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CHAPTER 1 

INTRODUCTION 

1.1 PROBLEM STATEMENT 

Crude vegetable oil contains a number of compounds such as mono-, di- and 

triglycerides, free fatty acids, phospholipids, pigmented compounds, waxes as well as 

nutritionally beneficial compounds such as tocopherols, tocotrienols, phytosterols, 

squalene and policosanol. Crude oil needs to be refined to produce high quality and 

highly stable oils through eliminating undesirable compounds. Conventional edible oil 

extraction and refining processes involve several unit operations which have several 

disadvantages, including using large quantities of water and hazardous chemicals, 

generating large quantities of waste, as well as being energy intensive. A mixture of 

hexane isomers is commonly used for edible oil extraction. The amendments to the Clean 

Air Act listed normal hexane as a hazardous air pollutant. No new solvents have been 

cleared for commercial edible oil extraction to date. A significant portion of the 

nutritional oil components is lost during the conventional refining processes. There is a 

great need for development of new and environmentally benign processing techniques 

which will facilitate vegetable oil refining while sustaining the nutritional components 

naturally present in the edible oils while reducing the negative impact of oil processing 

on the environment.  
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1.2 HYPOYTHESIS 

 Supercritical fluid technology can be utilized to extract and process wheat germ 

oil to obtain high quality products that are comparable or superior to that of 

conventionally extracted and processed wheat germ oil.  

 

1.3 OBJECTIVES 

 The main objective of this thesis is to examine the viability of supercritical fluid 

technology to extract and fractionate wheat germ oil. The specific objectives are as 

follows: 

i. Chemical characterization of wheat germ oil samples that have been extracted and 

refined through conventional methods. 

ii. Extraction and fractionation of wheat germ oil utilizing supercritical fluid 

technology and chemical characterization of the products. 

iii. Comparison of composition of wheat germ oil processed with supercritical fluid 

technology to that of the conventional products. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 VEGETABLE OILS 

 Vegetable oils have been and will continue to be a vital part of human nutrition. 

Although they have been used in food applications for hundreds of years, the full 

potential of vegetable oils has yet to be achieved. It is well known that excessive 

consumption of fats and oils is linked to obesity, certain cancers, and high levels of 

cholesterol in blood with consequent cardiovascular disease. On the other hand, the 

numerous health benefits of vegetable oils consumed as part of a balanced diet are only 

beginning to be explored.  

Lipids play essential roles in disease prevention and growth, serve as carriers for 

vitamins A, D, E, and K, and provide essential fatty acids such as linoleic and linolenic 

acids. Fats serve as thermal insulation for the body and protect internal organs. Lipids are 

also vital components of all cellular membranes, and precursors for compounds such as 

prostoglandins, steroid hormones, and bile acid. Vegetable oils are also carriers for other 

plant based biologically active compounds that have shown to be antioxidants, anti-

cancer agents, and show potential for prevention of chronic disorders such as 

cardiovascular diseases and diabetes. Tocopherols, phytosterols, policosanol, and 

phosphatidylcholine (PC) are some of compounds naturally present in vegetable oils and 

posses disease treatment and prevention properties. Health benefits of these compounds 

will be discussed in detail later in this chapter. 

Since many compounds in oil seeds already have proven nutritional benefits, there 

are great possibilities for using them to develop new functional vegetable oils. Vegetable 
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oils containing enhanced levels of beneficial active ingredients could have a substantial 

impact on human health considering the amount of cooking and salad oils consumed in 

most industrialized countries.  

 

2.2 WHEAT 

Wheat grain consists of endosperm, bran, and germ, which account for 81 to 84 

%, 14 to 16%, and 2 to 3% of the grain, respectively (Atwell 2001). Commercial milling 

of wheat into flour aims at the maximum extraction of the endosperm with the minimum 

possible contamination by bran and the germ, which form the by-products of the flour 

milling industry. 

Wheat germ is a unique source of highly concentrated nutrients. It offers three 

times as much protein of high biological value, seven times as much fat, fifteen times as 

much sugar, and six times as much mineral content when compared with flour from the 

endosperm (Atwell 2001). In addition, wheat germ is the richest known source of α-

tocopherols (vitamin E) of plant origin and also a rich source of phytosterols, 

policosanols, thiamine, riboflavin, and niacin (Atwell 2001).  

 

2.2.1 Wheat Milling 

 Before any of the advantages of wheat germ oil can be utilized, the germ must be 

separated from rest of the wheat kernel through a common process of dry milling. Three 

general operations are usually involved in this process: cleaning, tempering and milling. 

Cleaning removes unwanted materials; tempering softens the grain making it easier to 
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separate and grind; and milling involves grinding the wheat and isolating wheat 

components of  specific sizes (Atwell 2001).  

 Cleaning starts when wheat is unloaded from a truck, rail car, or ship and 

conveyed into a mill elevator. Although numerous machines exist to clean wheat, they 

are all classified based on separation by size, shape, density, and magnetism.  

 Tempering is the addition of predetermined amounts of water to wheat during 

specific holding periods (usually 12-18h). It toughens the bran, making it easier to 

separate from germ and endosperm. Tempering also softens the endosperm, allowing it to 

break apart with less force. Temperatures lower than 50°C are employed during 

conditioning to ensure that the functionality of the flour components is maintained. 

(Atwell 2001). 

 At this point, the wheat is ready for milling and starts through the various systems 

in the mill Appendix I, (Figure 1). The first machine in almost every mill is the roller 

mill. A small distance called the “gap” separates two rolls, one rotating clockwise and the 

other counterclockwise. One of the rolls usually rotates faster than the other one. 

Consequently, at the nip, the rotation of the rolls is in the same direction and the wheat 

experiences a shearing action as well as a crushing action. The first roller mills are 

employed in the break system. This is the part of milling designed to remove the 

endosperm from the bran and the germ. The germ is pliable and tends to flatten when it 

goes through the rollers. Bran particles are usually in the form of low-density small 

flakes. These properties allow millers to separate the germ and bran fractions from the 

endosperm fraction. (Atwell 2001). In order to understand what is happening to the wheat 

germ and its oil, the storage conditions of the wheat prior to milling must be evaluated. 
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The moisture content of wheat varies with relative humidity and for practical purposes 

wheat stored during commercial distribution is maintained at 14% moisture or below. 

Usually grain is stored in silos or elevators, but modern practices also include the use of 

air tight bunkers, which can be flushed with carbon dioxide or nitrogen to reduce insect 

infestation and lower the rate of respiration (Atwell 2001). 

 

2.2.2 Extraction 

After the germ has been separated and collected the oil needs to be extracted. 

There are several methods for oil extraction that all have their advantages and 

disadvantages.  

Mechanical expression (pressing) and organic solvent extraction are both being 

used for commercial extraction of wheat germ oil (WGO). Solvent extraction is by far the 

most widely used method to extract oil (Woerfel 1995). A mixture of hexane isomers 

containing about 60% n-hexane is the choice of solvent for commercial vegetable oil 

extraction. The residual oil content of solvent defatted wheat germ can be as low as 1 %, 

(w/w). In general, conventional methods have a tendency to generate crude extracts 

consisting of deteriorated constituents or to prematurely remove volatile components.  

