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Abstract 

Many early Internet protocols were designed without a fundamentally secure 

infrastructure and hence vulnerable to attacks such as denial of service (DoS) attacks 

and worms. DoS attacks attempt to consume the resources of a remote host or network, 

thereby denying or degrading service to legitimate users. Network forensics is an 

emerging area wherein the source or the cause of the attacker is determined using IDS 

tools. The problem of finding the source(s) of attack(s) is called the “trace back 

problem”. Lately, Internet worms have become a major problem for the security of 

computer networks, causing considerable amount of resources and time to be spent 

recovering from the disruption of systems. In addition to breaking down victims, these 

worms create large amounts of unnecessary network data traffic that results in network 

congestion, thereby affecting the entire network.  

In this dissertation, first we solve the trace back problem more efficiently in terms 

of the number of routers needed to complete the track back. We provide an efficient 

algorithm to decompose a network into connected components and construct a terminal 

network. We show that for a terminal network with n routers, the trace back can be 

completed in O(log n) steps. 

Second, we apply two classical epidemic SIS and SIR models to study the spread of 

Internet Worm.  The analytical models that we provide are useful in determining the 

rate of spread and time required to infect a majority of the nodes in the network.  Our 

simulation results on large Internet like topologies show that in a fairly small amount 

of time, 80% of the network nodes is infected.   

 

xiv



Third, we have analyzed the tradeoff between delay caused by filtering of worms at 

routers, and the delay due to worms’ excessive amount of network traffic. We have 

used the optimal control problem, to determine the appropriate tradeoffs between these 

two delays for a given rate of a worm spreading.  Using our technique we can minimize 

the overall network delay by finding the number of routers that should perform filtering 

and the time at which they should start the filtering process. 
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Chapter 1  

Introduction 

 

1.1 Internet Attacks 

The basis for the Internet was an experiment begun in 1968 by the Defense 

Department’s Information Processing Techniques Office (ARPA/IPTO) to connect 

computers over a network in order to ensure command and control communications in 

the event of a nuclear war. In the 1980s, the number of local area networks increased 

significantly and this stimulated rapid growth of interconnections to the ARPAnet and 

other networks.  These networks and interconnections are known today as the Internet 

[1]. 

Many early Internet protocols were designed without a fundamentally secure 

infrastructure so that network defense becomes more difficult. Because of the openness 
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of the Internet and the original design of the protocols, Internet attacks in general are 

quick, easy, inexpensive, and may be hard to detect or trace. An attacker does not have 

to be physically present to carry out the Internet attack. In fact, many attacks can be 

launched readily from anywhere in the world - the location of the attacker can easily be 

hidden.  

Since much of the traffic on the Internet is not encrypted, confidentiality and 

integrity are difficult to achieve. The factor that contributes to the vulnerability of the 

Internet is the rapid growth and use of the network, accompanied by rapid deployment 

of network services. Often, these services are not designed, configured, or maintained 

securely. This lack of secure configuration makes them vulnerable to attacks, which 

sometimes occur within minutes of connection. Finally, the more systems that are 

connected to Internet, obviously the harder it is to control their security. Clearly, if a 

site is connected to the Internet at several points, it likely would be more vulnerable to 

attacks than a site with a single gateway. 

 

1.1.1 Denial of service (DoS) attacks 

On the Internet, a denial of service (DoS) attack attempts to consume the resources of a 

remote host or network, thereby denying or degrading service to legitimate users. In 

other words, a denial of service attack prevents the targeted site from providing 

network services by either flooding the site with bogus packets or consuming limited 

network resources. Furthermore, a denial of service attack might use multiple systems 

to attack one or more victim systems with the intent of denying service to legitimate 
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users of the victim systems. Typically, the loss of service is the inability of a particular 

network service such as e-mail service, or the temporary loss of all network 

connectivity and services. A denial of service attack can also destroy programming and 

files in a computer system. The major advantage of a DoS attack is that it is quite 

difficult to determine the actual source of the attack. Since the attacker can basically put 

any packet on the local wire, the attacker creates packets whose source IP address is 

invalid and completely random. Thus, when the victims receive these packets, they are 

unable to determine the source.  

The most common kind of a DoS attack is simply to send more traffic to the 

network than it can handle, called packet flooding. Then the network’s connection 

becomes congested, resulting in packet loss. Since routers cannot distinguish between 

attacking packets and valid client packets, they drop them with equal probability. If the 

attacker can send packets fast enough, the drop rate can become so high that a number of 

client's packets cannot get through. A more recent and well-known attack called "smurf" 

attack [2] use reflectors to multiply the effect of the DoS attack. In this type of attack an 

attacker is using ICMP echo request packets directed to IP broadcast addresses from 

remote locations to generate denial-of-service attacks.  

 

1.1.2 Internet Worms  

Lately, Internet worms have become a major problem for the security of computer 

networks, causing considerable amount of resources and time to be spent recovering 

from virulent attacks. In general, worms, defined as self-propagating malicious codes, 
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have been developed since the Morris worm arose in 1988 [7]. Unlike a virus, which 

requires a user to do something to continue the propagation, a worm can propagate by 

itself. The convenience of Internet makes it more vulnerable for malicious Internet 

exploits. In other words, the Internet has become a powerful means for propagating 

malicious programs like computer viruses and worms. The Code Red worm incidents 

of 2001 have shown us how vulnerable Internet hosts are and how fast a virulent worm 

can spread across the Internet (Code Red infected more than 250,000 systems in just 9 

hours on July 19, 2001). Moore [4] provided some characteristics of the worm spread 

and trace analyses of Code Red worm behavior. Weaver [14, 15] introduced worm 

design strategies, which can be used to produce significantly faster and longer lived 

Internet worms.  

A worm, on the other hand, is far more powerful and faster. The Sapphire/Slammer 

Worm was the fastest Internet worm in history. As it began spreading throughout the 

Internet, it infected at least 75,000 vulnerable hosts within 10 minutes [3]. When a 

worm gains access to a computer (usually by breaking into it over the Internet), it 

launches a program which searches for other Internet locations, infecting them if it can. 

Moreover, the worm travels over the Internet, so all machines attached to an infected 

machine are at risk of attack. Some worms attempt to perform a Denial of Service 

attack (Code Red/W32.Blaster) or to compromise systems and deface web site 

(sadmind/IIS, Code Red); and others have dynamic configuration capabilities 

(W32.Leaves) [3]. But the biggest impact of these worms is that their propagation 

effectively creates a denial of service in many parts of the Internet because of the huge 

amounts of scan traffic generated, and they cause much substantial damage. 
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1.2 Computer Worms 

Computer worms and viruses are typically grouped together as infectious agents that 

replicate themselves and spread from system to system. However, Computer worms 

must be differentiated from computer viruses if we are to understand how they operate, 

spread, and can be defended against. Computer worms alter the behavior of the 

computer they infect. Computer worms typically install themselves onto the infected 

system and begin execution, utilizing the system’s resources, including its network 

connection and storage capabilities. 

 

1.2.1 Worms vs. Viruses 

Both worms and viruses spread from a computer to other computers. However, viruses 

typically spread by attaching themselves to files (either data files or executable 

applications). Their spread requires the transmission of the infected file from one 

system to another. Worms, in contrast, are capable of autonomous migration from 

system to system via network without the assistance of external software. In other 

words, a worm is an active and volatile automated delivery system that controls the 

medium (typically network) used to reach a specific target system. Viruses, in contrast, 

are a static medium that does not control the distribution medium. 

From the Morris worm [7] in 1998, a computer worm was defined as follows: 

“In computers, a worm is a program that travels from one computer to another 

but does not attach itself to the operating system of the computer it infects. It 
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differs from a virus which is also a migrating program, but one that attaches 

itself to the operating system of any computer it enters and can infect any other 

computer that uses files from the infected computer.” 

Currently Many worms hide their presence by installing software to deliberately hide 

their presence, some use kernel modules to accomplish this. Such an instance of a 

worm would not be covered by the above definition. 

 

1.2.2 Worm history and Taxonomy 

The concept of a worm program that spreads itself from machine to machine was 

apparently first described by John Brunner in 1975 in his book The Shockwave Rider. 

He called these programs tapeworms that lived “inside” the computers and spread 

themselves to other machines. In 1979-1981, researchers at Xerox PARC built and 

experimented with worm programs [3]. The worms built at PARC were designed to 

travel from machine to machine and do useful work in a distributed environment. They 

were not used at that time to break into systems, researchers soon developed worms 

that could harness under utilized computing resources. Furthermore, the possibility of a 

malicious worm such as the Morris worm became after an accident with the worm at 

Xerox PARC. Table 1.1 shows a generalized lineage of many of the worms which have 

focused on windows hosts. 
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Worm Discovery Date Distinction 

Morris/Internet Nov. 1988 The first significant worm. Exploited multiple 

vulnerabilities 

mIRC Script.ini Dec. 1997 Attacks users of the IRC client mRC. 

Melissa Mar. 1999 It shut down Internet mail systems. It spread on word 

processor 

Love Letter May  2000 A VBScript worm that spread largely via e-mail as a 

chain letter. 

Leaves Jun. 2001 Using the installed backdoor program to upload 

itself. 

Code Red Jul. 2001 The self-replicating malicious code that exploits a 

known vulnerability in Microsoft IIS servers. 

Code Red II Aug. 2001 It causes system level compromise and leaves a 

backdoor on certain machines running Windows 

2000. 

Nimda Sept. 2001 A hybrid windows worm – attacked client-to-client, 

server-to-server, client-to-server, and ser-to-client. 

SQL Snake May 2002 Internet worm targeting Microsoft SQL servers with 

TCP port 1433.  

Sapphire/Slammer Jan. 2003 Using a single UDP packet for explosive growth 

W32/Blaster Aug. 2003 It exploits a vulnerability in Microsoft's DCOM RPC 

interface using TCP port 135 

 

Table 1.1: Traditional worms of Note [3] 
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1.2.3 A Worm Spreading 

Now we describe how a worm spreads on Internet and attacks many systems. We 

explain the worm spreading techniques with one of malicious worms such as 

Sapphire/Slammer worm. The Sapphire/Slammer worm (also called Slammer) was the 

fastest computer worm in history [3]. As it began spreading throughout the Internet on 

January 25, 2003, it doubled in size every 8.5 seconds. It infected more than 90 percent 

of vulnerable hosts within 10 minutes. Slammer exploited buffer overflow vulnerability 

in computers on the Internet running Microsoft's SQL Server. This weakness in an 

underlying indexing service was discovered in July 2002;Microsoft released a patch for 

the vulnerability before it was announced. The worm infected at least 75,000 hosts, and 

caused network outages and significant disruption of financial, transportation, and 

government institutions. 

Propagation speed of Slammer worm was very fast: The worm achieved its full 

scanning rate (over 55 million scans per second) after approximately three minutes, 

after which the rate of growth slowed down because significant portions of the network 

did not have enough bandwidth to allow it to operate. Most vulnerable machines were 

infected within 10 minutes of the worm's release. By comparison, it was faster than the 

Code Red worm, which infected over 359,000 hosts on July 19th, 2001 [4]. While 

Slammer did not contain a malicious payload, it caused considerable harm simply by 

overloading networks and taking database servers out of operation. Many individual 

sites lost connectivity as their access bandwidth was saturated by local copies of the 

worm and there were several reports of Internet backbone disruption. In other words, if 
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the worm had carried a malicious payload, it could have attacked a more widespread 

vulnerability and the effects would likely have been more severe.  

Slammer's spreading strategy is based on random scanning - it selects IP addresses 

at random to infect, eventually finding all susceptible hosts. Random scanning worms 

initially spread exponentially rapidly, but the rapid infection of new hosts becomes less 

effective as the worm spends more effort retrying addresses that are either already 

infected or immune.  

Slammer spread nearly two orders of magnitude faster than Code Red, yet it 

probably infected fewer machines. Both worms used the same basic strategy of 

scanning to find vulnerable machines and then transferring the exploitive payload; they 

differed in their scanning constraints. While Code Red was latency limited, Slammer 

was bandwidth-limited. Slammer contains a simple, fast scanner in a small worm with 

a total size of only 376 bytes. This can be contrasted with the 4kb size of Code Red, or 

the 60kb size of Nimda. Previous scanning worms, such as Code Red, spread via many 

threads, each invoking connect() to probe random addresses. Thus each thread's 

scanning rate was limited by network latency, the time required to transmit a TCP-

SYN packet and wait for a response or timeout. In contrast, Slammer's scanner was 

limited by each compromised machine's bandwidth to the Internet. Since the SQL 

Server vulnerability was exploitable using a single packet to UDP port 1434, the worm 

was able to send these scans without requiring a response from the potential victim. 

Slammer was frequently limited by the access bandwidth to the Internet rather than its 

own ability to generate new copies of itself. The Slammer worm's scanning technique 
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was so aggressive that it quickly interfered with its own growth. Consequently, the rate 

of growth from later infections was reduced since these instances were forced to 

compete with existing infections for scarce bandwidth. Thus Slammer worm achieved 

its maximum Internet-wide scanning rate within minutes.  

The following is the procedure of what the worm's payload is doing after infection: 

 

1. Retrieves the address of GetProcAddress and Loadlibrary from the IAT in 

sqlsort.dll. 

2. Calls gettickcount, and uses returned count as a pseudo-random seed 

3. Creates a UDP socket 

4. Performs a simple pseudo random number generation using the returned 

gettickcount value to generate an IP Address that will later be used as the target. 

5. Send worm payload in a SQL Server Resolution Service request to the pseudo 

random target address, on port 1434 (UDP). 

6. Return back and continue generating new pseudo random addresses. 

 

In general, the response to Slammer was quick. Within an hour, many sites began 

filtering all UDP packets with a destination port of 1434. Slammer represents the 

idealized situation for network-based filtering: the worm was easily distinguished by a 

signature that is readily filterable on current hardware and it attacked                            

a port that is not generally used for critical Internet communication. Thus almost all 

traffic blocked by these filters represents worm-scanning traffic. If the worm had 
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exploited vulnerability in a commonly used service (e.g. DNS at UDP port 53 or HTTP 

at TCP port 80), such filtering could have caused significant disruption to legitimate 

traffic with resulting denial-of-service more harmful than the worm itself. 

 

1.2.4 Worm Detection 

In this section we attempt to illustrate one of the methods of detecting worms using 

signature-based detection which is called pattern matching. We are interested in 

network payload signature that deals with packet headers and packet payloads, as is 

used in network intrusion detection systems (NIDS) [26]. The detection method used 

by NIDS engines perform an evaluation of packet contents received from the network. 

This can include matching signatures based on payload contents measured by string 

comparison, application protocol analysis, or network characteristics. 

 

Signature-based detection 

Signature-based detection is the method of analyzing the content of captured data to 

detect the present of known strings. These signatures are kept in a database and are 

derived from the content of known malicious files. These files are typically the 

executable programs associated with worms. 

The strength of signature-based detection is that the behavior of one instance of 

malicious worm is representative of all instances. This means that by detecting one 

node of the worm, the behavior of all nodes that are compromised by the worm can be 

reliably predicted. However, this signature-based detection also has several weaknesses. 
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One of drawback is that they rarely can be used to detect a new worm. Only after an 

attack is known, it can be used to detect a worm. Another of drawback is that it is hard 

to keep up with variants of worms and viruses. 

 

Worm Signature 

Worms typically have distinctive signatures as they attack other hosts on the network. 

By building up a library of known malicious signatures, a network monitor can alert an 

administrator to the presence and activity of a worm. 

In case of the Code Red worm, a distinctive request is made to the target server that 

contained the exploit as well as the malicious executable. By examining packets 

observed passively on the network, a detection system can identify Code Red worm 

activity. The largest problem with this signature for Code Red is its size. This signature 

is more than 100 bytes in length and must be fully matched against to successfully 

detect the worm’s traffic. If this payload is fragmented due to network transmission 

sizes, the larger signature will not match the smaller payloads in the fragments. 

There are numerous ways to monitor our network and protect it from Internet 

worms. For instance, companies commonly use a firewall for network protection. 

