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ABSTRACT

Using the Bayesian framework, the identification of the most probable reservoir

model in automatic history matching can be changed into a minimization problem,

whose objective function includes square difference between observed data and com-

puted data, as well as square difference between current model parameters and prior

model information. Minimizing the objective function once can provide one real-

ization of reservoir field. Due to the non-linearity of the equations describing 3-D,

3-phase flow in porous media, the minimization process is very demanding in both

gradient and search direction computations. In this work, the adjoint method (La-

grange Multiplier) is used for gradient computation and the limited memory Broyden-

Fletcher-Goldfarb-Shanno (LBFGS) method for search direction calculation.

Production data, such as bottomhole pressure (Pwf ), gas oil ratio (GOR), and

water oil ratio (WOR), are widely used in automatic history matching. Although they

can provide high resolution estimation around well locations, properties in regions far

from wells are poorly constrained. To reduce uncertainty in estimation, seismic data

can be integrated with the production data, to provide areally dense information

across whole field. In this work, seismic P -wave impedance change data derived from

time-lapse (4D) seismic are used. A series of rock physics models have been added to

the reservoir simulator, Chevron Limited Application Simulation System (CLASS),

making it possible to compute seismic impedance using saturations and pressures

from the simulator. A semi-synthetic case study is used to test the effectiveness of

this methodology, and a real case from Bay Marchand field, Gulf of Mexico, shows

its potential in an industry level application.

xvi



As an alternate to automating history matching through the minimization ap-

proach, the ensemble Kalman filter (EnKF) can be used to rapidly update the esti-

mate of model variables. One advantage of the EnKF method is that it is relatively

easy to implement as there is no need to write extensive simulator-dependent code.

The EnKF can be used to assimilate observed data as they become available to con-

tinuously update a set of reservoir simulation models, which makes the EnKF suitable

for high-frequency input, for example, measurements from permanent sensors. Gener-

ation of an ensemble of “history-matched” models is very appropriate for conducting

uncertainty analysis. In this work, a small synthetic case study is used to show that it

is possible to integrate both time-lapse seismic impedance data and production data

using the EnKF.
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CHAPTER I

INTRODUCTION

The process of generating reservoir properties is crucial to reservoir engineers in that

1) they help to make decisions on reservoir management; 2) they are starting points

for reservoir predictions. To have reliable realizations, however, is always difficult

due to limited availability of information. In contrast to other engineering fields, it

is impractical in petroleum engineering to have direct measurements of the necessary

properties throughout the reservoir under study, except at well locations. Away from

the wells, any information about reservoir parameters can only be inferred through

indirect measurements gathered from wells, such as bottomhole pressure (Pwf ), gas

oil ratio (GOR), and water oil ratio (WOR). If the reservoir under study is regarded

as a flow system governed by a set of fluid flow equations derived from material and

momentum balance equations, the production histories from the reservoir are actually

outputs of the system and the reservoir properties are system parameters. The process

of estimating system parameters from system outputs is a typical problem in inverse

theory. Unfortunately, most inverse problems are highly under-determined, which

means that the number of system parameters is much greater than the number of

system outputs. In this case, there are an unlimited number of combinations of

the system parameters, which, if fed back to the system, can reproduce the same

system outputs. This non-unique feature makes it necessary to find an appropriate

solution to an inverse problem with aid of some particular criteria. In this work, the

Bayesian framework, which will be discussed in detail in Chapter 2, is used to ensure

plausibility.
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For typical oil, gas, and water flow problems, the governing equations are non-

linear, which makes it extremely difficult in most cases to have an analytical solution

for saturations and pressures. Reservoir simulation, which discretizes the governing

equations in a set of gridblocks and finds numerical solution of distributions of oil,

gas, and water at those gridblocks, is a useful tool for estimating solutions. Then,

to estimate reservoir parameters is to obtain reservoir simulation model parameters,

which can produce production histories having reasonable closeness to observed his-

tories. This process is called history matching. Because reservoirs are usually very

heterogenous, there are hundreds of thousands of gridblocks in a typical reservoir

simulation system to capture reservoir parameters in high resolution. Manually ad-

justing parameters in gridblocks is not feasible. Instead, computers are employed to

automatically vary the parameters. This process is called automatic history matching.

Automatic history matching can be thought of as a minimization problem, whose

objective function includes the sum of squared difference between observed data and

computed data, as well as a model parameter regularization term arising from prior

information about the reservoir under study. To minimize the objective function, an

efficient minimization algorithm must be chosen. There are two categories of min-

imization methods, gradient based methods and non-gradient based methods. For

non-gradient based methods, some well known representatives are simulated anneal-

ing (SA) (Deutsch and Journel, 1994; Sen et al., 1995; Ouenes et al., 1992, 1993, 1994;

Vasco et al., 1997; Abdassah et al., 1996; Portellaand and Prais, 1999; Romero et al.,

2000; Saccomano et al., 2001) and genetic algorithm (GA) (Sen et al., 1995). Although

non-gradient based methods can be used to find the global minimization point, they

may require thousands or millions of simulation runs to converge. When processing

large scale or even medium scale automatic history matching problems, this inten-

sive demanding on simulation computation makes the non-gradient based methods

impractical. Therefore, in this work, only gradient based minimization methods are
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used.

Some widely used gradient based minimization methods include Steepest De-

scent method, Gauss-Newton method, Levenberg-Marquardt algorithm and Conju-

gate Gradient (CG) method. The required inputs for these methods are gradient (first

derivative) and/or the Hessian matrix (second derivative) of the objective function.

In our problem, the Hessian matrix is constructed involving the sensitivity coefficients

of data with respect to model parameters. The sensitivity coefficients for production

data typically have large values around well locations and decrease with distance

increasing from wells (Li, 2001).

The most straightforward way to compute sensitivity coefficient of a datum with

respect to a model parameter is to compute the derivative by finite difference approx-

imation, which is also called the perturbation method. The perturbation method

requires two simulation runs, one run with model parameters fixed at base values and

the other one with all other model parameters still in base values except one param-

eter at a perturbed value. The perturbation ratio is usually chosen as 2% to 5% of

base parameter value (Li, 2001). Then the sensitivity coefficient can be computed

using Eq. 1.1,

∂gi

∂mj

=
gi(m +4mj)− gi(m)

4mj

, (1.1)

where,

• g(·) represents a reservoir simulator;

• gi(m) is the ith simulated datum output from the reservoir simulator;

• m is the model parameter vector currently used;

• 4mj is perturbation value for the jth parameter.

In Eq. 1.1, if gi(m) is replaced with the objective function, the result will be an entry

of the gradient of the objective function. If there are Nm model parameters, Nm + 1

simulation runs are required to calculate all sensitivity coefficients.
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Although Eq. 1.1 is only practical when number of model parameters is very small

and only has theoretical meaning in many cases, it shows that the number of model

parameters is a crucial issue to gradient computation. Fine grid models are able to

capture reservoir features in small scale, but the number of model parameters is large,

and usually require a large amount of effort to compute the gradient. In contrast,

a coarse grid can reduce the number of model parameters and is less demanding in

gradient computation at the expense of losing detailed trends. For the latter way,

re-parametrization is often used to reduce the number of model parameters, such as

zonation method and pilot point method.

Zonation method for automatic history matching was introduced by Jacquard

and Jain (1965) and Jahns (1966) and then used by Gavalas et al. (1976); Shah et al.

(1978); Makhlouf et al. (1993). A recent application can be found in Huang et al.

(2001). The zonation method divides a reservoir into zones and assume homoge-

neous reservoir properties within each zone, which reduces model parameters to just

a few values for those zones. Although it decreases the number of model parameters,

zonation method can not provide estimations at the scale smaller than zone scales.

The pilot point method was developed by de Marsily et al. (1984); Certes and

de Marsily (1991). Further work can be found in both petroleum engineering and

groundwater hydrology (RamaRao et al., 1995; Landa and Horne, 1997; Xue et al.,

1997; Wen et al., 1997; Bissell et al., 1997; Roggero, 1997; Arenas et al., 2001; Wen

et al., 2002). In the pilot point method we 1) choose a series of pilot point locations

in a reservoir model; 2) adjust model parameters at those pilot points to minimize

the objective function; 3) interpolate among the pilot points to get field distributions

of model parameters, for example, kriging interpolation. The pilot point method has

overshooting problems at pilot points, which can be seen in the figures of Xue et al.

(1997). Some other problems of the pilot point method include determination of

optimal pilot point locations and choice of a interpolation scheme most suitable for
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a specific case.

If the gridblock size is kept small to provide high resolution, more efficient gradient

computation methods must be used. Gradient simulator method is one widely applied

method. Early results in hydrology and petroleum engineering can be found in Yeh

(1986) and Anterion et al. (1989). This method computes sensitivity coefficients of

data with respect to model parameters at each time step after flow equations are

solved in the simulator. The gradient simulator method solves a matrix problem with

the same coefficient matrix as the simulation equations but different multiple right

hand vectors. The efficiency of gradient simulator method decreases dramatically

with increase of the number of model parameters.

A more efficient method to compute the gradient is the adjoint method, which is

also the method used in this work. The adjoint method was applied to petroleum

engineering by Chavent et al. (1975) and Chen et al. (1974). He et al. (1997) applied

this method to a 3-D single phase problem, and a 2-phase (water/oil) problem was

done by Wu et al. (1999). Finally, the adjoint method was successfully extended to a

3-D, 3-phase flow problem (Li et al., 2003).

The adjoint method is derived using the Lagrange Multiplier. It has some impor-

tant features. First, the adjoint equations are solved from the last time step to the

first time step. A typical process is to save pressure and saturation from flow equa-

tions at each simulation time step when the flow equations are solved. After finishing

the simulation run, the adjoint equations are solved using the stored pressure and

saturation information. Secondly, the adjoint equations are linear although the for-

ward reservoir simulation equations are non-linear, which implies that the backward

solution does not necessarily require the same time step interval as the forward so-

lution. By carefully choosing time step intervals when solving the adjoint equations,

more efficiency can be gained. Third, computation cost of solving the adjoint equa-

tions is independent of the number of model parameters, but related to the number
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of data because each individual datum requires a set of Lagrange multipliers being

saved at each time step. If the number of data is very large, computation of sensitivity

coefficients of each datum will become demanding in computational cost. This poten-

tial disadvantage, however, can be avoided by choosing an appropriate minimization

algorithm.

As stated before, Newton type minimization methods, such as the Gauss-Newton

method and Levenberg-Marquardt algorithm, have been widely used to minimize

non-linear objective function because of their quadratic convergence rate. This fast

convergence rate, however, is achieved at the expense of requiring computation of the

Hessian matrix of the objective function as well as the gradient. The Hessian matrix is

the second derivative of the objective function with respect to model parameters. To

compute this matrix requires computation of sensitivity coefficient matrix G. Since

the dimension of matrix G is Nd × Nm, where Nd is the number of data and Nm

is the number of model parameters, it will become impractically expensive to either

store the matrix when model size is large, or to compute sensitivity coefficients when

the number of data is large. When large scale problems are considered, those two

bottlenecks usually make the Newton type methods unfeasible.

In contrast to the Newton type methods, another group of gradient based min-

imization methods requires only the gradient of the objective function. Some well

known representatives are Steepest Descent method, Conjugate Gradient (CG) method,

Preconditioned Conjugate Gradient (PCG) method, the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) method and the limited memory Broyden-Fletcher-Goldfarb-Shanno

(LBFGS) method. Since none of these require the Hessian matrix, the sensitivity

coefficient matrix is not a problem any more. Particularly, if the whole objective

function is used as a datum, the adjoint equations can efficiently compute the gra-

dient of the objective function (Li, 2001; Zhang and Reynolds, 2002; Zhang, 2002).
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Thus, for large scale problems, these methods are preferred. Among them, the Steep-

est Descent method uses the negative gradient as search direction, which makes it

most easily implemented once the gradient is obtained from the adjoint equations.

The major drawback of the Steepest Descent method is that it converges slowly,

especially as the objective function approaches its minimization point. Since each it-

eration step involves a simulation run and solving the adjoint equations, the number

of iteration steps must be kept as small as possible.

The CG method uses not only current gradient information, but also gradient in-

formation saved at previous iteration steps, to construct search direction for the next

iteration step. Since it is only necessary to store a small number of vectors, mem-

ory cost is very low. Generally, the CG method converges faster than the Steepest

Descent method, but in order to have reasonable convergence speed for large scale

problems, the matrix condition number is improved by multiplication by a precondi-

tioning matrix. For our history matching problems, however, it is difficult to find a

general scheme to construct the preconditioning matrix (Zhang and Reynolds, 2002;

Zhang, 2002).

The BFGS method (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970)

has a convergence rate between linear and quadratic because it uses the Hessian ap-

proximation constructed from the gradient. However, the BFGS method explicitly

forms the Hessian approximation, which is still impractical for large scale problems. In

1980, Nocedal (1980) introduced a new scheme to implement the BFGS method with-

out explicitly storing the Hessian approximation. Instead, it only saves the gradient

and the objective function value from previous iteration steps. This new implemen-

tation of the BFGS method is called the limited memory BFGS (LBFGS) method.

After intensive comparison using different synthetic and real case studies, Zhang and

Reynolds (2002) concluded that the LBFGS method is the most efficient minimization

method for typical history matching problems.
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As the name implies, automatic history matching mainly uses production data,

including Pwf , GOR, and WOR. Estimates of reservoir properties obtained from pro-

duction data typically are only well-resolved near the well-bore. For regions far from

wells, model estimation is usually poorly constrained, especially when the model size is

large or the number of production data is limited. Although inverse problems in gen-

eral, and automatic history matching problems in particular, are under-determined,

i.e., the number of data is smaller than the number of model parameters that need

to be adjusted, results derived from small amounts of production data still provide

estimates that are less than satisfying. It would clearly be beneficial to make use of

some type of “space-dense” data that would improve the resolution of the estimate

in the gridblocks far away from well locations. Seismic data is the most promising

candidate for improved spatial coverage. In addition, advances in automatic history

matching, such as the adjoint method and the LBFGS algorithm, have begun to allow

researchers to consider the integration of large amount of data.

The amplitude of seismic signals are sensitive to both static rock properties, such

as shaliness and lithology, and dynamic rock properties, such as pore pressure and

saturation at the time when seismic is shot. Large temperature changes, such as occur

in steam floods, will also result in significant changes in the amplitude of seismic

reflection data. In this work, reservoir temperature is assumed to be constant, so

effects from temperature changes are not considered. For purpose of automatic history

matching, pressure and saturation changes reflected through seismic data are most

interesting to us because they are related to some very important reservoir parameters,

such as permeability and porosity. If seismic data from only one survey are used, it is

difficult to differentiate static effects from dynamic effects. To reduce the effects from

uncertainty in static parameters, time-lapse seismic data can be used. Time-lapse

seismic repeats seismic surveys at same locations but different times. By subtracting

data obtained in the base survey from data obtained in the repeat survey, the effects
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of fluid changes can be emphasized.

Time-lapse seismic is not a new topic in petroleum engineering and geophysics.

The pioneering work of time-lapse seismic can be traced back to late 1980’s and early

1990’s (Wayland and Lee, 1986; Greaves and Fulp, 1987; Dunlop et al., 1991). Similar

studies can also be found at the Foinhaven Field (Cooper et al., 1999), the Meren

Field in Nigeria (Lumley et al., 1999) and the Bay Marchand field in the Gulf of

Mexico (Behrens et al., 2002). The primary objectives at Foinhaven were simply

to map fluid movements and to identify by-passed oil. The authors of the study

concluded that the time-lapse signal qualitatively agreed with the expected reservoir

performance. At Meren, the goal was to identify pathways of injected water, sealing

faults, and compartments that may have by-passed oil. For Bay Marchand, time-

lapse seismic was used to monitor water flux and identify the bypassed oil. Moreover,

the analysis provided a qualitative comparison of the quality of seismic data before

and after cross equalization, which is a very important step in time-lapse seismic

data processing. The authors concluded that the data allowed these objectives to

be achieved. Other reservoir management references that discuss time-lapse seismic

include Ross et al. (1996); Hughes (1998); Shyeh et al. (1999); Blonk et al. (2000);

Burkhart et al. (2000); Hughes (2000); Khan et al. (2000); Rickett and Lumley (2001);

Waggoner et al. (2002); Gouveia et al. (2004); Raef et al. (2004). According to Lumley

and Viejo (2004), in the 4 years between 2000 and 2003, total time-lapse seismic

expenditures were about (US) $500 million.

Besides direct use of time-lapse seismic as a reservoir monitoring tool, the other,

more difficult, approach is to integrate time-lapse seismic data in automatic history

matching to estimate the reservoir flow parameters, such as permeability and poros-

ity. Landa and Horne (1997) estimated reservoir parameters assuming that water

saturation changes could be derived from the time-lapse seismic. They included

dynamic data observed from wells. The reservoir model was re-parameterized to
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decrease the number of model parameters and the gradient simulator method was

used to compute the gradient and the Hessian matrix. Huang et al. (1997) used

time-lapse seismic amplitude data and the finite perturbation method to calculate

required derivatives. The method used by Waggoner (1998) was similar. Huang et al.

(2001) used zonation to history match both production data and time-lapse seismic

data. Each zone was assumed to have homogeneous properties. Because the number

of model parameters was small, the finite perturbation method was used to com-

pute the derivatives. Like Landa and Horne (1997), van Ditzhuijzen et al. (2001)

matched water saturation changes presumably derived from multiple seismic surveys,

as well as production data. The model parameters were geometric parameters of the

faults, such as positions, size and, throw because the authors believed that in that

area, the geometric parameters were more important than the porosity and perme-

ability for the reservoir management. Arenas et al. (2001) conducted semi-automatic

history matching using both production data and P -wave velocity differences. The

pilot point method was employed to decrease the number of model parameters and

Kriging interpolation was used to recover the whole porosity and permeability fields

once the pilot points were updated during minimization. The gradient simulator

method was used to compute sensitivity coefficients and the Levenberg-Marquardt

algorithm to minimize the objective function. Phan and Horne (2002) also used

water saturation changes interpreted from time-lapse seismic records to adjust chan-

nel parameters, including channel orientation and deviation of channel center line

from maximum continuity. In a recent work, Waggoner et al. (2002) used acoustic

impedance difference derived from time-lapse seismic. To reduce the number of model

parameters, they adjusted only vertically averaged porosities and calculated the per-

meabilities through a correlation between the porosity and permeability. Due to the

relatively small number of model parameters, they were able to use the finite pertur-

bation method to compute derivatives. Bogan et al. (2003) used multiple time-lapse
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seismic attributes, including velocity, impedance, and amplitude in a GOM field to

estimate fluid flow barriers, facies parameters, and variogram structures. Gosselin

et al. (2003) tested automatic history matching method with both production data

and time-lapse seismic data, using a gradient based optimization method. Gradzones

were used in re-parameterizations. Kretz et al. (2004a) used the gradual deformation

method to history match the production data and time-lapse seismic data, but their

time-lapse seismic data were only indicators of changes observed through 4D seismic.

Pannett et al. (2004) matched synthetic amplitude data generated using a software

based on some rock physics parameters. Kretz et al. (2004b) matched water fronts

extracted from time-lapse seismic surveys. Mezghani et al. (2004) used time-lapse

seismic acoustic impedance in history matching, together with production data. The

finite perturbation method was used to compute the required derivatives. Dong and

Oliver (2005) matched both seismic impedance change data and production data in

a medium scale problem. The adjoint method was used to compute gradient and the

LBFGS method for search direction calculation.

The type of time-lapse seismic data used for property estimation has varied among

the researchers. Huang et al. (1997) used amplitude difference or other seismic at-

tributes difference, while Arenas et al. (2001) used velocity difference. Gosselin et al.

(2000) assumed that pressure and saturation changes were available. Landa and

Horne (1997) also assumed that saturation changes could be obtained directly from

time-lapse surveys. While a number of geophysicists (Tura and Lumley, 1999; Landrø,

2001; Meadows, 2001) have assumed that changes in saturation and pressure can be

estimated directly from time-lapse seismic data (including offset data), it is clearly

better to work directly from the rock physics, mass, and momentum balance relation-

ships to ensure that all data are honored. In this work, seismic P -wave impedance

change data derived from time-lapse seismic are chosen.
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Seismic P -wave impedance (hereafter, seismic impedance) is defined as the multi-

plication of body density and P -wave velocity. If a rock is very hard to compress, its

impedance will have high value; if a rock is soft, it will have low impedance value. Dur-

ing production, elastic properties of reservoir rocks will change because pressure and

saturation are different from time to time. For example, if a reservoir is under water

flooding, its rocks usually become stiffer because water is generally more difficult to

compress than oil. These changes in rock properties can be inferred through changes

in seismic impedance data. On the other hand, some fluid flow parameters, such as

permeability and porosity, must be indirectly inferred from changes in pressure and

saturation distributions. It can be seen that seismic impedance is actually a bridge

between permeability and porosity, and pressure and saturation distributions. Based

on preliminary investigation (Dong and Oliver, 2002), seismic impedance change data

are used because seismic impedance change data are relatively insensitive to variations

of poorly constrained variables such as shaliness.

The objective function derived from the Bayesian framework includes the squared

mismatch between observed data and computed data. To integrate seismic impedance

change data into the objective function, it is required to have some equations to

compute seismic impedance change using outputs from the reservoir simulator. This

task is achieved by inserting a series of rock physics models in the reservoir simulator.

Some well known rock physics models are the Gassmann equation (Gassmann, 1951),

the Han equation (Han et al., 1986), and the Ramammorthy equation (Ramammorthy

et al., 1995). For studies of real field data, ad hoc equations particularly suitable for

the field are sometimes used to achieve better match to observed seismic impedance

data. One example can be found in the Bay Marchand field study, which is discussed

in Chapter 5.

One important issue to be considered with integration of seismic impedance change

data is estimation of the data noise covariance matrix. As will be seen in Chapter 2,
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the objective function has data noise covariance matrix as its weighting matrix for

squared mismatch of observed data and computed data. When only production data

are used, the noise covariance matrix is usually assumed to be diagonal with its entries

equal to the noise variance of each individual datum because the production data sam-

pling interval is generally larger than their correlation length in time space (Aanonsen

et al., 2002, 2003), so data noise is uncorrelated. It is probably not valid, however,

to assume that the noise in the seismic data are not correlated. This correlated noise

typically comes from two sources, data gathering system when the seismic survey is

shot and seismic data processing. To make appropriate balances among seismic data,

the data noise covariance structure must be evaluated (Aanonsen et al., 2002, 2003).

There are two ways to do this. One is to capture noise features through the whole

work flow for computation of seismic impedance change. The other is to analyze noise

structure directly from the seismic data by doing variogram analysis on impedance

change data residual. In this work, the latter method is used. For the synthetic

case study shown in Chapter 4, a diagonal noise covariance matrix is used because

both observed and computed seismic impedance change data are generated at each

gridblock using only pressure and saturation in that gridblock, but for the real case

study in Chapter 5, a non-diagonal matrix is constructed.

Automatic history matching through minimizing an objective function can suc-

cessfully integrate both seismic impedance change data and production data with

the help from the adjoint method and the LBFGS method. Although the results

are satisfactory (Dong and Oliver, 2005), there are still some drawbacks. First of

all, the adjoint equations require access to the source code of the reservoir simulator,

which prevents researchers from building adjoint system on commercial simulators.

Secondly, the adjoint code is very time-consuming to write and needs to be re-written

if switching to another simulator. Third, the minimization process uses all data once

to find an optimal model estimation. If new data are available, this minimization
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process needs to start over with all data integrated. This feature makes the minimiza-

tion approach unsuitable for high-frequency data input, for example, measurements

from permanent sensors. Moreover, to minimize the objective function once can only

provide one “history-matched” model. To conduct uncertainty analysis, however,

a set of “history-matched” models are required. Considering the time required for

one minimization of the data mismatch (Zhang, 2002; Gao and Reynolds, 2004), the

uncertainty analysis by minimizing multiple initial models is not very practical for

large reservoir models. In that case, an investigation of alternate automatic history

matching methods is worthwhile.

