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CHAPTER 1 
 
 

INTRODUCTION 
 
 
1.1. BACKGROUND 

          

Databases today tend to be large.  Data mining1 (sometimes also called 

knowledge discovery) finds hidden patterns and relationships in data both to save storage 

and to predict future events.  These relationships include classification2, clustering3, 

association4 and sequential analysis5 

Frequent pattern mining (FPM) is a data mining technique to find frequent 

patterns (FP) in a dataset.  FPM is very important in many data mining tasks, such as 

mining association rules6 [AS94], sequential patterns7 [AS95], multi-dimensional 

patterns8 [KHC97], correlations9 [BMS97], causality10 [SBMU98], episodes11 [MTV97],  

max-patterns12[B98], partial periodicity1 [HDY99], and emerging patterns2 [DL99].  

According to Pei [PTH01], while mining frequent patterns, if the support variables3 are 

                                                
1 Data mining – The definition is found in http://www.anderson.ucla.edu/faculty/jason.frand/teacher/   
   technologies/palace/datamining.htm 
2 Classification - Store data into predetermined group based on data’s properties. 
3 Clustering - Data are grouped according to logical relationships or customers’ preferences. 
4 Association - Define a relationship such as X=>Y where X, Y are different items or itemsets. 
5 Sequential analysis - Data are analyzed to predict trends. 
6 Association rule mining - The process of finding all the association rules (ARs) in a given dataset. 
7 Sequential patterns - Patterns that contain items which appear in a timely order. 
8 Multi-dimensional patterns - Patterns are mined based on the constraints. 
9 Correlations - A statistical technique which can show whether and how strongly pairs of variables are  
   related. 
10 Causality - The principle of or relationship between cause and effect. 
11 Episodes - Patterns that contain series of related items. 
12 Max-patterns - Pattern with maximum length and no supersets of them are patterns. 
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set too high, few patterns can be found.  This problem is solved by Fault-tolerant 

Frequent Pattern Mining. 

 The concept of Fault-tolerant Frequent Pattern Mining (FT-FPM) was introduced 

by Pei [PTH01].  According to Pei, with FT-FPM, one may look for approximate and 

more general fault-tolerant frequent patterns instead of finding exact frequent patterns in 

data.  Thus, longer, more general patterns with higher support4 can be discovered, rather 

than specific, harder to find, patterns [PTH01].  However, in FT-FPM, the same fault 

tolerance is evenly applied to all data despite of the different properties among them.  

Consequently, the result is not quite realistic. 

This paper proposes to mine fault-tolerant patterns with classifiers (CFT-FPM).  

With CFT-FPM: 1) one or more classifiers is (are) picked to be fixed at a set of specific 

values or specific ranges;  2) then, FT-FPM is used to mine patterns based on the 

corresponding fault-tolerance.  Since the result is driven from classified data and proper 

fault-tolerance, patterns that are closer to reality are discovered. 

In the following example5, this paper illustrates frequent pattern mining (FPM), 

fault-tolerant frequent pattern mining (FT-FPM) and fault-tolerant frequent pattern 

mining with classifiers (CFT-FPM).  

Example 1: VHS/DVD movie rental 

After doing business for years, the manager of a VHS/DVD rental store wants to 

find frequent patterns in the movie rental database to increase future sales.  In order to 

                                                                                                                                            
1 Partial periodicity - Patterns that contains items which repeat in a timely order. 
2 Emerging patterns - Association of features whose frequency increases significantly from one class to  
   another. 
3 Support variables - Certain parameters that need to be set to define certain frequent patterns. 
4 Support - Number of records in the database contains the pattern. 
5 All examples in this paper are made by the auther. 
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find frequent patterns in the database, first he must define what a frequent pattern is.  In 

other words, he must set the support threshold (minimum value of support) for a frequent 

pattern.  In this case, he set the support  threshold to 50%.  Thus, for a movie rental 

pattern to be considered frequent and valuable, it should have no less than 50% pattern 

support.  Mining results show four old movies: a, b, c, d and one new movie: e  

form an interesting pattern.   

Frequent pattern (FP): 

Pattern P0: 85% of customers who rented four out of four old movies also rented 

the new movie. 

85%:     (a) & (b) & (c) & (d) → (e) 

Since the support of 85% is greater than the support threshold of 50%, the pattern is 

considered a frequent pattern in the database.  What if the support is less than 50%? 

Let’s look at pattern P1: 

Pattern P1: 35% of customers who rented four out of four old movies also rented the new 

movie. 

35%:     (a) & (b) & (c) & (d) → (e) 

Since the pattern support is only 35%, P1 is not considered frequent.  If every pattern 

discovered has less than 50% pattern support, then data mining in the database will be 

meaningless and no pattern can be used for future prediction.  Thus, in order to extract 

meaningful frequent patterns from the database, the manager either have to decrease the 

desired support (make it less than 50%), or increase the pattern support by relaxing some 

constraints.  Fault-tolerant frequent pattern mining is such a technique to increase pattern 

support by relaxing some constraints. 
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Fault-tolerant frequent pattern (FT-FP): 

The movie rental manager also discovered that some customers, who rented only 

three out of four old movies, also rented the new movie.  He decided to add these 

customers to the customers in pattern P1.  Thus, he discovered a new pattern with higher 

support.  Let’s look at pattern P2:  

Pattern P2: 60% of customers who rented at least three out of four old movies also rented 

the new movie. 

60%:     (abc) | (bcd) | (abd) | (acd) | (abcd) → (e) 

 

P2 achieves higher support of 60%.  Since pattern support of 60% is higher than the 

minimum support (50%), P2 is valuable for future prediction.  This method produces 

more general results than P1 because every customer who satisfies P1 also satisfies P2.  

We call P2 a fault-tolerant frequent pattern.  Fault-tolerant frequent pattern mining (FT-

FPM) is a mining method to discover all the fault-tolerant frequent patterns (FT-FP) from 

the database.  It is used to increase the pattern support by relaxing some constraints: 

“three out of four” instead of “four out of four”. 

 However, in reality, FT-FPM is not recommended to be applied evenly in every 

case.  According to Fischoff, etc [FAL97], “Those in the Older age range show the least 

appreciation for films in the HORROR genre”.  Thus, young people might be more 

interested in scary movies than older people.  In other words, chance for a young person 

to watch a new scary movie without a scary movie rental history is greater than that of an 

older person.  CFT-FPM suggests that an age variable in the dataset should be used to 
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classify the data.  All of the data is included, assuming no missing values for the age 

variable. 

Let’s look at how CFT-FPM might produce a pattern when classified by age. 

Mine Fault tolerant frequent pattern with classifiers (CFT-FPM): 

Pattern P3:  We discover different rules based on customer age range: 

1)  65% of customers who are under age 20 and watched at least two out of four old        

     movies also rented the new movie “e”. 

2)  75% of customers whose age is between 20-50 and watched at least three out of four  

old movies also rented the new movie “e”. 

3)  80% of customers who are above 50 years old and watched all four old movies also        

     rented the new movie “e”. 

