LMR), moderate (± 0.5 SD 
of the mean, MMR) and high (> 0.5 SD greater than mean, HMR).  
2Blood was sampled twice a day on two consecutive days when cows were fed MR. 
3Blood was sampled twice a day on two consecutive days when cows had ad libitum roughage 65 
± 1 d after calving. 
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Figure 4. Effect of MR x time after consumption of diet on concentrations of thyroxine (T4) in 
plasma of cows with ad libitum roughage during early lactation (65 ± 1 d) in Exp. 1.  Samples 
were taken at 1 and 6 h postprandial on 2 days.   
a,b Means within time without a common superscript differ (P < 0.05).  
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Figure 5. Effect of MR x day on concentrations of triiodothyronine (T3) in plasma of cows fed 
MR (Exp. 2).  Two samples were collected per cow on a day.  Temperature is the maximum 
ambient temperature on that day.  
a,b Means within day without a common superscript differ (P < 0.05).   
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Table 5. Concentrations of triiodothyronine, and IGF-I in plasma of cows with low 
(LMR), moderate (MMR), or high (HMR) maintenance energy requirements (MR) fed 
MR or with ad libitum roughage in Exp. 2 
 MR1   
Item LMR MMR HMR SEM P - value 
MR Period2      
    Cows, no. 10 6 9   
    IGF-I, ng/mL 101.8 130.8 117.7 21.9 0.58 
      
Early Lactation3      
    Cows, no.4 10 5 8   
    T3, ng/mL 0.58 0.59 0.54      0.04 0.27 
1Cows were classified based on MR as low (> 0.5 SD less than mean, LMR), moderate (± 0.5 SD 
of the mean, MMR) and high (> 0.5 SD greater than mean, HMR).  
2Blood was sampled twice a day on two days two weeks apart when cows were fed MR. 
3Blood was sampled twice a day on two consecutive days when cows had ad libitum roughage 56 
± 2 d after calving. 
4 Two cows died after calving. 
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Figure 6. Effect of MR x day on concentrations of thyroxine (T4) in plasma of cows fed MR (Exp. 
2).  Two samples were collected per cow on a day per cow on a day.  Temperature is the 
maximum ambient temperature on that day.  
a,b Means within day without a common superscript differ (P < 0.05).   
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Figure 7. Effect of MR x day on concentrations of thyroxine (T4) in plasma of cows with ad 
libitum roughage during early lactation (56 ± 2 d) Exp. 2.  Two samples were collected per cow 
on a day per cow on a day.  Temperature is the maximum ambient temperature on that day.  
a,b Means within day without a common superscript differ (P < 0.05).   
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Figure 8. Effect of MR x day on concentrations of insulin-like growth factor-I (IGF-I) in plasma 
of cows with ad libitum roughage during early lactation (56 ± 2 d) in Exp. 2.  Two samples were 
collected per cow on a day per cow on a day.  Temperature is the maximum ambient temperature 
on that day.  
a,b Means within day without a common superscript differ (P < 0.05).   
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Figure 9. Effect of MR x time after consumption of diet on concentrations of insulin-like growth 
factor-I (IGF-I) in plasma of cows with ad libitum roughage during early lactation (56 ± 2 d) in 
Exp. 2.  Samples were taken at 1 and 6 h postprandial on 2 d.   
a,b Means within full/shrunk without a common superscript differ (P < 0.05).  
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Figure 10. Effect of MR x day on ruminal temperature (RuT) of cows fed maintenance energy 
requirements during Exp. 2. MR x day (P = 0.05). 
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Figure 11. Effect of MR x day on ruminal temperature (RuT) of cows with ad libitum prairie hay 
during Exp. 2. MR x day (P = 0.18). 
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Figure 12. Least squares mean walking activity of cows with low (LMR), moderate (MMR), or 
high (HMR) maintenance energy requirements (MR). Cows were classified based on MR as low 
(> 0.5 SD less than mean, LMR), moderate (± 0.5 SD of the mean, MMR) and high (> 0.5 SD 
greater than mean, HMR).  Walking activity represents the movement of cows as measured with a 
pedometer.  
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APPPENDICES 
 

 

Table 7. Least squares mean concentrations of thyroxine (T4) and triiodothyronine (T3) in plasma of cows fed maintenance 
energy requirements or with ad libitum roughage in Exp. 1 

 

 Full Shrunk  P - value  

Item LMR MMR HMR LMR MMR HMR SEM 

MR x sample x 

day 

MR x 

sample 

MR x 

day 

MR 

MR Period3 
           

    Cows, no. 10 6 9 10 6 9      

Day 14            

    T4, ng/mL 49.2 42.8 44.0 47.1 43.0 38.1 3.2 0.49 0.29 0.02 0.11 

    T3, ng/mL  0.66  0.59  0.62  0.61  0.62  0.61 0.03 0.42 0.51 0.05 0.19 

Day 25            

    T4, ng/mL 35.1 39.5 36.0 37.3 36.8 35.2 3.2     

    T3, ng/mL  0.49  0.53  0.55  0.47  0.47  0.58 0.04     

            

