
A DECEPTION FRAMEWORK FOR WIRELESS SENSOR

NETWORKS

By

RUIYI ZHANG

Bachelor of Science in Electronic Engineering
Sichuan University

Chengdu, Sichuan, China
2004

Submitted to the Faculty of the
Graduate College of

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

May, 2008

COPYRIGHT c©
By

RUIYI ZHANG

May, 2008

A DECEPTION FRAMEWORK FOR WIRELESS SENSOR

NETWORKS

Thesis Approved:

Dr. Johnson P. Thomas

Thesis Advisor

Dr. Xiaolin Li

Dr. Venkatesh Sarangan

Dr. A. Gordon Emslie

Dean of the Graduate College

iii

ACKNOWLEDGMENTS

I thank my advisor, Dr. Johnson Thomas, for his precious advice and guidance on

this research. Without his tremendous help and support, I would not be able to finish

this thesis. I also would like to present my thanks to Qifan Zhang for her help in

proof-reading and correcting the presentation of this thesis. Finally, I want to thank

my parents for giving me life and raising me.

iv

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION 1

1.1 Deceptions in Information Systems 1

1.2 Wireless Sensor Networks . 3

1.3 Constraints and Security Issues in WSNs 4

1.4 Introduction to Deception Framework 5

1.4.1 Case Study . 7

2 REVIEW OF LITERATURE 9

2.1 Security Issues and Advancements in WSNs 9

2.2 Deception Technologies in Information Protection 9

2.3 Overview of Time Series Prediction Technologies 10

3 METHODOLOGY 12

3.1 Design and Architecture . 14

3.1.1 Secure Deception Facilities . 15

3.2 Determine Sacrificial Nodes . 17

3.2.1 Initialization . 18

3.2.2 Nodes Rotation and Failover 19

3.3 Pattern Learning and Prediction . 20

3.3.1 Problem Formulation . 20

3.3.2 Fractal-based Delay Coordinate Embedding Prediction 22

3.4 Self Adaptation . 24

v

3.4.1 Problem Formulation . 24

3.4.2 Difference Calculation . 25

4 RESULTS 29

4.1 Network Setup . 29

4.2 Simulation . 29

4.3 Results of Deceptive Responses . 32

4.4 Identifying Changes in Attacking Paradigms 34

5 CONCLUSIONS 38

BIBLIOGRAPHY 39

vi

LIST OF TABLES

Table Page

4.1 Quality of Deceiving Responses . 33

vii

LIST OF FIGURES

Figure Page

1.1 Crossbow Mica 2 Sensor Node . 4

3.1 Logical Structure of The Deception Components 13

3.2 Network Architecture . 15

3.3 Physical Structure . 16

3.4 Sectors Surrounding An Attacker . 17

3.5 Basic Windows and Sliding Windows 24

3.6 Property of Function dec() . 28

4.1 Deception Scenarios . 30

4.2 Deceiving Sequence . 30

4.3 Constant Attacking Traffic Flow . 32

4.4 Sine Attacking Traffic Flow . 33

4.5 Attacking Flow with Normalized Difference of 0.1 34

4.6 Attacking Flow with A Surge . 35

4.7 Attacking Flow With Normalized Difference of 0.3 35

4.8 Fluctuating Attacking Flow . 36

viii

CHAPTER 1

INTRODUCTION

1.1 Deceptions in Information Systems

Sun Tzu once said in The Art of War : “All warfare is based on deception.”. To some

extent, information protection is defensive information warfare. Although we don’t

assert that all of information protection is based on deception, the quote of Sun Tzu

definitely prompts the importance of deception in modern information warfare.

Deception is a way to manipulate others’ perceived reality by intentionally distort-

ing the truth. We define the term ‘deception’ as processes in which the information

system tries to deceive attackers by sending them falsified messages or by concealing

truth from them. The reason why deceptions can be highly effective against certain

kind of attacks is because information systems are generally considered to be honest.

Deceptions introduce more complexity into an information system, which is a po-

tential downside, but the enormous number of benefits makes deceptions appealing.

Among others, the notable benefits are:

• deception gives the defending side chances to actively manipulate the attacking

side’s behavior;

• deception gives one more level of protection;

• deception increases the attacker’s uncertainty;

• deception increases the sophistication required for attack;

• deception exhausts the attackers’ resources;

1

• deception allows defenders to track the attackers’ attempts at entry and respond

before attackers do anything harmful.

Whaley [1] distinguishes two categories of deception, simulation (showing the false)

and dissimulation (hiding the real). He also argues that everything substantive can

somewhat be either simulated or dissimulated, or be done by both.

Sub-categories of simulation types of deceptions are below:

• mimicking: showing the false through imitation (e.g. phishing PayPal spams.

They are imitating the familiar behaviors of the genuine PayPal mailinglists);

• inventing: showing the false by displaying a different reality (e.g. a running

server sends a message “The system is shut down” to an identified hacker);

• decoying: showing the false by diverting attention (e.g. in a sensor network, a

group of unimportant sensor nodes shows exaggerated activities to attract the

attacker away from the critical ones).

Likewise, there are sub-categories of dissimulation types of deceptions:

• masking: hiding the real by making it invisible (e.g. making private folders

HIDDEN on Windows machines);

• repackaging: hiding the real by disguising (e.g. camouflages used by snipers);

• dazzling: hiding the real by confusion (e.g. in communication, sending redun-

dant junk packets which can be identified and dropped by authorized partici-

pants makes recovering information harder for evasdroppers).

While it can be reasonably asserted that all information systems are in many ways

quite similar, there are differences between systems used in warfare and systems used

in other applications, if only because the consequences of failure are extreme and

the resources available to attackers are so high. For this reason, military situations

2

tend to be the most complex and risky for information protection and thus lead to

a context requiring extremes in protective measures. While deceptions might seem

overwhelming in civil and commercial projects, given the extreme natures of mili-

tary applications, military applications appear to be a relevant scenario for applying

deception technologies.

As far as we are aware, no effort has been devoted to develop a deception technol-

ogy for sensor networks. Given the wide adoption of sensor networks, the importance

of sensor networks in military and commercial applications makes us believe that it is

worthwhile to explore the idea of deception in sensor networks. We believe even if in-

formation protection is not all about deception, but to some extent, deception based

information protection technology could be a welcomed addition to the defenders’

arsenal.

1.2 Wireless Sensor Networks

Wireless Sensor Networks (WSNs) are a family of wireless networks consisting of spa-

tially distributed autonomous devices using sensors to cooperatively monitor physical

or environmental conditions, such as temperature, sound, vibration, pressure, motion

or pollutants, at different locations. Applications based on sensor networks are find-

ing their way into numerous important domains including transportation systems,

precision agriculture, battlefield monitoring, disaster zone management, homeland

security and healthcare to name a few.

Types of devices included in WSNs are sensor nodes, base stations, and optionally

cluster heads. Sensor nodes can be considered as miniature computers which have

extremely basic functionalities in terms of their interfaces and components. They usu-

ally consist of a processing unit with limited computational power and limited mem-

ory, sensing components, communication components (usually radio transceivers),

and a power source usually in the form of a battery. The base stations are distin-

3

Figure 1.1: Crossbow Mica 2 Sensor Node

guished components of a WSN with much more computational, energy and commu-

nication resources. They act as a gateway between sensor nodes and the end users.

