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CHAPTER I 

 

 

INTRODUCTION 

 

In addition to their role as source rocks, black shales have traditionally been 

regarded by geologists as important marker beds in the petroleum industry. Organic-rich 

black shales are important for a wide variety of reasons, including but not limited to, their 

role as hosts for ore deposits and use as subsurface markers (e.g. Murphy et al., 2000; 

Sageman, 2003; Tourtelot and Meier, 1976; Weller, 1930).  

Black shales are often enriched in many trace metals, such as uranium, which can 

be easily measured in outcrops and in well bores using spectral gamma ray spectrometry 

(SGR); (Brumsack, 1980; Vine and Tourtelot, 1970).  Previous studies have shown that 

uranium can often be strongly correlated with total organic carbon (TOC) (e.g. Anderson, 

1989; Leventhal, 1981; Schmoker, 1981a). The historical Schmoker  (1981a) study shows 

this relationship very well.  These observations of the relationship between U and TOC 

have lead workers to propose a mechanism in which scavenging of U by organic 

compounds controls its fixation in sediments (Algeo and Maynard, 2004; Anderson, 

1982; Elbaz-Poulichet et al., 2005; McManus et al., 2005; Zheng et al., 2002b).  

However, there are variations in the strength of this correlation, and the correlation does 

not always exist as shown in Figure 1 (e.g.,Cruse and Lyons, 2004; Elbaz-Poulichet et al., 

2005; Leventhal, 1981).  One potential cause of such variations in the strength of the  
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correlation could be the scavenging of U by phosphate, which can also be present in 

relatively high concentrations in black shales (Doveton and Merriam, 2004).  

Understanding the relationships between U, P, and organic carbon serves to strengthen 

the use of spectral gamma ray results as a proxy for source rock characterization, as well 

as basin wide correlations of black shales.  

Pennsylvanian cyclothemic black shales are often phosphatic and the PO4 can be a 

host for U, and can scavenge it on its own, separate from TOC.  To test the hypothesis 

that presence of phosphate can also control uranium concentrations in black shales in 

different depositional environments, rather than total organic carbon, I have undertaken a 

geochemical study of the Pennsylvanian (Desmoinesian) Excello Shale. The Excello is a 

cyclothemic black shale that is well defined both lithologically and stratigraphically, and 

has a wide geographic distribution, from Indiana in the north to Texas in the south, and 

Colorado in the west  to Indiana in the east (Heckel, 1980). Thus, variations in uranium, 

total organic carbon and phosphorus concentrations with respect to depositional 

environments (i.e. distance to shore) can be examined, and used to create a model for 

uranium fixation in organic-rich shales.  Ultimately, such a model can be used to enhance 

subsurface interpretations and predictions of depositional environment from wireline 

logs.  

 The overall objectives of this study are to determine uranium concentrations and 

their relationship to total organic carbon concentrations and phosphate concentrations and 

speciation in several outcrops of the Excello Shale.  Outcrop stratigraphy and lithology 

will be used to provide a framework within which to interpret geochemical signals. The 

study includes outcrop data from south-eastern Kansas and north-eastern Oklahoma that 
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represent a range of environments from near shore to offshore (Fig. 2).  The methods 

used include determination of total organic carbon concentrations, measurements of 

phosphorus concentration and speciation, and outcrop spectral gamma ray spectroscopy.  

The data is used to determine the relationship of uranium with total organic carbon, and 

phosphate concentrations in the shale, which is interpreted within the context provided by 

outcrop lithology.  A refined conceptual model for uranium fixation in ancient marine 

sediments is developed that can be used to predict shale behavior in the subsurface using 

well log data. 
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CHAPTER II 

 

 

BACKGROUND 

 

Black Shale Formation 

The processes by which organic-rich black shales form have been the subject of a 

long-standing debate, largely centered around the importance of preservation of organic 

matter (e.g. Demaison and Moore, 1980) as compared to enhanced water-column 

productivity (e.g., Pedersen and Calvert, 1990).   The preservation model, as presented by 

Demaison and Moore (1980) and supported by the work of Gelinas (2001), is based on 

the idea that bottom water anoxia beneath a permanent pycnocline leads to the formation 

of organic-rich sediments because organic matter (OM) is not decayed. Key to this model 

is the idea that anaerobic metabolism is slower than aerobic metabolism, and that 

anaerobic bacteria are not as efficient at OM consumption as compared to aerobes 

(Volkov, 1984).  At the other end of the spectrum, enhanced water-column productivity is 

thought to be critical to the formation of black shales (Pedersen and Calvert, 1990).  In 

the productivity model, high concentrations of organic matter are produced in surface 

waters in high concentrations, and subsequently settle below the mixed layer where this 

organic matter under goes aerobic degradation. The process of aerobic degradation is 

catalyzed by oxygen-consuming microbes.   If the input of organic matter outpaces the 

renewal of dissolved oxygen, high concentrations of organic matter can persist in the 
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underlying sediments.   In recent years, many works have shown that these two end-

member models cannot fully explain the formation of black shales and that both 

processes are in some ways intertwined (e.g. Murphy et al., 2000).  Additionally, the role 

of sedimentation rate must also be considered (Sageman, 2003).  Variations in 

sedimentation rate affect the preservation of organic matter in several ways.  First, 

relatively rapid sedimentation rates can help preserve organic matter by burying it below 

the depth to which oxygen penetrates into sediments.  However, very rapid sedimentation 

rates can also serve to dilute the organic matter delivered to the sediments, thus reducing 

the concentrations of preserved OM.   The presence of anoxia—whether it develops in 

response to external forcing or in response to an increased sedimentary organic carbon 

load— also has important implications for the cycling of U and phosphate (Filippelli, 

1997; Ruttenberg, 2004). 

Cyclothems 

 Cyclothems are cyclic successions of shales and limestones thought to have been 

formed by repeated transgression and regression of the Pennsylvanian interior sea in 

response to glacial dynamics (Algeo, 2008; Heckel, 1977; Wenger et al., 1988).  This 

cyclic depositional pattern was first described by Weller (1930), with the term 

―cyclothem‖ first used by Wanless and Shepard (1936).  Heckel (1977) established the 

classic model of a ―Kansas-type‖ Cyclothem, which includes two outside shale members, 

a middle limestone member, a core shale member, and an upper limestone member (Fig. 

3).  These members are interpreted to represent deposition through a full transgressive 

and regressive cycle (Heckel, 1977, 1980; 1986). Locally, in areas proximal to ancient 
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shorelines, variations in this classic model can be observed, due to processes such as the 

formation of deltas or incised valleys (e.g. Feldman, 2005; Klein and Kupperman, 1992).  

 The Excello Shale is the core shale member of the Cherokee group cyclothem 

(James, 1972).  The core shale member often consists of a condensed, phosphatic, 

laminated black shale, described as a thin (0.3 to 2.0 m thick), nearly non sandy, dark 

marine shale, over- and underlain by a bioturbated gray shale (Heckel, 1977). The core 

shales range from abundantly to sparsely fossiliferous, and typically contain a black 

fissile facies that lacks benthic quartz in the lower to middle part (Heckel, 1980).  The 

core shales are considered the most anoxic portion of the cyclothem (Algeo et al., 2004; 

Cruse and Lyons, 2004; Heckel, 1977).  These core shales fit the typical black shale 

depositional model of very slow sedimentation far from detrital influx and from shore in 

relatively deep water (Algeo, 2008).  