Pressing recovers only 50 %, (w/w) of the WGO. Mechanical pressing of oil is 

considered only when very high purity wheat germ with very low bran contamination is 

available. The extract yield using various solvents are listed in Table 1 (Appendix II) 

(Barnes 1982). It is apparent from this data  that yields are variable even when the same 

solvent is used: this is probably partly due to the degree of contamination of the germ 
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with bran, which usually contains not more than 5% oil, and partly to the variety of wheat 

(Barnes 1982). 

 

2.2.3 Wheat Germ Oil Refining 

 Although WGO is often used in its crude form, refining improves the quality and 

stability of the oil. Degumming, neutralization, bleaching, and deodorization are typical 

refining steps of vegetable oil processing. Crude WGO often has very high phospholipid 

(PL) (1428 ppm PL) content (Wang and Johnson 2001). WGO needs to be degummed 

(phospholipids removal) at high temperatures and high shear for an extended time as 

compared to that for the typical vegetable oils to maximize PL hydration. Even though 

PL, specifically PC, has beneficial health effects for humans they are removed from the 

crude oil during the degumming process. PLs tend to precipitate out in the oil during the 

storage and have adverse effects on frying operations due to their emulsification 

properties (Wang and Johnson 2001).   

The free fatty acid (FFA) content of the crude oil is usually very high and quite 

variable (5-25% is typical), depending upon conditions of germ separation, germ storage, 

and oil extraction. FFA often contributes to bitter and soapy flavor in food. With such 

high FFA content, physical refining (steam deacidification) would be appropriate 

provided that the phosphorous content could be reduced to a low level (<100 ppm). 

Chemical neutralization of FFA in WGO may need excess alkali treatment (Wang and 

Johnson 2001). 

WGO is usually dark-colored and may have strong odor and flavor depending on 

the oxidative condition of the oil. WGO bleaching requires more bleaching earth than that 
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of the typical vegetable oil refining. The bleached WGO may contain higher amount of 

FFAs than that of the neutralized oil, because silica and bleaching earth used for 

bleaching process are acidic in nature, and residual soap left in the neutralized oil may be 

converted back to FFAs under these conditions. The acidic bleaching earth may also 

cause hydrolysis of triacylglycerides.  The residual FFAs and odor compounds in the 

WGO are removed during the deodorization process. More FFAs are removed from 

WGO at higher deodorization temperatures and increased residence time (Wang and 

Johnson 2001). Tocopherol content of the WGO is significantly reduced during the high 

temperature deodorization process. A vegetable oil refining process that minimizes 

tocopherol removal is highly desirable. 

 

2.3 SUPERCRITICAL FLUID TECHNOLOGY 

2.3.1 Extraction 

Supercritical carbon dioxide (SC-CO2) extraction is a relatively new technique 

studied for oilseed processing. Although supercritical fluids (SCFs) were discovered 

more than 100 years ago, it wasn’t until the 1970s that they were used commercially to 

decaffeinate coffee. Since then, SCFs have been used successfully to extract compounds 

from a variety of complex materials through manipulation of system pressure and 

temperature. A SCF can be defined as a substance that has undergone a phase change 

encountered upon conditions above its critical point for temperature and pressure. SCFs 

possess physical properties (density, viscosity and diffusivity) that are intermediate 

between liquids and gases. Near the critical point of a fluid, minute changes in pressure 

or temperature significantly alter the physicochemical properties of the SCF. This is 
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especially important for synthetic applications, in which reaction conditions (e.g., 

selectivity, rates) may be accurately manipulated. Such reaction control is impossible 

using traditional organic solvents. Furthermore, many organic solvents such as 

halogenated hydrocarbons (e.g., chloroform, dichloromethane) are being phased out of 

use and benign replacements are being developed because of their deleterious effects on 

the environment and/or health (Anonymous 2002). 

The limiting property of SC-CO2 is that it is only capable of dissolving non-polar 

solutes. However, the addition of small amounts of a co-solvent such as acetone or 

incorporation of emulsifiers into the supercritical phase has been shown to significantly 

improve the solubility of relatively polar solutes. 

 Several research studies reporting SC-CO2 extraction of WGO have been 

published (Taniguchi and others 1985; Gomez and de la Ossa 2000; Dunford and 

Martinez 2003; Panfili and others 2003). Taniguchi et al. (Taniguchi and others 1985) 

reported that WGO solubility in SC-CO2 was 0.35 % (w/w) at 40oC and 200 bar. SC-CO2

extracted oil has a lighter color and contains less phosphorus than that of the hexane 

extracted oil. The α- and β-tocopherols contents of SC-CO2-extracted oil were found to 

be similar to those of hexane-extracted WGO (Taniguchi and others 1985; Dunford and 

Martinez 2003). Gomez and Ossa (Gomez and de la Ossa 2000) reported that optimum 

conditions for WGO extraction were 150 bar and 40˚C and solvent flow rate of 1.5 L/min 

(at standard temperature and pressure). Tocopherol content in the SC-CO2 extracted oil 

was higher as compared to that of the hexane extracted oil. According to Panfili et al. 

(Panfili and others 2003) FFA content and peroxide value of the oils collected during the 

first 45 min of extraction were higher than that of the oil fractions collected at the later 
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stages of the process. Similar fractionation was also reported for tocopherols. WGO 

collected during the initial stages of SC-CO2 extraction had a higher tocopherol content 

that that of the fractions collected at later stages of the extraction (Dunford and Martinez 

2003). The most abundant carotenoid in SC-CO2 extracted WGO was lutein, followed by 

zeaxanthin and β-carotene. A larger amount of carotenoids was extracted toward the end 

of SC-CO2 extraction (Panfili and others 2003).  

 Extraction of wheat germ with liquid and SC-CO2 (50-400 Bar) at relatively low 

temperatures (10-60oC) indicated that pressure had a significant effect on the oil yields 

while the effect of temperature was insignificant (Taniguchi and others 1985). Dunford 

and Martinez (Dunford and Martinez 2003) studied the effect of pressure and temperature 

on the SC-CO2 WGO extraction yields in the range of 100-550 Bar and 40-80oC. Yields 

of SC-CO2 extracts varied significantly with temperature and pressure in the 2 to 20 %, 

(w/w) range. Hot hexane (Soxhlet) extraction yielded 11%, (w/w) WGO. These results 

indicate that SC-CO2 at high pressure extracts some of the wheat germ components, 

which are not soluble in hexane. At higher temperature and pressures moisture can be co-

extracted with oil resulting in higher extraction yields (Dunford and Temelli 1996; 

Dunford and others 1998). The highest SC-CO2 extraction yield was obtained at the 

highest pressure used (550 Bar). The temperature dependence of the extract yield was 

more pronounced at higher temperatures (60 and 80oC) and the lowest pressure examined 

in that study (100 Bar). The fatty acid composition of the extracts was not affected by 

temperature, pressure and the extraction method (Dunford and Martinez, 2004). 