The cluster heads are generally more powerful than sensor nodes but weaker than

the base stations. They usually perform data aggregation operations, security related

functions, and many other functionalities which are not suitable to put into sensor

nodes.

1.3 Constraints and Security Issues in WSNs

Unlike conventional networks, WSNs have some unique constraints, including:

• limited computational and storage resources due to miniature form factor and

cost restriction;

• limited and usually not replenishable power source;

• harsh deployment environment;

• dynamic network topology;

• high hardware and communication failure rate;

• unattended operation.

The fore-mentioned limitations imposed on WSNs render the majority of the cur-

rent security approaches in conventional wired or wireless networks impractical for

4

WSNs. There are four major security challenges in WSNs’ applications.

• The conflicting interests between minimizing resource consumption and maxi-

mizing security;

• the capacities and constraints of hardware of sensor nodes influence the type of

security mechanisms;

• the ad-hoc networking topology renders WSNs susceptible to link attacks;

• the wireless communication scheme renders traditional security practices in

wired networks impractical.

Although a lot of work has been done in protecting sensor networks, most of these

works have focused on providing effective key management techniques for authentica-

tion or secure routing of messages. However, dealing with or responding to intrusions

that have infiltrated the network has not been discussed. For example, should part

of the network be quarantined? What is the best response to a particular attack?

There are a number of possible responses to an attack. The compromised part of the

network may be quarantined and isolated from the rest of the network, the sensor

nodes may collaborate and counter attack by sending a continuous stream of data

(this may be expensive in terms of energy), nodes may send the attacker false data

with the intention of deceiving the attacker, messages may be encrypted, all nodes

must authenticate themselves and so on.

1.4 Introduction to Deception Framework

In this thesis, we focus on developing a deception framework for protecting sensor

networks. Deception gives one more level of protection. It is particularly useful if the

objective is to buy time. For example, if the attack has been identified to an area in

the network, extra time will enable trace-back to the exact source of the attack. Extra

5

time will also allow the system to bolster its defenses, for example, after an attack has

been detected, it gives the base station time to inform the rest of the network that

all messages will be encrypted from now onwards or all nodes must be authenticated.

It may be that the objective is to prevent the attacker from moving to a different

part of the network where the network is collecting critical data. The attacker is

deceived long enough to complete the data collection after which the deceiving may

stop. Deceiving also exhausts the attackers’ resources.

Once the attacker has been identified, deceiving is an effective approach for eaves-

dropping attacks and the sensor network may broadcast or unicast faulty information

to the eavesdropper purposely. However, deception is not a suitable response to all

kinds of attacks. Attacks like node replication, masquerading or those which modify

the semantics of packets may be appropriate for deception. Disruptive attacks such

as Denial of Service attacks where the attacker may be expecting some responses

is also appropriate for deceiving. Hijacking attacks or selective forwarding attacks

where there is no explicit interaction between the attacker and the victim are not

good candidates to be handled by deception, but it does not mean it is impossible.

However, with attacks where deception may be applicable, it may not be the best

strategy depending on the costs and payoffs.

In our approach, deception is carried out by nodes that neighbor the attacker. The

nodes that sacrifice their power and time to deceive the attacker protect other nodes

from being attacked. Nodes that are not neighboring the attacker can carry on with

normal communications. A subset of the neighboring nodes, called sacrificial nodes,

which focus exclusively on deceiving the attacker and perform no other function, are

used to carry out the deception. Attacking activities are collected and analyzed at

a central location, after the characteristic of the attack is extracted from collected

data, a deception is conducted through sacrificial nodes.

Our contributions in this thesis are twofold. We propose a design and an archi-

6

tecture of sensor networks to effectively utilize deception technologies in securing the

networks. A mathematical generalization of the framework is provided in forms of

time series. On top of the framework, we build a deception algorithm to deal with

a type of exhaustive DoS attacks by using a time series prediction algorithm called

Fractal FOREcasting. An algorithm to identify changes of attacking paradigms is

also proposed. We simulate the generalized mathematical model and the algorithm

of identifying attacking paradigm changes with synthetic attacking data. The nov-

elty of our work lies in the fact that, as far as we are aware, we are the first to

systematically investigate the application of deceptions in sensor networks.

The rest of this thesis is started with a case study to show a possible application

scenario of our framework. In Chapter 2, we briefly review related work in securing

sensor networks, in deceptions in warfare related researches and information protec-

tions, and in predicting time series. In Chapter 3, algorithms and procedures of our

deception framework are detailed. We present the simulation results and analysis in

Chapter 4. In Chapter 5, we conclude our findings and offer insights for future work.

1.4.1 Case Study

Now let’s consider a Battlefield Surveillance System which utilizes Sensor Networks

technologies. The Surveillance System is placed at an important gateway of the

battlefield. The owner of the Surveillance System wants to prevent opponents from

crossing the important gateway. Upon discovering the Surveillance System, an op-

ponent has several choices to deal with the Surveillance System. They could destroy

the system by physical forces, but this action could alert the owner of the Surveil-

lance System and lead to a failed mission. They could also choose to invade into the

Surveillance System. By capturing several nodes in the network, the opponent has

chances to be able to trick the Surveillance System by sending forged information.

This is a typical scenario of attacks in sensor networks.

7

Given a functional and effective Intrusion Detection System, the defender may

find out the suspicion at the gateway. Upon discovering the attack, the defender

could either launch some sort of Attack Recovery techniques, i.e. Encryption Key

Revocation, Nodes Exclusion. The downside of those techniques is that they will let

the attacker become aware that he has been detected. With our deception technique,

the defender can trick the attacker into thinking the attack is still effective, but in

reality, the attacking nodes are already quarantined from the network. Since the

attacker thinks the attack is in their hands, they would choose to move their troop

into the gateway area. The defender will then surprise them with a sudden attack.

This is a typical scenario of what our Deception technology can offer. Our inten-

tion is to offer an active mean of defense to the arsenal of network defenders.

8

CHAPTER 2

REVIEW OF LITERATURE

2.1 Security Issues and Advancements in WSNs

In this section, we briefly review previous work in security of sensor networks. The

problem with asymmetric cryptography, in a wireless sensor network, is that it is

typically too computationally intensive for individual nodes in a sensor network. Al-

though, this is true in the general case, [2][3] show that it is feasible with the right

selection of algorithms. Symmetric cryptography systems have been proposed includ-

ing 3DES (Triple DES), RC5, AES [4]. Eschenauer and Gligor propose a key pre-

distribution scheme [5] that relies on probabilistic key sharing among nodes within

the sensor network. Further enhancements have been proposed in [6][7]. The LEAP

protocol [8] is based on the observation that no single security requirement accurately

suites all types of communication in a wireless sensor network. Therefore, four dif-

ferent keys are used depending on whom the sensor node is communicating with, for

example, one key is used for group communication etc. Chan and Perrig [9] describe a

mechanism for establishing a key between two sensor nodes that is based on the com-

mon trust of a third node somewhere within the sensor network. Secure mechanisms

for broadcasting and multicasting have also been proposed [10][11].