In this work, the ensemble Kalman filter (EnKF) (Evensen, 1994) with integration

of both time-lapse seismic data and production data is investigated. The EnKF is

an extension of the traditional Kalman filter (Kalman, 1960), which has been widely

applied to optimal control field. The traditional Kalman filter is appropriate for data

assimilation problem in linear systems, while for non-linear systems, some modifica-

tions are needed as found, for example, the extended Kalman filter (EKF). The EKF

is not practical due to requirement of the adjoint system. The EnKF is a Monte

Carlo method that does not require the adjoint equations and is independent of

reservoir simulators. It continuously updates an ensemble of reservoir models when-

ever new observations are available. The final output is a set of “history-matched”

models, which are very suitable for uncertainty analysis. The EnKF has been ap-

plied mainly in oceanography and meteorology during the past decade (Evensen,

1994, 1996; Houtekamer and Mitchell, 1998; Anderson and Anderson, 1999; Ander-

son, 2001; Houtekamer and Mitchell, 2001; Evensen, 2003, 2004), but recently there

are some applications in petroleum engineering (Nævdal et al., 2002, 2005; Gu and

Oliver, 2005b,a; Gao et al., 2005; Liu and Oliver, 2005; Wen and Chen, 2005).

In this dissertation, a small synthetic case study is conducted, showing that it is

feasible to integrate time-lapse seismic impedance data into reservoir characterization
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using the EnKF. Improved initial member sampling method is used to increase initial

members’ quality, which provides a more stable filter behavior.

There are 7 chapters in this dissertation. Chapter 2 introduces the Bayesian

framework and the adjoint method. Chapter 3 discusses in detail about the time-lapse

seismic and seismic impedance change. Some rock physics models used in this work

are listed and discussed. To show that seismic impedance change data can provide

reasonable constraints in automatic history matching, a sensitivity computation is

shown of seismic impedance change data points with respect to model parameters

in a small synthetic case. Chapter 4 mainly includes results obtained from two case

studies, a small synthetic one and a medium-sized semi-synthetic one generated from

the Tengiz field. Chapter 5 focuses on a real case study from the Bay Marchand field,

the Gulf of Mexico. Some real case study related issues are covered. Chapter 6 is

devoted to the EnKF method. The small synthetic case study is discussed in detail

there. Finally, conclusions are presented in Chapter 7.
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CHAPTER II

THE BAYESIAN FRAMEWORK AND

ADJOINT METHOD

On one hand, the purpose of automatic history matching is to match the observed

history, i.e., to match the observations, by adjusting flow parameters in each reservoir

simulation gridblock. One the other hand, some existing information about the reser-

voir under study must be considered during the matching process. The estimated

reservoir model parameters should be consistent with the prior geologic information.

To properly transform an automatic history matching into a minimization problem,

one central question is how to consider simultaneously these two parts to provide

an objective function, which is not only mathematically correct, but also physically

make sense. Here, the Bayesian framework is used to determine the correct objective

function.

2.1 Bayesian framework

In this section, a brief introduction to the Bayesian framework for inverse problems

will be given. A thorough description can be found in Tarantola (1987).

Suppose that the reservoir under study can be modelled as a random field in which

the reservoir parameters, such as porosity and permeability, are all random variables.

The probability of occurrence of any particular configuration of flow properties can

then be characterized using a probability density function (hereafter PDF) pM(m).

In our application, the random field is usually assumed to be Gaussian. Under this
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assumption, the PDF of the reservoir model can be written as,

pM(m) = a exp

(
−1

2
(m−mprior)

T C−1
M (m−mprior)

)
, (2.1)

where m is the vector of model parameters, a is a constant, mprior is the best estimate

for parameters based on prior information about the field, and CM is the model

variable covariance matrix. The prior information contains general knowledge about

the reservoir, such as expected porosity and permeability. The matrix CM is usually

constructed through geostatistical tools. Its diagonal entries are variances of all model

parameters.

Observed data gathered during exploration and production, such as production

data from wells and seismic data from seismic surveys, can be written as,

dobs = dtrue + ε , (2.2)

where ε is measurement noise. The addition of the noise term accounts for the fact

that the recorded observations are corrupted by noise due to limitations of measure-

ment tools. If the measurement noise is also assumed to be Gaussian with mean equal

to zero, then the PDF of the observation noise can be written as Eq. 2.3,

p(ε) = b exp

(
−1

2
εT C−1

D ε

)
= b exp

(
−1

2
(dtrue − dobs)

T C−1
D (dtrue − dobs)

)
,

(2.3)

where b is a constant and CD is the measurement noise covariance matrix, which

defines correlations among noise contained in observed data, diagonal for production

data but non-diagonal for seismic data. The diagonal entries of CD are variances

of the measurement noise. On the other hand, if the true model mtrue is given to a

reservoir simulator, then some “true” observations can be computed, dtrue = g(mtrue).

Since the measurement noise ε is random, the observations given the true model mtrue

are also random and can be described using the conditional PDF written in Eq. 2.4,

p(dobs | mtrue) = b exp

(
−1

2
(g(mtrue)− dobs)

T C−1
D (g(mtrue)− dobs)

)
, (2.4)
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where g(mtrue) represents the forward simulation run.

According to the Bayes’ Theorem, the conditional PDF of the model parameters

m given observations, dobs, can be written as,

p(m | dobs) =
p(dobs | m)pM(m)

p(dobs)
=

p(dobs | m)pM(m)∫
p(dobs | u)pM(u)du

, (2.5)

where p(dobs) is the PDF of the observation. Inserting Eq. 2.1 and Eq. 2.4 into Eq. 2.5,

the conditional PDF can be written as Eq. 2.6,

p(m | dobs) =c exp

(
−1

2
(m−mprior)

T C−1
M (m−mprior)

)
× exp

(
−1

2
(g(m)− dobs)

T C−1
D (g(m)− dobs)

)
,

(2.6)

where c is a normalizing constant. The PDF in Eq. 2.6 is called the posterior PDF.

For our automatic history matching problem, we want to generate an estimate of m

that has the maximum probability, i.e., the maximum a posteriori (MAP) estimate.

Obviously, such an estimate can be obtained by minimizing the arguments of the

exponential term in Eq. 2.6, which gives the objective function,

O(m) =
1

2
(m−mprior)

T C−1
M (m−mprior) +

1

2
(g(m)− dobs)

T C−1
D (g(m)− dobs)

= Om(m) + Od(m) ,

(2.7)

where Om(m) is the model mismatch term and Od(m) is the data mismatch term.

There are some important features of this objective function. First, it conditions to

the observed data as well as the prior information. If only data mismatch term is used,

for example, constraints from the prior are lost. Secondly, the model mismatch term

provides normalization for the Hessian matrix. Its effect is two-fold, 1) it prevents

the Hessian matrix from being numerically singular; 2) it damps extremely high or

low values resulting from over-adjustments in data mismatch term. Third, both data

and model parameters are well balanced by their variances contained in CM and CD.

Also, the correlations among model parameters can be retained through non-diagonal

part of CM .
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From the perspective of reservoir management, values of permeability and poros-

ity at some specific places of the reservoir model are not very meaningful, especially

considering that the results of automatic history matching problem are non-unique.

The more important problem is to characterize uncertainties of future reservoir per-

formance. To do that using Monte Carlo methods requires generation of a number of

history-matched models. One general work flow to obtain a set of estimations that

all honor both the prior and the observed data is:

• Develop a mathematical model of the posterior PDF of the reservoir model, for

example, the one shown in Eq. 2.5 and Eq. 2.6.

• Sample the PDF to obtain a series of realizations;

• Feed the realizations into a reservoir simulator to predict their performance,

such as oil production rates, water cuts at wells, etc.;

• Calculate statistical parameters summarizing the performance predictions, such

as histogram, P10, P90, etc.;

• Provide uncertainty analysis based on statistical parameters.

To implement this work flow, the key factor is to find an efficient algorithm to sample

the posterior PDF. In this work, the Randomized Maximum Likelihood (RML)

method is used for sampling (Oliver, 1996; Kitanidis, 1995). This method includes

the following 4 steps,
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Step 1 Generate an unconditional realization of model variables, muc,

and an unconditional realization of noise in the observed data, re-

sulting in duc;

Step 2 Minimize the objection function in Eq. 2.8 to generate one con-

ditional realization,

O(m) =
1

2
(m−muc)

T C−1
M (m−muc)+

1

2
(g(m)− duc)

T C−1
D (g(m)− duc) ,

(2.8)

where, compared with Eq. 2.7, mprior and dobs are replaced with

muc and duc;

Step 3 If the number of conditional realizations meets requirement, go

to Step 4; otherwise, go to Step 1;

Step 4 Run reservoir simulator using the conditional realizations and

conduct uncertainty analysis.

The unconditional realizations of model parameters and data can be generated a few

different ways. One way to generate realizations from a Gaussian PDF with mean

mprior and model covariance CM is

muc = mprior + LZ , (2.9)

where Z is a random vector sampled from N(0, 1) and L is lower triangular part of

the Cholesky decomposition of the model covariance matrix CM , which is

LLT = CM . (2.10)

Similarly, unconditional realization of data is,

duc = dobs + LDZ , (2.11)

where Z is also a random vector sampled from N(0, 1) and LD is

LDLT
D = CD . (2.12)
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One major drawback of this method is that when model size becomes large, the

Cholesky decomposition of the model covariance matrix is not computationally feasi-

ble. Oliver (1995) gave a very efficient moving average method to generate uncondi-

tional realizations for large scale models. Sequential Gaussian Simulation (SGS) (Deutsch

and Journel, 1992) and Sequential Gaussian Co-Simulation (SGCS) are other two fre-

quently used algorithms. The SGS can be used to generate realizations for one param-

eter, for example, permeability, while the SGCS is often used to generate realizations

for multiple parameters, which have correlations with each other.

2.2 Adjoint method

Using the Bayesian framework, automatic history matching can be transformed into a

minimization problem, which leads to either a MAP estimate or multiple realizations.

Efficient minimization of the objective function in Eq. 2.7 then becomes into the

important aspect. As introduced in Chapter 1, the LBFGS method is employed

for minimization. The LBFGS method requires only the gradient of the objective

function. Therefore, the key point is to calculate the gradient efficiently. Compared

with other methods, the adjoint method is more efficient in computing the gradient,

especially when both model size and the number of data are large. Since the adjoint

method is closely related to the simulation system, the principles of reservoir simulator

will be covered before introducing the adjoint equations.

2.2.1 Reservoir simulation equations

Suppose that the reservoir under study is rectangularly shaped, occupying volume Ω,

Ω = {(x, y, z) | 0 < x < Lx, 0 < y < Ly, 0 < z < Lz} , (2.13)

where Lx, Ly, and Lz are reservoir lengths along x, y, and z directions respectively.

In this reservoir, there are multiple fluid phases in the porous rocks. By applying

mass balance, momentum balance, and energy balance relationships, a set of partial
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differential equations governing the fluid flow in porous media can be achieved,

∇ ·
[

kkro

Boµo

(∇po − γo∇D)

]
+ qo =

∂

∂t

(
φSo

Bo

)
∇ ·
[

kkrw

Bwµw

(∇pw − γw∇D)

]
+ qw =

∂

∂t

(
φSw

Bw

)
∇ ·
[

kkrg

Bgµg

(∇pg − γg∇D) +
Rskkro

Boµo

(∇po − γo∇D)

]
+ qg =

∂

∂t

[
φ

(
RsSo

Bo

+
Sg

Bg

)]
,

(2.14)

where,

• o, g, and w stand for oil phase, gas phase, and water phase respectively;

• kr is relative permeability;

• k is permeability of rocks;

• B is formation volume factor;

• µ is viscosity;

• p is pressure;

• γ is specific gravity;

• D is vertical distance from datum level;

• q is production rate;

• Rs is solution gas oil ratio;

• φ is porosity;

• S is saturation.

The derivation of Eq. 2.14 uses the black oil model, which assumes that the only fluid

phases are oil, gas, and water, gas can dissolve into oil but oil can not be vaporized

into gas, water and oil are immiscible. Although the pressures in each phase may be
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different due to capillary pressure, in this work, capillary pressure is assumed to be

negligible.

Since the PDEs in Eq. 2.14 are non-linear, it is difficult to solve them analytically.

If finite difference approximation is applied to Eq. 2.14, the reservoir volume Ω will

have Nx, Ny and Nz gridblocks along x, y and z directions respectively, and at each

of Nb = Nx ×Ny ×Nz gridblocks, there are 3 finite difference equations for oil, gas,

and water. Totally, there will be 3Nb equations representing the mass balance in all

gridblocks. In addition, Nw well equations will be added if there are Nw wells. Each

well can have different constraint, such as constant bottomhole pressure, constant

oil production rate, and constant total production rate. If bottomhole pressure is

applied as a constraint in wells, the corresponding phase production rate can be com-

puted using the Peaceman equation (Peaceman, 1983). These 3Nb + Nw equations

plus appropriate discretized boundary and initial conditions consist of a complete

set of reservoir simulation equations. The solution of the system for pressure and

saturation distributions of each phase in each grid at different times is called reser-

voir simulation. The reservoir simulator used here is a fully-implicit, 3-D, 3-phase,

black oil simulator provided by Chevron-Texaco, named CLASS (Chevron Limited

Application Simulation System).

For the ith gridblock, the three finite difference equations can be generally written

as, fn
m,i = 0, where m = o, g, w and n is the time index. The flow equations are solved

at discrete times, i.e., tn+1 = tn + 4tn. The primary variables to be solved in each

gridblock are case dependent. CLASS can alter them automatically according to

phase changes. For example, p, So, and Sg are typically primary variables in a 3-

phase system, but if no free gas is present, solution gas oil ratio, Rs, replaces Sg as

one of the primary variables. Table 2.1 shows how equations and primary variables

change with difference phase combination (Zhang, 2002). In the table, “Sum” means

that the equation fn
s,i = fn

o,i + fn
g,i + fn

w,i = 0 is solved.
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Phases Equations Unknowns Auxiliary Equations

O-W-G
Sg > 0 Sum, Oil, Gas p,So,Sg Sw = 1− So − Sg; Rs from PVT table
Sg = 0 Sum, Oil, Gas p,So,Rs Sw = 1− So − Sg

O-W Sum, Oil p,So Sw = 1− So; Rs from PVT table
W-G Sum, Gas p,Sg Sw = 1− Sg

O-G
Sg > 0 Sum, Gas p,Sg So = 1− Sg; Rs from PVT table
Sg = 0 Sum, Gas p,Rs So = 1− Sg

Table 2.1: Equations and primary variables for different phase combinations

At time step n, let yn denote the primary variable vector,

yn =

[
pn

1 , Sn
o,1, Sn

g,1, pn
2 , · · · Sn

g,Nb
, pn

wf,1, · · · pn
wf,Nw

]T

, (2.15)

where Nb is the number of gridblocks, Nw is the number of wells, Pwf is bottomhole

pressure, and Sg will be replaced with Rs if necessary. The simulation equations can

be concisely written as

fn+1 = f(yn+1, yn, m) =



fn+1
s,1

fn+1
o,1

fn+1
g,1

fn+1
s,2

...

fn+1
g,Nb

fn+1
wf,1

...

fn+1
wf,Nw



, (2.16)

where m is the vector of model parameters, fwf is well equation, and fs = fo+fg +fw.

Eq. 2.16 can be solved using the Newton-Raphson method (Aziz and Settari, 1979),

Jn,kδyn,k+1 = −fn,k (2.17)

yn,k+1 = yn,k + δyn,k+1 , (2.18)
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where k is the Newton-Raphson iteration index, n is time step index, and Jn,k is the

Jacobian matrix,

Jn,k =
[
∇yn (fn)T

]T
yn,k

. (2.19)

2.2.2 Adjoint equations

If a general scalar function is defined as

β = β(y1, · · · , yL, m) , (2.20)

where 1, · · · , L corresponds to a series of time steps, y is the vector of primary vari-

ables defined in Eq. 2.15, and m is the vector of model parameters, the sensitivity of

β with respect to model parameters m can be computed as following.

First of all, a new functional J is formed by adding a linear combination of the

constraints to the functional β:

J = β +
L∑

n=0

(λn+1)T fn+1 , (2.21)

where λn+1 is the vector of multipliers, which are called the adjoint variables here. In

vector form, it is

λn+1 =

[
λn+1

1 , λn+1
2 , . . . , λn+1

3Nb+Nw

]T

, (2.22)

where 3Nb means that each gridblock has three adjoint variables for equations fs, fo

and fg respectively. Taking the total differential on Eq. 2.21 leads to

dJ = dβ +
L∑

n=0

(
λn+1

)T [∇yn+1

(
fn+1

)T]T
dyn+1 +

L∑
n=0

(
λn+1

)T [∇yn

(
fn+1

)T]T
dyn

+
L∑

n=0

(
λn+1

)T [∇m

(
fn+1

)T]T
dm .

(2.23)

The three summation terms in Eq. 2.23 start their sum index from 0. If the start
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index is changed to 1, the summation terms can be written as,

L∑
n=0

(
λn+1

)T [∇yn+1

(
fn+1

)T]T
dyn+1 =

L∑
n=1

(λn)T
[
∇yn (fn)T

]T
dyn

+
(
λL+1

)T [∇yL+1

(
fL+1

)T]T
dyL+1 ,

(2.24)

L∑
n=0

(
λn+1

)T [∇yn

(
fn+1

)T]T
dyn =

L∑
n=1

(
λn+1

)T [∇yn

(
fn+1

)T]T
dyn

+
(
λ1
)T [∇y0

(
f 1
)T]T

dy0 ,

(2.25)

and
L∑

n=0

(
λn+1

)T [∇m

(
fn+1

)T]T
dm =

L∑
n=1

(λn)T
[
∇m (fn)T

]T
dm

+
(
λL+1

)T [∇m

(
fL+1

)T]T
dm .

(2.26)

Inserting Eqs. 2.24, 2.25, and 2.26 into Eq. 2.23, the total differential of the functional

J can be written as,

dJ = dβ +
L∑

n=1

(λn)T
[
∇yn (fn)T

]T
dyn +

L∑
n=1

(
λn+1

)T [∇yn

(
fn+1

)T]T
dyn

+
L∑

n=1

(λn)T
[
∇m (fn)T

]T
dm +

(
λL+1

)T [∇yL+1

(
fL+1

)T]T
dyL+1

+
(
λ1
)T [∇y0

(
f 1
)T]T

dy0 +
(
λL+1

)T [∇m

(
fL+1

)T]T
dm .

(2.27)

Since the scalar function β depends on m and y at different time steps from 1 to L,

its total differential is

dβ =
L∑

n=1

[∇ynβ]T dyn + [∇mβ]T dm . (2.28)

At time step 0, the primary variables y are equal to initial conditions, so the total

differential of y at time step 0 is zero,

dy0 = 0 . (2.29)

L denotes the last time step in forward simulation run. At L + 1 step, the adjoint

variables λ achieve their initial values, which are chosen to be 0s,

λL+1 = 0 . (2.30)
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Inserting Eq. 2.28 into Eq. 2.27 with two conditions in Eq. 2.30 and Eq. 2.29 applied,

the total differential of J becomes into,

dJ =
L∑

n=1

(λn)T
[
∇yn (fn)T

]T
dyn +

L∑
n=1

(
λn+1

)T [∇yn

(
fn+1

)T]T
dyn

+
L∑

n=1

[∇ynβ]T dyn +
L∑

n=1

(λn)T
[
∇m (fn)T

]T
dm + [∇mβ]T dm

=
L∑

n=1

{
(λn)T

[
∇yn (fn)T

]T
+
(
λn+1

)T [∇yn

(
fn+1

)T]T
+ [∇ynβ]T

}
dyn

+
L∑

n=1

(λn)T
[
∇m (fn)T

]T
dm + [∇mβ]T dm .

(2.31)

Only the last two terms in Eq. 2.31 are related to the derivatives of the functional

J with respect to the model parameters m, so the first term in Eq. 2.31 need to be

cancelled out by setting all terms multiplied by dyn equal to zero, which gives the

adjoint equations,

(λn)T
[
∇yn (fn)T

]T
+
(
λn+1

)T [∇yn

(
fn+1

)T]T
+ [∇ynβ]T = 0 . (2.32)

Rearranging Eq. 2.32 gives a solvable form as shown in Eq. 2.33,[
∇yn (fn)T

]
λn = −

[
∇yn

(
fn+1

)T]
λn+1 −∇ynβ . (2.33)

Eq. 2.33 is solved for λ from time step L+1 to 0 using the initial conditions defined in

Eq. 2.30. Since the coefficient matrix in the left hand side of Eq. 2.33 is independent

of the adjoint variable λ, the adjoint equations are linear. It should cost less to solve

the adjoint equations than to solve the forward reservoir simulation equations, for

which iterations are required at each time step. In form, the coefficient matrix in

Eq. 2.33 is the transpose of the Jacobian matrix in Eq. 2.19, but only if the same

system of equations are used in each gridblock for both simulation solution and adjoint

solution, are these two matrices exact transposes of each other. The dimension of both

∇yn (fn)T and ∇yn (fn+1)
T

are (3Nb+Nw)×(3Nb+Nw). ∇ynβ is a vector with length

equal to 3Nb + Nw.
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After the adjoint variables are obtained, the total differential of J can be obtained

from

dJ = [∇mβ]T dm +
L∑

n=1

(λn)T
[
∇m (fn)T

]T
dm . (2.34)

Since dJ = [∇mJ ]T dm, the derivatives of the functional J with respect to model

parameters m are

∇mJ = ∇mβ +
L∑

n=1

[
∇m (fn)T

]
λn . (2.35)

The typical length of ∇mβ is 2Nb if porosity and horizontal permeability in each

gridblock are model parameters. Correspondingly, the dimension of ∇m (fn)T will be

2Nb× (3Nb +Nw). Eq. 2.33 and Eq. 2.35 consist of the adjoint method for computing

the gradient of the objective function.

The two gradients, ∇yn (fn)T and ∇yn (fn+1)
T
, are derivatives of the flow equa-

tions (Eq. 2.16) with respect to the primary variables (Eq. 2.15), computed at all time

steps that the forward simulation run uses. Although the adjoint solution does not

necessarily use the same time step as the simulation, in this work, same time steps

were used at both forward and backward solutions. In detailed form, if the primary

variables are p, So, and Sg, then

∇yn [fn]T =



∂fn
s,1

∂pn
1

∂fn
o,1

∂pn
1

· · ·
∂fn

g,Nb

∂pn
1

∂fn
wf,1

∂pn
1

· · · ∂fn
wf,Nw

∂pn
1

∂fn
s,1

∂Sn
o,1

∂fn
o,1

∂Sn
o,1

· · ·
∂fn

g,Nb

∂Sn
o,1

∂fn
wf,1

∂Sn
o,1

· · · ∂fn
wf,Nw

∂Sn
o,1

∂fn
s,1

∂Sn
g,1

∂fn
o,1

∂Sn
g,1

· · ·
∂fn

g,Nb

∂Sn
g,1

∂fn
wf,1

∂Sn
g,1

· · · ∂fn
wf,Nw

∂Sn
g,1

∂fn
s,1

∂pn
2

∂fn
o,1

∂pn
2

· · ·
∂fn

g,Nb

∂pn
2

∂fn
wf,1

∂pn
2

· · · ∂fn
wf,Nw

∂pn
2

...
... · · · ...

... · · · ...

∂fn
s,1

∂Sn
g,Nb

∂fn
o,1

∂Sn
g,Nb

· · ·
∂fn

g,Nb

∂Sn
g,Nb

∂fn
wf,1

∂Sn
g,Nb

· · · ∂fn
wf,Nw

∂Sn
g,Nb

∂fn
s,1

∂pn
wf,1

∂fn
o,1

∂pn
wf,1

· · ·
∂fn

g,Nb

∂pn
wf,1

∂fn
wf,1

∂pn
wf,1

· · · ∂fn
wf,Nw

∂pn
wf,1

...
... · · · ...

... · · · ...

∂fn
s,1

∂pn
wf,Nw

∂fn
o,1

∂pn
wf,Nw

· · ·
∂fn

g,Nb

∂pn
wf,Nw

∂fn
wf,1

∂pn
wf,Nw

· · · ∂fn
wf,Nw

∂pn
wf,Nw



, (2.36)
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and

∇yn

[
fn+1

]T
=



∂fn+1
s,1

∂pn
1

∂fn+1
o,1

∂pn
1

· · ·
∂fn+1

g,Nb

∂pn
1

∂fn+1
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∂pn
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· · · ∂fn+1
wf,Nw

∂pn
1

∂fn+1
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∂Sn
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∂fn+1
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· · ·
∂fn+1
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wf,Nw
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∂Sn
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· · ·
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∂fn+1
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· · · ∂fn+1
wf,Nw
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∂fn+1
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∂pn
2

∂fn+1
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∂pn
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· · ·
∂fn+1
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∂pn
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∂fn+1
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∂pn
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· · · ∂fn+1
wf,Nw
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...
... · · · ...

