
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

MODELING, ANALYSIS AND DEFENSE STRATEGIES AGAINST

INTERNET ATTACKS

A Dissertation

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

By

JONGHYUN KIM

Norman, Oklahoma

2005

UMI Number: 3161634

3161634
2005

UMI Microform
Copyright

All rights reserved. This microform edition is protected against
 unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
 Ann Arbor, MI 48106-1346

 by ProQuest Information and Learning Company.

 MODELING, ANALYSIS AND DEFENSE STRATEGIES AGAINST

INTERNET ATTACKS

A DISSERTATION APPROVED FOR THE

SCHOOL OF COMPUTER SCIENCE

BY

Sridhar Radhakrishnan, Chair

Sudarshan K. Dhall, Co-Chair

S. Lakshmivarahan

Krishnaiya Thulasiraman

 M. J. Breen

© Copyright by Jonghyun Kim 2005

All Rights Reserved.

Acknowledgements

I would like to acknowledge many people for helping me during my doctoral work. I

would especially like to express my deepest thanks and appreciation to my advisor,

Professor Sridhar Radhakrishnan and my co-advisor, Professor Sudarshan K. Dhall, for

their guidance, encouragement, and support during my research. Throughout my

doctoral work they encouraged me to develop analytical thinking and research skills.

I am also very grateful for having an exceptional doctoral committee and wish to

thank Prof. Krishnaiya Thulasiraman, Prof. S. Lakshmivarahan, and Prof. M. J. Breen

for all their help and encouragement first in their classes and then in producing this

dissertation.

I wish to express my sincere gratitude to my father and my mother and their

families for their sacrifice and encouragement and for supporting me in every aspect of

my graduate study.

There is one person who deserves my deepest thanks and appreciation for her

continued support during the writing of this dissertation: my wife, Seunghyun Hong. I

could not have done it without her.

Finally, I would like to thank my colleagues Shankar Banik, Aravind B., and Tao

Zheng for sharing their experience and knowledge. I dedicate my dissertation to all

whom I love.

iv

Contents

1 Introduction 1

1.1 Internet Attacks .

1.1.1 Denial of service (DoS) attacks

1.1.2 Internet Worms .

1.2 Computer Worms .

1.2.1 Worms vs. Viruses .

1.2.2 Worm history and Taxonomy

1.2.3 A Worm Spreading .

1.2.4 Worm Detection .

1.3 Epidemiological Model .

1.3.1 SIS model .

1.3.2 SIR model . 1

1

2

3

5

5

6

8

11

13

13

4

15

16

19

24

1.4 Optimal control problem .

1.4.1 Control System Model .

1.4.2 Calculus of Variations .

1.5 Organization and Contribution of the dissertation

v

2 On Intrusion Source Identification

2.1 Introduction .

2.2 Preliminaries .

2.2.1 Overview of Trace back problems

2.2.2 Types of Attacks .

2.3 Recent Solutions for Trace back .

2.4 Trace back: Centroid Approach .

2.4.1 Assumptions .

2.4.2 Terminal Nodes .

2.4.3 Terminal Network .

2.5 Detection Algorithm .

2.5.1 The Centroid Approach .

2.5.2 The Algorithm .

2.6 Concluding Remarks .

3 Measurement and Analysis of Worm Propagation on Internet

 Network Topology

3.1 Introduction .

3.1.1 Immunization Defense of Worms

3.1.2 Characteristics of Worm Spreading

3.2 Analytical Methodologies of Internet Worms

26

26

28

28

30

31

37

38

40

42

46

47

49

52

53

53

54

55

56

58

59

59

63

3.3 Worm Propagation Models .

3.3.1 Definition .

3.3.2 Classical simple epidemic model

3.3.3 Kermack-Mckendrick model

vi

3.3.4 An extension for the SIR model

3.4 Simulation and Analysis .

3.4.1 Random transit stub model without topology constraint

3.4.2 System models .

3.4.3 Initial results .

3.5 Worm Propagation with Topology Constraint

3.5.1 Network model .

3.5.2 Simulation Results .

3.6 Concluding Remarks .

4 Optimal Control of Treatment Costs for Internet Worm

4.1 Introduction .

4.2 Statement of Problems .

4.3 Comparison with Previous Work .

4.4 The SIS Infection Model .

4.4.1 Infection without Treatment

4.4.2 Infection with Treatment .

4.4.3 Definition .

4.5 The Analysis of Optimization Problems

4.5.1 Necessary Conditions for Optimization

65

68

69

70

71

76

77

79

82

84

84

86

87

89

90

92

94

96

97

99

101

101

102

104

4.5.2 Numerical Results .

4.6 Simulation Experiments .

4.6.1 Network Model .

4.6.2 System Models .

4.6.3 Simulation Results .

vii

4.7 Concluding Remarks .

5 Conclusion and Future work

5.1 Problems .

5.2 Organization of Proposals .

5.3 Infection Patterns .

5.4 Reacting to Intrusions .

5.5 Future Work .

109

110

110

111

112

113

114

116

121

121

123

125

Bibliography

APPENDICES

APPENDIX A .

APPENDIX B .

APPENDIX C .

viii

List of Tables

7

60

91

106

1.1 Traditional worms of Note .

3.1 Notations of Worm Epidemic Models

4.1 Notations of SIS Infection Model .

4.2 Determination of optimal control Q*(t) and I*(t)

ix

List of Figures

1.1 Control and behavior related by a system model 16

18

38

41

44

45

45

49

1.2 Optimal control based on a system model

2.1 Attack paths: (A2, R6, R3, R2, R1, Vt) and (A3, R7, R4, R2, R1, Vt) The

attack paths form an attack tree is shown above

2.2 Abilene Network

2.3 A network with terminal nodes highlighted and labeled

2.4 The terminal network of the network in Figure 2.3. The weights on the

edges are the distances in terms of number of hops between the marked

vertices in the network shown in Figure 2.3

2.5 The single source shortest path tree with node ‘b’ as the root of the

tree

2.6 (a) Find a centroid r in a tree T, (b) Find subtrees T1, T2, and T3 by

removing r and the centroids c1, c2, and c3 from each subtree, (c)

construct a centroid tree Tc with node ‘r’ as the root of the tree

x

2.7 Alarms are placed on nodes a, c, d, and x and the ringing ones are d, and

x. Node d is the closest to the intruder and the tree rooted at d is

processed next . 51

62

63

65

67

70

72

73

74

3.1 Classical simple epidemic (SIS) model

3.2 The SIR model in which hosts move between three states: Susceptible

(S), Infectious (I) and Removed (R) with infection rate β and removal

rate λ .

3.3 The SIRS model; with conferring a temporary immunity, it can move

from the R state to the S state .

3.4 SIRS epidemic model; it shows the number of infectious, susceptible,

and removed hosts as a function of time

3.5 Example of Transit-Stub Model .

3.6 Comparison of the average number of infected nodes as a function of

time in two different epidemic strategies; N = 100,000, (a) with constant

rates, β = 1.0, and δ = 0.2 (b) with non-constant rates

3.7 Comparison of the number of infectious nodes as a function of time in

two different epidemic strategies. All cases are for 100,000 nodes, an

average infection rate β of 1.0, a removed rate λ is 0.2, and a re-

susceptible rate µ of 0.07 .

3.8 Extinction between two different epidemic models with variation of

temporary immunization time θ. All parameters assigned in this

experiment are the same as those given in Figure 3.7

xi

3.9 Comparison between the total times to infect 80% of total population vs.

the starting node in a worm spreading; N = 10,000, infection rate β =

1.0, and cure rate δ = 0.2 .

3.10 The Abilene Network Topology including Abilene core nodes,

connectors and some of participants [22]

3.11 Comparison of average number of infectious nodes as a function of time

in two different simulation models

3.12 Comparison between the total times to infect 60% of total participants

vs. the starting node in a worm spreading with constant infection and

cure rates .

3.13 Counting the total number of re-infections at each participant host . . .

4.1 Two subnets connected by routers

4.2 Optimal control strategy constructed using Maple

4.3 Three cases of network delay: (a) No infection occurs (b) Infection

without treatment (if node j is infected) (c) Infection with treatment (if

node j is infected) .

4.4 Comparison of the average number of infectious nodes as a function of

time in two different epidemic strategies. For the cases above we used

1000 nodes, an average infection rate β of 1.0, a cure rate δ of 0.2, and a

treatment rate λ of 0.8 .

4.5 Optimal control Q(t) and I(t) are plotted as a function of time for N =

1000, β = 1.0, δ = 0.2, λ = 0.8 .

75

78

80

81

82

94

100

103

105

106

xii

4.6 Comparison of the average delay as infection rates in two different

epidemic strategies .

108

xiii

Abstract

Many early Internet protocols were designed without a fundamentally secure

infrastructure and hence vulnerable to attacks such as denial of service (DoS) attacks

and worms. DoS attacks attempt to consume the resources of a remote host or network,

thereby denying or degrading service to legitimate users. Network forensics is an

emerging area wherein the source or the cause of the attacker is determined using IDS

tools. The problem of finding the source(s) of attack(s) is called the “trace back

problem”. Lately, Internet worms have become a major problem for the security of

computer networks, causing considerable amount of resources and time to be spent

recovering from the disruption of systems. In addition to breaking down victims, these

worms create large amounts of unnecessary network data traffic that results in network

congestion, thereby affecting the entire network.

In this dissertation, first we solve the trace back problem more efficiently in terms

of the number of routers needed to complete the track back. We provide an efficient

algorithm to decompose a network into connected components and construct a terminal

network. We show that for a terminal network with n routers, the trace back can be

completed in O(log n) steps.

Second, we apply two classical epidemic SIS and SIR models to study the spread of

Internet Worm. The analytical models that we provide are useful in determining the

rate of spread and time required to infect a majority of the nodes in the network. Our

simulation results on large Internet like topologies show that in a fairly small amount

of time, 80% of the network nodes is infected.

xiv

Third, we have analyzed the tradeoff between delay caused by filtering of worms at

routers, and the delay due to worms’ excessive amount of network traffic. We have

used the optimal control problem, to determine the appropriate tradeoffs between these

two delays for a given rate of a worm spreading. Using our technique we can minimize

the overall network delay by finding the number of routers that should perform filtering

and the time at which they should start the filtering process.

xv

Chapter 1

Introduction

1.1 Internet Attacks

The basis for the Internet was an experiment begun in 1968 by the Defense

Department’s Information Processing Techniques Office (ARPA/IPTO) to connect

computers over a network in order to ensure command and control communications in

the event of a nuclear war. In the 1980s, the number of local area networks increased

significantly and this stimulated rapid growth of interconnections to the ARPAnet and

other networks. These networks and interconnections are known today as the Internet

[1].

Many early Internet protocols were designed without a fundamentally secure

infrastructure so that network defense becomes more difficult. Because of the openness

1

of the Internet and the original design of the protocols, Internet attacks in general are

quick, easy, inexpensive, and may be hard to detect or trace. An attacker does not have

to be physically present to carry out the Internet attack. In fact, many attacks can be

launched readily from anywhere in the world - the location of the attacker can easily be

hidden.

Since much of the traffic on the Internet is not encrypted, confidentiality and

integrity are difficult to achieve. The factor that contributes to the vulnerability of the

Internet is the rapid growth and use of the network, accompanied by rapid deployment

of network services. Often, these services are not designed, configured, or maintained

securely. This lack of secure configuration makes them vulnerable to attacks, which

sometimes occur within minutes of connection. Finally, the more systems that are

connected to Internet, obviously the harder it is to control their security. Clearly, if a

site is connected to the Internet at several points, it likely would be more vulnerable to

attacks than a site with a single gateway.

1.1.1 Denial of service (DoS) attacks

On the Internet, a denial of service (DoS) attack attempts to consume the resources of a

remote host or network, thereby denying or degrading service to legitimate users. In

other words, a denial of service attack prevents the targeted site from providing

network services by either flooding the site with bogus packets or consuming limited

network resources. Furthermore, a denial of service attack might use multiple systems

to attack one or more victim systems with the intent of denying service to legitimate

2

users of the victim systems. Typically, the loss of service is the inability of a particular

network service such as e-mail service, or the temporary loss of all network

connectivity and services. A denial of service attack can also destroy programming and

files in a computer system. The major advantage of a DoS attack is that it is quite

difficult to determine the actual source of the attack. Since the attacker can basically put

any packet on the local wire, the attacker creates packets whose source IP address is

invalid and completely random. Thus, when the victims receive these packets, they are

unable to determine the source.

The most common kind of a DoS attack is simply to send more traffic to the

network than it can handle, called packet flooding. Then the network’s connection

becomes congested, resulting in packet loss. Since routers cannot distinguish between

attacking packets and valid client packets, they drop them with equal probability. If the

attacker can send packets fast enough, the drop rate can become so high that a number of

client's packets cannot get through. A more recent and well-known attack called "smurf"

attack [2] use reflectors to multiply the effect of the DoS attack. In this type of attack an

attacker is using ICMP echo request packets directed to IP broadcast addresses from

remote locations to generate denial-of-service attacks.

1.1.2 Internet Worms

Lately, Internet worms have become a major problem for the security of computer

networks, causing considerable amount of resources and time to be spent recovering

from virulent attacks. In general, worms, defined as self-propagating malicious codes,

3

have been developed since the Morris worm arose in 1988 [7]. Unlike a virus, which

requires a user to do something to continue the propagation, a worm can propagate by

itself. The convenience of Internet makes it more vulnerable for malicious Internet

exploits. In other words, the Internet has become a powerful means for propagating

malicious programs like computer viruses and worms. The Code Red worm incidents

of 2001 have shown us how vulnerable Internet hosts are and how fast a virulent worm

can spread across the Internet (Code Red infected more than 250,000 systems in just 9

hours on July 19, 2001). Moore [4] provided some characteristics of the worm spread

and trace analyses of Code Red worm behavior. Weaver [14, 15] introduced worm

design strategies, which can be used to produce significantly faster and longer lived

Internet worms.

A worm, on the other hand, is far more powerful and faster. The Sapphire/Slammer

Worm was the fastest Internet worm in history. As it began spreading throughout the

Internet, it infected at least 75,000 vulnerable hosts within 10 minutes [3]. When a

worm gains access to a computer (usually by breaking into it over the Internet), it

launches a program which searches for other Internet locations, infecting them if it can.

Moreover, the worm travels over the Internet, so all machines attached to an infected

machine are at risk of attack. Some worms attempt to perform a Denial of Service

attack (Code Red/W32.Blaster) or to compromise systems and deface web site

(sadmind/IIS, Code Red); and others have dynamic configuration capabilities

(W32.Leaves) [3]. But the biggest impact of these worms is that their propagation

effectively creates a denial of service in many parts of the Internet because of the huge

amounts of scan traffic generated, and they cause much substantial damage.

4

1.2 Computer Worms

Computer worms and viruses are typically grouped together as infectious agents that

replicate themselves and spread from system to system. However, Computer worms

must be differentiated from computer viruses if we are to understand how they operate,

spread, and can be defended against. Computer worms alter the behavior of the

computer they infect. Computer worms typically install themselves onto the infected

system and begin execution, utilizing the system’s resources, including its network

connection and storage capabilities.

1.2.1 Worms vs. Viruses

Both worms and viruses spread from a computer to other computers. However, viruses

typically spread by attaching themselves to files (either data files or executable

applications). Their spread requires the transmission of the infected file from one

system to another. Worms, in contrast, are capable of autonomous migration from

system to system via network without the assistance of external software. In other

words, a worm is an active and volatile automated delivery system that controls the

medium (typically network) used to reach a specific target system. Viruses, in contrast,

are a static medium that does not control the distribution medium.

From the Morris worm [7] in 1998, a computer worm was defined as follows:

“In computers, a worm is a program that travels from one computer to another

but does not attach itself to the operating system of the computer it infects. It

5

differs from a virus which is also a migrating program, but one that attaches

itself to the operating system of any computer it enters and can infect any other

computer that uses files from the infected computer.”

Currently Many worms hide their presence by installing software to deliberately hide

their presence, some use kernel modules to accomplish this. Such an instance of a

worm would not be covered by the above definition.

1.2.2 Worm history and Taxonomy

The concept of a worm program that spreads itself from machine to machine was

apparently first described by John Brunner in 1975 in his book The Shockwave Rider.

He called these programs tapeworms that lived “inside” the computers and spread

themselves to other machines. In 1979-1981, researchers at Xerox PARC built and

experimented with worm programs [3]. The worms built at PARC were designed to

travel from machine to machine and do useful work in a distributed environment. They

were not used at that time to break into systems, researchers soon developed worms

that could harness under utilized computing resources. Furthermore, the possibility of a

malicious worm such as the Morris worm became after an accident with the worm at

Xerox PARC. Table 1.1 shows a generalized lineage of many of the worms which have

focused on windows hosts.

6

Worm Discovery Date Distinction

Morris/Internet Nov. 1988 The first significant worm. Exploited multiple

vulnerabilities

mIRC Script.ini Dec. 1997 Attacks users of the IRC client mRC.

Melissa Mar. 1999 It shut down Internet mail systems. It spread on word

processor

Love Letter May 2000 A VBScript worm that spread largely via e-mail as a

chain letter.

Leaves Jun. 2001 Using the installed backdoor program to upload

itself.

Code Red Jul. 2001 The self-replicating malicious code that exploits a

known vulnerability in Microsoft IIS servers.

Code Red II Aug. 2001 It causes system level compromise and leaves a

backdoor on certain machines running Windows

2000.

Nimda Sept. 2001 A hybrid windows worm – attacked client-to-client,

server-to-server, client-to-server, and ser-to-client.

SQL Snake May 2002 Internet worm targeting Microsoft SQL servers with

TCP port 1433.

Sapphire/Slammer Jan. 2003 Using a single UDP packet for explosive growth

W32/Blaster Aug. 2003 It exploits a vulnerability in Microsoft's DCOM RPC

interface using TCP port 135

Table 1.1: Traditional worms of Note [3]

7

1.2.3 A Worm Spreading

Now we describe how a worm spreads on Internet and attacks many systems. We

explain the worm spreading techniques with one of malicious worms such as

Sapphire/Slammer worm. The Sapphire/Slammer worm (also called Slammer) was the

fastest computer worm in history [3]. As it began spreading throughout the Internet on

January 25, 2003, it doubled in size every 8.5 seconds. It infected more than 90 percent

of vulnerable hosts within 10 minutes. Slammer exploited buffer overflow vulnerability

in computers on the Internet running Microsoft's SQL Server. This weakness in an

underlying indexing service was discovered in July 2002;Microsoft released a patch for

the vulnerability before it was announced. The worm infected at least 75,000 hosts, and

caused network outages and significant disruption of financial, transportation, and

government institutions.

Propagation speed of Slammer worm was very fast: The worm achieved its full

scanning rate (over 55 million scans per second) after approximately three minutes,

after which the rate of growth slowed down because significant portions of the network

did not have enough bandwidth to allow it to operate. Most vulnerable machines were

infected within 10 minutes of the worm's release. By comparison, it was faster than the

Code Red worm, which infected over 359,000 hosts on July 19th, 2001 [4]. While

Slammer did not contain a malicious payload, it caused considerable harm simply by

overloading networks and taking database servers out of operation. Many individual

sites lost connectivity as their access bandwidth was saturated by local copies of the

worm and there were several reports of Internet backbone disruption. In other words, if

8

the worm had carried a malicious payload, it could have attacked a more widespread

vulnerability and the effects would likely have been more severe.