2.2 Deception Technologies in Information Protection

The deception technology we are proposing is essentially a way of dealing with at-

tackers. Traditionally only defensive approaches are adopted. The reason why our

9

approach is offensive is because in our approach we try to manipulate the attacker’s

activities. We briefly review a number of approaches which have been identified to de-

fend against attacks. For example, Wood and Stankovic [12] defend against attacks by

identifying the compromised part of the sensor network and effectively routing around

the unavailable portion. They describe a two-phase approach where the nodes along

the perimeter of the attacked region report their status to their neighbors who then

collaboratively define the jammed region and simply route around it.

The applications of deception to the defense of information systems are relatively

new. The most notable application of deception in modern networked information

system is the Honeynet [13] in which a fake but attractive network is built in order

to mislead attackers as well as waste attackers’ time and resources. Some impressive

results have been shown for conventional information systems [14][15][16]. But, due

to the differences between sensor networks and conventional information systems,

theories developed for conventional information systems are not transplantable to

sensor networks. As far as we are aware, no effort has been devoted to develop a

deception mechanism in sensor networks.

2.3 Overview of Time Series Prediction Technologies

A large number of linear time series models exist, such as AR, MA, ARIMA,

ARFIMA[17][18], and so on. Use ARMA(M, N) as an example, the model is il-

lustrated in the equation below.

xt =
M∑

m=1

amxt−m +
N∑

n=0

bnet−n (2.1)

where x denotes the value at a given time t. xt−ms are values prior to time t.

es are error terms for each time points. The sum of amxt−m represents the internal

dynamics, and bns are weighing factor for input et. The disadvantage of linear model

predictions is that it assumes linearities in underlying process, which is not true for

10

non-linear processes.

Neural Networks [19][20] emerge as another popular approach to predict time

series. The base of Neural Network approaches is to find a function f which is the best

fit for xt = f(xt−1, . . . , xt−w). They are all similar except the methods of estimating

f are different. The idea of Neural Networks is sound and simple. However, it suffers

from the outstanding problems of all Neural Networks: large number of parameters

and long training time. Hidden Markov Models are also used for predictions of non-

linear time series [21][22]. But the algorithm of finding parameters is O(N2) for

number of nodes N , therefore the scalability of HMMs is questionable.

11

CHAPTER 3

METHODOLOGY

Expectations play a key role in the susceptibility of the target to deception. If the

deception presents observables that are very far outside of the normal range of ex-

pectations, it is likely to be hard for the target to ignore it. If the deception matches

a known pattern, the target is likely to follow the expectations of that pattern un-

less there is a reason not to. Essentially, the deception framework tries to meet the

expectation of the target by mimicking a well known pattern of the network traffic

using minimal resources.

In [23], we proposed a simplistic approach which yields promising simulation re-

sults. However, many issues are still remained unaddressed. Main critics about the

simplistic approach include 1) it is tightly associated with a specific attack type, which

is an exhaustive DoS attack; 2) the framework is not extensible; No other deception

algorithms can be introduced. To address these outstanding issues, in this thesis, we

introduce an extensible deception framework. A noticeable feature of this framework

is that it is a generic deception framework, where additional deception methods can

be plugged in effortlessly.

We assume that an intrusion detection system will detect the type of attack and

then the vicinity of origin or the source of attack. Deception is particularly useful

when the attacker is able to monitor the attack or receive some feedback arising from

the attack. The attack we look at specifically is a denial of service attack. Here the

attacker broadcasts requests to the sensor nodes. The attacker is more powerful than

the sensor nodes and can broadcast to nodes that may be multiple hops away. Each

12

Prepare Environment

Clustering

Elect
sacrificial
nodes

Deceive

Learn
pattern

Generate
Response

Self-adapt

Monitor
Attacker's
Behaviors

Adapt

Figure 3.1: Logical Structure of The Deception Components

sensor can only communicate with its immediate neighbors. All the nodes including

those that are multiple hops away from the attacker receive a request, respond to

each request, thereby tie up the network to responding to the attacker’s requests.

The attacker is able to determine the success of his attacks by monitoring the rate of

response to the request.

A deception will be conducted in three steps (Fig. 3.1):

• Initiate environment: form clusters, elect sacrificial nodes

• Respond to adversary: learn attacking pattern, generate responses

• Self adaptation: monitor behaviors of adversary, adapt

13

3.1 Design and Architecture

The primary goal of the architecture is to provide an infrastructure that is energy

efficient and enables the deception framework to respond to attacks in a timely fash-

ion. A distributed computation infrastructure which eliminates delays caused by long

trips of packets and minimize energy consumptions is proposed.

Fig. 3.2 shows a heterogeneous physical infrastructure which consists of sensor

nodes (dots in Fig. 3.2), one or more base station(s), and a group of Distributed

Deception Agents (stars in Fig. 3.2). Distributed Deception Agents (DDAs) act as

cluster heads which are specifically designed for the purpose of deceiving attackers.

Comparing to ordinary sensor nodes, they have stronger computational capability,

larger storage capacity, longer communication range, and hardened security. DDAs

are used as the localized center place of local data processing and decision making.

A layered communication hierarchy is formed. One layer is the communication of

sensor nodes. The other layer is the DDAs and base station(s). Given stronger

communication ability, DDAs communicate with each other and the base station in

long range wireless links.

The sensor field is divided into sub-zones. Each sub-zone has at least one DDA

in it. The deception actions are executed by sacrificial nodes who are selected among

all nodes therefore their role is changed when required. Criteria of choosing optimal

set of sacrificial nodes are presented below.

Distributed Deception Agents obtain an overview of sub-zones by surveying digests

from individual nodes. A digest is a series of average values over a certain period of

time called time windows. Each node keeps two digests of its interaction with an

adversary. Digest Digestin,i records inbound requests coming from the adversary to

node i, and digest Digestout,i records outbound responses sent from node i to the

adversary. Whether one or both digests are used by DDAs depends on requirements

of deception algorithm on DDAs. Thus only the required digest will be transmitted

14

Figure 3.2: Network Architecture

to nearby DDAs.

Fig. 3.3 displays “Who does what” relations of hardware components and logical

components in our deception framework. The tearoffs of the logical component Deci-

sion means that this functionality spreads in both DDAs and base stations. The base

stations are responsible for making high level decisions, such as whether to deceive

or not. Localized decisions, such as choosing sacrificial nodes, are made by DDAs.

3.1.1 Secure Deception Facilities

The proposed approach employs a simple key management scheme. A group key

enables the base station to communicate with the entire network. A pairwise key also

enables the base station to communicate individually with each node. If an attacker

is detected, the base station uses the pairwise keys to reset the group key so that the

attacker (assuming it has access to the previous group key - it may be a sensor node)

is excluded from the group. Hence, the rest of the network can communicate normally

without the attacker being able to read the messages. The base station informs the

sacrificial nodes to use their individual keys to act as sacrificial nodes and sends them

the different parameters.