 The Excello Shale has a large depositional extent (approximately 264,600 km
2
) 

including much of the midcontinent region and the Illinois basin (Fig. 2;Wenger, 1987).  

The Excello Shale is found as far east as Iowa and Missouri, and as far west as Kansas 

and Oklahoma. This extent is more than 1.5 times larger than other classic core shales, 

such as the Hushpuckney or Stark Shales. These core shales are thought to have been 

deposited by glacially driven transgressive high stands. This high stand was caused by 

melting of a larger portion of the polar ice caps to produce higher water levels leading to 

a larger area flooding during Excello Shale deposition (Heckel, 1986).  The western 

extent of the Excello Shale was limited by relatively fast subsidence in the Arkoma Basin 

and the erosion of the Amarillo uplift to the southwest causing conditions unsuitable for 

preservation. This was due to mixing of the organic rich sediments with those sediments 
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being eroded from the uplift, in western parts of Oklahoma and Texas (Algeo, 2008).  

The southeastern extent is limited by the Ouachitas where elevations were too high for 

deposition to occur even at high stand (Heckel, 1977). 

Modern Geochemical Cycling 

Carbon 

The carbon on the earth’s surface is primarily preserved in sedimentary rocks, 

with nearly 90% being preserved as kerogen, while only 0.1% cycles in active surface 

pools (Hedges, 1995).  These surface pools include dissolved and particulate organic 

carbon in seawater, atmospheric CO2, soil carbonate, land plant biomass, soil humus, 

dissolved organic matter in seawater, and carbon in surface marine sediments. In these 

surface pools the carbon exists as a mixture of poorly recognizable biochemical and 

degraded substances (Hedges, 1995).    

Riverine influx provides the major conduit for the preservation of terrigenous 

organic matter in marine sediments.  Broad differences exist between terrestrial and 

marine organic matter.  For example, according to Hedges and Keil (1997, pg. 195)  

―Terrestrial organic matter, which is generally derived from higher order 

vascular plants, contains high concentrations of recalcitrant, nitrogen-free 

biomacromolecules such as lignin, tannin, suberin, and cutin (de Leeuw and 

Largeau, 1993).  These plants also have distinctive stable carbon isotope 

compositions (Fry and Sherr, 1984) and produce unique lipids (Peltzer and 

Gagosian, 1989)‖  

 

The nitrogen-free biomacromolecules are absent in the lower order marine plants that 

source the marine organic matter (Garcette-Lepecq et al., 2000).  Less than one third of 

the organic matter delivered via river discharge is preserved in marine sediments, 

indicating that this organic matter is rapidly remineralized by growing phytoplankton 
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(Hedges, 1995).  The phytoplankton are subsequently grazed by zooplankton and 

protozoa.  Deltaic deposits account for a large amount of the riverine deposition of 

carbon overall.  Of the organic matter that is transported in by rivers the continental slope 

and shelf contain two to three times more carbon than deltaic deposits. Less than 10% of 

the global productivity of the total amount of organic matter reaches the ocean floor, and 

less than 0.5% is preserved in marine sediments.  Overall only 0.1% is preserved under 

anoxic bottom water conditions, although such deposits appear to be the critical 

precursors to black shale formation (Hedges et al., 1997). Such anoxic environments also 

appear to be critical in the cycles of uranium and phosphorus.   

Uranium 

Uranium is a conservative element in seawater and is present in the +4 valence 

state under oxic conditions.  In modern seawater, U is found as the UO2(CO3) complex, 

which is very stable and unreactive, leading to its long residence time of 3 to 6 × 10
5
 

years (McManus et al., 2005).  In contrast to shales, modern sediments contain only a 

small fraction of the total sedimentary U is found associated with the organic matter in 

the marine environments (Anderson, 1982; Zheng et al., 2002a).  The primary removal 

method of aqueous U in seawater is uptake across the sediment water interface (Barnes 

and Cochran, 1990).  Under anoxic conditions (i.e., Eh values associated with iron 

reductions) U(VI) is reduced to U (IV), which is fixed in sediments (McManus et al., 

2005).  The exact mechanism by which U is fixed in sediments remains unclear.  

Processes such as bacterial-catalyzed reduction (Lovley et al., 1991), adsorption to 

organic matter (Adams and Weaver, 1958), and direct precipitation as uraninite 

(McManus et al., 2005) have all been proposed as critical mechanisms.  Regardless, 
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empirical observations in modern settings (Anderson, 1989; Zheng et al., 2002b) support 

a model where high concentrations of U in ancient marine sediments are interpreted as 

representing more reducing environments (Leventhal, 1981, 1986; Wignall and Maynard, 

1993; Zheng et al., 2002a, b).  

Uranium is also found associated with phosphates; this uranium phosphate 

relationship is established by the work of Barnes and Cochran (1990). This documented 

uranium phosphate relationship shows that in high concentrations phosphate can affect 

the fixation of uranium in some instances, rather than the organic matter in the sediment 

during preservation (Pliler and Adams, 1962).    

Phosphate 

Phosphate in the marine system is derived from two primary sources. These 

sources include new phosphate which enters the system primarily, but not exclusively, 

via transport from the terrestrial realm in association with organic matter, or recycled 

phosphate associated with marine organic matter in the water column.  Terrestrial 

phosphate is ultimately derived from weathering of sediments and transport of detrital 

material by both wind and rivers (Ruttenberg, 2004).  The phosphate is then delivered to 

the sediment by way of settling through the water column, in the form of both inorganic 

and organic phosphorous and organic matter (Ruttenberg, 1992).  The other source of 

phosphate is recycled phosphate derived from both aerobic and anaerobic microbial 

processes which act both at the sediment water interface and throughout the water 

column. During settling, phosphorus can be regenerated to the water column by decay of 

organic matter through microbial respiration (Ingall et al., 1993).   Such phosphorus can 

be returned to the photic zone by upwelling.  The recycled phosphate is ultimately 
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expelled from surface waters by the formation of fecal pellets which subsequently settles 

to the seafloor.  Note that atmospheric transport is a very minor portion of the phosphate 

influx, which deposits particles in the water which subsequently filter down through the 

water column and are deposited in the sediments(Ruttenberg, 2004).   

Phosphorus is also found as a critical component of organic matter.  Thus, organic 

matter that survives transport to the sediment-water interface is also subject to aerobic 

and anaerobic respiration, which results in the buildup of phosphate concentrations in 

pore waters  (Ruttenberg, 2004).  Such concentrations can build to levels high enough to 

cause diffusion of phosphate from pore waters back to bottom waters.  Phosphate that is 

not regenerated by respiration can also be remobilized by sediment transport, and 

resuspention of sediments (Ruttenberg, 1990).  Because of the strong coupling between 

organic matter and phosphorus the carbon: phosphate ratio (C: P ratio) can be use to 

fingerprint organic matter sources.  For example the C:P ratio of marine phytoplankton is 

near 106: 1 (Redfield, 1958). However the C: P ratio for terrestrial organic matter tends 

toward much higher values i.e. 1:800 to 1:2050 (Ingall and Van Cappellen, 1990).     