Slammer's spreading strategy is based on random scanning - it selects IP addresses

at random to infect, eventually finding all susceptible hosts. Random scanning worms

initially spread exponentially rapidly, but the rapid infection of new hosts becomes less

effective as the worm spends more effort retrying addresses that are either already

infected or immune.

Slammer spread nearly two orders of magnitude faster than Code Red, yet it

probably infected fewer machines. Both worms used the same basic strategy of

scanning to find vulnerable machines and then transferring the exploitive payload; they

differed in their scanning constraints. While Code Red was latency limited, Slammer

was bandwidth-limited. Slammer contains a simple, fast scanner in a small worm with

a total size of only 376 bytes. This can be contrasted with the 4kb size of Code Red, or

the 60kb size of Nimda. Previous scanning worms, such as Code Red, spread via many

threads, each invoking connect() to probe random addresses. Thus each thread's

scanning rate was limited by network latency, the time required to transmit a TCP-

SYN packet and wait for a response or timeout. In contrast, Slammer's scanner was

limited by each compromised machine's bandwidth to the Internet. Since the SQL

Server vulnerability was exploitable using a single packet to UDP port 1434, the worm

was able to send these scans without requiring a response from the potential victim.

Slammer was frequently limited by the access bandwidth to the Internet rather than its

own ability to generate new copies of itself. The Slammer worm's scanning technique

9

was so aggressive that it quickly interfered with its own growth. Consequently, the rate

of growth from later infections was reduced since these instances were forced to

compete with existing infections for scarce bandwidth. Thus Slammer worm achieved

its maximum Internet-wide scanning rate within minutes.

The following is the procedure of what the worm's payload is doing after infection:

1. Retrieves the address of GetProcAddress and Loadlibrary from the IAT in

sqlsort.dll.

2. Calls gettickcount, and uses returned count as a pseudo-random seed

3. Creates a UDP socket

4. Performs a simple pseudo random number generation using the returned

gettickcount value to generate an IP Address that will later be used as the target.

5. Send worm payload in a SQL Server Resolution Service request to the pseudo

random target address, on port 1434 (UDP).

6. Return back and continue generating new pseudo random addresses.

In general, the response to Slammer was quick. Within an hour, many sites began

filtering all UDP packets with a destination port of 1434. Slammer represents the

idealized situation for network-based filtering: the worm was easily distinguished by a

signature that is readily filterable on current hardware and it attacked

a port that is not generally used for critical Internet communication. Thus almost all

traffic blocked by these filters represents worm-scanning traffic. If the worm had

10

exploited vulnerability in a commonly used service (e.g. DNS at UDP port 53 or HTTP

at TCP port 80), such filtering could have caused significant disruption to legitimate

traffic with resulting denial-of-service more harmful than the worm itself.

1.2.4 Worm Detection

In this section we attempt to illustrate one of the methods of detecting worms using

signature-based detection which is called pattern matching. We are interested in

network payload signature that deals with packet headers and packet payloads, as is

used in network intrusion detection systems (NIDS) [26]. The detection method used

by NIDS engines perform an evaluation of packet contents received from the network.

This can include matching signatures based on payload contents measured by string

comparison, application protocol analysis, or network characteristics.

Signature-based detection

Signature-based detection is the method of analyzing the content of captured data to

detect the present of known strings. These signatures are kept in a database and are

derived from the content of known malicious files. These files are typically the

executable programs associated with worms.

The strength of signature-based detection is that the behavior of one instance of

malicious worm is representative of all instances. This means that by detecting one

node of the worm, the behavior of all nodes that are compromised by the worm can be

reliably predicted. However, this signature-based detection also has several weaknesses.

11

One of drawback is that they rarely can be used to detect a new worm. Only after an

attack is known, it can be used to detect a worm. Another of drawback is that it is hard

to keep up with variants of worms and viruses.

Worm Signature

Worms typically have distinctive signatures as they attack other hosts on the network.

By building up a library of known malicious signatures, a network monitor can alert an

administrator to the presence and activity of a worm.

In case of the Code Red worm, a distinctive request is made to the target server that

contained the exploit as well as the malicious executable. By examining packets

observed passively on the network, a detection system can identify Code Red worm

activity. The largest problem with this signature for Code Red is its size. This signature

is more than 100 bytes in length and must be fully matched against to successfully

detect the worm’s traffic. If this payload is fragmented due to network transmission

sizes, the larger signature will not match the smaller payloads in the fragments.

There are numerous ways to monitor our network and protect it from Internet

worms. For instance, companies commonly use a firewall for network protection.

Although firewall logs often provide a lot of information regarding intrusion attempts,

sometimes they contain too much data to solve the problem quickly. Some companies

also use intrusion detection systems (IDSs) on border routers to monitor incoming

traffic for patterns that indicate specific intrusion attempts. Worms that infect internal

systems behind a firewall may be difficult to isolate since firewalls and intrusion

12

detection systems are used primarily on borders with the Internet, rather than on

internal networks.

1.3 Epidemiological Models

Epidemiological models have traditionally been used to understand and model the

spread of biological infectious diseases [9, 10]. Furthermore, in the area of virus and

worm modeling, many studies have employed simple epidemiological models to

understand general characteristics of worm’s propagation [5, 8]. In this section we

introduce two classical epidemiological models.

1.3.1 SIS model

Let S(t) be the number of susceptible individuals at time t, and let I(t) be the number of

infected individuals. For an SIS model, infected individuals return to the susceptible

class on recovery because the disease confers no immunity against re-infection. The

classical SIS model is given by

ISI
dt
dS δβ +−= (1.1)

ISI
dt
dI δβ −=

Let's briefly explore the meaning of these terms.

13

• The βSI term is understood as follows: An average infected individual makes

contact sufficient to infect βN others per unit time. Also, the probability that a

given individual that each infected individual comes in contact with is

susceptible is S/N. Thus, each infected individual causes (βN)(S/N) = βS

infections per unit time. Therefore, infected individuals, I, cause a total number

of infections per unit time of βSI.

• The δI term is even simpler to understand: δ is the fraction of infected

individuals who recover (and re-enter the susceptible class) per unit time.

We see that

0)(=+ IS
dt
d

 (1.2)

Therefore,

S + I = N is constant.

1.3.2 SIR model

The SIR model has been proposed by Kermack and McKendrick who considered the

removal process of infected individuals [8]. We divide the population into three classes

S, I, and R. The SIR model is very similar to the SIS model except that recovered

individuals return to class R instead of passing to class S through immunization against

infection. R(t) denotes the number of individuals who have been infected and then

removed from the possibility of being infected again or of spreading infection.

14

The classical SIS model is given by

SI
dt
dS β−=

ISI
dt
dI αβ −= (1.3)

I
dt
dR α=

where β is the infection rate; α is the rate of removal.

We note that N = S + I + R.

1.4 Optimal control problem

Optimal control can be regarded as one of the possible methodologies of the control

system’s design. The most general optimal control problem is described by four types

of data: (1) system constraints, (2) the initial state and the target state, (3) the class of

admissible controllers, and (4) the cost functional. We attempt to investigate such an

optimal control problem of minimizing the cost function described in chapter 4. The

objective of our optimal control problem is to determine the control variables that will

cause a system to satisfy the constraints and at the same time minimize the total cost of

infection.

15

1.4.1 Control System Model

We consider a control problem where based on a system model we have to determine

the control inputs u(t) such that the system behavior x(t) meets our requirements as

shown in figure 1.1.

System
model

u(t) x(t)

 Control
Inputs

System
Behavior

 Figure 1.1: Control and behavior related by a system model

In case of optimal control we have a mathematical system model,

),,(x tuxf=& , x ∈ Rn, u ∈ Rm (1.4)

A formal statement of the control problem is comprised of the state variable, the

control variable, time, a set of differential equations, the determination of terminal time,

and the objective function.

Time, t, is measured in continuous units and is defined over the relevant interval from

initial time t0, which is typically given, to terminal time t1, which must often be

determined. Thus the relevant interval is: t0 ≤ t ≤ t1

16

At any time t in the relevant interval the state of the system is characterized by n real

numbers, , called state variable, and summarized by the state vector:)(),...,(),(21 txtxtx n

x(t) =))(),...,(),((21 ′txtxtx n , (1.5)

is a continuous vector valued function of time, the value of which at any time t in the

relevant interval is the state vector. The initial state, x(t0) = x0, is assumed given, and

the terminal state, x(t1) = x1, must often be determined.

At any time t in the relevant interval the controls to be made are characterized by r real

numbers, , called control variables and summarized by the control

vector:

)(),...,(),(21 tututu r

u(t) =))(),...,(),((21 ′tututu r , (1.6)

is a continuous vector valued function of time, the value of which at any time t in the

relevant interval is the control vector.

The state trajectory {x(t)} is characterized by a set of n differential equations giving the

time rate of change of each state variable as a function of the state variables, the control

variables, and time:

)(tx& = f(x(t), u(t), t), (1.7)

17

Or, written out in full:

):)(),...,(),();(),...,(),(()()(2121 ttutututxtxtxftxt rnjjdt
dxj == & , j = 1, 2, …, n, (1.8)

where each of the n functions is assumed given and

continuously differentiable. If the differential equations do not depend explicitly on the

time then the equations are autonomous.

)(),...,(),(21 LLL nfff

The behavior of system is fully determined by x(t). Based on these state and control

variables, an optimal control u*(t) can be computed which minimizes the cost function

C(u(t)). So optimal relates to the system model and cost function. Associated to the

optimal control u*(t) is the associated optimal system’s behavior x*(t) as shown in

figure 1.2.

Optimal
System
Behavior

System
model

u*(t) x*(t)

Optimal
Control

 Figure 1.2: Optimal control based on a system model

18

Now we define the general form of optimal control problem as follows;

Given the system,

),,...,,,...,(11 tuuxxfx mnii =& , i = 1, …, n,

Or in vector form

x& = f(x, u, t),

Where

 x =),...,(1 ′nxx and u =),...,(1 ′muu

with the known initial condition

 x(t0) = x0

and the final condition that we wish to reach is x1 ∈ Rn. x1 is often called the target

point, and may or may not be given.

Find the optimal control u*(t) that minimizes the cost function

C(u) = (x(t), u(t), t)dt, (1.9) ∫
1

0 0

t
f

where f0 is a given continuous real-valued function, C(u*) ≤ C(u) for all u.

1.4.2 Calculus of Variations

Calculus variations are suitable for solving linear or nonlinear optimal control

problems with linear or nonlinear boundary conditions [56, 57]. Basically, it is a

19

collection of many different analytical methods and they are discussed differently from

book to book. Here, a typical approach which leads to more general and widely used

modern theories is introduced.

Pontryagin’s maximum principle

Pontryagin’s maximum principle is one of approaches to solve the optimal control

problem. Pontryagin’s maximum principle serves to identify on optimal path or

trajectory. If we define x(t) to represent the state of system at time t and u(t) represents

the control at time t, then the optimal control problem is to find trajectory {x(t)} by

choosing a set {u(t)} of controls so as to maximize or minimize some objective

function. The maximum principle therefore has been the basic approach to computing

optimal controls in many important problems in mathematics, engineering, and

economics.

The general formula of the maximum principle problem is:

 J = x, u, t)dt (1.10)
)}({

max
tu ∫

1

0

(
t

t
F

 s.t.)(t u, x,fx =&

 x(t0) = x0 for t = 0 is initial point

 x(t1) = x1 for t = T is the final state

 {u(t)} the control trajectory t0 ≤ t ≤ t1

Ω a set of all admissible controls

20

where F(⋅⋅⋅) and f(⋅⋅⋅) are given continuously differentiable functions; and {u(t)} must

belong to the given control set Ω. The maximum principle can be considered the

extension of the method of Lagrange multipliers to optimal control problems. We

introduce new variables, called costate variables, are the dynamic equivalents of the

Lagrange multipliers of maximization problems:

 ϕ(t) = (ϕ1(t), ϕ2(t), …, ϕn(t)) (1.11)

It also notes that each of the costate variables corresponds to one of the differential

equations of motion and in general varies over time.

 The next step is to define a Lagrangian function which equals the expression to be

maximized plus the inner product of the Lagrange multiplier vector and the constraints.

The inner product is properly treated under the integral sign, the Lagrangian expression

being:

 L = J + (1.12) ∫ −1

0

])([
t

t
dtt xu,x,f &ϕ

 = ∫ −+1

0

]})([)({
t

t
dtttF xu,x,fu,x, &ϕ

To develop the necessary conditions, note that the term-)()(tt x&ϕ in equation (1.12) can

be integrated by parts to yield:

21

 L = (1.13))]()()()([})()({ 0011
1

0

ttttdtttF
t

t
xxxu,x,fu,x, ϕϕϕϕ −−++∫ &

Hamiltonian function

From equation (1.13) the first two expressions under the integral sign are defined to be

the Hamiltonian function:

 H(x, u, ϕ, t) ≡ F(x, u, t) + ϕf(x, u, t) (1.14)

That is, the Hamiltonian function (called Hamiltonian) is defined as the sum of the

intermediate function (integrand) of the objective functional plus inner product of the

vector of costate variables and the vector of functions defining the rate of change of the

state variables.

For a maximum it is necessary that the change in the Lagrangian function must hold for

a change in the control trajectory {∆u(t)}, that:

 0=
∂
∂

u
H , t0 ≤ t ≤ t1 (1.15)

Necessary condition equation (1.15) states that the Hamiltonian function is maximized

by choice of the control variables at each point along the optimal trajectory {u*(t)}.

To summarize, the maximum principle technique involves adding to the problem n

costate variables ϕ(t), defining the Hamiltonian function as:

22

 H(x, u, ϕ, t) ≡ F(x, u, t) + ϕf(x, u, t) (1.16)

and solving for trajectories {u(t)}, {ϕ(t)}, and {x(t)} satisfying.

 H(x, u, ϕ, t) for all t, t
}{

max
Ω∈u

0 ≤ t ≤ t1 (1.17)

ϕ∂

∂
=

Hx& , x(t0) = x0

x∂

∂
−=

Hϕ&

The form of the solution for the optimal control problem often follows readily from the

maximization of Hamiltonian, which usually gives the optimal control variables not as

functions of time but rather as functions of the costate variables.

In particular, if the problem is autonomous in that both F(⋅⋅⋅) and f(⋅⋅⋅) show no

explicit dependence on time then the Hamiltonian shows no explicit dependence on

time and, since dH / dt = 0, along the optimal trajectory the value of Hamiltonian is

constant over time. Another advantage is that Hamiltonian functions are easier to solve

than Lagrangian functions. Ultimately, it will produce the same optimum as

Lagrangian approach.

23

1.5 Organization and Contribution of the dissertation

The rest of the dissertation is organized as follows. Chapter 2 introduces several trace

back techniques and defines a trace back problem more formally. We present a simple

and efficient algorithm for detecting the source of attack in a network. The algorithm

uses the dynamic centroid decomposition technique to select nodes for monitoring

packets to identify an attack packet. Advantage of the algorithm requires limited

resources and does not require change in Internet protocols. Contribution of our work

is to identify the set of routers that are requested to log, mark, or authenticate

depending upon the type of attack. The number of routers identified for this task will

be kept at a minimum yet sufficient to reduce the burden on the routers. In chapter 3,

we describe the two classical simple epidemic models and an extended model, allowing

for loss of immunity that causes recovered hosts to become susceptible again. With real

Internet topology data, we find that there are two effective factors that influence

Internet worm propagation: temporary immunization time and network delays. We note

that our simulation results can explain how fast a virulent worm can spread and suggest

effective mechanisms to monitor and defend against the propagation of worms. It also

shows that we can find location(s) in the network that when quarantined would slow

down the rage of spread. In chapter 4, we attempt to investigate a new approach to such

optimal control problems of minimizing the cost of infection which can be interpreted

as the network delay. Furthermore, we define the objective of minimizing the total cost

of infection and derive the necessary conditions for our cost optimization problem

which is solved numerically. We show that our simulation results can answer the

24

question of how many nodes needed to filter and when to start a filtering treatment, and

this treatment of worm infection is very effective for reducing the spread of worm

infection. Finally, Chapter 5 presents our conclusions and future work.

25

Chapter 2

On Intrusion Source Identification

2.1 Introduction

Network forensics is the science of analysis and detection of network based intrusions,

including evidence gathering, and locating and isolating intruder(s). A well-known

network based attack on computing resources is the Denial-of-Service (DoS) attack

wherein the intruder sends several requests to the server so as to overwhelm the server

and prevent it from serving legitimate user requests. The DoS attack can be either from

a single intruder, a distributed set of intruders, or a distributed set of compromised

hosts. Attacks of this nature can be connection-oriented involving TCP’s three-way

handshake protocol or connectionless that uses UDP packets. The source of the packets

to the victim can be from the real intruder with possibly spoofed source IP address in

the packets, or from the compromised machine(s). DoS attacks are considered

continuous in the sense that a continuous stream of packets is sent from the intruder(s)

26

or the compromised machine(s) to the victim. An example of a non-continuous attack

is the SQL Slammer attack wherein a single UDP packet contains the necessary code to

attack SQL servers running on port 1434.

The source identification or the trace back problem deals with identifying the

source of the intruder after the intrusion has been detected. Solutions to the trace back

problem involve enabling the routers to monitor intruder’s packets (packets that have a

specific signature that has been singled out as a packet(s) that caused the intrusion) and

executing a detection algorithm based on the information collected from the routers.

For example, in packet marking schemes proposed in the literature, addresses of

routers through which the packets are routed are added to the packet. When the victim

(where the intrusion has occurred) gets the intruder’s packets with addresses marked in

them, it can reconstruct the path of the intruder’s packets all the way to the source. If

the source address is spoofed by the intruder, then the marking system will trace the

origin of the packet all the way to the router that is uncompromised and closest to the

source.

The rest of the chapter is organized as follows. Section 2.2 presents overviews of

trace back techniques and their limitations and problems. Section 2.3 reviews recent

solutions for trace back against DoS attacks. Section 2.4 discusses the trace back

problem more formally and provides assumptions used by our detection system.

Section 2.5 presents an algorithm that will use a minimal amount of network resources

to either detect the sources of attack or perform quarantine operation that will isolate

portions of the network from possible attacks. The conclusions and future work is

presented in section 2.6.

27

2.2 Preliminaries

Recently, so many network security communities have made reasonably good progress

in the development of attack prevention and intrusion detection systems for protecting

hosts against network-based attacks launched remotely by attackers. However, because

of the design of Internet Protocol (IP), back tracking the source of such attacks

remains relatively difficult. Furthermore, it is difficult to eliminate spoofed packets in

mounting denial of service (DoS) attacks on the Internet. This section describes

techniques for tracing internet packets with spoofed source addresses back to their

point of origin and presents their limitations and problems.

2.2.1 Overview of Trace back problems

A simple mechanism to prevent spoofed packets from leaving the subnet is to use

Egress filtering wherein every packet’s source address is examined to make sure that

its source address matches the subnet from which the packet originated. Such internal

policing can stop spoofed packets from entering the Internet, but this scheme will be

beneficial only when all border routers cooperate. Certainly, not all ISP’s and large

networks can use Egress filtering [54]. Egress filtering cannot help in case of

compromised machines sending attack packets with legitimate source addresses. Given

the fact that some routers perform Egress filtering while others do not, the authenticity

of the source IP address of the attack packet is still in doubt.