... · · · ...
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o,1

∂Sn
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· · ·
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∂pn
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∂pn
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· · ·
∂fn+1
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∂pn
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wf,1
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· · · ∂fn+1
wf,Nw

∂pn
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

.

(2.37)

To compute each entry of those two matrices, the pressure and saturation at each

gridblock during forward simulation run are saved at each time step. When the model

size is large, the variables are stored in hard disk instead of memory but the reduction

in computation speed due to I/O operations was not substantial (Zhang, 2002). The

equations for each entry are fully consistent with the equations used in CLASS and

can be found in Li (2001).

In Eq. 2.35, the gradient of the flow equations with respect to model parameters

m is

∇m[fn]T =



∂fn
s,1

∂m1

∂fn
o,1

∂m1

∂fn
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· · ·

∂fn
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...
...

...
...

...
...

...
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where Nm is the number of model parameters, which is equal to 2Nb if porosity and

horizontal permeability at each gridblock are to be estimated. The equations for each

entry can also be found in Li (2001).
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In Eq. 2.33,∇ynβ is called the source term. In matrix form, it is,

∇ynβ =

[
∂β
∂pn

1
, ∂β

∂Sn
o,1

, ∂β
∂Sn

g,1
, ∂β

∂pn
2
, · · · ∂β

∂Sn
g,Nb

, ∂β
∂pn

wf,1
, · · · ∂β

∂pn
wf,Nw

]T

. (2.39)

∇mβ in Eq. 2.35 is

∇mβ =

[
∂β

∂m1
, ∂β

∂m2
, · · · ∂β

∂mNm

]T

. (2.40)

It is the direct dependence of β on model parameters m. In contrast,
∑L

n=1

[
∇m (fn)T

]
λn

reflects the implicit dependence inherited from flow equations. If model parameters

are not explicitly related to β, many (or all) entries of ∇mβ will become 0. For exam-

ple, if GOR or WOR data are chosen as β and porosity is the only model parameter,

∇mβ will vanish.

If β denotes individual data points at different time steps, solving Eq. 2.33 and

Eq. 2.35 provides the sensitivity of the datum with respect to model parameters, such

as, sensitivities of Pwf , GOR, and WOR with respect to permeability and porosity.

These sensitivities are rows of the sensitivity matrix, which is used to construct the

Hessian matrix in Gauss-Newton methods. For some typical types of data, the deriva-

tive equations can be found in Li (2001). Since in this work, seismic impedance change

data are integrated as well as production data, the derivatives of seismic impedance

change with respect to the primary variables and model parameters are required.

As stated before, the LBFGS method is used, which does not require the Hessian

matrix and sensitivities of individual data points. So the whole objective function

shown in Eq. 2.7 is used as β to get the gradient of the objective function. Thus,

the source term in the adjoint equation (Eq. 2.33) and the direct dependence term in

Eq. 2.35 change into

∇ynβ = ∇yn

{
1

2
(g(m)− dobs)

T C−1
D (g(m)− dobs)

}
=
[
∇yn (g(m)− dobs)

T
]
C−1

D (g(m)− dobs)

= ∇yn [g(m)]T C−1
D (g(m)− dobs) ,

(2.41)

30



and

∇mβ = C−1
M (m−mprior) +∇m

{
1

2
(g(m)− dobs)

T C−1
D (g(m)− dobs)

}
= C−1

M (m−mprior) +
[
∇m (g(m)− dobs)

T
]
C−1

D (g(m)− dobs)

= C−1
M (m−mprior) +∇m [g(m)]T C−1

D (g(m)− dobs) .

(2.42)

∇yn [g(m)]T and ∇m [g(m)]T in Eq. 2.41 and Eq. 2.42 are

∇yn [g(m)]T =
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, (2.43)

and

∇m[g(m)]T =



∂g1

∂m1

∂g2

∂m1
· · · ∂gNd

∂m1

∂g1
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· · · ∂gNd
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
, (2.44)

where Nd is the number of data. Each entry in the two matrices are derivatives of

data with respect to the primary variables and the model parameters. The equa-

tions in Li (2001) can still be used to compute them. Although each columns

of ∇yn [g(m)]T and ∇m[g(m)]T are vectors shown in Eq. 2.39 and Eq. 2.40, those

two matrices are never explicitly formed. Instead, ∇yn [g(m)]T C−1
D (g(m)− dobs) and

∇m [g(m)]T C−1
D (g(m)− dobs) are computed. Thus, only two vectors are kept in mem-

ory (Golub and van Loan, 1989).
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Seismic impedance change data are treated as two separate source terms in the

adjoint equations at two different time steps, but with opposite signs. In Eq. 2.43

and Eq. 2.44, columns corresponding to seismic impedance data will be added at time

steps when two seismic surveys are shot.

Before ending this chapter, a flow chart is shown in Fig. 2.1, which shows how

the seismic impedance change data as well as production data are integrated into the

minimization process derived from the Bayesian framework. The gradient computa-

tion comes from the adjoint method, while the search direction calculation uses the

LBFGS method, which will be covered in the first part of Chapter 4.
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Figure 2.1: Flow chart of automatic history matching with integration of seismic
impedance change data and production data
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CHAPTER III

SENSITIVITY OF SEISMIC IMPEDANCE

CHANGE DATA WITH RESPECT TO

POROSITY AND PERMEABILITY

Since the LBFGS method does not require the Hessian matrix, the sensitivity of in-

dividual seismic impedance change datum with respect to model parameters, such as

permeability and porosity, is not computed during the minimization process. How-

ever, given a reservoir model, computation of sensitivities of seismic data with respect

to porosity and permeability is still sometimes useful,

• To investigate how the sensitivity coefficients are distributed around the location

where the seismic datum is recorded;

• To calibrate with the sensitivity coefficients computed using the perturbation

method, which can check if the derivatives of rock physics models are calculated

correctly.

To better understand the information from time-lapse seismic, before conducting his-

tory matching case study, the sensitivity coefficients of seismic impedance change

data with respect to porosity and permeability are computed based on a small 2-

D synthetic model. It will be seen that the sensitivities of time-lapse seismic data

(impedance changed data) to porosity and permeability have vastly different magni-

tudes. The relative error between the sensitivities computed from the adjoint method

and from the perturbation method is small.
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This chapter will start with a introduction of seismic impedance and time-lapse

seismic, then the derivatives of different rock physics models are followed, finally the

sensitivity coefficient plots are shown.

3.1 Seismic impedance

Although amplitude data are preferred for interpreting geologic structure, they de-

pend on both reflectivities among layers and on the source properties for the signal. In

this dissertation, seismic impedance is the attribute that will be used for estimation of

flow properties. Qualitatively, it indicates how stiff rocks are, high impedance if rocks

are hard to compress and low impedance if rocks are soft. Because of fluid production,

pressure and saturation distributions will change, which can alter the distribution of

elastic properties of rocks, especially when the reservoir experiences changes from no

gas exist to free gas. Such changes in elastic properties can be captured through

changes in seismic impedance data. On the other hand, pressure and saturation dis-

tributions are determined primarily by permeability and porosity. Hence, seismic

impedance data have a strong relationship with permeability and porosity.

Seismic impedance usually refers to P -wave impedance, which is defined as

Z = ρVp , (3.1)

where ρ is body density and Vp is P -wave velocity. Since only P -wave impedance data

is used in this work, the term “seismic impedance” will be used exclusively hereafter.

The P -wave velocity is

Vp =

√
1

ρ

(
K +

4

3
G

)
, (3.2)

where K is the bulk modulus and G is the shear modulus. The bulk modulus can

be regarded as the reciprocal of compressibility. For stiff rocks, the bulk modulus

has large value. The shear modulus is the coefficient between shear strain and shear

stress.
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Besides the P -wave, another type of wave that is commonly met in geophysics

is called the shear wave, also denoted as S-wave. The propagation direction of the

shear wave is perpendicular to its vibration direction. The shear wave velocity is

Vs =

√
G

ρ
. (3.3)

Using Eq. 3.2 and Eq. 3.3 into Eq. 3.1, a new equation for impedance calculation can

be written as in Eq. 3.4,

Z = ρVp =

√
ρ

(
K +

4

3
G

)
=

√
ρK +

4

3
ρ2V 2

s . (3.4)

From Eq. 3.4, it can be seen that to compute the seismic impedance, two groups of

parameters are required, either ρ, K and G or ρ, K and Vs. The bulk density ρ is

related to porosity and saturations using Eq. 3.5,

ρ = (ρoSo + ρgSg + ρw(1.0− So − Sg)) φ + (1− φ) ρsolid , (3.5)

where So, Sg, and Sw are saturations of oil, gas, and water, ρo, ρg, and ρw are densities

of oil, gas, and water, ρsolid is dry rock density, and φ is porosity. For the bulk

modulus K, the well known Gassmann equations are frequently used (Gassmann,

1951). The shear modulus G and shear wave velocity Vs can be calculated using

empirical formulas, such as Han equation (Han et al., 1986), Kuster and Toksöz

equation (Kuster and Toksöz, 1974), and Ramammorthy equation (Ramammorthy

et al., 1995). Other equations can be found in Guerin (2000).

3.1.1 Gassmann equations

The Gassmann equations (Gassmann, 1951) divide the bulk modulus of a fluid sat-

urated rock into three parts: the bulk modulus of components in the rock, the bulk

modulus of the rock’s dry frame, and the bulk modulus of fluids in the rock’s pores.

According to Murphy et al. (1993) and Nolen-Hoeksema (2000), the Gassmann for-

mula is a low frequency approximation of the Biot theory (Biot, 1956a,b, 1962). The
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Gassmann equations for bulk modulus are

K = Kgrain
Kframe + Q

Kgrain + Q
, (3.6)

and

Q =
Kfluid (Kgrain −Kframe)

φ (Kgrain −Kfluid)
, (3.7)

where, Kgrain is the bulk modulus of grain (matrix components), Kframe is the bulk

modulus of the porous dry frame, and Kfluid is the bulk modulus of the pore fluid.

Some assumptions of the Gassmann equations are (Smith et al., 2003; Wang, 2001),

• Rocks are homogeneous and isotropic;

• Pores in rocks are connected and have good communication;

• Wave frequency is low enough to achieve equilibrium;

• Viscosities of the fluids are negligible;

• No chemical effects between fluids and rock frames.

Some assumptions listed above are generally satisfied, for example, the low wave

frequency assumption, which is generally true in seismic exploration due to the at-

tenuation of high-frequency wave components. Other assumptions, however, may not

be valid in real application. Although moderate deviations from them may not result

in invalidation of the model, some caution is worthwhile. First, if rocks consist of dif-

ferent minerals with very strong contrasts in their elastic properties, or with obvious

heterogeneous alignments, the Gassmann equations tend to be poor models (Smith

et al., 2003). Secondly, the Gassmann equations do not specify pore shapes, but they

are not appropriate if pores are anisotropic within rocks. Moreover, if the Gassmann

equations are applied to rocks with very low porosity, the reduction in accuracy may

be expected (Smith et al., 2003; Wang, 2001).
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The bulk modulus of fluid can be computed using Eq. 3.8,

1

Kfluid

=
1.0− So − Sg

Kw

+
Sg

Kg

+
So

Ko

, (3.8)

where Ko, Kg, and Kw are bulk modulli of oil, gas, and water, and So, Sg, and

Sw are oil, gas, and water saturations. The bulk modulli of oil, gas, and water are

reciprocals of their isothermal compressibilities. The general definition of isothermal

compressibility is

1

K
= c = − 1

V

dV

dP
. (3.9)

So the PVT tables input into the reservoir simulator can be used to compute the bulk

modulus of pore fluid. Correlation equations are frequently used to calculate the bulk

modulus of pore fluid (Batzle and Wang, 1992). Usually, the magnitude of Kg is two

orders of magnitude smaller than Ko and Kw. Since the bulk modulus of the fluid

is a geometric mean of the bulk modulus of individual phase, a small amount of gas

saturation change can lead to a large change in the bulk modulus of fluid.

The bulk modulus of grain takes into account bulk modulli of different minerals

in rocks, usually averaging according to their percentage in rocks. One widely used

average method is called the Voight-Reuss-Hill (VRH) average (Hill, 1952; Smith

et al., 2003; Wang, 2001), which is

Kgrain =
1

2
(Kgrain,V + Kgrain,R) , (3.10)

where Kgrain,V is the bulk modulus of grain computed using the Voight average (Voight,

1928) and Kgrain,R is the bulk modulus of grain computed using the Reuss aver-

age (Reuss, 1929). Respectively, they are

Kgrain,V =
n∑

i=1

ciKi , (3.11)

and

1

Kgrain,R

=
ci

Ki

, (3.12)
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where ci is the volume percentage of each mineral and Ki is the bulk modulus, corre-

spondingly. If it is assumed that rocks mainly consist of sand and clay, then the bulk

modulus of grain can be calculated using Eq. 3.13,

Kgrain =
1

2

[
γKc + (1− γ)Ks +

KsKc

Ksγ + Kc(1− γ)

]
, (3.13)

where Ks is the bulk modulus of sand, Kc is the bulk modulus of clay, and γ is the

shaliness (percentage of clay). According to Dong and Oliver (2002), variations in

the bulk moduli of sand and clay, and shaliness do not cause substantial deviations in

seismic impedance change compared to changes caused by fluid saturation changes.

Hence, for synthetic case studies, some common values of Kc, Ks, and γ are used.

The bulk modulus of dry frame can be estimated through lab measurements,

logging data analysis or computed using the Gassmann equations knowing the bulk

modulus of fluid saturated rock (Smith et al., 2003; Wang, 2001). In this work, an

empirical equation is used (Guerin, 2000),

log10 Kframe = log10 Kgrain − 4.25φ , (3.14)

where φ is porosity. Other equations for computing Kframe can be found in Smith

et al. (2003) and Wang (2001).

3.1.2 Equations for G and Vs

The shear wave velocity Vs can be estimated from the porosity and shaliness using

the Han equation (Han et al., 1986),

Vs = 3520.0− 4910.0φ− 1890.0γ , (3.15)

where the unit of Vs is m/s.

The Kuster and Toksöz equation (Kuster and Toksöz, 1974) or the Ramammorthy

equations (Ramammorthy et al., 1995) can be used to estimate the shear modulus G.

The Kuster and Toksöz equation is

G = Gm
(6Km + 12Gm) Gi + (9Km + 8Gm) ((1− Ic) Gm + IcGi)

(9Km + 8Gm) Gm + (6Km + 12Gm) ((1− Ic) Gi + IcGm)
, (3.16)
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where Gm denotes the shear modulus of the matrix and Gi is the shear modulus of

the inclusion. When a mixture only includes clay and sand, Ic is replaced by the

shaliness, γ, and the matrix is referred to sand. Therefore, Km and Gm are bulk

modulus and shear modulus of sand. Gi is the shear modulus of clay.

The Ramammorthy equations for estimating the shear modulus are

G = Ggrain

(
1− 3.48φ + 2.19φ2

)
, (3.17)

and

Ggrain = (0.039 log10 γ + 0.072)−1 , (3.18)

where Ggrain is the shear modulus of grain, φ is porosity, and γ is shaliness. According

to Ramammorthy et al. (1995), Eq. 3.18 is valid when γ is between 0.06 and 0.42. If γ

is below 0.06, Ramammorthy et al. (1995) recommended using the following equation:

G = 42.65
(
1− 3.48φ + 2.19φ2

)
, (3.19)

where 42.65 is the shear modulus of pure quartz and the unit of G is GPa. Eq. 3.19

was first derived by Murphy et al. (1993).

3.2 Time-lapse seismic

Time-lapse seismic consists of multiple seismic surveys, which can be 2D seismic,

3D seismic, VSP, and cross-well seismic, acquired at different times but the same

location. Usually, the first survey is called the base-line survey and the repeated

surveys are called the monitor surveys. Seismic reflection data from one seismic survey

are sensitive to both static parameters, such as lithology, porosity, and shaliness, and

dynamic fluid flow related parameters, for example, permeability and porosity. If just

one seismic survey is used, it is difficult to differentiate these two sources of effects.

By comparing seismic data obtained from surveys at different times, it is possible

to reduce the effects from static parameters and focus on dynamic changes coming

40



from pressure and saturation re-distributions due to production, which is the goal of

automatic history matching.

The idea of time-lapse seismic can be traced back to late 1980’s and early 1990’s,

when there were three different papers discussing how multiple seismic surveys were

used to monitor reservoirs under production, by comparing data obtained from differ-

ent surveys. The first two applications were to monitor steam movement in enhanced

oil recovery projects (Wayland and Lee, 1986; Greaves and Fulp, 1987), where tem-

perature changes caused easily captured seismic signal changes. A few years later,

the first paper to document using time-lapse seismic to monitor fluid flow under

isothermal condition appeared (Dunlop et al., 1991). Other applications to reser-

voir monitoring and management during the last decade can be found in Ross et al.

(1996); Lumley et al. (1999); Behrens et al. (2002); Waggoner et al. (2002); Gouveia

et al. (2004). Through 2001, there have been 75 active time-lapse seismic projects

worldwide costing on the order of (US) $50 to (US) $100 million (Lumley, 2001).

Figs. 3.1 and 3.2 show results from a real time-lapse seismic project in Draugen

field, North Sea (Koster et al., 2000). The seismic attribute displayed in the sections

is impedance. In Draugen, there were two seismic surveys: the base-line survey in

1990 and the monitor survey in 1998. A green line in both monitor survey and base-

line survey maps (Fig. 3.1) denotes the location of the injection well. The thick black

line indicates the seal rock of the reservoir, under which is the top location of the oil

layer, the thick red line in both surveys. In the base-line survey, the reflection of the

reservoir top is not very strong. At some locations, it is not even continuous. After

eight years production, however, the top reservoir has a very strong reflection, which

comes from the replacement of oil with water. Because the bulk modulus of water

is higher than that of oil, the top reservoir becomes stiffer after water flooding so

the reservoir top becomes more obvious. The other parts of the reservoir show little

change. By subtracting impedance volumes in the base-line survey from impedance

41



volumes in the monitor survey, the changes in top reservoir are emphasized with

most of unchanged signals cancelled out (Fig. 3.2). The long red feature in the figure

denotes the location of the seal rock.

Figure 3.1: Seismic surveys in 1990 (top) and 1998 (bottom) from Draugen field,
North Sea

Whether the time-lapse seismic data are used for reservoir monitoring or automatic

history matching, comparison between monitor survey and base-line survey is always

required, usually by subtracting one from the other. Subtraction should result in

an emphasis of changes and absence of events which do not change. To make a

meaningful comparison, two important conditions are necessary,

• Signals from locations where no changes in properties have occurred should be
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Figure 3.2: Changes from the two surveys from Draugen field, North Sea

kept as similar as possible in different surveys;

• Differences related to saturation, pressure, or stress should be as large as possible

in different surveys.

The primary influence on the second condition is from reservoir conditions, such as

time interval between surveys, depth of reservoir, and fluid phase changes between

surveys. Those reservoir conditions generally can determine whether the changes will

be large or not. To address the first condition, some steps must be taken to increase

the similarities, in both acquisition and processing. Whenever possible, it is advanta-

geous to use the same survey area, same geometric alignment, and same acquisition

parameters, and in processing to use the same parameters for both the base-line sur-

vey and the monitor survey. Using the time-lapse seismic terminologies, these are

feasibility and repeatability studies in the design phase and cross equalization in the

processing phase.

3.2.1 Feasibility study

Feasibility study investigates different reservoir features, such as fluid saturation con-

trast and dry bulk modulus, to see whether the reservoir is a possible candidate for

a successful time-lapse seismic project. The reason is that due to natural limitations,
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some reservoirs may not express enough changes in seismic surveys, no matter how

long they have been produced. Lumley et al. (1994, 1997) gave an excellent discus-

sion about which kind of reservoirs tend to be good candidates for time-lapse seismic

projects. Some ideal reservoirs for time-lapse seismic will have the features listed in

Table 3.1, Table 3.2 and Table 3.3.

Parameter Options Ideal Cases

Reservoir

Depth (ft) shallow
Overburden pressure (psi) low

Pore pressure (psi) high
Net pressure (psi) low
Temperature (◦F) high
Unit thickness (ft) high

Rocks
Dry bulk modulus (GPa) low

Dry density (g/cc) low
Porosity (%) high

Table 3.1: Ideal parameters of reservoir and rocks in time-lapse seismic: Part I (Lum-
ley et al., 1997)

Parameter Options Ideal Cases

Oil

Solution GOR (SCF/STB) high
Gravity (API) high
Density (g/cc) low

Bulk modulus (GPa) low

Water
Salinity (ppm) high
Density (g/cc) high

Bulk modulus (GPa) high

Gas
Density (g/cc) low

Bulk modulus (GPa) low

4-D Fluids
Fluid saturation change (%) high

Fluid compression contrast (%) high

Table 3.2: Ideal parameters of reservoir fluids in time-lapse seismic: Part II (Lumley
et al., 1997)
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Seismic Ideal Cases
Dominant frequency (Hz) high
Average resolution (ft) low
Image quality (1:low, 5:high) 5
Fluid contact visibility (1:low, 5:high) 5
Predicted travel time changes (samples) > 4
Predicted impedance change (%) > 4

Table 3.3: Ideal parameters of seismic operations in time-lapse seismic: Part
III (Lumley et al., 1997)

3.2.2 Repeatability study

In time-lapse seismic, repeatability does not mean that data from multiple seismic

surveys should be as similar as possible everywhere; the most important purpose of

time-lapse seismic is to emphasize the changes due to production. Thus, success re-

quires that difference in regions where production has occurred should be maximized.

Outside of the productive volume, the differences should be minimized. However,

due to non-repeatable noise, such as source generated noise, ambient noise, and nat-

urally induced noise, non-production areas always have different signals in time-lapse

seismic surveys. The noise in the data will “blur” the real changes from produc-

tion zones. The stronger the noise, the larger the signal is needed for meaningful

interpretation (Eastwood et al., 1998).

To test how repeatable the time-lapse seismic data will be in a possible sur-

vey area, i.e., how strong the non-repeatable noise is, a zero time repeatability

study (Porter-Hirsche and Hirsche, 1998) is sometimes employed. The idea is that

the baseline survey and a monitor survey are both shot on the same day. This can be

regarded as zero-lapse seismic survey in terms of production time scale. All survey-

related parameters are kept same, such as acquisition geometry, seismic crew, and

source type. Under this near ideal condition, any changes observed in the difference

of the base-line survey and the monitor survey are most probably from uncontrollable
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noise. This noise level can be regarded as a noise threshold. Any non-repeatable noise

in data obtained from a real time-lapse seismic project conducted in that area will

be higher than the threshold. On the other hand, by conducting reservoir simulation

study combined with seismic wave field modelling, it is possible to predict the magni-

tude of time-lapse seismic changes that will result from production. If the magnitude

of predicted seismic changes due to production do not even exceed the threshold noise,

the possibility to have a successful time-lapse seismic survey is low.

3.2.3 Cross equalization

For a complete time-lapse seismic project designed from scratch, a feasibility study

and a repeatability study provide strong assurance for its success. Many time-lapse

seismic surveys conducted in fields were not purposely designed from the beginning

to be repeated. The typical situation is that the base-line survey and the monitor

survey are taken from two unrelated seismic surveys in the same field. It is not

uncommon to see that acquisition systems are different with geometrical coordinates

not even aligning and data processing use different parameters. Since it is impractical

to re-shoot the surveys, the only feasible way to reduce those artificial distinctions is

through re-processing of the data, applying cross equalization.

According to Ross et al. (1996) and Rickett and Lumley (2001), cross equalization

is a term for match-filtering, amplitude scaling, and static corrections necessary for

time-lapse seismic, to remove non-production changes from acquisition and processing

done previously. Although different authors have different opinions about what should

be done during the cross equalization process (Rickett and Lumley, 2001; Ross et al.,

1996), generally, cross equalization should at least include the following three aspects,

• Realignment of geometry of acquisition system;

• Time, bandwidth, and phase equalization;

• Amplitude equalization.
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Cross equalization is required when a time-lapse seismic project involves legacy data,

but it also helps in a well designed project by adjusting some minor discrepancies

between surveys.