Although firewall logs often provide a lot of information regarding intrusion attempts, 

sometimes they contain too much data to solve the problem quickly. Some companies 

also use intrusion detection systems (IDSs) on border routers to monitor incoming 

traffic for patterns that indicate specific intrusion attempts. Worms that infect internal 

systems behind a firewall may be difficult to isolate since firewalls and intrusion 
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detection systems are used primarily on borders with the Internet, rather than on 

internal networks. 

 

1.3 Epidemiological Models 

Epidemiological models have traditionally been used to understand and model the 

spread of biological infectious diseases [9, 10]. Furthermore, in the area of virus and 

worm modeling, many studies have employed simple epidemiological models to 

understand general characteristics of worm’s propagation [5, 8]. In this section we 

introduce two classical epidemiological models. 

 

1.3.1 SIS model  

Let S(t) be the number of susceptible individuals at time t, and let I(t) be the number of 

infected individuals. For an SIS model, infected individuals return to the susceptible 

class on recovery because the disease confers no immunity against re-infection. The 

classical SIS model is given by 

 

ISI
dt
dS δβ +−=        (1.1) 

ISI
dt
dI δβ −=  

 

Let's briefly explore the meaning of these terms. 
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• The βSI term is understood as follows: An average infected individual makes 

contact sufficient to infect βN others per unit time. Also, the probability that a 

given individual that each infected individual comes in contact with is 

susceptible is S/N. Thus, each infected individual causes (βN)(S/N) = βS 

infections per unit time. Therefore, infected individuals, I, cause a total number 

of infections per unit time of βSI.  

• The δI term is even simpler to understand: δ is the fraction of infected 

individuals who recover (and re-enter the susceptible class) per unit time. 

 

We see that 

0)( =+ IS
dt
d

        (1.2) 

Therefore, 

S + I = N is constant. 

 

1.3.2 SIR model 

The SIR model has been proposed by Kermack and McKendrick who considered the 

removal process of infected individuals [8]. We divide the population into three classes 

S, I, and R. The SIR model is very similar to the SIS model except that recovered 

individuals return to class R instead of passing to class S through immunization against 

infection. R(t) denotes the number of individuals who have been infected and then 

removed from the possibility of being infected again or of spreading infection. 
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The classical SIS model is given by 

 

SI
dt
dS β−=  

ISI
dt
dI αβ −=     (1.3) 

I
dt
dR α=  

 

where β is the infection rate; α is the rate of removal. 

We note that N = S + I + R. 

 

1.4 Optimal control problem 

Optimal control can be regarded as one of the possible methodologies of the control 

system’s design. The most general optimal control problem is described by four types 

of data: (1) system constraints, (2) the initial state and the target state, (3) the class of 

admissible controllers, and (4) the cost functional. We attempt to investigate such an 

optimal control problem of minimizing the cost function described in chapter 4. The 

objective of our optimal control problem is to determine the control variables that will 

cause a system to satisfy the constraints and at the same time minimize the total cost of 

infection. 

 

 

15



1.4.1 Control System Model 

We consider a control problem where based on a system model we have to determine 

the control inputs u(t) such that the system behavior x(t) meets our requirements as 

shown in figure 1.1.  

 

 
System 
model 

u(t) x(t)
 

 Control 
Inputs 

System 
Behavior 

 

  Figure 1.1: Control and behavior related by a system model 

 

In case of optimal control we have a mathematical system model, 

 

),,(x tuxf=& ,    x ∈ Rn, u ∈ Rm   (1.4) 

 

A formal statement of the control problem is comprised of the state variable, the 

control variable, time, a set of differential equations, the determination of terminal time, 

and the objective function.  

Time, t, is measured in continuous units and is defined over the relevant interval from 

initial time t0, which is typically given, to terminal time t1, which must often be 

determined. Thus the relevant interval is: t0 ≤ t ≤ t1 
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At any time t in the relevant interval the state of the system is characterized by n real 

numbers, , called state variable, and summarized by the state vector: )(),...,(),( 21 txtxtx n

 

x(t) = ))(),...,(),(( 21 ′txtxtx n ,     (1.5) 

 

is a continuous vector valued function of time, the value of which at any time t in the 

relevant interval is the state vector. The initial state, x(t0) = x0, is assumed given, and 

the terminal state, x(t1) = x1, must often be determined. 

At any time t in the relevant interval the controls to be made are characterized by r real 

numbers, , called control variables and summarized by the control 

vector: 

)(),...,(),( 21 tututu r

 

u(t) = ))(),...,(),(( 21 ′tututu r ,     (1.6) 

 

is a continuous vector valued function of time, the value of which at any time t in the 

relevant interval is the control vector. 

The state trajectory {x(t)} is characterized by a set of n differential equations giving the 

time rate of change of each state variable as a function of the state variables, the control 

variables, and time: 

 

)(tx& = f(x(t), u(t), t),     (1.7) 
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Or, written out in full: 

 

):)(),...,(),();(),...,(),(()()( 2121 ttutututxtxtxftxt rnjjdt
dxj == & ,  j = 1, 2, …, n,    (1.8) 

 

where each of the n functions  is assumed given and 

continuously differentiable. If the differential equations do not depend explicitly on the 

time then the equations are autonomous. 

)(),...,(),( 21 LLL nfff

The behavior of system is fully determined by x(t). Based on these state and control 

variables, an optimal control u*(t) can be computed which minimizes the cost function 

C(u(t)). So optimal relates to the system model and cost function. Associated to the 

optimal control u*(t) is the associated optimal system’s behavior x*(t) as shown in 

figure 1.2. 

 

 

 

Optimal 
System 
Behavior 

System 
model 

u*(t) x*(t)
 

Optimal
Control 

  

     Figure 1.2: Optimal control based on a system model 
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Now we define the general form of optimal control problem as follows; 

Given the system, 

),,...,,,...,( 11 tuuxxfx mnii =& ,  i = 1, …, n, 

Or in vector form 

x&  = f(x, u, t), 

Where 

   x = ),...,( 1 ′nxx  and  u =  ),...,( 1 ′muu

with the known initial condition 

   x(t0) = x0

and the final condition that we wish to reach is x1 ∈ Rn. x1 is often called the target 

point, and may or may not be given. 

Find the optimal control u*(t) that minimizes the cost function  

 

C(u) = (x(t), u(t), t)dt,     (1.9) ∫
1

0 0

t
f

 

where f0 is a given continuous real-valued function, C(u*) ≤ C(u) for all u.  

 

1.4.2 Calculus of Variations 

Calculus variations are suitable for solving linear or nonlinear optimal control 

problems with linear or nonlinear boundary conditions [56, 57]. Basically, it is a 
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collection of many different analytical methods and they are discussed differently from 

book to book. Here, a typical approach which leads to more general and widely used 

modern theories is introduced. 

 

Pontryagin’s maximum principle 

Pontryagin’s maximum principle is one of approaches to solve the optimal control 

problem. Pontryagin’s maximum principle serves to identify on optimal path or 

trajectory. If we define x(t) to represent the state of system at time t and u(t) represents 

the control at time t, then the optimal control problem is to find trajectory {x(t)} by 

choosing a set {u(t)} of controls so as to maximize or minimize some objective 

function. The maximum principle therefore has been the basic approach to computing 

optimal controls in many important problems in mathematics, engineering, and 

economics. 

The general formula of the maximum principle problem is: 

 

   J = x, u, t)dt     (1.10) 
)}({

max
tu ∫

1

0

(
t

t
F

    s.t. )( t u, x,fx =&  

    x(t0) = x0  for t = 0 is initial point 

    x(t1) = x1  for t = T is the final state 

    {u(t)}   the control trajectory t0 ≤ t ≤ t1

Ω   a set of all admissible controls 
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where F(⋅⋅⋅) and f(⋅⋅⋅) are given continuously differentiable functions; and {u(t)} must 

belong to the given control set Ω. The maximum principle can be considered the 

extension of the method of Lagrange multipliers to optimal control problems. We 

introduce new variables, called costate variables, are the dynamic equivalents of the 

Lagrange multipliers of maximization problems: 

 

    ϕ(t) = (ϕ1(t), ϕ2(t), …, ϕn(t))             (1.11) 

 

It also notes that each of the costate variables corresponds to one of the differential 

equations of motion and in general varies over time. 

 The next step is to define a Lagrangian function which equals the expression to be 

maximized plus the inner product of the Lagrange multiplier vector and the constraints. 

The inner product is properly treated under the integral sign, the Lagrangian expression 

being: 

 

    L = J +     (1.12) ∫ −1

0

])([
t

t
dtt xu,x,f &ϕ

           =   ∫ −+1

0

]})([)({
t

t
dtttF xu,x,fu,x, &ϕ

 

To develop the necessary conditions, note that the term- )()( tt x&ϕ in equation (1.12) can 

be integrated by parts to yield: 
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  L =  (1.13) )]()()()([})()({ 0011
1

0

ttttdtttF
t

t
xxxu,x,fu,x, ϕϕϕϕ −−++∫ &

 

Hamiltonian function 

From equation (1.13) the first two expressions under the integral sign are defined to be 

the Hamiltonian function: 

 

    H(x, u, ϕ, t) ≡ F(x, u, t) + ϕf(x, u, t)   (1.14) 

 

That is, the Hamiltonian function (called Hamiltonian) is defined as the sum of the 

intermediate function (integrand) of the objective functional plus inner product of the 

vector of costate variables and the vector of functions defining the rate of change of the 

state variables. 

For a maximum it is necessary that the change in the Lagrangian function must hold for 

a change in the control trajectory {∆u(t)}, that: 

 

    0=
∂
∂

u
H , t0 ≤ t ≤ t1    (1.15) 

Necessary condition equation (1.15) states that the Hamiltonian function is maximized 

by choice of the control variables at each point along the optimal trajectory {u*(t)}. 

To summarize, the maximum principle technique involves adding to the problem n 

costate variables ϕ(t), defining the Hamiltonian function as: 
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    H(x, u, ϕ, t) ≡ F(x, u, t) + ϕf(x, u, t)            (1.16) 

 

and solving for trajectories {u(t)}, {ϕ(t)}, and {x(t)} satisfying. 

 

    H(x, u, ϕ, t)  for all t,  t
}{

max
Ω∈u

0 ≤ t ≤ t1            (1.17) 

     
ϕ∂

∂
=

Hx& , x(t0) = x0

     
x∂

∂
−=

Hϕ&  

 

The form of the solution for the optimal control problem often follows readily from the 

maximization of Hamiltonian, which usually gives the optimal control variables not as 

functions of time but rather as functions of the costate variables. 

In particular, if the problem is autonomous in that both F(⋅⋅⋅) and f(⋅⋅⋅) show no 

explicit dependence on time then the Hamiltonian shows no explicit dependence on 

time and, since dH / dt = 0, along the optimal trajectory the value of Hamiltonian is 

constant over time. Another advantage is that Hamiltonian functions are easier to solve 

than Lagrangian functions. Ultimately, it will produce the same optimum as 

Lagrangian approach. 
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1.5 Organization and Contribution of the dissertation 

The rest of the dissertation is organized as follows. Chapter 2 introduces several trace 

back techniques and defines a trace back problem more formally. We present a simple 

and efficient algorithm for detecting the source of attack in a network. The algorithm 

uses the dynamic centroid decomposition technique to select nodes for monitoring 

packets to identify an attack packet. Advantage of the algorithm requires limited 

resources and does not require change in Internet protocols. Contribution of our work 

is to identify the set of routers that are requested to log, mark, or authenticate 

depending upon the type of attack.  The number of routers identified for this task will 

be kept at a minimum yet sufficient to reduce the burden on the routers. In chapter 3, 

we describe the two classical simple epidemic models and an extended model, allowing 

for loss of immunity that causes recovered hosts to become susceptible again. With real 

Internet topology data, we find that there are two effective factors that influence 

Internet worm propagation: temporary immunization time and network delays. We note 

that our simulation results can explain how fast a virulent worm can spread and suggest 

effective mechanisms to monitor and defend against the propagation of worms. It also 

shows that we can find location(s) in the network that when quarantined would slow 

down the rage of spread. In chapter 4, we attempt to investigate a new approach to such 

optimal control problems of minimizing the cost of infection which can be interpreted 

as the network delay. Furthermore, we define the objective of minimizing the total cost 

of infection and derive the necessary conditions for our cost optimization problem 

which is solved numerically. We show that our simulation results can answer the 
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question of how many nodes needed to filter and when to start a filtering treatment, and 

this treatment of worm infection is very effective for reducing the spread of worm 

infection. Finally, Chapter 5 presents our conclusions and future work. 
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Chapter 2 

On Intrusion Source Identification 

 

2.1 Introduction 

Network forensics is the science of analysis and detection of network based intrusions, 

including evidence gathering, and locating and isolating intruder(s). A well-known 

network based attack on computing resources is the Denial-of-Service (DoS) attack 

wherein the intruder sends several requests to the server so as to overwhelm the server 

and prevent it from serving legitimate user requests. The DoS attack can be either from 

a single intruder, a distributed set of intruders, or a distributed set of compromised 

hosts. Attacks of this nature can be connection-oriented involving TCP’s three-way 

handshake protocol or connectionless that uses UDP packets. The source of the packets 

to the victim can be from the real intruder with possibly spoofed source IP address in 

the packets, or from the compromised machine(s). DoS attacks are considered 

continuous in the sense that a continuous stream of packets is sent from the intruder(s) 
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or the compromised machine(s) to the victim. An example of a non-continuous attack 

is the SQL Slammer attack wherein a single UDP packet contains the necessary code to 

attack SQL servers running on port 1434. 

The source identification or the trace back problem deals with identifying the 

source of the intruder after the intrusion has been detected. Solutions to the trace back 

problem involve enabling the routers to monitor intruder’s packets (packets that have a 

specific signature that has been singled out as a packet(s) that caused the intrusion) and 

executing a detection algorithm based on the information collected from the routers. 

For example, in packet marking schemes proposed in the literature, addresses of 

routers through which the packets are routed are added to the packet. When the victim 

(where the intrusion has occurred) gets the intruder’s packets with addresses marked in 

them, it can reconstruct the path of the intruder’s packets all the way to the source. If 

the source address is spoofed by the intruder, then the marking system will trace the 

origin of the packet all the way to the router that is uncompromised and closest to the 

source.   

The rest of the chapter is organized as follows. Section 2.2 presents overviews of 

trace back techniques and their limitations and problems. Section 2.3 reviews recent 

solutions for trace back against DoS attacks. Section 2.4 discusses the trace back 

problem more formally and provides assumptions used by our detection system. 

Section 2.5 presents an algorithm that will use a minimal amount of network resources 

to either detect the sources of attack or perform quarantine operation that will isolate 

portions of the network from possible attacks. The conclusions and future work is 

presented in section 2.6. 
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2.2 Preliminaries 

Recently, so many network security communities have made reasonably good progress 

in the development of attack prevention and intrusion detection systems for protecting 

hosts against network-based attacks launched remotely by attackers. However, because 

of the design of Internet Protocol (IP), back tracking the source of such attacks 

remains relatively difficult. Furthermore, it is difficult to eliminate spoofed packets in 

mounting denial of service (DoS) attacks on the Internet. This section describes 

techniques for tracing internet packets with spoofed source addresses back to their 

point of origin and presents their limitations and problems. 

 

2.2.1 Overview of Trace back problems 

A simple mechanism to prevent spoofed packets from leaving the subnet is to use 

Egress filtering wherein every packet’s source address is examined to make sure that 

its source address matches the subnet from which the packet originated. Such internal 

policing can stop spoofed packets from entering the Internet, but this scheme will be 

beneficial only when all border routers cooperate. Certainly, not all ISP’s and large 

networks can use Egress filtering [54]. Egress filtering cannot help in case of 

compromised machines sending attack packets with legitimate source addresses. Given 

the fact that some routers perform Egress filtering while others do not, the authenticity 

of the source IP address of the attack packet is still in doubt.   