Early Lactation6            

    Cows, no. 10 5 8 10 5 8      

Day 17            

    T4, ng/mL 22.4 24.7 19.9 22.9 26.4 19.6 1.7 0.35 0.96 0.04 0.12 

    T3, ng/mL  0.61  0.70  0.58  0.61  0.58  0.54 0.05 0.13 0.87 0.62 0.27 

Day 28            

    T4, ng/mL 22.2 21.5 19.0 21.5 23.5 20.6 1.7     

    T3, ng/mL  0.53  0.48  0.49  0.57  0.60  0.53 0.05     
1Blood was sampled at 1500 h after consumption of MR (MR Period) and at 0700 h after cows were gathered off of native range pasture (Early 
Lactation). 
2Blood was sampled at 0700 h prior to consumption of MR (MR Period) and at 1500 h after cows had been gathered off of native range pasture at 
0700 h (Early Lactation). 
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3Blood was sampled twice a day on two days two weeks apart when cows were fed MR. 
4Blood was sampled on a day when ambient temperature was 2 °C.  
5Blood was sampled on a day when ambient temperature was 13 °C. 
6Blood was sampled twice a day on two consecutive days when cows had ad libitum roughage 65 ± 1 d after calving. 
7Blood was sampled on a day when ambient temperature was 26 °C. 
8Blood was sampled on a day when ambient temperature was 28 °C. 
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Table 8. Least squares mean concentrations of thyroxine (T4), triiodothyronine (T3), and IGF-I in plasma of cows fed 
maintenance energy requirements or with ad libitum roughage in Exp. 2 

 

 Full Shrunk  P - value  

Item LMR MMR HMR LMR 

MM

R HMR SEM 

MR x sample x 

day 

MR x 

sample 

MR x 

day 

MR 

MR Period3 
           

    Cows, no. 10 6 9 10 6 9      

Day 14            

    T4, ng/mL 49.2 42.8 44.0 47.1 43.0 38.1 3.2 0.49 0.29 0.02 0.11 

    T3, ng/mL  0.66  0.59  0.62  0.61  0.62  0.61 0.03 0.42 0.51 0.05 0.19 

    IGF-I, ng/mL 110.1 119.6 128.5 109.9     139.8 117.8 26.0 0.63 0.78 0.85 0.58 

Day 25            

    T4, ng/mL 35.1 39.5 36.0 37.3 36.8   35.2  3.2     

    T3, ng/mL  0.49  0.53  0.55  0.47  0.47   0.58    0.04     

    IGF-I, ng/mL 96.7 127.3 105.0 90.4 136.5 119.3   24.3     

            

Early Lactation6            

    Cows, no. 10 5 8 10 5 8      

Day 17            

    T4, ng/mL 22.4 24.7 19.9 22.9 26.4 19.6 1.7 0.35 0.96 0.04 0.12 

    T3, ng/mL  0.61  0.70  0.58  0.61  0.58  0.54 0.05 0.13 0.87 0.62 0.27 

    IGF-I, ng/mL 50.7 75.9 61.9 45.3 66.6 42.2 16.7 0.41 0.02 0.03 0.24 

Day 28            

    T4, ng/mL 22.2 21.5 19.0 21.5 23.5 20.6 1.7     

    T3, ng/mL  0.53  0.48  0.49  0.57  0.60  0.53 0.05     

    IGF-I, ng/mL 59.3 74.8 101.2 55.0 63.6 59.0 17.4     
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1Blood was sampled at 1500 h after consumption of MR (MR Period) and at 0700 h after cows were gathered off of native range pasture (Early 
Lactation). 
2Blood was sampled at 0700 h prior to consumption of MR (MR Period) and at 1500 h after cows had been gathered off of native range pasture at 
0700 h (Early Lactation). 
3Blood was sampled twice a day on two days two weeks apart when cows were fed MR. 
4Blood was sampled on a day when ambient temperature was -5 °C.  
5Blood was sampled on a day when ambient temperature was 15 °C. 
6Blood was sampled twice a day on two consecutive days when cows had ad libitum roughage 56 ± 2 d after calving. 
7Blood was sampled on a day when ambient temperature was 31 °C. 
8Blood was sampled on a day when ambient temperature was 23 °C. 
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Table 9. Ruminal temperature (RuT) of cows with low (LMR), moderate (MMR), or high 
(HMR) maintenance energy requirements 

 MR1  P - value 
Item LMR MMR HMR SEM MR MR x day 
MR Period2       
Cows, no.3 7 3 8    
RuT °C     0.59 0.05 
    Day 1 37.93 37.80 38.09 0.22   
    Day 2 38.01 37.76 37.95 0.28   

    Day 3 38.10 38.00 38.08 0.29   

    Day 4 38.20 37.86 38.17 0.23   

       

Ad libitum roughage4 
      

Cows, no. 7 3 8    

RuT °C     0.81 0.18 
    Day 1 38.04 37.92 38.00 0.47   
    Day 2 38.05 38.51 37.92 0.47   