The following summarizes pattern P3: 

     if (age < 20) 

          65%:  (ab) | (ac) | (ad) | (bc) | (bd) | (cd) | (abc) | (bcd) | (acd) | (abd) | (abcd) 

                     → (e) 

     else if (20 < age <50) 

          75%:  (abc) | (bcd) | (acd) | (abd) | (abcd) → (e)  

     else if (age >50) 

          80%:  (a) & (b) & (c) & (d) → (e) 

In this case, CFT-FPM constructs three specific rules in P3; whereas, for the same 

data FP-FPM constructs one general rule in P2.  In P3, we see that if a young person 

watched only 2 out of 4 old scary movies, most of them will watch the new scary movie.  

On the other hand, if an older person watched 4 out of 4 old scary movies, most of them 
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will watch the new scary movie, which makes more sense according to the reality.  

Compare P3 to P2, it can be seen that pattern P3 adds an age classifier based on the value 

of the age variable.  P3 discovers a more detailed pattern that is closer to the reality 

expressed by the data.  Based on the above pattern, the VHS/DVD store would 

recommend movie “e” to the customers who are under age 20 and watched two out of 

above four old movies, to the customers whose age is between 20-50 who watched three 

out of four old movies, and to the customers who are over 50 years old and watched all 

four old movies.  Thus, customers’ needs are satisfied better, and sales may be increased 

significantly.   

We introduce CFT-FPM1 to discover patterns such as the above in this paper. 

 
1.2. The Problem and the Purpose        

 

Frequent pattern mining is very important in many data mining tasks and has 

broad applications.  Fault-tolerant frequent pattern mining (FT-FPM) was introduced to 

“achieve higher pattern support to discover longer patterns and more general rules from 

the database” [PTH01].  However, FT-FPM treats data as a whole and does not 

differentiate it by its properties.  Thus, unrealistic patterns might be generated since FT-

FPM is not based on the data’s properties.  In order to extract patterns that are closer to 

reality, new idea should be introduced.  

 

 

 

 

                                                
1 CFT-FPM - A mining technique we proposed that mines fault tolerant frequent patterns based on one or a 
set of classifier(s). 
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1.3. Objectives        

 

This paper proposes to mine fault-tolerant frequent pattern mining with classifiers 

(CFT-FPM).  This proposal adapts the FT-FPM approach to mine fault-tolerant frequent 

patterns based on one or a set of specific classifier(s) value.  In this way, it generates 

rules that are tailored to the data itself.  We also implement and test the CFT-FPM over a 

real-world dataset.  The objectives of this paper are: 

1.  To analyze CFT-FPM. 

2.  To implement CFT-FPM. 

            3.  To test CFT-FPM over a real-world dataset.  

 

1.4. Outline of the Thesis: 

 

The remainder of the thesis is structured as follows: 

     Chapter 2: The frequent pattern mining and an overview of related work  

     Chapter 3: The concept and implementation of CFT-FPM   

     Chapter 4: The results and findings of CFT-FPM 

     Chapter 5: The conclusions and suggest future work      
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CHAPTER 2 

 

REVIEW OF THE LITERATURE 

          

In this chapter, we review the history of: 
             
             1. Frequent Pattern (FP) 
             
             2. Frequent Pattern Mining (FPM) 
  
             3. Association Rule Mining (ARM) 
 
             4. Apriori1 Heuristic 
                
             5. Apriori Algorithm 
 
             6. Fault-tolerant Frequent Pattern Mining (FT-FPM) 
 
             7. Classification 
 
2.1. Frequent Pattern (FP): 
 
Example 2: Customer Transactions. 

Table “Customer Transactions (version 1)”2 contains some sales data from a supermarket 

sales database.   

Customer ID Purchased Items 
1 1, 2, 3, 4, 5, 6, 9 
2 1, 2, 4, 7, 8 
3 2, 3 
4 1, 3, 5, 11 
5 1, 3, 4, 5, 12, 24 

Table 1: Customer Transactions (version 1) 

                                                
1 Apriori – This is the correct spelling of the name of the algorithm, The dictionary spelling would be a  
   priori. 
2 Customer Transactions (all versions) – derived from Transaction database in Pei[P02 
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There are five transactions (records) in the table.  Each transaction stores 

information about a customer along with the items purchased.  The table contains two 

column attributes and they are the “Customer ID” (primary key) and the itemsets 

“Purchased Items”.  

 According to Agrawal, given a user specified support threshold min_sup, a 

minimum length threshold min_length, itemset X is considered a frequent pattern in the 

table iff sup(X) ≥ min_sup and length(X) ≥ min_length [AIS93].  Given min_sup = 3, 

min_length = 3, X = {1, 3, 5}.  Scan through the “Purchased Items” column which 

contains itemsets, we see that X is contained in transactions 1, 4, 5.  With sup(X) = 3 and 

length(X) = 3, itemset X is considered a frequent pattern in this table since  

sup(X) ≥ min_sup(3) and length(X) ≥ min_length(3).  However, if we set the minimum 

support threshold to 4; E.g.,., min_sup = 4, then X is not a frequent pattern in this table 

since sup(X) < min_sup(4).  If we set min_length to 4, X is not a frequent pattern since 

length(X) < min_length(4).   

This means that 60% of the customers bought items {1}, {3}, {5} together.  In  
 

 other words, itemset {1, 3, 5} is a popular set.  One might consider placing these three 
 
 items together to increase sale. 
 

2.2. Frequent Pattern Mining (FPM) 

The concept of frequent pattern mining was first introduced by Agrawal 

[AIS93] to mine frequent patterns between sets of items.  The definition of frequent 

pattern mining follows.   

According to Agrawal, I = {i1,…,in} is a set of items.  An itemset X is a non-

empty subset of I. E.g.,., X ⊆ I.  X = ij1, …ijk.  An itemset containing K items is called a  
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k-itemset.  A transaction is denoted as T = (tid, X), where tid is a transaction-id and X is 

an itemset.  T is said to contain itemset Y iff Y ⊆ X.  A transaction database TDB 

contains a set of transactions (records).  The number of transactions in transaction 

database TDB containing itemset X is called the support of X, denoted as sup(X).  

Given a transaction database TDB and a support threshold min_sup > 0, an itemset X is 

a frequent pattern iff sup(X) ≥ min_sup.  The problem of frequent pattern mining is 

to find all the frequent patterns in database based on a given min_sup [AIS93].  Another 

mining technique, association rule mining, can be derived from frequent pattern mining.  

 
2.3. Association rule Mining (ARM)     

According to Agrawal, association rule mining (ARM) is the process of finding 

all the association rules (ARs) in a given data set.  An association rule (AR) defines a 

relationship such as X =>Y, read as" if X is true, Y is also likely to be true" (X and Y are 

itemsets and X ∩ Y = ∅).  The rule X => Y has support s in a transaction database TDB 

if:  sup (X ∪ Y) = s (where support s is a scalar, ∪ is union operation).  The rule X =>Y 

holds in the transaction database TDB with confidence c, where: c = [sup (X ∪Y)]/sup 

(X) (where confident c is a scalar).  Given a transaction database TDB, a support 

threshold min_sup and confidence threshold min_conf, the problem of association 

rule mining is to find all the association rules that satisfy the min_sup and min_conf 

[AS94].               