Yet another scheme to determine the subnet from which the attack packet originates 

is to force the border router at the subnet to mark the packet with its IP address. Such a 
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scheme would allow the victim to trace the attack packet closest to the subnet level and 

the border router at the subnet can be further instructed to block all the packets destined 

for the victim. This will work only when we assume that the subnet’s router is not 

compromised.  Clearly, this scheme adds additional complexity to the packet structure 

and incurs additional network bandwidth.    

In order to trace back spoofed attack packets, the routers that border the subnets 

attached to the victim have to be requested to monitor packets. Not only the number of 

such routers can be very large, but needs also to be made an unreasonable assumption 

of a continuous stream of spoofed attack packets. The problem is further compounded 

if the attached border routers belong to different Internet Service Providers (ISPs), 

since all of them have to cooperate. In any case, a desirable solution is to perform 

logging of packets using SYSLOG or NETFLOW. These logging techniques are based 

on efficient storage mechanism such as a bloom filtering [33] and they provide tools 

for determining if a packet with a specific signature visited that router. These 

techniques range from simple matching to intelligent data mining [26, 32]. Placing 

effective monitors on every possible location in the network or marking every possible 

packet by all the routers is highly cost prohibitive and a severe drain on resources. For 

example, assuming that all packets through routers are logged, the victim can send a 

copy of the attack packet to all the SYSLOG or NETFLOW databases to be searched. 

Routers or its associated SYSLOG database that report the presence of the packet can 

“ring an alarm” and new routers attached to the “ringing” routers can be searched. To 

avoid resource draining process of logging every packet, the routers can be made to log 

packets on demand by the victim. A victim will request such a longer upon receiving 
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attack packets. The routers that “ring” and are farthest away from the victim would be 

requested to block the packets destined for the victim until the victim recovers. Clearly, 

the logging mechanism is very effective in finding source of non-continuous attacks. 

A mechanism using IPSec security associations can be used to authenticate packets 

received from a router. For example, if a victim v would like to determine whether an 

intruder packet is routed from a particular router say R, then either v or the router 

closest to v can establish an IPSec with R. The premise of the approach is that if an 

attack packet has been correctly authenticated by a certain router R, the attack packet 

must have transited that router. Therefore, iteratively building security associations 

with routers at increasing distances from the victim will allow one to perform a secure 

trace route that will trace the attack packet to the router closest to it, even if the attacker 

used spoofed IP addresses. The technique proposed in this chapter will reduce the 

number of associations that need to be established to trace the router closest to the 

source. 

 

2.2.2 Types of Attacks 

Based on the discussion above we recognize that technique of logging, packet marking, 

or IPSec authentication is dependent on the type of attack. In general, the type to be 

used often depends on the attacker's motives and aims. Types of attacks can be 

classified as follows: 

Destructive – Attacks which destroy the ability of the device to function, such 

as deleting or changing configuration information or power interruptions.  
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Resource consumption – Attacks which degrade the ability of the device to 

function, such as opening many simultaneous connections to the single device.  

 

Bandwidth consumption – Attacks which attempt to overwhelm all available 

bandwidth capacity of the network device. 

 

Furthermore, these attack types include continuous and non-continuous versions of 

single intruder and multiple intruders. For example, in the case of single intruder 

continuous attack the victim can request certain routers to mark the packets with the IP 

address in order to determine the route the packets take. For non-continuous attack 

proactive logging of packet information by certain routers would be very beneficial. A 

victim that sees a regular non-continuous attack can request a router to log the packets 

in a reactive sense. Our goal is to identify the set of routers that are requested to log, 

mark, or authenticate depending upon the type of attack. The number of routers 

identified for this task will be kept at a minimum yet sufficient lead to reduce the 

burden on the routers.  

 

2.3 Recent Solutions for Trace back 

Several types of DoS attacks have been identified [23, 24, 25], with the most basic DoS 

attack demanding more resources than the target system or network can supply. 

Resources may be network bandwidth, file system space, processes, or network 

connections [24]. While host-based DoS attacks are more easily traced and managed, 
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network-based DoS attacks which exploit weaknesses of the TCP/IP protocol suite [30], 

represent a more subtle and difficult threat [24, 34]. Network-based DoS attacks 

employ spoofing to forge the source address, and thereby hide identity of the physical 

source [29]. Previous works have focused on detecting DoS attacks and mitigating their 

detrimental impact upon the victim [27, 28]. 

A number of recent works have studied source identification (also called IP trace 

back [34]) which spans a range of techniques with their individual pros and cons. IP 

trace back is to identify the origin of sequential IP packets when the source IP 

addresses of these packets are spoofed. IP trace back is usually performed at the 

network layer, with the help of routers and gateways. 

 

Link Testing  

In link testing the identification of the physical source of an attack is done by tracing it 

back hop-by-hop through the network MAC addresses [39]. Trace back is typically 

performed manually, and is recursively repeated at the upstream router until the 

originating host is reached. The drawbacks of link testing include multiple branch 

points, slow trace back during an attack, communication overhead due to message 

exchange, and administrative constraints between network operators [39]. In behavioral 

monitoring [24], the likely behavior of an attacker during a DoS attack is monitored to 

identify the source. For example, an attacker may perform DNS requests to resolve the 

name of the target host which may not be resident in its local name server’s cache. 

During a DoS attack, an attacker may try to gauge the impact of the attack using 
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various service requests including Web and ICMP echo requests. Logging of such 

events and activities can reveal information about the attacker’s source.  

 

Ingress Filtering 

Packet filtering is a network mechanism for controlling what data can flow to and from 

a network affected routers or firewalls [42]. Filtering decisions, typically, are made 

based on packet content including source/destination addresses and port numbers. As a 

means of preventing network-based DoS attacks, ingress filtering in border gateways 

has been proposed for limiting IP source address spoofing [37, 38]. Ingress filtering 

requires a prolonged period to be broadly deployed on the Internet.  

 

Probabilistic Packets Marking (PPM) 

In packet-based trace back, packets are marked with the addresses of intermediate 

routers, in some sense, an inverse operation of source routing and similar to the IP 

Record Route option [31]. The victim uses information inscribed in packets to trace the 

attack back to its source. In this method, overhead in the form of variable-length 

marking fields that grow with path length, or traffic overhead due to extra messaging 

packets is incurred.  

Probabilistic packet marking (PPM) [34, 35, 36] has been proposed for achieving 

space efficiency in the form of constant marking field and processing efficiency in the 

form of minimal router support. The basic idea of the approach is that routers prob-

abilistically encode partial path information into the packets during forwarding and try 
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to reconstruct the complete path from the packets that contain the marking. In spite of 

its efficiency properties, PPM has several drawbacks: packet storage requirements and 

high router overhead to record the path information. For a large amount of packets, it 

may result in unnecessary fragmentation. To reduce the resource overhead, a hash-

based technique was proposed to store the information into 16-bit IP Identification 

field used for fragmentation in the IP header. However, the ID field of IP header can 

not be modified if either fragmentation is necessary or IPSec authentication is provided. 

In addition, it is necessary for a victim to accumulate huge amount of data in order to 

determine true attack path. Improved marking schemes including authentication were 

studied in [35]. 

 

IPSec authentication and encryption  

Chang, et al [43, 44] proposed a security management framework, DECIDUOUS 

(Decentralized Source Identification for Network-Based Intrusions), to securely 

identify attack sources by using existing network security protocols and services, 

specifically IPSec authentication and encryption services. With this method, when an 

attack is detected, the Internet key exchange (IKE) protocol establishes IPsec security 

associations (SAs) between the target host and some routers in the administrative 

domain (for example, autonomous system boundary routers). Routers at the SA ends 

add an IPsec header and a tunnel IP header containing the router’s IP address to 

traversing packets. If the attack continues and one of the established SAs authenticates 

a subsequent attack packet, the attack must come from a network beyond the 
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corresponding router. The receiver checks the source IP address of the tunnel IP header 

to find out which routers the attack packet traversed. Repeating this process recursively, 

the receiver finally reaches the attack source. Because this technique uses existing 

IPsec and IKE protocols, implementing a new protocol for tracing is unnecessary. 

 

ICMP Trace back Message (iTrace)  

ICMP trace back proposes to introduce a new message “ICMP trace back” (or an 

iTrace message) so that routers can generate iTrace messages to help the victim or its 

upstream ISP to identify the source of spoofed IP packets [40]. For example, routers 

would be modified to randomly (for example, one trace back message for every 20,000 

packets) generate a trace back message about a packet and send it to the packet’s 

destination. Each trace back message would provide authenticated information about 

the packet being traced, what time it was sent, where it came from, where it went. With 

enough trace back messages from enough routers, a network manager could find the 

source of a spoofed flow. Of course, this would require that the Internet routers would 

have to be modified to support the new ICMP trace back. An intention-driven iTrace is 

also introduced to reduce unnecessary iTrace messages and thus improve the 

performance of iTrace systems [41].  

 

Hop-by-hop Input Debugging 

Robert Stone’s CenterTrack uses an overlay network of IP tunnels to selectively 

reroute suspicious datagrams from edge routers to special tracking routers [45]. The 
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tracking router can determine the ingress edge router by noting the tunnel on which the 

packet arrived. The tracking router can inspect the suspicious datagram and then either 

drop it or forward it. The scheme permits rerouting flooding packets and can determine 

the ingress point on the enterprise network. 

 

Logging and Storage 

Snoeren et al [46] describe a hash based technique and an implementation of digest 

tables using space-efficient data structures known as Bloom filters; it records packet 

digests for recently forwarded traffic within the network and reconstructs the attack 

paths with these digests. A software engine called Source Path Isolation Engine (SPIE) 

that uses the packet digests is proposed in [46]. Using the SPIE environment, it has 

been shown that tracing attacks that use single packet rather than a series of packets is 

feasible with low storage requirements. The packet digest is computed over the 

invariant bytes of a packet header and the first 8 bytes of payload. This approach is 

based on the assumption that this packet digest will not be frequently modified by a 

packet transform. However, if the invariant portion of a packet header is used and 

modified frequently to store extended information, then this assumption is infeasible. 

In this case, packet transformations will occur frequently and result in resource 

overhead of logging transformation information.  
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2.4 Trace back: Centroid Approach 

Definition 2.1 (Attack paths and tree): The attack propagation model of a network is 

given by the undirected network G = (V, E), where V is the set of nodes and E is the set 

of edges. The set of nodes V could be further partitioned into end systems and routers. 

The edges denote physical links between elements in V. Let Ai ∈ V denote the potential 

attack source, and let Vt ∈ V \ Ai denote the victim. In case of a single attacker, |Ai| = 1, 

and the path Ρi = ( Ai, R1, R2, …, Rd, Vt) composed of d routers R1, …,  Rd, an attacker 

Ai, and a victim Vt is called an attack path. In other words, an attack path from Ai is the 

sequential route that the attack packet has traversed between Ai and Vt.  If |Ai| > 1, then 

we have distributed DoS attack (DDoS) wherein the attack paths are joined together to 

form an attack tree rooted at the victim.                                                                          ■ 

 

Definition 2.2 (Trace back Problem): Let G′ = (V′, E′ ) be an attack network of G, 

where V′ represents the set of nodes associated with attack path(s) and edge (u, v) ∈ E′ 

represents a link on which an attack at u∈ V′ propagates to v∈ V′. In other words, the 

removal of vertices Vi not associated with attack path(s) from the network G results in 

the induced attack network G′ , e.g., from figure 2.1 we obtain an attack network G′ 

containing two attack paths, P2 = (A2, R6, R3, R2, R1, Vt) and P3 = (A3, R7, R4, R2, R1, 

Vt) by removal of nodes A1 and R5. The trace back problem is to construct an attack 

network G′ containing the attack path(s) and the associated attack source(s) for each 

victim.                              ■ 
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Figure 2.1: Attack paths: (A2, R6, R3, R2, R1, Vt) and (A3, R7, R4, R2, R1, Vt).   

The attack paths form an attack tree is shown above. 

 

2.4.1 Assumptions 

We state in the following the assumptions on the mode and operations pertaining to the 

attack on the victim by the intruder(s). 

 

1. Attackers may generate any packet 

2. Attacker may disguise its IP source address 

3. Routers are both CPU and memory limited 

4. Routers are not widely compromised 

5. Routers always choose the shortest routes with least hops to forward packets 

6. In the case of continuous attack (like the DoS), the route taken by the attack 

packets is stable. 
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The assumption that routers always select a shortest path to forward packets is 

probably the fundamental property of our proposed algorithm. Routing path selection 

in several deployed routing protocols is based on well-known shortest path algorithms. 

It follows that packets from an attacker to victim must be transmitted through the 

shortest path. The final assumption that routing would be systemically stable until an 

efficient tracing system determines the attack source is the most controversial. Paxson 

[47] states that two packets sent by the two same end hosts may take different 

directions of the Internet paths due to network congestion. Labovitz et al. [48] have 

also shown the routing instability from BGP routing messages. However, it is very 

difficult for any tracing system to seek to determine attack source with multiple attack 

paths. Chinoy [49] measured that almost 90% of the EGP routing updates in the 

NFSNET system of networks contained close to 0% new information (whereas EGP 

updates occur every 3 minutes). Furthermore, Govindan and Reddy [50] used a year's 

worth of inter-domain routing traces collected in 1994-95 and analyzed the Internet 

inter-domain topology, its routing stability behavior. Shaikh and Kalampokas [51] have 

performed extensive experimentation and developed analytical models to capture the 

stability and robustness properties of routing protocols in congested networks. It shows 

that the path through which packets are transmitted between two end hosts does not 

change frequently despite the growth of the topology. As a result, routing of multiple 

attack packets should be stable during the period of the trace time to identify the attack 

source. These last two assumptions motivate us to look for a scheme which transfers a 

general network topology to a terminal network (described in next section) of the 
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network in order to simplify network topology and reduce the amount of network 

resources required to perform trace back. 

 

2.4.2 Terminal Nodes 

Terminal nodes are routers on the network that see large amount of network traffic.  

Typically border routers that connect autonomous areas to the rest of the Internet and 

Internet core routers experience heavy network traffic. At the subnet level, these are 

routers that connect one subnet to the other as they join to form the autonomous system.  

Our proposed solution for the trace back problem makes use of these terminal nodes 

wherein logging, marking, or IPSec association is performed. The number of terminal 

nodes can be large considering the fact that there are over 2 million core routers.   

Consider the Abilene Network which is an Internet2 high-performance backbone 

network that connects hundreds of end users that range from universities, research labs, 

and technology companies. The structure of the Abilene network is shown in figure 2.2.  

Traffic from the west coast can reach the east coast through a combination of two 

routers selected one each from sets {Kansas City, Houston} and {Indianapolis, 

Atlanta}. These routers experience plenty of traffic compared with routers at the edges 

say Seattle for example. Our goal is to identify these routers based on the topology of 

the network and use these nodes to monitor intruder packets. As a first step, we will 

imagine that our network is a set of glued bi-connected components. The bi-connected 

components of the Internet2 backbone network are {Sunnyvale, Seattle, Denver}, 

{Sunnyvale, Denver, Kansas City, Houston, Los Angeles}, {Kansas City, Houston,  
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Figure 2.2: Abilene Network 

 

Atlanta, Indianapolis}, and {Indianapolis, Atlanta, Washington, New York City, 

Chicago}. 

The nodes that connect one bi-connected component with the other are terminal 

nodes and traffic through these terminal nodes are generally higher compared with 

other nodes. In figure 2.2 the terminal nodes are Sunnyvale, Denver, Kansas City, 

Houston, Atlanta, and Indianapolis. 

In the next subsection, we present an algorithmic technique to recognize terminal 

nodes that is based purely on the topology of the network.  
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2.4.3 Terminal Network 

The approaches presented for trace back problems all involve cooperation of 

intermediate routers in the network. Our main goal is to reduce the number of 

intermediate routers that participate in the trace back solutions. To this end, we identify 

a small number of set of nodes that are enough to complete the trace back based on the 

assumptions on the network and on its routing presented in section 2.4.1.  

Given a network G, we first construct a set of connected components that does not 

exceed the given size (number of nodes) t.  

 

 

Algorithm BCC (H, t) 

Input: The network H = (V, E) with nodes V and links E, and a size t. 

Output: A set of connected components. 