Supercritical carbon dioxide extracted oil samples had similar fatty acid composition to 

that of the Soxhlet extracted oil (Dunford and Martinez, 2004). These results indicated 
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that SC-CO2 technology can be utilized for extraction and fractionation of WGO 

components to obtain products with high quality. 

2.3.2 Supercritical Fractionation 

Supercritical fluid extraction from a liquid phase can be carried out utilizing a 

vertical column. This process is also referred to as supercritical fluid fractionation (SFF). 

The liquid phase may be a liquid mixture, or a solution containing solutes. The process 

can be carried out in a semicontinuous or continuous mode. In general two fractions 

collected, one from the top of the column (extract and/or light phase) and the second 

fraction from the bottom of the column (raffinate and/or heavy phase) during the 

fractionation process. The advantage of an SFF is that it can be used as a continuous 

process, which tends to be more efficient than a batch process if properly designed. 

 The literature on utilization of SFF for vegetable oil processing is relatively 

limited as compared to many other topics that focus simply on the use of supercritical 

fluid extractions. The fundamentals and mathematical modeling of SFF technique was 

reviewed by Clifford (Clifford 1999). The studies designed to produce nutraceutical 

ingredients from vegetable oils and/or their by-products using SFF indicated viability of 

this technique. A U.S. patent describes enrichment of phytosterols in rice bran oil using a 

columnlar SC-CO2 fractionation process (Dunford and King 2004). The SFF product 

contained free and fatty acid esters of phytosterols and oryzanol (Dunford and King 

2001). When a continuous counter current SFF was used for deacidifaction of rice bran 

oil at 138 Bar and 80oC, FFAs were effectively removed without any oryzanol loss in the 

extract fraction (Dunford and others 2002). Oryzanol and phytosterol fatty acid ester 

content of the raffinate fraction increased during the deacidification process. Hexane-
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extracted RBO was used for these studies; however, oil extracted with SC-CO2 can also 

be used as a starting material. When SC-CO2 extracted corn fiber oil, which is also rich in 

phytosterol esters (especially oryzanol), was fractionated using SFF technique it was 

possible to obtain phytosterol-enriched TG fractions (>15% phytosterol content) (King 

and others 2000). 

King and Dunford were also able to obtain oil fractions with 31% phytosterol and 

30% TG from soybean oil deodorizer distillates using a pilot scale SFF unit (King and 

Dunford 2001). Fractionation of fish oil (Nilsson and others 1988), milk fat (Yu and 

others 1992), shark liver oil (Catchpole and von Kamp 1997), fatty acid ethyl esters 

(Fleck and others 1998) and separation of tocopherols from deodorizer distillates 

(Brunner and others 1991) using SFF technique have been also reported. 

 

2.4 CHEMICAL COMPOSITION OF WHEAT GERM OIL 

 Wheat germ oil has a number of nutritional and health benefits such as reducing 

plasma and liver cholesterol levels, improving physical endurance/fitness, and possibly 

helping to delay effects of aging (Kahlon 1989). These effects are attributed to the high 

concentration of bioactive compounds present in the oil. Hexane extracted WGO consists 

of about 56 % linoleic acid (18:2 n6), which is an essential fatty acid (Dunford and Zhang 

2003). Total unsaturated and polyunsaturated fatty acid (PUFA) content of WGO is about 

81 and 64 %, respectively. WGO processing is very challenging because of its high 

PUFA content. Data on WGO PLs is scarce. It has been reported that PC represents about 

40-60% of total PLs in dissected wheat germ. Phosphatidylethanolamine (PE) (9-15%) 
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and phosphatidylinositol (PI) (13-20%) are also present in significant amounts (Hargin 

and Morrison 1980). 

 Wheat germ oil is quite rich in unsaponifiable compounds, in particular 

phytosterols and tocopherols. Wheat germ oil is one of the richest natural sources of α-

tocopherols. Wheat germ oil has been reported to improve human physical fitness and 

this effect is attributed to its high (policosanol) POC, specifically its high octacosanol 

(OC) content. The POC contents and compositions of wheat grain fractions were studied 

by Irmak and Dunford (Irmak and Dunford 2005; Irmak and others 2005). The PC 

content of wheat bran was higher than that of the germ, shorts and flour. Tetracosanol 

(C24), hexacosanol (C26) and OC (C28) were the major POC components in all the 

varieties. WGO contains higher amount of phytosterols than do the other common 

commercial oils (Itoh and others 1973). Sitosterol (60-70%) and campesterol (20-30%) 

are the two major phytosterols present in WGO (Anderson and others 1926; Itoh 1973; 

Itoh and others 1973). 

 



14

CHAPTER 3 

MATERIALS AND METHODS 

 

3.1 OIL SELECTION AND SAMPLE PREPARATION 

 Commercial wheat germ oil (WGO) samples were donations from Vitamins, Inc. 

(Chicago, IL). Soybean oil (Oil S) was purchased at a local grocery store. All the oil 

samples were stored in sealed containers at 4oC away from the light until further use. 

Four WGO samples consisted of crude (WGO A), two batches of refined (WGO B, WGO 

C) and concentrated WGO (WGO D). The hexane extracted crude WGO (A) was used 

without further purification except that it was centrifuged at 14 000 rpm, 4oC for 30 min 

and vacuum filtered through a #2 Whatman filter paper before the analytical tests and 

SFF. The WGO B was hexane extracted and further processed by using conventional 

refining processes. The oil sample C was also hexane extracted and had undergone 

physical refining (molecular distillation). The last WGO sample (D) was concentrated in 

tocopherols. Wheat germ samples for SC-CO2 extraction were supplied by ADM Milling 

Co. (Enid, OK, U.S.A.). Germ was obtained from milling of winter wheat (20% Kansas, 

80% Oklahoma-grown winter wheat). The further details of the refining processes are 

propriety information and were not available to us. WGO samples were extracted and 

refined accordingly prior to our receiving them. Samples were used as is with no 

pretreatment unless stated otherwise.  
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3.2 SUPERCRITICAL FLUID PROCESSING 

3.2.1 Extraction 

 The SC-CO2 extraction of wheat germ was carried out at the USDA-Agricultural 

Research Services, National Center for Agricultural Utilization Research in Peoria IL. A 

picture and schematic diagram of the extraction unit are given in Picture 1 and Figure 1, 

respectively. The extraction was conducted in four parallel runs with three vessels (4 

liters each) in series. Each vessel contained 3.3 lbs wheat germ. The total of 9.9 lbs of 

wheat germ was extracted at 80oC and 10,000 psi using 35 lbs CO2 (measured at 

atmospheric conditions). The CO2 flow rate was 4 lbs/min. The extract was collected in a 

receiver maintained at 60oC and 1600 psi. The recovery of the extract was accomplished 

by pressure drop across a back pressure relief valve followed by condensation and 

recovery of the precipitate. Extraction was conducted for a total of 45 min. The extraction 

was assumed complete when no more extract was collected in the receiver. 