Yet another scheme to determine the subnet from which the attack packet originates

is to force the border router at the subnet to mark the packet with its IP address. Such a

28

scheme would allow the victim to trace the attack packet closest to the subnet level and

the border router at the subnet can be further instructed to block all the packets destined

for the victim. This will work only when we assume that the subnet’s router is not

compromised. Clearly, this scheme adds additional complexity to the packet structure

and incurs additional network bandwidth.

In order to trace back spoofed attack packets, the routers that border the subnets

attached to the victim have to be requested to monitor packets. Not only the number of

such routers can be very large, but needs also to be made an unreasonable assumption

of a continuous stream of spoofed attack packets. The problem is further compounded

if the attached border routers belong to different Internet Service Providers (ISPs),

since all of them have to cooperate. In any case, a desirable solution is to perform

logging of packets using SYSLOG or NETFLOW. These logging techniques are based

on efficient storage mechanism such as a bloom filtering [33] and they provide tools

for determining if a packet with a specific signature visited that router. These

techniques range from simple matching to intelligent data mining [26, 32]. Placing

effective monitors on every possible location in the network or marking every possible

packet by all the routers is highly cost prohibitive and a severe drain on resources. For

example, assuming that all packets through routers are logged, the victim can send a

copy of the attack packet to all the SYSLOG or NETFLOW databases to be searched.

Routers or its associated SYSLOG database that report the presence of the packet can

“ring an alarm” and new routers attached to the “ringing” routers can be searched. To

avoid resource draining process of logging every packet, the routers can be made to log

packets on demand by the victim. A victim will request such a longer upon receiving

29

attack packets. The routers that “ring” and are farthest away from the victim would be

requested to block the packets destined for the victim until the victim recovers. Clearly,

the logging mechanism is very effective in finding source of non-continuous attacks.

A mechanism using IPSec security associations can be used to authenticate packets

received from a router. For example, if a victim v would like to determine whether an

intruder packet is routed from a particular router say R, then either v or the router

closest to v can establish an IPSec with R. The premise of the approach is that if an

attack packet has been correctly authenticated by a certain router R, the attack packet

must have transited that router. Therefore, iteratively building security associations

with routers at increasing distances from the victim will allow one to perform a secure

trace route that will trace the attack packet to the router closest to it, even if the attacker

used spoofed IP addresses. The technique proposed in this chapter will reduce the

number of associations that need to be established to trace the router closest to the

source.

2.2.2 Types of Attacks

Based on the discussion above we recognize that technique of logging, packet marking,

or IPSec authentication is dependent on the type of attack. In general, the type to be

used often depends on the attacker's motives and aims. Types of attacks can be

classified as follows:

Destructive – Attacks which destroy the ability of the device to function, such

as deleting or changing configuration information or power interruptions.

30

Resource consumption – Attacks which degrade the ability of the device to

function, such as opening many simultaneous connections to the single device.

Bandwidth consumption – Attacks which attempt to overwhelm all available

bandwidth capacity of the network device.

Furthermore, these attack types include continuous and non-continuous versions of

single intruder and multiple intruders. For example, in the case of single intruder

continuous attack the victim can request certain routers to mark the packets with the IP

address in order to determine the route the packets take. For non-continuous attack

proactive logging of packet information by certain routers would be very beneficial. A

victim that sees a regular non-continuous attack can request a router to log the packets

in a reactive sense. Our goal is to identify the set of routers that are requested to log,

mark, or authenticate depending upon the type of attack. The number of routers

identified for this task will be kept at a minimum yet sufficient lead to reduce the

burden on the routers.

2.3 Recent Solutions for Trace back

Several types of DoS attacks have been identified [23, 24, 25], with the most basic DoS

attack demanding more resources than the target system or network can supply.

Resources may be network bandwidth, file system space, processes, or network

connections [24]. While host-based DoS attacks are more easily traced and managed,

31

network-based DoS attacks which exploit weaknesses of the TCP/IP protocol suite [30],

represent a more subtle and difficult threat [24, 34]. Network-based DoS attacks

employ spoofing to forge the source address, and thereby hide identity of the physical

source [29]. Previous works have focused on detecting DoS attacks and mitigating their

detrimental impact upon the victim [27, 28].

A number of recent works have studied source identification (also called IP trace

back [34]) which spans a range of techniques with their individual pros and cons. IP

trace back is to identify the origin of sequential IP packets when the source IP

addresses of these packets are spoofed. IP trace back is usually performed at the

network layer, with the help of routers and gateways.

Link Testing

In link testing the identification of the physical source of an attack is done by tracing it

back hop-by-hop through the network MAC addresses [39]. Trace back is typically

performed manually, and is recursively repeated at the upstream router until the

originating host is reached. The drawbacks of link testing include multiple branch

points, slow trace back during an attack, communication overhead due to message

exchange, and administrative constraints between network operators [39]. In behavioral

monitoring [24], the likely behavior of an attacker during a DoS attack is monitored to

identify the source. For example, an attacker may perform DNS requests to resolve the

name of the target host which may not be resident in its local name server’s cache.

During a DoS attack, an attacker may try to gauge the impact of the attack using

32

various service requests including Web and ICMP echo requests. Logging of such

events and activities can reveal information about the attacker’s source.

Ingress Filtering

Packet filtering is a network mechanism for controlling what data can flow to and from

a network affected routers or firewalls [42]. Filtering decisions, typically, are made

based on packet content including source/destination addresses and port numbers. As a

means of preventing network-based DoS attacks, ingress filtering in border gateways

has been proposed for limiting IP source address spoofing [37, 38]. Ingress filtering

requires a prolonged period to be broadly deployed on the Internet.

Probabilistic Packets Marking (PPM)

In packet-based trace back, packets are marked with the addresses of intermediate

routers, in some sense, an inverse operation of source routing and similar to the IP

Record Route option [31]. The victim uses information inscribed in packets to trace the

attack back to its source. In this method, overhead in the form of variable-length

marking fields that grow with path length, or traffic overhead due to extra messaging

packets is incurred.

Probabilistic packet marking (PPM) [34, 35, 36] has been proposed for achieving

space efficiency in the form of constant marking field and processing efficiency in the

form of minimal router support. The basic idea of the approach is that routers prob-

abilistically encode partial path information into the packets during forwarding and try

33

to reconstruct the complete path from the packets that contain the marking. In spite of

its efficiency properties, PPM has several drawbacks: packet storage requirements and

high router overhead to record the path information. For a large amount of packets, it

may result in unnecessary fragmentation. To reduce the resource overhead, a hash-

based technique was proposed to store the information into 16-bit IP Identification

field used for fragmentation in the IP header. However, the ID field of IP header can

not be modified if either fragmentation is necessary or IPSec authentication is provided.

In addition, it is necessary for a victim to accumulate huge amount of data in order to

determine true attack path. Improved marking schemes including authentication were

studied in [35].

IPSec authentication and encryption

Chang, et al [43, 44] proposed a security management framework, DECIDUOUS

(Decentralized Source Identification for Network-Based Intrusions), to securely

identify attack sources by using existing network security protocols and services,

specifically IPSec authentication and encryption services. With this method, when an

attack is detected, the Internet key exchange (IKE) protocol establishes IPsec security

associations (SAs) between the target host and some routers in the administrative

domain (for example, autonomous system boundary routers). Routers at the SA ends

add an IPsec header and a tunnel IP header containing the router’s IP address to

traversing packets. If the attack continues and one of the established SAs authenticates

a subsequent attack packet, the attack must come from a network beyond the

34

corresponding router. The receiver checks the source IP address of the tunnel IP header

to find out which routers the attack packet traversed. Repeating this process recursively,

the receiver finally reaches the attack source. Because this technique uses existing

IPsec and IKE protocols, implementing a new protocol for tracing is unnecessary.

ICMP Trace back Message (iTrace)

ICMP trace back proposes to introduce a new message “ICMP trace back” (or an

iTrace message) so that routers can generate iTrace messages to help the victim or its

upstream ISP to identify the source of spoofed IP packets [40]. For example, routers

would be modified to randomly (for example, one trace back message for every 20,000

packets) generate a trace back message about a packet and send it to the packet’s

destination. Each trace back message would provide authenticated information about

the packet being traced, what time it was sent, where it came from, where it went. With

enough trace back messages from enough routers, a network manager could find the

source of a spoofed flow. Of course, this would require that the Internet routers would

have to be modified to support the new ICMP trace back. An intention-driven iTrace is

also introduced to reduce unnecessary iTrace messages and thus improve the

performance of iTrace systems [41].

Hop-by-hop Input Debugging

Robert Stone’s CenterTrack uses an overlay network of IP tunnels to selectively

reroute suspicious datagrams from edge routers to special tracking routers [45]. The

35

tracking router can determine the ingress edge router by noting the tunnel on which the

packet arrived. The tracking router can inspect the suspicious datagram and then either

drop it or forward it. The scheme permits rerouting flooding packets and can determine

the ingress point on the enterprise network.

Logging and Storage

Snoeren et al [46] describe a hash based technique and an implementation of digest

tables using space-efficient data structures known as Bloom filters; it records packet

digests for recently forwarded traffic within the network and reconstructs the attack

paths with these digests. A software engine called Source Path Isolation Engine (SPIE)

that uses the packet digests is proposed in [46]. Using the SPIE environment, it has

been shown that tracing attacks that use single packet rather than a series of packets is

feasible with low storage requirements. The packet digest is computed over the

invariant bytes of a packet header and the first 8 bytes of payload. This approach is

based on the assumption that this packet digest will not be frequently modified by a

packet transform. However, if the invariant portion of a packet header is used and

modified frequently to store extended information, then this assumption is infeasible.

In this case, packet transformations will occur frequently and result in resource

overhead of logging transformation information.

36

2.4 Trace back: Centroid Approach

Definition 2.1 (Attack paths and tree): The attack propagation model of a network is

given by the undirected network G = (V, E), where V is the set of nodes and E is the set

of edges. The set of nodes V could be further partitioned into end systems and routers.

The edges denote physical links between elements in V. Let Ai ∈ V denote the potential

attack source, and let Vt ∈ V \ Ai denote the victim. In case of a single attacker, |Ai| = 1,

and the path Ρi = (Ai, R1, R2, …, Rd, Vt) composed of d routers R1, …, Rd, an attacker

Ai, and a victim Vt is called an attack path. In other words, an attack path from Ai is the

sequential route that the attack packet has traversed between Ai and Vt. If |Ai| > 1, then

we have distributed DoS attack (DDoS) wherein the attack paths are joined together to

form an attack tree rooted at the victim. ■

Definition 2.2 (Trace back Problem): Let G′ = (V′, E′) be an attack network of G,

where V′ represents the set of nodes associated with attack path(s) and edge (u, v) ∈ E′

represents a link on which an attack at u∈ V′ propagates to v∈ V′. In other words, the

removal of vertices Vi not associated with attack path(s) from the network G results in

the induced attack network G′ , e.g., from figure 2.1 we obtain an attack network G′

containing two attack paths, P2 = (A2, R6, R3, R2, R1, Vt) and P3 = (A3, R7, R4, R2, R1,

Vt) by removal of nodes A1 and R5. The trace back problem is to construct an attack

network G′ containing the attack path(s) and the associated attack source(s) for each

victim. ■

37

A1 A2 A3

R5 R6 R7

R3 R4

R2

R1

Vt

Figure 2.1: Attack paths: (A2, R6, R3, R2, R1, Vt) and (A3, R7, R4, R2, R1, Vt).

The attack paths form an attack tree is shown above.

2.4.1 Assumptions

We state in the following the assumptions on the mode and operations pertaining to the

attack on the victim by the intruder(s).

1. Attackers may generate any packet

2. Attacker may disguise its IP source address

3. Routers are both CPU and memory limited

4. Routers are not widely compromised

5. Routers always choose the shortest routes with least hops to forward packets

6. In the case of continuous attack (like the DoS), the route taken by the attack

packets is stable.

38

The assumption that routers always select a shortest path to forward packets is

probably the fundamental property of our proposed algorithm. Routing path selection

in several deployed routing protocols is based on well-known shortest path algorithms.

It follows that packets from an attacker to victim must be transmitted through the

shortest path. The final assumption that routing would be systemically stable until an

efficient tracing system determines the attack source is the most controversial. Paxson

[47] states that two packets sent by the two same end hosts may take different

directions of the Internet paths due to network congestion. Labovitz et al. [48] have

also shown the routing instability from BGP routing messages. However, it is very

difficult for any tracing system to seek to determine attack source with multiple attack

paths. Chinoy [49] measured that almost 90% of the EGP routing updates in the

NFSNET system of networks contained close to 0% new information (whereas EGP

updates occur every 3 minutes). Furthermore, Govindan and Reddy [50] used a year's

worth of inter-domain routing traces collected in 1994-95 and analyzed the Internet

inter-domain topology, its routing stability behavior. Shaikh and Kalampokas [51] have

performed extensive experimentation and developed analytical models to capture the

stability and robustness properties of routing protocols in congested networks. It shows

that the path through which packets are transmitted between two end hosts does not

change frequently despite the growth of the topology. As a result, routing of multiple

attack packets should be stable during the period of the trace time to identify the attack

source. These last two assumptions motivate us to look for a scheme which transfers a

general network topology to a terminal network (described in next section) of the

39

network in order to simplify network topology and reduce the amount of network

resources required to perform trace back.

2.4.2 Terminal Nodes

Terminal nodes are routers on the network that see large amount of network traffic.

Typically border routers that connect autonomous areas to the rest of the Internet and

Internet core routers experience heavy network traffic. At the subnet level, these are

routers that connect one subnet to the other as they join to form the autonomous system.

Our proposed solution for the trace back problem makes use of these terminal nodes

wherein logging, marking, or IPSec association is performed. The number of terminal

nodes can be large considering the fact that there are over 2 million core routers.

Consider the Abilene Network which is an Internet2 high-performance backbone

network that connects hundreds of end users that range from universities, research labs,

and technology companies. The structure of the Abilene network is shown in figure 2.2.

Traffic from the west coast can reach the east coast through a combination of two

routers selected one each from sets {Kansas City, Houston} and {Indianapolis,

Atlanta}. These routers experience plenty of traffic compared with routers at the edges

say Seattle for example. Our goal is to identify these routers based on the topology of

the network and use these nodes to monitor intruder packets. As a first step, we will

imagine that our network is a set of glued bi-connected components. The bi-connected

components of the Internet2 backbone network are {Sunnyvale, Seattle, Denver},

{Sunnyvale, Denver, Kansas City, Houston, Los Angeles}, {Kansas City, Houston,

40

Seattle

Sunnyvale
Denver

Los Angeles

Kansa City

Houston

Indianapolis

Chicago

Atlanta

Washington

New York City

PacWave

UHawaii

Oregon
Intermountain

FrontRange

Calren

Calren
SDSC

ArizonaSU

Iowa SU

OneNet Indiana

MREN

Northern
Lights

Mississippi SU

U Florida SOX

PSC

MAGPI

NCNI MAX

NOXNyserNet

Texas

Alaska

U Oregon

Oregon SU

CSU Stanford

UC Berkeley

UCLA

SDSU
UCSD

U Utah

Colorado SU

U Oklahoma

N. DakotaSU

Indiana U

Florida SU

Georgia SU

Emory

U Miami

U Alabama

Vanderbilt

UNC-CH

NCREN UMD

NCSA Aceess

OldDominion

Princeton

PennSU

MTU

U Wisc-Mad.

Rochester
MIT

Harvard

Dartmouth U Mass

Boston U

Yale

Abilene Core Node

Abilene Connector

Abilene ParticipantTexas A&M

UT-Austin

North Texas

Oklahoma SU

Figure 2.2: Abilene Network

Atlanta, Indianapolis}, and {Indianapolis, Atlanta, Washington, New York City,

Chicago}.

The nodes that connect one bi-connected component with the other are terminal

nodes and traffic through these terminal nodes are generally higher compared with

other nodes. In figure 2.2 the terminal nodes are Sunnyvale, Denver, Kansas City,

Houston, Atlanta, and Indianapolis.

In the next subsection, we present an algorithmic technique to recognize terminal

nodes that is based purely on the topology of the network.

41

2.4.3 Terminal Network

The approaches presented for trace back problems all involve cooperation of

intermediate routers in the network. Our main goal is to reduce the number of

intermediate routers that participate in the trace back solutions. To this end, we identify

a small number of set of nodes that are enough to complete the trace back based on the

assumptions on the network and on its routing presented in section 2.4.1.

Given a network G, we first construct a set of connected components that does not

exceed the given size (number of nodes) t.

Algorithm BCC (H, t)

Input: The network H = (V, E) with nodes V and links E, and a size t.

Output: A set of connected components.

Begin

1. If (H is a tree) Then

2. Return H

3. Else

4. If (|H| < t) Then Return H

5. Test connectivity of H and let it be k.

6. Choose k nodes to make the network H disconnected.

7. Remove the k nodes (cut nodes) from H and let H1, H2, …, Hm be the

connected components.

42

8. Add the k nodes to each of the connected component Hi, 1 ≤ i ≤ m with links

 (p, q), where p is a cut node, q is a node in Hi, and (p, q) is a link in E.

9. Mark the k nodes of each connected component to indicate that they are

 terminal nodes.

10. Return ({BCC(H1,t), BCC(H2,t) …, BCC(Hm, t)})

11. EndIf

End.

The main idea behind this is that the intruder resides in a connected component and

searching only the terminal vertices would lead us to that connected component. Let H

be k connected with k ≥ 2. We need to identify k nodes whose removal will make the

network not connected. The set of k vertices will be added to the set of terminal

vertices.

We will remove these k nodes and apply the above algorithm on each of the

remaining connected component until either each component is 1-connected or its size

does not exceed t. The larger the size of t faster the above algorithm will terminate. If t

is equal to n, the number of nodes in the network, then the entire network will become

a terminal network and hence more network resources have to be committed for the

trace route problem. On the other hand if t is smaller, then the number of bi-connected

components identified will be large and so will the number of terminal nodes.

Polynomial-time algorithms exist to test the connectivity of the network and to find cut

vertices.

43

Definition 2.3 (Terminal Network): A terminal network TG = (V′, E′) of a network G

is an edge weighted network that contains nodes {u, v} ∈ V′, where u and v are

terminal nodes of G and link (u, v) ∈ E′, if and only if, nodes u and v belong to the

same connected component that results after the execution of the algorithm BCC. The

weight on the link (u, v) ∈ E′ is the shortest distance between vertices u and v in G. ■

The terminal network of the network shown in figure 2.3 is shown in figure 2.4.

a

b

c

d

e

f

g
h

i

j

l
k

m

 Figure 2.3: A network with terminal nodes highlighted and labeled.

44

a

b c d

l j

i

g

f

h

m

k

e

4

3

3

22

2
2

2 2

2 44

4

3

1

Figure 2.4: The terminal network of the network in Figure 2.3. The weights on the

edges are the distances in terms of number of hops between the marked vertices in the

network shown in Figure 2.3.

b

ca

d

e l

f j

g h m i

k

Figure 2.5: The single source shortest path tree with node ‘b’ as the root of the tree.

45

2.5 Detection Algorithm

After the terminal network is constructed the single source shortest path tree starting

with the terminal node that is closest to the victim is constructed from the terminal

network. A single source shortest path tree is shown in figure 2.5.