            For instance, given min_sup = 3, min_conf = 70%, let X = 1, Y= (3, 5), itemset {1, 

3, 5} is a frequent pattern in table 1 since {1, 3, 5} is contained in transaction 1, 4, 5, 

which satisfies the min_sup(3).  This implies the three customers who purchased the item 

“1” also purchased the items “3, 5”.  Thus, s = sup (1 ∪ (3, 5)) = 3.  Since item 1 is 
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contained in database four times, which means, sup (1) = 4.  Thus, c = [sup (1 ∪ (3, 

5))]/sup (1) = 3/4 =75%.  Since s ≥ min_sup(3), c ≥ min_conf (70%), the relationship 

between itemset{1}, {3, 5} is an association rule discovered from the database.  From 

this rule, one can conclude that {1}, {3, 5} associate with one another in majority 

(3/5=60%) of the transactions.  Follow the same logic, we can also discover the 

association rule between itemset {3} and {1, 5}, and the association rule between {5},  

{1, 3}.  Thus, there is a relationship (association rule) among three items {1}, {3} and 

{5}.  Supermarket might consider placing all three items together to increase the chance 

for customers to buy all three items at the same time.  Thus, sales might significantly 

increase since more items are sold at the same time. 

             Mining frequent patterns could be very time consuming, many methods were  
 
proposed to mine frequent patterns efficiently.  
 

2.4. The Apriori1 Heuristic  

The Apriori heuristic was introduced by Agrawal, et al to mine frequent patterns 

efficiently.  According to Agrawal, Apriori heuristic highlights an anti-monotonic2 

property: any superset of an infrequent itemset cannot be frequent.  In other words, if any 

length-k pattern is not frequent in the database, its length-(k + 1) superset patterns can 

never be frequent [AS94].  E.g., length-3 itemset {1, 3, 5} can not be frequent if one of 

its length-2 subset, {3, 5}, is not frequent.  This becomes an important rule for limiting 

pattern searches, as will be seen in later examples.  

                                                
1 Apriori  - is an efficient association rule mining algorithm, developed by Agrawal et al. (wikipedia). It is 
different from A priori, which is a Latin phrase meaning "from before, from the beginning" or less literally 
"before experience"(wikipedia).       
2 Support monotonicity- Given a transaction database TDB, Let X, Y be two itemsets in TDB. Then, 
   (X ⊆ Y) => [support(Y) ≤ support(X)], Hence, if an itemset is frequent, then its superset might not be       
   frequent.  Support anti-monotonicity - If an itemset is infrequent, all of its supersets must be infrequent 
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2.5. The Apriori Algorithm (to mine the complete set of frequent patterns in the 

database) 

 The Apriori algorithm was developed based on the Apriori heuristic.  According 

to Agrawal, Apriori uses breadth-first search and bottom-up approach to generate 

frequent itemsets.  The key observation behind Apriori is that all the subsets of a frequent 

itemset must be frequent.  The essential idea of Apriori is to iteratively generate  

length-(k+1) candidates from the length-k frequent patterns (for k > 0); then check their 

corresponding occurrence frequencies in the database.  The Apriori algorithm follows:  

Apriori Algorithm  

Input: transaction database TDB and minimum support threshold min_ sup 

Output: the complete set of frequent patterns in TDB with respect to minimum support   

               threshold min_ sup 

Method: 

 “1. Scan TDB a first time to find L11(length-1 frequent itemsets); 
2. for ( k = 2; Lk-1 ≠ ∅; k + + )  
    {           
       (a) Generate Ck

2, the set of length-k candidates. A k-itemset X is in Ck      
             iff every length-(k -1) subset of X is in Lk-1; 
       (b) If Ck = ∅; then go to Step 3; 
       (c) Scan transaction database TDB once to count the support for  
             every itemset in Ck; 
       (d) Lk = {X | (X ∈ Ck) ^ ( sup(X) ≥ min_sup)}; 
     }  
3. Return all the frequent itemsets found.”[P02]. 
  

Example 3:  Customer Transactions (version 2) 

Customer ID Purchased Items (Ordered) Frequent Items 
1 1, 2, 3, 4, 5, 6, 9 1, 2, 3, 4, 5 

                                                
1 Ln - the complete set of length-n frequent patterns [P02]. 
2 Ck – the complete set of length-n candidates [P02]. 
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2 1, 2, 4, 7, 8 1, 2, 4 
3 2, 3 2, 3 
4 1, 3, 5, 11 1, 3, 5 
5 1, 3, 4, 5, 12, 24 1, 3, 4, 5 

Table 2: Customer Transactions (version 2) 
 
Given min_length (3), the following steps1 show how Apriori algorithm finds the 

complete set of frequent patterns.  

 

Steps:  

 
1. Scan table 2 once to find length-1 frequent itemsets that are contained in at least  

min_sup (3) transactions.  They are {1, 2, 3, 4, 5}.   

2. Generate length-2 candidates from length-1 frequent patterns.  There are 5C2  

      (1, 2, 3, 4, 5) =10 length-2 candidates (combinations2) in total and they are 

      {12, 13, 14, 15, 23, 24, 25, 34, 35, 45}. 

3. Scan table 2 the second time to check length-2 candidates against min_sup(3).  

For instance, candidate {13} is contained in transactions 1, 4, 5 min_sup (3) times. 

Thus, {13}is a length-2 frequent pattern.  There are four length-2 frequent 

patterns are discovered and they are {13, 14, 15, 35}.  They are the length-2 

frequent patterns.  However, since they are unable to satisfy min_length (3), they 

are not in the output. 

4. Generate the length-3 candidates.  Only those length-3 itemsets in which every 

length-2 sub-itemset is a length-2 frequent pattern are qualified as candidates.  

E.g., itemset {135} is a length-3 candidate since its subsets 13, 15 and 35 are all 

                                                
1 Mining steps are derived from examples in [P02] 
2 Combination: number of ways of picking unordered outcomes from possibilities. 

(http://mathworld.wolfram.com/Combination.html)  
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length-2 frequent patterns.  From the length-2 patterns, the only length-3 

candidate generated is {135}.   

5. Check length-3 candidate {135} against min_sup(3).  It passes the test since it is 

contained in transactions 1, 4, 5.  Since {135} also satisfies min_lengh(3), it will 

be in the mining result. 

6. There is no length-4 candidate can be generated from only one length-3 frequent 

pattern.  Moreover, the table only contains two transactions that have length-4 or 

longer itemset.  Thus, mining process ends. 

 
Thus, with a minimum support threshold min_sup (3), a minimum length support 

threshold min_length (3), there is only one frequent patterns discovered in the table.  The 

frequent pattern {135} implies that 60% (3/5=60%) of customers who purchased two out 

of three items in the {135} also purchased the third item.  Thus, the store should 

recommend the third item to the future customers who purchased two out of three items 

in the pattern.  Sales might increase significantly since proper items are recommended to 

the proper customers. 

According to Agrawal, Apriori heuristic achieves good performance gain by 

(possibly significantly) reducing the size of candidate sets.  Otherwise, more candidates 

need to be generated and tested, which is a very time consuming process [AIS93].  For 

instance, without the Apriori heuristic, the length-3 itemset {127} must be checked to see 

whether it is a frequent pattern.  With the Apriori heuristic, there is no need to check 

itemset {127} since subset {7} is not a frequent itemset.    