 

3.2.2 Fractionation 

 The SFF experiments were conducted at the Food and Agricultural Products 

Research and Technology Center’s pilot plant facility on the Oklahoma State University 

campus. The SFF column which was designed in-house was 10 ft long and 1 inch inner 

diameter (Temco, Inc., Tulsa, OK). A schematic flow diagram and a picture of the SFF 

system are shown in Figure 2 and Picture 2. The fractionation column had a preheater and 

four independently controlled temperature zones. The temperature of the main column 

was maintained by a HS-4ZC Heating System (Temco, Inc., Tulsa, OK). The heating 

system consisted of a Watlow temperature controller which utilizes cascade style heating 
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(Watlow Electric Manufacturing Company. Winona, MN). The temperature of the 

column was maintained automatically at ±2oC of the set point by WatView Run-Time 

software (Watlow Anafaze, Inc., 1999-2002, Version: 2.3.7, Watsonville, CA) run on a 

Dell Inspiron 8100 laptop computer. The pre-heater set temperature was maintained by a 

PID type controller (Model TC-11-K Model, Watlow Electric Manufacturing Company. 

Winona, MN). The temperature sensing was from type-K thermocouples inserted inside 

and on the surface of the vessels. The main column was packed with protruded 316 SS 

packing material (0.16-inch Pro-Pak, Cannon Instrument Company, State College, PA). 

There were two separate ports for CO2 and raffinate removal from the bottom of the 

column. The lower section of the column (about 12 inches) below the inlet was used for 

raffinate collection. The fractionation experiments were carried out in a continuous 

countercurrent mode of operation. Initially, column was pressurized with CO2 (Research 

Grade, min purity 99.998%, Matheson Trigas, Houstan, TX) and allowed to equilibrate at 

desired temperature and pressure. An air driven gas booster pump, (Model   ACT-62/152, 

Haskel Inc., Burbank, CA) was used to deliver CO2 into the column. The pressure 

fluctuations in the column was minimized by placing a high pressure gas receiver 

(volume 34.8 cubic inches, Model # 157-12, Haskel Inc., Burbank, CA) and a 

backpressure valve (Model 26-2091B44S172, Tescom Corporation, Elk River, MN) after 

the booster pump and before the column. Carbon dioxide entered the column from the 

bottom of the column just above the raffinate reservoir. Oil was introduced from the top 

of the column by a syringe pump (ISCO model 100DX pump, Teledyne Isco, Inc. 

Lincoln, NB) controlled by an ISCO SFX 200 controller (Teledyne Isco, Inc. Lincoln, 

NB). Solute-laden SC-CO2 rose upwards and recovered as the extract fraction from the 



17

top of the column. Compounds with lower solubility in SC-CO2 than that of the extract 

and/or components with larger molecular weight moved downwards and collected as 

raffinate from the bottom of the column. The extract and raffinate fractions were 

expanded through micrometering valves (Part no.30VRMM4812, Autoclave Engineers, 

Inc., Erie, PA) and the precipitate was collected into collection vials cooled by two 

Microban ICE-PAKs (Fisher Scientific, Pittsburgh, PA). Then CO2 passed through a 

custom gas filtration device (a tube filled with glass wool), a flow indicator, and finally 

through a dry gas test meter (Model DMT-200A-3, American Meter Company, 

Philadelphia, PA) for recording the total amount CO2 used for the fractionation process.  

 Fractionations of crude WGO were carried out at 2000 psi, 80oC and 4 and 8 L 

CO2/min flow rates. Oil was introduced to the column at a constant flow rate of 0.3 

ml/min giving a solvent/feed ratio of approximately 25:1 and 50:1 (w/w). Fractionations 

of SC-CO2 extracted WGO were performed under the same conditions but only at one 

flow rate, 8 CO2 L/min (solvent/feed ratio = 50:1). The total run time for the fractionation 

experiments was 6. The system was allowed to reach steady state conditions for the first 4 

h. The steady state conditions in the column were confirmed by attaining constant weight 

and composition of the extract fraction collected in 30 min intervals through several 

testing fractionations over various time intervals. The data on the fractionation 

experiments reported in this thesis were collected in 1 h intervals after steady state 

operation was established in the  column (5th and 6th hour of the fractionation runs). 

These samples were characterized for their chemical composition. Insoluble oil 

components that had collected in the reservoir were drained every half an hour. After the 

completion of each experimental run the column was depressurized and residual oil was 
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drained off. The column was cleaned between runs at a pressure of 5000 psi and 

temperature of 80oC by flowing CO2 at 8-10 L/min flow rate for more than 6 h.  

 

3.3 ANALYTICAL METHODS  

3.3.1 Moisture Analysis 

 Moisture content of oil samples was determined by utilizing a Karl Fischer 

Titrator (758 KFD Titrino, Metrohm, Brinkman Instruments, Inc. Westbury, NY). The 

34811 Hydranal Titrant-2 was used as a titrant and the 34812 Hydranol Solvent was the 

component solvent. Both solvents were purchased from Sigma (Sigma-Aldrich 

Corporation, St. Louis, MO).  

 

3.3.2 Free Fatty Acid Determination 

 The FFA content of the oil samples were determined by utilizing a colorimetric 

method (Lowry and Tinsley 1976). Cupric acetate-pyridine solution was prepared by 

adjusting the pH of the filtered 5% (w/v) aqueous cupric acetate (99.9% purity, RJ Baker, 

Phillipsburg, NJ) solution to 6.0-6.2 using pyridine (99% purity, Fisher Chemicals, 

Fairlawn, NJ). About 0.03-0.05 g oil samples are weighed into a 5 mL volumetric flask 

and brought to 5 mL volume with benzene (ACS grade, EMD Manufacturing, Savannah, 

GA). Color development was initiated by addition of 1 mL cupric acetate-pyridine 

reagent into oil-benzene mixture. After mixing and centrifugation absorbance of the top 

layer was read at 715 nm using a UV/VIS spectrophotometer (Beckman DU 520, 

Fullerton, CA). FFA contents of the samples were determined from the calibration curve. 
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Oleic acid (90% purity, Aldrich, Milwaukee, WI) was used for the preparation of 

standard curve.  

 

3.3.3 Fatty Acid Composition 

 Fatty acid compositions of the oil samples were determined by gas 

chromatography (GC). The GC unit was a HP 6890 Plus system equipped with a flame 

ionization detector (FID) (HP Company, Wilmington, DE). Methylation of the fatty acids 

was carried out according to the AOCS Official Method Ce 2-66 (AOCS 1994). A 

Supelco SP-2560 fused silica capillary column with 100 m x 0.25 mm 0 0.2 µm film 

thickness (Supelco, Bellefonte, PA) was used for fatty acid analysis. The helium carrier 

gas flow rate was 19 cm/s. The injector temperature was maintained at 250oC. A 

temperature program with total run time of 45 min was used. The initial column 

temperature 140oC was maintained for 5 min. Then oven temperature was increased to 

240oC at a 4oC /min ramp rate and kept constant at this temperature for 15 min. The 

detector conditions were as follows: temperature 260oC, H2 flow 40 mL/min, air flow 400 

mL/min and make-up gas (He) 30 mL/min. Oil samples (1 µL) were injected by an 

autosampler (HP 7683, HP Company, Wilmington, DE). Peak areas were calculated and 

data collection was managed using an HP Chemstation (Revision. A.09.01, Agilent 

Technologies, Palo Alto, CA). The split ratio was 150:1. Fatty acid peaks were identified 

using a standard 36 FAME mixture (Supelco 37 component FAME mix, Supelco, 

Bellefonte, PA).. Undecanoic acid (11:0) was used as an internal standard for 

quantification.  
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3.3.4 Tocopherols  