    Day 3 38.28 38.45 38.30 0.49   

    Day 4 38.32 38.13 37.97 0.48   
1Cows were classified based on MR as low (> 0.5 SD less than mean, LMR), moderate (± 0.5 SD 
of the mean, MMR) and high (> 0.5 SD greater than mean, HMR).  
2Ruminal temperature was collected for four consecutive days while cows consumed maintenance 
energy requirements. 
3Cows had ≥ 6 readings per day. 
4Ruminal temperature was collected for four consecutive days while cows had ad libitum 
roughage. 
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Simple correlation coefficients (r/P value), among maintenance energy requirements 

(MR), thyroxine (T4), and triiodothyronine (T3) for pregnant, nonlactating beef cows (n = 

27) fed maintenance (MR Period) and for nonpregnant cows (n=27) during early 

lactation in Exp. 1 

MR Period
1
 T3 T4 

MR 0.09 0.45 

 0.61 0.02 

   

T4 0.49  

 < 0.001  

   

Early Lactation
2
   

MR - 0.21 0.30 

 0.29 0.12 

   

T4 0.47  

 < 0.001  
1Blood was sampled twice a day on two consecutive days when cows were fed MR. 
2Hormone samples averaged for each cow (n = 27), when correlated with MR, during MR period 
and early lactation. 
3All hormone samples used for correlation (n = 108). 
4Blood was sampled twice a day on two consecutive days when cows had ad libitum roughage 65 
± 1 d after calving. 
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Correlation coefficients (r/P value), between maintenance energy requirements (MR), 

thyroxine (T4), triiodothyronine (T3), and insulin-like growth factor-I (IGF-I) for pregnant, 

nonlactating beef cows (n = 25) fed maintenance (MR Period) and for nonpregnant 

cows (n = 25) during early lactation in Exp. 2 

MR Period
1
 IGF-I T3 T4 

MR
2 

0.41 0.21 - 0.47 

 0.04 0.31 0.02 

    

T4
3 

 - 0.00 0.41  

 0.98  < 0.001  

    

T3 0.18   

 0.10   

    

Early Lactation
4
    

MR 0.19 - 0.29 - 0.45 

 0.39 0.18 0.03 

    

T4  - 0.03 0.23  

 0.77 0.03  

    

T3 0.02   

 0.87   
1Blood was sampled twice a day on two days two weeks apart when cows were fed MR. 
2Hormone samples averaged for each cow (n = 25), when correlated with MR, during MR period 
and early lactation. 
3All hormone samples used for correlation (n = 100). 
4Blood was sampled twice a day on two consecutive days when cows had ad libitum roughage 56 
± 2 d after calving. 
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Scope and Method of Study:  Three experiments of spring calving, Angus cows were 

used to determine the effect of maintenance energy requirements (MR) on 
ruminal temperature (RuT), walking activity, and plasma concentrations of IGF-I, 
thyroxine (T4), and triiodothyronine (T3).  Cows (4 – 7 yr: 5 – 7 mo gestation) 
were individually fed a complete diet, calculated to supply MR (Model 1; NRC, 
1996), for 10, 17, and 13 wk for Exp. 1, 2, and 3, respectively.  The diet was 
adjusted weekly, no more often than once every two wk, until constant BW was 
achieved (regression analysis).  Body weight was maintained for 21, 31, and 36 d 
for Exp. 1, 2, and 3, respectively.  Cows were classified based on MR as low (> 
0.5 SD less than mean, LMR), moderate (± 0.5 SD of the mean, MMR) and high 
(> 0.5 SD greater than mean, HMR).    

 
Findings and Conclusions: Average MR was 80.7 (SD = 4.84), 94.4 (SD = 8.00), and 

95.5 (SD = 7.10) Kcal NEm�kg-0.75
�day-1 for Exp. 1, 2, and 3, respectively.  The 

difference in the least efficient and most efficient cow was 33, 32, and 35% for 
Exp. 1, 2, and 3, respectively. When cows consumed ad libitum prairie grass 
(early lactation), MR did influence plasma concentrations of T4; when cows were 
full (1 h postprandial) LMR had greater concentrations of T4 compared with HMR 
(P = 0.05). In Exp. 2 when cows consumed MR and were exposed to cooler 
temperatures (-5 °C), LMR cows had greater plasma T4 (P ≤ 0.03) compared with 
MMR and HMR.  When exposed to warmer temperatures (15 °C), HMR cows 
had greater plasma T3 compared with LMR and MMR (P = 0.05).  During early 
lactation MMR had greater concentrations of T4 compared to HMR cows (P = 
0.05).  When cows had ad libitum roughage during early lactation HMR had 
greater (P = 0.05) plasma concentrations of IGF-I compared with LMR cows on 
day 2 and HMR had greater (P = 0.04) concentrations of IGF-I compared with 
LMR cows 1 h postprandial.  Ruminal temperature and walking activity were not 
influenced by MR. Identification of cows with lower MR and greater efficiency 
could improve the profitability of beef production. 
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