15

Distributed Deception Agent Sensor Nodes

Digesting

Respond

Base Station

Decision

Decision
App Specific
Functions

Elect Sac
Nodes

Learn and
Predict

Monitor and
Adapt

Figure 3.3: Physical Structure

Another critical concern of the sacrificial nodes is that it carries executable code for

deception functionalities. Since we assume the adversary is able to tamper individual

nodes with ease, it is reasonable to assume that there are high chances of executable

code containing deception logics being reverse-engineered by the adversary. That in

turn leads to an ultimate failure of our deception technology.

Remote code installation [24] could be of great use in this scenario. Before a

breach discovered, all sensor nodes contain only code for regular operations. Code

related to deception are only stored in DDAs. When an attack is detected by Intrusion

Detection System, the selected sacrificial nodes will receive installation of code for

deception functionalities from a nearby DDA. As DDAs are generally considered more

secure than individual sensor nodes, the deception code are protected from tampering

and the defender’s intention of deception is well hidden from the attacker.

16

Figure 3.4: Sectors Surrounding An Attacker

3.2 Determine Sacrificial Nodes

The sacrificial nodes are nodes who sacrifice their power and time to deceive the

attacker and prevent other nodes from being attacked. They are neighboring nodes to

the attacker and within communication range of the attacker. The DDAs decide how

many sacrificial nodes are needed to carry out the deception. They try to minimize

the number of sacrificial nodes while make sure that the chosen nodes are capable

of fulfilling the deception mission. The layout of sacrificial nodes are also decided

by DDAs. It is important because 1) evenly scattered sacrificial nodes will give the

attacker the impression that the response to the attacker’s requests are coming from

all the surrounding nodes; 2) over concentrated sacrificial nodes will jeopardize normal

nodes’ abilities of sensing information in that region. The DDAs use the following

heuristic approach to choose the sacrificial nodes.

We assume the DDAs are able to determine the upper bound of the number of re-

sponses an attacker expects in a typical attack (given by specific deception algorithm).

The number of sacrificial nodes is determined as dn/me, where n is the number of re-

sponses the attacker expects in a time unit and m is the maximum number of packets

a sacrificial node can transmit in the same time period.

Power Level (P): The power level is the power remaining in the battery of a node.

17

A node which has power level lower than the minimal power level will not be chosen

as sacrificial node.

Sector: The communication region of the attacker is divided into N equally sized

sectors. The perimeter of the region is not defined by the communication range of the

attacker, rather, it’s defined by the communication range of the sensor nodes since

only nodes within the region can send packets to the attacker. In Fig. 3.4 the attacker

is surrounded by 8 sectors. The number of sectors is defined by the DDA.

Opposite Sector: A sector which is at the opposite side of the communication

region regarding the attacker. For example, sector B is the opposite sector of Sector

A in Fig. 3.4.

3.2.1 Initialization

We use a heuristic approach to get a set of sacrificial nodes from all nodes within the

communication range of the attacker (all nodes within the circle area in Fig. 3.4).

The procedure is as below:

1. Every node maintains a neighbors list which contains all neighbors to and from

whom the node can send and receive packets. Nodes maintain the list by peri-

odically sending beacon messages and receiving acknowledge messages to neigh-

boring nodes. The acknowledge message contains basic information about the

neighboring node, such as power level.

2. Assume the DDA decided that k sacrificial nodes are needed for the deception.

The DDA first randomly picks a node from the communication region. Any node

with the attacker in its neighboring list is considered within the communication

region of the attacker. We denote the node as s1. A flag called VISITED is put

on a visited sector;

3. Randomly pick a node from the opposite sector of the sector from which node

18

s1 is picked. If there is no node is eligible to be a sacrificial node in the opposite

sector, neighboring sectors of the opposite sector will be checked;

4. The next sacrificial node is randomly picked from unvisited sectors, in this case

all sectors except sector A and B;

5. The process of picking the 4th sacrificial node is similar to step 2;

6. Repeat step 1-4 until all sectors are visited at least once;

7. Clear all VISITED flags, and repeat step 1-5 until k sacrificial nodes are chosen.

3.2.2 Nodes Rotation and Failover

Rotating roles of deceiving (sacrificial nodes) and sensing (regular nodes) among sen-

sor nodes benefits the deception mission in two aspects. Firstly, rotating reduces the

unevenness of power levels between deceiving nodes and sensing nodes, thus prolongs

the overall life span of the network near the attacker. Secondly, since more nodes

participate in the deceiving activity, it may give the attacker an impression that the

attack is more influential than it really is. Failover is a mechanism of switching to

redundant or standby nodes in case of failures or unanticipated termination of a node.

Due to the high power and functional failure rate of sensor nodes, we consider the

capability of failover is a must have.

We resolve the rotating and failover operations in following procedure.

1. Upon a node Noden receives deceiving instructions I (the instructions encapsu-

late information for a node to conduct deception independently) from a DDA, it

elects a neighboring node as a standby node Nodes, and subsequently transmits

I to Nodes. The power level of the standby node has to be higher than the

electing node.

19

2. For rotating purpose, after a pre-defined amount of time, Noden notifies Nodes

to initialize deceiving with instructions I. It then shuts down the deceiving

functionality and starts to act as a sensing node.

3. For failover purpose, the standby node Nodes periodically sends a heartbeat re-

quest to Noden, Noden would respond to the heartbeat request with a heartbeat

response. The standby node Nodes will start to deceive if certain amount of

heartbeat responses are missing in a row (heartbeat requests contain sequence

number).

4. In both cases, during the transition of a standby node to a sacrificial node,

Nodes elects a standby node and transmits I to the standby node.

3.3 Pattern Learning and Prediction

We consider the information received by a DDA is a streaming time series input. By

streaming, we mean the time series is continuous and never be ended in the course

of deception. In this section, we model the deception system as a time series and

integrate a time series prediction technology into our deception framework.

3.3.1 Problem Formulation

Data flows in the network are modeled as a collection of time series T = {Sij}
(i, j ∈ {1 . . . n}) where {1 . . . n} denotes sensor nodes (including DDAs). Data flows

received by Distributed Deception Agents (DDAs) are also modeled as a collection of

time series D = {Xk} where k denotes DDAs. D is a subset of T . Hence the time

series of individual DDA is Xk =
∑

l Slk where l denotes neighbors of the DDA.

The application’s specific payloads (e.g. temperature, vibrations, etc.) carried by

the data flow can be modeled as time series. These information represent application

domain knowledge. We call them logical information. Similarly, physical character-

20

istics (e.g. transmission rate) of the network can also be modeled as time series.

They are independant to the application domain and closely related to the underly-

ing network structures. We name them physical information. Whether the logical

information or physical information are collected depends on needs of the specific

deception.

In this thesis, as a proof of concept, we only consider deceptions in which only one

property of the network, be it logical information or physical information, is involved.

However, we believe a deception system with multiple properties can be done by using

a collective time series or multiple independent time series. This is the topic we would

further investigate in future work.

Since in our use case only one DDA will be operating in a sub-zone in which an

attacker presents, analyzing the operation of a single DDA suffices to demonstrate

the capability of our deception method. The time series on a single DDA is defined:

X = {x1, x2, . . . , xn, xn+1, . . .} (3.1)

where X is an infinite time series. Subscripts {1 . . . n . . .} denote the time point

of each value.