 Tocopherol content of the oil samples were analyzed by using an HPLC method 

(Katsanidis and Addis 1999). A normal phase HPLC column, Zorbax RX-SIL (5 µm 

particle size, 4.6 x 250 mm, Agilent Technologies, Santa Clara, CA) was used for 

separation of tocopherol isomers. Analytical separation of oil components on the column 

was achieved by using a mobile phase consisting of hexane: isopropyl alcohol (99:1 v/v) 

on isocratic mode. Total run time and flow rate were 15 min and 1.3 mL/min, 

respectively. The HPLC system (Alliance 2690 Waters Corp., Milford, MA) consisted of 

a separations module (Model 2695), a Photodiode Array Detector (PDA) (Model 2996, 

Waters, Milford, MA) and a Multi Wavelength Fluorescence Detector (FD) (Model 2475, 

Waters, Milford, MA). The oil samples were dissolved in hexane (0.025 mg/mL) and 

filtered through a 0.2 µm filter (Iso–Disc filter, Supelco, Bellefonte, PA). The 

fluorescence detector was set at 290 nm excitation wavelength and 400 nm emission 

wavelength. The fluorescence detector gain was set for 1. The column temperature was 

35oC. The injection volumes of the both, individual standards and the oil sample were 2 

µL. An external calibration curve was prepared for each tocopherol standard (α, ß, γ and 

δ tocopherol standards, CN Biosciences Inc., La Jalla, CA) to calculate the amount of 

tocopherols present in the oil sample.  

 

3.3.5 Policosanols and Phytosterols 

 Oil samples were hydrolyzed by refluxing with 100 mL of 1.0 N NaOH in 

methanol for 45 min. The mixture was cooled and deionized water was added. Then the 

solution was extracted with HPLC grade diethyl ether (Burdick & Jackson, Muskegon, 
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MI). The extraction was repeated three times using equal volumes of diethyl ether. The 

ethyl ether phase collected from three extractions was combined and washed with 

deionized water until neutrality. The ether extract was evaporated to dryness under 

nitrogen using a Reacti-Vap evaporation unit (Model 18780, Pierce, Rockford, IL) after 

drying over anhydrous sodium sulfate (ACS grade, EMD Chemicals Inc., Gibbstown, 

NJ). The residue was transferred to a 1 mL volumetric flask and 0.5 mL chloroform and 

250 µL silylation reagent (MSTFA) were added. Then the solution was heated at 60°C 

for 15 min for derivatization. Chloroform was added to reach a total sample volume of 1 

mL before analysis. 

Trimethylsilyl derivatives of policosanols and phytosterols were analyzed using a 

HP 6890 Series Gas Chromatography (GC) system coupled with a 5973 Network Mass 

Selective Detector (Agilent Technologies, Palo Alto, USA). A fused silica capillary 

Equity-5 (30 m x 0.25 mm x 0.5 µm film thickness) from Supelco (Bellefonte, USA) was 

used for the analysis. Oven temperature was programmed from 150°C to 320°C with a 4 

°C/min heating rate and maintained at 320°C for 15 minutes. Helium was used as the 

carrier gas at a flow rate of 1.0 mL/min. The inlet temperature was 300°C. Mass 

Spectrophotometer (MS) parameters were as follows: MS transfer line 280°C, ion source 

230°C and MS quadruple temperature 150°C. The ionization energy was 70 eV. The scan 

range and rate were 100-600 AMU and 2 scans/sec, respectively. 1 µL of sample was 

injected into the GC-MS by an autosampler (HP 7683, HP Company, Wilmington, DE). 

The split ratio was 1:10. The data collection and analysis were managed using HP 

Chemstation (Enhanced Chemstation G1701 DA Version D.00.00.38, Agilent 

Technologies, Palo Alto, CA). The policosanol and phytosterol compositions of the 
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samples were identified by direct comparison of their chromatographic retention times 

and the mass spectra with those of the authentic compounds. The peaks were also 

confirmed with NIST/EPA/NIH Mass Spectral Library (Version 2.0). 

 

3.3.6 Phospholipids 

 Phospholipid standards L-α-Phosphatidylcholic (PC) from soybean, 3-sn-

Phosphatidic acid (PA) sodium salt from egg yolk lecithin, Phosphatidylserine (PS) from 

bovine, and L- α-Phosphatidylethanolamine (PE) were purchased from Sigma Inc. (St. 

Louis MO). Plant based Phosphatidylinositol (PI) was purchased from Matreya (State 

College, PA). Standards were dissolved in chloroform. All solvents utilized for HPLC 

mobile phase were HPLC grade and filtered using a GH Polypro (47 mm, 0.45 µm) 

hydrophilic polypropylene membrane filter (Pall Life Sciences, Ann Arbor, MI) before 

use.  

 A normal phase silica column, µPorasil 10 µm (3.9 mm i.d x 300 mm) from 

Waters (Milford, MA) was used for the analytical separation of the compounds. The 

mobile phase consisted of two mixtures: A: Hexane: Water: Isopropyl alcohol (40:58:2) 

and B: Hexane: Water: Isopropyl alcohol (40:50:10). The solvent gradient system was as 

follows: 100% A to 100% B in 7 min, then held for 6 minutes followed by returning to 

100% A in 1min and held for 11 min. Total run time was 25 min. The detector system 

consisted of a Photodiode Array Detector (PDA) (Model 2996, Waters Milford, MA) in 

series with an Evaporative Light Scattering Detector (ELSD) (Model 2000, All tech 

associates Inc., Deerfield, IL). The ELSD set points were as follows: nitrogen flow rate 

3.5 mL/min, impactor ON and drift tube temperature of 80oC. The oil samples were 
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dissolved in chloroform and filtered through a 0.2 µm Iso Disc filters (Supelco, 

Bellefonte, PA) for further analysis. Identification and quantification of chromatographic 

peaks were based on external standard curves prepared for individual standards.  

 

3.3.7 Analysis of Free and Fatty Acid Esters of Phytosterols  

 Analytical separation of triacylglycerides, FFA and free and fatty acid esters of 

phytosterols in oil samples were achieved by using an HPLC method developed by 

Moreau et al. (Moreau and others 1996). A LiChrosorb Diol, 5 µm, 100 x 3.0mm 

(Chrompack Inc., Raritan, NJ) column was used for the analysis. The mobile phase 

consisted of the following: A:Hexane: Acedic Acid (1000:1), B: 2-Propanol.  The solvent 

gradient system was as follows, 100% A for 8 min, 100% A to 99% A (1% B) in 2 min, 

hold for 20 min, from 99% A  to 100% A in 1 min, and hold for 29 min, resulting in 60 

min total analysis time. The mobile phase flow rate was 0.5 mL/min. Oil samples were 

dissolved in HPLC grade hexane.  

 

3.4 STATISTICAL ANALYSIS 

All fractionation runs and analyses were carried out at least in duplicate and in 

randomized order with the mean values being reported. Analysis of variance (ANOVA) 

of the results was performed using the General Linear Model procedure of SAS 

(Software Version 8.1. SAS Institute Inc., Cary, NC). 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Fatty Acid Composition 

 The abbreviations used for oil samples were defined in Table 4.1. Fatty acid 

composition of WGO extracted and refined through various methods is shown in Table 

4.2. Linoleic acid (18:2), which is an essential oil, consisted of 57% to 58% of the total 

fatty acids in WGO samples examined in this study. Although SFE WGO had 

significantly higher 18:2 content (59.7%) (p<0.05) than that of the other oils, the 

difference was not large enough to affect the oil quality for practical applications. 

Linoleic oil content of the soybean oil (54%) was significantly lower than the WGO oil. 

Palmitic, oleic and linolenic acids were also present in significant amounts in all the oils.  

Saturated fatty acid content of SFE WGO was lower (about 16%, w/w) than the other oils 

(>17%). Mono and polyunsaturated oil contents of SFE WGO were about 23% and 61%, 

w/w, respectively. Relatively lower saturated fatty acid and higher monounsaturated fatty 

acid content of SFE WGO indicates that SFE technique produces a product that is 

healthier and more stable as relative to the products obtained from conventional hexane 

extraction. The fatty acid composition of WGO reported in this study is in agreement 

with the data published in literature (Dunford 2005).  

 

4.2 Free Fatty Acid Composition 

 Free fatty acid levels of WGO samples are given in Table 4.3. Hexane and SFE 

extracted WGO contained substantial amount of FFAs, 7.9% and 6.2%, respectively. Free 

fatty acids contribute to bitter and soapy flavor in foods hence they are undesirable in 
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edible oils. FFAs are removed during oil refining process. Both physical and chemical 

refining processes reduced FFAs content of the oil to 0.4%. Refined soybean oil had 

significantly lower FFA (0.03%) than that of the WGO. This result was expected because 

of two reasons: first, crude soybean oil contains only 1-2% FFA as compared to >6% 

FFA in WGO. The second reason is that a gentler refining is usually preferred for WGO 

to retain bioactive oil components in the final product.    

 

4.3 Tocopherol Composition 

 Tocopherol compositions of WGO and soybean oil are listed in Table 4.4. All the 

WGO samples examined in this thesis contained significantly higher amounts of 

tocopherol than that of the refined soybean oil. The majority of the tocopherols in WGO 

was in the form of α-tocopherol (>90% of the total tocopherols). As expected WGO D 

showed the highest levels of tocopherols (109.7 mg/g) since it was a special product with 

high tocopherol content. β-Tocopherol was the second most abundant tocopherol in the 

WGO samples. SFE WGO contained significantly higher amount of tocopherols than 

those of the commercial WGO samples. γ-Tocopherol was the main isomer in soybean 

oil. Similar tocopherol contents and compositions were reported in the literature for 

WGO and soybean oil (Dunford 2005).  

 

4.4 Phytosterol Composition 

 Phytosterol contents of oil samples are shown in Table 4.5. Hexane and SC-CO2

extracted WGO contained similar amounts of total phytosterols (about 3.7 mg/g). 

Although refined WGO samples contained slightly lower phytosterol content than those 
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of the crude oil, differences were not statistically significant (p>0.05). Tocopherol 

enriched WGO (WGO D) and soybean oil had significantly higher and lower total 

phytosterol content, respectively, than both crude and refined WGO oils. β-Sitosterol was 

the most predominant (78-85% of the total phytosterols) phytosterol with campesterol 

being the second and stigmasterol being the least prevalent in all WGO samples. WGO D 

showed the highest levels of β-sitosterol (6.63 mg/g oil). SFE WGO also had 

significantly higher β-sitosterol amount (about 2.94 mg/g) than the other WGO samples 

except WGO D.  Very high campesterol and β-sitosterol contents of WGO D indicate that 

the process used for tocopherol concentration also results in phytosterol enrichment in the 

final product. Campesterol (0.61mg/g) concentration of SFE WGO was similar to that of 

hexane extracted crude WGO (0.673 mg/g). However, SFE WGO did display the lowest 

level of stigmasterol of all the WGO samples. These differences might be due to 

processing techniques used for extraction and refining processes and/or wheat varieties 

used for processing. All WGO samples tested in this study showed greater levels of 

phytosterols than soybean oil.  

 

4.5 Phospholipid Composition 

 Hexane extracted Crude WGO (WGO A) contained the highest amount of 

phospholipids among the samples tested in this study (Table 4.6). However, total 

phospholipids content of crude WGO was lower than the literature values (Wang and 

Johnson 2001). This is due to the fact that WGO A was stored in a cold room until the 

chemical tests. Significant amount of precipitate was formed during the cold storage. 

WGO A was centrifuged and filtered prior to chemical characterization. Hence a 
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significant portion of the phospholipids and wax components were removed with the 

precipitate. SFE WGO did not contain any detectable amount of phospholipids. Similar 

results have been reported in the literature for oils extracted with SC-CO2 (Dunford 

2004b). This is due to the low solubility of phospholipids in SC-CO2. Phospholipid 

contents of refined oils were either very low or below the detection levels because these 

compounds are removed from the crude oil during the refining process (degumming 

step). Extraction of vegetable oils with SC-CO2 simplifies the refining process by 

eliminating degumming step. Total phosphatidylinositol (PI) + phosphatic acid (PA) 

contents of oil samples were given in this study because the HPLC method used for the 

analysis of phospholipids did not separate these two components on the analytical 

column. Commercial WGO contained high amounts of PI + PA (>60% of total 

phospholipids). It has been reported in the literature that high PA content in crude 

vegetable oils may be an indication of poor seed handling and extraction conditions 

(Wang and Johnson 2001). PA is a nonhydratable phospholipid and separation of this 

compound by water degumming is very difficult during the refining process. Although 

crude WGO contained about 20% phosphatidylcholine (PC), refined WGO samples did 

not have any detectable amount of PC indicating that refining process was very effective 

at removing this compound. 

 

4.6. Moisture Content 

 Moisture contents of oil samples were analyzed by using Karl Fisher method 

(Table 4.7). Water content of oil samples is an interest because it has been reported in the 

literature that SC-CO2 may extract significant amount of water depending on the 



28

extraction conditions and the moisture content of the feed material (Dunford and Temelli 

1996; Dunford and others 1998). As can be seen in Table 4.7, SFE WGO had 

significantly higher moisture content than those of the commercial WGO including 

hexane extracted crude WGO. These results are in agreement with data reported in 

literature. During the industrial scale SC-CO2 extraction of vegetable oils water would be 

separated in a high pressure separator prior to precipitation of lipids from CO2.