Sedimentary phosphate is found in a variety of phases, both organic and 

inorganic. Organic phosphate is most commonly found associated with organic matter 

(Ingall et al., 1990).  Inorganic phosphorous is typically separated into different 

reservoirs by chemical techniques.  The typical fractions are: oxide-associated, 

authigenic, and detrital (Latimer et al., 2006; Ruttenberg, 2004).   The oxide-associated 

phosphate occurs with authigenic iron oxides.   The authigenic phosphate occurs as 

authigenic carbonic flourapatite, biogenic apatite (organically derived phosphate), and in 

association with calcium carbonate.  This material forms during digenesis by 
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cyanobacterial mat growth (Filippelli and Ruttenberg, 1997) or released during organic 

matter decomposition (Ingall and Jahnke, 1997). The detrital phosphate is derived from 

the weathering of terrestrial material and delivered to the sediments via aolian or riverine 

transport.   

Spectral Gamma Ray 

Gamma radiation is given off by a wide variety of elements.  Those of importance to 

geology are U, K and Th. Common gamma ray detectors use a scintillation crystal which 

detects ionizing radiation, that is proportional to the relative abundances of each element 

(Ellis, 1987).  Spectral gamma-ray spectrometry (SGR) has the advantage of being a 

relatively quick (~1-2 minutes) analytical method, using a handheld SGR unit, that 

requires no sample preparation, beyond removal of weathered material from the outcrop.  

One disadvantage is the large volume of rock from which gamma rays are measured (21 

to 512 cubic inches, EnviSpec Product website). U and Th concentrations are often 

reported in ppm units, while K is reported in weight % units.  However, such 

concentration units are converted into API values to allow for the comparison of 

concentration measurements from different brands of detector.  API units are based on an 

artificially radioactive concrete block at the University of Houston, Texas, USA, that is 

defined to have a radioactivity of 200 American Petroleum Institute (API) units, which is 

considered to be equivalent to twice the radioactivity of a typical shale. API values are 

calculated as: 

γAPI = 4*Th+ 8*U+16*K   (1) 

where the thorium (Th) and uranium (U) concentrations are in ppm units, and the 

potassium (K) concentrations are in wt. %.  The API units are derived from the study of 
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average gamma ray readings for typical shale (Belknap, 1959). The Belknap study 

quantified and normalized the gamma ray readings based on average spectral readings of 

gray shales.   

 SGR data is used in a variety of applications.  For example, high API readings (> 

150 API) are often associated with organic-rich shale beds that contain high U 

concentrations are known as ―hot shales‖.  Such signals on well logs can be used to 

correlate subsurface marker beds over basin-scale regions (Asquith, 1982; Doveton, 

2004; Hilchie, 1989). Historically, the Th/U  ratio has been used to determine 

depositional environment, including distance to shore given that thorium is sourced only 

from the detrital pool (Adams and Weaver, 1958; Cochran et al., 1986).  These 

depositional interpretations are based on fundamental differences in the geochemical 

cycling of U and Th.  As discussed above, U is fixed in sediments under anoxic 

conditions (Pliler and Adams, 1962).  Under anoxic conditions, U is found as a uranyl 

ion, which is fixed in sediments in association with organic matter and/or phosphate.  On 

the other hand, Th is generally unreactive at the Earth’s surface (Goodell, 1986). 

 Gamma ray measurements have been used in borehole readings since 1939 by 

Well Services Inc. (Hilchie, 1979).  Improvements in gamma ray detectors over time 

have given the opportunity to gather spectral gamma ray measurements (separate 

concentrations of U, K, and Th) (Asquith, 1982).  The widespread usage of SGR in 

borehole logging suites and the demonstrated relationship between the uranium and 

thorium can be used for distance-to-shore calculations. There is a previous study by 

Schmoker (1981a) showing the  use of  SGR readings to calculate total organic carbon of 

the formation.  The Schmoker (1981b) study was conducted on Devonian aged shales 
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throughout the Appalachian Basin. With these historical studies in mind the model I will 

develop will ultimately be used to determine organic carbon in the subsurface based on 

the gamma ray logs, or specifically the uranium portion of the gamma ray logs.  It is 

understood there is variation in the strength of this model and the model may not be 

applicable in all situations, due to facies variations in the shale.  My model is constructed 

using a range of equations that can be applied to further refine the predicted values down 

hole, which will serve to make the model more accurate for application in different 

depositional environments.  One average equation, based on my model, could be 

developed for use in the field, for applications where the data gathered is not detailed 

enough (i.e. total gamma ray rather than SGR) to allow further refinement for application 

of the model.  The use of one equation would make the application process so there is no 

need to calibrate for each bore hole, giving the advantage to the evaluator with less 

investment needed to apply the model.
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CHAPTER III 

 

 

METHODOLOGY 

 

Outcrop Investigations  

 Three outcrops of the Excello Shale were selected Tulsa, Oklahoma, APAC 

Quarry, Catoosa, Oklahoma, and Oswego, Kansas (Fig. 2).  The outcrops were selected 

to provide a transect of near-shore to deep-water deposition.   Also, a fourth outcrop was 

selected to serve as a test site, for the accuracy of the model. This test site is an example 

of the Little Osage Shale, which is stratigraphically younger then the Excello, at the 

Anchor Quarry near Owasso, Oklahoma (Fig. 2).  Prior to SGR analysis and sample 

collection, the outcrops were dugout to a depth of at least 5 to 15 cm to remove the outer 

weathered material, or until the oxidized and/or discolored shales were removed.  

Spectral gamma ray measurements were taken every 10 cm for 1 minute using an 

Exploranium GR 320 enviSPEC  

Sample Collection and Preparation 

 Samples were collected from the same horizons as SGR data was obtained, and 

stored in plastic zip-loc bags until processed.  Samples were first crushed by hand to 1-2 

cm using a ceramic mortar and pestle, and further pulverized using a Spex mill with a 

stainless steel vial set.  The samples were pulverized in five-minute intervals until the 

entire sample would pass through a 2360 micron sieve.  
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Powdered samples were stored in glass jars capped with Teflon-lined lids. 

Carbon Analysis 

 Total and inorganic carbon concentrations were determined by coulometric 

titration using a CM 5014 Coulometer.  Total carbon (Ctot) was determined by 

combustion at 950°C for 15 minutes, while inorganic carbon (Cinorg) concentrations were 

determined via acidification with 2 N perchloric acid.  Total organic carbon (TOC) 

concentrations were determined by difference, and analyses of calcite standards were 

better than 95% accurate.   

Phosphate Analysis 

 Analyses of phosphate concentrations were performed in the laboratory of Dr. 

Jennifer Latimer at Indiana State University.  Phosphorus concentrations in four 

operationally-defined fractions (oxide-associated, detrital, authigenic, and organic) were 

determined using a sequential leach technique, modified from Ruttenberg (1992) by 

Anderson (2000).  After isolation, P concentrations were quantified using the molybdate 

blue technique (Mortlock and Froelich, 1989) on a Shimadzu scanning UV-Visible 

spectrophotometer. This method gives and accuracy of greater than 94% based on 

replicate analyses. 
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CHAPTER IV 

 

 

RESULTS 

All of the results are presented in Tables 1 through 4 located in the Appendix.  