Later on, based on the Apriori algorithm, Fault-tolerant Frequent Pattern Mining 

algorithm was proposed to mine more general, longer patterns from the database.  
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2.6. Fault-tolerant Frequent Pattern Mining (FT-FPM) 
         

In 2000, fault-tolerant frequent pattern mining (FT-FPM) was introduced by  

Pei, J, et al [PTH01] to mine more general, longer patterns from the database.  According 

to Pei, in FT-FPM, the “frequent patterns” discovered and the traditional frequent 

patterns do not have to be exact matches.  These “frequent patterns” are called fault-

tolerant frequent patterns.  Fault-tolerance1 is allowed in order to discover more general 

information.  The definition of fault-tolerant frequent pattern follows.  According to Pei,        

Given a fault tolerance δ (δ > 0), P is an itemset, |P| > δ.  A transaction T = (tid, X) is said 

to FT-contain itemset P iff there exists P` ⊆ P such that P` ⊆ X and |P`| ≥ (|P| – δ).  The 

number of transactions in a database FT-containing itemset P is called the FT-support of 

P, denoted as FT_sup(P).  Let B(P) be the set of transactions FT-containing itemset P.  It 

is called the FT-body of P.  Given (1) a frequent-item support threshold min_supitem 

and (2) a FT-support threshold min_supFT.  An itemset P is called a fault-tolerant 

frequent pattern, or FT-pattern in short, iff: 1)  FT_sup(P) ≥ min_supFT; and 2)  for 

each item x ∈ P, supB (P)(x) ≥ min_supitem, where supB(P)(x) is the number of transactions 

in B(X) containing item x.  Pei also states that the frequent-item support threshold is used 

to filter out infrequent item, since users may want to see patterns consisting of only items 

with statistic significance.  On the other hand, FT-support threshold is used to capture 

frequent patterns in the sense of allowing at most δ (the fault tolerance) mismatches” 

[PTH01]. 

 
 
 

                                                
1 Fault-tolerance – Partial item mismatch. 
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FT-Apriori Algorithm [PTH01]: 
 
            “Input: Transaction database TDB, frequent-item support threshold                    

           min_supitem, FT-support threshold min_supFT, fault tolerance and  
           length threshold min_length.  
Output: The complete set of FT-patterns. 
Method:  
           1. Scan TDB once, find the set F1 of global frequent items.  An item  
               x is global frequent iff sup(x) ≥ min_supitem; 
           2. Let C δ+1 be the set of all length-(δ+1) subsets of F1. Let i = δ +1. 

                          Do { 
                          (a)  Scan TDB, check candidate itemsets in Ci; 

         (b)  Let Fi be the set of FT-patterns in Ci; If (i ≥min_length)  
                then output patterns in Fi; 

(c) If Fi is not empty, generate Ci+1 from Fi.  A length-(i+1)  
       itemset X is in Ci+1 iff every length-i subset of X is in Fi; 

         (d)   i = i+1; 
                     } until either Fi-1 or Ci is empty;” [PTH01]  

 
Let’s look at table 3. 

Customer ID (Ordered) Frequent Items 
1 1, 2, 3, 4, 5 
2 1, 2, 4 
3 2, 3 
4 1, 3, 5 
5 1, 3, 4, 5 
Table 3: Customer Transactions (version3) 

 

In table 3, given min_supitem = 2, min_supFT= 3, min_length = 4, δ =1, consider an 

itemset X = {1345}.  X’s length-3 subsets {134}, {135}, {345} are contained in 

transaction 1, 4, 5 respectively1.  Thus, X is FT-contained in the table at least2 three times, 

which satisfies min_supFT(3).  X’s length satisfies min_length (4).  Each item in X: {1}, 

{3}, {4}, {5} is contained in subsets {134}, {135}, {345} at least twice, which satisfies 

min_supitem (2).  Each subset has only one mismatch compares to X, which satisfies  

                                                
1 X’s other subset such as {145} is also contained in transactions 1,5.  In this case, since min_supFT(3) is  
already satified, it is not necessary to consider subset {145}  
2 At least – The same reason as in footnote 1. 
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fault-tolerance δ (1).  Thus, X is a fault-tolerant frequent pattern.  Compares to the 

frequent patterns mined previously, X is a length-4 frequent pattern (|X| = 4) with one 

item mismatch allowed.  Such patterns also include {1245}, {1234}.  Recall that we were 

unable to generate length-4 frequent itemset from frequent pattern mining.  Since we use 

fault-tolerance, longer patterns are generated.        

 Fault-tolerant frequent pattern mining with classifiers is based on Fault-tolerant  
 
frequent pattern mining, also, it is based on classification.    
 
 
2.7. Classification1 
 

Classification is a data mining technique used to predict membership of objects in  
 
the classes based on one or more categorical dependent variables.  In Classification,  
 
objects are divided into different classes based on one or more classification variables  
 
called Classifiers.  Thus, in each class, objects share similar properties.    
              

 
Base on Fault-tolerant frequent pattern mining and classification, this paper  

demonstrates how to mine fault-tolerant frequent patterns with classifiers in the next  

chapter. 

 

 

 

 

 

 

 

 

 
                                                
1 Classification – Definition is from http://www.statsoft.com/textbook/stdatmin.html. 
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CHAPTER 3 

 

DESIGN AND IMPLEMENTATION 

 
 
In this chapter, we present: 
 
1. Fault-tolerance analysis 

    
2. Constraint-based pattern growth frequent pattern mining .vs. fault-tolerant frequent  

 
        pattern mining with classifiers 
 
3. Fault-tolerant frequent pattern mining with classifiers (CFT-FPM) 

4. Example of CFT-FPM 

5. Apply CFT-FPM to real world data 

Before CFT-FPM is introduced, let’s have a better understanding of fault-tolerance,  
 
which was first introduced by Pei in [PTH01]. 
 
 
3.1. Fault-tolerance Analysis 
  

According to Pei, in FT-FPM, fault-tolerance is the mismatch item count between 

fault-tolerant frequent pattern and frequent pattern [PTH01].  The smaller the fault-

tolerance, the similar the frequent pattern and the fault-tolerant pattern, the more accurate 

the mining result.  In order to be frequent, fault-tolerant frequent patterns found should be 

as close to the frequent patterns as possible.  The maximum value of fault-tolerance is the 

length of the frequent pattern (|frequent pattern|).  If the fault-tolerance is set to the 
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maximum value, too many infrequent patterns will be generated, mining will be 

completely pointless.  

 The minimum value of fault tolerance is zero.  In this case, we look for  

fault-tolerant patterns that match the frequent patterns exactly and this fault-tolerant 

frequent pattern mining process becomes frequent pattern mining (FPM).  Thus, frequent 

pattern mining is a special case of fault-tolerant frequent pattern mining when  

fault-tolerance is set to zero.  