We define a simplified model of requests and responses as a 1 : 1 mapping. The

assumption we made is that if the type of attacks and the physical system do not

change, the mapping function remains the same. Function ReqToResp() is an inverse

version of function RespToReq(). Thus, considering the network as a black box, we

have a relation between Treq and Tresp, where Treq and Tresp are collective time series

of requests and responses respectively.

ReqToResp(Treq) = Tresp (3.2)

RespToReq(Tresp) = Treq (3.3)

21

By the definition, a prediction of future input can be presented as a prediction of

future responses.

Predict(Treq) = Predict(RespToReq(Tresp)) = RespToReq(Predict(Tresp)); (3.4)

Hence, by predicting future responses, the future requests are well reflected.

A training set is a set of time series generated by a same physical system in

different time periods.

TS = {X1, . . . , XN} (3.5)

where Xi = {xit, xi(t+1), . . . , xi(t+l)}. xt is the value of the time series at time t,

and l is the length of the time series Xi.

Also, a query sequence is provided to be predicted upon with. The query sequence

and the training set must come from the same physical system.

Q = {q1, q2, . . . , qn} (3.6)

Therefore, the problem of prediction future responses becomes: given a training

set TS and a query sequence Q, predict qn+1, qn+2, . . . and so on. A simple form of

this prediction problem called Predict− 1Problem is that there is only one training

sequence in the training set, which is also the query sequence.

3.3.2 Fractal-based Delay Coordinate Embedding Prediction

We expect the ideal prediction algorithm to be able to take an infinite streaming

time series input and produce a streaming output. Due to the limited hardware

and the large input data set, the parameter learning algorithm has to be a One

Pass Algorithm, which means all input data will be scanned only once and then be

22

discarded. During the initialization, the algorithm finds parameters by itself without

manual setup, which means no human intervention will be needed.

Chakrabarti, D. and Faloutsos, C. [25] proposed an time series prediction approach

using a forecasting method called “Delay Coordinate Embedding”. This has the ad-

vantage of being able to handle periodic as well as chaotic datasets. Its disadvantage

is that its parameters have to be set manually. Authors of [25] developed F4 (Fractal

FOREcasting) system on top of “Delay Coordinate Embedding”, in which they pro-

vide automatic methods to do parameter induction, without any human intervention.

This results in a black-box which, given any time series, can automatically find the

optimal parameters and build a prediction system.

DEFINITION 1: Delay Coordinate Vector: The vector b = [xt, xt−τ , . . . , xt−lτ]

is called a delay coordinate vector because its terms are the time-delayed data values

from the time series.

DEFINITION 2. Lag Plot: A plot of this (l+1) dimensional vector space is called

the Lag Plot for lag l. This vector space is also called the Phase-Space.

The theoretical basis of “Delay Coordinate Embedding” is sound and proved in

[26][27]. Thus, the problem left can be divided into two sub-problems.

1. finding optimal lag length Lopt;

2. finding optimal number of nearest neighboring data points kopt

In [25], the author uses a plot called FDL (Fractal Dimension vs. Lag) to decide

optimal lag length Lopt. As the lag length L approaches the optimal value, the FDL

plot is flatting out. Therefore the optimal value is found at a point where the FDL

plot is not flatting out further. To decide kopt, a heuristic method combining with

observations are used. Being verified by experiments, the optimal number of nearest

neighboring data points kopt = 2f + 1 where f is the intrinsic dimensionality of the

training set.

23

Basic Window

Sliding Window

Figure 3.5: Basic Windows and Sliding Windows

3.4 Self Adaptation

As the attacker may change its attacking strategies at any time, to consistently deceive

the attacker, the defender is required to keep tracking behaviors of the attacker. If

the attacker changes its strategies while the defender still sends responses reflecting

old strategy of the attacker, this abnormality of responses could lead the attacker to

discovering the deception. Therefore, in order to successfully deceive the attacker in

a long run, a mechanism of self adapting should be in place.

3.4.1 Problem Formulation

A defender largely depends on identifying changes of the attacker’s attacking data

flow to decide whether the attacker changes its attacking strategy. We propose a

method of comparing data from different time periods to reveal possible changes in

attacking strategies.

To begin formulating the problem, we define three time periods (Fig. 3.5) from

smallest to largest:

• Time point - the smallest unit of time over which the system collects data, e.g.,

ten seconds.

• Basic window - a consecutive subsequence of time points over which the system

maintains a digest (i.e., a compressed representation) e.g., two minutes.

24

• Sliding window - a user-defined consecutive subsequence of basic windows over

which the user wants statistics, e.g., an hour.

Sizes of time points and basic windows are fixed in the same system, but sliding

windows may have different sizes.

Objectives are the results a defender tries to achieve by deceiving the attacker.

The objectives differ from application to application. They could be keeping the

attacker’s attacking strategy unchanged, keeping the attacker in place, or deterring

the attacker away, and so on. From this perspective, objectives are also considered as

the defender’s expectation about inputs of the attacker. Previous experiences, be it

online learning or offline experiment results, guide the selection of objectives. In DoS

attack, our expectation is that the attacker will keep the attacking rate steady and

not change its location. It further suggests that a steady rate of attacker’s input will

be the objective. We name the objective as Vobj. In case of deceptions on DoS attacks,

the request/response exchange becomes the objective when the rate stablizes.

We model the attacking data flow as a non-ending time series Nt = {nt, nt+1, . . . , nt+n}
where t denotes time points. Individual value of nt represents a digest of values in

the time point. Uppercase Wis and lowercase wks denote sliding windows and ba-

sic windows respectively. A precise definition of the problem is then formed as, if

Diff(Wi, Vobj) constantly exceeds a tolerance value t, the data flow Nt is considered

to be changed. Problems remained are 1) how the difference is decided; 2) how fre-

quent the tolerance value is exceeded considered as ‘constantly’.

3.4.2 Difference Calculation

In general researches on time series, a lot of work [28][29] has been done on finding

repeated patterns which are found in known datasets from unknown datasets. To

index, classify, and find repeated patterns, a metric of similarity has to be defined

first. The pattern can be in terms of moving average, time warping, or motif [30].

25

Such metric may seem overkill for our scenario since approaches proposed in above-

mentioned literatures focus on types of highly variant time series, e.g. stock prices, or

focus on processing very large set of time series. Since we try to find the deviations

of the attacker’s input from previous input, the problem is much easier than finding

similar patterns. Hence a simpler yet more efficient approach is more relevant. We

use a simple statistic approach to identify significant changes in the attacker’s input.

Due to the fact that the input data we trace are rates of the attacker’s input

in time points, we compare harmonic means of two sliding windows to determine

the difference. The objective value is considered as a standard, and the values in

upcoming sliding window Wi compares against it.

Harmonic mean is appropriate for situations when the average of rates are desired.

Let k = |W | be the number of time points in a sliding window W , and let ni,j denote

the value of jth time point in sliding window Wi, harmonic mean HMean of sliding

window Wi is given as:

HMean(Wi) =
k

∑k
j=1

1
ni,j

(3.7)

When the deception begins, the steady rate of input becomes the objective Vobj.