The results are reported by outcrop and arranged by element.  Table 1 contains the results 

from the Tulsa outcrop. Table 2 contains the Oswego outcrop results. Table 3 contains 

the results from the APAC Quarry outcrop.  Table 4 contains the results from the Anchor 

Quarry outcrop.   

The uranium values used in all the plots are only for the authigenic portion of the 

uranium, calculated using the Post Archean Average Shale (PAAS) value of 0.31 

ppm/wt/% and adjusting the concentrations for the calculated authigenic portion (Taylor 

and McClennan, 1985).  The equation to obtain the Uauth values is: 

Uauth = Umeas - (Umeas*0.31)    (2) 

The authigenic portions only are used to exclude any detrital uranium that may have been 

detected by the gamma ray unit. 

Tulsa 

 The Tulsa outcrop is 281 cm thick and contains a lithologic succession of micritic 

limestone, gray shale, limestone, black shale, gray shale, and a second limestone (Fig. 4). 

The black shale is 100 cm thick and is fissile. The outcrop contains abundant phosphate 

nodules, which are predominately more round than oblong and range in size from one to 

three centimeters in diameter. The weathered face of the outcrop has a red brown oxide  
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stain, while the non- weathered surface is black and smells of hydrocarbons.  

Thorium concentrations range from 3.8 ppm to 11.1 ppm, and U concentrations 

range from 3.1 ppm to 22.7 ppm. Potassium concentrations range between 0.06 and 2.2 

wt. %.  Calculated API values range between 83.2 and 717.6., with the highest values 

located in the black shale (Table 1).  

The total extractable phosphorous (Ptot) concentrations are generally low and vary 

with lithology, ranging between 2.61 and 369 μmol/g (Fig. 5).  The organic phosphorous 

(Porg) concentrations are generally low, ranging between 0 to 45.72 µmol/g.  The TOC 

concentrations range from 0.40 to 17.14 wt. %, with the highest value found at 149 cm 

height above base (Fig. 5).   

Oswego 

 The Oswego, KS outcrop contains a succession of gray shale, black shale, gray 

shale which is overlain by limestone.  The black shale is marked by iron staining on the 

face of the outcrop, is fissile, and contains phosphate nodules (Fig. 6). The phosphate 

nodules are more round than oblong and generally range from one to two and a half 

centimeters in diameter.  The measured thickness of the section totals 205 centimeters, 

with the black shale occupying 125 centimeters of the total section. 

 Thorium concentrations range from 9.4 ppm to 16.0 ppm, while the U 

concentrations range from 6.3 ppm to 54.9 ppm (Table 2).   The potassium values range 

from 2.1 to 3.6 wt. %.  The calculated API values range between 149.6 and 512.0, with 

the highest values found in the black shale (Fig. 6). 
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The total extractable phosphorous (Ptot) concentrations are generally low and vary 

with lithology, specifically, the higher organic contents correlate with the higher 

phosphate values (Fig. 7), with values ranging from 1.37 to 672.94 μmol/g. The organic 

phosphorous (Porg) values range between 0.20 and 6.29 μmol/g.  The TOC values range 

from 0 to 25.26 with the highest values occurring at 70 and 97cm above the base (Fig. 7) 

in the black shale.  

APAC Quarry, Catoosa, OK 

 The lithology of the APAC outcrop is a micritic limestone overlain by a thin black 

phosphatic shale, overlain by a second micritic limestone (Fig. 8). The black shale is 65 

cm thick and has no discernable weathering on the face, given that it has been exposed 

for a relatively short period of time from the quarrying activities.  The black shale is 

fissile and contains phosphate nodules throughout; nodules are both round and oblong 

ranging from one to four centimeters in diameter and up to eight centimeters in length. 

Both the upper and lower limestones contain shell fragments as well.  

 Thorium concentrations range from 9.2 ppm to 13.8 ppm, while the U 

concentrations range from 15.6 ppm to 33.9 ppm (Table 3).   The potassium 

concentrations range from 2.4 to 3.3 wt. %.  The Calculated API values were the lowest 

of all three outcrops, ranging between 209.3 and 230.8, with all of the values recorded in 

the black shale as shown in Figure 8.  No readings were taken in the limestone because 

the lower limestone was the base of the quarry, and the upper limestone was part of a 

sheer wall and safety regulations did not allow for access to obtain measurements. 
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The total extractable phosphorous (Ptot) concentrations are generally low, with 

values ranging between 11.74 and 503.44 μmol/g. The organic phosphorous (Porg) values 

range between 1.92 to 3.95 μmol/g.  The TOC values range from 6.31 to 11.91% with the 

highest value occurring at 20 cm above the base (Fig. 9) in black shale.  

Anchor Quarry, Owasso, Oklahoma 

 The lithology of the Anchor Quarry outcrop is a micritic limestone overlain by a 

thin black phosphatic shale, overlain by a second micritic limestone (Fig. 10). The black 

shale is 70 cm thick and has no discernable weathering on the face given, that it has been 

exposed a relatively short period of time from the quarrying activities.  The black shale is 

fissile and contains phosphate nodules throughout; nodules are both round and oblong 

ranging from one to four centimeters in diameter and up to six centimeters in length.  

 Thorium concentrations range from 6.8 ppm to 14.9 ppm, while the U 

concentrations range from 9.92 ppm to 18.07 ppm (Table 4).   The potassium 

concentrations range from 1.5 to 3.3 wt. % (Fig. 10).  The Calculated API values range  

between 130.6 and 245.3, with all of the values recorded in the black shale as shown in 

Table 4.   

The total extractable phosphorous (Ptot) concentrations are generally low, with 

values ranging between 9.59 and 116.78μmol/g. The organic phosphorous (Porg) values 

range between 1.75 to 3.35 μmol/g.  The TOC values range from 5.78 to 12.76% (Fig. 

11) with the highest value occurring at 25 cm above the base (Table 4) in the black shale.  
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CHAPTER V 

 

 

DISCUSSION 

 

 Uranium concentrations are thought to be controlled by organic carbon either 

directly or indirectly, so that spectral gamma ray data may be a good predictor of organic 

carbon values in the subsurface (Schmoker, 1981a).  Uranium is also found associated 

with phosphate so establishing the strength of the U-TOC relationship will also improve 

the strength of the model I developed in the subsurface.  This study includes outcrop data 

from south eastern Kansas, and north eastern Oklahoma that represent a transect from 

near shore to off shore.  For the purposes of this discussion, all of the following plots 

(Fig. 13-23) show only the black shale data (Fig. 2). The gray shale values were excluded 

in the analysis because anoxia is required for the uranium to be fixed with the total 

organic carbon in the rocks (Leventhal, 1981).  The ichnofacies observations (e.g., 

homogeneous bedding) preclude the presence of anoxia during deposition of the gray 

shales. 