 In a movie rental store, the manager predicts new movie rental possibilities based 

on a set of old movie rentals.  For example, if he is looking for frequent movie sets 

(frequent patterns) of size (length) five, fault tolerance should be between the min value 

(0) and the max value(5).  He might not want to set fault-tolerance to a higher value of 

four or five; if he does, he will get too many infrequent movie sets.  It is more realistic for 

him to set the fault-tolerance to a lower value of one or two (three will generate more 

infrequent patterns than one or two). This means maximum two old movie mismatches 

still count a certain customer in.  Follow the same logic; if we are looking for frequent 

patterns of length 50, it is more realistic to set fault-tolerance to a relevant lower value 

compares to the length of the frequent patterns that we are looking for, such as a number 

that is less than 20.  In both cases, fault-tolerance is set to a relevant lower value 

compares to the length of the frequent patterns in order to get patterns that are frequent.  

The higher the fault-tolerance, the more infrequent patterns are mined, the less accurate 

the result; and wise versa. 

            In a supermarket, the majority of shoppers buy many items each visit.  The same 

logic follows.  If we are looking for frequent itemsets of size ten, the fault-tolerance 
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should be set to a relatively lower value, such as four or some other lower value 

compared to the number of items purchased (ten).  

            In the medical field, in order to predict a future symptom of a patient, doctors 

must look at the patient’s medical history, including a set of previous symptoms that the 

patient had in the past.  In this case, fault-tolerance needs to be as small as possible since 

the prediction needs to be as accurate as possible, otherwise, the patient will receive 

wrong treatment which is extremely dangerous. 

Thus, to set the fault-tolerance, we must: 

1. Identify the type of industry or the field of application. 

a. If it is a field such as a movie rental store or a supermarket, in which a 

small error does not incur a large penalty, go to step two. 

b. If it is a field such as a medical field or a chemical research laboratory, in 

which a small error incurs a large penalty, the dataset and the prediction 

need to be as accurate as possible.  In this case, it is better not to apply 

fault-tolerance at all.   

           Note: Fault-tolerance is used only if the frequent patterns discovered are: not long    

           enough, or not general enough (the number of frequent patterns discovered is too  

           small).  If the frequent patterns discovered are long and general enough,  

           fault-tolerance is not necessary. 

2. Set the length of the traditional frequent itemset and determine the value of fault-

tolerance.  Fault-tolerance should be set to a relatively lower value compares to 

the length (size) of the frequent itemset.  The greater the fault-tolerance, the more 

infrequent patterns are discovered, the less accurate the prediction. 
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In CFT-FPM, the more attributes the records have, the more difficult it is to use 

CFT-FPM.  When we categorize data, we must pre-process the data, which includes 

sorting.  If the records have n (n is a positive integer) attributes and each attribute has m 

(m is a positive integer) different values, we have mn attribute combinations.  It is very 

tedious to match up each combination with a particular fault-tolerance and then do FT-

FPM in each combination.  This paper demonstrates CFT-FPM with only one attribute.   

            Pei introduced the method of constraint-based frequent pattern mining in [PH02].   

Many readers might consider that classifiers are a type of constraints since they constraint 

data into different categories.  The following section explains the difference between 

Pei’s constraint-based frequent pattern mining and the proposed fault-tolerance frequent 

pattern mining. 

 
3.2. Constraint-based frequent pattern mining .vs. fault-tolerant frequent pattern  
 
mining with classifiers. 
 

 According to Pei, constraint-based frequent pattern mining1 integrates users’ 

interest into the mining result.  The purpose of adding constraints to pattern mining is to 

mine patterns tailor to users’ interest [PH02].  The purpose of adding classifiers to FT-

FPM is to integrate various degrees (values) of fault-tolerance based on data properties to 

discover more realistic patterns.  Thus, FT-FPM with classifiers and constraint based 

frequent pattern mining are different. 

             Let’s look at fault-tolerant frequent pattern mining with classifiers in the next 

section. 

                                                
1 Constraint-based frequent pattern mining - In Pei [PH02], Pei introduced constraint-based pattern growth 
mining, which is a type frequent pattern mining.  Pattern growth method is an alternative to the Apriori 
method. 
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3.3. Fault-tolerant frequent pattern mining with classifiers (CFT-FPM)1:     

Let’s consider a transaction, T, together with its properties (classifiers) in TDB; 

e.g., T = (tid, classifier1, classifier2…classifier n, X), where tid the transaction-id; 

classifier1, classifier2…classifier n are the Classifiers, which are the properties associate 

with itemset X.  For itemsets X, Y, a transaction  

T = (tid, classifier1, classifier2…classifier n, X) is said to contain itemset Y iff: 

1. Y ⊆ X  

2. Y’s classifiers value = X’s classifiers value.   

E.g., (classifierY1 = classifier X1) & (classifierY2 = classifier X2) & …& 

            (classifier Yn = classifier Xn)            

The catch is: we want to mine fault-tolerant frequent patterns based on certain classifier(s) 

and categorize data based on their properties, then apply various degree of fault-tolerance 

to each category.   

In CFT-FPM, since we mine fault-tolerant patterns tailored to the classifiers, we 

have n (n is a positive integer) fault tolerances instead of one in FT-FPM, where: 

1) n = number of categories of items divided by classifiers  

      2) fault-tolerance list:  Delta = {δ1, δ2,…, δn}( δi is a non-negative integer, where          

          0 ≤ i ≤ n) 

Each fault-tolerance is corresponding to one category based on the properties of itemset. 
 
The next example shows how to mine fault-tolerant frequent patterns with classifiers. 
 

 

 

                                                
1 CFT-FPM – the definition of CFT-FPM is derived from Pei’s FT-FPM definition in [PTH01]. 
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3.4. Example of CFT-FPM 

Example 4: A game Store manager wants to find out to whom a new play station game 

should be recommended.  The sales database has information about customers’ gender, 

age range and the purchase history.  We’d like to mine the database with classifiers since 

the possibility to purchase a new game is not only based on purchase history, but also 

depends on other properties such as customers’ age and gender.  Table 4 contains games 

sales information. 

Customer 
ID 

Customer 
Gender 

Customer 
Age Range 

Purchased 
Games 

1 M 18-30 2, 3, 4, 5 

2 F 18-30 1, 2, 3, 4, 5 

3 M 18-30 1, 2, 4 

4 F 18-30 1, 2, 4 

5 F Above 50 2, 3, 4, 5 

6 F 18-30 2, 3 

7 F Above 50 1, 4, 5 

8 F 18-30 1, 3, 5 

9 M 18-30 1, 4, 5 

10 F 18-30 1, 3, 4, 5 

Table 4: Customer Transactions (Games) 

In table 4, there are three types of customers: males under age 30, females under 

age 30 and females over age 50.  According to entertainment software association’s 

research on game players in 2002, 19% of gamers are above 50 years old, 55% of the 

gamers are males [ESA02].  Thus, it is reasonable to consider that males who are under 

age 30 have the highest possibility to purchase a new game without having purchased lots 

of games in the past.  Females who are under age 30 have less possibility since female 

has less interest in gaming compare to males in general.  Females who are above age 50 
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have the lowest possibility since older people has less interest in gaming compare to 

younger generation in general.  In other words, for a female who is under age 50 to buy a 

new game, she has to be a game fan whose game purchase history is outstanding.  Fault-

tolerances are set based on this consideration.  Since the possibility for customers to buy 

games is:  males under 30 > females under 30 > females above 50, it is reasonable to set 

fault-tolerance to ‘2’ for males under 30, to ‘1’ for females under 30, to ‘0’ for females 

above 50 years old.  (Database might have other types of people who do not fit in above 

three categories.  However, we only consider three categories in this example for 

demonstration purposes.) 