Begin 

1. If (H is a tree) Then 

2.  Return H 

3. Else 

4.  If (|H| < t) Then Return H 

5.  Test connectivity of H and let it be k. 

6.  Choose k nodes to make the network H disconnected. 

7. Remove the k nodes (cut nodes) from H and let H1, H2, …, Hm be the 

connected components. 
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8.  Add the k nodes to each of the connected component Hi, 1 ≤ i ≤ m with links  

 (p, q), where p is a cut node, q is a node in Hi, and (p, q) is a link in E.  

9.  Mark the k nodes of each connected component to indicate that they are 

 terminal nodes. 

10.  Return ({BCC(H1,t), BCC(H2,t) …, BCC(Hm, t)}) 

11. EndIf 

End. 

 

 

The main idea behind this is that the intruder resides in a connected component and 

searching only the terminal vertices would lead us to that connected component. Let H 

be k connected with k ≥ 2. We need to identify k nodes whose removal will make the 

network not connected. The set of k vertices will be added to the set of terminal 

vertices.  

We will remove these k nodes and apply the above algorithm on each of the 

remaining connected component until either each component is 1-connected or its size 

does not exceed t. The larger the size of t faster the above algorithm will terminate. If t 

is equal to n, the number of nodes in the network, then the entire network will become 

a terminal network and hence more network resources have to be committed for the 

trace route problem. On the other hand if t is smaller, then the number of bi-connected 

components identified will be large and so will the number of terminal nodes. 

Polynomial-time algorithms exist to test the connectivity of the network and to find cut 

vertices. 
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Definition 2.3 (Terminal Network): A terminal network TG = (V′, E′ ) of a network G 

is an edge weighted network that contains nodes {u, v} ∈ V′, where u and v are 

terminal nodes of G and link (u, v) ∈ E′, if and only if, nodes u and v belong to the 

same connected component that results after the execution of the algorithm BCC. The 

weight on the link (u, v) ∈ E′ is the shortest distance between vertices u and v in G.     ■ 

 

The terminal network of the network shown in figure 2.3 is shown in figure 2.4. 
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 Figure 2.3: A network with terminal nodes highlighted and labeled. 
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Figure 2.4: The terminal network of the network in Figure 2.3. The weights on the 

edges are the distances in terms of number of hops between the marked vertices in the 

network shown in Figure 2.3. 
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Figure 2.5: The single source shortest path tree with node ‘b’ as the root of the tree. 
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2.5 Detection Algorithm 

After the terminal network is constructed the single source shortest path tree starting 

with the terminal node that is closest to the victim is constructed from the terminal 

network. A single source shortest path tree is shown in figure 2.5. 

Considering the tree network as shown in figure 2.5, let node b be the router that is 

closest to the victim. Assume that we are dealing with a continuous attack from a 

single source. A straight forward track back approach works as follows. Assume that 

router k (in figure 2.5) is forwarding the attack packets. Node b without any knowledge 

first requests node a to mark the packets. This operation will be termed as placing an 

alarm at node a.  If the marked packets are not the attack packets, then it can request 

node c to mark the packets. Node b now will recognize that the attack packets are from 

node c (“ringing” node) and it will initiate a track back request to node c (for the 

subtree rooted at node c).  Node c will perform similar operations to that of node b 

until node k is reached. 

Clearly, this straight forward approach will require that all nodes mark the packets 

at one time or the other and hence is a severe drain of network resources. If we request 

more than one node to mark the packets simultaneously, then we can speed up the 

process of trace back, but it does not improve resource usage efficiency. In the case of 

a distributed DoS attack, there will be more than one ringing node that is on different 

paths from root to leaf nodes in the shortest path tree. For such cases, the trace back 

will be applied to each subtree rooted at the ringing nodes. In summary, for the 

continuous attack scenario, a given set of alarms is incrementally placed at more than 
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one location and depending on the ringing and non-ringing of the alarms the old alarms 

are removed and new alarms are placed.  Instead of working with the network in figure 

2.5, we can apply the same approach as above on the centroid tree.  Since the depth of 

the centroid tree is no more than O(logn), the trace back can be completed in O(logn) 

time.  This concept is explained in section 2.5.1. 

 

2.5.1 The Centroid Approach 

Our proposed algorithm requires a centroid decomposition technique on a tree network. 

Every tree T has a centroid consisting of either one vertex or two adjacent vertices [52].  

For each vertex v ∈ T of degree 2 or more, count the number of vertices in each of the 

subtrees emanating from v, and let nv be the maximum of these numbers. If the tree has 

n vertices it can be shown that either there is just one vertex v for which 2/)1( −≤ nnv  

or there are two adjacent vertices v and w for which nv = nw = n/2. We can determine a 

centroid of the tree T by repeatedly removing nodes of degree one until either a single 

vertex remains or an edge remains. A centroid decomposition is the process of 

repeatedly finding the centroids on subtrees obtained by removing every edge incident 

on the centroid.  Given a n-node tree the centroid decomposition can be completed in 

O(n) time [53].    

 

Observation 2.1 [in 53]: Given a tree T with n nodes, the size of each connected 

component obtained by the removal of the centroid is no more than n/2.                       ■ 
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Observation 2.2: Based on Observation 2.1, it can be clearly seen that the depth of the 

centroid tree TC is O(logn).                                                                                              ■ 

 

A centroid tree TC of a tree T is obtained using the algorithm CentroidTree. 

 

Algorithm CentroidTree (T) 

Input: The tree network T. 

Output: The Centroid Tree of TC. 

Begin 

1. The centroid of T is the root r of the tree TC. 

2. let subtrees T1, T2, …, Tk be obtained by removing r from T; the centroids c1, 

c2, …, ck of the subtrees T1, T2, …, Tk, respectively are the children of r, 

3. each node x in TC serves as the root of the centroid tree of the subtree Tx. 

End. 

 

 

The centroid decomposition process on a tree network and its corresponding centroid 

tree are illustrated in figure 2.6. 
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Figure 2.6: (a) Find a centroid r in a tree T, (b) Find subtrees T1, T2, and T3 by 

removing r and the centroids c1, c2, and  c3 from each subtree, (c) construct a centroid 

tree Tc with node ‘r’ as the root of the tree 

 

2.5.2 The Algorithm 

The algorithm to perform the trace back assumes that preprocessing has been 

completed and the terminal network has been constructed. Once the victim is identified, 

then the router closest to it in the terminal network is chosen as the root of the single 

source shortest path tree as explained previously. The alarm is placed on the centroid or 

its neighbors as explained below. Depending on the ‘ringing’ and ‘non-ringing’ of the 

alarm the new set of alarms is placed on the centroid of the sub trees that remain after 

the previous centroid is removed. This process is continued until the terminal router 

closest to the intruder is identified.   
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Algorithm Detect_Intruder 

Input: The network and the router closest to the victim 

Output: The router closest to the intruder 

Begin 

1. First construct the terminal network and find the single source shortest path tree 

T of the terminal network with the node in the terminal network closest to the 

victim as the root. 

2. Find the centroid of T and place an alarm either on the centroid or the neighbors 

of the centroid as specified in the more detailed description below. 

3. Determine the subtrees obtained after removing the centroid and if attack 

packets are discovered in a node v on which an is alarm is placed, then execute 

step 2) on a subtree Tv containing the node v. If there is more than one node 

alerting an attack, then choose the one that is farthest from the root of the tree. 

The above process is continued until the intruder is detected. 

End. 

 

 

Based on observation 2.2 and the above algorithm, it is evident that the number of 

alarm placement steps is bounded by O(logn) for a n-node tree. Step 1) of the above 

algorithm can be constructed using Dijkstra’s shortest path algorithm in O(m+nlogn) 

where m and n are the number of links and nodes of the terminal network.  
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Figure 2.7: Alarms are placed on nodes a, c, d, and x and the ringing ones are d, and x.  

Node d is the closest to the intruder and the tree rooted at d is processed next. 

 

For step 2) of the algorithm, as pointed out earlier the centriod can be found in O(n) 

time and after we find the centroid we place the alarms as follows. Assuming that we 

have a large number of alarms available, we should place the alarms on the centroid 

and its neighbors.  

Figure 2.7 illustrates alarms and shows the ringing alarms based on the location of 

the intruder. For example, in figure 2.7, based on the position of the intruder the alarms 

placed on node x (the centroid) and nodes d will ring.  Node d is farthest from the 

victim and hence the subtree rooted at d will be chosen next and its centroid will be 

found. This process will continue until the terminal node closest to the intruder is found.  

If more than one such node d exists due to attacks from multiple sources, then each tree 

rooted at such d’s will be processed as above. 
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2.6 Concluding Remarks 

We have introduced several techniques for tracing internet packets with spoofed 

source addresses back to their origin of attacks. Even though those several proposals 

are worthy attempt to be applied in different tracing techniques for different attack 

types, there exist some practical limitations for implementation such as resource bound, 

modification of Internet infrastructure, and so on. 

In this chapter we have presented a simple and efficient algorithm for detecting the 

source of attack in a network. The algorithm uses the dynamic centroid decomposition 

technique to select routers for monitoring packets to identify the one with signatures of 

an attack packet. To simplify network topology and reduce the amount of network 

resources required to perform trace back, we need a scheme which transfers a general 

network topology to a terminal network of the network. 

In summary, we ensure that many of the existing trace back techniques can be used 

in our algorithm in order to obtain the minimal number of network entities on which 

alarms (or monitors) are placed to determine the source of attacks under more 

sophisticated attacks. In other words, our proposed solution for the trace back problem 

involves a very small fraction of routers wherein logging, marking, or IPSec 

association is performed. In addition, our proposal could serve as the basis for future 

research work on quarantine of potential sources for large distributed attacks. 
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Chapter 3  

Measurement and Analysis of Worm 

Propagation on Internet Network 

Topology 

 
3.1 Introduction 

In the area of virus and worm modeling, many studies have employed simple 

epidemiological models to understand general characteristics of worm’s propagation. 

Epidemiologic propagation models have traditionally been used to understand and 

model the spread of biological infectious diseases [9, 10]. The time required for finding 

the target node to be infected and the rate of infection were assumed to be a constant in 

many propagation models proposed in the literature [5, 8]. A constant infection rate is 
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reasonable for modeling epidemics but may not be valid for real Internet viruses and 

worms. The reason is that most classical epidemic models are homogeneous, in the 

sense that an infected host is equally likely to infect any of the susceptible hosts while 

Internet is non-homogeneous. In addition, current propagation studies have not 

considered the real Internet topology data and exploited characteristics of the network 

topology.  

 

3.1.1 Immunization Defense of Worms 

Previous works on worm modeling neglect the impacts of multiple worm outbreaks on 

our computer networks. Nowadays, new network worms will continue to be created 

while the strains of old worms will continue to circulate around the Internet. Recently, 

the Blaster worm, known as MSBlast or LoveSAN, has infected an average of about 

2,500 new systems hourly running Microsoft operating systems that are unpatched for 

the so-called RPC vulnerability [16]. It is noted that a huge number of infected hosts is 

a substantial rate of infection, though the several hundred thousand hosts may be still 

infected by other old Internet worms including Slammer, Code Red and Nimda. In 

other words, many new viruses and worms come out every day, though most of them 

die away without infecting many computers due to human countermeasures including 

using antivirus software, patching susceptible computers, disconnecting network 

services and so on. Thus, any proposed defense mechanism must be evaluated in 

handling many active worms simultaneously. Wang et al [12] investigated the 

immunization defense on different network topologies including hierarchical and 
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clustered. Immunization can be thought of as effective packet filtering. Immunization 

from one worm does not guarantee protection against other forms of the worm.  Wang 

et al [12] considers permanent or static immunization where a node once immunized is 

permanently protected. In reality, immunization must be taken as temporary due to 

multiple worm outbreaks since a computer being recovered from a certain worm can be 

reinfected by other worms immediately. In other words, any computer could not be 

permanently immune to many Internet worms.  

 

3.1.2 Characteristics of Worm Spreading 

In order to defend against future worms, we need to understand the network 

characteristics of worm spreading. Clearly the following characteristics of worm must 

be well understood before the model of Internet worm propagation could be developed.  

1. The rate and pattern of infection,  

2. The effect of factors on underlying network topology, and  

3. The human countermeasures in the network   

If such characteristics were known, mechanisms might be developed to detect an on-

going, network wide infection. Certain nodes of the Internet are well protected 

compared with the others.  Moreover, at certain vital installations the rates at which 

infections are cured are higher compared with others.  To model this real world 

phenomenon we have taken into account in our simulations variable infection rates and 

variable cure rates.  
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Also in this chapter, with real Internet topology data, we find that there are two 

effective factors that influence worm propagation: temporary immunization time and 

network delays. We note that our simulation results can explain how fast a virulent 

worm can spread and suggest effective mechanisms to monitor and defend against the 

propagation of worms. It also shows that we can find location(s) in the network that 

when quarantined would slow down the rage of spread.  

The rest of the chapter is organized as follows. Section 3.2 reviews the analytical 

methodologies of Internet worms. In Section 3.3, we give a brief review of the classical 

epidemic models and point out their limitations to model Internet worm propagation. In 

Section 3.4 and 3.5, we show the simulation results based on different network 

topologies. We conclude the chapter with an outline of our future work in section 3.6. 

 

3.2 Analytical Methodologies of Internet Worms 

Classical Epidemic model 

In epidemiology research, there exist several deterministic and stochastic models for 

virus spreading. About ten years ago, Kephart and White [5] presented the 

Epidemiological model to understand and control the prevalence of viruses. This model 

is based on biological epidemiology and uses nonlinear differential equations to 

provide a qualitative understanding of virus spreading. They assumed that classical 

epidemic models are all homogeneous, which means that an infected host is equally 

likely to infect any of other susceptible hosts. Though at that time the model 

assumptions were considerably accurate because they considered that infection takes 
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place when hosts share their disks, but with the spreading on the Internet such 

assumptions are no longer valid. They also introduced an analytical model called SIS 

model in which infected hosts become susceptible once being cured of the infection.  

 
Two-factor Worm Model 
 
The Code Red worm incident of July 2001 has been investigated to model and analyze 

Internet worm propagation. Zou et al [11] introduced that there were two factors 

affecting Code Red propagation: one is the effect of human countermeasures against 

worm propagation; the other is the slower worm infection rate due to Internet 

congestion caused by Code Red worm. Based on the classical epidemic models, they 

derive a new general Internet worm model called two-factor worm model, which 

matches the observed Code Red worm data of July 19th 2001 with their simulation 

results and numerical solutions.  

 

Active Worm Model 

Chen et al [13] present a model, referred to as the Analytical Active Worm Propagation 

(AAWP) model that characterizes the propagation of worms that employ random 

scanning. They compare their mathematical model with the Epidemiological model and 

Weaver’s [14] simulation results which use hit list scanning. The AAWP model shows 

that the model can be applied to monitoring, detecting and defending against the spread 

of active worms. The AAWP model can be also extended to Local AAWP model to 

understand the characteristics of the spread of worms that employ local subnet 

scanning effectively.  
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Applying Infection Delay in Worm Epidemic  

Wang et al [12] introduced an analytic model to capture the impact of underlying 

topology in computer viral propagation. The simulations are conducted to attempt to 

answer the question – how a virus propagates in real network. They assume that an 

infection rate for each edge and a cure rate for each infected node are constant. In 

addition to the spread of a virus in real network, Wang and Wang [20] investigated the 

model extending the classical epidemic model by including two specific parameters: 

infection delay and user vigilance time.  The infection delay is a period of time 

between the arrival of a virus on certain node and further infection from that node. The 

user vigilance time is the immune time. The model of capturing the effective of 

infection delay and user vigilance was validated by simulation analysis based on the 

homogeneous SIS epidemic model. In real networks however, the worm infection rate 

and cure rate are not likely to be a constant. 

We also examined several major characteristics of infection, including the variant 

rate and pattern of infection through the different network topologies and the rate of re-

infection at each host during an attack. We use a discrete time model and deterministic 

approximation to describe the spread of Internet worms. 