Considering the tree network as shown in figure 2.5, let node b be the router that is

closest to the victim. Assume that we are dealing with a continuous attack from a

single source. A straight forward track back approach works as follows. Assume that

router k (in figure 2.5) is forwarding the attack packets. Node b without any knowledge

first requests node a to mark the packets. This operation will be termed as placing an

alarm at node a. If the marked packets are not the attack packets, then it can request

node c to mark the packets. Node b now will recognize that the attack packets are from

node c (“ringing” node) and it will initiate a track back request to node c (for the

subtree rooted at node c). Node c will perform similar operations to that of node b

until node k is reached.

Clearly, this straight forward approach will require that all nodes mark the packets

at one time or the other and hence is a severe drain of network resources. If we request

more than one node to mark the packets simultaneously, then we can speed up the

process of trace back, but it does not improve resource usage efficiency. In the case of

a distributed DoS attack, there will be more than one ringing node that is on different

paths from root to leaf nodes in the shortest path tree. For such cases, the trace back

will be applied to each subtree rooted at the ringing nodes. In summary, for the

continuous attack scenario, a given set of alarms is incrementally placed at more than

46

one location and depending on the ringing and non-ringing of the alarms the old alarms

are removed and new alarms are placed. Instead of working with the network in figure

2.5, we can apply the same approach as above on the centroid tree. Since the depth of

the centroid tree is no more than O(logn), the trace back can be completed in O(logn)

time. This concept is explained in section 2.5.1.

2.5.1 The Centroid Approach

Our proposed algorithm requires a centroid decomposition technique on a tree network.

Every tree T has a centroid consisting of either one vertex or two adjacent vertices [52].

For each vertex v ∈ T of degree 2 or more, count the number of vertices in each of the

subtrees emanating from v, and let nv be the maximum of these numbers. If the tree has

n vertices it can be shown that either there is just one vertex v for which 2/)1(−≤ nnv

or there are two adjacent vertices v and w for which nv = nw = n/2. We can determine a

centroid of the tree T by repeatedly removing nodes of degree one until either a single

vertex remains or an edge remains. A centroid decomposition is the process of

repeatedly finding the centroids on subtrees obtained by removing every edge incident

on the centroid. Given a n-node tree the centroid decomposition can be completed in

O(n) time [53].

Observation 2.1 [in 53]: Given a tree T with n nodes, the size of each connected

component obtained by the removal of the centroid is no more than n/2. ■

47

Observation 2.2: Based on Observation 2.1, it can be clearly seen that the depth of the

centroid tree TC is O(logn). ■

A centroid tree TC of a tree T is obtained using the algorithm CentroidTree.

Algorithm CentroidTree (T)

Input: The tree network T.

Output: The Centroid Tree of TC.

Begin

1. The centroid of T is the root r of the tree TC.

2. let subtrees T1, T2, …, Tk be obtained by removing r from T; the centroids c1,

c2, …, ck of the subtrees T1, T2, …, Tk, respectively are the children of r,

3. each node x in TC serves as the root of the centroid tree of the subtree Tx.

End.

The centroid decomposition process on a tree network and its corresponding centroid

tree are illustrated in figure 2.6.

48

b

c

a

e

f

g h

j

m i

k

C1 C2

C3

T1 T2 T3

b

ca e

f

g h

jm

i k

Tc

ld
Centroid r

b

ca

d

e l

f j

g h m i

k

Centroid r

Tree T

Node
Centroid

 (a) (b) (c)

Figure 2.6: (a) Find a centroid r in a tree T, (b) Find subtrees T1, T2, and T3 by

removing r and the centroids c1, c2, and c3 from each subtree, (c) construct a centroid

tree Tc with node ‘r’ as the root of the tree

2.5.2 The Algorithm

The algorithm to perform the trace back assumes that preprocessing has been

completed and the terminal network has been constructed. Once the victim is identified,

then the router closest to it in the terminal network is chosen as the root of the single

source shortest path tree as explained previously. The alarm is placed on the centroid or

its neighbors as explained below. Depending on the ‘ringing’ and ‘non-ringing’ of the

alarm the new set of alarms is placed on the centroid of the sub trees that remain after

the previous centroid is removed. This process is continued until the terminal router

closest to the intruder is identified.

49

Algorithm Detect_Intruder

Input: The network and the router closest to the victim

Output: The router closest to the intruder

Begin

1. First construct the terminal network and find the single source shortest path tree

T of the terminal network with the node in the terminal network closest to the

victim as the root.

2. Find the centroid of T and place an alarm either on the centroid or the neighbors

of the centroid as specified in the more detailed description below.

3. Determine the subtrees obtained after removing the centroid and if attack

packets are discovered in a node v on which an is alarm is placed, then execute

step 2) on a subtree Tv containing the node v. If there is more than one node

alerting an attack, then choose the one that is farthest from the root of the tree.

The above process is continued until the intruder is detected.

End.

Based on observation 2.2 and the above algorithm, it is evident that the number of

alarm placement steps is bounded by O(logn) for a n-node tree. Step 1) of the above

algorithm can be constructed using Dijkstra’s shortest path algorithm in O(m+nlogn)

where m and n are the number of links and nodes of the terminal network.

50

x

b

c

d

a

Centroid Victim

Intruder Node with a ringing alarm

Node with a non-ringing alarm

Figure 2.7: Alarms are placed on nodes a, c, d, and x and the ringing ones are d, and x.

Node d is the closest to the intruder and the tree rooted at d is processed next.

For step 2) of the algorithm, as pointed out earlier the centriod can be found in O(n)

time and after we find the centroid we place the alarms as follows. Assuming that we

have a large number of alarms available, we should place the alarms on the centroid

and its neighbors.

Figure 2.7 illustrates alarms and shows the ringing alarms based on the location of

the intruder. For example, in figure 2.7, based on the position of the intruder the alarms

placed on node x (the centroid) and nodes d will ring. Node d is farthest from the

victim and hence the subtree rooted at d will be chosen next and its centroid will be

found. This process will continue until the terminal node closest to the intruder is found.

If more than one such node d exists due to attacks from multiple sources, then each tree

rooted at such d’s will be processed as above.

51

2.6 Concluding Remarks

We have introduced several techniques for tracing internet packets with spoofed

source addresses back to their origin of attacks. Even though those several proposals

are worthy attempt to be applied in different tracing techniques for different attack

types, there exist some practical limitations for implementation such as resource bound,

modification of Internet infrastructure, and so on.

In this chapter we have presented a simple and efficient algorithm for detecting the

source of attack in a network. The algorithm uses the dynamic centroid decomposition

technique to select routers for monitoring packets to identify the one with signatures of

an attack packet. To simplify network topology and reduce the amount of network

resources required to perform trace back, we need a scheme which transfers a general

network topology to a terminal network of the network.

In summary, we ensure that many of the existing trace back techniques can be used

in our algorithm in order to obtain the minimal number of network entities on which

alarms (or monitors) are placed to determine the source of attacks under more

sophisticated attacks. In other words, our proposed solution for the trace back problem

involves a very small fraction of routers wherein logging, marking, or IPSec

association is performed. In addition, our proposal could serve as the basis for future

research work on quarantine of potential sources for large distributed attacks.

52

Chapter 3

Measurement and Analysis of Worm

Propagation on Internet Network

Topology

3.1 Introduction

In the area of virus and worm modeling, many studies have employed simple

epidemiological models to understand general characteristics of worm’s propagation.

Epidemiologic propagation models have traditionally been used to understand and

model the spread of biological infectious diseases [9, 10]. The time required for finding

the target node to be infected and the rate of infection were assumed to be a constant in

many propagation models proposed in the literature [5, 8]. A constant infection rate is

53

reasonable for modeling epidemics but may not be valid for real Internet viruses and

worms. The reason is that most classical epidemic models are homogeneous, in the

sense that an infected host is equally likely to infect any of the susceptible hosts while

Internet is non-homogeneous. In addition, current propagation studies have not

considered the real Internet topology data and exploited characteristics of the network

topology.

3.1.1 Immunization Defense of Worms

Previous works on worm modeling neglect the impacts of multiple worm outbreaks on

our computer networks. Nowadays, new network worms will continue to be created

while the strains of old worms will continue to circulate around the Internet. Recently,

the Blaster worm, known as MSBlast or LoveSAN, has infected an average of about

2,500 new systems hourly running Microsoft operating systems that are unpatched for

the so-called RPC vulnerability [16]. It is noted that a huge number of infected hosts is

a substantial rate of infection, though the several hundred thousand hosts may be still

infected by other old Internet worms including Slammer, Code Red and Nimda. In

other words, many new viruses and worms come out every day, though most of them

die away without infecting many computers due to human countermeasures including

using antivirus software, patching susceptible computers, disconnecting network

services and so on. Thus, any proposed defense mechanism must be evaluated in

handling many active worms simultaneously. Wang et al [12] investigated the

immunization defense on different network topologies including hierarchical and

54

clustered. Immunization can be thought of as effective packet filtering. Immunization

from one worm does not guarantee protection against other forms of the worm. Wang

et al [12] considers permanent or static immunization where a node once immunized is

permanently protected. In reality, immunization must be taken as temporary due to

multiple worm outbreaks since a computer being recovered from a certain worm can be

reinfected by other worms immediately. In other words, any computer could not be

permanently immune to many Internet worms.

3.1.2 Characteristics of Worm Spreading

In order to defend against future worms, we need to understand the network

characteristics of worm spreading. Clearly the following characteristics of worm must

be well understood before the model of Internet worm propagation could be developed.

1. The rate and pattern of infection,

2. The effect of factors on underlying network topology, and

3. The human countermeasures in the network

If such characteristics were known, mechanisms might be developed to detect an on-

going, network wide infection. Certain nodes of the Internet are well protected

compared with the others. Moreover, at certain vital installations the rates at which

infections are cured are higher compared with others. To model this real world

phenomenon we have taken into account in our simulations variable infection rates and

variable cure rates.

55

Also in this chapter, with real Internet topology data, we find that there are two

effective factors that influence worm propagation: temporary immunization time and

network delays. We note that our simulation results can explain how fast a virulent

worm can spread and suggest effective mechanisms to monitor and defend against the

propagation of worms. It also shows that we can find location(s) in the network that

when quarantined would slow down the rage of spread.

The rest of the chapter is organized as follows. Section 3.2 reviews the analytical

methodologies of Internet worms. In Section 3.3, we give a brief review of the classical

epidemic models and point out their limitations to model Internet worm propagation. In

Section 3.4 and 3.5, we show the simulation results based on different network

topologies. We conclude the chapter with an outline of our future work in section 3.6.

3.2 Analytical Methodologies of Internet Worms

Classical Epidemic model

In epidemiology research, there exist several deterministic and stochastic models for

virus spreading. About ten years ago, Kephart and White [5] presented the

Epidemiological model to understand and control the prevalence of viruses. This model

is based on biological epidemiology and uses nonlinear differential equations to

provide a qualitative understanding of virus spreading. They assumed that classical

epidemic models are all homogeneous, which means that an infected host is equally

likely to infect any of other susceptible hosts. Though at that time the model

assumptions were considerably accurate because they considered that infection takes

56

place when hosts share their disks, but with the spreading on the Internet such

assumptions are no longer valid. They also introduced an analytical model called SIS

model in which infected hosts become susceptible once being cured of the infection.

Two-factor Worm Model

The Code Red worm incident of July 2001 has been investigated to model and analyze

Internet worm propagation. Zou et al [11] introduced that there were two factors

affecting Code Red propagation: one is the effect of human countermeasures against

worm propagation; the other is the slower worm infection rate due to Internet

congestion caused by Code Red worm. Based on the classical epidemic models, they

derive a new general Internet worm model called two-factor worm model, which

matches the observed Code Red worm data of July 19th 2001 with their simulation

results and numerical solutions.

Active Worm Model

Chen et al [13] present a model, referred to as the Analytical Active Worm Propagation

(AAWP) model that characterizes the propagation of worms that employ random

scanning. They compare their mathematical model with the Epidemiological model and

Weaver’s [14] simulation results which use hit list scanning. The AAWP model shows

that the model can be applied to monitoring, detecting and defending against the spread

of active worms. The AAWP model can be also extended to Local AAWP model to

understand the characteristics of the spread of worms that employ local subnet

scanning effectively.

57

Applying Infection Delay in Worm Epidemic

Wang et al [12] introduced an analytic model to capture the impact of underlying

topology in computer viral propagation. The simulations are conducted to attempt to

answer the question – how a virus propagates in real network. They assume that an

infection rate for each edge and a cure rate for each infected node are constant. In

addition to the spread of a virus in real network, Wang and Wang [20] investigated the

model extending the classical epidemic model by including two specific parameters:

infection delay and user vigilance time. The infection delay is a period of time

between the arrival of a virus on certain node and further infection from that node. The

user vigilance time is the immune time. The model of capturing the effective of

infection delay and user vigilance was validated by simulation analysis based on the

homogeneous SIS epidemic model. In real networks however, the worm infection rate

and cure rate are not likely to be a constant.

We also examined several major characteristics of infection, including the variant

rate and pattern of infection through the different network topologies and the rate of re-

infection at each host during an attack. We use a discrete time model and deterministic

approximation to describe the spread of Internet worms.

3.3 Worm Propagation Models

The epidemic propagation models for the study of biological infectious diseases have

been applied on modeling the propagation of computer viruses [5, 8]. The propagation

of a real worm on the Internet is a complicated discrete event process. In this section

58

we consider only continuous process and use the continuous differential equations to

describe it, which means that a worm on an infectious host continuously tries to find

and infect other susceptible hosts. We introduce two classical deterministic epidemic

models and an extension of one of models, which are the basis of our experimental

design. We also point out their limitations when we try to use them to model Internet

worm propagation.

3.3.1 Definition

In classical epidemic model, it is defined that a host is called an infectious host at time t

if it has been infected by virus before t. A host that is vulnerable to virus is called a

susceptible host. By infection and cure rate, we mean the probability with which an

infectious host send infective messages to its neighbors and the probability with which

an infectious host will be cured of the infection once it received infective messages

from its neighbors, respectively. In addition we define that the temporary immunity is a

temporary hold on a worm spreading, which means that many hosts will be susceptible

or infected by new worm outbreaks at time t though they are already immune to old

worm that came out before time t.

3.3.2 Classical simple epidemic model

In classical simple epidemic model, each host stays in one of two states: susceptible or

infectious. Each susceptible host becomes an infectious one at a certain rate. At the

same time, infectious hosts are cured and become again susceptible at a different rate.

59

Notation Definition

N

S(t)

I(t)

R(t)

β

δ

λ

µ

ρ

Size of total vulnerable population

Number of susceptible hosts at time t

Number of infectious hosts at time t

Number of removed infectious hosts at time t

Infection rate

Curing rate on an infectious host

Removal rate on an infectious host

Re-susceptible rate on a removed host

Epidemic threshold

 Table 3.1 Notations of Worm Epidemic Models

This model system where having the infection and being cured does not confer

immunity. This model is called the SIS model, because hosts move between the S

(Susceptible) and I (Infectious states). Using the terms defined in table 3.1, the differential

equation for the SIS model is

dt
tdI)(= βI(t)[N – I(t)] - δI(t) (3.1)

where I (t) is the number of infectious hosts at time t; N is the size of population; β is

the infection rate; and δ is the cure rate.

60

We assume that at beginning, t =0, one host is infectious and the other (N −1) hosts are

all susceptible. Let S(t) = N − I (t) denote the number of susceptible hosts at time t.

Replace I(t) in equation (3.1) by N − S(t) and we get

dt
tdS)(= -βS(t)[N – S(t)] + δ[N – S(t)] (3.2)

Therefore we say the SIS model is defined by:

dt
dI

 = βSI - δI (3.3)

dt
dS = -βSI + δI

The solution to the equation (3.1) is

tNeINI
NI

tI)(
00

0

)(
)(

)(δββδββ
δβ

−−−−+
−

= (3.4)

We conclude that, as t → ∞,

 I∞ = N - ρ (3.5)

where ρ = β
δ

 and I0 is the initial number of infectious hosts. Therefore, not absolutely

all the population gets infected. This shows that each infectious host infects others with an

average value of β per unit time.

61

0 20 40 60 80
Time

100
0.0

0.2

0.4

0.6

0.8

1.0

I(t)

× 105

 Figure 3.1: Classical simple epidemic (SIS) model

However, the probability that a host becomes infected is not the same for every host

because it is a function of their connectivity and the infection characteristics with a

certain cure rate. We note that the probabilities per unit time of infection and of cure

are independent. Once a host is cured, it is immediately capable of being re-infected.

Figure 3.1 compares the number of infectious hosts as a function of time as obtained

from equation (3.4). The graph contains 100,000 hosts and the infection and cure rates

are β = 1.0 and δ = 0.2, respectively. It shows that the number of infectious hosts is

nearly exponentially increased from t = 0 to t = 20.

The number of infections stops increasing when about 80% of all susceptible hosts

have been infected. The SIS model does not take into account the possibility of host’s

removal due to death or immunization which would lead to the so-called Susceptible-

Infectious-Removed (SIR) model [9]. It also does not model secondary effects such as

reduced infection rate due to network congestion when many hosts are infected [11].

62

3.3.3 Kermack-Mckendrick model

In epidemiology modeling, Kermack-Mckendrick model considers the removal process

of infectious hosts [9]. This model is called the classical SIR epidemic model.

Kermack-Mckendrick model can be described as shown in figure 3.2. Each host is

assumed to be in one of three states: Susceptible (S) meaning vulnerable to the virus,

Infectious (I) meaning infected and actively infecting other hosts, and Removed (R),

which corresponds either to immunity from the virus, or death at a constant rate.

S I

λ β

R

Figure 3.2: The SIR model in which hosts move between three states: Susceptible (S),

Infectious (I) and Removed (R) with infection rate β and removal rate λ.

In this model, the assumptions are that susceptible hosts become infected by contact

with infectious hosts, infectious hosts either die or recover at a constant rate, and the

total population is constant. The sizes of the susceptible and infectious populations

therefore evolve according to the following equations based on the simple epidemic

(SIS) model.

63

dt

tdI)(
 = βS(t)I(t) - λI(t)

dt

tdS)(
 = -βS(t)I(t) (3.6)

dt

tdR)(
 = λI(t)

where β is the infection rate; λ is the rate of removal.

The Kermack-Mckendrick model improves the SIS epidemic model by considering

that some infectious hosts are immune, are placed in isolation, or have died. However,

this model is still not suitable for capturing the effect of multiple worm propagation

simultaneously. First, in the Internet, many new viruses and worms come out every day

though most of them disappear due to human countermeasures including using

antivirus software, patching susceptible computers, disconnecting network service

from the infectious hosts and so on. In other words, many hosts will be susceptible or

infected by new virus outbreaks at time t though they are already immune to recovered

old virus that came out before time t. But in Kermack-Mckendrick model once

infectious hosts recover, they will not be infected again by any virus and stays in the

“removed” or “immunized” state forever. The link delays required for the infection to

travel to the hosts are captured in the aggregate value called infection rate. While such

gross estimates are correct for long lasting worms, it does capture neither the short

lived ones nor the vulnerability of nodes which are reachable quickly. In this chapter,

we consider that the propagations of most Internet worms are topology dependent and

64

need to be modeled by considering the properties of the underlining topology, which

will be discussed in a later section.