In table 4 above, there are ten customers.  Each record stores information about a 

customer along with the games purchased.  It contains: 

           1) Customer ID: primary key 

           2) Customer Gender, Customer Age Range: classifiers  

           3) Purchased Games: itemset 

To mine CFT-patterns in table 4, we set input parameters to following values: 

Input: 

           1) TDB (transaction database): Customer Transactions   

           2) minimum item support threshold: min_supitem (2) 

           3) FT-support threshold: min_supFT (3) 

           4) fault-tolerance list: Delta =  

               {0: for females above 50 

                1: for females under 30  

                2: for males under 30}                          
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                Table 5 shows classifier and fault-tolerance matching pairs.  

                                                                     

                                          

 

 

                                          Table 5: classifier & fault-tolerance matching pairs  

           5) minimum pattern length: min_length = 4 

Output: CFT- FP for each category 

Procedure: 

1. Categorize data based on two classifiers: Customer Gender, Customer Age Range  

Customer ID Customer 
Gender 

Customer 
Age Range 

Purchased Games 

2 F 18-30 1, 2, 3, 4, 5 

4 F 18-30 1, 2, 4  

6 F 18-30 2, 3 

8 F 18-30 1, 3, 5 

10 F 18-30 1, 3, 4, 5 

Category 1(females under 30) 

 

 

 

 

 

Category 2 (males under 30) 

 

Customer ID Customer 
Gender 

Customer 
Age Range 

Purchased 
Games 

5 F Above 50 2, 3, 4, 5 

Customer 
Gender 

Customer 
Age Range 

Fault-tolerance 

F Above 50 0 

F 18-30 1 

M 18-30 2 

Customer ID Customer 
Gender 

Customer 
Age Range 

Purchased 
Games  

1 M 18-30 2, 3, 4, 5 

3 M 18-30 1, 2, 4 

9 M 18-30 1, 4, 5 
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7 F Above 50 1, 4, 5 

Category 3 (females above 50) 

Table 6: Customer Transaction categories (3 categories) 

 

2. Eliminate the categories that have fewer than three records. 

            Since min_supFT = 3, each candidate category must have at least min_supFT(3) 

records.  We delete category 3 since it has only two records.  Thus, we have two 

categories after elimination. 

Group 1:  2, 4, 6, 8, 10 

Group 2:  1, 3, 9 

     3. We use FT-FPM to mine category 1 and 2 separately with different fault-tolerances. 

Customer ID Customer 
Gender 

Customer 
Age Range 

Purchased Games 

2 F 18-30 1, 2, 3, 4, 5 

4 F 18-30 1, 2, 4  

6 F 18-30 2, 3 

8 F 18-30 1, 3, 5 

10 F 18-30 1, 3, 4, 5 

Table 7: Category 1(Females under 30) 

Table 7 contains the data for females who are under age 30, which has fault-

tolerance of one.  Following steps1 demonstrate mining fault-tolerant patterns with 

classifiers. 

Steps: 

1) Scan table 7 the first time to find the length-1 itemsets that appear in at least  

      min_supitem (2) records2.  They are: {1, 2, 3, 4, 5}. 

                                                
1 The steps are derived from the fault-tolerance mining process in [PTH01]. 
2 They are also called the global frequent items [PTH01]. 
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2) From {1, 2, 3, 4, 5}, we generate 5C2 (1, 2, 3, 4, 5) =10 combinations of length-2   

candidates and they are {12, 13, 14, 15, 23, 24, 25, 34, 35, 45}.  According to the 

lemma 2.1 in [PTH01]1, it is not necessary to check them against the 

min_supitem(2). 

3) Scan table 7 the second time to check length-2 candidates against min_supFT(3).  

For instance, candidate {2,5} is FT-contained in customers 2(contains items 2, 5), 

4(contains item 2), 6(contains item 2), 8(contains item 5), 10(contains item 5). 

Thus, FT_sup{2,5}= 5  ≥ min_supFT(3).  It turns out that every length-2 candidate 

is a FT-pattern.  However, since their length is only 2, they are not in the output. 

4) Generate length-3 candidates from length-2 FT- patterns.  According to Pei, a 

length-(k+1) candidate is generated iff its every length-k subset is an FT-pattern 

[PTH01].  For instance, {123} is a length-3 candidate since its subsets {12}, {13}, 

and {23} are length-2 FT-patterns.  There are ten length-3 candidates generated: 

{123, 124, 125, 134, 135, 145, 234, 235, 245, 345}. 

5) Scan table 7 the third time to check length-3 candidates against min_supFT(3) and  

min_supitem (2).  For instance, candidate {123}’s subsets {12}, {23}, {13} are   

contained in customer 2 (contains {12}), 6(contains {23}), 8(contains {13})2.  

which means, FT_sup(123) ≥ min_supFT(3).  Length-1 item 1, 2, 3, each appears 

in customer 2, 6, 8 at least min_supitem (2) times.  Thus, candidate {123} is a FT-

pattern.  It turns out that all the length-3 candidates are length-3 FT-patterns.  

However, they are not part of output since min_length = 4. 

                                                
1 Lemma 2.1 – Let X be an itemset contains (δ +1) global frequent items.  X is a FT-pattern iff  
   FT_sup (X) >=min_supFT 
2 Subset {13} is also contained in customer 10.  Since min_supFT(3) is already satisfied, it is not necessary    
   to consider customer 10. 
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      6)  From length-3 FT-patterns, 5 length-4 candidates are generated.  They are:  

           {1234, 1235, 1245, 1345, 2345}.  

7) Scan table 7 the fourth time to check length-4 candidates against min_supFT(3) 

and min_supitem(2).  For instance, for candidate {1234}, subsets {123}, {124}, 

{134} are contained in customer 2, 4, 10 respectively, which means 

FT_sup{1234}≥ min_supFT(3).  Length-1 items 1, 2, 3, 4 are all contained in 

customer 2, 4, 10 at least min_supitem (2) times.  Thus, candidate {1234}is a  

      FT-pattern.  However, for candidate {1235}, subsets {135}, {123} are contained          

      in customer (8, 10), (2) respectively, which satisfies min_supFT(3) but not  

      min_supitem (2) since item ‘2’ is contained in customer (8, 10, 2) only once     

      (min_supitem (2) is not satisfied).   Thus, candidate {1235} is not a FT-pattern.   

      Only three length-4 FT-patterns are found and they are {1245}, {1234}, {1345}.   

8) There is no length-5 candidate can be generated since there are only three length-

4 FT-patterns (To generate a length-k candidate, we need at least k length-(k-1) 

            FT-patterns according to Pei).  Thus, mining process terminates for  

            category 1.  FT-patterns {1245}, {1234}, {1345} are the CFT-FPs for category 1.   