 

3.3 Worm Propagation Models 

The epidemic propagation models for the study of biological infectious diseases have 

been applied on modeling the propagation of computer viruses [5, 8]. The propagation 

of a real worm on the Internet is a complicated discrete event process. In this section 
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we consider only continuous process and use the continuous differential equations to 

describe it, which means that a worm on an infectious host continuously tries to find 

and infect other susceptible hosts. We introduce two classical deterministic epidemic 

models and an extension of one of models, which are the basis of our experimental 

design. We also point out their limitations when we try to use them to model Internet 

worm propagation.   

 

3.3.1 Definition 

In classical epidemic model, it is defined that a host is called an infectious host at time t 

if it has been infected by virus before t. A host that is vulnerable to virus is called a 

susceptible host. By infection and cure rate, we mean the probability with which an 

infectious host send infective messages to its neighbors and the probability with which 

an infectious host will be cured of the infection once it received infective messages 

from its neighbors, respectively. In addition we define that the temporary immunity is a 

temporary hold on a worm spreading, which means that many hosts will be susceptible 

or infected by new worm outbreaks at time t though they are already immune to old 

worm that came out before time t. 

 

3.3.2 Classical simple epidemic model 

In classical simple epidemic model, each host stays in one of two states: susceptible or 

infectious. Each susceptible host becomes an infectious one at a certain rate. At the 

same time, infectious hosts are cured and become again susceptible at a different rate. 
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Notation Definition 

N 

S(t) 

I(t) 

R(t) 

β 

δ 

λ 

µ 

ρ 

Size of total vulnerable population 

Number of susceptible hosts at time t 

Number of infectious hosts at time t 

Number of removed infectious hosts at time t 

Infection rate 

Curing rate on an infectious host 

Removal rate on an infectious host 

Re-susceptible rate on a removed host 

Epidemic threshold 

 

 

 

 

 

 

 

 

 

 

   Table 3.1 Notations of Worm Epidemic Models 

 

This model system where having the infection and being cured does not confer 

immunity. This model is called the SIS model, because hosts move between the S 

(Susceptible) and I (Infectious states). Using the terms defined in table 3.1, the differential 

equation for the SIS model is 

 

dt
tdI )(  = βI(t)[N – I(t)] - δI(t)        (3.1) 

 

where I (t) is the number of infectious hosts at time t; N is the size of population; β is 

the infection rate; and δ is the cure rate.  
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We assume that at beginning, t =0, one host is infectious and the other (N −1) hosts are 

all susceptible. Let S(t) = N − I (t) denote the number of susceptible hosts at time t. 

Replace I(t) in equation (3.1) by N − S(t) and we get 

 

dt
tdS )(  = -βS(t)[N – S(t)] + δ[N – S(t)]     (3.2) 

 

Therefore we say the SIS model is defined by: 

 

dt
dI

 = βSI - δI       (3.3) 

        
dt
dS  = -βSI + δI  

 
The solution to the equation (3.1) is 

 

tNeINI
NI

tI )(
00

0

)(
)(

)( δββδββ
δβ

−−−−+
−

=      (3.4) 

 

We conclude that, as t → ∞, 

 

    I∞ = N - ρ        (3.5) 

where ρ = β
δ

 and I0 is the initial number of infectious hosts. Therefore, not absolutely 

all the population gets infected. This shows that each infectious host infects others with an 

average value of β per unit time.  
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         Figure 3.1: Classical simple epidemic (SIS) model 

 

However, the probability that a host becomes infected is not the same for every host 

because it is a function of their connectivity and the infection characteristics with a 

certain cure rate. We note that the probabilities per unit time of infection and of cure 

are independent. Once a host is cured, it is immediately capable of being re-infected. 

Figure 3.1 compares the number of infectious hosts as a function of time as obtained 

from equation (3.4). The graph contains 100,000 hosts and the infection and cure rates 

are β = 1.0 and δ = 0.2, respectively. It shows that the number of infectious hosts is 

nearly exponentially increased from t = 0 to t = 20. 

The number of infections stops increasing when about 80% of all susceptible hosts 

have been infected. The SIS model does not take into account the possibility of host’s 

removal due to death or immunization which would lead to the so-called Susceptible-

Infectious-Removed (SIR) model [9]. It also does not model secondary effects such as 

reduced infection rate due to network congestion when many hosts are infected [11]. 

 

62



3.3.3 Kermack-Mckendrick model 

In epidemiology modeling, Kermack-Mckendrick model considers the removal process 

of infectious hosts [9]. This model is called the classical SIR epidemic model. 

Kermack-Mckendrick model can be described as shown in figure 3.2. Each host is 

assumed to be in one of three states: Susceptible (S) meaning vulnerable to the virus, 

Infectious (I) meaning infected and actively infecting other hosts, and Removed (R), 

which corresponds either to immunity from the virus, or death at a constant rate. 

 

 

S I

λ β 

R
 

 

 

Figure 3.2: The SIR model in which hosts move between three states: Susceptible (S), 

Infectious (I) and Removed (R) with infection rate β and removal rate λ. 

 

In this model, the assumptions are that susceptible hosts become infected by contact 

with infectious hosts, infectious hosts either die or recover at a constant rate, and the 

total population is constant. The sizes of the susceptible and infectious populations 

therefore evolve according to the following equations based on the simple epidemic 

(SIS) model. 
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dt

tdI )(
 = βS(t)I(t) - λI(t) 

    
dt

tdS )(
 = -βS(t)I(t)     (3.6) 

    
dt

tdR )(
 = λI(t)   

 
where β is the infection rate; λ is the rate of removal. 

 

The Kermack-Mckendrick model improves the SIS epidemic model by considering 

that some infectious hosts are immune, are placed in isolation, or have died. However, 

this model is still not suitable for capturing the effect of multiple worm propagation 

simultaneously. First, in the Internet, many new viruses and worms come out every day 

though most of them disappear due to human countermeasures including using 

antivirus software, patching susceptible computers, disconnecting network service 

from the infectious hosts and so on. In other words, many hosts will be susceptible or 

infected by new virus outbreaks at time t though they are already immune to recovered 

old virus that came out before time t. But in Kermack-Mckendrick model once 

infectious hosts recover, they will not be infected again by any virus and stays in the 

“removed” or “immunized” state forever. The link delays required for the infection to 

travel to the hosts are captured in the aggregate value called infection rate. While such 

gross estimates are correct for long lasting worms, it does capture neither the short 

lived ones nor the vulnerability of nodes which are reachable quickly. In this chapter, 

we consider that the propagations of most Internet worms are topology dependent and 
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need to be modeled by considering the properties of the underlining topology, which 

will be discussed in a later section. 

 

3.3.4 An extension for the SIR model 

We assume that a more general case, allowing for loss of immunity that causes 

recovered hosts to become susceptible again. In other words, a portion of the removed 

hosts a time t, R(t), due to loss of immunization join the susceptible population at time t 

+ τ, S(t+τ). Therefore a portion of population dynamically changes from susceptible to 

infectious, to removed and back to susceptible. Model that describes such an 

epidemical cycle is referred to as SIRS model. If hosts in the R state are only 

temporarily immune, the diagram becomes, 

 

 

S I

λ β 

R

µ

 

 

 

 

Figure 3.3: The SIRS model; with conferring a temporary immunity, it can move from 

the R state to the S state 

 

Our model is a generalization presented in [10], allowing hosts recovering from the 

infective to go into a temporarily immune state rather than directly back into the 
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susceptible state. Let µ be the rate at which removals loose the immunization and 

becomes susceptible. Using the same notation as the SIR model we obtain the 

following deterministic SIRS model: 

 

)()()()( tRtStI
dt

tdS
µβ +−=  

)()()()( tItStI
dt

tdI
λβ −=       (3.7) 

)()()( tRtI
dt

tdR
µλ −=  

 

Also, we have S(t) + I(t) + R(t) = N, ∀t ≥ 0. We can supply the same initial conditions 

as with the SIR model and numerically solve the SIRS model. Let ρ = λ/β be the 

epidemic threshold if re-susceptible rate, µ, is less than removal rate, λ, and I0 and S0 

are the initial fraction of infectious hosts and of susceptible hosts, respectively. For the 

epidemic to occur, we must have: 

 

0| =tdt
dI

> 0 → βS0I0 - λI0 > 0 → S0 > β
λ

     (3.8) 

Clearly S0 must satisfy this condition for the epidemic to occur. The equation (3.8) 

indicates that no epidemic occurs if the initial number of susceptible hosts is smaller 

than the epidemic threshold, S0 < ρ. This important result of the threshold effect is the 

same as what was already discovered by Kermack and McKendrick [9]; the population 

must be “large enough” for a disease to become epidemic.  
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Figure 3.4: SIRS epidemic model; it shows the number of infectious, susceptible, and 

removed hosts as a function of time 

 

Figure 3.4 compares the number of infectious, susceptible, and removed hosts as a 

function of time as obtained from equation (3.7). We attempt to solve this model using 

the numerical capabilities of MAPLE (mathematics software) without finding an 

explicit function-formula for the number of susceptible, infectious and removed hosts. 

The graph contains 100,000 hosts and the infection, removal and re-susceptible rates 

are β = 1.0 and λ = 0.2, µ = 0.07 respectively. It shows that the number of infectious 

hosts is initially exponentially increased up to about 80% of total population and then 

decreasing the growth of infection population. It is also observed that the infection 

growth will reach a stable equilibrium after an amount of time passes. 

While there is a vast literature covering models in which the “temporary immunity” 

step is not considered (i.e., SIS models and SIR models), comparatively little work has 

 

67



been done to understand how the nature of the R → S transition affects the dynamics of 

an epidemic of Internet worms. With regard to the loss of immunity we consider two 

different types of worm behaviors, depending on parameters: (i) periodic epidemic 

outbreaks and (ii) one or more extended outbreaks followed by extinction of the 

epidemic due to stopping spreading of old worms. 

We note that instead of acquiring infinite immunity to a specific epidemic, infected 

hosts in this extended model spend a constant number of time steps in a generalized 

immune state before returned to the susceptible population. We have to investigate the 

SIRS model with immunity lasting non-constant time step since hosts can be 

significantly delayed in the removed state by mechanisms such as a large constant 

period of temporary immunity. 

 

3.4 Simulation and Analysis 

In this section we describe our experimental design and validate the simple epidemic 

(SIS) model of computer virus introduced by Kephart [5] using the results of our 

simulation. We also present measurements of worm infections in two different network 

topologies with random rates at which an infectious node attempts to infect its 

neighboring nodes and random rates at which it protects itself or remove viruses itself. 

These experiments provide insight into the characteristics of infection propagation on 

computer networks and they also serve as the basis for future research work on 

quarantine of virulent Internet worms. 
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3.4.1 Random transit stub model without topology constraint 

Our experiments have been conducted using a simulation environment that is capable 

of simulating hundreds of thousands of computing nodes with random network 

topology and any viral epidemic model. The network topology that is used in this 

simulation is constructed by Transit Stub model that produces hierarchical graphs in a 

different way by consisting of interconnected transit and stub domains [17]. A 

connected random graph is first constructed; each node in that graph represents a 

transit domain. Each node is then replaced by another connected random graph, which 

represents the backbone network topology of one transit domain. Next, for each node 

in each transit domain, a number of connected random graphs that represent the stub 

domains linked to that node are generated. Finally, certain number of additional edges 

is created between pairs of nodes, one from a transit domain and one from a stub 

domain, or one from each of two different stub domains. Clearly, if the random graphs 

generated are all connected, an entirely connected graph is constructed by the above 

procedure. Figure 3.5 shows the example of Transit-Stub model. 

As shown in figure 3.5, transit domain represents the backbone of the Internet and 

each backbone node in a transit domain connects to a number of stub domains through 

nodes, called gateway, in the stub domain. In this experiment we do not consider the 

topology constraint such as infection delay time when infective messages are able to 

reach a susceptible node. Instead, the infection process was simulated by varying the 

connectivity of topology, the number of nodes, and the rate of infection β and cure δ. 
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Figure 3.5: Example of Transit-Stub Model 

 

3.4.2 System models 

We consider a network with 100,000 nodes and two simulation scenarios. The first one 

is cured and infection case (CI strategy), the same as the one used in the classical 

simple SIS model, in which an infectious node determines whether it can be cured of 

infection or not before infecting any of susceptible nodes connected to it. The second 

one is infection and cured case (IC strategy) where an infectious node determines 

whether it can be cured or not after infecting any of susceptible neighboring nodes. We 

also analyzed the worm epidemic model with two different infection and cure rates: 

one is constant infection/cure rate at which an infectious node is equally likely to infect 

any of other susceptible nodes and to be cured of infection. The other one is variant 

infection/cure rate at which certain infectious nodes are likely to infect more 

susceptible nodes than other infectious nodes do. In addition, the infection rate, β, is 
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associated with each of edges. Similarly, the rate of cure of infection, δ, is related to 

each node. 

A few assumptions and simplifications were made to ensure feasibility of our 

experiment. First, a single initially infected node is randomly selected to release worm 

in each trial and we performed 500 simulation runs using same parameters. Second, a 

desired random graph has average degree of 5 on each node. It means that the average 

number of infectious messages that an infected node can generate is five. In other 

words, an infected node selects on the average five neighboring nodes to infect. Finally, 

to simulate the model, time is divided into a number of discrete steps, and on each step 

the population of hosts in each state is altered according to the different rules such as 

different rate of infection and recovery, which means that hosts move between the S 

(Susceptible states) and I (Infectious states) at a certain rate. In addition, relevant data 

is recorded per unit time and simulation stops when some desired state is reached, such 

as all nodes are infected or the completion of simulation time. 

 

3.4.3 Initial results 

Figure 3.6 shows the total number of infectious nodes averaged across the 500 runs of 

the two different types of simulation models. Note that in the case of constant rate the 

number of infectious nodes quickly reaches almost 80% of the total population, and the 

infection growth slows down after that point. This implies that after almost 50 units of 

time, the worm may spend much of its time trying to infect nodes that had already been 

infected.  
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 3.6: Comparison of the average number of infected nodes as a function of time 

 different epidemic strategies; N = 100,000, (a) with constant rates, β = 1.0, and 

2 (b) with non-constant rates  

ition, in the case of variant infection rate the number of infectious nodes infects 

susceptible nodes with different infection rate at each time. 

esult is consistent with the results in simulation presented by Kephart [5]. Also a 

erable fraction of the nodes in a transit stub network remains uninfected for long 

s of time due to their connectivity. Comparing the two different epidemic 

ies between constant infection/cure rate and non-constant infection/cure rate, we 

hat there is a slight difference between these two strategies as shown in figure 3.6. 

ample, for IC strategy, it takes almost 50 time units for the infection growth to 

own in the model with constant rate in figure 3.6 (a) while it takes 40 time units 

 model with variant rate in figure 3.6 (b). For CI strategy, it takes 70 time units to 

 the spread of worm with constant rate while it takes longer time with variant 
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Figure 3.7: Comparison of the number of infectious nodes as a function of time in two 

different epidemic strategies. All cases are for 100,000 nodes, an average infection rate 

β of 1.0, a removed rate λ is 0.2, and a re-susceptible rate µ of 0.07 

 

Clearly, it shows that CI strategy has more number of infected nodes than IC strategy 

does in both the types of simulation models. 

Figure 3.7 shows the total number of infectious nodes averaged across the 500 runs 

of the two different types of simulation models. Note that in both cases the number of 

infectious nodes increases almost exponentially from time t = 0 to t = 10, and then the 

rate of infection growth decreases. This result is consistent with the numerical solution 

obtained from SIRS mode while there is little difference in comparison of two 

simulation models. It is also observed that the number of infectious nodes increases as 

the re-susceptible rate increases in a stable equilibrium stage. It is intuitive that we can 

expect a lower rate of infectious propagation when the rate of R→S transition is lower, 

because the number of susceptible hosts decrease as the worm propagates. 
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Figure 3.8: Extinction between two differen

temporary immunization time θ. All paramet

same as those given in Figure 3.7 

 

Figure 3.8 shows the average number of infect
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Figure 3.9: Comparison between the total times to infect 80% of total population vs. 

the starting node in a worm spreading; N = 10,000, infection rate β = 1.0, and cure rate 

δ = 0.2 

 

In addition, compared with the two simulation models, there is significantly less 

variation in the average number of infectious nodes during infection. Results of these 

experiments show that for a given epidemic model the longer temporary immunization 

time, the wider will be the variation in infection growth. It is also observed that the 

infection growth of any type of propagation will reach to a stable equilibrium after an 

amount of time passes.  