3.3.4 An extension for the SIR model

We assume that a more general case, allowing for loss of immunity that causes

recovered hosts to become susceptible again. In other words, a portion of the removed

hosts a time t, R(t), due to loss of immunization join the susceptible population at time t

+ τ, S(t+τ). Therefore a portion of population dynamically changes from susceptible to

infectious, to removed and back to susceptible. Model that describes such an

epidemical cycle is referred to as SIRS model. If hosts in the R state are only

temporarily immune, the diagram becomes,

S I

λ β

R

µ

Figure 3.3: The SIRS model; with conferring a temporary immunity, it can move from

the R state to the S state

Our model is a generalization presented in [10], allowing hosts recovering from the

infective to go into a temporarily immune state rather than directly back into the

65

susceptible state. Let µ be the rate at which removals loose the immunization and

becomes susceptible. Using the same notation as the SIR model we obtain the

following deterministic SIRS model:

)()()()(tRtStI
dt

tdS
µβ +−=

)()()()(tItStI
dt

tdI
λβ −= (3.7)

)()()(tRtI
dt

tdR
µλ −=

Also, we have S(t) + I(t) + R(t) = N, ∀t ≥ 0. We can supply the same initial conditions

as with the SIR model and numerically solve the SIRS model. Let ρ = λ/β be the

epidemic threshold if re-susceptible rate, µ, is less than removal rate, λ, and I0 and S0

are the initial fraction of infectious hosts and of susceptible hosts, respectively. For the

epidemic to occur, we must have:

0| =tdt
dI

> 0 → βS0I0 - λI0 > 0 → S0 > β
λ

 (3.8)

Clearly S0 must satisfy this condition for the epidemic to occur. The equation (3.8)

indicates that no epidemic occurs if the initial number of susceptible hosts is smaller

than the epidemic threshold, S0 < ρ. This important result of the threshold effect is the

same as what was already discovered by Kermack and McKendrick [9]; the population

must be “large enough” for a disease to become epidemic.

66

× 104

N
um

be
r o

f v
ul

ne
ra

bl
e

ho
st

s

Time

Figure 3.4: SIRS epidemic model; it shows the number of infectious, susceptible, and

removed hosts as a function of time

Figure 3.4 compares the number of infectious, susceptible, and removed hosts as a

function of time as obtained from equation (3.7). We attempt to solve this model using

the numerical capabilities of MAPLE (mathematics software) without finding an

explicit function-formula for the number of susceptible, infectious and removed hosts.

The graph contains 100,000 hosts and the infection, removal and re-susceptible rates

are β = 1.0 and λ = 0.2, µ = 0.07 respectively. It shows that the number of infectious

hosts is initially exponentially increased up to about 80% of total population and then

decreasing the growth of infection population. It is also observed that the infection

growth will reach a stable equilibrium after an amount of time passes.

While there is a vast literature covering models in which the “temporary immunity”

step is not considered (i.e., SIS models and SIR models), comparatively little work has

67

been done to understand how the nature of the R → S transition affects the dynamics of

an epidemic of Internet worms. With regard to the loss of immunity we consider two

different types of worm behaviors, depending on parameters: (i) periodic epidemic

outbreaks and (ii) one or more extended outbreaks followed by extinction of the

epidemic due to stopping spreading of old worms.

We note that instead of acquiring infinite immunity to a specific epidemic, infected

hosts in this extended model spend a constant number of time steps in a generalized

immune state before returned to the susceptible population. We have to investigate the

SIRS model with immunity lasting non-constant time step since hosts can be

significantly delayed in the removed state by mechanisms such as a large constant

period of temporary immunity.

3.4 Simulation and Analysis

In this section we describe our experimental design and validate the simple epidemic

(SIS) model of computer virus introduced by Kephart [5] using the results of our

simulation. We also present measurements of worm infections in two different network

topologies with random rates at which an infectious node attempts to infect its

neighboring nodes and random rates at which it protects itself or remove viruses itself.

These experiments provide insight into the characteristics of infection propagation on

computer networks and they also serve as the basis for future research work on

quarantine of virulent Internet worms.

68

3.4.1 Random transit stub model without topology constraint

Our experiments have been conducted using a simulation environment that is capable

of simulating hundreds of thousands of computing nodes with random network

topology and any viral epidemic model. The network topology that is used in this

simulation is constructed by Transit Stub model that produces hierarchical graphs in a

different way by consisting of interconnected transit and stub domains [17]. A

connected random graph is first constructed; each node in that graph represents a

transit domain. Each node is then replaced by another connected random graph, which

represents the backbone network topology of one transit domain. Next, for each node

in each transit domain, a number of connected random graphs that represent the stub

domains linked to that node are generated. Finally, certain number of additional edges

is created between pairs of nodes, one from a transit domain and one from a stub

domain, or one from each of two different stub domains. Clearly, if the random graphs

generated are all connected, an entirely connected graph is constructed by the above

procedure. Figure 3.5 shows the example of Transit-Stub model.

As shown in figure 3.5, transit domain represents the backbone of the Internet and

each backbone node in a transit domain connects to a number of stub domains through

nodes, called gateway, in the stub domain. In this experiment we do not consider the

topology constraint such as infection delay time when infective messages are able to

reach a susceptible node. Instead, the infection process was simulated by varying the

connectivity of topology, the number of nodes, and the rate of infection β and cure δ.

69

Stub domains

Transit domains

Stub domains

Transit domains

Figure 3.5: Example of Transit-Stub Model

3.4.2 System models

We consider a network with 100,000 nodes and two simulation scenarios. The first one

is cured and infection case (CI strategy), the same as the one used in the classical

simple SIS model, in which an infectious node determines whether it can be cured of

infection or not before infecting any of susceptible nodes connected to it. The second

one is infection and cured case (IC strategy) where an infectious node determines

whether it can be cured or not after infecting any of susceptible neighboring nodes. We

also analyzed the worm epidemic model with two different infection and cure rates:

one is constant infection/cure rate at which an infectious node is equally likely to infect

any of other susceptible nodes and to be cured of infection. The other one is variant

infection/cure rate at which certain infectious nodes are likely to infect more

susceptible nodes than other infectious nodes do. In addition, the infection rate, β, is

70

associated with each of edges. Similarly, the rate of cure of infection, δ, is related to

each node.

A few assumptions and simplifications were made to ensure feasibility of our

experiment. First, a single initially infected node is randomly selected to release worm

in each trial and we performed 500 simulation runs using same parameters. Second, a

desired random graph has average degree of 5 on each node. It means that the average

number of infectious messages that an infected node can generate is five. In other

words, an infected node selects on the average five neighboring nodes to infect. Finally,

to simulate the model, time is divided into a number of discrete steps, and on each step

the population of hosts in each state is altered according to the different rules such as

different rate of infection and recovery, which means that hosts move between the S

(Susceptible states) and I (Infectious states) at a certain rate. In addition, relevant data

is recorded per unit time and simulation stops when some desired state is reached, such

as all nodes are infected or the completion of simulation time.

3.4.3 Initial results

Figure 3.6 shows the total number of infectious nodes averaged across the 500 runs of

the two different types of simulation models. Note that in the case of constant rate the

number of infectious nodes quickly reaches almost 80% of the total population, and the

infection growth slows down after that point. This implies that after almost 50 units of

time, the worm may spend much of its time trying to infect nodes that had already been

infected.

71

Time

A
ve

ra
ge

 n
um

be
r o

f I
nf

ec
te

d
no

de
s

0 50 100 150 200 250 300
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Theoretical
CI Strategy
IC Strategy

Time

Av
er

ag
e

nu
m

be
r o

f I
nf

ec
te

d
no

de
s

0 50 100 150 200 250 300
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Theoretical
CI Strategy
IC Strategy

b) With variant Infection/Cure rate e

Figure

in two

δ = 0.

In add

other

This r

consid

period

strateg

note t

For ex

slow d

in the

reduce

rate.

a) With constant Infection/Cure rat
 3.6: Comparison of the average number of infected nodes as a function of time

 different epidemic strategies; N = 100,000, (a) with constant rates, β = 1.0, and

2 (b) with non-constant rates

ition, in the case of variant infection rate the number of infectious nodes infects

susceptible nodes with different infection rate at each time.

esult is consistent with the results in simulation presented by Kephart [5]. Also a

erable fraction of the nodes in a transit stub network remains uninfected for long

s of time due to their connectivity. Comparing the two different epidemic

ies between constant infection/cure rate and non-constant infection/cure rate, we

hat there is a slight difference between these two strategies as shown in figure 3.6.

ample, for IC strategy, it takes almost 50 time units for the infection growth to

own in the model with constant rate in figure 3.6 (a) while it takes 40 time units

 model with variant rate in figure 3.6 (b). For CI strategy, it takes 70 time units to

 the spread of worm with constant rate while it takes longer time with variant

72

Time

A
ve

ra
ge

 n
um

be
r o

f I
nf

ec
te

d
no

de
s

0 50 100 150 200 250 300
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

µ = 0.1
µ = 0.07
µ = 0.03

Time

A
ve

ra
ge

 n
um

be
r o

f I
nf

ec
te

d
no

de
s

0 50 100 150 200 250 300
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

µ = 0.1
µ = 0.07
µ = 0.03

b) IC strategy with three different µ valuesa) CI strategy with three different µ values

Figure 3.7: Comparison of the number of infectious nodes as a function of time in two

different epidemic strategies. All cases are for 100,000 nodes, an average infection rate

β of 1.0, a removed rate λ is 0.2, and a re-susceptible rate µ of 0.07

Clearly, it shows that CI strategy has more number of infected nodes than IC strategy

does in both the types of simulation models.

Figure 3.7 shows the total number of infectious nodes averaged across the 500 runs

of the two different types of simulation models. Note that in both cases the number of

infectious nodes increases almost exponentially from time t = 0 to t = 10, and then the

rate of infection growth decreases. This result is consistent with the numerical solution

obtained from SIRS mode while there is little difference in comparison of two

simulation models. It is also observed that the number of infectious nodes increases as

the re-susceptible rate increases in a stable equilibrium stage. It is intuitive that we can

expect a lower rate of infectious propagation when the rate of R→S transition is lower,

because the number of susceptible hosts decrease as the worm propagates.

73

Time

A
ve

ra
ge

 n
um

be
r o

f I
nf

ec
te

d
no

de
s

0 50 100 150 200 250 300
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

θ = 5.0
θ = 10.0
θ = 15.0
θ = 20.0

Time

A
ve

ra
ge

 n
um

be
r o

f I
nf

ec
te

d
no

de
s

0 50 100 150 200 250 300
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

θ = 5.0
θ = 10.0
θ = 15.0
θ = 20.0

a) CI Strategy with various temporary immunization times

Figure 3.8: Extinction between two differen

temporary immunization time θ. All paramet

same as those given in Figure 3.7

Figure 3.8 shows the average number of infect

simulation models (CI and IC strategies) with

As defined in section 3.3.4, we account for th

time period to protect the same infectious m

worm comes out during a worm infection. In

been immune to a worm it will not be again i

might be susceptible to or infected by new

immunization. We note that the difference of

referred to as the temporary immunization tim

cured of infection and takes 10 unit temporary

susceptible or re-infected by other worms at tim

74

b) IC Strategy with various temporary immunization times
t epidemic models with variation of

ers assigned in this experiment are the

ious nodes as a function of time for two

 various temporary immunization times.

e temporary immunization time as the

essages from infected nodes until new

other words, once an infected node has

nfected by the same worm. However, it

 worm outbreak which arrives after

 time between two worm outbreaks is

e. For instance, if an infectious node is

immunization times at time t, it could be

e t + 10.

The starting node in a worm epidemic event
Ti

m
e

to
 in

fe
ct

 8
0%

 o
f t

ot
al

 p
op

ul
at

io
n

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2

4

6

8

10

12

14

16

18

20

Figure 3.9: Comparison between the total times to infect 80% of total population vs.

the starting node in a worm spreading; N = 10,000, infection rate β = 1.0, and cure rate

δ = 0.2

In addition, compared with the two simulation models, there is significantly less

variation in the average number of infectious nodes during infection. Results of these

experiments show that for a given epidemic model the longer temporary immunization

time, the wider will be the variation in infection growth. It is also observed that the

infection growth of any type of propagation will reach to a stable equilibrium after an

amount of time passes.

In figure 3.9 assuming a particular chosen node as the first infected node, the graph

shows the total amount of time to infect at least 80% of the entire population. The

fastest time to infect 80% of the population was 7 time units and the longest time was

18. The results of figure 3.9 points out that for a given topology and a given infection

model, nodes that are in certain critical locations spreads the worms much faster than

75

the others. This clearly points to the fact the aggregate infection rate using in many

previous works are insufficient for a concrete analysis.

3.5 Worm Propagation with Topology Constraint

We extend our simulation methodology to include a realistic network model and

evaluate the impact of topological constraints. After infecting a susceptible node, a

worm attempts to infect other susceptible nodes with infection delay time which is the

time to find its target nodes; it may attempt to only infect a small number of other

susceptible nodes corresponding to network topological criteria, such as connectivity of

network.

In addition, we focus on the behavior of Internet worm propagation in response to

multiple worm outbreaks. We model the impact of multiple active worms by specifying

the temporary immunization time under which an infected node could be immune to

the same type of worm after being cured. If many worms are active though they could

be removed without infection then the temporary immunization time will be a small,

which means that any node in “removed” state as described in our terminology could

be susceptible or infectious by new worm outbreaks at time t + θ although being

already cured or recovered at time t. We recall that the time θ is the temporary

immunization time which is a measure of how many measurement intervals it will take

before the new worm comes out in the Internet. On the other hand, the time θ is long

enough for an infected node to be immune to the worm unless new worm conquers the

entire network at its high rate of growth.

76

3.5.1 Network model

In this section, we describe the experimental network model of Internet worm infection

using real Internet data set (round trip time (RTT) data) called topology constraint. As

the Internet has grown, it is difficult to accurately model the topology and structure of

hundreds of thousands of interconnected networks. As a result, it is infeasible to model

the full Internet topology for our experiments, so we, instead, look for developing a

smaller topology without loss of network characteristics. Our model of the network

topology defines the latency (RTT) data for infection delay time and the paths that a

worm can follow when propagating. We note that this does not necessarily mean either

a fully-interconnected topology or an infection path along every network link. Our

interest lies in the network model used to obtain real-time information about the

Internet topology measurements around the Internet.

In this study, we obtain network topology data (e.g. RTT data and traceroute) from

the NLANR Active Measurement Program (AMP) [21]. AMP provides measurements

of forward IP path and graphical analysis for Internet usage on undertaking site to site

measurement across the HPC networks, which has currently more than 140 active

measurement monitors deployed to measure currently round trip times, topology and

loss. Given the current network topology, this work is designed to compliment the

measurements taken by Abilene network [22] that is an advanced backbone network

that connects regional network aggregation points as shown in figure 3.10. It supports

the topology measurement services to universities participating in Internet2 and also

complements other research networks across the country.

77

Seattle

Sunnyvale
Denver

Los Angeles

Kansa City

Houston

Indianapolis

Chicago

Atlanta

Washington

New York City

PacWave

UHawaii

Oregon
Intermountain

FrontRange

Calren

Calren
SDSC

ArizonaSU

Iowa SU

OneNet Indiana

MREN

Northern
Lights

Mississippi SU

U Florida SOX

PSC

MAGPI

NCNI MAX

NOXNyserNet

Texas

Alaska

U Oregon

Oregon SU

CSU Stanford

UC Berkeley

UCLA

SDSU
UCSD

U Utah

Colorado SU

U Oklahoma

N. DakotaSU

Indiana U

Florida SU

Georgia SU

Emory

U Miami

U Alabama

Vanderbilt

UNC-CH

NCREN UMD

NCSA Aceess

OldDominion

Princeton

PennSU

MTU

U Wisc-Mad.

Rochester
MIT

Harvard

Dartmouth U Mass

Boston U

Yale

Abilene Core Node

Abilene Connector

Abilene ParticipantTexas A&M

UT-Austin

North Texas

Oklahoma SU

Figure 3.10: The Abilene Network Topology including Abilene core nodes, connectors

and some of participants [22]

Our network model consists entirely of 130 active measurement nodes provided by

AMP. Each node is connected to the global network shown in Abilene network

topology. The global network represents the Abilene core nodes which are connected

together and can address and forward packets to each other directly. It is likely that

some core nodes contain multiple measurement nodes that frequently communicate

among themselves.

For our experiment, we make a simulation across 500 runs of two different types of

simulation model (CI and IC strategies) as described in previous section. In addition to

these two types of strategies, we also analyzed two different rules of infection rate:

constant infection/cure rate and non-constant dynamic infection/cure rate. Finally, we

78

note that the round trip time is too fast to capture the rate of population of infected

hosts though large RTTs have values greater than 400ms and occasionally as great as

500ms in our observed data. We therefore consider that a valuable mechanism for

converting a continuous system time such as RTT into a discrete simulation time,

which means that the system time is divided into a number of discrete steps (or time

unit), and on each step the population of hosts can be observed according to two states

at a certain rate: S (Susceptible states) and I (Infectious states) respectively.

3.5.2 Simulation Results

We simulate a simple, relatively small Internet network model consisting of 130 active

monitors connected to each other and located around United States as presented in

Abilene network. We examined the performance of the worm epidemic model with

topology constraint using the classical epidemic model. For our simulation, we set the

discrete interval time into one millisecond (ms), the maximum simulation time for trial

to 125 ms corresponding to the maximum RTT value observed from AMP. For Internet

worm epidemic model we assume that the infection rate β and the cure rate δ are the

same as what are applied in the classical epidemic model.

The total average number of infected hosts over time for two different types of

infection/cure rate is shown in figure 3.11. In each case of model we analyze the

effectiveness of two different simulation strategies (CI and IC strategies) described in

section 3.4.2. Considering the results of figure 3.11 we see that the infection growth

stops increasing after the maximum number of infectious hosts reaches almost 80 out

79

Time (ms)

A
ve

ra
ge

 n
um

be
r

of
 In

fe
ct

ed
 h

os
ts

0 25 50 75 100 125
0

10

20

30

40

50

60

70

80

90

100

110

120

130

CI Strategy
IC Strategy

Time (ms)

A
ve

ra
ge

 n
um

be
r o

f I
nf

ec
te

d
ho

st
s

0 25 50 75 100 125
0

10

20

30

40

50

60

70

80

90

100

110

120

130

CI Strategy
IC Strategy

 b) With Non-constant Infection/Cure rate a) With Constant Infection/Cure rate

Figure 3.11: Comparison of average number of infectious nodes as a function of time

in two different simulation models

of total population in CI strategy while 60 or 70 nodes in the IC strategy.

Moreover, it takes longer for the rate of growth of worm propagation to be in

equilibrium. On the other hand, in classical epidemic model the growth of the curve

become quickly stable as shown in figure 3.6. The result of these experiments is

undisputed because the growth of infection propagation would be slower if the

epidemic model includes topology constraint referred to as infection delay time.

Comparing the two different epidemic strategies between constant infection/cure rate

and non-constant infection/cure rate, we note that in both case more rapid propagation

of worm infection were observed in the CI strategy.

Figure 3.12 shows the result for the comparison of the total 60% infection times as

the starting node in Internet worm propagation, obtained from 500 runs of the

simulation for Abilene network topology model. We note that some variation exists in

the time to infect a large portion of the network.