            Let’s look at category 2 in table 8, which has a fault-tolerance of 2. 

Customer 
ID 

Customer 
Gender 

Customer 
Age Range 

Purchased Games 

1 M 18-30 2, 3, 4, 5 

3 M 18-30 1, 2, 4 

9 M 18-30 1, 4, 5 

Table 8: Category 2 (males under 30) 

      9)  Scan table 8 once to find the length-1 items that appear in at least min_supitem (2) 

           records.  They are: {1, 2, 4, 5}. 
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     10) From {1, 2, 4, 5}, we generate 4C3 (1, 2, 4, 5) = 4 combinations of length-3   

           candidates1 and they are {124, 125,  145,  245}.  It is not necessary to check them  

           against min_supitem according to the lemma 2.1 in [PTH01]. 

11) Scan table 8 the second time to check length-3 candidates against min_supFT(3).  

For instance, candidate {124}is FT-contained in customer 1(contains {2})2, 

customer 3(contains {1}), customer 9 (contains {4}), which satisfies min_supFT 

(3).  Thus, candidate {124} is a FT-pattern.  It turns out that every length-3 

candidate is a FT-pattern.  However, since their length is only 3, they are not in 

the output. 

12) Generate length-4 candidates from length-3 FT-patterns.  There is only one  

        length-4 candidate generated from length-3 FT-patterns and it is {1245}.     

13) Scan table 8 the fourth time to check candidate {1245}against min_supFT(3) and    

       min_supitem (3).  {1245}’s subsets {245}, {124}, {145}are contained in customer  

       1, 3, 9 respectively, which satisfies min_supFT(3).  Each length-1 item 1,  

       2, 4, 5 is contained in customers 1, 3, 9 at least min_supitem (2) times.  Since  

       {1245} also satisfies min_length(4).  Thus, it is a length-4 FT-pattern and it is in  

       the output. 

14) No length-5 candidate can be generated from only one length-4 FT-patterns.  

Mining process terminates and FT-pattern {1245} is the CFT-FP for category 2.   

 

Therefore, in total, there are four length-4 CFT-patterns discovered from 

                                                
1 Since fault-tolerance is 2, we do not consider length-2 patterns, according to Pei in [PTH01]. 
2 Customer 1 also contains item {4}. In this case, it is not necessary to consider {4} since min_supFT is   
already satisfied.  Same reason applies to the fact that it’s not necessary to count item {2} and {4} for 
customer 3. 
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CFT-FPM.  They are {1234, 1245, 1345} for category 1(females under age 30) and 

{1245} for category 2(males under age 30). 

        Thus, the game store might consider recommending certain new game that is 

related to old games {1},{2}, {3}, {4}, {5} to females who are under age 30 and 

purchased three out of four games in the game sets {1234}, {1245}or {1345}.  The game 

store should also recommend certain new game that is related to old games {1}, {2}, {4}, 

{5} to males who are under 30 and purchased two out of four games in the game set 

{1245}.   

 

3.5. CFT-Apriori Algorithm1: 

Input: 1) TDB (transaction database) 

            2) minimum item support threshold: min_supitem  

            3) minimum CFT-support threshold (same for every category): min_supCFT  

            4) fault-tolerance list: deltas = {δ1, δ2,…, δn}   

Classifier 1 Classifier 2 Classifier n Fault tolerance 

C11 C21 Cn1 δ1 

C12 C22 Cn2 δ2 

… … … … 

C1n C2n Cnn δn 

Table 9:  classifier & fault-tolerance matching pairs 

           6) minimum length threshold: min_length 

Output: The complete set of CFT-FPs that satisfies the above input requirements. 

Method: 

1. Categorization  

                                                
1 CFT-FPM Apriori algorithm is derived from Pei’s FT-FPM Apriori. 
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2. for ( k = 1; k  ≤ number of categories; k = k + 1 ) 

{ 

                       Mine fault-tolerant frequent patterns with the corresponding fault-tolerance. 

                         } 

                  3.    Gather all the fault-tolerant frequent patterns generated in each category. 

 

3.6. Methodology 

 
The project contains five steps: 

1) Generate suitable dataset for CFT-FPM by using program gen.java1 

2) Input dataset into the CFTmine.java2. 

3) Categorization. 

4) Loop though transaction categories and apply fault-tolerant frequent pattern 

mining algorithm to each category. 

5) Gather the total result and output to the screen.       

This project utilized the following software and hardware: 

1) Dataset: retail.txt 

2) Programming language: Java   

3)   Operating system: Sun Solaris Unix (Oklahoma State University Computer    

       Science department CSA server) 

 
  

 

                                                
1 gen.java – is the java program to generate proper dataset for CFT-FPM. 
2 CFTmine.java – is the java program composed by author to mine fault-tolerant frequent patterns with 
classifiers. 
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3.6.1. Select real world data 

By searching the online data repository and other resources, we were unable to 

find a proper dataset to fit the CFT-FPM.  However, we found a dataset that fits the FT-

FPM which we can modify to fit the CFT-FPM.   

The test dataset “retail” is downloaded from http://fimi.cs.helsinki.fi/data/.  It was 

donated by Tom Brijs and contains the retail market basket data from an anonymous 

Belgian retail store [BSVW99].  The dataset contains 88,163 transactions and each 

transaction contains item purchased in each transaction1.  Below are the first ten 

transactions in the dataset and it contains item identification numbers.  

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29  
30 31 32  
33 34 35  
36 37 38 39 40 41 42 43 44 45 46  
38 39 47 48  
38 39 48 49 50 51 52 53 54 55 56 57 58  
32 41 59 60 61 62  
3 39 48  
63 64 65 66 67 68  
32 69 
 
The dataset is sparse and suitable for market basket analysis.   However, since the dataset  
 
contains private sale information about the store, for security purposes, the dataset does  
 
not specify the details of the data, such as which number means what item.  In this  
 
case,  this paper assumes that this store sells video games.  
 

In order to generate a dataset which is more suitable for CFT-FPM, an “age” 

attribute into the dataset as the first column by a program named “Gen.java”2.  “Age”3 is 

                                                
1 We emailed Tom Brijs at tom.brijs@luc.ac.be for acknowledgement.  However, it said an error occurred   
   and the email was bounced back. 
2 Gen.java - This program is written by the author of this paper. 
3 Age – is generated by Java function random (), which is an uniform distribution over a given number  
   range. 
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a random integer ranges between 16 and 80, which is suitable for customers.  Below are 

the first ten transactions in the generated dataset: 

44 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 
70 30 31 32  
77 33 34 35  
60 36 37 38 39 40 41 42 43 44 45 46  
23 38 39 47 48  
75 38 39 48 49 50 51 52 53 54 55 56 57 58  
66 32 41 59 60 61 62  
76 3 39 48  
45 63 64 65 66 67 68  
21 32 69 
 
 
3.6.2. Methodology diagram  
 
Appendix D demonstrates step 2, 3, 4, 5 (mentioned in page 31) in this methodology. 