3.3 Derivatives of seismic impedance with respect

to pressure, saturation, permeability and poros-

ity

In the adjoint equations, seismic impedance change data are integrated separately

as two source term groups with opposite signs (Eq. 2.43 and Eq. 2.44). Hence, the

two matrices, ∇yn [g(m)]T and ∇m[g(m)]T , involve derivatives of seismic impedance

with respect to pressure, phase saturations, and reservoir model parameters (here

permeability and porosity are chosen).

Using Eq. 3.4, if the shear wave velocity Vs is used, the explicit derivatives of

seismic impedance with respect to pressure, saturations, and porosity are respectively,

∂Z

∂P
=
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(
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3
ρ2V 2

s

)−1/2(
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and
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Because there is no direct dependence between impedance and permeability, the

derivative of impedance with respect to permeability is zero.

If the shear modulus G is used, the derivatives will be changed into,
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and
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It can be seen that whichever is used, Vs or G, the derivatives of the bulk modulus

K with respect to P , So, Sg, and φ must be calculated. They can be obtained by

applying the chain rule to the Gassmann equations. Similarly, the derivatives of G

or Vs can be computed starting from the Han, Kuster and Toksöz equation, and

Ramammorthy equations and then applying the chain rule.

3.3.1 Derivatives of the Gassmann equations

If Eq. 3.7 is plugged into Eq. 3.6, the Gassmann equations can be written as,

K = Kgrain
A

B
, (3.28)

where,

A = φKframeKgrain − φKframeKfluid + KfluidKgrain −KfluidKframe , (3.29)

and

B = φK2
grain − φKgrainKfluid + KfluidKgrain −KfluidKframe . (3.30)

Therefore, the derivative of the bulk modulus K with respect to pressure P is,

∂K

∂P
= Kgrain

B ∂A
∂P

− A∂B
∂P

B2
, (3.31)

where

∂A

∂P
=

∂Kframe

∂P
(φKgrain − φKfluid −Kfluid)

+
∂φ

∂P
(KgrainKframe −KfluidKframe)

+
∂Kfluid

∂P
(Kgrain − φKframe −Kframe) ,

(3.32)
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and

∂B

∂P
=
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∂P

(
K2

grain −KgrainKfluid

)
−Kfluid

∂Kframe

∂P

+
∂Kfluid
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(Kgrain − φKgrain −Kframe) .

(3.33)

There is no derivative of Kgrain with respect to pressure because Eq. 3.13 is used. If

Eq. 3.14 is used, the derivative of Kframe with respect to P is

∂Kframe

∂P
= −4.25 ln(10)10(log10(Kgrain)−4.25φ) ∂φ

∂P
. (3.34)

Using Eq. 3.8, the derivative of Kfluid with respect to pressure is,
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where derivatives of bulk modulli of three phases with respect to pressure are required.

The isothermal compressibilities of oil, gas, and water are defined as
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, (3.36)
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so the derivatives can be written as

∂Kg

∂P
= −K2

g

(
1

B2
g

(
dBg

dP

)2

− 1

Bg

d2Bg

dP 2

)
, (3.39)

∂Kw

∂P
= −K2

w

(
1

B2
w

(
dBw

dP

)2

− 1

Bw

d2Bw

dP 2

)
, (3.40)
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(3.41)

where Ko = 1/co, Kg = 1/cg and Kw = 1/cw. Applying Eq. 3.34, Eq. 3.35, Eq. 3.39,

Eq. 3.40, and Eq. 3.41, the derivative in Eq. 3.31 can be calculated.

49



Taking derivative in Eq. 3.28 with respect to oil saturation So gives the following

equations,

∂K

∂So

= Kgrain

B ∂A
∂So

− A ∂B
∂So

B2
, (3.42)

where, ∂A
∂So

and ∂B
∂So

are
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∂So
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and
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(Kgrain − φKgrainKframe) . (3.44)

From Eq. 3.8, the derivative of bulk modulus of fluid with respect to So is
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The derivative of bulk modulus with respect to gas saturation Sg has the same form

as the derivative with respect to oil saturation (Eq. 3.42). The only difference is the

derivative of bulk modulus of fluid, which becomes

∂Kfluid

∂Sg

=

(
So

Ko

+
Sg

Kg

+
1− So − Sg

Kw

)−2(
1

Kw

− 1
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)
. (3.46)

The derivative of the bulk modulus K with respect to φ is

∂K

∂φ
= Kgrain

B ∂A
∂φ
− A∂B

∂φ

B2
, (3.47)

where

∂A

∂φ
= (Kgrain −Kfluid)

(
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)
−Kfluid
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∂φ
, (3.48)

and

∂B

∂φ
= K2

grain −KgrainKfluid −Kfluid
∂Kframe

∂φ
. (3.49)

There is no dependence of Kgrain on porosity. The derivative of Kframe with respect

to φ is

∂Kframe

∂φ
= −4.25 ln(10)10(log10(Kgrain)−4.25φ) . (3.50)
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3.3.2 Derivatives of the equations for G and Vs

Whichever equation group is chosen, the Han equation, the Kuster and Toksöz equa-

tion, or the Ramammorthy equations, only derivatives of G or Vs with respect to

pressure and porosity need to be computed because there is no direct dependence of

G or Vs on So and Sg.

If the Han equation (Eq. 3.15) is used to compute the shear wave velocity Vs, the

derivatives are

∂Vs

∂P
= −4910.0× ∂φ

∂P
, (3.51)

and

∂Vs

∂φ
= −4910.0 . (3.52)

If the Kuster and Toksöz equation (Eq. 3.16) is used, G does not depend on

pressure and porosity.

If the Ramammorthy equations (Eq. 3.17 and Eq. 3.18) are used, the derivatives

are

∂G

∂P
= Ggrain (4.38φ− 3.48)

∂φ

∂P
, (3.53)

and

∂G

∂φ
= Ggrain (4.38φ− 3.48) . (3.54)

3.3.3 Some other derivatives required for computation

From Eq. 3.20 to Eq. 3.27, it can be seen that in addition to the derivatives of

the modulus or the shear wave velocity with respect to pressure, saturation, and

porosity, the derivatives of the body density ρ are also required. If Eq. 3.5 is used,

these derivatives are

∂ρ

∂P
= φ

(
So

∂ρo

∂P
+ (1.0− So − Sg)

∂ρw

∂P
+ Sg

∂ρg

∂P

)
+ (ρoSo + ρw (1.0− So − Sg) + ρgSg − ρsolid)

∂φ

∂P
,

(3.55)
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∂ρ

∂So

= φ (ρo − ρw) , (3.56)

∂ρ

∂Sg

= φ (ρg − ρw) , (3.57)

and

∂ρ

∂φ
= ρw (1− So − Sg) + ρoSo + ρgSg − ρsolid . (3.58)

3.4 Sensitivity computation

The estimation of flow parameters may be complicated by uncertainty (and variabil-

ity) in other properties that affect the impedance, such as shaliness and lithology. It

is important to compare the sensitivity of impedance change from all possible effects.

In this section, a sensitivity study is conducted using two synthetic models.

3.4.1 Predominant effect of phase saturation change in seismic impedance
change

The purpose of using seismic impedance change data in history matching is to in-

fer information about phase saturation change due to production. In practice, it is

not clear that this can be done because other poorly known properties of the reser-

voir such as sand modulus, clay modulus, and shaliness may also affect the seismic

impedance. Even if these parameters do not change with time, the model will include

errors because spatially uniform values are usually assumed for these spatially varying

parameters. Before using seismic impedance change data in automatic history match-

ing, we must make sure that the change of phase saturation will be the predominant

effect. In this investigation, some typical values are chosen for a sensitivity study

to show that the effect from phase saturation change will be the dominant effect on

seismic impedance change. Two cases are considered, one of which is an oil reservoir

under water flood and the other is a solution gas drive reservoir. In both cases, the

changes in impedance due to changes in saturation are computed for several values

of rock parameters. The purpose is to determine if uncertainty in those parameters
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will cause significant deviation in seismic impedance change for the same saturation

changes. The base values of the reservoir parameters are shown in Table 3.4. In

Parameter Value
Porosity 0.2
Shaliness 0.2
Sand modulus (Pa) 3.8× 1010

Clay modulus (Pa) 21.2× 109

Density of solid (kg/m3) 2, 650
Density of gas (kg/m3) 214
Density of water (kg/m3) 986
Density of oil (kg/m3) 707
Modulus of gas (Pa) 3.94× 107

Modulus of water (Pa) 2.39× 109

Modulus of oil (Pa) 6.71× 108

Initial water saturation 0.2
Initial oil saturation 0.8
Initial gas saturation 0.0

Table 3.4: Base values in computation of sensitivity of phase saturation to seismic
impedance change (water flood)

water flood case, upper and lower bounds for the sensitivity study are shown in Ta-

ble 3.5. By varying each parameter, it is possible to study the “effect of uncertainty”

in these parameters on the change in seismic impedance. By assuming different val-

Parameter Lower Bound Upper Bound
Water saturation 0.2 0.6
Shaliness 0.0 0.4
Clay modulus 1.0× 1010 3.0× 1010

Sand modulus 2.8× 1010 4.8× 1010

Table 3.5: Lower and upper bounds for reservoir parameters (water flood)

ues of other parameters, changing one parameter at a time, the impedance changes

are recomputed. From Table 3.6, it can be seen that even if the value of the rock

mineral parameters were greatly in error, the error in seismic impedance change due

to water saturation change would be small. That is to say that the uncertainty of
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Parameter Seismic Impedance Change Change Ratio
Base value 251978 3.6%
Shaliness in lower bound 242795 3.5%
Shaliness in upper bound 265121 3.8%
Clay modulus in lower bound 249037 3.6%
Clay modulus in upper bound 252823 3.6%
Sand modulus in lower bound 247481 3.5%
Sand modulus in upper bound 253692 3.6%

Table 3.6: Change in seismic impedance from changing water saturation in various
reservoir rocks

shaliness, grain modulus, and shale modulus in the seismic impedance change data

can be neglected.

In the solution gas drive case, the base values are the same as the water flood

(Table 3.4). The bounds on parameter values for the sensitivity study are shown in

Table 3.7. Using the same methods described previously, the results are shown in

Parameter Lower Bound Upper Bound
Gas saturation 0.0 0.5
Shaliness 0.0 0.4
Clay modulus 1.0× 1010 3.0× 1010

Sand modulus 2.8× 1010 4.8× 1010

Table 3.7: Lower and upper bounds for reservoir parameters (solution gas drive)

Table 3.8. It is clear that in solution gas drive, the phase saturation change is still

the most important effect. Given these results, it appears that the uncertainty in

mineralogy can be dealt with as part of modelling error and that its effect on change

in impedance is small compared to those parameters that affect the phase saturation,

such as permeability and porosity.

3.4.2 Synthetic results

In order to test the computation of the sensitivity of impedance change to permeability

and porosity, two synthetic models were created. Both of them use a 15× 15× 1 grid
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Parameter Seismic Impedance Change Change Ratio
Base value −526631 −7.5%
Shaliness in lower bound −502306 −7.2%
Shaliness in upper bound −562770 −8.0%
Clay modulus in lower bound −528152 −7.5%
Clay modulus in upper bound −525463 −7.5%
Sand modulus in lower bound −528241 −7.5%
Sand modulus in upper bound −523081 −7.5%

Table 3.8: Change in seismic impedance from changing gas saturation in various
reservoir rocks

with 4x = 4y = 40 ft and 4z = 30 ft. The porosity field is homogenous and equal

to 0.22. The permeability field is heterogenous and isotropic. The mean of the log

horizontal permeability, ln(k), is 3.95 (52 md) and the variance is 0.52.

In one model, there are five wells. An injector is in gridblock (8, 8) and four

producers are located symmetrically in gridblocks (3, 3), (3, 13), (13, 3), and (13, 13)

(see white circles in Fig. 3.3(a)). This model is used to simulate a water flood case

where the initial pressure in the oil reservoir is 4, 500 psi, which is slightly above the

initial bubble point pressure, 4, 417 psi. Each producer produces at total fluid rate

220 RB/D. The minimum bottom hole pressure for each producer is 50 psi and the

maximum permitted WOR for each producer is 0.49. For the injector, the maximum

water injection rate is 550 RB/D. Initial oil saturation is 0.8 and the initial water

saturation is equal to irreducible water saturation Swc = 0.2.

The other model has one producer in gridblock (3, 3) (see white circle in Fig. 3.3(b)).

It is used to simulate production by solution gas drive. This producer produces at

total fluid rate 700 RB/D. The minimum bottom hole pressure is 50 psi and the

maximum permitted WOR is 0.49. All initial reservoir pressure, initial bubble point

pressure, oil saturation, and water saturation are the same as those in the water flood

case.
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In both cases, the sensitivities are computed of seismic impedance change in grid-

blocks x = 5, y = 4 and x = 10, y = 6 (see black rectangles in Fig. 3.3) to log

horizontal permeability and porosity at the 30th day. Also the corresponding water

and gas saturation distribution maps and pressure maps are output for reference.

From these maps, some observations can be drawn as following,

1. In the water flood case, the seismic impedance change map (Fig. 3.5) has the

same features as the water saturation change map (Fig. 3.4(a)). In the solution

gas drive case, there is also great similarity between the seismic impedance

change map and the gas saturation change map (Fig. 3.6 and Fig. 3.4(b)). In

this case the change in seismic impedance is mainly due to the change in fluid

saturation due to production. Using the seismic impedance change, it would be

feasible to qualitatively monitor the reservoir production.

2. From the sensitivity of seismic impedance change to log permeability in the

water flood case (Fig. 3.7(a) and Fig. 3.8(a)) and the solution gas drive case

(Fig. 3.7(b) and Fig. 3.8(b)), it can be seen that seismic impedance change has

sensitivity dependence on reservoir permeability because the change in reservoir

permeability will affect the change in phase saturation. So seismic impedance

change is clearly “sensitive” to the change in permeability.

3. In addition to the direct effect of porosity on impedance change, the seismic

impedance change also has an indirect dependence on porosity, which can be

understood from the phase saturation equation:

∂S

∂t
+

(
UT

φ

df

dS

)
∂S

∂x
= 0 , (3.59)

where the term in parenthesis is called the “phase velocity”, which describes the

rate of advance of the phase saturations. Because this velocity includes porosity

φ, we see that the seismic impedance change must also be sensitive to porosity

through the effect on saturation.
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4. The shapes of the maps of sensitivity to porosity in the water flood case (Fig. 3.7(c)

and Fig. 3.8(c)) and the solution gas drive case (Fig. 3.7(d) and Fig. 3.8(d))

do not look at all like the shapes of the maps of sensitivity to log permeability.

The reason is that the sensitivity can be divided into two terms as follows:

∂J

∂φ
=

∂Z

∂φ
+

∂f

∂φ
λ (3.60)

where ∂Z/∂φ is the direct derivative term and λ∂f/∂φ is the contribution to

the derivative from the flow equations. In porosity sensitivity, the direct term

is very large compared to the effect from the flow equations. This is different

from permeability sensitivity because seismic impedance change has no direct

dependence on permeability. Thus, the seismic impedance change data are more

sensitive to porosity than to permeability.

5. A comparison of the sensitivity of seismic impedance change to log permeabil-

ity and porosity from the perturbation method and the adjoint method shows

that the different methods give almost identical results for the water flood case

(Fig. 3.9) and the solution gas drive case (Fig. 3.10). The relative errors be-

tween the two methods are generally on the order of 10−4 (Fig. 3.11, Fig. 3.12,

Fig. 3.13 and Fig. 3.14).1

6. In Fig. 3.7(a), it can be seen that the most obvious sensitivities are distributed

along the path from the center-located injection well to the production well at

the lower-left corner because gridblock (4, 5) is in that path. Between gridblock

(4, 5) and the injection well, high permeability values tend to make water flow

fast, resulting in large seismic impedance increase, so the sensitivity coefficients

are positive. Around the production well, however, high permeability values

will make small pressure difference, which can reduce the seismic impedance

1The relative error is defined as ε = |σp−σa|
σp

, where σp is the sensitivity computed using the
perturbation method and σa is the sensitivity from the adjoint method.
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change, so the sensitivity coefficients are negative. For the solution gas drive

(Fig. 3.8(b)), the major sensitivities are around the production well at the lower-

left corner, where low permeability values give high pressure drop, resulting in

large impedance change arising from gas saturation increase, so the sensitivity

coefficients are negative. Since the sensitivity of seismic impedance change with

respect to porosity is dominated by the direct dependence term (Eq. 3.60),

gridblocks (4, 5) and (6, 10) are emphasized respectively in Figs. 3.7(c), 3.7(d),

3.8(c), and 3.8(d).

(a) Water flood (b) Solution gas drive

Figure 3.3: Reference ln(k) field and well locations
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(a) Water saturation for water flood (b) Gas saturation for solution gas drive

(c) Pressure for water flood (d) Pressure for solution gas drive

Figure 3.4: Water, gas saturation and pressure distributions at the 30th day

Figure 3.5: Seismic impedance change at the 30th day (water flood)
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Figure 3.6: Seismic impedance change at the 30th day (solution gas drive)

(a) Sensitivity to ln(k) for water flood (b) Sensitivity to ln(k) for solution gas drive

(c) Sensitivity to φ for water flood (d) Sensitivity to φ for solution gas drive

Figure 3.7: Sensitivity of seismic impedance change in gridblock (4, 5) to ln(k) and
φ at the 30th day
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(a) Sensitivity to ln(k) for water flood (b) Sensitivity to ln(k) for solution gas drive

(c) Sensitivity to φ for water flood (d) Sensitivity to φ for solution gas drive

Figure 3.8: Sensitivity of seismic impedance change in gridblock (6, 10) to ln(k) and
φ at the 30th day
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(a) Sensitivity to ln(k) by adjoint method (b) Sensitivity to ln(k) by perturbation
method

(c) Sensitivity to φ by adjoint method (d) Sensitivity to φ by perturbation method

Figure 3.9: Comparison between the adjoint method and the perturbation method
in computing sensitivity of seismic impedance change in gridblock (4, 5) to ln(k) and
φ at the 30th day (water flood)
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(a) Sensitivity to ln(k) by adjoint method (b) Sensitivity to ln(k) by perturbation
method

(c) Sensitivity to φ by adjoint method (d) Sensitivity to φ by perturbation method

Figure 3.10: Comparison between the adjoint method and the perturbation method
in computing sensitivity of seismic impedance change in gridblock (6, 10) to ln(k) and
φ at the 30th day (solution gas drive)
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Figure 3.11: Relative error between the adjoint method and the perturbation method
in computing sensitivity of seismic impedance change in gridblock (4, 5) to ln(k) at
the 30th day (water flood)

Figure 3.12: Relative error between the adjoint method and the perturbation method
in computing sensitivity of seismic impedance change in gridblock (4, 5) to φ at the
30th day (water flood)
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Figure 3.13: Relative error between the adjoint method and the perturbation method
in computing sensitivity of seismic impedance change in gridblock (6, 10) to ln(k) at
the 30th day (solution gas drive)

Figure 3.14: Relative error between the adjoint method and the perturbation method
in computing sensitivity of seismic impedance change in gridblock (6, 10) to φ at the
30th day (solution gas drive)
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CHAPTER IV

SYNTHETIC AND SEMI-SYNTHETIC CASE

STUDIES

As seen from Chapter 3, the seismic impedance change data are dependent on per-

meability and porosity, which provides the physical basis for integration of seismic

impedance change data into automatic history matching. In this chapter, a complete

estimation procedure using both seismic impedance change data and production data

will be demonstrated through two case studies. One is a small synthetic model and

the other one is a medium-sized semi-synthetic model generated from the Tengiz field,

Kazakhstan.

The minimization process derived from automatic history matching involves two

computationally demanding tasks. One is the gradient computation, which has been

described in Chapter 2 and Chapter 3. The other is the search direction calculation,

for which the LBFGS method is used.

4.1 LBFGS method

To minimize the objective function for history matching, Eq. 2.7, requires iterative

updating due to its high non-linearity. In general form, this iteration procedure can

be written as

mk+1 = mk + δmk+1 , (4.1)

where k is the iteration index, mk is the model parameter vector at iteration step k and

δmk+1 is the model updating vector, which is called the search direction. Computation

of the search direction is the crucial problem for any minimization algorithm.
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Since the gradient of the objective function is available, one natural choice is to

use the negative direction of the gradient as the search direction, as in the Steepest

Descent method. The equation is (Nocedal and Wright, 1999)

mk+1 = mk − αk∇O(mk) , (4.2)

where αk is the step size, i.e., how far to go along the search direction, and ∇O(mk)

is the gradient, which is

∇O(mk) = C−1
M (mk −mprior) + GT

k C−1
D (g(mk)− dobs) . (4.3)

The matrix Gk in Eq. 4.3 is the sensitivity coefficient matrix, whose entry is

gi,j =
∂gi

∂mj

. (4.4)

Note that Eq. 4.3 is only used in derivation. The gradient is actually computed di-

rectly using the adjoint method so the sensitivity coefficient matrix in Eq. 4.4 is never

formed. The Steepest Descent method is easy to implement, but its convergence rate

is only linear. Therefore, a large number of iteration steps are required for conver-

gence, although the initial reduction can be substantial. For the realistic problems in

history matching, the Steepest Descent method is impractical.

If not only the gradient but also the Hessian matrix (the second derivative) are

computed, the widely used Gauss-Newton method can be used. It computes the

search direction using Eq. 4.5,

H(mk)δmk+1 = −∇O(mk) , (4.5)

where H(mk) is the approximate Hessian matrix,1

H(mk) = C−1
M + GT

k C−1
D Gk , (4.6)

1The true Hessian matrix has a term involving the derivative of the sensitivity coefficient matrix
Gk, but the approximate Hessian matrix drops off that term. In this dissertation, “the Hessian
matrix” is used exclusively to denote the matrix shown in Eq. 4.6.
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where Gk is the same sensitivity coefficient matrix as the one in Eq. 4.4. If a damping

factor is added to the left hand side of Eq. 4.5, to prevent the estimated model

from over-matching the data mismatch term at the first few iteration steps, the

Gauss-Newton method can be converted into the Levenberg-Marquardt algorithm.

The choice of an appropriate damping factor is crucial to the success of Levenberg-

Marquardt algorithm. Some successful schemes can be found in Abacioglu et al.

(2001) and Li (2001).

Since the bottleneck with the Gauss-Newton method is the computation of the

Hessian matrix, one possible alternate way is to consider methods that only use the

gradient of the objective function. A number of methods belong to that category, such

as the Conjugate Gradient method, the Preconditioned Conjugate Gradient method,

and the quasi-Newton family. According to the investigations of Zhang and Reynolds

(2002) and Zhang (2002), the limited memory Broyden-Fletcher-Goldfarb-Shanno

(LBFGS) method (Nocedal, 1980) is the most successful method for our automatic

history matching problems. Therefore, in this work, only the LBFGS method is used

to minimize the objective function.

The LBFGS method is a member of the quasi-Newton family. Remember that

the Gauss-Newton method uses the Hessian matrix to compute the search direction,

which is

dk+1 = −H−1
k gk . (4.7)

Here, to be consistent with the literatures about the quasi-Newton methods, dk and gk

are used to denote the search direction and the gradient. The quasi-Newton methods,

however, use an approximation to the inverse Hessian matrix to calculate the search

direction,

dk+1 = −H̃−1
k gk , (4.8)

where H̃k is the Hessian matrix approximation. Since the search directions are com-

puted iteratively, there must be a scheme to update H̃−1
k+1 from H̃−1

k . In addition, the
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following quasi-Newton condition must be satisfied by the updating scheme,

H̃−1
k+1yk = sk , (4.9)

where

yk = gk+1 − gk , (4.10)

and

sk = mk+1 −mk . (4.11)

Among a number of schemes, a very successful one was given independently by Broy-

den (1970), Fletcher (1970), Goldfarb (1970) and Shanno (1970), which is

H̃−1
k+1 = H̃−1

k +
sks

T
k yT

k H̃−1
k yk

yT
k skyT

k sk

+
sks

T
k

yT
k sk

− sky
T
k H̃−1

k

yT
k sk

− H̃−1
k yks

T
k

yT
k sk

. (4.12)

Eq. 4.12 can also be written as

H̃−1
k+1 =

(
I − ρksky

T
k

)
H̃−1

k

(
I − ρkyks

T
k

)
+ ρksks

T
k , (4.13)

where,

ρ =
1

yT
k sk

. (4.14)

To start the algorithm, an initial guess for the Hessian matrix approximation should

be given to Eq. 4.12. Then, the Hessian matrix approximation can be updated from

step to step. Although Eq. 4.12 avoids computing the true Hessian matrix, it still

forms the Hessian approximation explicitly, which will occupy a large amount of

storage if model size becomes big. This weakness was overcome by Nocedal (1980),

who introduced a scheme to reformulate Eq. 4.13. Using his scheme, only L vectors

obtained from previous iteration steps are stored, including the gradient and model

parameter vector. The Hessian matrix approximation at each iteration step is not

constructed explicitly any more. Instead, the multiplications of the Hessian approxi-

mation with some matrices are formed by using the L vectors (Nocedal, 1980). The

length L can be decided according to different cases. The rule of thumb is that the
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larger L is, the more previous information is used. For a fixed L, the scheme used

when iteration step k is less than L and the scheme when k + 1 > L are different. If

k < L, the scheme is,

H̃−1
k+1 = V T

k V T
k−1 · · ·V T

0 H̃−1
0 V0 · · ·Vk−1Vk

+ V T
k V T

k−1 · · ·V T
1 ρ0s0s

T
0 V1 · · ·Vk−1Vk

...

+ V T
k ρk−1sk−1s

T
k−1Vk

+ ρksks
T
k

, (4.15)

where,

Vk = I − ρkyks
T
k . (4.16)

If k + 1 > L, only the L most recent vectors are used:

H̃−1
k+1 = V T

k V T
k−1 · · ·V T

k−L+1H̃
−1
0 Vk−L+1 · · ·Vk−1Vk

+ V T
k V T

k−1 · · ·V T
k−L+2ρ0s0s

T
0 Vk−L+2 · · ·Vk−1Vk

...

+ V T
k ρk−1sk−1s

T
k−1Vk

+ ρksks
T
k

. (4.17)

Since what is needed is the search direction dk+1, in Eq. 4.15 and Eq. 4.17, H̃−1
0 g0

is computed instead of H̃−1
0 . Also, Nocedal (1980) gave a very efficient algorithm to

transform Eq 4.15 and Eq. 4.17 into vector multiplications, which avoids unwieldy

matrix computations.

In Eq. 4.1, the step size is equal to 1. In many cases, the optimal step size

is smaller, and a 1-D minimization problem is used to find the step size after the

search direction is obtained. For non-linear objective functions, the line search is also

very complicated. In this work, the step size is calculated using one iteration of the

Newton-Raphson method, followed by a quadratic fit if necessary. This procedure

requires one additional simulation run (Zhang, 2002).
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4.2 A small synthetic case

To preliminarily test effects on automatic history matching results with integration

of seismic impedance change data, a small synthetic case study was conducted.

4.2.1 Model description

This small synthetic model has 2 layers. Each layer has 10× 10 gridblocks with size

equal to 40 ft. The vertical size of each gridblock is 30 ft. The only model parameter

that was adjusted is log of horizontal permeability. The vertical permeability is 0.1

times the horizontal permeability. The porosity value is fixed at the true value 0.2 in

every gridblock, so the total number of model parameters is equal to 200, which is

the number of gridblocks. To compare matching results before and after integration

of seismic impedance change data, each layer is divided into three different zones of

different permeability. In each zone, horizontal permeability is homogeneous. Since

there are very obvious edges among these three zones, it is easy to decide if one

matching result is better than another. If a method is performing well, such edges

would presumably be clearer. In this example, the well rates are fixed, total reservoir

rate for production well and total injection rate for injection well, and only bottom

hole pressures are used as production data. The true values of log permeability in

three zones are 4.0 (54.6 md), 4.2 (66.7 md), and 4.6 (99.5 md), which can be seen

from Fig. 4.1. In the lower-left corner, there is a production well (white circles in

Fig. 4.1(a) and Fig. 4.1(b)) and in the upper-right corner is an injection well (black

circles in Fig. 4.1(a) and Fig. 4.1(b)). The injection fluid is water. The wells are

completed in both layers. This is a 3-phase flow problem. Total production time

is 300 days. The production well produces both oil and free gas, but has no water

breakthrough.
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(a) Top layer (b) Bottom layer

Figure 4.1: True log horizontal permeability field

4.2.2 Matching production data only

In each well, 10 pressure data are used to do the history matching so that 20 pressure

data have been used to estimate 200 model parameters. A homogeneous value, 4.0, is

used as the initial guess and the prior model. Final matching results are in Fig. 4.2.

From Fig. 4.2, it can be seen that from this production data alone, it is not possible

to obtain a good estimate of the permeability field. The boundary between the high

and low permeability regions is more like an arc than a straight line, which simply

reflects the symmetry of the problem and the area of water saturation change from

the injection well in that corner.

4.2.3 Combination of seismic and production data

In this section, the improvement in the estimate after the integration of seismic

impedance change data for the same problem is investigated. The permeability esti-

mate from integration of both seismic impedance change data and production data

(Fig. 4.3) is better than the estimate obtained from only using production data. In

particular, the boundaries of the homogeneous regions are much clearer. Compared

with Fig. 4.2 and Fig. 4.1, the permeability estimate from integration of both seismic

impedance change data and production data is better than the estimate obtained
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(a) Top layer (b) Bottom layer

Figure 4.2: Estimated log horizontal permeability field using production data only

(a) Top layer (b) Bottom layer

Figure 4.3: Estimated log horizontal permeability field using seismic and production
data
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from only using production data. Moreover, it is much closer to the true field, espe-

cially its boundary of the homogeneous regions is much clearer. The reason for the

improvement is that the spatial density of seismic impedance change data provides

more constraints in gridblocks that are far from well locations. Obviously, seismic

impedance change data makes the possible solution space narrower and can provide

much better estimates of properties. In summary, adding seismic impedance change

data into automatic history matching is feasible and provides improved estimates.

4.3 A semi-synthetic case

Automatic history matching typically becomes more difficult when the size of the

model and the amount of data are both large. In this section, the results will be

given by applying the method with seismic impedance data to a much larger model

than the small synthetic one discussed before.

4.3.1 Model generation

Firstly, we offer an explanation for the use of the term “semi-synthetic”. The ultimate

goal is to apply the method to a field problem (Bay Marchand field in Chapter 5),

but as an intermediate step, we applied the method to a “field-scale” problem rather

than just using it on small synthetic model. One possible candidate is the model

from Tengiz field provided by Chevron-Texaco to the University of Tulsa Petroleum

Reservoir Exploitation Projects (TUPREP). When TUPREP obtained that data,

the initial aim was to test automatic history matching on a large scale single-phase

real field problem. At this time, the purpose is to investigate if seismic impedance

change data can give reasonable estimates of properties in history matching problems.

This goal requires comparison with a true field. The first five layers of the reservoir

created by Chevron-Texaco was used as the true geological model. The reservoir

properties would presumably be unknown, except for observations at well locations.

The true model was also used to generate the observed seismic impedance change
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data. Using a covariance estimated from the Chevron-Texaco model, a new synthetic

model was generated by Sequential Gaussian Simulation (SGS). A comparison of the

Chevron-Texaco model of Tengiz field with the generated model can be seen from

Table 4.1, where C-T is used to stand for Chevron-Texaco and S-S denotes Semi-

Synthetic. Tengiz field has a very high initial reservoir pressure and relatively low

Parameters C-T Model S-S Model
True model N/A From C-T
Prior model Synthetic model Generated by SGS

Well locations Actual Same as C-T model
Well rates Variable Constant

Number of wells 40 30
Well completion Partially perforated Fully perforated

Initial reservoir pressure 11, 950 psi 4, 000 psi
Bubble point pressure 3, 586 psi 3, 586 psi

Number of layers 9 5
Gridblocks in each layer 59× 49 59× 49

Gridblock size Variable (actual) Same as C-T model
Production time Actual 3, 600 days

Table 4.1: Comparison between Tengiz field and the semi-synthetic model

bubble point pressure. Under such conditions, it would remain single-phase even

after a long production period. If only the pressure changes in the reservoir, then

the seismic impedance change will be very small, and the field would not be a good

candidate for time-lapse seismic. In order to make the model a viable candidate for

time-lapse seismic, the initial reservoir pressure was changed to be slightly above the

bubble point pressure, to ensure that a gas phase develops soon after production

begins. Among the three fluid phases, oil, water, and gas, the gas phase has the

smallest bulk modulus; usually two orders lower than that of oil or water. The low

bulk modulus for gas results in a significant effect on seismic impedance change.

SGS was used to generate the prior porosity field, which also served as the initial

guess. The prior horizontal permeability field was generated directly from the porosity
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field using a functional relationship. The correlation equation,

ln kh = 2.41073− 7.3652× exp

(
− φ

0.04419

)
, (4.18)

is generated from a cross plot of porosity and horizontal permeability in well loca-

tions in the reference model. This functional relationship fits better than standard

linear relationship between ln kh and φ. The prior horizontal permeability field was

computed directly from Eq. 4.18 once the porosity field had been simulated. The

relationship between vertical and horizontal permeability was also estimated from a

cross plot. A satisfactory relationship is provided by

kv = a× kh , (4.19)

where, a is a constant multiplier. In this semi-synthetic model, 0.002 was used to

compute the vertical permeability field.

The true log horizontal permeability field and porosity field from layer 1 to layer

4 are shown in Fig. 4.4 and Fig. 4.5. The true log horizontal permeability field and

porosity field at the 5th layer are shown in Fig. 4.6. From the true permeability and

porosity fields, we can see an obvious discontinuity in properties between the left lower

part and the right upper part of the reservoir in each layer. This is a depth effect;

higher porosities and permeabilities occur at shallower depths. The prior porosity

field from layer 1 to layer 5 is shown in Fig. 4.7. No information was added about

the depth effect when the prior model was generated so there is no discontinuity in

Fig. 4.7. Because the prior log horizonal permeability field was generated from the

prior porosity field using Eq. 4.18, it has the same features as those in the prior

porosity field so they are not shown here. Most of the wells are located in the plateau

area, which gives more gas after production than in the low permeability and porosity

area. This difference makes the seismic impedance change quite different in these two

areas, which can be seen in Fig. 4.8. In the deeper region, because of lower gas

saturation, the seismic impedance change value is low. The region on the right side
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(a) Layer one (b) Layer two

(c) Layer three (d) Layer four

Figure 4.4: True log horizontal permeability field from layer 1 to layer 4
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(a) Layer one (b) Layer two

(c) Layer three (d) Layer four

Figure 4.5: True porosity field from layer 1 to layer 4

(a) Log permeability (b) Porosity

Figure 4.6: True log horizontal permeability and porosity fields at layer 5
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(a) Layer one (b) Layer two

(c) Layer three (d) Layer four

(e) Layer five

Figure 4.7: Prior porosity field from layer 1 to layer 5
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has a higher value because of higher gas saturation. Moreover, with increase of depth,

reservoir pressure becomes higher, which makes it more difficult for gas to come out of

solution, so seismic impedance change is smaller in the deeper layers. The observed

seismic impedance change data were computed based on the true saturations and

pressures using the Gassmann and Han equations. The required mineral parameters,

such as shaliness, bulk modulus of sand and bulk modulus of clay, used the typical

values shown in Table 3.4. Since same values of the parameters were used for both

history matching phase and observation generation, there is no model error for time-

lapse seismic data, which is also an advantage of synthetic case study. The first seismic

survey was assumed to be “shot” before the production began and the second survey

was assumed to be “shot” at the last day of the history matching period (day 3600).

Since an impedance change value could be computed for each simulation gridblock,

according to the pressure and saturation in that gridblock, up-scaling or downscaling

was not necessary. This is one difference between a synthetic case and a real field

case, where up-scaling and downscaling are almost inevitable (Aanonsen et al., 2003;

Gosselin et al., 2003).

There are four sub-matrices in the model covariance matrix CM . They are Cφφ,

Cφk, Ckφ and Ckk. Due to symmetry, Cφk is same as CT
kφ. Since a positive correlation

coefficient, 0.6, was used for the horizontal permeability and the porosity in this case,

the CM matrix is not block diagonal. Cφφ and Ckk were constructed using the same

variogram function with different sill values. The cross-covariance parts, Ckφ and

Cφk, also have the same variogram structure, but needed to be multiplied by the

correlation coefficient (Xu et al., 1992).

In this semi-synthetic model, there are 30 wells. All of them are produced with

constant total reservoir rates as targets, 4, 000 BBL/Day, and minimum bottomhole

pressure as constraints, 1, 200 psia. All the wells have free gas produced but none

have water breakthrough. Therefore, available production data include pressure Pwf
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(a) Layer one (b) Layer two

(c) Layer three (d) Layer four

(e) Layer five

Figure 4.8: Observed seismic impedance change from layer 1 to layer 5
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and GOR. To show the effects from integration of seismic impedance change data,

two history matching studies were conducted. One used Pwf and seismic impedance

change data. The other used Pwf , GOR, and seismic impedance change data. We

will see that in this case, only when seismic data are used can the features of the true

field be recovered, regardless of how many types of production data are used.

4.3.2 History matching with Pwf and seismic data

The model parameters include porosity and horizontal permeability at each gridblock.

In total, there are 28, 910 parameters. The number of seismic impedance change data

is equal to the number of gridblocks, 14, 455. In each well, there are three Pwf data, so

totally the number of observation data is 14, 545, which is still less than the number

of model parameters.

In Fig. 4.9, Fig. 4.10, and Fig. 4.11, porosity and log horizontal permeability

estimations at all 5 layers are shown. Compared with the prior fields and the true

fields, it is obvious that integration of only Pwf data does not provide satisfactory

estimation. The important boundary between the plateau area and the left region

with low permeability and porosity can not be recovered because few constraints

are available for that area. After seismic impedance change data are integrated as

well as Pwf data, the estimated results are totally different, see Fig 4.12, Fig. 4.13,

and Fig. 4.14. The estimates capture some important features of the true models,

including the boundaries between the high value region and the low value region

in both the permeability field and the porosity field. From layer 1 to 5, both the

permeability and the porosity fields are resolved better in the plateau area because the

true seismic impedance changes have higher values there due to the depth effect. Since

no any prior information was added about the reduction of porosity and permeability

with depth, such differences are obviously from the different seismic impedance change

data at these two regions.
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(a) Layer one (b) Layer two

(c) Layer three (d) Layer four

Figure 4.9: Estimated log horizontal permeability field from layer 1 to layer 4 using
Pwf data only
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(a) Layer one (b) Layer two

(c) Layer three (d) Layer four

Figure 4.10: Estimated porosity field from layer 1 to layer 4 using Pwf data only

(a) Log permeability (b) Porosity

Figure 4.11: Estimated log horizontal permeability and porosity fields at layer 5
using Pwf data only
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(a) Layer one (b) Layer two

(c) Layer three (d) Layer four

Figure 4.12: Estimated log horizontal permeability field from layer 1 to layer 4 using
seismic impedance change data and Pwf data
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(a) Layer one (b) Layer two

(c) Layer three (d) Layer four

Figure 4.13: Estimated porosity field from layer 1 to layer 4 using seismic impedance
change data and Pwf data

(a) Log permeability (b) Porosity

Figure 4.14: Estimated log horizontal permeability and porosity fields at layer 5
using seismic impedance change data and Pwf data
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The computational seismic impedance change data after history matching are

shown in Fig. 4.15. The history matched seismic impedance change data are very

similar to the observed impedance change data (Fig. 4.8), in both the field scale

structures, for example the boundary, and the detailed features within the plateau

area. The difference between the computed and the observed seismic impedance

change data is much smaller than that between the estimated models (Fig 4.12,

Fig. 4.13, and Fig. 4.14) and the true models (Fig. 4.4, Fig. 4.5, and Fig. 4.6).

To show the estimation quality more clearly, cross plots are shown in Fig. 4.16,

between estimated permeability, porosity and computed impedance, and the true

permeability, porosity and observed impedance at layer 1 and 5. The red lines in the

cross plots are linear regression lines, which all have the same form as,

Y = A + B ∗X , (4.20)

where Y denotes the computational or estimated values and X stands for the obser-

vation or true values. The values of A, B, and the correlation coefficient R of the

regression lines are listed in Table 4.2. From Table 4.2, it can be seen that the results

Parameters A B R
Log horizontal permeability at layer 1 0.39226 0.83298 0.54722
Log horizontal permeability at layer 5 0.02615 0.76684 0.4170

Porosity at layer 1 0.00644 1.58662 0.73467
Porosity at layer 5 0.02416 0.58047 0.3102

Seismic impedance change at layer 1 −1.6772× 106 0.97934 0.99286
Seismic impedance change at layer 5 3.3583× 106 0.98658 0.99392

Table 4.2: Parameters of regression lines and correlation coefficients for cross plots
of log horizontal permeability, porosity, and seismic impedance change at layer 1 and
layer 5 (seismic impedance change data and Pwf data)

in layer 1 are better than the results in layer 5, but the correlation between the truth

and the estimates is only marginal in all cases. It is also clear from the plots and from

the correlation coefficients (Table 4.2) that the automatic history matching procedure
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(a) Layer one (b) Layer two

(c) Layer three (d) Layer four

(e) Layer five

Figure 4.15: Computational seismic impedance change data from layer 1 to layer 5
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(a) Log horizontal permeability at layer 1 (b) Log horizontal permeability at layer 5

(c) Porosity at layer 1 (d) Porosity at layer 5

(e) Impedance change at layer 1 (f) Impedance change at layer 5

Figure 4.16: Cross plots of log horizontal permeability, porosity, and seismic
impedance change at layer 1 and layer 5
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has done an excellent job of matching the seismic impedance change data in layers 1

and 5. On the other hand, the relatively poor correlations between the estimated and

the true permeability and porosity demonstrate the non-uniqueness in the problem of

estimating reservoir parameters, even from high quality synthetic time-lapse seismic

data.

It is clear in Fig. 4.16(a), Fig. 4.16(b), Fig. 4.16(c), and Fig. 4.16(d) that the

maximum values of the estimated fields are larger than the maximum values of the

true fields. The problem of over-shooting, has been noted previously in automatic

history matching (Gao and Reynolds, 2004). In their investigation, over-shooting

problems were effectively depressed by using suitable transforms.

To show the effect of seismic impedance change data more clearly, GOR and oil

rate predictions are compared in Fig. 4.17, where “Production” denotes that the

curve is generated from the model after integration of only Pwf data, and “Seismic

& Production” denotes that the curve is generated from the model after integration

of both seismic impedance change data and Pwf data. All models were run in the

reservoir simulator to 6, 000 days. During the first 3, 600 days, which is also the history

matching period, all wells were produced at constant total rate, 4, 000 BBL/Day, and

were also constrained to a minimum bottom hole pressure of 1, 200 psia. From 3, 600

days to 6, 000 days, all wells produced at fixed bottom hole pressures equal to the

values at 3, 600 days. From Fig. 4.17, it can be seen that the oil rate and GOR

value predictions from both estimated models are closer to the true model than the

initial model. Furthermore, the prediction from integration of both seismic impedance

change data and production data is better than the prediction from the history match

of production data only.
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(a) Oil production rate (b) GOR

Figure 4.17: Predictions of oil production rate and GOR using the true model, initial
model, Pwf data history matched model, and seismic and Pwf data history matched
model

4.3.3 History matching with Pwf , GOR, and seismic data

In this scenario, GOR data as well as Pwf data are integrated. Each well has three

GOR data and three Pwf data so the total number of production data is 180. The

true model, the initial model, and the seismic impedance change observations are not

shown here because they are the same as that used in the previous section.

Figs. 4.18 to 4.20 show estimates obtained using only Pwf data and GOR data.

Although the results in layer 2 and layer 3 (Fig. 4.18(b) and Fig. 4.18(c)) are different

from their counterparts using Pwf data only (Fig. 4.9(b) and Fig. 4.9(c)), neither were

effective at recovering the depth effect in the true field, see Fig. 4.4(b) and Fig. 4.4(c).

The porosity fields have similar problems.

After seismic impedance change data are integrated, however, the estimates of log

horizontal permeability and porosity are greatly improved, see Fig. 4.21, Fig. 4.22,

and Fig. 4.23. The most important and obvious changes are that the boundary

between the shallow and deep regions is recovered well, especially in layer 1. In

this example, it can be seen that seismic is still crucial for capturing the features

of the true models. There are two main reasons for the poor results for automatic

history matching with integration of production data only. One is that the number of
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(a) Layer one (b) Layer two

(c) Layer three (d) Layer four

Figure 4.18: Estimated log horizontal permeability field from layer 1 to layer 4 using
Pwf and GOR data only
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(a) Layer one (b) Layer two

(c) Layer three (d) Layer four

Figure 4.19: Estimated porosity field from layer 1 to layer 4 using Pwf and GOR
data only

(a) Log permeability (b) Porosity

Figure 4.20: Estimated log horizontal permeability and porosity fields at layer 5
using Pwf and GOR data only
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(a) Layer one (b) Layer two

(c) Layer three (d) Layer four

Figure 4.21: Estimated log horizontal permeability field from layer 1 to layer 4 using
seismic impedance change data, Pwf , and GOR data
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(a) Layer one (b) Layer two

(c) Layer three (d) Layer four

Figure 4.22: Estimated porosity field from layer 1 to layer 4 using seismic impedance
change data, Pwf , and GOR data

(a) Log permeability (b) Porosity

Figure 4.23: Estimated log horizontal permeability and porosity fields at layer 5
using seismic impedance change data, Pwf , and GOR data
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production data is small compared with the number of model parameters. The other

is that the wells are located close to each other in the plateau area, which makes the

regions to the left of the boundary lack of constraints.

The computational seismic impedance change data at the last iteration step are

shown in Fig. 4.24. The computed impedances in all layers match well with the ob-

served seismic impedance (Fig. 4.8), in terms of both the boundary between high

permeability/porosity region and the low permeability/porosity region, and the de-

tailed structures within the plateau area. Cross plots of computed and observed

values are shown in Fig. 4.25. A regression line, Y = A + B ∗ X, is used to fit the

scatter points. The coefficients, A and B, and the correlation coefficients R of the

regression analysis are listed in Table 4.3. It can be seen that porosity field has been

Parameters A B R
Log horizontal permeability at layer 1 0.42014 0.85549 0.55021
Log horizontal permeability at layer 5 −0.0437 0.66576 0.38373

Porosity at layer 1 −0.01556 1.82009 0.76161
Porosity at layer 5 0.02606 0.52942 0.2916

Seismic impedance change at layer 1 −2.77013× 106 0.97332 0.99177
Seismic impedance change at layer 5 3.33676× 106 0.99004 0.99413

Table 4.3: Parameters of regression lines and correlation coefficients for cross plots
of log horizontal permeability, porosity, and seismic impedance change at layer 1 and
layer 5 (seismic impedance change data, Pwf data, and GOR data)

better estimated than the permeability field because the seismic impedance change

data are more sensitive to porosity than to permeability. The shallower layer is bet-

ter estimated because the seismic impedance change there is larger. Also, the seismic

impedance change data have been honored very well, while the correlations between

the estimated model parameters and the true model parameters are still marginal.

Thus, the history matched models shown here are just one of many possible solutions.
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(a) Layer one (b) Layer two

(c) Layer three (d) Layer four

(e) Layer five

Figure 4.24: Computational seismic impedance change data from layer 1 to layer 5
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(a) Log horizontal permeability at layer 1 (b) Log horizontal permeability at layer 5

(c) Porosity at layer 1 (d) Porosity at layer 5

(e) Impedance change at layer 1 (f) Impedance change at layer 5

Figure 4.25: Cross plots of log horizontal permeability, porosity, and seismic
impedance change at layer 1 and layer 5 (seismic impedance change data, Pwf data,
and GOR data are used)
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4.4 Summary

In this chapter, a procedure has been presented for automatically adjusting the perme-

ability and porosity of grid cells to honor both time-lapse seismic data and production

data. One of the rock physics models, which had been embedded into CLASS, was

used to compute the seismic impedance. The LBFGS method used for minimiza-

tion provided rapid minimization without the need to compute the Hessian matrix,

which is very expensive in large-scale problems. The adjoint method allowed efficient

computation of the gradient of the objective function with respect to model param-

eters when both the number of model parameters (28, 910) and the number of data

(around 14, 455) are large. Because the reservoir simulator was used, the resulting

pressure and saturation distributions were forced to honor flow equations and mate-

rial balance. A small synthetic case showed that the inclusion of seismic impedance

change data (from time-lapse seismic) in automatic history matching helped resolve

the edges between zones with different properties. A much larger example derived

from Tengiz field showed the potential for application to field-scale problems. The

boundaries between different zones were captured at the estimated models. Although

the data (change in impedance) were matched very well, the model variables (porosity

and horizontal permeability) were not well constrained. P -wave impedance change

with production data is clearly insufficient to resolve the property field. However, by

comparing the prediction behavior using true model and estimated models, it was

clear that integration of seismic impedance change data provided improved estimates

of future prediction.
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CHAPTER V

A REAL CASE STUDY FROM BAY

MARCHAND FIELD, GULF OF MEXICO

Located 65 to 70 miles south of New Orleans with water depths ranging from 10

to 50 ft, the Bay Marchand field is a mature field in the Gulf of Mexico (Abriel

et al., 1991). The Bay Marchand field has a series of complex faults with a salt dome

nearby. Production in the field started in 1949. In late 1960’s and early 1970’s, the

field reached its production peak. According to reports by Abriel et al. (1991) and

Behrens et al. (2002), its peak production rate was around 75, 000 BOPD.1 When the

first seismic survey was conducted by Chevron in 1987, the field production had been

reduced to about 18, 000 BOPD. But the successful drilling plan that followed the

seismic survey boosted the production rate back up to 40, 000 BOPD in 1991 (Abriel

et al., 1991; Behrens et al., 2002). Before the second seismic survey was shot in 1998

by Geco-Prakla, which is now WesternGeco, there were over 800 wells in the field.

These two 3-D seismic surveys consist of the data used for the time-lapse seismic

project in the Bay Marchand field although they were not designed on purpose for

that aim. In this work, the main focus is on the the 7100 Sand, which is one of

the many reservoirs in the north flank of the Bay Marchand field. The reservoir

temperature is about 176◦F and the oil gravity (API) is 19◦.

A fine grid reservoir simulation model with 140× 53× 57 gridblocks was provided

by Chevron-Texaco. The porosity field extracted from layer 22 is shown in Fig. 5.1.

It is obvious that the region at right side has good porosity values, while the left

1BOPD denotes Barrels Oil Per Day. 1 BOPD equals to 0.15897 m3/day oil.
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Figure 5.1: Porosity field at layer 22 extracted from the fine simulation grid

part is very tight with low porosities due to channel sand diminution (Behrens et al.,

2002). The average porosity in the channel sand area for the whole 7100 Sand is

around 0.3 (see Fig. 5.2). The secondary peak located at the left are from the very

Figure 5.2: Porosity histogram of the 7100 Sand computed from the fine simulation
grid (Counts are multiples of 10, 000)

tight, non-productive zones (Fig. 5.1). Chevron-Texaco up-scaled the fine grid to a

model with 53× 18× 23 gridblocks, which was used as starting point for this work.

Vasco et al. (2003) described automatic history matching work that incorporated

both time-lapse seismic data and production data for this field. They up-scaled the

23-layer model to a 1-layer model and used a streamline simulator to do the history

matching. The magnitude of their objective function decreased by about 1 order.
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5.1 Reservoir simulation model analysis

Although it would be good to capture fluid flow features in fine scale if the 23-layer

model could be used, stability issues resulting from running in history matching mode

made the use of the 23-layer model impractical. Thus, it was decided to up-scale the

23-layer model to a 3-layer model.

Although up-scaling and down-scaling are important issues to be considered when

multi-scale data, such as geological data, seismic data, and production data, are

integrated into the model, to appropriately up-scale or down-scale a reservoir simula-

tion model together with attached properties is a complex problem (Wen et al., 1998;

Aanonsen et al., 2002, 2003; Gosselin et al., 2003; Zhang et al., 2003; Aanonsen, 2005).

In this work, however, to up-scale the 23-layer model to a 3-layer model is one of many

steps required by the automatic history matching process, and was not considered a

key part of the research, therefore, the up-scaling was done by simply averaging the

gridblocks vertically. The composition of fine-grid layers into the up-scaled 3 layers

are chosen based on the relative permeability zones at different layers. There are 3

sets of relative permeability curves, as shown in Fig. 5.3. Curves for zone 1 and zone

2 are used for areas where oil, gas, and water co-exist. Zone 3 is specially allocated

to the aquifer. In the vertical direction, the distribution of the relative permeability

zones is well correlated. Those layers with similar relative permeability curves are

averaged. Vertically, 3 zones are chosen with their start and end layer indices listed

in Table 5.1.

Start Layer Index End Layer Index
Layer 1 1 6
Layer 2 7 18
Layer 3 19 23

Table 5.1: Start and end layer indices to up-scale the 23-layer simulation model to
the 3-layer model
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(a) Oil-water at zone 1 (b) Oil-gas at zone 1

(c) Oil-water at zone 2 (d) Oil-gas at zone 2

(e) Oil-water at zone 3 (f) Oil-gas at zone 3

Figure 5.3: Relative permeability curves of oil, gas, and water of the 3 different
relative permeability zones

103



Before up-scaling, most of the gridblocks in the 23-layer model have sizes varying

from 400 ft to 100 ft along X and Y directions, while the sizes along Z direction

are more variable with some gridblocks less than 1 ft in thickness. In the up-scaled

3-layer model, the gridblock sizes along X and Y direction change little, but most

gridblocks have their thickness over 10 ft along Z direction. The permeability and

porosity at each gridblock are also up-scaled to the 3-layer model (Fig. 5.4). The up-

(a) Permeability at layer 1 (b) Porosity at layer 1

(c) Permeability at layer 2 (d) Porosity at layer 2

(e) Permeability at layer 3 (f) Porosity at layer 3

Figure 5.4: Initial log horizontal permeability and porosity fields at all 3 layers

scaled properties were used as the initial model for history matching. In Figs. 5.4(a),

5.4(c), and 5.4(e), there are linear features with low permeability. This feature was

added manually by Chevron-Texaco to decrease water influx from the aquifer. The 7

black points in Fig. 5.4(c) denote the well locations, whose grid indices are listed in

Table 5.2. Wells 1, 2, 3, and 4 were all drilled in early 1960’s. The rest were infill wells

drilled after the first seismic survey in 1987. The daily oil production rate histories
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Well Index I J K Top K Bottom
Well 1 26 9 2 2
Well 2 20 14 1 2
Well 3 35 12 2 2
Well 4 12 13 1 2
Well 5 33 16 1 2
Well 6 13 16 1 3
Well 7 27 16 1 2

Table 5.2: Gridblock indices of the 7 wells

at the 7 wells are shown in Fig. 5.5 and Fig. 5.6. Of the four wells drilled in 1960’s,

wells 1 and 3 were shut in after 1975, and wells 2 and 4 produced until 1995.

In order to ensure that changes to the simulation model are plausible during the

history matching stage, it is necessary to characterize the permeability and porosity

correlation structure. This can be done from the starting model (Fig. 5.4). The

permeability field taken from one layer was used for variogram analysis. A spherical

model was selected to fit the anisotropic experimental variogram in the two principal

directions, 30◦ and 120◦, see Fig. 5.7. The unit of the distance axis in Fig. 5.7 is

ft. The azimuth angle is used and the degree is counted clockwise from Y direc-

tion, whose degree is 0◦ (Deutsch and Journel, 1992). The fitting parameters are

listed in Table 5.3. The same variogram model was used for porosity and for the

Direction Range (ft) Sill
120◦ 1, 397 4.04
30◦ 1, 124 4.30

Table 5.3: Variogram fitting parameters of the log horizontal permeability field

cross-correlation (Xu et al., 1992). The correlation coefficient between porosity and

horizontal permeability was assumed to be 0.5 for history matching.

A map of the top of the reservoir in the 3-layer model is shown in Fig. 5.8. The

black region denotes the small gas cap and the light blue region denotes the aquifer.

The initial water oil contact is 7, 001 ft and the initial gas oil contact is 6, 755 ft.
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(a) Well 1 (b) Well 2

(c) Well 3 (d) Well 4

(e) Well 5

Figure 5.5: Daily oil production rate histories at wells 1 to 5
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(a) Well 6 (b) Well 7

Figure 5.6: Daily oil production rate histories at wells 6 to 7

(a) 30◦ direction (b) 120◦ direction

Figure 5.7: Fitted and experimental variograms along two principal directions of the
initial log horizontal permeability field at one layer

Figure 5.8: Top depth of the 3-layer model
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5.2 Rock physics model analysis

A set of rock physics model parameters were provided by Chevron-Texaco, some of

which were also used in Behrens et al. (2002) when they modelled the time-lapse seis-

mic response. Based on those rock physics model parameters, the seismic impedance

is computed using

Z =

√
ρ

(
K +

4

3
G

)
, (5.1)

which requires the body density ρ, the bulk modulus K, and the shear modulus G.

The body density ρ can be computed using

ρ = (ρoSo + ρwSw + ρgSg)φ + (1− φ)ρsolid , (5.2)

where the phase saturations are from the reservoir simulator and the grain density

ρsolid is equal to 2, 750 kg/m3.

The bulk modulus K is still computed using the Gassmann equations

K = Kgrain
Kframe + Q

Kgrain + Q
, (5.3)

and

Q =
Kfluid (Kgrain −Kframe)

φ (Kgrain −Kfluid)
. (5.4)

They require computing the bulk moduli of dry frame, grain, and pore fluid. The

bulk modulus of pore fluid is computed using

1

Kfluid

=
1.0− So − Sg

Kw

+
Sg

Kg

+
So

Ko

, (5.5)

where the phase saturations are from the simulator. The bulk moduli of oil and water

are constants, 1.363 GPa and 3.434 GPa respectively (Behrens et al., 2002). The bulk

modulus of gas can be computed using two different ways. One is to use correlation

equations (Batzle and Wang, 1992), which was the approach chosen by Behrens et al.

(2002) in their work. The other approach, which was used in this work, calculates
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the bulk modulus of gas using the isothermal compressibility of gas, which is defined

as

cg = − 1

Bg

dBg

dP
, (5.6)

where Bg is formation volume factor. The isothermal compressibility of gas is just

the reciprocal of the bulk modulus of gas and can be computed according to the fluid

property tables input into the reservoir simulator. The bulk modulus of grain, Kgrain,

is assumed to be 38 GPa in all calculations. The bulk modulus of the dry frame is

computed using the following relation,

Kframe = a0 + a1Pdiff + a2

√
Pdiff +

(
b0 + b1Pdiff + b2

√
Pdiff

)
φ , (5.7)

where φ is porosity, a through b are empirically determined coefficients, and Pdiff is

the pressure difference between overburden pressure and pore pressure. The unit of

pressure is psia and the unit of Kframe is GPa. 1 psia/ft was used to compute the

overburden pressure.

The shear modulus of dry frame is computed using Eq. 5.8,

G = c0 + c1Pdiff + c2

√
Pdiff +

(
d0 + d1Pdiff + d2

√
Pdiff

)
φ , (5.8)

where c through d are empirically determined coefficients. Again, the unit of pressure

is psia and the unit of shear modulus is GPa. Since the influence of fluid saturation on

shear modulus is small, the shear modulus of dry frame is also used as shear modulus

of fluid saturated rock in Eq. 5.1.

Changes of shear modulus G and bulk modulus of dry frame Kframe with respect

to changes in pressure difference and porosity for some typical values are shown in

Fig. 5.9.

Since the equations used to compute Kframe and G are different from those shown

in Chapter 3, the derivatives of seismic impedance with respect to pressure, phase

saturations, and porosity are slightly different. The new derivatives can be easily

achieved by applying the chain rule to Eq. 5.7 and Eq. 5.8.
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Figure 5.9: Changes in shear modulus and bulk modulus of dry frame with respect
to changes in porosity and pressure difference

5.3 Observed seismic impedance change data

Due to the strong aquifer support, there are no injection wells in this reservoir.

The major displacement mechanism comes from water influx. Hence, the seismic

impedance change is mainly a result of the replacement of oil with water, which

causes an increase in seismic impedance because both the bulk modulus and the den-

sity of water are larger than those of oil. Although there is a small amount of gas,

the effect is expected to be limited to a very small area so that negative impedance

changes should be relatively uncommon. The impedance change data were generated

directly from the seismic reflection coefficient at the interface between the 7100 Sand

and the upper shale. The seismic reflection coefficient at one interface between two

layers is defined as,

R =
Z2 − Z1

Z2 + Z1

, (5.9)

where Z2 is seismic impedance of the layer below the interface and Z1 is seismic

impedance of the layer above the interface. Eq. 5.9 assumes that wave propagates

perpendicular to the interface. For arbitrary angle of incidence, the reflection coeffi-

cient equation becomes much more complicated (Yilmaz and Doherty, 1987).
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The reflection coefficients at the sand-shale interface in 1987 and 1998 are shown

in Fig. 5.10. Based on the coefficients, the following values can be computed,

(a) Reflection coefficient in 1987 (b) Reflection coefficient in 1998

Figure 5.10: Reflection coefficients at the interface between the 7100 Sand and the
upper shale in 1987 and 1998

R+ =
R1 + R2

2
× α , (5.10)

and

4R = (R2 −R1)× α , (5.11)

where R1 is the reflection coefficient in 1987, R2 is the reflection coefficient in 1998, and

α is a scalar used by Chevron-Texaco to balance the reflection coefficient difference.

Using R+ and 4R, the impedance change can be computed using Eq. 5.12,

4Z =
24R

1− (R+)2
× Zshale , (5.12)

where Zshale is the seismic impedance of the upper shale. Fig. 5.11 shows 4Z/Zshale

at the interface between the 7100 Sand and the upper shale. Despite the obvious

acquisition artifacts, the impedance changes are predominantly positive. The region

of negative impedance change at the lower right corner is consistent with the Fig. 13

in Behrens et al. (2002).

To compute the impedance change using Eq. 5.12 requires the shale impedance,

Zshale. Behrens et al. (2002) gave some typical values of rock properties of the

111



Figure 5.11: 4Z/Zshale at the interface between the 7100 Sand and the upper shale

shale above the 7100 Sand. Substituting these values into Eq. 5.1, Zshale is equal

to 7.039 × 106 kg/(m3 · s). Using this value in Eq. 5.12, the magnitude of the com-

puted impedance change is inconsistent with that of predicted seismic impedance

change from the reservoir simulator. There are two ways to solve this problem. One

is to modify the rock physics model or model parameters. The other approach, which

is used here, is to tune the shale impedance, Zshale. It is assumed that the observation

noise in the impedance change data can be approximated by a normal distribution

with mean equal to 0. By subtracting the noise from the observed impedance change

data, the “true” signal can be uncovered. To adjust Zshale is to make the mean of

the “true” signal equal to the mean of the computed impedance change from the

simulator. After adjusting Zshale, the histogram of the observed impedance change is

shown in Fig. 5.12. The unit of the X-axis is 105 kg/(m3 · s) and the Y-axis is count.

The impedance change computed from reflection coefficient change at the top of

the reservoir is a 2-D data sheet that is influenced by fluid saturation changes from

the whole 7100 Sand. To use the 2-D impedance change observation, it is necessary to

account for the sensitivity of reflection coefficient to the predicted impedance change

in gridblocks within the reservoir. We assume a linear weighting such that the 2-D
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Figure 5.12: Histogram of the observed seismic impedance change computed using
the reflection coefficient change and the shale impedance

data is given by

g(m) = 4Z =
1

Nz



∑Nz

k=1 βk4Z1,1,k∑Nz

k=1 βk4Z2,1,k

...∑Nz

k=1 βk4ZNx,Ny ,k


, (5.13)

where Nz is the number of gridblocks in the Z direction. If g(m) in Eq. 5.13 is

used as a source term in the adjoint equations to compute sensitivity with respect to

permeability and porosity, the derivatives at each layer will be computed accordingly.

βk in Eq. 5.13 is the weighting assigned to each layer, which determines how much each

of the 3 layers contributes. To choose an optimal β for each layer probably requires

forward modelling of the seismic wave field. In this work, β is selected through history

matching experiments, considering 3 aspects: 1) objective function reduction; 2) top

layer should contribute more because it is closer to the interface; 3) the magnitude of

averaged predicted impedance change should be consistent with that of the observed

impedance change. The final ratio for vertical average is, β1 = 0.9, β2 = 0.1, and

β3 = 0.0.

In contrast to the synthetic case study, where the impedance change observations

are computed at each gridblock, the observed impedance change data in this real case

study have correlated noise. To appropriately weight the data mismatch term in the

objective function (Eq. 2.7), a non-diagonal data noise covariance matrix CD must be
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set up (Aanonsen et al., 2002, 2003). Although it might be possible to estimate the

noise structure through careful analysis of the seismic data processing work flow, such

calculation is impractical due to its high complexity. Therefore, the noise covariance

structure is evaluated from the impedance change observation directly.

At the aquifer of the 7100 Sand, the observed seismic impedance change is pre-

sumably due to non-repeatable noise because the changes in pressure and saturation

are negligible. Variogram analysis is applied to the seismic impedance change at the

aquifer to capture the noise correlation structure. Fig. 5.13 shows the fitted and

experimental variograms along two principal directions. The theoretical variogram

(a) 75◦ direction (b) 165◦ direction

Figure 5.13: Fitted and experimental variograms along two principal directions of
the seismic impedance change data noise

model used for fitting is a spherical model and its fitting parameters are listed in

Table 5.4. The arithmetic average of the two sills shown in Table 5.4 was used to

Direction Range (ft) Sill
75◦ 605 2.5× 109

165◦ 450 2.7× 109

Table 5.4: Variogram fitting parameters of the seismic impedance change noise

construct the covariance matrix CD in history matching stage.

114



5.4 Automatic history matching results

In our synthetic case studies, the base-line survey was always assumed to be shot

before production started. This gave initial condition with no uncertainty in satura-

tion or pressure and provided the maximum seismic impedance change. In this real

case study, however, the first seismic survey was shot in 1987, which is 27 years after

production began. It turned out to be quite difficult to simultaneously match both

the seismic impedance change data and the production data using the initial model

provided by Chevron-Texaco due to uncertainties in distributions of pressure and

phase saturations when the first survey was conducted. So the first step in history

matching phase is to match the production data only. The result can then be used

as an initial model to match the seismic data.

5.4.1 Matching production data only

The 7100 Sand has very strong aquifer support so the average reservoir pressure did

not change much during production (Behrens et al., 2002). The primary seismic

changes are due to the advancement of water into the field, so attention has been

focused on matching the water breakthrough time and the water cut afterwards at

all 7 wells. Although GOR data were also used as observations, they were given

relatively low weighting in the objective function. Each of the 7 wells has different

start and end dates of production, so the observed WOR and GOR data are not

uniformly distributed (see Table 5.5 and Table 5.6). In Tables 5.5 and 5.6, “−”

means that no datum is available. The total number of WOR and GOR data used

for history matching is 51. Note that the WOR and GOR data were calculated using

the oil, gas, and water production rates at the 7 wells. Because the rates were given

as yearly averaged values, the minimum interval between two WOR or GOR data is

approximately 365 days.

Fig. 5.14 shows the objective function reduction for matching the WOR data and
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Time (Day) Well 1 Well 2 Well 3 Well 4 Well 5 Well 6 Well 7
187 − − 0.333 − − − −

1, 552 − − 0.636 − − − −
1, 917 − − 4.353 − − − −
3, 012 10−6 − 5.733 − − − −
3, 377 10−6 − 9.833 − − − −
3, 742 0.034 − − − − − −
4, 107 0.167 − − − − − −
4, 472 1.800 − − − − − −
4, 837 3.083 0.090 − 0.321 − − −
5, 202 − 0.965 − 0.881 − − −
6, 297 − − − 1.630 − − −
6, 662 − − − 2.692 − − −
7, 027 − 1.657 − 4.848 − − −
7, 392 − 3.697 − 8.333 − − −
7, 757 − 8.209 − − − − −
8, 122 − 9.471 − − − − −
1, 0677 − − − 9.333 − − −
11, 412 − − − − 0.049 − −
11, 772 − − − − 2.203 − −
12, 142 − 12.833 − − 7.663 8.212 −
12, 507 − 20.840 − − 12.544 10.027 0.686
12, 867 − 28.375 − − 15.214 12.291 6.257
13, 232 − − − − 15.214 12.291 8.675
13, 597 − − − − 19.089 15.652 14.736

Table 5.5: Observed WOR data at the 7 wells

Time (Day) Well 1 Well 2 Well 3 Well 4 Well 5 Well 6 Well 7
2, 647 − − 264.7 − − − −
3, 012 − − 533.3 − − − −
4, 107 500.0 − − − − − −
4, 837 1000.0 − − − − − −
10, 312 − − − 156.3 − − −
10, 677 − − − 381.0 − − −
12, 507 − − − − − − 122.7
12, 867 − − − − − − 516.0

Table 5.6: Observed GOR (SCF/STB) data at the 7 wells
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GOR data at all 7 wells. We can see that the objective function reduces more than

Figure 5.14: Objective function reduction when matching production data only

1 order of magnitude. After production data matching, most of the 7 wells have

improvements in their water cut changes, in terms of closeness to the observed water

cut curves, see Fig. 5.15 and Fig. 5.16. The production history matched permeability

and porosity fields are shown in Fig. 5.17. Compared with the initial model (Fig. 5.4),

the field scale features do not change greatly after matching the production data, but

some regions near the wells have substantial changes in rock properties, see Fig. 5.18.

The 7 wells are denoted using black dots in Fig. 5.18(c). It can be seen that in

Fig. 5.18(c), the area to upper right of the well 1 has permeability reduction in the

middle layer. From Fig. 5.8, we know that a permeability barrier is located between

the well 1 and the aquifer. Because the initial model has too fast water breakthrough

in the well 1, the permeability reduction in that region was required to delay the water

breakthrough time, see Fig. 5.15(a). The porosity values at the same area show a

small decrease, which mainly comes from the positive correlation coefficient between

the permeability and porosity.

Although 5 wells are completed in the top layer (Table 5.1), only 2 of them, i.e.,

wells 5 and 7, have obvious improvements in their water cut curves through matching
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(a) Well 1 (b) Well 2

(c) Well 3 (d) Well 4

(e) Well 5

Figure 5.15: Water cut comparison among the true, initial, and production data
matched models at wells 1 to 5
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(a) Well 6 (b) Well 7

Figure 5.16: Water cut comparison among the true, initial, and production data
matched models at wells 6 to 7

(a) Permeability at layer 1 (b) Porosity at layer 1

(c) Permeability at layer 2 (d) Porosity at layer 2

(e) Permeability at layer 3 (f) Porosity at layer 3

Figure 5.17: Log horizontal permeability and porosity fields at all 3 layers after
matching the production data only
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(a) Permeability changes at layer 1 (b) Porosity changes at layer 1

(c) Permeability changes at layer 2 (d) Porosity changes at layer 2

(e) Permeability changes at layer 3 (f) Porosity changes at layer 3

Figure 5.18: Log horizontal permeability and porosity changes at all 3 layers after
matching the production data only

120



the production data, see Fig. 5.15(e) and Fig. 5.16(b). The initial model gives correct

water breakthrough time but produces too much water. The production data matched

model decreases the water cut, which mainly comes from the permeability reductions

in the gridblocks around the two wells.

The pattern of change in the permeability field at layer 1 (Fig. 5.18(a)) is very

similar as that of the porosity field at the same layer (Fig. 5.18(b)), which results

from the positive correlations between the permeability and porosity. At layer 3, the

magnitude of changes is much smaller because only well 6 has completion in that

layer.

5.4.2 Matching seismic impedance change data

There are 53× 18 = 954 data points converted from the reflection coefficient changes

at the interface between the 7100 Sand and the upper shale, but the changes at the

aquifer were not used because they are from non-repeatable noise. In addition, there

are some inactive gridblocks due to changes in facies (Behrens et al., 2002). The

seismic impedance change data at those gridblocks were not used as observations

either.

The estimated property fields after matching the production data are used as

the initial model for matching the seismic impedance change data. Fig. 5.19 shows

water saturation and gas saturation changes between the two seismic surveys using

the production data matched model as input for the simulator. Obviously, there are

major changes in water saturation. In contrast, gas saturation changes only at a small

number of gridblocks in layer 1. As discussed in Chapter 3, the magnitude of Kg is

usually two orders smaller than the magnitudes of Ko and Kw. Therefore, even small

changes in gas saturation can result in large changes in seismic impedance. Table 5.7

shows I and J indices of those outliers as well as the computed seismic impedance

change at those locations. The unit of impedance change in Table 5.7 is kg/(m2 · s).
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(a) Sw changes at layer 1 (b) Sg changes at layer 1

(c) Sw changes at layer 2 (d) Sg changes at layer 2

(e) Sw changes at layer 3 (f) Sg changes at layer 3

Figure 5.19: Water saturation and gas saturation changes between the seismic sur-
veys using the production data matched model as input for the reservoir simulator

Figure 5.20: Cross plot of the initial computed seismic impedance change and the
observation with outliers from gas saturation changes
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I J Computed Impedance Change Observation
4 5 −2.37× 105 6.75× 104

1 7 −3.16× 105 8.06× 104

1 11 −2.98× 105 −10.13× 104

2 11 −4.22× 105 −5.18× 104

5 11 −2.59× 105 −6.53× 104

10 15 7.15× 105 1.66× 104

11 15 7.71× 105 0.78× 104

12 15 4.23× 105 1.51× 104

9 16 8.17× 105 −0.48× 104

10 16 7.73× 105 0.95× 104

11 16 7.83× 105 1.95× 104

13 16 7.43× 105 8.75× 104

14 17 6.83× 105 9.11× 104

36 18 5.02× 105 −4.61× 104

Table 5.7: Outliers’ locations and their initial computed seismic impedance change
values

The positive values are due to gas saturation decrease.

Unfortunately, like any other least-square methods, the objective function derived

from the Bayesian framework (Eq. 2.7) is strongly affected by outliers during the

minimization process, i.e., the model parameters for gridblocks with data outliers

tend to be over-adjusted to decrease data mismatches. Considering that water influx

is the main driving mechanism in the Bay Marchand field, the seismic impedance

change observations at the gridblocks where gas saturation has changed significantly

between the two seismic surveys were not used in the objective function. Thus, the

number of observed impedance change data used for history matching is 485. Its

distribution is shown in Fig. 5.21. In Fig. 5.21(a), the impedance change values

are shown, with non-used gridblocks filled with 0s. Since there are also negative

impedance changes, the gridblocks with 0 values are not obvious. So Fig. 5.21(b)

is used to show the locations, where only impedance changes at the red color filled

blocks are used as observations.

The objective function reduction when matching seismic impedance change data
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(a) Seismic impedance observation (b) Location distribution

Figure 5.21: Observed seismic impedance change data and their location distribu-
tions

is shown in Fig. 5.22. Due to relatively low data quality, the objective function

Figure 5.22: Objective function reduction when matching seismic impedance change
data

does not gain 1 magnitude reduction as the production data matching does. The

water cut curves at all 7 wells after matching the seismic impedance change data are

shown in Fig. 5.23 and Fig. 5.24. To have clearer comparison, the water cut curves

from the production data matched models are plotted as well. Because the water

breakthrough times at all wells have been matched fairly well by integrating only

production data, the seismic data does not obviously improve the breakthrough time

matching. But water cut matching after breakthrough at some wells benefit from the

seismic impedance change data, for example, wells 2, 4, and 6.

The computed seismic impedance change data at the last minimization step have
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(a) Well 1 (b) Well 2

(c) Well 3 (d) Well 4

(e) Well 5

Figure 5.23: Water cut comparison among the true, initial, production data matched,
and seismic data matched models at wells 1 to 5
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(a) Well 6 (b) Well 7

Figure 5.24: Water cut comparison among the true, initial, production data matched,
and seismic data matched models at wells 6 to 7

better correlation with the observed impedance change data than that at the first

step does, see Fig. 5.25. The red lines in Fig. 5.25(a) and Fig. 5.25(b) are regression

(a) First step (b) Last step

Figure 5.25: Cross plots of the observed and computed impedance change data at
the first and last minimization steps

lines with form Y = A + B ∗X, where Y denotes the computed data and X denotes

the observation. Some data points that have large mismatch from the observations

at the first step (Fig. 5.25(a)) reduce their mismatch during history matching, which

contributes to the correlation improvements at the last step (Fig. 5.25(b)). However,

many points with small impedance change do not move much, and some points that

are over-adjusted during minimization become outliers. Therefore, the correlation
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coefficient at the last step is still very low, see Table 5.8.

A B R
First step 0.87× 105 0.024 0.0198
Last step 1.04× 105 0.11 0.10

Table 5.8: Regression parameters of the computed and observed impedance change
data at the first and last minimization steps

The log horizontal permeability and porosity fields after matching the seismic

impedance change data are shown in Fig. 5.26. Compared with the initial model

(a) Permeability at layer 1 (b) Porosity at layer 1

(c) Permeability at layer 2 (d) Porosity at layer 2

(e) Permeability at layer 3 (f) Porosity at layer 3

Figure 5.26: Log horizontal permeability and porosity fields at all 3 layers after
matching the seismic impedance data

(Fig. 5.4) and the production data matched model (Fig. 5.17), the seismic impedance

change data matched model does not have obvious differences in field structures.

By subtracting production data matched model from the model after matching the
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seismic impedance change data, we can obtain the model changes, which are shown

in Fig. 5.27. The black dots in Fig. 5.27(c) denote the 7 wells.

(a) Permeability changes at layer 1 (b) Porosity changes at layer 1

(c) Permeability changes at layer 2 (d) Porosity changes at layer 2

(e) Permeability changes at layer 3 (f) Porosity changes at layer 3

Figure 5.27: Log horizontal permeability and porosity changes at all 3 layers after
matching the seismic impedance change data

Some observations can be made as following,

• Both permeability and porosity have their major changes at layers 1 and 2.

• At layer 1 and layer 2, the permeability change is similar as the porosity change

due to the correlation between the permeability and the porosity.

• At layer 2, the most obvious porosity changes are around wells 2, 5, and 7. From

Figs. 5.23(b), 5.23(e), and 5.24(b), it can be seen that the observed water cuts

at those 3 wells are higher than the computed water cuts after matching the

production data. Thus, the observed impedance changes are also larger than
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the computed impedance changes using the production data matched model.

After matching the impedance change data, the porosity values are decreased,

which makes water saturations move faster. Although the permeability field is

also reduced due to its correlation with the porosity, the final effect is to give

more water cuts for the 3 wells, see Figs. 5.23(b), 5.23(e), and 5.24(b).

5.5 Summary

Automatic history matching with integration of both seismic impedance change data

and production data was successfully applied to a real case study. The first seismic

survey in the Bay Marchand field was shot long after production started, so it is

necessary to match the production data first to provide an improved initial model for

seismic data history matching. Due to water influx in this field, the history matching

of gas production is not important although GOR data were used as observations as

well as WOR data. The noise in observed seismic impedance change data is correlated,

and its covariance structure was estimated by applying variogram analysis to the data

gathered from the aquifer.

Through production data history matching, the water breakthrough time at all

7 wells was reproduced fairly well. The water cuts after breakthrough at some wells

were matched more closely. The subsequent seismic impedance change data matching

also improved the water cut match although it did not provide substantial changes

in model parameters. Due to signal-to-noise ratio, the seismic impedance change did

not have as large an effect on the whole automatic history matching process as it did

in the synthetic and the semi-synthetic case studies.
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CHAPTER VI

CONTINUOUS MODEL UPDATING USING

THE ENSEMBLE KALMAN FILTER

To automatically match both production history and time-lapse seismic data by mini-

mizing the objective function (Eq. 2.7) derived from the Bayesian framework (Taran-

tola, 1987) requires either the gradient of the objective function, for example, the

LBFGS method in this work, or evaluation of the objective function (non-gradient

based minimization methods). If the gradient is required, the adjoint method may be

employed to compute the gradient. The adjoint equations, however, are highly de-

pendent on the reservoir simulator used, i.e., they require access to the source code of

the simulator. If switching to a different reservoir simulator, it is necessary to revise

or even rewrite the adjoint equations, which would be very time-consuming. If non-

gradient based minimization methods are chosen, thousands of simulation runs, which

evaluate the objective function at each iteration step, are usually needed to find the

global minimization point. When model size becomes large, it tends to be prohibitive

to apply the non-gradient based minimization methods due to highly demanding sim-

ulation runs. On the other hand, with increasing deployment of permanent sensors

to monitor pressure, temperature, or flow rate, the observed data become dense in

time domain. To simultaneously incorporate all the data to provide a set of reser-

voir simulation model parameters is impractical. It is more important to keep the

model up-to-date by assimilating the observed data as soon as they become available.

Although the sequential data assimilation can also be realized by minimizing the ob-

jective function shown in Eq. 2.7, it is not computationally preferable because either
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the adjoint code is required or the time consumed for one minimization process is too

long. Moreover, for the purpose of reservoir performance prediction, it is necessary to

have a set of “history-matched” models to conduct uncertainty analysis. Considering

the time used to achieve one minimization process, it is not feasible to obtain a num-

ber of estimated reservoir simulation models to analyze the uncertainty. Therefore,

an investigation of alternate automatic history matching methods is worthwhile.

Historically, the Kalman filter (Kalman, 1960) is the most widely used sequential

data assimilation method for linear system. Since the reservoir simulation equations

are highly non-linear when multiple phases co-exist, the Kalman filter is an inappro-

priate data assimilation method for the typical automatic history matching problems

in reservoir characterization.

In 1994, Evensen (1994) introduced the ensemble Kalman filter (EnKF) as a mod-

ification of the traditional Kalman filter which could be applied to the non-linear

systems. The EnKF is independent of reservoir simulators and does not require the

adjoint code. It outputs a set of estimated models, which are suitable for uncertainty

analysis. After its debut in 1994, the EnKF has achieved a number of successful appli-

cations in meteorology (Evensen and van Leeuwen, 1996; van Leeuwen and Evensen,

1996; Evensen, 1996; Houtekamer and Mitchell, 1998; Anderson and Anderson, 1999;

Hamill and Whitaker, 2001; Houtekamer and Mitchell, 2001; Evensen, 2003). Re-

cently, applications of the EnKF can also be found in hydrology (Reichle et al., 2002)

and petroleum engineering (Nævdal et al., 2002, 2005; Gu and Oliver, 2005b,a; Liu

and Oliver, 2005; Wen and Chen, 2005; Gao et al., 2005).

This chapter investigates the integration of both production data and time-lapse

seismic impedance data using the EnKF. A small synthetic case study shows that it

is possible to use the EnKF as an alternate automatic history matching method and

to achieve satisfactory reservoir characterization results.
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6.1 Kalman filter

Suppose that a discrete linear system can be modelled as

yk+1 = φkyk + wk , (6.1)

where:

• k is the time step index.

• yk is the state vector at the time step k, which includes all parameters required

to describe the system. If there are n parameters, the dimension of yk is n× 1.

• φk is the state transition matrix with dimension equal to n× n.

• wk is the vector of random noise contained in the model with dimension equal

to n × 1. The noise is usually assumed to be white with 0 mean and to have

the known covariance matrix Qk. It is currently assumed to be uncorrelated.

At the time step k, some measurements are obtained,

zk = Hkyk + vk , (6.2)

where,

• zk is the measurement vector at the time step k with dimension equal to m× 1.

• Hk is a matrix of dimension m × n, which relates the state vector to the mea-

surements.

• vk is the vector of measurement error, which is usually assumed to be white noise

with 0 mean and to have the known covariance matrix Rk. The dimension of

vk is m× 1. It is also currently assumed to be uncorrelated.

• There is no correlation between vk and wk at all time steps.
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Based on all available information prior to the time step k, the best estimate of the

state vector is yp
k. After incorporating the measurements zk, the best estimate of the

state vector is updated as

yu
k = yp

k + Kk(zk −Hky
p
k) , (6.3)

where u denotes “updated”, p denotes “predicted”, and Kk is called the Kalman gain

matrix. Kk can be obtained by minimizing the error covariance matrix associated

with yu
k (Brown and Hwang, 1992),

Kk = P p
k HT

k (HkP
p
k HT

k + Rk)
−1 , (6.4)

where P p
k is the error covariance matrix associated with yp

k, which is,

P p
k = E[ep

k(e
p
k)

T ] = E[(yk − yp
k)(yk − yp

k)
T ] , (6.5)

where yk is the truth, ep
k = yk − yp

k is the error in the yp
k, and E denotes expectation.

After assimilating the observed data, the error covariance matrix associated with yu
k

is

P u
k = (I −KkHk)P

p
k . (6.6)

Then, the updated state vector is advanced to the time step k + 1 to assimilate new

observations,

yp
k+1 = φky

u
k , (6.7)

where the model noise vector wk is dropped because it has 0 mean and there is no

correlation between the model noise vectors at two different time steps (Brown and

Hwang, 1992). Correspondingly, the error covariance matrix evolves as

P p
k+1 = φkP

u
k φT

k + Qk . (6.8)

Eqs. 6.3 to 6.8 can be repeated to form a recursive solution to the linear data filtering

problem, which is called the Kalman filter.
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Although “... the Kalman filter represents the most widely applied and demon-

strably useful result to emerge from the state variable approach of modern control

theory.” (Sorenson, 1985), it is inapplicable to non-linear systems. The extended

Kalman filter (EKF) applies the ideas of the Kalman filter to the non-linear systems

based on linearizations of the non-linear models. However, when non-linearities are

severe or the model size becomes large, the EKF is not suitable. For large scale

non-linear systems, the real promising approach is the ensemble Kalman filter.

6.2 Ensemble Kalman filter (EnKF)

The basic methodology of the EnKF consists of the forecast step and the assimilation

step. The forecast step is to advance the state vectors from the previous time step to

the next time step. At the time step where the observations are available, the forecast

step stops and the assimilation step starts to assimilate the data which updates the

state vectors. The following introduces the EnKF using reservoir characterization

terminology.

If the forward modelling is achieved by using a reservoir simulator, the state vector

typically includes porosity φ, log permeability ln k, pressure p, and phase saturations

at each reservoir simulation gridblock. Besides the model parameters, the state vector

also includes the reservoir response output from the reservoir simulator, such as Pwf ,

WOR, GOR, and time-lapse seismic data. Thus, the state vector can be written as

yk =

[
φ ln k p S d

]T

, (6.9)

where k is the time step index and d denotes the computed data. If the number of

gridblocks is Nm and the number of computed data is Nd, the dimension of yk is

4×Nm + Nd. If the reservoir simulator is denoted using f , the forecast step can be

written as

yk,j = f(yk−1,j) (j = 1, 2, · · · , Ne) , (6.10)
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where j is the ensemble member index and Ne is the number of ensemble members.

Using u to denote “updated” and p to denote “predicted”, Eq. 6.10 becomes into

yp
k,j = f(yu

k−1,j) (j = 1, 2, · · · , Ne) , (6.11)

where yu
k−1,j is the jth updated state vector at the time step k − 1 and yp

k,j is the

estimate of the jth state vector based on all available information prior to the time

step k. Note that only dynamic variables, i.e., pressure and saturations, and the

computed data change between k − 1 and k. The static variables, i.e., porosity and

permeability, remain unchanged during the same time interval. They are adjusted as

well as the dynamic variables during the assimilation step.

At the time step k, some measurements are obtained,

dobs,k = dtrue,k + εk , (6.12)

where the dimension of dobs,k is Nd×1 and εk is the measurement noise with dimension

equal to Nd × 1, is usually assumed to be Gaussian. The covariance matrix of εk is

CD,k = E[εkε
T
k ], with dimension equal to Nd×Nd, is typically assumed to be diagonal

if only production observations are used. By assimilating the observed data, the state

vectors are updated using Eq. 6.13,

yu
k,j = yp

k,j + Ke,k(dobs,k,j −Hky
p
k,j) (j = 1, 2, · · · , Ne) , (6.13)

where:

• dobs,k,j is the perturbed observation vector for the jth ensemble member by

adding random noise to the observation dobs,k (Burgers et al., 1998).

• Hk = [0 | I] is the operator matrix with dimension equal to Nd× (4×Nm +Nd).

Hky
p
k,j extracts the computed data from the jth state vector corresponding to

its observations.
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In Eq. 6.13, Ke,k is also called the Kalman gain matrix. The dimension of Ke,k is

(4 × Nm + Nd) × Nd. In contrast to the Kalman filter, Ke,k is computed from the

ensemble members using Eq 6.14,

Ke,k = P p
e,kH

T
k (HkP

p
e,kH

T
k + CD,k)

−1 , (6.14)

where e denotes “ensemble” and Pe,k is the covariance matrix among the ensemble

members, which is

P p
e,k =

1

Ne − 1

Ne∑
j=1

(
yp

k,j − ȳp
k

) (
yp

k,j − ȳp
k

)T
, (6.15)

where ȳp
k is the averaged state vector.

Combining Eqs. 6.11 to 6.15, a preliminary EnKF loop is formed as shown:

Step 1 Input the ensemble state vectors into the reservoir simulator and advance

them in time. If it is the first time step, all the vectors are filled with initial

values.

Step 2 At the time step k when the observations are available, stop advancing and

fill the state vectors with the current model parameters and computed data.

Step 3 Compute the averaged state vector using Eq. 6.16,

ȳp
k =

1

Ne

Ne∑
j=1

yp
k,j . (6.16)

Step 4 Compute the ensemble covariance matrix P p
e,k using Eq. 6.15.

Step 5 Compute the Kalman gain matrix using Eq. 6.14.

Step 6 Update the state vectors using Eq. 6.13.

Step 7 If the current time step is the final step, then STOP. Otherwise, go back to

Step 1.
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Although the preliminary loop is a good starting point, it is not a practical algorithm

because of the matrix computation expense. In Eq. 6.15, the dimension of P p
e,k is

(4 × Nm + Nd) × (4 × Nm + Nd). To explicitly form and store P p
e,k requires a large

amount of computer resources, which makes the loop impractical even for a medium-

size problem. Therefore, the key point to achieve a feasible algorithm is to avoid the

explicit computation of P p
e,k. In matrix form, Eq. 6.15 can be written as

P p
e,k =

1

Ne − 1
∆Y p

k (∆Y p
k )T , (6.17)

where ∆Y p
k consists of Ne column vectors, each of which is the difference between an

ensemble state vector and the averaged state vector. Applying Eq 6.17 to Eq. 6.14,

the Kalman gain matrix has the new form as

Ke,k =
1

Ne − 1
∆Y p

k (∆Y p
k )T HT

k

(
Hk

1

Ne − 1
∆Y p

k (∆Y p
k )T HT

k + CD,k

)−1

=
1

Ne − 1
∆Y p

k (Hk∆Y p
k )T

(
1

Ne − 1
Hk∆Y p

k (Hk∆Y p
k )T + CD,k

)−1

.

(6.18)

Since Hk is the operator matrix used to extract entries corresponding to data, Hk∆Y p
k

does not involve matrix computation. In addition, only ∆Y p
k needs to be formed and

stored. Since the dimension of ∆Y p
k is (4 × Nm + Nd) × Ne, much less computer

resource is required than computing P p
e,k. Thus, a feasible EnKF algorithm is formed:

Step 1 Input the ensemble state vectors into the reservoir simulator and advance

them in time. If it is the first time step, all the vectors are filled with initial

values.

Step 2 At the time step k when the observations are available, stop advancing and

fill the state vectors with the current model parameters and computed data.

Step 3 Compute the averaged state vector using Eq. 6.19,

ȳp
k =

1

Ne

Ne∑
j=1

yp
k,j . (6.19)
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Step 4 Form the difference matrix ∆Y p
k and take entries from ∆Y p

k using Hk, which

is Hk∆Y p
k .

Step 5 Compute the Kalman gain matrix using Eq. 6.18.

Step 6 Update the ensemble state vectors using Eq. 6.13.

Step 7 If the current time step is the final step, then STOP. Otherwise, go back to

Step 1.

6.3 Integration of time-lapse seismic impedance

data into the EnKF

Both the observed and the computed seismic impedance data were calculated us-

ing the output from the reservoir simulator. The rock physics model used is the

Gassmann (Gassmann, 1951) and Han (Han et al., 1986) equations. Since it is a

synthetic case study, some typical lithology values are used. The reservoir simulator

is an oil-water simulator. Because no gas phase exists, oil and water properties do

not change much with pressure. Thus, constant bulk moduli of oil and water were

used. The parameters used to compute the seismic impedance are listed in Table 6.1.

Parameter Value
Shaliness 0.2
Sand Modulus (Pa) 3.8× 1010

Clay Modulus (Pa) 2.12× 1010

Density of Solid (kg/m3) 2650
Modulus of Water (Pa) 2.39× 109

Modulus of Oil (Pa) 6.71× 108

Table 6.1: Parameters used for seismic impedance calculation

Since an impedance datum at one gridblock is computed using only the pressure

and saturation at the gridblock, the observation noise covariance matrix CD,k is still
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reasonably assumed to be diagonal. For real case studies, however, a non-diagonal

CD,k probably needs to be constructed (Aanonsen et al., 2002, 2003).

In this work, the time-lapse seismic impedance data are assimilated as two data

sets from two separate seismic surveys. Because seismic impedance data are much

more sensitive to porosity than to permeability, the porosity field was recovered better

than the permeability field in the synthetic case study.

For the impedance data from the first seismic survey, the EnKF assimilated them

one by one, which is: 1) form the local ensemble state vectors in one gridblock and

assimilate the seismic impedance datum in that gridblock; 2) adjust variables in the

state vectors only belonging to the gridblock; 3) gather the locally adjusted state

vectors to form the global state vectors and advance them in time. For the second

seismic survey, the EnKF assimilated all the impedance data simultaneously because

our study showed that there was a sensitivity connection across the whole reservoir

model arising from the fluid flow.

6.4 Improved initial member sampling

The EnKF uses the sample mean and sample covariance to approximate the popula-

tion mean and population covariance (Evensen, 1994, 2003), so to use a large number

of ensemble members is presumably better than to use a small number of ensemble

members. Considering the computation expense, however, the number of ensem-

ble members must be kept small. Since the adjustments in the EnKF are within the

space spanned by the ensemble members, a small number of members may not be able

to provide large enough adjustment freedom, resulting in filter divergence (Evensen,

1994; Houtekamer and Mitchell, 1998; Anderson and Anderson, 1999; Anderson, 2001;

Evensen, 2003, 2004).

In this work, the improved initial member sampling method (Evensen, 2004) was

used to generate the initial ensemble members, which ensured a stable filter behavior.
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The sampling algorithm is:

Step 1 Generate NT ensemble members by drawing samples from the prior PDF and

compute the corresponding difference matrix ∆Y .

Step 2 Do the Singular Value Decomposition (hereafter SVD) of ∆Y , ∆Y = UΛV T ,

where U is the left orthogonal matrix, V is the right orthogonal matrix and Λ

is a diagonal matrix with the singular values of ∆Y as its diagonal entries.

Step 3 Choose the first Ne largest singular values from Λ and store them into the

matrix Λe. Correspondingly, the first Ne column vectors of U are chosen and

saved into the matrix Ue.

Step 4 Generate a Ne ×Ne random matrix by sampling N(0, 1).

Step 5 Do the SVD of the random matrix and save its right orthogonal matrix to

the matrix Ve.

Step 6 Compute the difference matrix with smaller size, ∆Ye = UeΛeV
T
e .

Step 7 Scale ∆Ye by dividing
√

α, where α = NT /Ne.

Step 8 Adjust ∆Ye to ensure that its mean is zero and its variance meets the re-

quirement.

Step 9 Use ∆Ye to start the EnKF loop.

The ensemble members generated using the algorithm can keep the sample statistics

introduced by the original large ensemble set. They provide larger adjustment space

than that from same number of ensemble members by sampling the prior PDF.
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6.5 A small synthetic case study

6.5.1 Model description

This is a 2-D, 2-phase, water flooding problem. The reservoir simulation model has

16 × 16 gridblocks, each of which has equal volume, 60 × 60 × 40 ft3. There are 5

wells: 1 injector at the center and 4 producers at the four corners. All 5 wells have

constant bottomhole pressures so that only variable water injection rate and water/oil

production rates are available to be assimilated as production data in the EnKF. The

reservoir produces 200 days. The first seismic survey is at day 1 and the second

seismic survey is at day 198. The true model is generated by drawing a sample from

the prior PDF, which provides the observed production and seismic impedance data.

Table 6.2 gives data distribution times. The true observations are perturbed twice

Time (Day) Water Rate Oil Rate Seismic Impedance
1 N/A N/A 256
10 5 4 N/A
20 5 4 N/A
· · · · · · · · · · · ·
190 5 4 N/A
198 N/A N/A 256
200 5 4 N/A

Table 6.2: Assimilated data at different time steps

with random noise sampled from N(0, 1) to generate observations for each ensemble

member. The true model and the initial ensemble members use the same exponential

variogram, whose parameters are listed in Table 6.3.

The true log permeability and porosity are shown in Fig. 6.1. The 4 black points in

Fig. 6.1(a) stand for the 4 producers and the centered gray point denotes the injector.

The water saturation distribution at day 200 is shown in Fig. 6.2. The producer at

the left lower corner (hereafter well Prod-1) has water breakthrough.

Two ensembles were used as initial members for the EnKF independently to com-

pare the effects from improved initial member sampling algorithm. One ensemble has
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Parameter Log Permeability Porosity
Mean 5.5 0.2

Standard deviation 0.5 0.02
Range along X (gridblocks) 9 9
Range along Y (gridblocks) 6 6

Correlation coefficient 0.5

Table 6.3: Variogram parameters of log permeability and porosity

(a) Log permeability (b) Porosity

Figure 6.1: True log permeability and porosity

Figure 6.2: True water saturation distribution at day 200

142



128 members generated by directly sampling the prior PDF. The other one also has

128 members, which were re-generated from a 256-member group. They are called

M128 group and M128F256 group respectively in the following sections. In two cases

using those two groups, same observations were used. Local data assimilation was

used for both cases to assimilate the first seismic data group.

6.5.2 M128 case

In Fig. 6.3, water injection rate at the injector is shown, where the red lines go

(a) Before EnKF (b) After EnKF

Figure 6.3: Water rate (STB/Day) at the injector before and after the EnKF (M128
case)

through all observed water injection rates and all blacks lines are computed data from

all ensemble members. Following traditions in reservoir simulation, water injection

rate is shown as negative. Before the EnKF, it can be seen that the variation in

injection rates is large, especially at the early time (Fig. 6.3(a)). After the EnKF, the

injection rates at all ensemble members become closer to the true rate, see Fig. 6.3(b).

Fig. 6.4 shows the water production rates before and after the EnKF in the well Prod-

1. From the red lines, it can be seen that the true model has water breakthrough

around day 180. Before the EnKF, a few of ensemble members can not capture

the correct time, see Fig. 6.4(a). After the EnKF, all ensemble members have both

correct water breakthrough time and water production rate afterward (Fig. 6.4(b)).

The three other wells do not have water breakthrough, so only oil production rates
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(a) Before EnKF (b) After EnKF

Figure 6.4: Water rate (STB/Day) at the well Prod-1 before and after the EnKF
(M128 case)

need to be honored. Fig. 6.5 shows the oil production rates at all 4 production wells.

After the EnKF, the oil production rates from all ensemble members are distributed

more closely around the observations.

The two seismic impedance data are also honored very well after the EnKF, which

can be seen from Fig. 6.6. The mean of seismic impedance data from all ensemble

members after the EnKF has very strong correlation with the observed impedance

data. The second impedance cross plot has more scattered points because in this ex-

ample, the initial saturation and pressure were assumed to be known so that pressure

and saturation distributions have higher uncertainties at the second seismic survey

time than those at the first survey time.

The final mean of permeability and porosity fields after assimilating all data are

shown in Fig. 6.7. Compared with the truth shown in Fig. 6.1, it can be seen that

the porosity field has been recovered very well. Only a few features of the true

permeability field are captured in the estimate, for example, the high permeability

spot between the injector and the well Prod-1. The reason for the large difference is

that seismic impedance data have higher sensitivity to porosity than to permeability.

This difference is more obvious from the cross plots shown in Fig. 6.8. The red lines in

Figs. 6.6 and 6.8 are linear regression lines. All have the same forms, Ytrue/obs = A+B∗

Xest./comp.. Values of the coefficients A, B and correlation coefficients R are listed in
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(a) Prod-1 before EnKF (b) Prod-1 after EnKF

(c) Prod-2 before EnKF (d) Prod-2 after EnKF

(e) Prod-3 before EnKF (f) Prod-3 after EnKF

(g) Prod-4 before EnKF (h) Prod-4 after EnKF

Figure 6.5: Oil rates (STB/Day) at the producers before and after the EnKF (M128
case)
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(a) First seismic impedance (b) Second seismic impedance

Figure 6.6: Cross plots of seismic impedance (M128 case)

(a) Log permeability (b) Porosity

Figure 6.7: Final mean of log permeability and porosity (M128 case)

(a) Log permeability (b) Porosity

Figure 6.8: Cross plots of permeability and porosity (M128 case)
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Table 6.4. The regression parameters also show that seismic data have been honored

Parameter A B R
Porosity −0.00299 1.0146 0.97927

Log permeability 2.90479 0.45336 0.42081
First seismic impedance 6.333× 105 1.09592 0.99975

Second seismic impedance −8.435× 104 1.01278 0.96781

Table 6.4: Regression parameters of porosity, log permeability, and impedance (M128
case)

very well; porosity field has been estimated much better than the permeability field.

The EnKF continuously adjusts ensemble members by assimilating observation

data to make the mean of ensemble members closer to the truth. Hence, the deviation

between ensemble members and the truth at each gridblock can measure how close

the estimations are to the true models. The deviation of each variable from the truth

is defined as

σi =

√√√√ 1

Ne

Ne∑
j=1

(yi,j − ytrue,i)
2 (i = 1, 2, · · · , Nm) , (6.20)

where Ne is the number of ensemble members and Nm is the number of gridblocks.

It is expected to get smaller with more data assimilation. In Fig. 6.9, evolution of

permeability deviation from the truth is shown. To have a better comparison, all

plots use the same color scale, where blue color stands for the lowest value and red

color for the highest value. The initial ensemble members have high deviation from

the truth so most of the field is full of green and red colors, see Fig. 6.9(a). In day 1,

after the first seismic data assimilation, the spot previously filled with red color in the

left upper corner becomes smaller and the red color changes into yellow color; more

gridblocks have light blue colors, which shows that seismic data assimilation helps to

adjust permeabilities of the ensemble members toward the true values (Fig. 6.9(b)).

In day 10, the first production data assimilation day, more gridblocks reduce their

deviation and the red spot in left upper corner almost disappears (Fig. 6.9(c)). Then,

as more data are assimilated, more reduction is obtained, see Figs. 6.9(d) to 6.9(g).
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(a) Initial (b) Day 1

(c) Day 10 (d) Day 90

(e) Day 100 (f) Day 180

(g) Day 190 (h) Day 198

Figure 6.9: Evolution of permeability deviation from the truth (M128 case)
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In Fig. 6.9(f) and Fig. 6.9(g), however, some high deviation blocks appear again,

which are from over-adjustments around water breakthrough time at the well Prod-1.

Fortunately, they are reduced by assimilating the second seismic impedance data, see

Fig. 6.9(h).

The same deviation in Eq. 6.20 is also computed for porosity and shown in

Fig. 6.10. Same color scale is used to provide a clearer comparison along time axis.

The initial deviation map has only red color, see Fig. 6.10(a), which shows that even

the smallest deviation value in the initial map is larger than the biggest value in

day 198, see Fig. 6.10(h). As can be seen from permeability deviation evolution, the

porosity also experiences reduction with more data assimilated, see Figs. 6.10(b) to

6.10(e). The two seismic impedance data assimilations have obvious effects: the first

one reduces the deviation in all gridblocks, which makes the red color in the initial

map disappear completely (Fig. 6.10(b)), and the second one reduces the high devia-

tion blocks that come from over-adjustments around water breakthrough time at the

well Prod-1, see Figs. 6.10(h), 6.10(f), and 6.10(g).

Another effective tool to measure the EnKF behavior is called the integrated

Root Mean Square (RMS) error, which is a distance between ensemble mean and

the truth. The definition is in Eq. 6.21,

RMS =

√√√√ 1

Nm

Nm∑
i=1

(
1

Ne

Ne∑
j=1

yi,j − ytrue,i

)2

, (6.21)

where Nm is the number of gridblocks and Ne is the number of ensemble members.

Different from the deviation defined in Eq. 6.20, the RMS error is a scalar and sums

over both ensemble members and gridblocks. The RMS error of both permeability

and porosity along with time are shown in Fig. 6.11. From Fig. 6.11(b), it can be

seen that after the first seismic impedance data assimilation at day 1, the porosity

RMS error drops about one order of magnitude, which is also reflected through

the dramatic reductions in the deviation maps, see Fig. 6.10(a) and Fig. 6.10(b).
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(a) Initial (b) Day 1

(c) Day 10 (d) Day 90

(e) Day 100 (f) Day 180

(g) Day 190 (h) Day 198

Figure 6.10: Evolution of porosity deviation from the truth (M128 case)
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(a) Log permeability (b) Porosity

Figure 6.11: RMS error of permeability and porosity (M128 case)

Between day 1 and day 170, however, production data assimilation does not provide

any substantial changes to the RMS error, which can also be seen from the deviation

maps shown in Figs. 6.10(c) to 6.10(e), where patterns in all maps are barely changed.

The reason is that seismic impedance data are so sensitive to porosity that even one

data assimilation has been able to adjust the ensemble mean to be very close to the

true porosity field. The mean porosity field after seismic data assimilation at day

1 is shown in Fig. 6.12. Comparing it with the true porosity field and the mean

Figure 6.12: Mean porosity field after seismic data assimilation at day 1 (M128 case)

porosity field at day 200 shown in Figs. 6.1(b) and 6.7(b), it is clear that the porosity

estimate at day 1 is very good. Hence, subsequent production data assimilation will
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not provide much information. Around water breakthrough time at the well Prod-1,

day 180 to day 190, the porosity RMS error increases to a high value, which again

decreases after the second seismic impedance data assimilation at day 198. This

phenomenon is also clear through Figs. 6.10(f) to 6.10(h).

For the permeability RMS error, see Fig. 6.11(a), the first seismic data assimi-

lation provides a small reduction. It is understandable that the reduction in perme-

ability error is small because at day 1, the flow field is poorly developed and it is

hard for seismic data to capture permeability. Between day 1 and day 180, produc-

tion data assimilation results in a small steady reduction in the RMS error. That is

why in Figs. 6.9(b) to 6.9(e), more and more gridblocks change colors from green to

blue. Around water breakthrough time at the well Prod-1, very dramatic oscillations

appear. After the second seismic data assimilation, the permeability RMS error is

reduced back to a value that is just a little bit smaller than the initial one. Note

that the RMS error is an average of all ensemble members at all gridblocks so that

a few large values can have a large effect on the value. In Fig. 6.9(h), about one

third of gridblocks are still in green colors although other blocks are in blue, which

partly explains why improvements in the RMS error plot are less obvious than in

the deviation map.

In this M128 case, both production data and seismic impedance data have been

honored very well. The porosity field has also been recovered successfully. However,

the permeability estimate is poor. The RMS error of permeability estimate does

not reduce much after assimilating all data and has severe oscillation around water

breakthrough time. This problem can be solved by increasing the size of the ensemble

or by using the improved initial member sampling algorithm, which is shown in the

next section.
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6.5.3 M128F256 case

In this case, the initial 128 ensemble members were generated from a 256 ensemble

group by using the improved initial member sampling algorithm.

Water injection rate at the injector is shown in Fig. 6.13, both before and after

the EnKF. As before, red lines stand for observation and black lines are for ensemble

members. Since water injection rate is also honored quite well in M128 case, there is

(a) Before EnKF (b) After EnKF

Figure 6.13: Water rate (STB/Day) at the injector before and after the EnKF
(M128F256 case)

not much difference between Fig. 6.13(b) and Fig. 6.3(b). The only visible improve-

ments occur around day 25, where the black lines in Fig. 6.13(b) are closer to the

observation than the black lines in Fig. 6.3(b).

Water production rate at the well Prod-1 before the EnKF and after the EnKF

is shown in Fig. 6.14. After the EnKF, water production rate is honored very well,

too (Fig. 6.14(b)). Before the EnKF, more ensemble members approximately capture

water breakthrough time compared to the M128 case (Fig. 6.4(a)), which shows that

the ensemble members in M128F256 case have better property estimates before water

breakthrough at day 180.

Oil production rates at all four production wells before and after the EnKF are

shown in Fig. 6.15. The EnKF provides adjustments to all ensemble members at

four wells so that computed oil production rates are distributed closely around the
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(a) Before EnKF (b) After EnKF

Figure 6.14: Water rate (STB/Day) at the well Prod-1 before and after the EnKF
(M128F256 case)

observation (Figs. 6.5(b), 6.5(d), 6.5(f), and 6.5(h)). From Figs. 6.13, 6.14, and 6.15,

it can be seen that no substantial improvements in honoring production data are

gained by re-sampling initial members.

Seismic data matching does not gain obvious changes either (see cross plots in

Fig. 6.16). The correlation between the observed seismic impedance and the seismic

impedance mean at the time of the first seismic survey is still very strong (Fig. 6.16(a).

The second one has relatively more scattered points, but still is well correlated. The

small improvements are reflected through correlation coefficients of the regression

lines (red lines in Fig. 6.16), listed in Table 6.5.

The final mean of permeability field and porosity field are shown in Fig. 6.17.

Similar to the M128 case, porosity mean (Fig. 6.17(b)) is well estimated of the true

field (Fig. 6.1(b)). Even most of the detailed features are recovered by the EnKF. The

permeability mean (Fig. 6.17(a)), however, looks much different from its counterpart

shown in Fig. 6.7(a). The big blue spot at upper left corner of Fig. 6.7(a) is replaced

with a small narrow blue stripe in the same place of Fig. 6.17(a). At lower left

corner in Fig. 6.17(a), more gridblocks have high permeability values, which is also

an improvement compared to the true permeability field.

Cross plots of permeability and porosity between the truth and the mean are

shown in Fig. 6.18. It can be seen that correlation between the permeability mean
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(a) Prod-1 before EnKF (b) Prod-1 after EnKF

(c) Prod-2 before EnKF (d) Prod-2 after EnKF

(e) Prod-3 before EnKF (f) Prod-3 after EnKF

(g) Prod-4 before EnKF (h) Prod-4 after EnKF

Figure 6.15: Oil rates (STB/Day) at the producers before and after the EnKF
(M128F256 case)
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(a) First seismic impedance (b) Second seismic impedance

Figure 6.16: Cross plots of seismic impedance (M128F256 case)

(a) Log permeability (b) Porosity

Figure 6.17: Final mean of log permeability and porosity (M128F256 case)

(a) Log permeability (b) Porosity

Figure 6.18: Cross plots of permeability and porosity (M128F256 case)
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and the true permeability is better than it was for the M128 case, i.e., points are less

scattered (Fig. 6.18(a)), which is clearer from Table 6.5. All regression lines use the

Parameter A B R
Porosity −0.00483 1.02319 0.97822

Log permeability 1.79454 0.67076 0.57235
First seismic impedance 6.035× 105 1.09131 0.99987

Second seismic impedance −8.559× 104 1.01359 0.96793

Table 6.5: Regression parameters of porosity, log permeability, and impedance
(M128F256 case)

same forms: Ytrue/obs = A + B ∗Xest./comp..

Using the same definition of the deviation in Eq. 6.20, evolution of both perme-

ability deviation and porosity deviation from the truth are shown in Fig. 6.19 and

Fig. 6.20. To have a legitimate comparison to the same type of plots in the M128

case, Fig. 6.19 and Fig. 6.20 use the same color scale respectively.

Comparing to the M128 case (Fig. 6.9(a)), the permeability deviation in M128F256

case (Fig. 6.19(a)) is very similar, with only minor differences at a few gridblocks.

There are two reasons for the similarity: 1) improved initial sampling method uses the

same prior PDF as conventional sampling method; 2) the deviation does not directly

measure distances among the ensemble members so improvements are not obvious

although the space spanned by resampled members is larger than that spanned by

members without resampling. At day 1, the first seismic data are assimilated, which

reduces deviations in some blocks, see Fig. 6.19(b). Compared with Fig. 6.9(b), the

general features of Fig. 6.19(b) are almost identical because at day 1, seismic data are

not sensitive directly to permeability field or indirectly through saturation because

flow has not yet occurred. However, at locations with deviation reduction, it can be

seen that the magnitude of reduction is larger in the M128F256 case than in the M128

case, i.e., light blue is replaced with dark blue. This better adjustment comes from

better approximation to the covariance gained from the resampling algorithm. At day
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(a) Initial (b) Day 1

(c) Day 10 (d) Day 90

(e) Day 100 (f) Day 180

(g) Day 190 (h) Day 198

Figure 6.19: Evolution of permeability deviation from the truth (M128F256 case)
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(a) Initial (b) Day 1

(c) Day 10 (d) Day 90

(e) Day 100 (f) Day 180

(g) Day 190 (h) Day 198

Figure 6.20: Evolution of porosity deviation from the truth (M128F256 case)
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10, the first production data are assimilated. The reduction in the deviation is greater

in this case (Fig. 6.19(c)) than that in the M128 case (Fig. 6.9(c)), especially at lower

left corner and an area to the left side of the injector. Similar features can be seen

from Fig. 6.19(d) and Fig. 6.9(d). The most important improvements obtained from

re-sampling the initial members are around day 180 and day 190, see Fig. 6.19(f) and

Fig. 6.19(g). Remember that some blocks have high deviations again at those two

days in the M128 case due to over-adjustments around water breakthrough time at

the well Prod-1 (Fig. 6.9(f) and Fig. 6.9(g)). In this case, however, there is no obvious

increase in deviation, which shows that the resampled initial ensemble members have

sufficient degrees of freedom to capture the true model parameters even when large

changes in properties are required at water breakthrough. After second seismic data

assimilation at day 198, permeability deviation has more reductions, see Fig. 6.19(h).

Compared with the M128 case (Fig. 6.9(h)), more regions have low deviations in the

M128F256 case, i.e., with dark blue color.

The porosity deviation also benefits from resampling the initial ensemble members

(Fig. 6.20). At day 1, when the first seismic data are assimilated, the porosity devia-

tion shows a large reduction (Fig. 6.20(a) and Fig. 6.20(b)), but the magnitude of the

reduction is very similar to those shown in Fig. 6.10(b) of the M128 case because the

porosity field is also recovered well in that case. At day 180 and day 190 when the well

Prod-1 has water breakthrough, some regions return to high deviation values, note the

red spots in Fig. 6.19(f) and Fig. 6.19(g). Compared with Fig. 6.9(f) and Fig. 6.9(g),

however, there are fewer red spots, which shows that the over-adjustment problem

for the porosity field has been reduced by using the resampled ensemble members.

Also, the second seismic data assimilation reduces deviation more, see Fig. 6.20(h).

It is clear that the resampled initial ensemble members have better filter behav-

ior, especially around water breakthrough time. The over-adjustment problem can

be mitigated to some extent by using the resampled members. For permeability,
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such improvements are more obvious than for porosity, partly because the porosity

deviation before water breakthrough has been reduced to very low value.

Fig. 6.21 shows the RMS error defined in Eq. 6.21. It is clearer from Fig. 6.21(a)

(a) Log permeability (b) Porosity

Figure 6.21: RMS error of permeability and porosity (M128F256 case)

that filter behavior using the resampled initial ensemble members is better than the

M128 case (Fig. 6.11(a)): 1) there is continuous reduction in the RMS error between

the two seismic surveys due to production data assimilation; 2) instability around wa-

ter breakthrough time is not severe any more. The plot of the RMS error of porosity

(Fig. 6.21(b)) still has similar feature as in the M128 case (Fig. 6.11(b)). The first

seismic data assimilation gives a large reduction of the RMS error. The subsequent

production data assimilation provides very small additional reduction to the RMS

error. It can be understood from Fig. 6.22, which is the porosity mean at day 1 after

seismic data assimilation. Comparing the figure with Fig. 6.1(b) and Fig. 6.7(b),

it can be seen that porosity estimate is quite good by only using the first seismic

data group. Subsequent improvement from production data assimilation is fairly mi-

nor because the estimate is already close to the truth. Around water breakthrough

time, there are some oscillations, but the second seismic data assimilation returns the

RMS error to a low value comparable with the one before water breakthrough. This

phenomenon is also clear in Figs. 6.20(f) to 6.20(h).
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Figure 6.22: Mean porosity field after seismic data assimilation at day 1 (M128F256
case)

6.6 Summary

The small synthetic case study showed that the EnKF is a possible alternate method

for automatic history matching both production data and time-lapse seismic data.

Both production data and seismic impedance data were honored very well. The

permeability field was not well constrained from the seismic data. The estimate of the

porosity field from seismic data integration was quite good because seismic impedance

is very sensitive to porosity. Production data are necessary to provide sensitivities to

recover the permeability field and to provide constraints for the simulator.

128 ensemble members were enough for this small case. For large scale cases,

however, a larger ensemble may be required. Determination of the size requires more

investigation. When seismic data are considered, research based on some large scale

problems are essential to determine if the EnKF with seismic data is scalable.

For this small case, the overall cost is 128 simulation runs plus overhead of matrices

computation. However, for large scale problems, 128 members may be very demand-

ing in computation resources. Hence, to reduce the number of ensemble members is

a crucial issue for the EnKF. Therefore, to carefully select initial members by using

improved sampling algorithm is highly necessary because resampled members can
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usually provide large covariance space at the expense of small ensemble size.
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CHAPTER VII

CONCLUSIONS

The main objective of this work is to develop an automatic history matching proce-

dure to adjust reservoir simulation parameters at each gridblock by integrating both

the seismic impedance change data and the production data. Since both the number

of data and the number of model parameters are large, the adjoint method is used

to efficiently compute the gradient of the objective function and the limited mem-

ory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) method is applied to minimize the

objective function without requiring the Hessian matrix. The reservoir simulator,

CLASS (Chevron Limited Application Simulation System) is used, so the resulting

pressure and saturation distributions are forced to honor flow equations and material

balance. A set of rock physics models are embedded into the simulator, which enables

us to compute the seismic impedance change using output from the simulator.

Seismic data gathered from one seismic survey are sensitive to both the static reser-

voir parameters and the dynamic fluid flow related parameters. If seismic impedance

change data are used, the effects from the static parameters can be reduced, and the

dynamic parameters can be emphasized. It is shown that the effect of uncertainty

in static parameters such as grain modulus or shaliness on the change in seismic

impedance is small compared to the effect of change in saturation.

The procedure was tested on two case studies. The small synthetic case shows

that the seismic impedance change data help to resolve the edges among 3 zones,

each of which has difference permeability values. A semi-synthetic case study derived

from the Tengiz field demonstrates the potential of this procedure to be applied to

the large scale real problems. The adjoint method efficiently computes the gradient
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of the objective function when the number of data, around 14, 455, and the number of

model parameters, 28, 910, are both large. The LBFGS method achieves minimization

without computing the Hessian matrix. Integration of seismic impedance change data

recovers the boundaries between different zones, which are missed if only production

data are used. Although the data have been honored well, the model variables are

not well constrained.

In the real case study of the Bay Marchand field, the first seismic survey was shot

long after production began, so the production history matching was conducted before

matching the seismic impedance change data to provide an improved initial model for

seismic data history matching. Although GOR data were also used in the production

history matching, they were weighted less heavily than WOR data because the main

driving mechanism in the field was water influx. The covariance matrix of the noise

in the impedance change data was constructed by applying variogram analysis to the

impedance changed data gathered from the aquifer. The water breakthrough time at

all 7 wells were captured fairly well through production history matching. The water

cuts were also matched more closely after history matching. History matching of the

seismic impedance change data improved the water cut match although it did not

substantially change the model parameters in field scale.

The small synthetic case study showed that it is possible to integrate both seismic

impedance change data and production data using the EnKF for reservoir character-

ization. The improved initial member sampling algorithm increased the variability

of the space spanned by the ensemble members, ensuring a more stable filter behav-

ior. The porosity field was recovered much better than the permeability field because

seismic impedance is more sensitive to porosity than to permeability.
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