Let b be the number of basic windows in a sliding window, a normalized difference is

given as:

δ = |HMean({wn+b+1, . . . , wn+2b})− Vobj

Vobj

| (3.8)

The normalized differences give us an intuitive feeling about the movement of

the attack. The larger the difference, the larger the movement of the attack. For

a human, the trend is easy to be identified. However, an algorithm is needed for

machines. An eligible algorithm should demonstrate following properties: 1) ignoring

temporary surges in the input; 2) identify the change of paradigm in a timely fashion.

We define a term ∆ as the measurement of deviation from the objective. ∆ is a

26

non-negative real number initialized to be 0. ∆ increases when a sliding window is

evaluated and a difference is reported in. Increments of ∆ are governed by a ceiling

function ceil() in which inc = δ when δ < c and inc = c when δ ≥ c and c is the

ceiling value. The ceiling function helps us to eliminate the impact of sudden surges in

inputs. ∆ also decreases over time. For each time point, the value of ∆ is calculated

as:

∆t+1 = δ + dec(∆t) (3.9)

It is required the function dec(x) to demonstrate a property that the closer the x

to 0, the lower the decreasing rate. After experimenting and failing, we finally found a

function which serves our purpose well. Equation 3.10 shows the decrement function.

e in equation 3.10 denotes the decreasing rate. The value of e is less than but very

close to 1 (e.g. 199/200). It doesn’t change in the entire process but, however, it

does demonstrate the property that we expect. Fig. 3.6 demonstrates the required

property of the decrement function.

dec(∆t) = (1 + ∆t)
e − 1 (3.10)

The difference δ comes in at a rate of once per sliding window. We define a time

series Dt as the difference time series. In Dt, values of all time points are zeros except

those values reported at the end of each sliding window. As a result, the cumulative

measurement of deviation ∆ is calculated:

∆t+1 = Dt+1 + dec(∆t) = Dt+1 + (1 + ∆t)
e − 1 (3.11)

A simple method is used to decide if the attacking data flow exceeds a tolerance

value CONSTANTLY or not. We define the tolerance value as T , a test window Wtest.

For example, we have sliding windows of size |Wi| = 60(sec), a testing window of size

27

0 20 40 60 80 100
0

2

4

6

8

10

Time points

V
al

ue
s

Figure 3.6: Property of Function dec()

|Wtest| = 300(sec). Five δ points will be reported in this test window. If, in this test

window, the values of ∆ are above T for the majority of time, we can consider the

paradigm of the attack changed.

Although selecting of the tolerance value T and the length of test window Wtest

is largely up to developers of specific applications, we show in Chapter 4 that our

methodology could help application developers in finding optimal values of the pa-

rameters.

28

CHAPTER 4

RESULTS

4.1 Network Setup

Fig. 4.1(a) shows the normal operation of the network with data sent to the base sta-

tion. If an attack is detected, nodes located close to the attacker or attack zone’s edge

act as sacrificial or deceiving nodes. The base station identifies the sacrificial nodes

and informs them of their changed role in the network using the key management

outlined above. Similarly, the base station informs the deceiving nodes of their new

role. In Fig. 4.1(b), some of the neighboring nodes are sacrificial nodes. The other

neighboring nodes re-route their packets as suggested in [12]. In Fig. 4.1(c), some of

the neighboring nodes are deceiving nodes which transmit both normal and deceiving

traffic. The neighboring nodes re-route their normal packets as suggested in [12] and

send the deceiving traffic to the attacker. The sacrificial and deceiving nodes spoof

their addresses so that the attacker would thinks it is getting packets from sensors

that are more than one hop away and the sacrificial nodes also spoof the address of

the attacker’s neighboring nodes that are not sacrificial nodes.

4.2 Simulation

We model the collective behaviors of a sub-zone in our deception framework as a single

entity. The entity represents a group of sensor nodes and one Distributed Deception

Agent. Since we have done thorough analysis on behaviors of sacrificial nodes, we

will not repeat the same subtle details of interactions among nodes and the DDA.

29

Figure 4.1: Deception Scenarios

Figure 4.2: Deceiving Sequence

30

Rather, the sub-zone of interests is regarded as a black box, where only input and

output are considered.

Fig. 4.2 shows the sequence of our deception activity. Components 1 and 2 are

the request data and the response data respectively. Component 3 symbolizes the

transformation of requests to responses in a physical network. Component 4 presents

our algorithm in which the attack is learnt and the deceiving responses are generated.

Three routes of data flows are labeled. Route A presents the data flow before decep-

tion occurs. Route C shows the deception data flow. Route B will only be used when

the deception agent is learning patterns. Our simulation first simulates the activity

represented by Route B. Using results from the first simulation, we then simulate

the deception activity, or specifically the prediction aspect, which is what Route C

represents.

The attacking traffic flow is simulated as infinite time series. Based on the above-

mentioned assumption that given a stable status of responding, the translation func-

tion between requesting and responding is unchanged, we simplifies the translation

function to Yt = Xt where Xt represents the requesting time series and Yt is the

responding time series. As long as the value of both time series don’t reach their

respective upper bounds which are decided by the underlying physical system, the

translation function will be preserved in the entire course of simulation. The la-

tency caused by asynchronized communications between nodes introduces a shift of

value among time points. Thus the resulting time series exhibits a noise-like property

(Fig. 4.3(b) and Fig. 4.4(b)).

Two types of attacking traffics are simulated. A constant rate attacking traffic

flow represents a fixed strength of attack where the attacker finds an equilibrium.

The other type of traffic is periodical, specifically a sine function against time points.

Recall that the deception system mimics response time series. Due to the limitation

of medium capacity, the rate of responses must reach to a point where the system can

31

0 200 400 600 800 1000
0

5

10

15

Time points

V
al

ue

(a) Requests

0 200 400 600 800 1000
0

5

10

15
(b) Responses

Time points

V
al

ue

1000 1200 1400 1600 1800 2000
0

5

10

15
(c) Actual responses

Time points

V
al

ue

1000 1200 1400 1600 1800 2000
0

5

10

15
(d) Predicted responses

Time points

V
al

ue

Figure 4.3: Constant Attacking Traffic Flow

not respond any more beyond that. Hence, we believe the constant and periodical

attacking data suffice to show the effectiveness of our deception framework.

The simulation is written in C, Matlab, and glued up with Perl scripts.

4.3 Results of Deceptive Responses

Fig. 4.3 shows the result under constant rate attacking traffic flow. The attacking

traffic flow is simply a time series of Xt = 10. The first 1000 time points of responses

(Fig. 4.3(b)) are cached and used as a training set to train the deception algorithm.

Fig. 4.3(c) shows the observed responses of size 1000 following the first 1000 time

points. And Fig. 4.3(d) shows the predicted responses produced by the deception

algorithm.

Fig. 4.4 shows the result of periodical attacking traffic flow. The equation used to

generate the attacking traffic flow is Xt = 10 + Sin(t/30). The deceiving process is

32

0 200 400 600 800 1000
0

5

10

15

Time points

V
al

ue

(a) Requests

0 200 400 600 800 1000
0

5

10

15
(b) Responses

Time points

V
al

ue

1000 1200 1400 1600 1800 2000
0

5

10

15
(c) Actual responses

Time points

V
al

ue

1000 1200 1400 1600 1800 2000
0

5

10

15
(d) Predicted responses

Time points

V
al

ue

Figure 4.4: Sine Attacking Traffic Flow

similar to that of the constant rate attack.