80

0

20

40

60

80

100

120

140

a
la

ska
a
su

c
o
lo

sta
te

c
su

-
s
b

d
a
rtm

o
u
th

e
m

o
ry

fsu
g
e
o
rg

e
to

h
a
rv

in
d
ia

n
a
i

m
ia

m
i

m
it

m
s
sta

te
m

tu
n
c
re

n
n
c
s
a
-
d
c
a

n
d
s
u

o
d
u

o
rs

t
p
rin

c
e
to

n
p
su

s
d
sc

s
d
su

s
ta

n
fo

rd
u
a

u
a
h

u
c
b

u
c
f

u
c
la

u
c
s
d

u
fl

u
io

w
a

u
m

a
ss

u
m

d
u
n
c
-
c
h

u
o
re

g
o
n

u
ro

c
h

u
ta

h
u
w

a
sh

in
g

va
n
d
e
rb

ilt
w

isc
w

u
stl

y
a
le

The starting node in Internet worm propagation

To
ta

l t
im

e
to

 in
fe

ct
 6

0%
 o

f t
ot

al

pa
rti

ci
pa

nt
 h

os
ts

Figure 3.12: Comparison between the total times to infect 60% of total participants vs.

the starting node in a worm spreading with constant infection and cure rates

The fastest total time to infect 60% of total participant hosts is 61ms when Indiana

University is infected first and the longest was 125ms when University of Alaska was

infected first. As shown in Figure 3.10, Indiana University is considered as the center

of Abilene backbone network as well as one of Abilene connectors connecting directly

to the Abilene network while University of Alaska is just participant located away from

the central point of the Abilene network.

We also measured the total number of re-infections that each participant host

experienced during a worm infection in order to validate whether the structure of

network topology has great influence on infection propagation. Figure 3.13 shows the

result for the number of re-infections for each of the 130 participant belonging to

Abilene network. We see that some number of the hosts is re-infected much more than

others.

81

0

20

40

60

80

100

a
la

ska
a

su
c

o
lo

sta
te

c
su

-
sb

d
a

rtm
o

u
th

e
m

o
ry

fsu
g

e
o

rg
e

to
h

a
rv

in
d

ia
n

a
i

m
ia

m
i

m
it

m
ssta

te
m

tu
n

c
re

n
n

c
sa

-
d

c
a

n
d

su
o

d
u

o
rst

p
rin

c
e

to
n

p
su

sd
sc

sd
su

sta
n

fo
rd

u
a

u
a

h
u

c
b

u
c

f
u

c
la

u
c

sd
u

fl
u

io
w

a
u

m
a

ss
u

m
d

u
n

c
-

c
h

u
o

re
g

o
n

u
ro

c
h

u
ta

h
u

w
a

sh
in

g
va

n
d

e
rb

ilt
w

isc
w

u
stl

ya
le

Abilene participants

To
ta

l n
um

be
r o

f r
e-

in
fe

ct
io

ns

 Figure 3.13: Counting the total number of re-infections at each participant host

For example, Indiana University is attacked 86 times on average, while Wisconsin

university is attacked 41 times only. It may be pointed out that for a given topology we

might slow down the growth of Internet worm infection if we find critical locations

where some nodes are more prone to being attacked more than others. Moore et al [18]

investigated the containment system using address blacklisting and content filtering to

minimize worm propagation in the Internet. The simulation system we have performed

could identify addresses to be blacklisted.

3.6 Concluding Remarks

In this chapter we have presented measurements of worm infections in two different

network topologies with constant or non-constant infection and cure rates. We

extended our simulation methodology to include a real Internet network model and

evaluated the impact of topology constraints. As a first step, in this chapter we have

described the two classical simple epidemic models and pointed out their limitations. In

82

addition to those models, we presented an extended model, allowing for loss of

immunity that causes recovered hosts to become susceptible again. Our simulation has

been conducted using two simulation processes including Infection and Cure per time

unit during the spreading of a worm infection. We considered the IC and CI strategies

for worm infections and showed that the CI strategy causes more rapid propagation.

Furthermore, as part of our ongoing work we are working on accurate analytical

models to capture the spread of worms on the Internet. We are also working on the

development of effective quarantine techniques using the knowledge of worm

propagation.

83

Chapter 4

Optimal Control of Treatment Costs for

Internet Worm

4.1 Introduction

The task of detection and prevention of worms has become more difficult on our

existing computing infrastructure. Previous works on worm modeling have been

investigated to model and analyze Internet worm propagation [11, 12, 13] and have

introduced an analytic model to capture the impact of underlying topology in computer

viral propagation [19, 64]. However the control of infectious worm has been one of the

most important issues of computer networks. In this chapter, we attempt to investigate

a new approach to such optimal control problems with two costs to be minimized.

There is now a large body of work on the cost-benefit analysis of infectious disease

control in the public health literature. Goldman and Lightwood [55] presented the cost

84

optimization problem of minimizing the value of costs incurred from both disease and

treatment in biological epidemiological model (SIS). This model uses nonlinear

differential equations to provide a qualitative understanding of virus spreading.

However, we do not try to find an optimal closed form solution for an economic cost.

Instead, we start with the optimal control problem for the cost, say network delay, as

derived by Pontryagin’s maximum principle [56, 57].

Optimal control can be regarded as one of the possible methodologies of the control

system’s design. Its role in general theory is unquestionable, but direct practical

applications for Internet worm have so far been scarce. Optimal control is well

established in some areas, like trajectory planning in the aerospace field and robotics,

or model predictive control in chemical industry and furthermore, increasingly many

new industrial applications of optimal control have been introduced.

The rest of the chapter is organized as follows. Section 4.2 presents some of

important issues in computer networks. Section 4.3 compares our work with several

related works. Section 4.4 gives a brief review of the classical epidemic models and a

modification of SIS model with treatment to control Internet worm propagation. The

analysis of optimization problems is given in Section 4.5. Our numerical solution of

optimal controls is also introduced in this section. Section 4.6 shows the simulation

results based on a network topology. We conclude the chapter with an outline of our

future work in section 4.7.

85

4.2 Statement of Problems

Infection Cost vs. Treatment Cost

This chapter considers the optimal control problem of minimizing the value of two

costs: first is the infection cost which can be interpreted as the node delay due to

infection caused by reduced system performance, and increased network delay due to

congestion in the network, and the second is treatment cost also referred to as node

delay incurred by a certain level of filtering. In other words, both the infection cost and

treatment cost are referred to as variations of the nodal processing delay. Our optimal

control approach is proposed which enables tradeoffs between the infection cost of

compromised systems and the treatment cost of defensive countermeasures, with

respect to time.

How many nodes needed to filter?

We have presented a notion of optimal number of nodes to obtain filtering treatment at

certain infection rate, providing both a mathematical model of the control factors

affecting how many nodes to filter, and collecting empirical data to compare the

numerical solution of our analytical model with the results of our simulation. For worm

propagation model, we apply the classical SIS model [5, 8]. With this model, the

assumptions are that during each period the infected nodes can deal with treatment that

will increase their rate of recovery and it has no preventive properties upon recovery.

The treatment will also be assumed to exist in discrete time.

86

When to start a filtering treatment?

“When to start filtering?'' presents a serious problem to the security administrator

because there are unnecessary treatment cost incurred by forcing the administrator to start

filtering as soon as possible and also to delay a filtering treatment so that it takes a

more time to fix a security problem. We note that our simulation results can explain

when to start the filtering treatment to prevent virulent worms from spreading and

suggest effective mechanisms to monitor and defend against the propagation of worms.

It should also be noted that we are not considering the issue of where to serve a

filtering treatment within computer networks. Our model considered only the question

of how many nodes to filter and when to obtain filtering services to minimize the

infection cost and reduce the spread of worm infection.

4.3 Comparison with Previous Work

In epidemiology research, there exist several deterministic and stochastic models for

virus spreading. About ten years ago, Kephart and White [5, 6] presented the Epi-

demiological model (SIS) to understand and control the prevalence of viruses. This

model is based on biological epidemiology and uses nonlinear differential equations to

provide a qualitative understanding of virus spreading. They assumed that classical

epidemic models are all homogeneous, which means that an infected host is equally

likely to infect any of other susceptible hosts. Though at that time the model

assumptions were considerably accurate because they considered that infection takes

place when hosts share their disks, but such assumptions are no longer valid with the

87

spreading on the Internet.

The Code Red worm incident of July 2001 has been investigated to model and

analyze Internet worm propagation [4]. Based on the classical epidemic models, Zou et

al [58] presented mathematical analysis of three worm propagation models under this

dynamic quarantine method. The analysis shows that the dynamic quarantine can

reduce the speed of worm propagation, which can give us precious time to fight against

a worm.

In the spread of a virus on a real network, Wang and Wang [20] investigated the

model extending the classical epidemic model by including two specific parameters:

infection delay and user vigilance time. The infection delay is a period of time between

the arrival of a virus on certain node and further infection from that node. The user

vigilance time is the immune time. The simulation study suggests that the most cost

effective strategy will need to employ a combination of infection delay and user

vigilance.

Kreidl et al [59] presented a feedback control autonomic defense system to

improve survivability for a single host computer. The survivability objective is

expressed as the minimization of a certain mathematical cost that quantifies a tradeoff

between the failure cost of a compromised information system and the maintenance

cost of ongoing defensive countermeasures. However, their system is mainly about

how to detect a worm’s process that is already running on a computer and then recover

the computer from the worm. It cannot protect a computer from being infected at the

first place.

88

Beattie et al [60] presented a notion of an optimal time to apply security updates,

providing both mathematical models of the factors affecting when to patch, and

collecting empirical data to give the model practical value. Huerta and Tsimring [61]

analyzed the role of contact tracing as a part of the epidemics control strategy in

complex networks. The simulation demonstrated that by applying this strategy, a major

outbreak can be significantly reduced or even eliminated at a small additional cost.

Kim et al [64] introduced the extension of SIR model to simulate worm

propagation in two different network topologies. Whereas in the SIR model once a

node is cured after infection it becomes permanently immune, this model allows the

immunity to be temporary, since the cured nodes may again become infected, maybe

with a different strain of the same worm. The simulation study also showed that time to

infect a large portion of the network varied significantly depending on where the

infection begins. They extended the simulation methodology to include a real Internet

network model and evaluated the impact of topology constraints.

In this chapter we examined several major characteristics of infection, including

the variant rate and pattern of infection through the network topology and the rate of

treatment at a router during a worm attack. We use a discrete time model and

deterministic approximation to describe the spread of Internet worms.

4.4 The SIS Infection Model

We introduce two classical deterministic epidemic models which are the basis of our

experimental design. In classical epidemic model, it is defined that a node is called an

89

infectious node at time t if it has been infected by virus before t. A node that is

vulnerable to virus is called a susceptible node.

4.4.1 Infection without Treatment

In particular, the most common mechanism of infection is through contact with an

infected node, and the mechanism of recovery is either deterministic or purely

stochastic with a certain typical time of recovery. In the classical susceptible-

infectious-susceptible (SIS) model [5, 8], a recovered node immediately becomes

susceptible again, while in a more complicated susceptible-infectious-removed SIR

model [9], cured nodes become immune and effectively excluded from further

dynamics. In SIS model, each node stays in one of two states: susceptible or infectious.

Each susceptible node becomes an infectious one at a certain rate. At the same time,

infectious nodes are cured and become again susceptible at a different rate. In this

model, having the infection and being cured, does not confer immunity. Infectious

nodes have a constant probability of recovery in each period with treatment. There is

no permanent immunity to the infection, so a cured node becomes susceptible again

upon recovery. Using the terms defined in table 4.1, the differential equation for the

SIS model without treatment is

dt
tdI)(= βI(t)[N – I(t)] - δI(t) (4.1)

90

Notation Definition

N

S(t)

I(t)

Q(t)

β

δ

λ

CI

C(Q(t))

ϕ

ε

Size of total vulnerable population

Number of susceptible nodes at time t

Number of infectious nodes at time t

Number of treated infectious nodes at time t

Infection rate

Curing rate on an infectious node

Treatment rate on an infectious node

Infection cost

A function of treatment cost

Adjoint variable

Epidemic threshold

Table 4.1 Notations of SIS Infection Model

We assume that at beginning, t =0, one host is infectious and the other (N −1) nodes

are all susceptible. Let S(t) = N − I (t) denote the number of susceptible nodes at time t.

Replace I(t) in equation (4.1) by N − S(t) and we get

dt
tdS)(= -βS(t)[N – S(t)] + δ[N – S(t)] (4.2)

The solution to the equation (4.1) is

91

tNeINI
NI

tI)(
00

0

)(
)(

)(δββδββ
δβ

−−−−+
−

= (4.3)

We conclude that, as t → ∞,

I∞ = N - ε (4.4)

where ε = δ/β and I0 is the initial number of infectious nodes. Therefore, not absolutely

all the population gets infected. This shows that each infectious node infects others

with an average value of β per unit time. However, the probability that a node becomes

infected is not the same for every node because; it is a function of their connectivity

and the infection characteristics with a certain cure rate. We note that the probabilities

per unit time of infection and of cure are independent. Once a node is cured, it is

immediately capable of being re-infected.

4.4.2 Infection with Treatment

We now present the optimization model that takes into account infection and treatment

costs. Assume that filtering treatment is available. Infectious nodes can use a level of

filtering during each period which will increase the probability of recovery. Higher the

level of filtering more will be number of packets processed for infection and hence

more will be delay.

92

Using equation (4.1) and (4.2), this can be expressed as

)())()(()()()(tQtQtItStI
dt

tdI λδβ −−−= (4.5)

where λ > δ > 0, and I(t) ≥ Q(t) ≥ 0

Let U(t) denote the number of untreated infectious nodes at time t. Then equation (4.5)

can be defined by

)()()()()(tQtUtStI
dt

tdI λδβ −−= (4.6)

Where U(t) = I(t) – Q(t)

If Q(t) = I(t) in each period, then every node which is infected obtains treatment for

infection and equation (4.6) becomes

)()()()(tQtStI
dt

tdI λβ −= (4.7)

Note that if the treatment is very effective, then it may be the case that I = Q, and the

infection no longer is epidemic with full treatment, which is called the equilibrium

state. The equilibrium of the model with full treatment is the same as that of the model

without treatment if the recovery of infection is also very effective.

93

4.4.3 Definition

Infection cost

Assume that the worm infection brings about an infection cost, CI, which can be

interpreted as the node delay due to infection caused by reduced system performance.

In other words, if hosts get infected, too many ‘bad’ (infectious) packets would be sent

from the infected hosts. Therefore, unnecessary network delay may be incurred from

network congestion and buffer overflow. We note that a router does not get infected

while every individual host can get infected by computer virus and worm.

The node delay is referred to as router delay since many bad packets causes

increased network delay at a router. Once hosts become cured of worm infection a

router is also cured. For example, from figure 4.1, if every host in subnet A is cured of

infection, a router A becomes cured. However, if one of hosts in subnet A remains

infected, the router A is not able to be cured.

Subnet B Subnet A

Figure 4.1: Two subnets connected by routers

94

In this point of view, we apply the classical simple SIS model in which each router

stays in one of two states: susceptible or infectious. Each susceptible router becomes an

infectious one by receiving infectious packets from infected hosts. At the same time,

infectious routers are cured and become again susceptible if no infectious packet

received. In this model, having the infection and being cured, does not confer

immunity.

Treatment cost

The treatment cost, C(Q), is a function of the total number of infectious nodes treated

per period. It can be also referred to as node delay incurred by filtering packets at a

router. Similarly, we consider the node delay as the router delay since the router suffers

from processing delay due to a certain level of packet filtering mechanism. With the

SIS model, the assumptions are that filtering treatment is available and during each

period the infected routers can deal with treatment that will increase their rate of

recovery and protect their subnet hosts. However, it has no preventive properties upon

recovery. The treatment will also be assumed to exist in discrete time.

Once every subnet host becomes cured of infection, filtering treatment will be

stopped at that router. In other words, infectious routers have a constant probability of

recovery in each period with treatment. There is no permanent immunity to the

infection, so a cured router becomes susceptible again upon recovery. It has been

determined that the treatment can reduce the level of infection and prevent the

prospects of the spread of infection in the future.

95

Finally, Higher the level of filtering more will be number of packets processed for

infection and hence more will be delay.

4.5 The Analysis of Optimization problems

In this section we consider (time dependent) optimal control strategies associated with

infection and treatment cost based on classical SIS model. To determine the

appropriate number of nodes to filter, we need to develop a mathematical model of the

potential costs involved in infection and treatment at a given time. We will develop

cost functions that systems administrators can use to help determine an appropriate

level of treatment. Goldman and Lightwood [55] introduced the cost optimization

problem of minimizing the two cost of disease; a constant per period economic cost of

disease and per period cost function of treatment. Our problem is to minimize the total

cost of infection and treatment over the finite period time.

Then the our objective functional to be minimized is

[dttQCtIC
T

I))(()(
0

+∫] (4.8)

where the control function, Q(t), represents the fraction of total infected nodes

consuming treatment (to reduce the number of nodes that may be infectious),

96

subject to the infection equation:

QQIINI
t
tI λδβ −−−−=

∂
∂)()()(

, I(0) = I0 (4.9)

where β, δ, and λ are know positive constants and I0 is the known initial infected node.

4.5.1 Necessary Conditions for Optimization

Our objective functional balances the effect of minimizing the cases of implementing

the filtering treatments and minimizing the total cost of infection. The necessary

conditions that an optimal control variable must satisfy come from Pontryagin’s

Maximum Principle [56, 57]. In order to derive the necessary conditions we introduce

the adjoint variable ϕ and the Hamiltonian equation, H. This principle converts

equation (4.8) and (4.9) into a problem of minimizing a Hamiltonian, H, for the

optimization problem:

])()([)(QQIINIQCICH I λδβϕ −−−−++= (4.10)

Furthermore, there exists an adjoint function, ϕ(t), such that

)2()(δββϕϕ
−−−−=

∂
∂

−=
∂

∂ INC
I
H

t
t

I (4.11)

97

where the state problem has initial values I(0) = I0 and the adjoint problem has final

values ϕ (T) = 0.

We then have to minimize H over 0 ≤ Q ≤ I, that is,

0)()(=−+′=
∂
∂ λδϕQC

Q
H

 (4.12)

We denote as the marginal cost of treatment then say)(QC ′ QQC α=′)(where α is

equal to the marginal value of an additional unit of the treatment.

Suppose Q* is an optimal control for the above problem and I* is the corresponding

trajectory so that from equation (4.12) the solution for the optimal control is

Q*(t) = α
δλ)(−

ϕ*(t), 0 ≤ t ≤ T (4.13)

Substituting equation (4.13) into equation (4.9) gives

 I *&
α

δλδβ
2)()(−

−−−= IINI ϕ*, I*(0) = I (4.14) 0

 ϕ& * = ϕ* ICNI −+−)2(δββ , ϕ*(T) = 0, 0 ≤ t ≤ T (4.15)

98

The optimal control is determined by equations (4.13)-(4.15), that is, we must solve

equations (4.14) and (4.15) for optimum trajectory and an adjoint variable.

Next, we discuss the numerical solutions of the optimality system and the

corresponding optimal control pairs, the parameter choices, and the interpretations.