4.7 CHARACTERIZATION OF EXTRACTS FROM SUPERCRITICAL FLUID 

FRACTIONATION PROCESS 

 Both WGO A and SFE WGO were used for SFF experiments. Chemical 

characterization of the SFF products were carried out on products that were collected at 

5th and 6th h of the fractionation experiments after steady state was achieved in the 

system. Small amount of SFF extract was collected during the fractionation runs (0.04 g 

extract/1 h from WGO A at 4 L/min CO2 flow rate and 0.08 g extract/1 h from WGO A 

and 0.07 g extract/1 h from SFE WGO at 8 L/min CO2 flow rate) due to very low CO2

and oil flow rates. Increasing CO2 flow rate from 4 L/min to 8 L/min doubled the amount 

of extract collected under the same fractionation conditions, 2000 psi, 80oC and 0.3 

mL/min oil flow rate indicating that SC-CO2 was saturated under the experimental 

conditions. Although, further increase in solvent/feed ratio above 50:1 would improve the 

FFA removal from crude oils, higher CO2 flow rates were beyond our SFF system limits. 

Policosanol content of feed material and SFF products were below the detection limits of 

the method used for analysis. Policosanol in WGO A was removed during the 

centrifugation process before the SFF experiments. 
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4.7.1 Free Fatty Acids 

The main objectives of SFF process was deacidification of crude WGO (removal 

of FFA) using SC-CO2. This thesis also examined the effect of SFF on the bioactive oil 

components. The fractionation conditions (2000 psi and 80oC) were chosen based on the 

previous research studies carried out with other vegetable oils (Dunford and King 2004).   

It was shown that SC-CO2 was able to remove FFAs from crude oil very effectively when 

a fractionation column was used for processing. The extract fractions from SFF process 

contained over 77% FFA (Table 4.3). Increasing solvent (CO2)/feed (oil) ratio from 25/1 

to 50/1 did not improve the FFA removal efficiency significantly. This might be due to 

higher selectivity of SC-CO2 for other oil components under the chosen processing 

conditions. The process efficiency can be improved by lowering the system pressure, i.e. 

1500 psi. However, lower system pressure results in reduced extract amount. In this 

thesis our preference was to collect enough extract for chemical characterization of the 

product rather than maximizing FFA removal. Process optimization for SFF of WGO will 

be the subject of another research project. 

 

4.7.2 Lipid and Phytosterol Compositions  

 Oil samples were analyzed for their free phytosterol, fatty acid esters of 

phystosterols, FFAs and triglyceride concentrations before and after SFF process (Table 

4.8). FFAs consisted >90% of the lipids in the SFF extracts (fractions collected from the 

top of the column). Triglyceride content of the extracts was very low, about 2%, 

indicating that SFF process was very affective in removing FFAs while retaining 

triglycerides. Phytosterol contents (both free and fatty acid esters of phytosterols) of SFF 
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extracts were lower (2-4%) than that of the feed material (8-10%). These results indicate 

that phytosterols were retained in the raffinate fraction (product collected from the 

bottom of the column) with triglycerides. Higher solvent/feed ratio was beneficial for 

retaining phytosterols in the final product while removing FFAs with the extract fraction 

(Table 4.8). Increasing solvent/feed ratio from 25:1 to 50:1 resulted in significant 

reduction in phytosterol (both free and fatty acid esters) loss in the extract. Although 

there were statistically significant differences among the lipid and phytosterol 

compositions of SFF products from hexane and SFE extracted oils, the differences were 

not large enough to support a specific trend.  

 

4.7.3 Tocopherols 

 Tocopherol compositions of extracts collected during SFF are shown in Table 4.4. 

SFF extracts contained very low amounts of tocopherols (0.05 mg/g). These results 

indicate that tocopherols were retained with the triglycerides in the raffinate fraction. It 

appears that solvent/feed ratio did not have a significant effect on the extract tocopherol 

concentrations. Compositions of hexane and SFE WGO were similar, containing very 

low amount of α-tocopherol and no γ- and β-tocopherols. 
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CONCLUSIONS 

 This study examined pilot scale extraction and fractionation of WGO utilizing 

SC-CO2 as a solvent. The oil fractionation was carried out by using a pilot scale packed 

column. To best of our knowledge, this is the first study reporting SFF of WGO in the 

literature. Chemical composition of WGO products obtained from SFE and SFF 

processes were compared to those of commercial products. Soybean oil was used as a 

reference to demonstrate the potential of WGO oil as a functional food/oil containing a 

number of bioactive compounds with health benefits. This research study clearly 

demonstrated that both commercial and SFE WGO were rich in tocopherols and 

phytosterols and superior to soybean oil. It was also confirmed that nutritional 

composition of SFE WGO was at least similar (in some cases better) to that of the hexane 

extracted oil. SFE WGO does not contain phospholipids hence further refining of this 

product is simplified by elimination of degumming step. Furthermore, SFE WGO can be 

considered as high purity because of the lack solvent residues in the product. SFE WGO 

contained significantly higher amount of moisture than that of the hexane extracted oil. 

Moisture in the SFE WGO can easily be separated in a separator before precipitation of 

oil from CO2 in a second vessel. This study also illustrated that SFF process was a viable 

process to remove FFAs efficiently from both hexane and SFE extracted WGO while 

retaining bioactive oil components in the final product. Wheat is a major commodity 

throughout the central plains states and with growing interest in nutritional health and 

functionality of foods, wheat germ may soon become not simply a by-product of wheat 

milling, but a high value specialty product itself.  
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FUTURE RESEARCH 

 The focus of this study was to evaluate the potential of SFE and SFF for WGO 

extraction and refining. Chemical compositions of SFE and SFF products were compared 

with commercial oils to evaluate the nutritional quality of the oils. SFE and SFF 

processes need to be optimized for WGO extraction and refining including retentions of 

the compounds of interest before they can be applied to industrial scale operations. 

Determination of economic feasibility of SFE and SFF of WGO requires further research 

on current WGO market supply and demand trends and equipment costs. It is also 

important that efficacy of WGO products enriched in bioactive compounds, such as 

tocopherols and phytosterols, in treating certain diseases and maintenance of good health 

is studied by using cell cultures, animal studies and clinical studies. Screening of various 

wheat varieties for their oil content and composition of bioactive compounds would help 

to choose a specific variety for a desired application.  
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Table 4.1: Definition of the abbreviations used for wheat germ oil (WGO) samples 
processed utilizing different extraction and refining techniques. 

 
Abbreviation Sample Description 

WGO A Commercial hexane extracted crude wheat germ oil 

WGO B Commercial hexane extracted and refined (conventional chemical 
refining) wheat germ oil  

WGO C Commercial hexane extracted, and refined (physical refining, 
molecular distillation) 

WGO D Commercial hexane extracted, refined and concentrated in 
tocopherols 

SFE WGO Oil obtained from supercritical carbon dioxide (SC-CO2)
extraction of wheat germ at 80˚C and 10,000 psi 

Soybean oil Commercial hexane extracted and refined soybean oil 

SFF 1 
WGO A fractionated using supercritical fractionation (SFF) 
technique at 2000 psi, 80oC and 25:1 solvent to feed ratio 
(extract) 

SFF 2 
WGO A fractionated using supercritical fractionation (SFF) 
technique at 2000 psi, 80oC and 50:1 solvent to feed ratio 
(extract) 

SFF 3 
SFE WGO fractionated using supercritical fractionation (SFF) 
technique at 2000 psi, 80oC and 50:1 solvent to feed ratio 
(extract) 
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Table 4.2: Fatty acid composition (%, w/w) of WGO samples extracted and refined 
through various methods1 as compared to soybean oil. 