Table 4.1: Quality of Deceiving Responses

— NRMSD Mean (Observed) Mean (Predicted) Mean (Difference)

CONST 0.1682 10.0272 9.9416 0.0856

SINE 0.1799 9.9342 9.8906 0.0436

As shown in Table 4.1, we calculate the Normalized Root Mean Square Deviation

and Mean difference of observed sequence and predicted sequence. The mean differ-

ence gives a sense of how good the predicted sequence compares with the observed

sequence quantitatively. The NRMSD then shows the quality of the prediction in

terms of patterns of sequences. The difference of means in the range of sub 0.1 is

impressive. Considering the large noise-like time shift behaviors of the time series,

we believe both measurements yield impressive results for the two types of attacking

flows.

33

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

Time points

D
el

ta

Delta ∆
difference δ

Threshold

Figure 4.5: Attacking Flow with Normalized Difference of 0.1

4.4 Identifying Changes in Attacking Paradigms

In this section, we present and analyze results of simulations on identifying attacking

paradigm changes. The primary goal is to show the effectiveness of our methodology.

A synthetic attacking time series is used in the simulation. In each time series, 600

time points are presented. We assume the size of time points is one second, which

means 10 minutes worth of data are included in each time series. The decreasing rate

e used in the simulation is 0.99. For the sake of simplicity, we assume the tolerance

value T = 0.5. By our definition, if the values of ∆ are higher than 0.5 for the

majority of a test window, the attacking paradigm is deemed changed.

Fig. 4.5 shows the attacking flow which has constant normalized differences of

0.1 regarding the objective. An upper bound of 0.35 is shown in the figure. The

result indicates that, for the tolerance of 0.5, an attacking flow with constant nor-

malized differences of 0.1 will never exceed the tolerance. This behavior is desirable

for our methodology because a low degree of errors (or noises) in the attacking flow

is inevitable and expected. Fig. 4.5 also shows another interesting property of our

algorithm, which is, for a given input flow, an upper bound of ∆ for the flow can al-

ways be found. We call the property Constrained Upper Bound. This property helps

34

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time points

D
el

ta

Delta ∆
difference δ

Threshold

Figure 4.6: Attacking Flow with A Surge

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time points

D
el

ta

difference δ
Delta ∆

Threshold

Figure 4.7: Attacking Flow With Normalized Difference of 0.3

35

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time points

D
el

ta

Delta ∆
difference δ

Threshold

Figure 4.8: Fluctuating Attacking Flow

the developers of a specific application decide the optimal tolerance T . As far as an

acceptable normalized difference δ is decided, the developer could use our algorithm

to obtain the Constrained Upper Bound for the difference, which in turn becomes the

lower bound of the tolerance T . Hence an optimal tolerance can be found.

Fig. 4.6 shows an attacking flow with a surge of normalized differences in one test

window. It can be seen on the figure that the value of ∆ declines rapidly after the

surge happened, and the period of time in which the ∆ value is higher than T is

brief. Based on this observation, the defender concludes the attacking paradigm is

not changed.

For the attacking flow with constant normalized differences of 0.3 (Fig. 4.7), the

∆ exceeds the tolerance 0.5 in second iteration, and stablizes at the upper bound of

0.9. If we use a test window of size 300 seconds, the ∆ stays above the tolerance

T = 0.5 for nearly 70% of the first test window. This result indicates that the change

of paradigm is identified in 5 minutes. Similarly, an attacking flow with fluctuations is

also simulated. For the test window starting from time points 151, in approximately

60% of the test window, the ∆ is higher than the tolerance value T . By the definition

of majority, we deem this result also indicates the attacking paradigm changed. It

36

takes 7.5 minutes to reach this conclusion.

According to the results of simulations, we believe our methodology identifies

changes of attacking paradigms effectively. We also demonstrate the Constrained

Upper Bound property of our algorithm helps developers obtain an optimal value of

the tolerance T .

37

CHAPTER 5

CONCLUSIONS

In this thesis, a framework for deception in sensor networks is proposed. Deceptions

can be used under certain scenarios such as when there is a need to attract an at-

tacker to a less significant area of networks in order to protect high profile areas,

or prevent the attacker from moving to a new location, and so on. A cluster-based

semi-centralized architecture for efficient deception and communication is suggested.

A method of choosing optimum layout of sacrificial nodes is also proposed. On top

of the architecture, we propose a time series model of the network and a deception

algorithm based on time series prediction. A method to identify changes in attackers’

behaviors is also proposed. Simulation shows that our approach generates responses

very closed to actual responses produced by the network.

Our work is built on top of [23] in which we developed a simple and efficient

algorithm for deceiving DoS attacks. Our contributions in this thesis are two fold.

First, we solved the outstanding issues in [23] by proposing an extensible framework

of deception for sensor network. A time series based network model is also proposed.

However, improvements will always be needed. We only have mimicking based de-

ceptions implemented. Another deception, e.g. decoying, could be implemented on

top of our framework to show the framework’s universal applicability.

38

BIBLIOGRAPHY

[1] G. Stein, “Encyclopedia of hoaxes,” tech. rep., Gale Research, Inc, 1993.

[2] D. J. Malan, M. Welsh, and M. D. Smith, “A public-key infrastructure for key

distribution in tinyos based on elliptic curve cryptography,” in First Annual

IEEE Communications Society Conference on Sensor and Ad Hoc Communica-

tions and Networks, IEEE SECON, 2004, 2004.

[3] R. Watro, D. Kong, S. Cuti, C. Gardiner, C. Lynn, and P. Kruus, “Tinypk:

securing sensor networks with public key technology,” in Proceedings of the 2nd

ACM workshop on Security of Ad hoc and Sensor Networks (SASN ’04), (New

York, NY, USA), pp. 59–64, ACM Press, 2004.

[4] B. Schneier, Applied Cryptography. John Wiley and Sons, 2nd ed., 1996.

[5] L. Eschenauer and V. D. Gligor, “A key-management scheme for distributed

sensor networks,” in Proceedings of the 9th ACM conference on Computer and

communications security, pp. 41–47, ACM Press, 2002.

[6] W. Du, J. Deng, Y. S. Han, and P. K. Varshney, “A pairwise key pre-distribution

scheme for wireless sensor networks,” in CCS ’03: Proceedings of the 10th ACM

conference on Computer and communications security, (New York, NY, USA),

pp. 42–51, ACM, 2003.

[7] D. Liu, P. Ning, and R. Li, “Establishing pairwise keys in distributed sensor

networks,” ACM Trans. Inf. Syst. Secur., vol. 8, no. 1, pp. 41–77, 2005.

39

[8] S. Zhu, S. Setia, and S. Jajodia, “Leap+: Efficient security mechanisms for

large-scale distributed sensor networks,” ACM Trans. Sen. Netw., vol. 2, no. 4,

pp. 500–528, 2006.