4.5.2 Numerical Results

In this section, we study numerically an optimal treatment strategy for minimizing the

total cost of infection since the full dynamic solution of the control problem is usually

very difficult and an explicit function-formula does not exist except for very special

cases [55, 56, 62]. The optimal treatment strategy is obtained by solving the optimality

system, consisting of two differential equations from the state and adjoint equations

presented in previous section.

Figure 4.2 (a) shows that the average number of infected nodes is plotted as a

function of time. The graph contains 1000 nodes and the infection, cure and treated

rates are β = 1.0 and δ = 0.2, λ = 0.8 respectively. For the figure 4.2, we assume that

the cost weight factor, CI, associated with the number of infected nodes I(t) is less or

equal to marginal cost of treatment, α, which is associated with a control Q(t). In figure

4.2, the set of the cost weight factors, CI = 200 and α = 500, is chosen to illustrate the

optimal treatment strategy.

Note that with treatment the number of infected nodes eventually reaches almost

50% of the total population, and the infection growth slows down after that.

99

I*(t) Q*(t)

t

 (a)

Time t

Figure 4.2: Optimal control strategy constructed us

However, without treatment the number of infected nodes reach

total population. Figure 4.2 (b) shows that for the optimal treatme

Q*(t) is plotted as a function of time with the same parameters of

This is an expected result because the number of infected

filtering treatment, Q(t), is decreased as the number of infected n

In conclusion, the control Q(t) that follows this optimal strategy c

the spread of infection and minimize the total cost of infectio

infection and treatment costs.

100
Time
(b)

ing Maple

es almost 80% of the

nt strategy the control

figure 4.2 (a).

 nodes consuming a

odes, I(t), is reduced.

an effectively reduce

n consisting of both

4.6 Simulation Experiments

In this section we describe our experimental design and compare the numerical

solution of the optimal control problem with the results of our simulation. We also

present measurements of Internet worm infections in two different strategies (with

treatment and without treatment) with random rates at which an infectious node

attempts to infect its neighboring nodes and random rates at which it cures itself or is

treated with a filtering treatment. In addition to measurements of worm infection, we

attempt to answer the following question:

1. What is the optimal level of treatment which should be chosen to minimize the

total cost of infection?

2. When to start filtering to minimize unnecessary treatment cost?

3. Is there a relationship between treatment cost and infection rate?

These experiments provide insight into the characteristics of infection propagation on

computer networks and they also serve as the basis for future research work on

quarantine of virulent Internet worms.

4.6.1 Network Model

Our experiments have been conducted using a simulation environment that is capable

of simulating thousands of computing nodes with random network topology and a viral

epidemic model. The network topology that is used in this simulation is constructed by

101

Transit Stub model that produces hierarchical graphs in a different way by consisting

of interconnected transit and stub domains [17].

We assume that the population consists of N nodes whose connections to one

another form a fixed random graph. A node n is said to have a degree k(n) if it is

connected to k other nodes. In case of random graphs the degree distribution is Poisson

with a certain mean degree K = 〈k(n)〉. In our simulations with random graph based

networks, we typically built networks with average degree K = 5 and 1000 nodes. Our

simulation is an event-driven simulation which is the most accurate method to simulate

the propagation of a worm.

Simulation proceeds in steps of one time unit. During each step, every infectious

node I attempts to infect each of its neighbors j with infection rate β. In addition, every

infectious node I is subject to a curing attempt with cure rate δ. If the curing of I occurs

before the infection attempt, then I does not send out infections to j. In this experiment

the infection process was simulated by varying the connectivity of topology, the

number of nodes, and the rate of infection β , cure δ and treated λ..

4.6.2 System Model

We consider a network with 1000 routers and a limited buffer is assigned to each router

for storing packets which need to be sent and received. A few assumptions and

simplifications were made to ensure feasibility of our experiment. First, a single

initially infected node is randomly selected to release worm in each trial and we

performed 100 simulation runs using the same parameters.

102

G 1 G 2 j

G 2

i

G 1

G 1 B1 j

B1

i

G 1

G 1 B1 j

B1

i

G 1 1 2 3 4 5 6 7 8 90

G 2 G 1

B1 G 1

k

k

kFILTER

j's buffer

G 1

(a)

(b)

(c)

Tim e when node k receives
packets from node j

P/D P/D

F/D F/DP/D P/D

G B P/D F/DG ood
packet

Bad
packet

Processing
Delay

Filtering
Delay

N ode k receives
packet G 1 at tim e 4

Node k incurs de lay
of filtering at tim e 4

Figure 4.3: Three cases of network delay: (a) No infection occurs (b) Infection without

treatment (if node j is infected) (c) Infection with treatment (if node j is infected)

Second, for measuring the network delay we randomly choose some pairs of a source

and destination. Each source creates several good (no infection) packets and stores

them into its buffer per time unit. We use an all-pair shortest path routing technique to

send good packets from source to destination.

Figure 4.3 provides more details about the network delay. Assume that each link

has a delay of 1 time unit. A processing delay of 1 is assigned to a host when it is

infected, since the system performance is reduced by the infection. We also assign an

additional delay of 1 for the packet filtering on a treated node. In case (b) a node k

which is the next hop from node j, receives a packet G1 at time 4 while in case (c) it

takes 5 time unit for the same node to receive a packet G1 due to packet filtering

system in which only good packets are forwarded to next hop and bad (infectious)

103

packets are dropped. Finally, to simulate the model, time is divided into a number of

discrete steps, and on each step the population of individuals in each state is altered

according to the different rules such as different rate of infection and recovery, which

means that nodes move between the S (Susceptible) and I (Infectious) states at a certain

rate. In addition, relevant data is recorded per unit time and simulation stops when

some desired state is reached, such as the completion of simulation time.

4.6.3 Simulation Results

In this section, we present a set of simulation results that demonstrate the accuracy of

our analytical models in describing optimal treatment strategy on random transit-stub

networks with infection and treatment costs. Figure 4.4 shows the total number of

infectious nodes averaged across the 100 runs of the two different types of simulation

models (with treatment and without treatment). Note that without treatment the average

number of infectious nodes increased exponentially and eventually reaches almost 80%

of the total population, and the infection growth decayed after that. But in the other

case (with treatment) the average number of infectious nodes reached almost 60% of

the total population and the spread of infection was decreased. For the number of

infected nodes obtaining treatment, Q(t), we choose 40 % of total infected nodes at

each time. It notes that a certain level of treatment for infection can effectively reduce

the spread of worm infection.

Figure 4.5 shows that for the optimal treatment strategy the control variable Q*(t)

and state variable I*(t) are plotted as a function of time with the same parameters of

104

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50 60 70 80 90 100
Time t

I(t)

Without Treatment
With Treatment

Figure 4.4: Comparison of the average number of infectious nodes as a function of time

in two different epidemic strategies. For the cases above we used 1000 nodes, an

average infection rate β of 1.0, a cure rate δ of 0.2, and a treatment rate λ of 0.8

figure 4.2. These two curves show that simulation results are consistent with our

numerical results of the optimization problem as described in section 4.5.2. It has been

determined that higher the level of a filtering treatment, which means increasing the

treatment rate, less will number of infectious nodes spread for infection.

However, since a filtering treatment presumably bears a significant cost, an optimal

choice of the treatment rate, λ, for a given infection rate is an important issue. From

figure 4.5 we conclude that for a given infection and cure rates if one follows the

optimal control Q*(t) trajectory then the spread of infection can be significantly

reduced or even eliminated at a small additional cost. This implies that the optimal

treatment strategy derives its value from reducing the current infection rate and from

reducing the prospects of the spread of infection.

105

0

50

100

150

200

250

300

350

400

450

0 10 20 30 40 50 60 70 80 90 100
Time t

N
um

be
r o

f n
od

es

Q*(t) I*(t)

Figure 4.5: Optimal control Q*(t) and I*(t) are plotted as a function of time for N =

1000, β = 1.0, δ = 0.2, λ = 0.8

 Q(t) = 0% Q(t) = 10% Q(t) = 20% Q(t) = 30% ... Q(t) = 90% Q(t) =100%
t I(t) C(t) I(t) C(t) I(t) C(t) I(t) C(t) I(t) C(t) I(t) C(t)
0 1 1 1 1 1 1 1 1 1 1 1 2
1 6 6 4 4 4 5 5 6 5 9 5 10
2 9 9 6 6 7 8 8 10 7 10 7 14
3 10 10 9 9 10 12 8 10 8 13 9 18
4 18 18 12 13 17 20 9 11 9 14 8 16
5 46 46 28 30 44 52 9 11 11 16 10 20
6 108 108 78 85 103 123 19 24 13 26 15 30
7 226 226 181 199 210 252 48 62 33 65 34 68
8 394 394 344 378 368 441 139 180 67 112 62 134
9 596 596 573 630 524 628 279 362 78 140 100 200

10 752 752 737 810 666 799 454 590 122 219 111 222
…

96 898 898 717 788 567 680 417 542 512 1003 556 1112
97 898 898 721 792 572 686 419 544 487 895 623 1123
98 896 896 721 792 551 661 415 539 468 925 687 1374
99 896 896 736 809 542 650 423 549 645 1192 765 1530

100 897 897 736 809 516 619 425 552 687 1212 825 1650

Table 4.2 Determination of optimal control Q*(t) and I*(t)

106

Table 4.2 shows how to obtain optimal control Q*(t) and I*(t) from our simulation

results. First, we perform 100 simulation runs using the same parameters and select a

minimum value of total infection cost, C(t), at each time t. From table 4.2 one curve

line indicates the optimal trajectory for total infection cost. In next step we can

determine the control variable Q(t) and state variable I(t) according to the total

infection cost C(t) at each time. For example, from table 4.2 we select a value of 4 for a

minimum infection cost C(t) at t = 1, then we can find that the number of infected

nodes, I (t = 1), is 4 and the number of infected nodes getting treatment, Q (t = 1), is

10 % of I (t = 1).

The average delay of good packets over infection rates for two different types of

simulation models is shown in figure 4.6. For this experiment, we make a simulation

across 100 runs as described in figure 4.4. All parameters assigned in this experiment

are the same as those given in figure 4.5. In addition to these two types of strategies,

we also analyzed the average delay of the good packets generated on only a set of

source nodes. As seen from the figure 4.6, without treatment the average delay

increases exponentially as the epidemic becomes saturated while with treatment the

average delay is not drastically increased with the same increase of infection rates. It

implies that a filtering treatment of worm infection is very effective for reducing the

spread of infection and minimizing the total infection costs as referred to network delay.

It is further observed that the treatment of worm propagation in its early stage is not an

optimal time to minimize the total cost of infection since there is little difference in the

average delay between the two cases (with treatment and without treatment) until the

infection rate reaches 0.4.

107

0

20

40

60

80

100

120

140

160

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Infection Rate

A
ve

ra
ge

 D
el

ay

without treatment with treatment

Figure 4.6: Comparison of the average delay as infection rates in two different

epidemic strategies

For example, figure 4.6 shows that the filtering treatment of worm infection could be

started as late as when the infection rate is 0.4 without having more than a marginal

effect on the total cost of infection.

There is a security issue for the security administrator to find an appropriate time to

start filtering since there are unnecessary treatment costs incurred by filtering too early and

also delaying a filtering treatment. In particular, many security administrators feel that

it is imperative to start a filtering treatment immediately. This, however, is just

representing those sites that have very high risk of penetration and have ample

resources to do an entire treatment. Our intent in this study is to provide guidelines to

those who do not have sufficient resources to immediately detect and filter everything,

and must choose where to allocate scarce security resources. We have used the

empirical data to arrive at concrete recommendations for delaying a filtering treatment

until there is assurance that the treatment is not likely to cause unnecessary costs.

108

4.7 Concluding Remarks

In this chapter we have presented the optimal control problem of minimizing the total

cost of infection which can be interpreted as the network delay incurred by both

infection and treatment. This chapter focuses on the application of optimal control

theory to minimizing the value of two costs. We have derived the necessary conditions

for our optimal control problem which is solved numerically.

We also validated the numerical solution with our simulation results. It has been

determined that by applying this optimal control strategy, one can very effectively

reduce the spread of infection and minimize the total cost of infection for the case of

random graphs. However, we could wait for a certain ratio of the total number of nodes

to be infected before starting treatment, and this would prevent an unnecessary network

delay which would happen if treatment were started earlier.

This chapter considered only the question of how many nodes to filter and when to

obtain filtering services to minimize the infection cost and reduce the spread of worm

infection. We are also working on the development of effective quarantine techniques

using the knowledge of cost optimization problem for worm infection.

109

Chapter 5

Conclusion and Future work

In this chapter, dissertation contributions as well as future work will be summarized.

First, a brief introduction about the problem we are trying to solve is presented. Then,

an organization of dissertation contribution is discussed followed by the appropriate

category including a brief summary of each chapter. At the end, future work directions

are presented and discussed.

5.1 Problems

Many early Internet protocols were designed without a fundamentally secure

infrastructure and hence vulnerable to Internet attacks such as denial of service (DoS)

attacks and worms. DoS attacks attempt to consume the resources of a remote host or

network, thereby denying or degrading service to legitimate users. In fact, many attacks

can be launched readily from anywhere in the world masquerading the location of the

110

attacker. Network forensics is an emerging area wherein the source or the cause of the

attacker is determined using IDS tools. The problem of finding the source(s) of attack(s)

is called trace back problem. Lately, Internet worms have become a major problem for

the security of computer networks, causing considerable amount of resources and time

to be spent recovering from the disruption of systems. In addition to breaking down

victims, these worms create a large amount of unnecessary network data traffic that

results in network congestion, thereby affecting the entire network. However, the task

of detection and prevention of worms has become more difficult on our existing

computing infrastructure.

5.2 Organization of Proposals

In this dissertation, we have analyzed some security issues in Internet attack through an

investigation of Internet worm propagation models and an identification of intrusion

source. Also we attempt to solve an optimal control problem of minimizing the total

cost of infection in terms of network delay. This analysis of security issues took two

categories. First, to develop appropriate tools for thwarting quick spread of worms, we

are trying to understand the behavior of the worm propagation with the aid of

epidemiological models and to provide mathematical models of control factors that

influence Internet worm propagation called Infection Pattern. The second category is

motivated by the fact that we have to react to Intrusions, be a worm based intrusion or

others. Reacting to intrusions has two kinds of actions; one is intrusion source

111

identification, the other is network defense with an optimal level of treatment. Chapter

2 and 4 describe about the latter category while chapter 3 is for the former category.

5.3 Infection Patterns

In chapter 3, we presented the classical SIS model and a modification of SIR model of

Kermack-Mckendrick to understand the behavior of the worm propagation with the aid

of epidemiological models. The analytical models that we provide are useful in

determining the rate of spread and time required to infect a majority of the nodes in the

network. We also present measurements of worm infections in two different network

topologies and in one of the topologies we use the round-trip time collected by using

the NLANR Active Measurement Program (AMP). Whereas in the SIR model once a

node is cured after infection it becomes permanently immune, our modification allows

this immunity to be temporary, since the cured nodes may again become susceptible or

infected, maybe with a different strain of the same worm. Our simulation results on

large Internet like topologies show that in a fairly small amount of time, 80% of the

network nodes is infected. For example, on the Abilene Internet2 topology using real

link delays we have shown that the worm can spread and infect 80% of the nodes in

about 30ms. The simulation study also shows that time to infect large portions of the

network vary significantly depending on where the infection begins. This information

could be usefully employed to choose hosts for quarantine to delay worm propagation

to the rest of the network.

112

5.4 Reacting to Intrusions

In chapter 2, we have introduced several trace back techniques and defined a trace back

problem more formally. Our goal in this work is to determine the sources of intrusions

or at least the routers closest to the intruders using a minimal amount of network

resources. We have developed a novel algorithm to decompose a network into

connected components and using high traffic routers on the connected components, we

construct a terminal network. A centroid decomposition technique is applied on the

terminal network. Based on the position of the victim in the network, our scheme

selects only a small fraction of routers to monitor the traffic to identify packets that

bear the signatures of the attack packets. From the information provided by these

chosen routers, the network is pruned and another set of routers is chosen to identify

the source of attack, until the source router is detected. The trace back can be

completed in O(logn) steps, where n is the number of terminal nodes (routers) in the

terminal network. Contribution of our work is to identify the set of routers that are

requested to log, mark, or authenticate depending upon the type of attack. The number

of routers identified for this task will be kept at a minimum yet sufficient to reduce the

burden on the routers.

In chapter 4, we have presented an optimization model that takes into account the

infection and treatment costs. We have two variables that we need to work with: delay

caused by filtering of worms at routers, and the delay due to worms’ excessive amount

of network traffic. On one hand filtering causes delays at routers and on the other

worm’s packets overload the buffer at routers and this in turn causes additional delays

113

for genuine packets. Furthermore, we defined the objective of minimizing the total cost

of infection and derived the necessary conditions for our cost optimization problem

which is solved numerically. Using this model we can determine the level of treatment

to be applied for a given rate of infection spread. We have devised a technique again

borrowing from epidemic models to determine the optimal start point for filtering and

optimal number of nodes in the network that should perform the filtering. The

simulation study shows the optimal level of treatment which should be chosen to

minimize the total cost of infection and to reduce the current infection rate, providing

both a mathematical model of the control factors affecting how many nodes needed to

filter, and collecting empirical data to compare the numerical solution of our analytical

model with the results of our simulation. Finally, we noted that our simulation results

can explain when to start the filtering treatment to reduce an unnecessary network

delay incurred by filtering too early and also delaying a filtering.

5.5 Future Work

For future work in this area, we intend to develop an effective quarantine method using

the knowledge of worm propagation and of cost optimization problem for worm

infection. Due to the fast spreading nature and great damage of Internet worms, it is

necessary to implement automatic mitigation such as dynamic quarantine. This

information could be usefully employed to choose hosts for quarantine to reduce the

prospects of the spread of infection in the future. In addition to development of

quarantine techniques, we attempt to answer several questions:

114

• What is effective size of quarantine?

• How can we detect and monitor an unknown (zero-day) worm?

• How can we defend against the spread of unknown worms effectively?

It will be the most important task of dynamic quarantine defenses.

115

Bibliography

[1] Ed Tiley. Personal Computer Security. IDG Books Worldwide, Inc., Foster City,
CA, 1996.

[2] Computer Emergency Response Team. smurf IP Denial-of-Service Attacks.
CERT Advisory CA-1998-01, 1998.

[3] Jose Nazario, Defense and Detection Strategies against Internet Worms. Artech
house, Inc., MA, 2004.

[4] D. Moore, C. Shannon, and J. Brown. Code-Red: a case study on the spread and
victims of an Internet worm. Proceedings of the 2nd Internet Measurement
Workshop, pages 273–284, November 2002.

[5] J. O. Kephart and S. R. White. Directed-graph epidemiological models of
computer viruses. Proceedings of the IEEE Symposium on Security and Privacy,
pages 343–361, 1991.

[6] J. O. Kephart and S. R. White. Measuring and Modeling Computer Virus
Prevalence. Proceedings of the IEEE Symposium on Security and Privacy, pages
2-15, 1993.

[7] E. H. Spafford. The Internet worm incident. In ESEC’89 2nd European Software
Engineering Conference, United Kingdom, pages 446-468, 1989.

[8] F. Cohen, Computer Viruses: Theory and Practice. Computers & Security, 6:22–
35, Feb. 1987.

[9] J. C. Frauenthal. Mathematical Modeling in Epidemiology. Springer-Verlag, New
York, 1980.

[10] L. Edelstein-Keshet. Mathematical Models in Biology. Random House, New
York, 1988.

116

[11] C. C. Zou, W. Gong, and D. Towsley. Code Red Worm Propagation Modeling
and Analysis. Proceedings of the 9th ACM Conference on Computer and
Communications Security, pages 138–147, 2002.

[12] C. Wang, J. C. Knight, and M. C. Elder. On Computer Viral Infection and the
Effect of Immunization. Proceedings of the 16th Annual Computer Security
Applications Conference, pages 246–256, 2000.

[13] Z. Chen and L. Gao and K. Kwiat. Modeling the Spread of Active Worms. IEEE
INFOCOM, 3:1890-1900, 2003.

[14] N. Weaver. Warhol Worms: The Potential for Very Fast Internet Plagues. 2001,
http://www.cs.berkeley.edu/~nweaver/ warhol.html.

[15] S. Staniford, V. Paxson, and N. Weaver. How to Own the Internet in Your Spare
Time. Proceedings of the USENIX Security Symposium, pages 149–167, 2002.

[16] eEye Digital Security. Press. New Critical Flaw in Microsoft Windows® RPC.
 http://www.eeye.com/html/Press/PR20030910.html.

[17] Ellen W. Zegura, Ken Calvert and S. Bhattacharjee. How to Model an
Internetwork. Proceedings of IEEE INFOCOM96, 2: 594-602, CA, 1996.

[18] D. Moore, C. Shannon, G. Voelker, and S. Savage. Internet quarantine:
Requirements for containing self-propagating code. Proceedings of IEEE
INFOCOM, 3:1901-1910, 2003.

[19] Yang Wang, Deepayan Chakrabati, Chenxi Wang, and Christos Faloutsos.
Epidemic spreading in real networks: an Eigenvalue viewpoint. Proceedings of
22nd International Symposium on Reliable Distributed Systems (SRDS03), pages
25-34, 2003.

[20] Yang Wang, Chenxi Wang. Modeling the Effects of Timing Parameters on Virus
Propagation. Proceedings of the 2003 ACM workshop on Rapid Malcode (WORM
03), pages 61-66, 2003.

[21] NLANR Active Measurement Program (AMP), http://watt. nlanr.net/

[22] Abilene backbone network, http://abilene.internet2.edu/

[23] L. Garber. Denial-of-service attacks rip the Internet. IEEE Computers, 33(4):12-
17, 2000.

[24] NightAxis and R. F. Puppy. Purgatory 101: Learning to cope with the SYNs of
the Internet. 2000. Some practical approaches to introducing accountability and
responsibility on the public internet, http://packetstorm.securify.com/papers/
contest/RFP.doc

[25] C. Schuba, I. Krsul, M. Kuhn, E. Spafford, A. Sundaram, and D. Zamboni.
Analysis of a denial of service attack on TCP. Proceedings of the IEEE Computer
Society Symposium on Research in Security and Privacy, pages 208–223, 1997.

117

http://www.eeye.com/html/Press/PR20030910.html
http://abilene.internet2.edu/
http://packetstorm.securify.com/papers/ contest/RFP.doc
http://packetstorm.securify.com/papers/ contest/RFP.doc

[26] G. Vigna and R. Kemmerer. NetSTAT: A Network-based Intrusion Detection
System. Journal of Computer Security, 7(1):37-71, 1999.

[27] C. Meadows. A formal framework and evaluation method for network denial of
service. Proceedings of IEEE the Computer Security Foundations Workshop,
pages 4-13, 1999.

[28] O. Spatscheck and L. Peterson. Defending against denial of service attacks in
Scout. Proceedings of the 3rd USENIX/ACM Symposium on Operating Systems
Design and Implementation (OSDI’99), pages 59–72, 1999.

[29] Computer Emergency Response Team (CERT). Denial-of-service developments.
CERT Advisory CA-2000-01, 2000.

[30] R. Morris. A weakness in the 4.2BSD Unix TCP/IP software. Computer Science
Technical Report 117, AT&T Bell Labs, 1985.

[31] J. Postel. Internet protocol. RFC 791, 1981

[32] Wenke Lee and Sal Stolfo. Data Mining Approaches for Intrusion Detection.
Proceedings of the 7th USENIX Security Symposium (SECURITY '98), pages 79-
94, 1998.

[33] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7):422-426, 1970.

[34] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical Network Support
for IP Traceback. Computer Communication Review, 30(4):295-306, 2000.

[35] D.X. Song and A. Perrig. Advanced and Authenticated Marking Scheme for IP
Traceback. Proceedings of IEEE INFOCOM, 2:878-886, 2001.

[36] K. Park and H. Lee. On the Effectiveness of Probabilistic Packet Marking for IP
Traceback under Denial of Service Attack. Proceedings of IEEE INFOCOM,
1:338-347, 2001.

[37] CERT/CC, SANS. Institute, and CERIAS. Consensus roadmap for defeating
distributed denial of service attacks. Feb. 2000. A Project of the Partnership for
Critical Infrastructure Security, http://www.sans.org/ddos roadmap.htm

[38] P. Ferguson and D. Senie. Network ingress filtering: Defeating denial of service
attacks which employ IP source address spoofing. RFC 2827, 2000.

[39] Hal Burch and Bill Cheswick. Tracing Anonymous Packets to Their Approximate
Source. Proceedings of the 14th USENIX Systems Administration Conference
(LISA 2000), pages 319-327, 2000.

[40] S. M. Bellovin. ICMP Traceback Messages. IETF Internet Draft, March 2001.

[41] A. Mankin, D. Massey, C. Wu, S. F. Wu, and L. Zhang. On Design and
Evaluation of Intention-Driven ICMP Traceback. Proceedings of IEEE
International Conference on Computer Communications and Networks, pages
159-165, 2001.

118

http://www.sans.org/ddos roadmap.htm

[42] E. Zwicky, S. Cooper, D. Chapman, and D. Ru. Building Internet Firewalls.
O’Reilly & Associates, Inc., 2nd edition, 2000.

[43] H.Y. Chang, R. Narayan, C. Sargor, F. Jou, S.F. Wu, B.M. Vetter, F. Gong, X.
Wang, M. Brown, and J.J. Yuill. DECIDUOUS: Decentralized Source
Identification for Network-Based Intrusions. Proceeding of 6th IFIP/IEEE
International Symposium on Integrated Network Management, pages 701-714,
1999.

[44] H.Y. Chang, P. Chen, A. Hayatnagarkar, R. Narayan, P. Sheth, N. Vo, C. L. Wu,
S.F. Wu, L. Zhang, X. Zhang, F. Gong, F. Jou, C. Sargor, X. Wu. Design and
Implementation of A Real-Time Decentralized Source Identification System for
Untrusted IP Packets. Proceedings of the DARPA Information Survivability
Conference & Exposition, 2:1100-1111, 2000.

[45] R. Stone. CenterTrack: An IP Overlay Network for Tracking DoS Floods.
Proceedings of 9th USENIX Security Symposium, pages 199-212, 2000.

[46] Alex C. Snoeren, Craig Partridge, Luis A. Sanchez, Christine E. Jones, Fabrice
Tchakountio, Beverly Schwartz, Stephen T. Kent, and W. Timothy Strayer.
Single-Packet IP Traceback. IEEE/ACM Transactions on Networking, 10(6):721-
734, 2002.

[47] Vern Paxson. End-to-end Internet path dynamics. IEEE/ACM Transactions on
Networking, 7(3):277-292, 1999.

[48] Craig Labovitz, G. R. Malan, and F. Jahanian. Internet Routing Instability.
IEEE/ACM Transactions on Networking, 6(5):515-527, 1998.

[49] Bilal Chinoy. Dynamics of Internet Routing Information. ACM SIGCOMM
Computer Communications Review, 23(4):45-52, 1993.

[50] R. Govindan and A. Reddy. An Analysis of Internet Inter-Domain Topology and
Route Stability. Proceedings of IEEE INFOCOM’97, 2:850-857, 1997.

[51] A. Shaikh and L. Kalampoukas. Routing Stability in Congested Networks:
Experimentation and Analysis. ACM SIGCOMM Computer Communications
Review, 30(4):163-174, 2000.

[52] F. Harary. Graph Theory. Addison-Wesley, Inc., MA, 1969.

[53] G. S. Brodal, R. Fagerberg, C. N. S. Pedersen, and A. Östlin. The complexity of
constructing evolutionary trees using experiments. Proceedings of 28th
International Colloquium on Automata, Languages, and Programming (ICALP),
2076:140-151, 2001.

[54] SANS Institute. Egress filtering v 0.2. Global Incident Analysis Center, Special
Notice, Feb. 2000. Available at http://www. sans.org/y2k/egress.htm.

[55] Steven M. Goldman and J. Lightwood. Cost Optimization in the SIS Model of
Infectious Disease with Treatment. The B.E. Journals in Economic Analysis and
Policy, 2(1):1-22, 2002.

119

[56] G. Knowles. An Introduction to Applied Optimal Control. New York, Academic
Press, 1981.

[57] E.B. Lee and L. Markus, Foundations of Optimal Control Theory, New York,
John Wiley & Sons, Inc., 1967

[58] C. C. Zou, W. Gong, and D. Towsley. Worm Propagation Modeling and Analysis
under Dynamic Quarantine Defense. Proceedings of the ACM/CCS workshop on
Rapid Malcode (WORM’03), pages 51-60, 2003.

[59] O.P. Kreidl and T.M. Frazier. Feedback Control Applied to Survivability: A
Host-Based Autonomic Defense System. IEEE Transactions on Reliability,
53(1):148-166, 2004.

[60] S. Beattie, S. Arnold, C. Cowan, P. Wagle, and C. Wright. Timing the
Application of Security Patches for Optimal Uptime. Proceedings of LISA '02:
16th Systems Administration Conference, pages 233-242, 2002.

[61] R. Huerta and L.S. Tsimring. Contact tracing and epidemics control in social
networks. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related
Interdisciplinary Topics, 66(52):056115/1-056115/4, 2002.

[62] M. D. Intriligator. Mathematical Optimization and Economic Theory, Englewood
Cliffs, N.J., Prentice-Hall, 1971.

[63] J. Kim, S. Radhakrishnan, and S. K. Dhall. On Intrusion Source Identification.
Proceedings of the 2nd IASTED International Conference on Communications,
Internet, and Information Technology, pages 7-12, 2003.

[64] J. Kim, S. Radhakrishnan, and S. K. Dhall. Measurement and Analysis of Worm
Propagation on Internet Network Topology. Proceedings of 13th International
Conference on Computer Communications and Networks (IEEE ICCCN2004),
pages 495-500, 2004.

120

APPENDIX A

SIS Epidemic Model

The SIS model (where removals are ignored) is described by:

JkSJ
dt
dS λ+−= and JkSJ

dt
dJ λ−=

The initial conditions are: S(0) = S0 and J(0) = J0

To get (easily) an analytic solution, we observe that: S + J = N. Thus, S = N – J.

Substituting to the second differential equation we obtain:

JJJNk
dt
dJ λ−−=)(which simplifies into 2)(kJJkN

dt
dJ

−−= λ

The differential equation could be solved using Maple as:

Note: Since I is used (reserved word in Maple) to denote: I = sqrt(-1); we use the

variable J to denote the number of infected in the fixed population.

> restart;

> dsolve({diff(J(t),t)= k*(N-J(t))*J(t)-lambda*J(t), J(0) = J0}, J(t));

J t() =
J0 k N - λ()

k J0 + e
- k N - λ() t() k N - e

- k N - λ() t() λ - e
- k N - λ() t() k J0

> simplify(%);

J t() =
J0 k N - λ()

k J0 + e
- k N - λ() t() k N - e

- k N - λ() t() λ - e
- k N - λ() t() k J0

121

> collect(%,exp);

J t() =
J0 k N - λ()

k N - λ - k J0() e
- k N - λ() t() + k J0

> with(plots):

Warning, the name changecoords has been redefined

> N:= 100: S0:= 99: J0:=1: k:=0.8: lambda:=0.2:

> J:= unapply(J0*(k*N-lambda)/((k*N-lambda-J0*k)*exp(-(k*N-lambda)*t)+J0*k), t);

J := t → 79.8

79.0 e -79.8 t() + 0.8

> plot([t,J(t), t = 0..10],t= 0..10, tickmarks=[5,5], labels=[`t`,`J(t)`]);

122

APPENDIX B

SIRS Epidemic Model

The SIRS model of infections was derived by Kermack and McKendrick (1927).

> restart;

with(DEtools):

with(linalg):

with(plots):

Warning, the name changecoords has been redefined

Define SIR equations, parameters and initial conditions

beta = rate from S -> I

lamda = rate from I -> R

mu = rate from R -> S (b=0 gives the SIR model)

> beta:= 0.07: lamda:= 0.02: mu:= 0.007:

eqns := diff(S(t),t)=-beta*S(t)*J(t)+mu*R(t),

 diff(J(t),t)= beta*S(t)*J(t)-lamda*J(t),

 diff(R(t),t) = lamda*J(t)-mu*R(t);

inits:= S(0)=9.9, J(0)=0.1, R(0)=0.0;

eqns := d
 dt

 S t() = -0.07 S t() J t() + 0.007 R t(), d
 dt

 J t() = 0.07 S t() J t() - 0.02 J t(), d
 dt

 R t() = 0.02 J t() - 0.007 R t()

123

inits := S 0() = 9.9, J 0() = 0.1, R 0() = 0.

Generate a numerical solution

> soln := dsolve({eqns,inits},{S(t),J(t),R(t)}, type=numeric, output=listprocedure):

Generate string for title

> rr := convert(beta,string): aa := convert(lamda,string):

 bb := convert(mu,string):

 code := cat(`SIRS Model with rates beta = `,rr,`, lamda = `,aa,`, mu = `,bb);

code := SIRS Model with rates beta = .7e-1, lamda = .2e-1, mu = .7e-2

Define functions for the susceptibles - S(t), the infecteds - J(t) and the removed - R(t)

> s := subs(soln,S(t)): j:=subs(soln,J(t)): r := subs(soln,R(t));

r := proc t() ... end proc;

> G:=plot({s,j,r},0..300,title="",color=black):

> T:=textplot({[200, 7.7, ` R (t)`],[200, 0.8, ` S (t)`],[200, 3, `I (t)`]}):

> display({G,T});

124

APPENDIX C

Optimal Control Problem

Suppose Q* is an optimal control for the optimization problem and I* is the

corresponding trajectory. The optimal control is determined by two equations below,

that is, we must solve these equations for optimum trajectory and an adjoint variable.

 I& *
α
δλδβ

2)()(−
−−−= IINI ϕ*, I*(0) = I0

 ϕ& * = ϕ* ICNI −+−)2(δββ , ϕ*(T) = 0, 0 ≤ t ≤ T

Next, we solve the numerical solutions of the optimality system and the corresponding

optimal control pairs using Maple.

> restart:

> with(DEtools):

> with(plots):

Warning, the name changecoords has been redefined

> alpha:=500: beta:=1.0: delta:=0.2: lambda:=0.8: Cd:=200: N:=1000:

> CM_Model:=diff(J(t),t)=J(t)*(N*beta-delta-beta*J(t))-psi(t)*(lambda-delta)^2/alpha,

diff(psi(t),t)=psi(t)*(2*beta*J(t)-N*beta+delta)-Cd;

CM_Model := d
 dt

 J t() = J t() 99.8 - 1.0 J t()() - 0.0003600000000 ψ t(), d
 dt

 ψ t() = ψ t() 2.0 J t() - 99.8() - 200

125

> inits:=J(0)=1, psi(0)=1200;

inits := J 0() = 1, ψ 0() = 1200

> soln := dsolve({CM_Model,inits},{J(t),psi(t)},type=numeric, output=listprocedure):

> j := subs(soln,J(t)): p:=subs(soln,psi(t)):

> plot({j},0..100,title=Cost,color=black);

> plot({p},0..100,title=Cost,color=black);

dsolve and plots

dsolve(CM_Model,{J(t),psi(t)});

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

J t() = RootOf -

⌠
⎮
⎮
⎮
⎮
⎮
⌡

_Z

 - 5

18 _a - 40 _a 3 + 25 _a 4 + 16 _a 2 + 25 _C1
 d_a + t + _C2

⎛
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎠

,

J t() = RootOf -

⌠
⎮
⎮
⎮
⎮
⎮
⌡

_Z

 5

18 _a - 40 _a 3 + 25 _a 4 + 16 _a 2 + 25 _C1
 d_a + t + _C2

⎛
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎠

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎭

,

ψ t() = - 250
9

 d
 dt

 J t() + 200
9

 J t() - 250
9

 J t()2⎧
⎨
⎩

⎫
⎬
⎭

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

> odeplot(soln,[J(t),psi(t)],0..100);

126

	JONGHYUN KIM
	Contents and Figures.pdf
	Contents
	Introduction
	Internet Attacks
	Denial of service (DoS) attacks
	Internet Worms

	Computer Worms
	Worms vs. Viruses
	Worm history and Taxonomy
	A Worm Spreading
	Worm Detection

	Epidemiological Model
	SIS model
	SIR model

	Optimal control problem
	Control System Model
	Calculus of Variations

	Organization and Contribution of the dissertation . .

	On Intrusion Source Identification
	Introduction
	Preliminaries
	Overview of Trace back problems
	Types of Attacks

	Recent Solutions for Trace back
	Trace back: Centroid Approach
	Assumptions
	Terminal Nodes
	Terminal Network

	Detection Algorithm
	The Centroid Approach
	The Algorithm

	Concluding Remarks

	Measurement and Analysis of Worm Propagation on Internet
	Network Topology
	Introduction
	Immunization Defense of Worms
	Characteristics of Worm Spreading

	Analytical Methodologies of Internet Worms
	Worm Propagation Models
	Definition
	Classical simple epidemic model
	Kermack-Mckendrick model
	An extension for the SIR model

	Simulation and Analysis
	Random transit stub model without topology constraint .
	System models
	Initial results

	Worm Propagation with Topology Constraint
	Network model
	Simulation Results

	Concluding Remarks

	Optimal Control of Treatment Costs for Internet Worm
	Introduction
	Statement of Problems
	Comparison with Previous Work
	The SIS Infection Model
	Infection without Treatment
	Infection with Treatment
	Definition

	The Analysis of Optimization Problems
	Necessary Conditions for Optimization
	Numerical Results

	Simulation Experiments
	Network Model
	System Models
	Simulation Results

	Concluding Remarks

	Conclusion and Future work
	Problems
	Organization of Proposals
	Infection Patterns
	Reacting to Intrusions
	Future Work

	Bibliography
	APPENDICES
	APPENDIX A
	APPENDIX B
	APPENDIX C

	List of Tables
	1.1 Traditional worms of Note
	Notations of Worm Epidemic Models
	4.1 Notations of SIS Infection Model

	List of Figures
	Control and behavior related by a system model
	Optimal control based on a system model
	Attack paths: (A2, R6, R3, R2, R1, Vt) and (A3, R7, R4, R2,

	Dissertation Body(for PDF).pdf
	Chapter 1
	Introduction
	Chapter 2
	On Intrusion Source Identification
	Chapter 3
	Measurement and Analysis of Worm Propagation on Internet Net