In figure 3.9 assuming a particular chosen node as the first infected node, the graph 

shows the total amount of time to infect at least 80% of the entire population. The 

fastest time to infect 80% of the population was 7 time units and the longest time was 

18. The results of figure 3.9 points out that for a given topology and a given infection 

model, nodes that are in certain critical locations spreads the worms much faster than 
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the others. This clearly points to the fact the aggregate infection rate using in many 

previous works are insufficient for a concrete analysis. 

 

3.5 Worm Propagation with Topology Constraint 

We extend our simulation methodology to include a realistic network model and 

evaluate the impact of topological constraints. After infecting a susceptible node, a 

worm attempts to infect other susceptible nodes with infection delay time which is the 

time to find its target nodes; it may attempt to only infect a small number of other 

susceptible nodes corresponding to network topological criteria, such as connectivity of 

network. 

In addition, we focus on the behavior of Internet worm propagation in response to 

multiple worm outbreaks. We model the impact of multiple active worms by specifying 

the temporary immunization time under which an infected node could be immune to 

the same type of worm after being cured. If many worms are active though they could 

be removed without infection then the temporary immunization time will be a small, 

which means that any node in “removed” state as described in our terminology could 

be susceptible or infectious by new worm outbreaks at time t + θ  although being 

already cured or recovered at time t. We recall that the time θ is the temporary 

immunization time which is a measure of how many measurement intervals it will take 

before the new worm comes out in the Internet. On the other hand, the time θ is long 

enough for an infected node to be immune to the worm unless new worm conquers the 

entire network at its high rate of growth.  
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3.5.1 Network model 

In this section, we describe the experimental network model of Internet worm infection 

using real Internet data set (round trip time (RTT) data) called topology constraint. As 

the Internet has grown, it is difficult to accurately model the topology and structure of 

hundreds of thousands of interconnected networks. As a result, it is infeasible to model 

the full Internet topology for our experiments, so we, instead, look for developing a 

smaller topology without loss of network characteristics. Our model of the network 

topology defines the latency (RTT) data for infection delay time and the paths that a 

worm can follow when propagating. We note that this does not necessarily mean either 

a fully-interconnected topology or an infection path along every network link. Our 

interest lies in the network model used to obtain real-time information about the 

Internet topology measurements around the Internet.  

In this study, we obtain network topology data (e.g. RTT data and traceroute) from 

the NLANR Active Measurement Program (AMP) [21]. AMP provides measurements 

of forward IP path and graphical analysis for Internet usage on undertaking site to site 

measurement across the HPC networks, which has currently more than 140 active 

measurement monitors deployed to measure currently round trip times, topology and 

loss. Given the current network topology, this work is designed to compliment the 

measurements taken by Abilene network [22] that is an advanced backbone network 

that connects regional network aggregation points as shown in figure 3.10. It supports 

the topology measurement services to universities participating in Internet2 and also 

complements other research networks across the country.  
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Figure 3.10: The Abilene Network Topology including Abilene core nodes, connectors 

and some of participants [22] 

 

Our network model consists entirely of 130 active measurement nodes provided by 

AMP. Each node is connected to the global network shown in Abilene network 

topology. The global network represents the Abilene core nodes which are connected 

together and can address and forward packets to each other directly. It is likely that 

some core nodes contain multiple measurement nodes that frequently communicate 

among themselves. 

For our experiment, we make a simulation across 500 runs of two different types of 

simulation model (CI and IC strategies) as described in previous section. In addition to 

these two types of strategies, we also analyzed two different rules of infection rate: 

constant infection/cure rate and non-constant dynamic infection/cure rate. Finally, we 
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note that the round trip time is too fast to capture the rate of population of infected 

hosts though large RTTs have values greater than 400ms and occasionally as great as 

500ms in our observed data. We therefore consider that a valuable mechanism for 

converting a continuous system time such as RTT into a discrete simulation time, 

which means that the system time is divided into a number of discrete steps (or time 

unit), and on each step the population of hosts can be observed according to two states 

at a certain rate: S (Susceptible states) and I (Infectious states) respectively. 

 

3.5.2 Simulation Results 

We simulate a simple, relatively small Internet network model consisting of 130 active 

monitors connected to each other and located around United States as presented in 

Abilene network. We examined the performance of the worm epidemic model with 

topology constraint using the classical epidemic model. For our simulation, we set the 

discrete interval time into one millisecond (ms), the maximum simulation time for trial 

to 125 ms corresponding to the maximum RTT value observed from AMP. For Internet 

worm epidemic model we assume that the infection rate β and the cure rate δ are the 

same as what are applied in the classical epidemic model. 

The total average number of infected hosts over time for two different types of 

infection/cure rate is shown in figure 3.11. In each case of model we analyze the 

effectiveness of two different simulation strategies (CI and IC strategies) described in 

section 3.4.2. Considering the results of figure 3.11 we see that the infection growth 

stops increasing after the maximum number of infectious hosts reaches almost 80 out  
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Figure 3.11: Comparison of average number of infectious nodes as a function of time 

in two different simulation models 

 

of total population in CI strategy while 60 or 70 nodes in the IC strategy.  

Moreover, it takes longer for the rate of growth of worm propagation to be in 

equilibrium. On the other hand, in classical epidemic model the growth of the curve 

become quickly stable as shown in figure 3.6. The result of these experiments is 

undisputed because the growth of infection propagation would be slower if the 

epidemic model includes topology constraint referred to as infection delay time. 

Comparing the two different epidemic strategies between constant infection/cure rate 

and non-constant infection/cure rate, we note that in both case more rapid propagation 

of worm infection were observed in the CI strategy. 

Figure 3.12 shows the result for the comparison of the total 60% infection times as 

the starting node in Internet worm propagation, obtained from 500 runs of the 

simulation for Abilene network topology model. We note that some variation exists in 

the time to infect a large portion of the network.  
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Figure 3.12: Comparison between the total times to infect 60% of total participants vs. 

the starting node in a worm spreading with constant infection and cure rates 

 

The fastest total time to infect 60% of total participant hosts is 61ms when Indiana 

University is infected first and the longest was 125ms when University of Alaska was 

infected first. As shown in Figure 3.10, Indiana University is considered as the center 

of Abilene backbone network as well as one of Abilene connectors connecting directly 

to the Abilene network while University of Alaska is just participant located away from 

the central point of the Abilene network. 

We also measured the total number of re-infections that each participant host 

experienced during a worm infection in order to validate whether the structure of 

network topology has great influence on infection propagation. Figure 3.13 shows the 

result for the number of re-infections for each of the 130 participant belonging to 

Abilene network. We see that some number of the hosts is re-infected much more than 

others.  
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          Figure 3.13: Counting the total number of re-infections at each participant host 

 

For example, Indiana University is attacked 86 times on average, while Wisconsin 

university is attacked 41 times only. It may be pointed out that for a given topology we 

might slow down the growth of Internet worm infection if we find critical locations 

where some nodes are more prone to being attacked more than others. Moore et al [18] 

investigated the containment system using address blacklisting and content filtering to 

minimize worm propagation in the Internet.  The simulation system we have performed 

could identify addresses to be blacklisted. 

 

3.6 Concluding Remarks 

In this chapter we have presented measurements of worm infections in two different 

network topologies with constant or non-constant infection and cure rates. We 

extended our simulation methodology to include a real Internet network model and 

evaluated the impact of topology constraints. As a first step, in this chapter we have 

described the two classical simple epidemic models and pointed out their limitations. In 
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addition to those models, we presented an extended model, allowing for loss of 

immunity that causes recovered hosts to become susceptible again. Our simulation has 

been conducted using two simulation processes including Infection and Cure per time 

unit during the spreading of a worm infection. We considered the IC and CI strategies 

for worm infections and showed that the CI strategy causes more rapid propagation. 

Furthermore, as part of our ongoing work we are working on accurate analytical 

models to capture the spread of worms on the Internet.  We are also working on the 

development of effective quarantine techniques using the knowledge of worm 

propagation.  
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Chapter 4  

Optimal Control of Treatment Costs for 

Internet Worm 

 

4.1 Introduction 

The task of detection and prevention of worms has become more difficult on our 

existing computing infrastructure. Previous works on worm modeling have been 

investigated to model and analyze Internet worm propagation [11, 12, 13] and have 

introduced an analytic model to capture the impact of underlying topology in computer 

viral propagation [19, 64]. However the control of infectious worm has been one of the 

most important issues of computer networks. In this chapter, we attempt to investigate 

a new approach to such optimal control problems with two costs to be minimized.   

There is now a large body of work on the cost-benefit analysis of infectious disease 

control in the public health literature. Goldman and Lightwood [55] presented the cost 
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optimization problem of minimizing the value of costs incurred from both disease and 

treatment in biological epidemiological model (SIS). This model uses nonlinear 

differential equations to provide a qualitative understanding of virus spreading. 

However, we do not try to find an optimal closed form solution for an economic cost. 

Instead, we start with the optimal control problem for the cost, say network delay, as 

derived by Pontryagin’s maximum principle [56, 57].  

Optimal control can be regarded as one of the possible methodologies of the control 

system’s design. Its role in general theory is unquestionable, but direct practical 

applications for Internet worm have so far been scarce. Optimal control is well 

established in some areas, like trajectory planning in the aerospace field and robotics, 

or model predictive control in chemical industry and furthermore, increasingly many 

new industrial applications of optimal control have been introduced. 

 

The rest of the chapter is organized as follows. Section 4.2 presents some of 

important issues in computer networks. Section 4.3 compares our work with several 

related works. Section 4.4 gives a brief review of the classical epidemic models and a 

modification of SIS model with treatment to control Internet worm propagation. The 

analysis of optimization problems is given in Section 4.5. Our numerical solution of 

optimal controls is also introduced in this section. Section 4.6 shows the simulation 

results based on a network topology. We conclude the chapter with an outline of our 

future work in section 4.7. 
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4.2 Statement of Problems 

Infection Cost vs. Treatment Cost 

This chapter considers the optimal control problem of minimizing the value of two 

costs: first is the infection cost which can be interpreted as the node delay due to 

infection caused by reduced system performance, and increased network delay due to 

congestion in the network, and the second is treatment cost also referred to as node 

delay incurred by a certain level of filtering. In other words, both the infection cost and 

treatment cost are referred to as variations of the nodal processing delay. Our optimal 

control approach is proposed which enables tradeoffs between the infection cost of 

compromised systems and the treatment cost of defensive countermeasures, with 

respect to time.  

 

How many nodes needed to filter? 

We have presented a notion of optimal number of nodes to obtain filtering treatment at 

certain infection rate, providing both a mathematical model of the control factors 

affecting how many nodes to filter, and collecting empirical data to compare the 

numerical solution of our analytical model with the results of our simulation. For worm 

propagation model, we apply the classical SIS model [5, 8]. With this model, the 

assumptions are that during each period the infected nodes can deal with treatment that 

will increase their rate of recovery and it has no preventive properties upon recovery. 

The treatment will also be assumed to exist in discrete time.  

 

86



When to start a filtering treatment? 

“When to start filtering?'' presents a serious problem to the security administrator 

because there are unnecessary treatment cost incurred by forcing the administrator to start 

filtering as soon as possible and also to delay a filtering treatment so that it takes a 

more time to fix a security problem. We note that our simulation results can explain 

when to start the filtering treatment to prevent virulent worms from spreading and 

suggest effective mechanisms to monitor and defend against the propagation of worms. 

It should also be noted that we are not considering the issue of where to serve a 

filtering treatment within computer networks. Our model considered only the question 

of how many nodes to filter and when to obtain filtering services to minimize the 

infection cost and reduce the spread of worm infection.  

 

4.3 Comparison with Previous Work 

In epidemiology research, there exist several deterministic and stochastic models for 

virus spreading. About ten years ago, Kephart and White [5, 6] presented the Epi-

demiological model (SIS) to understand and control the prevalence of viruses. This 

model is based on biological epidemiology and uses nonlinear differential equations to 

provide a qualitative understanding of virus spreading. They assumed that classical 

epidemic models are all homogeneous, which means that an infected host is equally 

likely to infect any of other susceptible hosts. Though at that time the model 

assumptions were considerably accurate because they considered that infection takes 

place when hosts share their disks, but such assumptions are no longer valid with the 
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spreading on the Internet.  

The Code Red worm incident of July 2001 has been investigated to model and 

analyze Internet worm propagation [4]. Based on the classical epidemic models, Zou et 

al [58] presented mathematical analysis of three worm propagation models under this 

dynamic quarantine method. The analysis shows that the dynamic quarantine can 

reduce the speed of worm propagation, which can give us precious time to fight against 

a worm.  

In the spread of a virus on a real network, Wang and Wang [20] investigated the 

model extending the classical epidemic model by including two specific parameters: 

infection delay and user vigilance time. The infection delay is a period of time between 

the arrival of a virus on certain node and further infection from that node. The user 

vigilance time is the immune time. The simulation study suggests that the most cost 

effective strategy will need to employ a combination of infection delay and user 

vigilance. 

Kreidl et al [59] presented a feedback control autonomic defense system to 

improve survivability for a single host computer. The survivability objective is 

expressed as the minimization of a certain mathematical cost that quantifies a tradeoff 

between the failure cost of a compromised information system and the maintenance 

cost of ongoing defensive countermeasures. However, their system is mainly about 

how to detect a worm’s process that is already running on a computer and then recover 

the computer from the worm. It cannot protect a computer from being infected at the 

first place. 
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Beattie et al [60] presented a notion of an optimal time to apply security updates, 

providing both mathematical models of the factors affecting when to patch, and 

collecting empirical data to give the model practical value. Huerta and Tsimring [61] 

analyzed the role of contact tracing as a part of the epidemics control strategy in 

complex networks. The simulation demonstrated that by applying this strategy, a major 

outbreak can be significantly reduced or even eliminated at a small additional cost. 

Kim et al [64] introduced the extension of SIR model to simulate worm 

propagation in two different network topologies. Whereas in the SIR model once a 

node is cured after infection it becomes permanently immune, this model allows the 

immunity to be temporary, since the cured nodes may again become infected, maybe 

with a different strain of the same worm. The simulation study also showed that time to 

infect a large portion of the network varied significantly depending on where the 

infection begins. They extended the simulation methodology to include a real Internet 

network model and evaluated the impact of topology constraints. 

In this chapter we examined several major characteristics of infection, including 

the variant rate and pattern of infection through the network topology and the rate of 

treatment at a router during a worm attack. We use a discrete time model and 

deterministic approximation to describe the spread of Internet worms. 

 

4.4 The SIS Infection Model 

We introduce two classical deterministic epidemic models which are the basis of our 

experimental design. In classical epidemic model, it is defined that a node is called an 
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infectious node at time t if it has been infected by virus before t. A node that is 

vulnerable to virus is called a susceptible node. 

 

4.4.1 Infection without Treatment 

In particular, the most common mechanism of infection is through contact with an 

infected node, and the mechanism of recovery is either deterministic or purely 

stochastic with a certain typical time of recovery. In the classical susceptible-

infectious-susceptible (SIS) model [5, 8], a recovered node immediately becomes 

susceptible again, while in a more complicated susceptible-infectious-removed SIR 

model [9], cured nodes become immune and effectively excluded from further 

dynamics. In SIS model, each node stays in one of two states: susceptible or infectious. 

Each susceptible node becomes an infectious one at a certain rate. At the same time, 

infectious nodes are cured and become again susceptible at a different rate. In this 

model, having the infection and being cured, does not confer immunity. Infectious 

nodes have a constant probability of recovery in each period with treatment. There is 

no permanent immunity to the infection, so a cured node becomes susceptible again 

upon recovery.  Using the terms defined in table 4.1, the differential equation for the 

SIS model without treatment is 

 

dt
tdI )(  = βI(t)[N – I(t)] - δI(t)      (4.1) 
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Notation Definition 

N 

S(t) 

I(t) 

Q(t) 

β 

δ 

λ 

CI

C(Q(t)) 

ϕ 

ε 

Size of total vulnerable population 

Number of susceptible nodes at time t 

Number of infectious nodes at time t 

Number of treated infectious nodes at time t 

Infection rate 

Curing rate on an infectious node 

Treatment rate on an infectious node 

Infection cost 

A function of treatment cost 

Adjoint variable 

Epidemic threshold 

     

Table 4.1 Notations of SIS Infection Model 

 

We assume that at beginning, t =0, one host is infectious and the other (N −1) nodes 

are all susceptible. Let S(t) = N − I (t) denote the number of susceptible nodes at time t. 

Replace I(t) in equation (4.1) by N − S(t) and we get 

 

dt
tdS )(  = -βS(t)[N – S(t)] + δ[N – S(t)]   (4.2) 

 

The solution to the equation (4.1) is 
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We conclude that, as t → ∞, 

 

I∞ = N - ε        (4.4) 

 

where ε = δ/β and I0 is the initial number of infectious nodes. Therefore, not absolutely 

all the population gets infected. This shows that each infectious node infects others 

with an average value of β per unit time. However, the probability that a node becomes 

infected is not the same for every node because; it is a function of their connectivity 

and the infection characteristics with a certain cure rate. We note that the probabilities 

per unit time of infection and of cure are independent. Once a node is cured, it is 

immediately capable of being re-infected. 

 

4.4.2 Infection with Treatment 

We now present the optimization model that takes into account infection and treatment 

costs. Assume that filtering treatment is available. Infectious nodes can use a level of 

filtering during each period which will increase the probability of recovery. Higher the 

level of filtering more will be number of packets processed for infection and hence 

more will be delay.  
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Using equation (4.1) and (4.2), this can be expressed as  

 

)())()(()()()( tQtQtItStI
dt

tdI λδβ −−−=    (4.5) 

 

where λ > δ > 0, and I(t) ≥ Q(t) ≥ 0 

Let U(t) denote the number of untreated infectious nodes at time t. Then equation (4.5) 

can be defined by  

 

)()()()()( tQtUtStI
dt

tdI λδβ −−=    (4.6) 

 

Where U(t) = I(t) – Q(t) 

If Q(t) = I(t) in each period, then every node which is infected obtains treatment for 

infection and equation (4.6) becomes 

 

)()()()( tQtStI
dt

tdI λβ −=     (4.7) 

 

Note that if the treatment is very effective, then it may be the case that I = Q, and the 

infection no longer is epidemic with full treatment, which is called the equilibrium 

state. The equilibrium of the model with full treatment is the same as that of the model 

without treatment if the recovery of infection is also very effective.   
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4.4.3 Definition 

Infection cost 

Assume that the worm infection brings about an infection cost, CI, which can be 

interpreted as the node delay due to infection caused by reduced system performance. 

In other words, if hosts get infected, too many ‘bad’ (infectious) packets would be sent 

from the infected hosts. Therefore, unnecessary network delay may be incurred from 

network congestion and buffer overflow. We note that a router does not get infected 

while every individual host can get infected by computer virus and worm.  

The node delay is referred to as router delay since many bad packets causes 

increased network delay at a router. Once hosts become cured of worm infection a 

router is also cured. For example, from figure 4.1, if every host in subnet A is cured of 

infection, a router A becomes cured. However, if one of hosts in subnet A remains 

infected, the router A is not able to be cured.  

 

 

 
Subnet B Subnet A 

 

Figure 4.1: Two subnets connected by routers 
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In this point of view, we apply the classical simple SIS model in which each router 

stays in one of two states: susceptible or infectious. Each susceptible router becomes an 

infectious one by receiving infectious packets from infected hosts. At the same time, 

infectious routers are cured and become again susceptible if no infectious packet 

received. In this model, having the infection and being cured, does not confer 

immunity. 

 

Treatment cost 

The treatment cost, C(Q), is a function of the total number of infectious nodes treated 

per period. It can be also referred to as node delay incurred by filtering packets at a 

router. Similarly, we consider the node delay as the router delay since the router suffers 

from processing delay due to a certain level of packet filtering mechanism. With the 

SIS model, the assumptions are that filtering treatment is available and during each 

period the infected routers can deal with treatment that will increase their rate of 

recovery and protect their subnet hosts. However, it has no preventive properties upon 

recovery. The treatment will also be assumed to exist in discrete time.  

Once every subnet host becomes cured of infection, filtering treatment will be 

stopped at that router. In other words, infectious routers have a constant probability of 

recovery in each period with treatment. There is no permanent immunity to the 

infection, so a cured router becomes susceptible again upon recovery. It has been 

determined that the treatment can reduce the level of infection and prevent the 

prospects of the spread of infection in the future.  
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Finally, Higher the level of filtering more will be number of packets processed for 

infection and hence more will be delay. 

 

4.5 The Analysis of Optimization problems 

In this section we consider (time dependent) optimal control strategies associated with 

infection and treatment cost based on classical SIS model. To determine the 

appropriate number of nodes to filter, we need to develop a mathematical model of the 

potential costs involved in infection and treatment at a given time. We will develop 

cost functions that systems administrators can use to help determine an appropriate 

level of treatment. Goldman and Lightwood [55] introduced the cost optimization 

problem of minimizing the two cost of disease; a constant per period economic cost of 

disease and per period cost function of treatment. Our problem is to minimize the total 

cost of infection and treatment over the finite period time.  

Then the our objective functional to be minimized is 

 

[ dttQCtIC
T

I ))(()(
0

+∫ ]     (4.8) 

 

where the control function, Q(t), represents the fraction of total infected nodes 

consuming treatment (to reduce the number of nodes that may be infectious), 
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subject to the infection equation: 

 

QQIINI
t
tI λδβ −−−−=

∂
∂ )()()(

, I(0) = I0  (4.9) 

 

where β, δ, and λ are know positive constants and I0 is the known initial infected node. 

 

4.5.1 Necessary Conditions for Optimization 

Our objective functional balances the effect of minimizing the cases of implementing 

the filtering treatments and minimizing the total cost of infection. The necessary 

conditions that an optimal control variable must satisfy come from Pontryagin’s 

Maximum Principle [56, 57]. In order to derive the necessary conditions we introduce 

the adjoint variable ϕ and the Hamiltonian equation, H. This principle converts 

equation (4.8) and (4.9) into a problem of minimizing a Hamiltonian, H, for the 

optimization problem: 

 

])()([)( QQIINIQCICH I λδβϕ −−−−++=            (4.10) 

 

Furthermore, there exists an adjoint function, ϕ(t), such that 

 

)2()( δββϕϕ
−−−−=

∂
∂

−=
∂

∂ INC
I
H

t
t

I             (4.11) 
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where the state problem has initial values I(0) = I0 and the adjoint problem has final 

values ϕ (T) = 0. 

We then have to minimize H over 0 ≤ Q ≤ I, that is, 

 

0)()( =−+′=
∂
∂ λδϕQC

Q
H

            (4.12) 

 

We denote  as the marginal cost of treatment then say )(QC ′ QQC α=′ )(  where α is 

equal to the marginal value of an additional unit of the treatment. 

Suppose Q* is an optimal control for the above problem and I* is the corresponding 

trajectory so that from equation (4.12) the solution for the optimal control is  

 

Q*(t) = α
δλ )( −

ϕ*(t),  0 ≤ t ≤ T             (4.13) 

 

Substituting equation (4.13) into equation (4.9) gives 

 

  I *&
α

δλδβ
2)()( −

−−−= IINI ϕ*, I*(0) = I   (4.14) 0                

  ϕ& * = ϕ* ICNI −+− )2( δββ ,  ϕ*(T) = 0, 0 ≤ t ≤ T         (4.15) 
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The optimal control is determined by equations (4.13)-(4.15), that is, we must solve 

equations (4.14) and (4.15) for optimum trajectory and an adjoint variable.  

Next, we discuss the numerical solutions of the optimality system and the 

corresponding optimal control pairs, the parameter choices, and the interpretations. 

 

4.5.2 Numerical Results 

In this section, we study numerically an optimal treatment strategy for minimizing the 

total cost of infection since the full dynamic solution of the control problem is usually 

very difficult and an explicit function-formula does not exist except for very special 

cases [55, 56, 62]. The optimal treatment strategy is obtained by solving the optimality 

system, consisting of two differential equations from the state and adjoint equations 

presented in previous section. 

Figure 4.2 (a) shows that the average number of infected nodes is plotted as a 

function of time. The graph contains 1000 nodes and the infection, cure and treated 

rates are β = 1.0 and δ = 0.2, λ = 0.8 respectively. For the figure 4.2, we assume that 

the cost weight factor, CI, associated with the number of infected nodes I(t) is less or 

equal to marginal cost of treatment, α, which is associated with a control Q(t). In figure 

4.2, the set of the cost weight factors, CI = 200 and α = 500, is chosen to illustrate the 

optimal treatment strategy. 

Note that with treatment the number of infected nodes eventually reaches almost 

50% of the total population, and the infection growth slows down after that.  
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Figure 4.2: Optimal control strategy constructed us
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4.6 Simulation Experiments 

In this section we describe our experimental design and compare the numerical 

solution of the optimal control problem with the results of our simulation. We also 

present measurements of Internet worm infections in two different strategies (with 

treatment and without treatment) with random rates at which an infectious node 

attempts to infect its neighboring nodes and random rates at which it cures itself or is 

treated with a filtering treatment. In addition to measurements of worm infection, we 

attempt to answer the following question: 

 

1. What is the optimal level of treatment which should be chosen to minimize the 

total cost of infection? 

2. When to start filtering to minimize unnecessary treatment cost? 

3. Is there a relationship between treatment cost and infection rate? 

 

These experiments provide insight into the characteristics of infection propagation on 

computer networks and they also serve as the basis for future research work on 

quarantine of virulent Internet worms.  

 

4.6.1 Network Model 

Our experiments have been conducted using a simulation environment that is capable 

of simulating thousands of computing nodes with random network topology and a viral 

epidemic model. The network topology that is used in this simulation is constructed by 
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Transit Stub model that produces hierarchical graphs in a different way by consisting 

of interconnected transit and stub domains [17].  

We assume that the population consists of N nodes whose connections to one 

another form a fixed random graph. A node n is said to have a degree k(n) if it is 

connected to k other nodes. In case of random graphs the degree distribution is Poisson 

with a certain mean degree K = 〈k(n)〉. In our simulations with random graph based 

networks, we typically built networks with average degree K = 5 and 1000 nodes. Our 

simulation is an event-driven simulation which is the most accurate method to simulate 

the propagation of a worm.  

Simulation proceeds in steps of one time unit. During each step, every infectious 

node I attempts to infect each of its neighbors j with infection rate β. In addition, every 

infectious node I is subject to a curing attempt with cure rate δ. If the curing of I occurs 

before the infection attempt, then I does not send out infections to j. In this experiment 

the infection process was simulated by varying the connectivity of topology, the 

number of nodes, and the rate of infection β , cure δ and treated λ.. 

 

4.6.2 System Model 

We consider a network with 1000 routers and a limited buffer is assigned to each router 

for storing packets which need to be sent and received. A few assumptions and 

simplifications were made to ensure feasibility of our experiment. First, a single 

initially infected node is randomly selected to release worm in each trial and we 

performed 100 simulation runs using the same parameters.  
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Figure 4.3: Three cases of network delay: (a) No infection occurs (b) Infection without 

treatment (if node j is infected) (c) Infection with treatment (if node j is infected) 

 

Second, for measuring the network delay we randomly choose some pairs of a source 

and destination. Each source creates several good (no infection) packets and stores 

them into its buffer per time unit. We use an all-pair shortest path routing technique to 

send good packets from source to destination.  

Figure 4.3 provides more details about the network delay. Assume that each link 

has a delay of 1 time unit. A processing delay of 1 is assigned to a host when it is 

infected, since the system performance is reduced by the infection. We also assign an 

additional delay of 1 for the packet filtering on a treated node. In case (b) a node k 

which is the next hop from node j, receives a packet G1 at time 4 while in case (c) it 

takes 5 time unit for the same node to receive a packet G1 due to packet filtering 

system in which only good packets are forwarded to next hop and bad (infectious) 
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packets are dropped. Finally, to simulate the model, time is divided into a number of 

discrete steps, and on each step the population of individuals in each state is altered 

according to the different rules such as different rate of infection and recovery, which 

means that nodes move between the S (Susceptible) and I (Infectious) states at a certain 

rate. In addition, relevant data is recorded per unit time and simulation stops when 

some desired state is reached, such as the completion of simulation time. 

 

4.6.3 Simulation Results 

In this section, we present a set of simulation results that demonstrate the accuracy of 

our analytical models in describing optimal treatment strategy on random transit-stub 

networks with infection and treatment costs. Figure 4.4 shows the total number of 

infectious nodes averaged across the 100 runs of the two different types of simulation 

models (with treatment and without treatment). Note that without treatment the average 

number of infectious nodes increased exponentially and eventually reaches almost 80% 

of the total population, and the infection growth decayed after that. But in the other 

case (with treatment) the average number of infectious nodes reached almost 60% of 

the total population and the spread of infection was decreased. For the number of 

infected nodes obtaining treatment, Q(t), we choose 40 % of total infected nodes at 

each time. It notes that a certain level of treatment for infection can effectively reduce 

the spread of worm infection. 

Figure 4.5 shows that for the optimal treatment strategy the control variable Q*(t) 

and state variable I*(t) are plotted as a function of time with the same parameters of  
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Figure 4.4: Comparison of the average number of infectious nodes as a function of time 

in two different epidemic strategies. For the cases above we used 1000 nodes, an 

average infection rate β of 1.0, a cure rate δ of 0.2, and a treatment rate λ of 0.8 

 

figure 4.2. These two curves show that simulation results are consistent with our 

numerical results of the optimization problem as described in section 4.5.2. It has been 

determined that higher the level of a filtering treatment, which means increasing the 

treatment rate, less will number of infectious nodes spread for infection.  

However, since a filtering treatment presumably bears a significant cost, an optimal 

choice of the treatment rate, λ, for a given infection rate is an important issue. From 

figure 4.5 we conclude that for a given infection and cure rates if one follows the 

optimal control Q*(t) trajectory then the spread of infection can be significantly 

reduced or even eliminated at a small additional cost. This implies that the optimal 

treatment strategy derives its value from reducing the current infection rate and from 

reducing the prospects of the spread of infection. 
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Figure 4.5: Optimal control Q*(t) and I*(t) are plotted as a function of time for N = 

1000, β = 1.0, δ = 0.2, λ = 0.8  

 

                       

 Q(t) = 0% Q(t) = 10% Q(t) = 20% Q(t) = 30% ... Q(t) = 90% Q(t) =100% 
t I(t) C(t) I(t) C(t) I(t) C(t) I(t) C(t)     I(t) C(t) I(t) C(t) 
0 1 1 1 1 1 1 1 1     1 1 1 2 
1 6 6 4 4 4 5 5 6     5 9 5 10 
2 9 9 6 6 7 8 8 10     7 10 7 14 
3 10 10 9 9 10 12 8 10     8 13 9 18 
4 18 18 12 13 17 20 9 11     9 14 8 16 
5 46 46 28 30 44 52 9 11     11 16 10 20 
6 108 108 78 85 103 123 19 24     13 26 15 30 
7 226 226 181 199 210 252 48 62     33 65 34 68 
8 394 394 344 378 368 441 139 180     67 112 62 134 
9 596 596 573 630 524 628 279 362     78 140 100 200 

10 752 752 737 810 666 799 454 590     122 219 111 222 
…                             

96 898 898 717 788 567 680 417 542     512 1003 556 1112 
97 898 898 721 792 572 686 419 544     487 895 623 1123 
98 896 896 721 792 551 661 415 539     468 925 687 1374 
99 896 896 736 809 542 650 423 549     645 1192 765 1530 

100 897 897 736 809 516 619 425 552     687 1212 825 1650 

        

Table 4.2 Determination of optimal control Q*(t) and I*(t) 
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Table 4.2 shows how to obtain optimal control Q*(t) and I*(t) from our simulation 

results. First, we perform 100 simulation runs using the same parameters and select a 

minimum value of total infection cost, C(t), at each time t. From table 4.2 one curve 

line indicates the optimal trajectory for total infection cost. In next step we can 

determine the control variable Q(t) and state variable I(t) according to the total 

infection cost C(t) at each time. For example, from table 4.2 we select a value of 4 for a 

minimum infection cost C(t) at t = 1, then we can find that the number of infected 

nodes, I (t = 1), is 4 and the number of infected nodes getting treatment, Q (t = 1), is 

10 % of I (t = 1). 