Depositional Environment 

Lithologic Interpretation 

 The depositional environment of the Excello shale is considered by most workers 

to be deep-water anoxic marine.   Knight (1985) identified the Excello as a core shale 

from a ―Kansas-type‖ cyclothem, which is definied as a deep-water marine facies in the 
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original depositional model (Heckel, 1977).  Wenger (1987) and Algeo and Maynard 

(2004) also support this depositional interpretation. Knight (1985) also points to the 

thinning of the Excello to the south of the type locality in Oklahoma (specifically in 

Tulsa County—the location of the Tulsa outcrop in this study), as evidence for a 

relatively shallower depositional environment. The existence of the Schell City – Rich 

Hill Anticline in northern Oklahoma at the time of deposition may have caused the 

thinning beds in the Tulsa area (Knight, 1985).  The area around the Kansas-Oklahoma 

boarder is considered to be a topographic low which accounts for thicker deposition in 

Kansas (Knight, 1985). In this study, the depositional environment of the Excello, 

specifically water depth, was interpreted based on lithologic observations at each outcrop, 

supplemented by inferences from geochemical proxies. 

 The Tulsa site contains 100 centimeters of fissile black shale. The shale also 

contains several beds of phosphate nodules no more than 5 cm thick (131 cm, 151 cm, 

162 cm, and 184 cm above the base), with a sharp contact between the black shale and 

underlying Breezy Hill Limestone.  In contrast, the upper contact grades to a gray shale 

which has a gradational contact with the overlying Black Jack Creek Limestone. The 

overlying Black Jack Creek Limestone is 56 centimeters thick, contains few fossils, and 

has a somewhat blocky appearance.  The underlying Breezy Hill Limestone is 55 

centimeters thick and, once again contains few fossils, such as mollusks, fusulinids, and 

echinoderms, and has a weathered gray appearance. A relatively slower rate of regression 

as compared to the transgression is inferred from the presence of the gray shale at the top 

of the black shale. The presence of the gray shale is missing from the lower black shale 

boundary, showing a more rapid transgression.  
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 The Oswego site is interpreted to have been deposited in the deepest water, and 

therefore, is assumed to be the furthest from shore. The shale unit is 125 cm thick, is 

fissile with layers of phosphate nodules no more than 5 cm thick ( 40 cm, 65 cm, 93 cm, 

114 cm and 139 cm above the base), with the shale grading from black to gray in color 

both at the top and bottom contacts. The lower and upper contacts are with the Black Jack 

Creek Limestone above and the Breezy Hill Limestone below, though the full thicknesses 

of the limestones were not exposed.  The Black Jack Creek Limestone was mildly 

fossiliferous and contained Lophophillidium horn coral. This specific horn coral is found 

associated with reef environments, and in this case is predominately replaced with calcite. 

This depositional environment can be interpreted as a reef environment due to the 

presence of the horn coral (Knight, 1985). The gray shales over and under-lying the black 

shale member, are interpreted as strong evidence for deposition further from shore than 

both the Tulsa and APAC Quarry sites. This relatively deeper depositional environment 

allowed the more gradual change from black to gray shale, to limestone. The change in 

water depth is not as dramatic or rapid at this site because the change was not as great 

compared to the water depth.  For example, in 100 m of water, a 1 m decrease in sea-

level is 1%, but is a 10% change in a water depth of 10 m.   

   The APAC site is depositionally the most different of the three sites in this study.  

The black shale unit is only 65 cm thick, is highly siliceous and contains phosphate 

nodules throughout, rather than at a few discrete intervals.  Also, the overlying and 

underlying limestones are much thicker than at the Tulsa or Oswego sites.  The two 

limestones are approximately 22 feet thick above the shale, and 35 feet below the shale 

(Chad Browne, 2009, personal communication).  The upper Black Jack Creek Limestone 
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is micritic and fossiliferous, primarily made up of shell hash, with fractures running 

throughout the unit.  The lower Breezy Hill Limestone is micritic with less fossil material 

and a blockier appearance. It appears that the APAC site is probably a shoal, given the 

sharp contacts and fossil material contained in the limestones, and relatively thin shale 

deposit. Thus it is likely that this site is in the shallowest water and therefore closest to 

shore compared to the Oswego and Tulsa sites.  

Interpretation based on Gamma Ray Data 

The gamma ray log is a part of the most common set of downhole logs obtained 

when drilling wells.  Gamma ray logs are measured in API units, which are calculated 

from the concentrations of uranium, potassium and thorium in the rock.  Of the three 

elements measured, the uranium concentrations have the greatest influence on the 

calculated API values for the samples in this study (Tables 1, 2, and 3).  When the 

concentrations of uranium, potassium, and thorium are measured and reported separately, 

the result is a spectral gamma ray log. Several interpretational applications have been 

developed for data on SGR logs, including distance-to shore-calculations (Cochran et al., 

1986). The distance-to-shore calculations can be performed using the uranium/ thorium 

ratio.  Historically Adams and Weaver (1958) were the first to show the validity of the 

uranium/ thorium ratio as a proxy for distance to shoreline.  More recently, the work of 

Cochran and Carey (1986) have supported the earlier findings by Adams and Weaver 

(1958). The the U/Th ratio generally increases with increasing distance from shore 

(Adams and Weaver, 1958; Cochran et al., 1986).  The U/Th ratios are plotted in Figure 

12, and in relative distance to shore the APAC calculates the closest followed by Tulsa, 

and then Oswego plots relatively furthest from shore.  These relative distances are 
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consistent with the interpretations based on lithologic observations in this case. Since 

TOC and uranium are sequestered in sediments under similar conditions, the relationship 

between TOC and uranium is explored next.  

Total organic carbon and gamma ray  

 The uranium and total organic carbon data can be used as the basis for a 

subsurface predictive model.  The spectral gamma ray data was analyzed to assess the 

correlation between uranium and total organic carbon concentrations. Additionally total 

gamma ray values were analyzed to establish correlation with the total organic carbon 

concentrations.  The total gamma ray values are assessed because in historical fields, only 

total gamma ray logs are available rather than spectral gamma ray logs.  

 Figure 13 shows the correlations between TOC and U for each site.  In these 

rocks, there is generally a good correlation with the exception of the APAC site (R
2 

= 

0.35), with R
2
 values ranging from 0.85 to 0.59.   The Tulsa site and the Oswego site give 

the best examples of a possible model to use in borehole situations; the variation between 

the correlations of these two sites can be accounted for by the difference in distance to 

shore. I would probably use the site with the highest correlative value which is the 

Oswego Site. The APAC site is interpreted as the closest site to shore given the relative 

abundance of Th in the samples and the lower concentrations of U. There is a question as 

to the validity of the APAC data to use for modeling, because of the low R
2
 value (R

2
 = 

0.35) and low sample density.   Compare that value to the Oswego and Tulsa sites which 

have better R
2
 values at 0.85 and 0.59 respectively.  The lower correlative value of R

2
 = 

0.59 at the Tulsa site can be accounted for by its deposition relatively closer to shore than 

the Oswego site.  
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 The previous paragraph shows that there is a relationship between the uranium 

values and the TOC concentrations.  Also the relationships between total gamma ray and 

TOC are examined, because when assessing older areas/fields there most likely is only a 

total gamma ray log rather than a spectral log for the wells.  This will make the model 

applicable with a wide variety of historical datasets.  When the TOC concentrations and 

the gamma ray values are plotted, using only the black shale values (Fig. 14), the R
2
 

values range between 0.84 and 0.28. The low correlation value for the APAC site can be 

accounted for because of its relatively near shore deposition and low data density, 

characterized by low U concentrations. 

Phosphate-Uranium Relationships 

 Phosphate is found associated with organic matter before and during deposition 

(Ingall and Van Cappellen, 1990), therefore one would expect to find a strong correlation 

between the organic phosphate (Porg) and the total organic carbon (TOC) concentrations 

in the black shales.  Uranium has also been known to be association with Porg, so that 

there may also be a relationship between Porg and U.  The relationship between the U and 

the Porg could vary with the concentration of the Porg in rock. 

  The organic phosphate values were compared with the organic carbon 

concentrations, using only the data for the black shales at each site (Fig. 15).  There is a 

poor correlation between Porg and TOC for each site, with correlation coefficients ranging 

between 0.02 and 0.0009. This apparent lack of correlation indicates  a disassociation 

between the organic phosphate and the preserved organic matter in the time since 

deposition, possibly from digenetic processes deposition and or burial.  This 
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disassociation makes it apparent the phosphate has no direct correlation to the organic 

carbon. 

There is also no correlation between Porg and U concentrations (Fig. 16) in the 

black shales, with correlation coefficients that range between 0.46 and 0.0003. APAC, 

which has been interpreted to be deposited in a nearshore environment as compared to 

Tulsa or Oswego, has the highest correlation coefficient at 0.46.  The phosphate in this 

case for APAC may be more closely associated with the uranium because of the sites 

relative distance to shore. The lower values of TOC in this depositional area allows the 

phosphate to fix the U as well. 

General subsurface model 

With the previous examples of uranium and TOC being geochemically related 

such as the work by Schmoker (1981a); the relationship established between U and TOC 

in this study can be used to develop a predictive subsurface model.  Also the previous 

cross plots in Figure 14, show there is a relationship between the TOC and the U in the 

study area. The distance–to-shore proxy calculations given by the U/Th ratios are used to 

determine in which rocks the proposed model equation is most applicable. 

The values obtained when the known data is modeled provides a simplified 

calculation for TOC concentrations estimates in the rock from uranium concentrations 

(Fig. 13).  The Tulsa site gives a predictive equation:  

TOC (wt. %) = 0.50 X   (3) 

 where X is the concentration of U in ppm.  At the APAC site the TOC equation is:  

TOC (wt. %) = 0.62X    (4) 

Finally, the Oswego site gives the following equation:  
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TOC (wt. %) = 0.46 X    (5) 

These equations were forced through zero because of the assumption that if there is no 

TOC present then there will be no U fixed.  The changes in slope between the three sites 

are accounted for by the change in distance to shore. The greater the distance to shore, 

anoxia increases in the bottom waters which allows for greater preservation of TOC, 

which leads to more U being fixed. With the data from the three outcrop sites, the model 

gives a range of calculations to be used along a transect that ranges from more shore-

ward to more basin-ward.  For the predicted concentrations of the assessed data TOC 

values below 5% would be outside of the range of what should be considered to be 

applicable for this model, because at 5% the shales could model with negative TOC 

values. 

 The Little Osage Shale from the Anchor Quarry site is stratigraphically younger 

than the Excello.  This outcrop is geographically three miles from the APAC site.  Given 

its average Th/U ratio of 1:1.16 (Fig. 18), it is interpreted as having been deposited 

closest to the APAC site but relatively more shoreward as shown in Figure 2.  The TOC 

values calculated from Equation 4 and measured U concentrations are plotted in Figure 

19.  The variation ranges from as little as 0.36% to 5.17%. Note that as the TOC 

concentration increases the correlation between the measured and predicted 

concentrations improves.  Such a level of uncertainty is within the range of analytical 

uncertainties, and appears to be reasonable for evaluation purposes in the field when 

analyzing gamma ray log signatures for black shale.   
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Again, on older logs, the total gamma ray values are often the only data available.  

So, equations between TOC and total gamma ray were also derived.  The equations are 

shown in Figure 14. The equation for the Tulsa site is: 

TOC (wt. %) = 0.045 X   (6) 

with X being the measured API values.  The equation for the APAC Quarry site is: 

TOC (wt. %) = 0.040 X   (7) 

The equation for the Oswego site is: 

TOC (wt. %) = 0.046 X   (8) 

The values for the model use equation 7 from the APAC quarry site (Fig. 14).  The 

overall accuracy of concentrations predicted from API values as compared to those 

calculated from U concentration are more accurate.  For the Anchor site, the calculated 

values differ from the measured values by 0.81 to 4.18 %, with the largest variation in the 

predicted values from the API calculations being less than those of the U predictions.  A 

correlation between the TOC concentrations and the thorium concentrations could 

explain this improved correlation (Fig. 20).  In Figure 20, the R
2
 values for the three sites 

range from 0.13 to 0.62, and the R
2
 values decrease with distance to shore. The APAC 

data (R
2
= 0.62) shows why the data modeled with the total gamma ray values are more 

accurate.  The equations using the  API values gives the user more versatility in the field 

when using such calculations for TOC estimates, given that older logs/wells  generally 

have only total gamma ray values. On a practical note, this also allows for a less 

expensive way for one to decide whether or not to spend more money to assess the 

potential of a particular formation for possible development in the petroleum field.  
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These equations could be very useful in risk analysis, helping to establish the 

probability of success when applied to the potential source rock.  Variables in the risk 

equation include probability of a source rock, probability of a seal, and probability of a 

reservoir (Rose, 2001). If used in risk analysis the calculated values from the model are 

used in one or two of the variables of the risk equation. Depending upon what shale is 

considered, whether it is the source rock or both the source and reservoir rock, will 

change the number of variables in the risk analysis that are accounted for by the data. 

In the modeled data from the Excello, the gamma ray values were driven by the U 

concentrations. A second test data set, the Caney Shale, was chosen because it has 

thorium-driven API values. The second test data set, was used to determine what sort of 

error might occur in shale units where API values are not driven by U.  The second data 

set is a test to see if it is necessary to recalibrate the model every time a new area is 

assessed.  This test data is an unpublished data set from the Mississippian Caney Shale 

(Bryan, 2011; Personal Commnunication).  The Th/U ratio for the data set was plotted 

(Fig. 21).  The average Th/U ratio for the Caney Shale is 1.26, which is most similar to 

the value for APAC = 1.40, so the equation from the APAC site was used to model the 

Caney data.  The equation used was chosen because it was most similar to the Th/U ratio 

of the test site. The modeled data from the Caney using uranium concentrations shows a 

large variation from the measured values of 0.04 to 17.66 % (Fig. 22).  The calculated 

TOC values from the Caney using the total gamma ray values show a large variation 

from the measured values of 0.08 to 22.43 % (Fig. 23).  Thus the equations do not work 

well with the Caney Shale data, despite the similar Th/ U ratios.  The change in the 

primary driving force behind the API values changed the accuracy of the model.  This 
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change is due to the fact that the Th and U are preserved in different ways and different 

depositional environments.  Thorium is found in a single insoluble +4 valence state; this 

is sourced from surface weathering of resistate minerals (Doveton, 2004; Jones and 

Manning, 1994).  Thorium is found in the detrital fraction of the rock associated with the 

heavy minerals or clays (Jones and Manning, 1994).  Uranium is found in the +4 valence 

state as well and is predominately lost during weathering of surface minerals, because it 

is also found in a highly soluble +2 and +6 valence state (Doveton, 2004; Dypvik and 

Harris, 2001).  Different from Th, U is reduced and precipitated or adsorbed on or with 

organic matter in a reducing environment (Dypvik and Harris, 2001). 
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CHAPTER VI 

 

 

CONCLUSION 

 

 The hypothesis of this work is that presence of phosphate can also control 

uranium concentrations in black shales in different depositional environments, rather than 

total organic carbon.  The data gathered for this study showed that the phosphate has no 

direct bearing on the relationship between uranium and total organic carbon.  The results 

for the phosphate, uranium, and TOC show the complete lack of relationship between 

these three elements.  The hypothesis was refined to U is associated with TOC in shales 

regardless of the presence of absence of phosphate.  The new hypothesis was then used to 

generate two general mathematical models (Fig 13 and 14) using both U and total gamma 

ray values to model TOC values in shales.   The borehole TOC calculations appear to 

work well with shales of similar geologic age, and depositional environment. The 

modeled data using the U concentrations, had predicted values of TOC that range from 

0.36 to 5.2% different from the measured concentrations.  The model using the API 

calculations works with relative accuracy of 0.81 to 4.3 % different from the measured 

concentrations.  The model was also tested using the Caney Shale data that has a gamma 

ray signature driven by Th.  This resulted in larger variations from the measured TOC 

concentrations of up to 22 %.  This makes the model a useful tool for an initial evaluation 

in the case of new shales in similar depositional environments.  TOC estimates generated 
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from the model could prove to be a useful tool to provide a company with a starting point 

when evaluating shale plays and source rock characteristics. This leaves the evaluator a 

considerably more economic and time effective stopping point in the process. If the shale 

proves to have lower TOC values than considered acceptable after the accuracy of the 

model is taken into consideration, then the evaluation process can be stopped.  This 

model improves the assessment of whether or not more work needs to be done with a 

particular shale, or whether that particular shale is not worth the extra expense of further 

evaluation.  

The model quality could be improved further still to more data points with 

increased depositional range and down hole data.  The additional data would serve to 

improve the accuracy of the model.  With this improved accuracy, the model would then 

be tested extensively to see if there is a variation in the accuracy of the model with 

regards to age, testing with both geologically older and younger rocks would preformed.   

In addition to work with improving the quality of the model, work to understand 

the relationship between the gamma ray and total organic carbon concentrations should 

be completed.  The relationship between the three elements in the study appears to be 

more complex than first thought at the outset of this work.  A better understanding of this 

relationship could also improve how the model is constructed and therefore further 

improve the accuracy for application purposes.   
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Table 1.  Tulsa, OK Outcrop Data 

Sample 
Sample 

Ht. 
K Th U AUTH

+
 Total GR* Total P  Organic P  TOC U/Th Ratio 

No. (cm) (wt. %) (ppm) (ppm) (API units
1
) (umol/g) (umol/g) (wt. %)   

8060701 45 1.3 4.4 5.7 84.0 16.96 1.35 2.59 1.30 

8060702 60 1.6 7.6 4.8 94.4 22.84 6.43 1.36 0.63 

8060703 109 0.7 6.0 3.9 66.4 20.67 0.00 0.41 0.65 

8060704 123 0.8 6.1 5.8 83.6 44.26 0.00 1.07 0.95 

8060705 133 1.1 7.3 8.5 114.8 69.89 15.86 2.01 1.16 

8060706 148 2.9 13.3 27.0 315.6 120.91 45.72 15.01 2.03 

8060713 167 2.8 13.3 27.0 314.0 7.94 2.88 0.45 2.03 

8060712 188 2.9 12.0 30.8 340.8 19.28 10.47 15.81 2.57 

8060711 195 2.5 11.4 31.9 340.8 3.83 1.38 15.39 2.80 

8060710 211 2.6 12.9 30.7 338.8 3.88 0.71 16.34 2.38 

8060709 220 3.0 16.6 23.8 304.8 5.35 0.00 17.14 1.43 

8060708 223 2.7 14.0 21.4 270.4 14.37 3.03 15.27 1.53 

8060707 235 2.4 11.5 19.0 236.4 59.91 1.82 16.73 1.65 

 

+ Calculated according to equation 2 (see text for discussion) 

* GR: gamma Ray 

1 
Equation 1 (see text) 
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Table 2.  Oswego, KS Outcrop Data 

Sample No. 
Sample 

Ht. 
K  Th  U AUTH

+
 Total GR* Total P Organic P TOC U/Th Ratio 

  (cm) (wt.%) (ppm) (ppm) (API units
1
) (umol/g)  (umol/g) (wt. %)   

8230801 5 2.2 13.6 8.8 159.7 7.15 0.79 0.35 0.64 

8230802 20 2.8 15.2 9.0 177.7 5.95 0.84 1.08 0.59 

8230803 30 3.0 16.0 14.9 231.5 32.32 2.10 1.25 0.93 

8230804 52 2.7 13.1 27.6 316.4 672.94 6.79 14.53 2.11 

8230805 62 2.5 12.4 34.3 363.8 193.38 2.74 22.49 2.76 

8230806 70 2.2 9.4 54.3 506.8 1.37 0.20 25.26 5.77 

8230807 80 2.1 14.1 44.0 442.4 59.34 2.76 15.76 3.12 

8230808 90 2.9 12.9 31.8 352.3 57.93 3.54 14.59 2.46 

9200802 97 2.7 15.0 35.7 389.1 104.43 2.97 24.03 2.38 

9200803 107 3.1 10.5 30.0 331.3 19.52 1.29 17.12 2.85 

9200804 118 2.9 9.9 20.1 247.1 5.69 1.53 12.42 2.03 

9200805 127 3.1 11.3 8.3 161.3 18.98 1.98 2.81 0.74 

9200806 147 3.3 11.2 6.4 148.4 9.57 2.43 0.68 0.57 

9200807 157 3.6 10.4 5.3 141.4 24.71 3.27 0.00 0.51 

 

+ Calculated according to equation 2 (see text for discussion) 

* GR: gamma Ray 

1 
Equation 1 (see text) 
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Table 3.  APAC Quarry, Catoosa, OK data table 

Sample No. Sample Ht. K Th  U AUTH
+
 Total GR* Total P Organic P TOC U/Th Ratio 

  (cm)  (wt. %) (ppm) (ppm) (API units
1
) (umol/g) (umol/g) (wt. %)   

2040901 5 2.4 9.2 16.0 203.1 9.82 1.92 11.905 1.74 

2040902 20 3.3 13.8 17.0 244.1 509.32 3.95 10.9881 1.23 

2040903 36 2.6 11.7 16.9 223.6 519.76 2.46 6.3062 1.44 

2040904 43 2.4 11.3 15.7 208.8 529.90 2.05 11.4275 1.38 

 

+ Calculated according to equation 2 (see text for discussion) 

* GR: gamma Ray 

1 
Equation 1 (see text) 
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Table 4. Anchor Quarry, Owasso, OK Data Table. 

 

Sample No. Sample Ht. K Th  U AUTH
+
 Total GR* Total P  Organic P  TOC U/Th Ratio 

  (cm) (wt.%) (ppm) (ppm) (API units
1
) (umol/g) (umol/g) (wt. %)   

11210801 5 1.5 6.8 9.92 130.6 10.48 1.87 8.79 1.46 

11210802 15 3.3 12.3 10.72 187.8 9.35 2.04 11.43 0.87 

11210803 25 2.8 12.2 11.76 187.7 5.62 1.75 12.47 0.96 

11210804 37 3 14.9 17.21 245.3 7.46 2.12 10.97 1.15 

11210805 47 3 12.1 18.07 241.0 16.35 1.92 12.32 1.49 

11210806 55 2.3 12.5 15.36 209.6 113.43 3.35 5.79 1.23 

 

 

+ Calculated according to equation 2 (see text for discussion) 

* GR: gamma Ray 

1 
Equation 1 (see text) 
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Fig.1. Data from Cruse and Lyons (2004) Pennsylvanian (Squares (Hushpuckney) and Diamonds (Coffeyville Fm.)), Leventhal (1981) 

Devonian and Mississippian (Triangles (Devonian Shales) and X’s (Sunbury and Ohio Shales)), and Elbaz-Poulichet (2005) (Circles 

(C5 Data set)). A) Shows all data plotted in large scale B) Shows a close up view of the Elbaz-Poulichet data (circles) showing the 

correlation between the U and TOC. 
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Fig. 2. United States map showing paleoshoreline and depositional extent of the Excello shale modified from (Blakely, 2011).  Study 

area map showing sample sites and the interpreted paleoshoreline. 
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Fig.3. Model of a typical ―Kansas-type‖ cyclothem, showing an interpreted sea-level curve. Modified from Heckel (1977). 
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Fig. 4 Plots of the spectral gamma ray data at the Tulsa site in scale with the stratigraphic column.  
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Fig. 5.  Plots showing the phosphate and TOC data at the Tulsa site. Note the low data point in the black shale is a gray shale stringer. 
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Fig. 6.  Plots of the spectral gamma ray data at the Oswego site. 
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Fig. 7.  Plots showing the phosphate and TOC data at the Oswego site.  
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Fig. 8. Plots of the spectral gamma ray data at the APAC Quarry site. 
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Fig. 9.  Plots showing the phosphate and TOC data at the APAC Quarry site in scale. 
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Fig. 10. Plots of the spectral gamma ray data at the Anchor Quarry site.    
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Fig. 11. Plots showing the phosphate and TOC data at the Anchor Quarry site. 

Little 

Osage 

Shale 



 55 

 
 

Fig. 12. Plots of Th/U  ratios versus height giving proxy distance to shore, A) Tulsa, shown in diamond with an average of 1.99 , B) 

Oswego shown in Triangles with an average of 1.82, and C) APAC shown in squares with an average of 1.40. Notice that the data are 

not in scale.  

Tulsa, OK       Oswego, Ks      APAC Quarry, Catoosa, OK 
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Fig. 13. Cross plots of Uranium versus TOC, A) Tulsa, shown in diamonds, B) Oswego shown in Triangles, and C) APAC shown in 

squares. Notice the change in slope between the three sites. 
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       Tulsa, OK             Oswego, KS    APAC Quarry, Catoosa, OK

 
 

Fig. 14. Cross plots of gamma ray versus TOC, A) Tulsa, shown in diamonds, B) Oswego shown in Triangles, and C) APAC shown in 

squares. 
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  Tulsa, OK          Oswego, KS                          APAC Quarry, Catoosa, OK 

 
 

Fig. 15. Cross plots of organic phosphate and TOC, A) Tulsa, shown in diamonds, B) Oswego shown in Triangles, and C) APAC 

shown in squares. Notice the complete lack of correlation. 
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Tulsa, OK                   Oswego, KS            APAC Quarry, Catoosa, OK 

 
 

Fig. 16. Cross plots showing Organic Phosphate versus Uranium, A) Tulsa, shown in diamonds, B) Oswego shown in Triangles, and 

C) APAC shown in squares. Notice the lack of correlation in the Tulsa and Oswego sites. 
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Fig.17.  Plot of Th/U ratios versus height for the Anchor Quarry site, average Th/U ratio is 1.16.  
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Fig 18.  TOC concentrations versus uranium concentrations for Anchor quarry with measured values in squares and calculated values 

in diamonds.  Calculated concentrations are shown by the dotted line, and measured concentrations are shown by the dashed line. 
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Fig. 19. Gamma Ray concentrations versus TOC concentrations for Anchor Quarry with measured values in square and calculated 

values in diamonds. Calculated concentrations are shown by the dotted line, and measured concentrations are shown by the dashed 

line. 
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Tulsa, OK                 Oswego, KS        APAC Quarry, Catoosa, OK 

 
 

 

Fig. 20.  Cross plots of Th versus TOC showing the relationship between the values. A) Tulsa, OK B) Oswego, KS C) APAC Quarry, 

Catoosa, OK.   
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Fig. 21. Plot of Th/U ratios versus depth for the Caney Shale (Bryan, 2011), average Th/U ratio is 1.27.  
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Fig. 22. Uranium concentrations versus TOC concentrations for Caney Shale with measured values in X’s and calculated values in 

diamonds. Calculated concentrations are shown by the dotted line, and measured concentrations are shown by the dotted and dashed 

line. 
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Fig. 23. Gamma ray concentrations versus TOC concentrations for Caney Shale with measured values in X’s and calculated values in 

diamonds.  Calculated concentrations are shown by the dotted line, and measured concentrations are shown by the dotted and dashed 

line. 
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Black shales are important to the petroleum industry as both source rocks and 

subsurface marker beds.  Black shales are enriched in trace metals, especially uranium 

(U), which is easily measured in outcrops and wells by spectral gamma-ray spectrometry 

(SGR).  Previous studies have shown that U can be correlated with total organic carbon 

(TOC), presumably due to scavenging of the U by the organic compounds.  Observed 

variations could be caused by the presence of phosphate, which is often enriched in black 

shales and strongly scavenges U.  The Excello Shale is a Pennsylvanian (Desmoinesian) 

black shale, found from Iowa to Oklahoma.  The Excello is well defined stratigraphically 

and lithologically, which makes a perfect candidate to test variations in U and TOC with 

respect to depositional environments.  This study tests the hypothesis that that presence of 

phosphate can also control uranium concentrations in black shales in different 

depositional environments, rather than total organic carbon.   

The objectives of this study are to determine the uranium concentration and its 

relationship to TOC, and phosphate speciation and concentrations.  The study includes 

outcrop data from southeastern Kansas and northeastern Oklahoma.   The methods 

include phosphorus speciation, SGR and coulometric titration. Data was used to 

determine the correlation of U, TOC and phosphate concentrations in the shale.  Data was 

used to model a predicted shale behavior in the subsurface using well log data, and 

depositional changes based on geochemical parameters.  

The findings from this study improve well log based basin correlations, and identification 

of sub surface source rocks. Understanding these variables will help improve SGR proxy 

calculations for TOC 