 

1 See Table 4.1 for the abbreviations. 
2 See the Nomenclatures section of this thesis for naming of the fatty acids (page XVI). 

a,b,c,d,eMeans in the same row with the same letter are not significantly different at p>0.05. 
 

Fatty 
Acid2 WGO A WGO B WGO C WGO D SFE WGO Soybean 

Oil 
14:0 0.09b 0.09bc 0.09bc 0.23a 0.09bc 0.08c

16:0 16.7a 15.8b 16.8a 16.9a 16.8a 10.7c

16:1 0.18b 0.17b 0.16b 0.16a 0.15c 0.09d

18:0 0.77b 0.72b 0.72b 0.68b 0.5c 4.56a

18:1 16.9d 15.8c 15.9c 15.2b 13.6e 22.1a

18:2 57.6b 58.4b 57.7c 58.1d 59.7a 54.0e

20:0 0.19c 0.17c 0.16bc 0.15d 0.11d 0.36a

20:1 1.7c 1.6b 1.6bc 1.52a 1.45d 0.46e

18:3 6.4b 6.7b 6.5c 6.9d 7.3a 7.2a

22:0 0.11b 0.11b 0.11b 0.11b 0.78c 0.36a

22:1 0.28bc 0.27a 0.26ab 0.26ab 0.23c 0d

24:0 0.10b 0.10b 0.10b 0.09a 0.06c 0.12a
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Table 4.3: Free fatty acid composition (FFA) of WGO processed through various 
methods1.

Sample FFA (%, w/w) 
WGO A 7.9b

WGO B 0.4c

WGO C 1.1c

WGO D 0.4c

SFE WGO 6.2b

Soybean oil 0.03c

SFF 1  77.9a

SFF 2  78.0a

SFF 3  78.7a

1 See Table 4.1 for the abbreviations. 
a,b,cMeans in the same row with the same letter are not significantly different at p>0.05. 
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Table 4.4: Tocopherol compositions (mg/g oil) of WGO extracted and refined through 
various methods1.

1See Table 4.1 for the abbreviations. 
n.d. not detected. 

a,b,c,dMeans in the same column with the same letter are not significantly different at 
p>0.05. 

 

Sample α-Tocopherol β-Tocopherol γ-Tocopherol 
WGO A  13.9c 1.1b 0.08cd 

WGO B  4.9d 0.70c 0.1c

WGO C  7.3d 0.6c 0.07dc 

WGO D 109.7a 6.8a 0.7a

SFE WGO  25.6b 1.2b 0.06d

Soybean oil n.d. n.d. 0.2b

SFF 1  0.05e n.d. n.d. 
SFF 2  0.05e n.d. n.d. 
SFF 3  0.04e n.d. n.d. 
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Table 4.5: Phytosterol compositions (mg/g oil) of WGO extracted and refined through 
various methods1

Samples Campesterol Stigmasterol β-Sitosterol Total 
Phytosterol 

WGO A  0.67b 0.25b 2.77b 3.70b

WGO B  0.63b 0.21c 2.59b 3.05b

WGO C  0.52c 0.21c 2.70b 3.44b

WGO D 1.74a n.d. 6.27a 8.01a

SFE WGO  0.61bc 0.20d 2.94b 3.75b

Soybean oil  0.034d 0.28a 0.29c 0.60c

1See Table 4.1 for the abbreviations. 
n.d. not detected 

a,b,c,dMeans in the same column with the same letter are not significantly different at 
p>0.05. 
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Table 4.6: Phospholipid compositions (mg/g oil) of WGO extracted and refined through 
various methods1.

Samples PE2 PI+PA3 PS4 PC5

WGO A 3.5a 12.1a 3.3 0.9 
WGO B 1.9c 0.6b n.d. n.d. 
WGO C 2.1b n.d. n.d. n.d. 
WGO D n.d. n.d. n.d. n.d. 
SFE WGO n.d. n.d. n.d. n.d. 
Soybean oil n.d. n.d. n.d. n.d. 

1See Table 4.1 for the abbreviations. 
2PE: phosphatidylethanolamine; 3PI+PA: phosphatidylinositol and phosphatic acid; 4PS: 

phosphatidylserine; 5PC phosphatidylcholine 
n.d. not detected.  

a,b,c,Means in the same column with the same letter are not significantly different at 
p>0.05. 
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Table 4.7: Water content of WGO extracted and refined through various methods1.

Sample Water content (%, w/w) 
WGO A 0.49b

WGO B 0.06c

WGO C 0.07c

WGO D 0.04c

SFE WGO 4.4a

Soybean oil 0.05d

1See Table 4.1 for the abbreviations. 
a,b,c,dMeans in the same column with the same letter are not significantly different at 

p>0.05. 
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Table 4.8: Lipid and phytosterol compositions of wheat germ oil samples1

(HPLC area %) before and after supercritical fluid fractionation process. 
 

Lipid/Phytosterol WGO A SFE WGO SFF 1 SFF 2 SFF 3 

Phytosterol Esters 8.4b 10.1a 3.7c 2.2d 3.2c

Triglycerides 79.5b 81.5a 2.4c 2.7c 2.1c

Free Fatty Acids 11.4c 7.7d 92.7b 94.6a 93.9a

Free Sterols 0.8b 0.7bc 1.2a 0.5c 0.8b

1See Table 4.1 for the abbreviations. 
a,b,c,dMeans in the same row with the same letter are not significantly different at p>0.05. 
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Figure 1: A schematic diagram of the supercritical fluid extraction unit. 
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Picture 1: Supercritical fluid extraction unit. 
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Figure 2: A schematic diagram of supercritical fluid fractionation unit.
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Picture 2: Supercritical fluid fractionation unit. 

 



49

APPENDIX I 

 

Figure 1. Simplified flow diagram of a flour mill (adapted from Atwell, 2001). 
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APPENDIX II 
 

Table 1:  Effect of solvent type and extraction method on wheat germ oil lipid 
composition (adapted from Barnes, 1982). 

 

Extraction Method 
Non-Polar Lipids 

kg/g 
 (% of total lipids) 

Glycolipids 
 kg/g 

 (% of total lipids) 

Phospholipids  
kg/g 

 (% of total lipids) 
Chloroform-
Methanol 

254
(83.7) 

6
(2.0) 

44  
(14.3) 

Benzene-ethanol-
water 

 67 
 (77.0) 

4
(6.2) 

11 
(16.8) 

Water, chloroform, 
methanol mix 

104
(97.9) 

1
(0.8) 

 1 
 (1.4) 

Ethanol-diethyl 
ether 

75 
 (89.8) - 8

(10.2) 

Butanol 91  
(82.6) 

19
(17.4) 

Hexane 93 
 (91.7) 

 8 
 (8.3) 

Pressed  (99.0) (1.0) 
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