The average delay of good packets over infection rates for two different types of 

simulation models is shown in figure 4.6. For this experiment, we make a simulation 

across 100 runs as described in figure 4.4. All parameters assigned in this experiment 

are the same as those given in figure 4.5. In addition to these two types of strategies, 

we also analyzed the average delay of the good packets generated on only a set of 

source nodes. As seen from the figure 4.6, without treatment the average delay 

increases exponentially as the epidemic becomes saturated while with treatment the 

average delay is not drastically increased with the same increase of infection rates. It 

implies that a filtering treatment of worm infection is very effective for reducing the 

spread of infection and minimizing the total infection costs as referred to network delay. 

It is further observed that the treatment of worm propagation in its early stage is not an 

optimal time to minimize the total cost of infection since there is little difference in the 

average delay between the two cases (with treatment and without treatment) until the 

infection rate reaches 0.4.  
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Figure 4.6: Comparison of the average delay as infection rates in two different 

epidemic strategies  

 

For example, figure 4.6 shows that the filtering treatment of worm infection could be 

started as late as when the infection rate is 0.4 without having more than a marginal 

effect on the total cost of infection.  

There is a security issue for the security administrator to find an appropriate time to 

start filtering since there are unnecessary treatment costs incurred by filtering too early and 

also delaying a filtering treatment. In particular, many security administrators feel that 

it is imperative to start a filtering treatment immediately. This, however, is just 

representing those sites that have very high risk of penetration and have ample 

resources to do an entire treatment. Our intent in this study is to provide guidelines to 

those who do not have sufficient resources to immediately detect and filter everything, 

and must choose where to allocate scarce security resources. We have used the 

empirical data to arrive at concrete recommendations for delaying a filtering treatment 

until there is assurance that the treatment is not likely to cause unnecessary costs. 
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4.7 Concluding Remarks 

In this chapter we have presented the optimal control problem of minimizing the total 

cost of infection which can be interpreted as the network delay incurred by both 

infection and treatment. This chapter focuses on the application of optimal control 

theory to minimizing the value of two costs. We have derived the necessary conditions 

for our optimal control problem which is solved numerically.  

We also validated the numerical solution with our simulation results. It has been 

determined that by applying this optimal control strategy, one can very effectively 

reduce the spread of infection and minimize the total cost of infection for the case of 

random graphs. However, we could wait for a certain ratio of the total number of nodes 

to be infected before starting treatment, and this would prevent an unnecessary network 

delay which would happen if treatment were started earlier.  

This chapter considered only the question of how many nodes to filter and when to 

obtain filtering services to minimize the infection cost and reduce the spread of worm 

infection. We are also working on the development of effective quarantine techniques 

using the knowledge of cost optimization problem for worm infection. 

 

 

 

 

 

 

 

109



 

 

Chapter 5 

Conclusion and Future work 

 

In this chapter, dissertation contributions as well as future work will be summarized. 

First, a brief introduction about the problem we are trying to solve is presented. Then, 

an organization of dissertation contribution is discussed followed by the appropriate 

category including a brief summary of each chapter. At the end, future work directions 

are presented and discussed.  

 

5.1 Problems 

Many early Internet protocols were designed without a fundamentally secure 

infrastructure and hence vulnerable to Internet attacks such as denial of service (DoS) 

attacks and worms. DoS attacks attempt to consume the resources of a remote host or 

network, thereby denying or degrading service to legitimate users. In fact, many attacks 

can be launched readily from anywhere in the world masquerading the location of the 
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attacker. Network forensics is an emerging area wherein the source or the cause of the 

attacker is determined using IDS tools. The problem of finding the source(s) of attack(s) 

is called trace back problem. Lately, Internet worms have become a major problem for 

the security of computer networks, causing considerable amount of resources and time 

to be spent recovering from the disruption of systems. In addition to breaking down 

victims, these worms create a large amount of unnecessary network data traffic that 

results in network congestion, thereby affecting the entire network. However, the task 

of detection and prevention of worms has become more difficult on our existing 

computing infrastructure. 

 

5.2 Organization of Proposals 

In this dissertation, we have analyzed some security issues in Internet attack through an 

investigation of Internet worm propagation models and an identification of intrusion 

source. Also we attempt to solve an optimal control problem of minimizing the total 

cost of infection in terms of network delay. This analysis of security issues took two 

categories. First, to develop appropriate tools for thwarting quick spread of worms, we 

are trying to understand the behavior of the worm propagation with the aid of 

epidemiological models and to provide mathematical models of control factors that 

influence Internet worm propagation called Infection Pattern. The second category is 

motivated by the fact that we have to react to Intrusions, be a worm based intrusion or 

others. Reacting to intrusions has two kinds of actions; one is intrusion source 
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identification, the other is network defense with an optimal level of treatment. Chapter 

2 and 4 describe about the latter category while chapter 3 is for the former category.   

 

5.3 Infection Patterns 

In chapter 3, we presented the classical SIS model and a modification of SIR model of 

Kermack-Mckendrick to understand the behavior of the worm propagation with the aid 

of epidemiological models. The analytical models that we provide are useful in 

determining the rate of spread and time required to infect a majority of the nodes in the 

network. We also present measurements of worm infections in two different network 

topologies and in one of the topologies we use the round-trip time collected by using 

the NLANR Active Measurement Program (AMP).  Whereas in the SIR model once a 

node is cured after infection it becomes permanently immune, our modification allows 

this immunity to be temporary, since the cured nodes may again become susceptible or 

infected, maybe with a different strain of the same worm.  Our simulation results on 

large Internet like topologies show that in a fairly small amount of time, 80% of the 

network nodes is infected.  For example, on the Abilene Internet2 topology using real 

link delays we have shown that the worm can spread and infect 80% of the nodes in 

about 30ms. The simulation study also shows that time to infect large portions of the 

network vary significantly depending on where the infection begins.  This information 

could be usefully employed to choose hosts for quarantine to delay worm propagation 

to the rest of the network. 
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5.4 Reacting to Intrusions 

In chapter 2, we have introduced several trace back techniques and defined a trace back 

problem more formally. Our goal in this work is to determine the sources of intrusions 

or at least the routers closest to the intruders using a minimal amount of network 

resources. We have developed a novel algorithm to decompose a network into 

connected components and using high traffic routers on the connected components, we 

construct a terminal network. A centroid decomposition technique is applied on the 

terminal network. Based on the position of the victim in the network, our scheme 

selects only a small fraction of routers to monitor the traffic to identify packets that 

bear the signatures of the attack packets. From the information provided by these 

chosen routers, the network is pruned and another set of routers is chosen to identify 

the source of attack, until the source router is detected. The trace back can be 

completed in O(logn) steps, where n is the number of terminal nodes (routers) in the 

terminal network. Contribution of our work is to identify the set of routers that are 

requested to log, mark, or authenticate depending upon the type of attack.  The number 

of routers identified for this task will be kept at a minimum yet sufficient to reduce the 

burden on the routers. 

In chapter 4, we have presented an optimization model that takes into account the 

infection and treatment costs. We have two variables that we need to work with: delay 

caused by filtering of worms at routers, and the delay due to worms’ excessive amount 

of network traffic. On one hand filtering causes delays at routers and on the other 

worm’s packets overload the buffer at routers and this in turn causes additional delays 
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for genuine packets. Furthermore, we defined the objective of minimizing the total cost 

of infection and derived the necessary conditions for our cost optimization problem 

which is solved numerically. Using this model we can determine the level of treatment 

to be applied for a given rate of infection spread.  We have devised a technique again 

borrowing from epidemic models to determine the optimal start point for filtering and 

optimal number of nodes in the network that should perform the filtering. The 

simulation study shows the optimal level of treatment which should be chosen to 

minimize the total cost of infection and to reduce the current infection rate, providing 

both a mathematical model of the control factors affecting how many nodes needed to 

filter, and collecting empirical data to compare the numerical solution of our analytical 

model with the results of our simulation. Finally, we noted that our simulation results 

can explain when to start the filtering treatment to reduce an unnecessary network 

delay incurred by filtering too early and also delaying a filtering. 

 

5.5 Future Work 

For future work in this area, we intend to develop an effective quarantine method using 

the knowledge of worm propagation and of cost optimization problem for worm 

infection. Due to the fast spreading nature and great damage of Internet worms, it is 

necessary to implement automatic mitigation such as dynamic quarantine. This 

information could be usefully employed to choose hosts for quarantine to reduce the 

prospects of the spread of infection in the future. In addition to development of 

quarantine techniques, we attempt to answer several questions:  
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• What is effective size of quarantine?  

• How can we detect and monitor an unknown (zero-day) worm?  

• How can we defend against the spread of unknown worms effectively?  

 

It will be the most important task of dynamic quarantine defenses.  
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APPENDIX A 

 

SIS Epidemic Model 

The SIS model (where removals are ignored) is described by:  

JkSJ
dt
dS λ+−=  and  JkSJ

dt
dJ λ−=  

The initial conditions are: S(0) = S0 and J(0) = J0  

To get (easily) an analytic solution, we observe that: S + J = N. Thus, S = N – J. 

Substituting to the second differential equation we obtain:  

JJJNk
dt
dJ λ−−= )(  which simplifies into 2)( kJJkN

dt
dJ

−−= λ  

The differential equation could be solved using Maple as:  

Note: Since I is used (reserved word in Maple) to denote: I = sqrt(-1); we use the 

variable J to denote the number of infected in the fixed population. 

> restart; 

> dsolve({diff(J(t),t)= k*(N-J(t))*J(t)-lambda*J(t), J(0) = J0}, J(t)); 

J t( ) = 
J0 k N - λ( )

k J0 + e
- k N - λ( ) t( ) k N - e

- k N - λ( ) t( ) λ - e
- k N - λ( ) t( ) k J0

 

 

> simplify(%); 

J t( ) = 
J0 k N - λ( )

k J0 + e
- k N - λ( ) t( ) k N - e

- k N - λ( ) t( ) λ - e
- k N - λ( ) t( ) k J0
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> collect(%,exp); 

J t( ) = 
J0 k N - λ( )

k N - λ - k J0( ) e
- k N - λ( ) t( ) + k J0

 

 

> with(plots): 

Warning, the name changecoords has been redefined 

> N:= 100: S0:= 99: J0:=1: k:=0.8: lambda:=0.2: 

> J:= unapply(J0*(k*N-lambda)/((k*N-lambda-J0*k)*exp(-(k*N-lambda)*t)+J0*k), t); 

J := t → 79.8

79.0 e -79.8 t( ) + 0.8
 

 

> plot([t,J(t), t = 0..10],t= 0..10, tickmarks=[5,5], labels=[`t`,`J(t)`]); 
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APPENDIX B 

 

SIRS Epidemic Model 

The SIRS model of infections was derived by Kermack and McKendrick (1927). 

> restart; 

with(DEtools): 

with(linalg): 

with(plots): 

Warning, the name changecoords has been redefined 

 

Define SIR equations, parameters and initial conditions 

beta = rate from  S -> I 

lamda = rate from I -> R 

mu = rate from R -> S   (b=0 gives the SIR model) 

> beta:= 0.07: lamda:= 0.02: mu:= 0.007: 

eqns := diff(S(t),t)=-beta*S(t)*J(t)+mu*R(t), 

            diff(J(t),t)= beta*S(t)*J(t)-lamda*J(t), 

            diff(R(t),t) = lamda*J(t)-mu*R(t); 

inits:= S(0)=9.9, J(0)=0.1, R(0)=0.0; 

 

eqns := d
 dt

 S t( ) = -0.07 S t( ) J t( ) + 0.007 R t( ), d
 dt

 J t( ) = 0.07 S t( ) J t( ) - 0.02 J t( ), d
 dt

 R t( ) = 0.02 J t( ) - 0.007 R t( )
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inits := S 0( ) = 9.9, J 0( ) = 0.1, R 0( ) = 0.
 

Generate a numerical solution 

> soln := dsolve({eqns,inits},{S(t),J(t),R(t)}, type=numeric, output=listprocedure): 

 

Generate string for title 

> rr := convert(beta,string):  aa := convert(lamda,string): 

   bb := convert(mu,string): 

   code := cat(`SIRS Model with rates beta = `,rr,`, lamda = `,aa,`, mu = `,bb); 

code := SIRS Model with rates beta = .7e-1, lamda = .2e-1, mu = .7e-2
 

 

Define functions for the susceptibles - S(t), the infecteds - J(t) and the removed - R(t) 

> s := subs(soln,S(t)): j:=subs(soln,J(t)): r := subs(soln,R(t)); 

r := proc t( )  ...  end proc;
 

 

> G:=plot({s,j,r},0..300,title="",color=black): 

> T:=textplot({[200, 7.7, ` R ( t )`],[200, 0.8, ` S ( t )`],[200, 3, `I ( t )`]}):

> display({G,T}); 
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APPENDIX C 

 

Optimal Control Problem 

Suppose Q* is an optimal control for the optimization problem and I* is the 

corresponding trajectory. The optimal control is determined by two equations below, 

that is, we must solve these equations for optimum trajectory and an adjoint variable. 

  I& *
α
δλδβ

2)()( −
−−−= IINI ϕ*, I*(0) = I0                         

  ϕ& * = ϕ* ICNI −+− )2( δββ ,  ϕ*(T) = 0, 0 ≤ t ≤ T     

 

Next, we solve the numerical solutions of the optimality system and the corresponding 

optimal control pairs using Maple.  

> restart: 

> with(DEtools): 

> with(plots): 

Warning, the name changecoords has been redefined 

> alpha:=500: beta:=1.0: delta:=0.2: lambda:=0.8: Cd:=200: N:=1000: 

> CM_Model:=diff(J(t),t)=J(t)*(N*beta-delta-beta*J(t))-psi(t)*(lambda-delta)^2/alpha, 

diff(psi(t),t)=psi(t)*(2*beta*J(t)-N*beta+delta)-Cd; 

CM_Model := d
 dt

 J t( ) = J t( ) 99.8 - 1.0 J t( )( ) - 0.0003600000000 ψ t( ), d
 dt

 ψ t( ) = ψ t( ) 2.0 J t( ) - 99.8( ) - 200
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> inits:=J(0)=1, psi(0)=1200; 

inits := J 0( ) = 1, ψ 0( ) = 1200
 

> soln := dsolve({CM_Model,inits},{J(t),psi(t)},type=numeric, output=listprocedure): 

> j := subs(soln,J(t)): p:=subs(soln,psi(t)): 

> plot({j},0..100,title=Cost,color=black); 

> plot({p},0..100,title=Cost,color=black); 

 

dsolve and plots 

dsolve(CM_Model,{J(t),psi(t)});

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

J t( ) = RootOf -

⌠
⎮
⎮
⎮
⎮
⎮
⌡

_Z

 - 5

18 _a  - 40 _a 3 + 25 _a 4 + 16 _a 2  + 25 _C1
 d_a  + t + _C2

⎛
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, 

J t( ) = RootOf -

⌠
⎮
⎮
⎮
⎮
⎮
⌡

_Z

 5

18  _a  - 40  _a 3 + 25  _a 4 + 16  _a 2  + 25  _C1
 d_a  + t + _C2

⎛
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎠

⎫
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎭

, 

ψ t( ) = - 250
9

 d
 dt

 J t( ) + 200
9

 J t( ) - 250
9

 J t( )2⎧
⎨
⎩

⎫
⎬
⎭

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

 

> odeplot(soln,[J(t),psi(t)],0..100); 
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