[9] H. Chan and A. Perrig, “Pike: peer intermediaries for key establishment in

sensor networks,” INFOCOM 2005. 24th Annual Joint Conference of the IEEE

Computer and Communications Societies. Proceedings IEEE, vol. 1, pp. 524–535

vol. 1, 13-17 March 2005.

[10] R. D. Pietro, L. V. Mancini, Y. W. Law, S. Etalle, and P. Havinga, “Lkhw: a

directed diffusion-based secure multicast scheme for wireless sensor networks,”

Parallel Processing Workshops, 2003. Proceedings. 2003 International Confer-

ence on, pp. 397–406, 6-9 Oct. 2003.

[11] L. Lazos and R. Poovendran, “Secure broadcast in energy-aware wireless sensor

networks,” in IEEE International Symposium on Advances in Wireless Commu-

nications (ISWC’02), 2002.

[12] A. D. Wood and J. A. Stankovic, “Denial of service in sensor networks,” Com-

puter, vol. 35, no. 10, pp. 54–62, 2002.

[13] T. H. Project, Know Your Enemy. Boston: Addison-Wesley, 2002.

[14] N. C. Rowe, “Designing good deceptions in defense of information systems,” 20

Annual Computer Security Applications Conference, 2004.

[15] N. C. Rowe, “A model of deception during cyber-attacks on information sys-

tems,” Multi-Agent Security and Survivability, 2004 IEEE First Symposium on,

2004.

[16] F. Cohen, “A mathematical structure of simple defensive network deceptions,”

Computers and Security, vol. 19, no. 6, pp. 520–528, 2000. 9.

40

[17] M. Priestley, Spectral Analysis and Time Series. London: Academic Press, 1981.

[18] C. Chatfield, The Analysis of Time Series. London: Chapman and Hall, 1989.

[19] P. Werbos, Beyond Regression: New Tools for Prediction and Analysis in the

Behavioural Sciences. Phd thesis, Harvard University, Cambridge, MA, 1974.

[20] P. Werbos, “Generalization of backpropagation with application to a recurrent

gas market model,” Neur. Net, vol. 1, pp. 339–356, 1988.

[21] A. M. Fraser and A. Dimitriadis, “Forecasting probability densities by using

hidden markov models with mixed states,” Time Series Prediction: Forecasting

the Future and Understanding the Past, 1993.

[22] X. Ge and P. Smyth, “Deformable markov model templates for time-series pat-

tern matching,” Knowledge Discovery and Data Mining, pp. 81–90, 2000.

[23] R. Zhang, J. P. Thomas, and V. M. Mulpuru, “Deception framework for sensor

networks,” in 3rd International Conference on Security and Privacy in Commu-

nication Networks (SecureComm 2007), 2007.

[24] T. Stathopoulos, T. McHenry, J. Heidemann, and D. Estrin, “A remote code

update mechanism for wireless sensor networks,” tech. rep., Center for Embedded

Networked Sensing, 2003.

[25] D. Chakrabarti and C. Faloutsos, “F4: large-scale automated forecasting using

fractals,” in CIKM ’02: Proceedings of the eleventh international conference on

Information and knowledge management, (New York, NY, USA), pp. 2–9, ACM,

2002.

[26] F. Takens, Dynamical Systems and Turbulence; Lecture Notes in Mathemat-

ics, vol. 898, ch. Detecting strange attractors in turbulence, pp. 366–381.

Berlin:Springer-Verlag, 1981.

41

[27] T. Sauer, J. A. Yorke, and M. Casdagli, “Embedology,” J. Stat. Phys., vol. 65,

no. 3/4, pp. 579–616, 1991.

[28] R. Cole, D. Shasha, and X. Zhao, “Fast window correlations over uncooperative

time series,” in KDD ’05: Proceeding of the eleventh ACM SIGKDD interna-

tional conference on Knowledge discovery in data mining, (New York, NY, USA),

pp. 743–749, ACM Press, 2005.

[29] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos, “Fast subsequence match-

ing in time-series databases,” in SIGMOD ’94: Proceedings of the 1994 ACM

SIGMOD international conference on Management of data, (New York, NY,

USA), pp. 419–429, ACM Press, 1994.

[30] B. Chiu, E. Keogh, and S. Lonardi, “Probabilistic discovery of time series motifs,”

in KDD ’03: Proceedings of the ninth ACM SIGKDD international conference

on Knowledge discovery and data mining, (New York, NY, USA), pp. 493–498,

ACM, 2003.

[31] R. A. Kemmerer and G. Vigna, “Intrusion detection: A brief history and

overview,” Security & Privacy, 2002.

[32] S. Gerwehr, J. Rothenberg, and R. H. Anderson, “An arsenal of deceptions for

infosec (ouo),” Tech. Rep. PM-1167-NSA, RAND National Defense Research

Institute Project Memorandum, October 1999.

[33] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Prentice

Hall, 2/e ed., 2003.

[34] C. Karlof and D. Wagner, “Secure routing in wireless sensor networks: Attacks

and countermeasures,” Proceedings of the First IEEE, 2003 IEEE International

Workshop on Sensor Network Protocols and Applications, 2003.

42

VITA

Ruiyi Zhang

Candidate for the Degree of

Master of Science

Thesis: A DECEPTION FRAMEWORK FOR WIRELESS SENSOR NETWORKS

Major Field: Computer Science

Biographical:

Personal Data: Born in Longchang, Sichuan, China on April 3rd, 1982.

Education:
Completed the requirements for the degree of Master of Science with a ma-
jor in Computer Science, Oklahoma State University in December, 2007.
Received the B.S. degree from Sichuan University, Chengdu, Sichuan, China,
2004, in Electric Engineering

Experience:
Worked for NCS Pte. Ltd. Suzhou as a Software Engineer from Febrary
2004 to April 2005. Developed Unit Trust Investment module for iBanking
internet service of Development Bank of Singapore.
Co-founded 5Dtech Inc., worked as the leading Software Engineer of 5Dtech
Inc from May 2001 to June 2003. Developed Enrollment Management
System for Sichuan Univerisity, the campus e-Commercial entity 5dcol-
lege.com, and various other projects for local businesses.

Name: Ruiyi Zhang Date of Degree: May, 2008

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: A DECEPTION FRAMEWORK FOR WIRELESS SENSOR NET-
WORKS

Pages in Study: 42 Candidate for the Degree of Master of Science

Major Field: Computer Science

Although a lot of work has been done in proposing secure mechanisms for sensor
networks, very little work has been reported on how to respond to attacks that have
infiltrated the network. In this thesis we suggest a response framework to attacks
that have been detected. We look at one particular response in detail, namely decep-
tion. Our contributions in this thesis are twofold. 1) A time-series based deception
framework is proposed for learning attacker’s behaviors and deceiving the attacker.
A mathematical generalization of the framework is also proposed. We simulate a
denial of service attack and simulation results show that, to the attacker, genuine
response data and the fake response data generated by our algorithm are highly in-
distinguishable. 2) A harmonic means mechanism is used to determine if the attacker
has changed his behavior. Simulations are provided to show that our approach not
only detects slight changes over time, but also does filter out abnormality in data
samples to avoid false alarms.

ADVISOR’S APPROVAL:

