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CHAPTER I

INTRODUCTION

Producers, packers, retailers, and restaurateurs have struggled with inconsistency

in beef palatability, specifically tenderness, for much of the 20th century and into the new

millennium. Beef has the ability to offer palatability attributes not attainable by other

protein sources. It has been shown that consumers recognize differences in tenderness

and are willing to pay more for tender product (Boleman et al, 1997). The most recent

National Beef Quality Audit (Smith et. al., 2005) identified lack of uniformity and

consistency as the number one quality defect in the U.S. beef industry as perceived by

end users. Length of time on a high-concentrate diet and other factors, such as wet or dry

aging, has been shown to improve tenderness, and may lead to a more expensive product.

The pork and poultry industries have a distinct advantage in that broiler and hogs are

typically harvested at a young age in relation to beef, so maturity-related toughening is

not a quality issue in these industries. The Beef Customer Satisfaction Study (Neely et

al., 1998, 1999; Lorenzen et al., 1999; Savell et al., 1999) showed positive effects of

tenderness on consumers’ evaluation of taste. Therefore, the beef industry must continue

to identify ways to improve tenderness and consistency of beef without increasing cost

associated with processing.

First patented as a means of improving tenderness in beef carcasses by Harsham

and Deatherage in 1951 (US Patent 5266481), electrical stimulation (ES) has been shown

to have positive effects on tenderness, color, and quality. Prevention of cold shortening,

physical disruption of muscle fibers, as well as increased proteolytic activity have all
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been attributed to electrical stimulation’s ability to increase tenderness. The condition in

regard to pH and temperature, in which a carcass enters rigor mortis, can greatly affect

lean color and quality. Electrical stimulation increases the rate of postmortem glycolysis,

which causes rapid decline in pH. The resulting higher concentration of hydrogen ions

likely affects the spatial arrangement of myoglobin, improving lean color.

The effect of cooling rate has also been shown to have an effect on tenderness.

Hannula and Puolanne (2004) found a slow or low cooling rate, combined with pH, at the

onset of rigor has a significant effect on tenderness. However, slow cooling rate

decreases the efficiency of the harvest process and ultimately narrows the margin for

economic gain sought by the beef packer. Koohmaraie et al. (1996) determined that meat

does not toughen when sarcomere shortening is prevented. Therefore, it is the object of

this experiment to determine the most effective combination of chilling rate and electrical

stimulation that will allow packers to efficiently produce tender beef.
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CHAPTER II

REVIEW OF LITERATURE

Carcass Chilling

The chilling of meat has been utilized since ancient times as a means of

preservation. Prehistoric man discovered meat lasted longer when stored in a cool place

or packed with snow and ice. As a result, animals would be killed and perishable items

made during periods of cooler weather to prevent spoilage, sometimes packed with snow,

ice, or salt (Aberle et al. 2001). Throughout time, ice was eventually harvested and

stored. With much advancement in technology came the advent of refrigeration.

Considered the father of refrigeration, John Gorrie obtained the first U.S. patent for

refrigeration in 1851 (Gorrie, 1851). Mechanical refrigeration is accomplished through

the fact that energy is gained and lost through the change of state of a gas. Gas is

pressurized via mechanical compression until it turns to a liquid, which then passes

through a condenser, removing heat generated during the change of state (Romans et al.,

2001). Although not widely accepted by industry until the late 1800’s, mechanical

refrigeration is considered one of the most important advancements in technology for the

meat packing industry. However, it was not until the 1930’s when ice was finally phased

out as the primary source of refrigeration.

Internal temperatures of cattle coming off the harvest floor are typically around

39° C (Aberle et. al., 2001). Conventional chill coolers, such as the one described above,

can take 48 h or more to go from initial temperatures of around 39° C to a recommended

temperature of 5 °C or less without affecting carcass quality (Aberle et al., 2001). With
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the exception of poultry, the U.S. does not have any regulatory requirements for the

endpoint chilling temperatures of livestock carcasses before processing. The meat

industry operates on a low margin, high volume based system; as a result, the need for

more rapid carcass cooling systems is needed to potentially increase profit. Blast chilling

is one form of more rapid cooling where high-velocity air is used to aid in the dissipation

of heat. However, due to the high amount of air circulation and low relative humidity

present in conventional coolers, carcass shrink loss has been, and remains, a major

economic factor in today’s beef packing industry (Hamby et al., 1987). More commonly

used today as a means of cooling and as an aid in controlling cooler shrink loss is the

concept of spray chilling. Hippe et. al. (1991), described spray chilling as the intermittent

spraying of cold water on beef carcasses during the first 3-8 h postmortem. Hippe et al.

(1991), as well as Allen et al. (1987) and Jones and Robertson (1988), all found a

decrease in carcass shrink loss between 0.5 and 1.5 percent during the initial 24 h of

postmortem chilling. Hippe et al. (1991) also found that leaner carcasses chilled faster

but had higher shrink loss than fatter carcasses. However, even though some benefits

have been shown by rapid cooling, the dissipation of heat can be achieved so efficiently it

can have varying effects on quality.

Postmortem Biochemical Processes

The biochemical and structural changes that take place in the conversion of

muscle to meat have a profound affect on meat quality. The removal of blood from the

carcass, or exsanguination, marks the beginning of the conversion of muscle to meat,

which occurs within the first 24 h postmortem. The circulatory system is responsible for

the transport of nutrients and removal of waste products in the body. Exsanguination
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prevents the circulatory system from functioning, which prevents any new energy in the

form of glucose from being carried to the cell. In turn, anaerobic glycolysis, which is

described by Berg et al. (2002) as the sequence of reactions that metabolizes glucose and

pyruvate to ATP, takes over as the primary source of energy to cells. Bodwell et al.

(1965) showed that at 0, 6, 12, 24, and 48 h postmortem glycogen content of the beef

longissimus dorsi muscle was 56.7, 41.6, 30.4, 10.1, and 10.0 mmole glucose equivalents

per gram. According to Berg et al. (2002) anaerobic glycolysis will yield 3 moles of

ATP from one molecule glucose. Creatine phosphate reserves are the first energy source

used to convert ADP back to ATP, however, creatine phosphate is rapidly depleted and

ATP concentration declines (Romans et al., 2001). As a result of anaerobic glycolysis’

utilization of glucose, lactic acid is built up in the muscle. Consequently, without a

circulatory system to remove it, this build up of lactic acid decreases the pH of the

muscle. The resulting lactic acid will continue to decrease the pH until glycogen is

almost fully depleted or contractile proteins stop functioning as a result of low pH. The

normal pH of muscle drops from nearly 7.0 at the time of harvest to the range of 5.5-5.7

within 24 h postmortem (Bechtel, 1986). The depletion of energy within the muscle

allows myosin and actin to form tight bonds and prevents them from moving

independently of each other causing the I-band to essentially disappear. These permanent

cross-bridges are known as actomyosin (Savell et al., 2005). This process results in the

conversion of muscle to meat as well as a condition known as rigor mortis.

Rigor Mortis (rigor) is described by Honikel et al. (1983) as the irreversible loss

of extensibility of a whole bundle of muscle cells. Rigor forms a stiff and inextensible

state that is easily differentiated from the soft and workable state that appears pre-rigor.
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According to Hannula and Puolanne (2004) the onset of rigor in normal meat takes place

around pH 5.7-5.8. Rigor occurs in three phases that ultimately are dependant on

temperature and the rate at which anaerobic glycolysis proceeds. The faster a carcass is

cooled, the slower glycolysis and the normal pH decline take place. Eventually, due to a

lack of energy in the system, actomyosin cross-bridges are unable to be broken and

stiffening of the muscle occurs. Delay, the first phase of rigor, is characterized by an

extensible state of the muscle in which there is still sufficient amounts of ATP available

to allow for relaxation of the muscle. During this phase, energy stores in the form of

creatine phosphate, which allow for the phosphorylation of ADP into ATP, are still

sufficient to allow relaxation of the muscle. However, creatine phosphate is depleted

during this stage which causes a sharp decrease in ATP production. This loss of

extensibility and significant depletion of stored energy marks the beginning of the onset

phase. During the onset phase, muscles continue to increase in stiffness as more energy

is depleted at the cellular level. This increase in stiffness continues until the completion

phase. The completion phase of rigor mortis is characterized by the almost complete loss

of extensibility. Creatine phosphate is depleted and no ATP can be formed for relaxation,

which results in no extensibility and full rigor mortis (Aberle et al., 2001). Both rigor

mortis and the postmortem pH decline are dependant on energy utilization. In addition,

the rate at which a carcass is chilled has been shown to have a profound effect on energy

utilization and ultimately tenderness (Hannula and Poulane, 2004; Honikel et al., 1983;

Koohmaraie, 1996; Savell et al., 2005).
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Tenderness

Tenderness, as defined by Davey (1983), is the amount of force required to slice a

cross-sectional area of cooked meat across the muscle cells or fibers. Tenderness of

meat, especially beef, has been studied perhaps more than any other attribute.

Tenderness is determined by many factors including genetic makeup, physiological age,

diet, growth rate, connective tissue, muscle shortening, as well as other antemortem and

postmortem treatments. Genetic differences account for much of the variation among

breed types of cattle; more specifically between Bos indicus and Bos taurus breeds of

cattle. McKieth et al. (1985) and Crouse et al. (1987) both showed that Bos indicus cattle

produce meat that is tougher than meat from Bos taurus cattle. This variation in

tenderness has primarily been attributed to increased amounts of calpastatin within the

Bos indicus breed (Koohmaraie et al., 1995b). Calpastatin is the endogenous inhibitor of

the calpain system, which has been thought to be responsible for most if not all

postmortem tenderization via degradation of key myofibrillar proteins (Koohmaraie,

(1995b). Physiological age, as described by Aberle et al., (2001), is an expression of the

degree of aging visible in the animal tissues. As an animal matures the amount of

connective tissue (collagen) increases. Increased amounts of collagen and collagen cross-

linking, result in decreased tenderness. This due to more heat-stabile web-like structures

that retain higher residual strength after cooking (Aberle et al., 2001). Tenderness,

juiciness, and flavor are three factors used to determine overall palatability. However,

tenderness has been shown to be the most critical factor contributing to a pleasant eating

experience. Boleman et al. (1997) showed that consumers recognize differences in

tenderness and are willing to pay more for tender meat. Morgan et al. (1991) revealed
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information in the National Beef Tenderness Study that confirmed the inconsistent

tenderness of beef. The inconsistencies in beef, desire of consumers to eat healthier, as

well as other more convenient protein sources have all led to a decrease in beef

consumption. Lack of overall uniformity, consistency and tenderness of beef have been

identified in the top ten quality defects in the US beef industry for the last 15 years

(Smith et al., 2006). Koohmaraie (1995a) concluded inadequate or inconsistent beef

tenderness is most likely the cause of consumer dissatisfaction. The USDA developed

quality grades based on the idea that the increased presence of fat within the muscle, or

marbling, is directly related to an increase in palatability. Marbling has been shown to

have a positive effect on overall palatability. McBee and Wiles (1967) and Dolezal et. al.

(1982) found that sensory acceptance increases with increased marbling. Likewise, Jones

and Tatum (1994) reported differences in tenderness among quality grades. However,

according to Wheeler et al. (1994) USDA quality grades only account for about 5% of the

variation in beef tenderness. In addition, results from the 2005 National Beef Quality

Audit revealed that just over 70% of carcasses graded fell into the lower one-third U.S.

choice and U.S. select quality grades (Smith et al., 2006). Savell et al. (1987) concluded

that no tenderness differences existed between “small” and “slight” marbling scores, but

indicated shear force values where different when comparing a broader range of marbling

scores. The desire of consumers to eat healthier poses a potential problem for the beef

industry in that increased intramuscular fat has been shown to offer a more pleasurable

eating experience (Smith et al., 2006). Several explanations related to the toughness of

beef have been explored. Ease of fragmentation is defined by Aberle et al. (2001) as an

expression of the ability of the teeth to cut across meat fibers. Muscles are held together
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by a web-like structure surrounding the muscle fibers (endomysium), muscle fiber

bundles (perimysium), and whole muscles (epimysium). These structures are made up

primarily of collagen which results in “background toughness” associated with a

particular muscle. Collagen is the most abundant protein in the animal and is directly

related to muscle tenderness. The amount of collagen within a muscle depends on

muscle activity. Muscles that undergo higher amounts of locomotion have greater

amounts of collagen. In addition, Quali (1990) found greater degradation of myofibrillar

structures in muscles with increased white muscle fibers as opposed to muscles with

increased red fibers. Tenderness has also been shown to be affected by the degree of

contraction caused by the chilling process (Savell et al., 2004).

Muscle Shortening

The chilling of carcasses within the first 24 h postmortem, when muscle is converted

to meat, has been shown to be very critical with regards to beef tenderness (Honikel et

al., 1983; Lochner et al., 1980; King et al., 2003). One negative effect associated with

rapid chilling of beef is known as cold shortening. Cold shortening occurs when muscle

with adequate concentrations of ATP contracts under cold conditions (Honikel et al.,

1983). Locker and Haygard (1963) described cold shortening as a rapid reduction in

temperature less than 14-19 °C before the onset of rigor mortis. Similarly, Honikel et al.

(1983) found that cold shortening occurs below 15 °C depending on pH and ATP

concentration. Cold shortening is dependant on ATP concentration in that, with

sufficient ATP concentration muscle will contract and to a greater extent than normal

living muscle. pH is directly related to the amount of energy in muscle, which in turn

relates to the ability of the muscle to relax. Under the conditions described above, the
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calcium pump of the sarcoplasmic reticulum does not function properly and calcium is

built up. At this point, with sufficient ATP levels the muscle is able to contract to a great

extent causing the I-band to disappear completely in some cases (Aberle et al., 2001).

Conditions other than those aforementioned can also lead to shortening of the sarcomere.

Heat and thaw rigor have also been attributed to sarcomere shortening. Heat rigor occurs

when muscle is held at relatively high temperatures (up to 50 °C) during the onset of

rigor, resulting in severe shortening in the muscle due to a rapid depletion of ATP

(Aberle et al., 2001). Likewise, thaw rigor also leads to shortened sarcomere length but

is much more severe. Aberle et al. (2001) describes thaw rigor as a type of shortening that

occurs when pre-rigor muscle is frozen and then thawed. Under these conditions,

contraction is caused by a sudden release of calcium into the sarcoplasmic reticulum.

Muscles can contract up to 80 percent of their original length under thaw rigor conditions

(Aberle et al., 2001). Thus, the packing industry must identify ways to combat the

negative effects of properly chilling carcasses.

Electrical Stimulation

Electrical stimulation (ES) has been utilized in the beef industry as a means to

increase tenderness, quality, and color. First patented by Harsham and Deatherage in

1951, ES is still being used in most major packing facilities in the U.S. today. However,

due to a lack of interest by processors, this technology was not well accepted until the

1970’s. The ability of ES to increase meat tenderness was extensively studied and

eventually accepted in the late 1970’s (Cross et al., 1979; McKeith et al., 1980, 1981;

Savell et al., 1977, 1978a,b 1979). In early 1978, the LeFiell Company developed the

first commercial ES system (Romans et al., 2001). In addition to increased tenderness,



11

electrical stimulation has also been attributed to improved lean color (McKeith et al.,

1980, 1981). These theories are widely attributed to three main factors including

increased postmortem glycolysis, physical disruption of muscle fibers, and increased

proteolytic degradation (Savell et al., 1979).

Effects of Electrical Stimulation on Tenderness

Over two decades had passed after the initial patents were granted for use of ES to

improve tenderness in beef carcasses before researchers in New Zealand sought to

improve tenderness of lamb carcasses through ES. The aforementioned effects, of what

is now known as cold shortening, was the main focus of their research. Increased

postmortem glycolysis, resulting from ES, was reported by Carse (1973) to effectively

prevent cold shortening. As mentioned earlier, cold shortening takes place when pre-

rigor muscle with adequate energy reserves is exposed to temperatures below 15°C.

Electrical stimulation has been shown to increase postmortem glycolysis rate, thus

decreasing ATP concentration causing muscle to lose the ability to contract when

temperatures decrease under normal cooling conditions. When pre-rigor muscle is

exposed to cold temperatures the sarcoplasmic reticulum and mitochondria are inhibited

in their ability to bind calcium ions. This, in turn, leaves excess intercellular calcium,

which, in the presence of ATP causes continual contraction of the muscle fibers.

Electrically stimulated post-rigor muscle does not incur cold shortening due to a lack of

ATP. This increase in postmortem glycolysis also causes an immediate drop in pH.

Following this drop in pH there is temperature dependant acceleration of glycolysis

which leads to early rigor mortis. Reaching rigor mortis early or before exposure to

refrigeration temperatures will also prevent shortening of the sarcomeres. However,
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there is evidence that the ability of ES to increase tenderness can not be attributed solely

to increase in postmortem glycolysis. Devine et al. (2001) found no difference in initial

shear force values, rate of change of shear force values, or final shear force values when

comparing electrically stimulated to non-stimulated animals chilled at the same

temperature. This conclusion lends evidence that suggests there are other means by

which ES increases tenderness.

The ability of ES to increase tenderness via physical disruption of muscle fibers

has also been attributed to ES. Dutson et al. (1977) first concluded ES of muscle resulted

in changes in the ultrastructure of beef. Physical alteration (cold shortening) was found

to have significant effects on tenderness even prior to industry-wide acceptance of ES

(Marsh et al., 1974). Savell et al. (1978a) also theorized that ES causes massive

contraction which could in turn disrupt muscle fibers. In addition, Takahasi et al. (1984,

1987) determined that 50-60 Hz with 500 V, 40 min postmortem resulted in physical

alteration of the muscle structure as well as increased tenderness. In contrast, McKeith et

al. (1980) found no physical disruption of muscle fibers directly related to

supercontracture from ES. Similarly George et al. (1980) attributed the physical

disruption to denaturation of sarcoplasmic proteins due to increased proteolytic activity.

Electrical stimulation’s ability to increase tenderness, although not completely

understood, has also been associated with its ability to increase the activity of proteolytic

enzymes (Savell et al., 1978b, 1979; Dutson et al., 1980). Aging is described by Hwang

et al. (2003) as the process of meat becoming more tender over time and involves specific

degradation of muscle proteins. Ho et al. (1996) concluded ES accelerates the

degradation of the cytoskeleton proteins titin, nebulin, desmin, and troponin-T in



13

postmortem muscle. In addition, wide I-band fractures appeared sooner postmortem in

electrically stimulated muscle (Ho et al., 1996). Dransfield et al. (1992) as well as

Uytterhaegen et al. (1992), both showed conclusions of stimulated activity of some

proteolytic enzymes, including µ-calpain. Koohmaraire and Geesnick (2006) concluded

that most, if not all, postmortem tenderization is due to the calpain system, specifically µ-

calpain. As cellular membranes are disrupted, calcium is leached into intercellular spaces

where the calcium induced calpain system can begin degradation of key myofibrillar

proteins. The significant drop in pH, as well as the ability to physically disrupt cellular

integrity, is the basis for electrical stimulation’s ability to increase proteolytic activity.

Watanabe and Devine (1996) presented evidence that titan and nebulin are degraded

further as pH lowers. This study supports the ability of electrical stimulation to increase

tenderness by decreasing the amount of time to achieve ultimate pH. This corresponds to

earlier research conducted by Savell et al. (1978b) and Dutson et. al. (1980) that suggests

lysosomal membranes could be disrupted physically and/or chemically to increase

proteolytic activity. Any one or combination of the aforementioned theories regarding

ES could be responsible for increasing tenderness. In addition to its ability to increase

tenderness ES has also been shown to have positive effects on other carcass

characteristics.

Effects of Electrical Stimulation on Quality and Lean Color

Electrical stimulation has been collaboratively shown to improve both lean color

and texture (Savell et al., 1978a,b, 1979; McKeith et al., 1981; Roeber et al., 2000). The

improvements in color and texture have been associated with an increase in postmortem

glycolysis due to increased muscle activity via ES. In an anaerobic environment lactic
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acid is built up as an end product of glycolysis as opposed to pyruvate in an aerobic

environment. This increase in glycolytic activity causes an increase in lactic acid

accumulation in muscle, ultimately lowering the pH more rapidly. It was reported by

Munns and Burrell (1965) that an ultimate pH of 6.0 or higher included 90% of dark lean

color. Ashmore et al. (1973) concluded mitochondrial respiration at higher pH values

remains high. Under these conditions myoglobin, the protein responsible for meat color,

is deoxygenated or only partially oxygenated due to higher oxygen utilization by

surviving enzyme systems. As pH of lean tissue is decreased permeability to oxygen is

increased resulting in a brighter more cherry red color. This bright cherry red color is

related to the state of oxygenation of myoglobin; as myoglobin nears its isoelectric point

(5.5), where it would contain no net charge, its binding ability decreases. Therefore, at

higher pH levels, myoglobin will bind more water causing muscle fibers to expand

leaving less space between them for free water to reflect light resulting in a darker

appearance (Lawrie, 1974). The relationship of ultimate pH and muscle color has been

well documented (Watanabe et al., 1995; Jeremiah et al., 1991). The spatial arrangement

of myoglobin, in either ferrous (Fe++) or ferric (Fe+++), determines the color it will appear.

In the less reduced ferrous state, the internally bound iron molecule can transition from

the oxygenated to the deoxygenated state. In the presence of oxygen myoglobin will

assume the oxygenated state and appear bright cherry red, whereas in the deoxygenated

state myoglobin will appear purple in color. In contrast, the ferric state of myoglobin,

being more oxidized, will appear brown and is known as metmyoglobin. In addition,

Wulf et al. (1997) reported muscle pH is highly correlated with CIE L* (L*=0 yields dark

and L*=100 indicates light), a* (negative values indicate green while positive values
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indicate red), b* (negative values indicate blue and positive values indicate yellow). This

study showed that following low voltage ES lower pH values resulted in muscle that was

more light than dark (higer L*), more red than green (higher a*), and more yellow than

blue (higher b*), and also had higher taste panel tenderness ratings. Roeber et al., (2000)

also reported improvements in L*, a*, and b* values associated with ES. In addition to

these positive effects, ES has also been shown to decrease incidence of heat ring.

Heat ring is a color defect associated with graded levels of pH across muscle areas

from the surface of the carcass inward particularly in carcasses with a relatively thin layer

of fat (Romans et al., 2001). Glycolysis is slowed in the faster chilling external portions

of the carcass this results in slower pH decline and longer delay until onset of rigor

mortis. In contrast, the inner portion of the muscle, being better insulated allows for a

slower, more thorough drop in pH resulting in lighter color. Electrical stimulation has

been shown to decrease incidence of heat ring through acceleration of pH decline

throughout the muscle.

Conclusion

Sufficient evidence has been compiled to conclude ES, in combination with

accelerated chilling, can efficiently and effectively increase production and decrease the

need for larger facilities while having no detrimental effect on end product quality or

palatability. The beef industry must continue to improve efficiency and effectiveness of

harvest facilities, thus, the subsequent research was conducted to determine what

combination of ES and accelerated chilling could accomplish this goal.



16

CHAPTER III

POSTMORTEM INTERACTIONS OF CHILL TIME AND ELECTRICAL

STIMULATION ON MUSCLE TEMPERATURE, pH, AND OTHER BEEF QUALITY

FACTORS

ABSTRACT

The objective of this study was to determine postmortem effects of muscle

temperature, electrical stimulation, and muscle pH on beef quality. Two-hundred finished

cattle were selected based on common breed type, weight, and estimated fat thickness.

Immediately following harvest, carcasses were randomly selected to be assigned to one

of eight electrical stimulation (ES) x postmortem chilling time (23 h or 30 h)

combinations: 1) Control: no ES/23 h; 2) no ES/30 h; 3) 100 V ES/23 h; 4) 100 V ES/30

h; 5) 250 V ES/23 h; 6) 250 V ES/30 h; 7) 400 V ES/23 h; 8) 400 V ES/30 h. Electrical

stimulation was applied through brisket probes coming in contact as carcasses passed.

The appropriate voltage was applied at 1.67 amps for 63 s in 1 s intervals with 1 s in

between ES pulses. Temperature and pH measurements were taken prior to ES and at 3,

6, 12, and 23 h postmortem. CIE L*, a*, and b* measurements, as well as ribeye area

and preliminary yield grade, were collected using the vision grading system used by

National Beef Packing. Mean marbling score did not differ (P > 0.05) between chilling

times or electrical stimulation levels from non-stimulated controls. Mean values for CIE

L*, and a* of lean color were more light and more red (P > 0.05) for the 30 h chilled

carcasses as compared to carcasses chilled 23 h in the non-stimulated group. No

significant color differences (P > 0.05) were found between ES levels. Slice shear force
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values were higher for non-stimulated controls at 7 and 14d than for ES sides.

Longissimus muscle pH was generally higher (P < 0.05) for non-stimulated controls as

compared to ES treatments. Differences in temperature were not different between 23

and 30 h chilled carcasses. Chilling of carcasses for 23 h versus 30 h showed no

detrimental effects on quality. In addition, electrical stimulation increased tenderness and

improved lean color when compared to non-stimulated control sides. The currents study

revealed evidence that could aid the beef industry in increasing throughput and possibly

increasing profit.

INTRODUCTION

The packing industry operates on a low margin, high volume basis and relies on

the ability to harvest, refrigerate, and process large numbers of cattle to remain profitable.

Any increase in efficiency, or decrease in processing time, within the confines of the

harvest facility can ultimately increase profits and decrease the need to build larger

facilities. Chilling is one of the most costly processes incurred by the packing industry.

Accelerated chilling has been shown to reduce cooler shrink, increase perception of

marbling, and reduce the time of aging to achieve an acceptable product (Aalhus et al.,

2001). However, advanced chilling systems have also been shown to cause cold

shortening, produce darker lean color, and increase incidence of heat ring formation.

Fortunately, these negative effects can be prevented or eliminated through the use of ES.

Electrical stimulation has been shown to prevent cold shortening, produce improved lean

color, prevent formation of heat ring, and shorten the aging period required to produce a

quality product (Aberle et al., 2001). Savell et al. (1978b) reported that electrical

stimulation has the ability to accelerate post-mortem aging which would thereby decrease
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the aging time required to obtain a more tender product. Boleman et al. (1997) showed

that consumers recognize differences in tenderness and are willing to pay more for tender

meat. Thus, this experiment was conducted to evaluate the most effective use of ES in

combination with chilling rate to efficiently and effectively produce quality beef.

MATERIALS AND METHODS

Sample Collection

Finished cattle (n = 200) were selected based on common breed type, weight, and

estimated fat thickness. Cattle were harvested using humane methods at National Beef

Packing in Dodge City, KS. Immediately following harvest, paired carcass sides (n =

400) were randomly selected to be assigned to one of eight electrical stimulation (ES)

postmortem chilling time (23 h or 30 h) combinations (Table 1): 1) 0 V ES/23 h; 2) no

ES/30 h; 3) 100 V ES/23 h; 4) 100 V ES/30 h; 5) 250 V ES/23 h; 6) 250 V ES/30 h; 7)

400 V ES/23 h; 8) 400 V ES/30 h. Table 1 represents the number of carcasses in each

treatment. Temperature and pH measurements were taken prior to ES. Electrical

stimulation was applied at each voltage level through spring loaded probes that came in

contact as the carcass side passed through a stimulation chamber designed and made by

National Beef Packing Inc. Each probe delivered the appropriate voltage at 1.67 amps

for 63 s in 1 s intervals with 1 s between ES pulses. Immediately following each ES

application, each carcass side passed through a steam pasteurization cabinet. One side

from each carcass was put into either a 23 h or 30 h cooler where additional

measurements were obtained. Upon removal of the carcass sides from the cooler at their

designated chill time, each side was weighed, ribbed and given sufficient time (20 m) to

bloom before USDA quality grade factors were collected by two official USDA graders.
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Additional data were collected using the vision grading system camera (RMS) operated

by a National Beef Packing Co. employee. The RMS camera collected preliminary yield

grade, L*, a*, b*, and ribeye area. Graded weight was also collected for determination of

shrink loss. Lean color was evaluated through the camera in CIE L* (L*=0 yields black

and L*=100 indicates white), a* (negative values indicate green while positive values

indicate red), and b* (negative values indicate blue and positive values indicate yellow).

Immediately following carcass data collection, ribeye samples (IMPS # 112)

approximately 10 cm long were excised from the 12th/13th rib interface of right and left

sides. The samples were removed using a 6 in boning knife by holding the knife in a

vertical position, following the curvature of the 10th, 11th, and 12th rib. An incision was

then made 0.5 in lateral of the longissimus costarum vertically down the 10th, 11th, and

12th rib. The final incision was made by cutting vertically along the dorsal processes of

the thoracic vertebrae of the 10th, 11th, and 12th ribs. The samples were labeled, packaged

and transported to Oklahoma State University for further analysis.

Temperature and pH Determination

Temperature measurements were obtained using a Versa Tuff 386 type T

thermocouple (Model 38653-T, Atkins Technical INC, Gainsville, FL), at 0, 3, 6, 12, and

23 h postmortem. pH measurements were taken using a Model IQ 140 pH meter ( and

taken at the same time as temperature measurements. All measurements were taken by

making an incision through the subcutaneous fat and exterior layer of connective tissue

followed by penetration of each probe into the longissimus dorsi muscle approximately 7

cm posterior to the 13th rib. Initial (0 h) measurements were taken immediately following

harvest, prior to ES.
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Postmortem Aging of Samples

Upon arrival at the Oklahoma Food and Agriculture Products Center located on

the Oklahoma State University campus, longissimus samples were fabricated on a saw

into steaks (2.54 cm). Samples were assigned to one of two aging periods, 7 or 14 d.

Samples were then vacuum packaged in 8 x 10 vacuum pouches (Prime Source, 3 Mil.

high barrier) and stored in the dark at refrigeration temperatures for the specified aging

period. Following aging, samples were blast frozen until slice shear force analysis was

conducted.

Shear Force Determination

Tenderness was assessed using the slice shear force method (Shackelford et. al.,

1999). Steaks were tempered for 24 h at 4°C prior to cooking. Steaks from each ES level

and chill period were randomized, to avoid variations in cooking. Steaks were broiled in

an impingement oven (Lincoln Impenger, Model 1132-00-A, Fort Wayne, IN) at 180°C

to a medium degree of doneness or a final temperature of 70°C. Final temperatures were

monitored using a Versa Tuff 386 type T thermocouple (Model 38653-T, Atkins

Technical INC, Gainsville, FL). Following cooking, steaks were allowed to cool for 24 h

at 4° C on plastic trays, approximately 7.6 cm apart on an upright tray rack, to allow for

proper dissipation of heat. Slice shear force measurements were determined by shearing a

slice 1 cm thick, 5 cm long parallel to muscle fiber orientation, on a Universal Instron

Testing Machine (Model 4502, Instron, Canton, MS) at a cross head speed of 500

mm/min. Each slice was taken approximately 6-7 cm from the lateral end of the steak by

squaring 1-2 cm off the lateral end, then placing the remaining steak portion in a pre-
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measured sizing box to obtain a 5 cm portion. The 5 cm portion was then moved to a 45°

slice box where a double bladed knife was used to excise a slice, parallel to muscle fiber

orientation, 1 cm long and 5 cm thick. The slice was then sheared perpendicular to the

muscle fibers to determine kg of force required to shear through the sample.

Statistical Analysis

Treatments (electrical stimulation, chilling time) were arranged in a 2 x 4

factorial, completely randomized design. The model included electrical stimulation,

chilling time and the interaction term as the main unit factors. Data were analyzed using

the GLM procedures of SAS (SAS Inst., Inc., Cary, NC). Mean differences for least

squares means were determined using Tukey’s procedure (α = 0.05) when the model

demonstrated a treatment effect (P < 0.05). The frequency tough vs. tender steaks, was

analyzed using the Frequency Procedures of SAS (SAS Inst. Inc., Cary, NC).

Differences between percentages for aging periods (7 d, 14 d) and chilling times (23 h, 30

h) were determined by calculating the chi-squared statistic.

Results and Discussion

Marbling

Effects of chilling time and ES on marbling score of paired beef sides are

presented in Figure 1. Although marbling score for the 23 h chill treatment had the

highest numerical LS mean, no significant marbling differences existed between chilling

times. Furthermore, marbling score for carcasses chilled for 23 h revealed no significant

differences (P > 0.05) existed between ES levels. In addition, other studies have also

shown ES had no significant effect with regard to increasing marbling score (Savell et al.,

1978b; Davis et al., 1981; Crouse et al., 1983).
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Longissimus Muscle Color

Mean CIE L* values for chilling time and ES level are presented in Figure 2.

Within the ES control group (0 V), L* values were significantly higher (P < 0.05) for

longissimus samples chilled for 30 h compared to 23 h counterparts. Although no

significant difference (P > 0.05) was detected, the longissimus muscles for ES sides

displayed higher L* values than those from non-ES controls within the same chilling

time. The influence of ES and chilling time on mean CIE a* values are presented in

Figure 3. Similar to L* values, a* values were also significantly higher (P < 0.05) for the

30 h chill than for 23 h chill within in the ES control group (0 V). Although not

significantly different (P > 0.05), a* values were higher for the 400 V ES/30 h chill group

than any other treatment. These results are similar to findings by Roeber et al. (2000)

that concluded a* values are higher, or redder, for ES beef muscles as opposed to non-

stimulated control muscles. Mean CIE b* values for ES levels and chilling times are

presented in Figure 4. No significant differences (P > 0.05) existed between ES levels or

chilling times. Although not significantly different, mean b* values for 400 V/23 h chill

sides were numerically lower, suggesting a more blue color. These results are not

concurrent with previous research that concluded ES significantly increased b* values

over non-stimulated muscles (Roeber, et al., 2000; Savell et al. 1978a,b).  Furthermore,

Wulf et al. (1999) found that a* and b* values continued to increase, or become redder

and less blue, for 75 min after ribbing. This could explain why no significant differences

were detected, as bloom time in the present study was 15-20 min. In addition, Clydesdale

and Francis (1971) proposed that lower b* values are positively associated with increased
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deoxymyoglobin resulting in darker colored lean. As previously mentioned, ES has

shown the ability to increase b* values resulting in lighter colored lean. Higher b*

values, indicating more yellow, have also been associated with increased tenderness

(Wulf et al., 1997).

Shear Force

Effects of chilling time and aging period on slice shear force values of ES

longissimus muscles are presented in Figure 5. No significant difference (P > 0.05)

existed between chilling times within ES levels.

Effect of chilling time and ES level on slice shear force values of longissimus

muscles aged for 7 d are presented in Figure 6. Slice shear force values were higher (P <

0.05) for non-stimulated control sides than for stimulated sides irrelevant of chilling time,

with the exception of the 400 V/30 h treatment, which was not different (P > 0.05) from

the control (0 V) 30 h chill. Steaks in the 100 V/23 h chill treatment had the lowest shear

force values, however this treatment was only different (P < 0.05) from the 400 V/30 h

treatment between ES levels. No other differences (P > 0.05) existed between ES levels.

Figure 7 presents the effects of chilling time and ES level on slice shear force

values of longissimus muscles aged for 14 d. No differences (P > 0.05) in slice shear

force values existed between chilling times or ES levels. Slice shear force values from

the 100 V/23 h, 100 V/30 h, 250 V/23 h, and 400 V/30 h chill treatment were lower (P <

0.05) than non-stimulated controls. These results are similar to most previous studies on

ES (Cross et al., 1979; McKeith et al., 1980, 1981; Savell et al., 1977, 1978a,b 1979). No

differences (P > 0.05) existed between the 400 V/23 h, 250 V/30 h, and the 30 h non-

stimulated control (0 V) sides.
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The comparison of tough vs. tender steaks from different chill times and aging

periods of non-electrically stimulated (0 V) beef carcasses is presented in Figure 8.

Percentages of tender steaks were not different (P > 0.05) between chilling times when

steaks were aged for either 7 or 14 d. However, the percentage of tender steaks in the 30

h/14 d treatment was 36% higher than the percentage of tender steaks from the 23 h/7 d

treatment. This is in agreement with previous research which suggests proteolysis of

myofibrillar proteins during aging contributes the tenderization of meat during

refrigerated storage (Davey, 1983; 1988, 1994, 1995a; Taylor et al., 1995). The

comparison of percentages of tough vs. tender steaks from different chill times and aging

period of carcasses stimulated with 100 V is presented in Figure 9. The percentage of

tender vs. tough steaks was not different (P > 0.05) between chilling times when steaks

were aged for either 7 or 14 d. In addition, the percentage of tender steaks from the 23

h/14 d treatment was higher (P < 0.05) than that of the 30 h/ 7 d treatment. Figure 10

presents the percentage of tender vs. tough steaks of carcasses stimulated with 250 V

from different chilling times. No significant differences (P > 0.05) existed between

chilling times from steaks aged for 7 or 14 d. Although not significantly different, the

percentage of tender steaks from the 14 d aging periods was numerically higher than the

percentage of tender steaks aged for 7 d . This is also in agreement with the previous

studies that concluded increased tenderness due to proteolysis of key myofibrillar

proteins during aging (Davey, 1983; 1988, 1994, 1995a; Taylor et al., 1995).

Comparison of tender vs. tough steaks of carcasses stimulated with 400 V from carcasses

chilled for either 23 or 30 h and aged for either 7 or 14 days is presented in Figure 11.

The percentage of tender steaks for carcasses in the 30 h/14 d treatment was significantly
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higher (P < 0.05) than steaks from the 30 h/7 d. The percentage of tender steaks from the

30 h/14 d treatment was the highest, however, no significant differences were found.

Shrink Loss

The influence of chill time on shrink loss of electrically stimulated beef carcasses

is represented in Figure 12. There were no significant differences (P > 0.05) in shrink

loss between chilling times. Additionally, although shrink loss for the 250 V/ 23 h chill

was the highest, there were no significant differences (P > 0.05) between ES levels.

pH and Temperature Measurements

Comparison of postmortem pH decline of ES longissimus muscle (LD) for

carcasses chilled 23 h is presented in Table 2. Initial (0 h) pH measurements were taken

before ES for all carcasses and averaged. Electrically stimulated carcasses had lower (P

< 0.05) pH values than did non-stimulated controls. Additionally, pH values for

carcasses in the 250 and 400 V treatments were lower (P < 0.05) than carcasses in the 100

V treatment. This is in agreement with research conducted by and George et al. (1980)

that concluded ES causes a rapid decline in pH. Carcass pH values at 6 h were

numerically higher than at 3 h for the 250 and 400 volt treatments. This could be due in

part to decreasing temperatures, which has been concluded to slow postmortem

biochemical processes (Hannula and Puolane 2004). Additionally, carcasses in the 250 V

treatment had lower LD muscle pH values than did carcasses in the 100 V and non-

stimulated treatments. Similar to 3 h pH values, 12 h pH values of ES sides were lower

(P < 0.05) than non-stimulated control sides.

Comparison of postmortem pH decline of ES beef LD for carcasses chilled 30 h is

presented in Table 3. At 3 h postmortem, ES beef carcasses had lower (P < 0.05) pH
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values than non-stimulated controls. In addition, carcasses in the 250 V treatment had

lower (P < 0.05) pH values than 100 V and 400 V treated carcasses. Comparison of pH

at 6 h and 12 h, illustrated similar results to those at 3 h in that pH values for ES sides

were lower (P < 0.0.5) than the non-stimulated control sides.

Comparisons of postmortem temperature decline of ES beef LD muscles for

carcasses chilled 23 h are presented in Table 4. At 3 h postmortem temperature

measurements for the 400 V treatment were higher (P < 0.05) that non-stimulated control

sides. However, at 6 h and 12 h postmortem, non-stimulated carcasses displayed higher

(P < 0.05) LD temperatures than carcasses in the 400 V group. Additionally, at 23 h, LD

temperatures were not different for carcasses in the 400 V treatment when compared to

non-stimulated control sides. Bendall (1973) and Davey and Gilbert (1974) both

concluded reaching 10°C before 10 h, or before attaining a pH of 6.0, prevented cold

shortening. In the current study, LD temperatures from carcasses in all ES treatments

reached below 45° C in 12 h. This information, in addition to pH decline and shear force

values, suggest chilling carcasses for 23 h has no negative effects when compared to

chilling carcasses for 30 h.

Comparisons of postmortem temperature decline of ES beef LD muscles for

carcasses chilled 30 h are presented in Table 5. Temperature measurements at 3 h for

carcasses in the 400 volt treatment were higher (P < 0.05) than any other treatment.

However, at 6 h postmortem, no differences (P > 0.05) were found between any

treatment. Temperature measurements at 12 h postmortem were higher (P < 0.05) for

250 V and 400 V sides when compared to non-stimulated control sides. Conversely,
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temperature measurements for 23 h revealed no differences (P > 0.05) between non-

stimulated control sides and the 250 V and 400 V treatments.

Implications

Electrical stimulation in combination with 23 h chill showed no detrimental

effects on quality when compared to ES carcasses chilled for 30 h. In addition, ES

showed some ability to increase tenderness over non-stimulated control sides when aged

for 7 or 14 d. As in previous studies, electrically stimulated carcasses, regardless of the

voltage level applied, displayed lighter, more desirable lean color that was redder and

more desirable than non-stimulated carcass sides. In all cases, although not significantly

different (P < 0.05) the 23 h chilled carcass sides displayed slightly higher shrink losses

that their 30 h chilled counterparts. The milder 30 h chilling procedure allows for less

carcass shrink especially when 100 or 250 V electrical stimulation treatment is applied.

The current study revealed evidence that under controlled conditions carcasses can be

chilled for 23 h without negatively affecting quality, which could aid the beef industry in

increasing throughput and possibly increasing profit.
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Table 1. Carcass side selection matrix
Chill Time, h

Electrical Stimulation (V) 23 30
0 50 50

100 50 50
250 50 50
400 50 50

Total Sides 200 200
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Table 2. Comparison of postmortem pH decline of electrically stimulated (ES) beef
longissimus muscle for carcasses chilled 23 h

h, postmortem
ES Level 01 3

(n = 101)
6

(n = 97)
12

(n = 105)
0 7.3 6.11a 5.83a 5.75a

100 7.3 6.31b 5.79a 5.64b

250 7.3 5.64c 5.69b 5.61b

400 7.3 5.74c 5.78ab 5.60b

SEM 0.1605 0.1637 0.1574

a, b, c Means, within columns, that do not share a common superscript are significantly
different (P < 0.05)

10 h pH= average of all carcasses prior to ES
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Table 3. Comparison of postmortem pH decline of electrically stimulated (ES) beef
longissimus muscle for carcasses chilled 30 h

h, postmortem
ES Level 01 3

(n = 98)
6

(n = 104)
12

(n = 105)
0 7.3 6.01a 6.07a 5.70a

100 7.3 5.89b 5.92b 5.68b

250 7.3 5.71c 5.82c 5.62b

400 7.3 5.83b 5.81c 5.63 b

SEM 0.0602 0.0613 0.0634

a, b, c Means, within columns, that do not share a common superscript are significantly
different (P < 0.05)

10 h pH= average of all carcasses prior to ES
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Table 4. Comparison of postmortem temperature decline of electrically stimulated (ES)
beef longissimus muscle for carcasses chilled 23 h

h, postmortem
ES Level 01 3

(n = 100)
6

(n = 97)
12

(n = 101)
23

(n = 102)
0 102.2 74.95a 65.53b 44.72ab 32.20b

100 102.2 75.32ab 66.30a 42.11bc 31.05c

250 102.2 77.08ab 63.30b 45.93a 33.45a

400 102.2 76.11b 60.75c 41.10c 31.76b

SEM 0.6156 1.0926 1.1238 0.4990
a, b, c Means, within columns, that do not share a common superscript are significantly
different (P < 0.05)

10 h temperature= average of all carcasses prior to ES
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Table 5. Comparison of postmortem temperature decline of electrically stimulated (ES)
beef longissimus muscle for carcasses chilled 30 h

h, postmortem
ES Level 01

(n = 186)
3

(n = 97)
6

(n = 105)
12

(n = 107)
23

(n = 102)
0 102.2 72.30a 60.00a 46.40b 33.80a

100 102.2 72.00a 59.80a 42.15c 32.68b

250 102.2 73.20a 59.82a 49.02a 33.86a

400 102.2 75.90b 59.79a 51.03a 34.04a

SEM 0.8536 0.0402 0.0398 0.0408

a, b, c Means within, columns, that do not share a common superscript are significantly
different (P < 0.05).

10 h temperature= average of all carcasses prior to ES
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Figure 1. Effect of chilling time on marbling score of electrically stimulated paired beef
carcasses.
a Marbling Score (NBP Gold Standard): 400 = Small 00
No marbling differences (P > 0.05) existed between chilling times or electrical
stimulation levels.
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Figure 2. Influence of chilling time of ribeye lean color lightness (L*) of electrically
stimulated beef carcasses.
a, bChill time means, within an electrical stimulation level, with different letters were
statistically (P < 0.05) different.
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Figure 3. Influence of chill time on redness (a*) of longissimus dorsi muscle of
electrically stimulated beef carcasses.
a, bChill time means, within an electrical stimulation level, with different letters were
statistically (P < 0.05) different.
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Figure 4. Influence of chill time on b* values of longissimus dorsi muscle of
electrically stimulated beef carcasses
No b* value differences (P > 0.05) existed between chilling times within ES levels
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Figure 5. Effect of chilling and postmortem aging times on slice shear force values (kg)
of electrically stimulated beef carcasses
No marbling differences (P > 0.05) existed between chilling times within electrical
stimulation levels.
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Figure 6. Effect of chilling and postmortem aging time (7 d) on slice shear force values
(kg) of electrically stimulated beef carcasses
a,b,c,d Means lacking common superscripts differ (P < 0.05)
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Figure 7. Effect of chilling time and postmortem aging (14 d) on slice shear force values
(kg) of electrically stimulated beef carcasses.
a,b,c,d Means lacking common superscripts differ (P < 0.05)
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Figure 8. Comparison of percentage of tough vs. tender steaks from different chill times
and aging periods of non-electrically stimulated (0 V) beef carcasses
a, bPercentages lacking a common superscript within treatments differ (P < 0.05).
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Figure 9. Comparison of percentage of tough vs. tender steaks from different chill times
and aging periods of electrically stimulated (100 V) beef carcasses
a, bPercentages lacking a common superscript within treatments differ (P < 0.05).
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Figure 10. Comparison of percentage of tough vs. tender steaks from different chill times
and aging periods of electrically stimulated (250 V) beef carcasses
a, bPercentages lacking a common superscript within treatments differ (P < 0.05).
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Figure 11. Comparison of percentage of tough vs. tender steaks from different chill times
and aging periods of electrically stimulated (400 V) beef carcasses
a, bPercentages lacking a common superscript within treatments differ (P < 0.05).
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Figure 12. Influence of chill time on shrink loss of electrically stimulated beef carcasses.
No difference (P > 0.05) in shrink loss existed between chill times or ES levels
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