 
Figure 1: CFTmine.java’s methodology diagram 
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                                                                                                                            Yes 
                                                                                                  
 
                                                                             
                                                                          No 
                                                                                                                                   
 
 
                                                                                                                                                                   

    Start 

Initialize support thresholds and data structures that hold categories 

Input data line by line into three 
categories based on ‘Age’ 

In this category, find all length-1 frequent items based on min_supitem. 

Generate length (fault-tolerant +1) candidates for the first round,  increase 
length by 1 for other rounds.  

Check each candidate against min_supFT, min_supitem, min_length. 

While number of fault-
tolerant frequent patterns != 0 

Output the CFT-patterns in this 
category  

Find length(i+1) fault-tolerant frequent patterns 

Eliminate categories that have < min_supFT records. 

While still have other categories 

      End 
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CHAPTER 4 

 

RESULTS AND FINDINGS 

 
  

In this chapter, we present the results of functionality tests and also give a simple 

performance test for time and space complexity analysis, list as following: 

1. FT-FPM .vs. CFT-FPM 

• FT-FPM 

• CFT-FPM 

2. CFT-FPM performance test 

• Run Time .vs. Number of records 

• Number of patterns .vs. Number of records 

• Number of IO operations .vs. Number of records 

  
4.1. FT-FPM .vs. CFT-FPM (tested on the first 10,000 records in the dataset) 

4.1.1. FT-FPM result 

We use fault-tolerant frequent pattern mining (FT-FPM) to mine the first 10,000 

records in the dataset1.  We set the parameters min_supitem = 99, min_supFT = 100, 

min_length = 5, fault-tolerance = 1.  Below is the empirical result for FT-FPM: 

                                                
1 We were unable to run the whole dataset on CSA because it gave “out of memory” error. our process on 
CSA only can be allocated 3800MB memory.  Thus, we chose the first 10,000 records only. 
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Figure 2: dataset 10,000 for FT-FPM 

1. There are total of 2,850 length-2 patterns generated.  

    After checking against min_supFT and min_supitem, all 2,850 patterns pass the test.   

    Time cost for above two steps is 16,486 milliseconds. 

2. There are total of 70,300 length-3 patterns generated. 

After checking against min_supFT and min_supitem, only 1,476 itemsets pass the test. 

Time cost for above two steps is 449,426 milliseconds. 

3. There are total of 881 length-4 patterns generated. 

After checking against min_supFT and min_supitem, only 277 itemsets pass the test. 
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Time cost for above two steps is 6,551 milliseconds. 

4. There are total of 38 length-5 patterns generated. 

After checking against min_supFT and min_supitem, only 25 itemsets pass the test. 

Time cost for above two steps is 314 milliseconds. 

5. No length-6 fault-tolerant frequent patterns can be generated from the first 10,000   

    records.  Process ends. 

Thus, the number of fault tolerant frequent pattern generated based on the inputs 

is 25.  Total time cost is 16,486 + 449,426 + 6,551 + 314 = 472,777ms, approximately 

473 seconds.  The number of IO operations is 10,053. 

 The result indicates that in each of 25 FT-patterns, 100 out of 10,000 customers 

bought 4 out of 5 games.  Thus, to future customers who bought 4 out of 5 games in each 

FT-pattern, the store should recommend the 5th games in the corresponding FT-pattern. 

4.1.2. CFT-FPM result 

We use fault-tolerant frequent pattern mining with classifiers (CFT-FPM) to mine the 

first 10,000 records in the dataset1.  We set the parameters min_supitem = 99, min_supFT = 

100, min_length = 5, fault-tolerance = {2, 1, 0} (fault tolerance is 2 for age group under 

30, since the possibility for young people buy games is the highest; 1 for age group 

between 30 and 50 inclusive; 0 for age group above 50, since the possibility for older 

people buy games is the lowest).  Below is the empirical result of CFT-FPM: 

                                                
1 We were unable to run the entire dataset on Oklahoma State University CSA server because it gave an 
“out of memory” error.  Thus, we chose to use the first 10,000 records only. 
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Figure 3: dataset 10,000 for CFT-FPM 

1. For age group under 30 (group 1), we found one CFT-pattern satisfies the input   

    parameters and it is pattern: [32, 38, 39, 41, 48]   
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2. For age group between 30 and 50, one CFT-pattern is found and it is also pattern: 

    [32, 38, 39, 41, 48] 

3. For age group above 50, no CFT-pattern is found. 

Thus, total patterns found is 2; Total time cost is 4,414 milliseconds, 

approximately 4.4 seconds.  The number of IO operations is 10,061.     

The result indicates that 100 out of 10,000 people who are under 30 years old 

bought 3 out of 5 games in CFT-pattern [32, 38, 39, 41, 48].  100 out of 10,000 people 

who are between age 30 and 50 inclusive bought 4 out of 5 games in pattern [32, 38, 39, 

41, 48].  Thus, to future customers under age 30 who bought 3 out of 5 games in the 

pattern, the store should recommend them with the other 2 games in this CFT-pattern.  

Also, to future customers who are between age 30 and 50 inclusive and bought 4 out 5 

games in the pattern, the store should recommend them with the 5th games in this CFT-

pattern.  

4.1.3. FT-FPM .vs. CFT-FPM result 

Compares with FT-FPM that has the same input parameters:  

1) CFT-FPM is much faster since dataset are divided into n groups, less length k 

itemsets generated and tested in each group, thus, less length k+1 itemsets are 

generated and tested, and so on.  

2) CFT-FPM generated less patterns since dataset are divided into n groups; there 

are less patterns satisfy the min_supitem and min_supFT.        

 

4.2. CFT-FPM Performance Test 

4.2.1. Run Time .vs. Number of records 

Figure 4 shows the Run time (seconds) .vs. Number of records.  
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Run time .vs. Number of Records
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Figure 4: Run time (seconds) .vs. Number of records 

In Figure 41, run time increases approximately exponentially when number of records  

increases.  Run time = 0.0886e0.0004*Number of Records. 

4.2.2. Number of patterns .vs. Number of records 

Figure 5 shows the performance for Number of Patterns/Number of Records. 
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Figure 5: Number of Patterns .vs. Number of Records 

                                                
1 We used Excel to graph and fit the data. 
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In Figure 12, number of patterns increases approximately when number of records 

increases (the data did not fit any curves). 

4.2.3. Number of IO operations .vs. Number of records 

Figure 6 shows the performance for Number of IO operations/Number of Records. 

Number of IO operations .vs. Number of records
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Figure 6: Number of IO operations .vs. Number of Records 

In Figure 13, data are well approximated by a straight line through the origin with slope 

1.0033, Number of IO operations = 1.0033 * Number of records + 23,318. 

From the experimental results, we have the following observations:  

1) Compares with FT-FPM, CFT-FPM finds fault-tolerant patterns based on data    

            properties.  Thus, less patterns are founded since constraints are added. 

2) Compares with FT-Apriori, CFT-Apriori is much faster since entire dataset is 

divided into n groups, thus, in each group, less length-k itemsets are generated 

and checked.  Thus, less length-(k+1) are generated and checked, and so on.  

3) Since CFT-Apriori is based on FT-Apriori, it is both memory-consuming and      

      time consuming over large number of records.  
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CHAPTER 5 

 

CONCLUSIONS 

 

5.1. Summary and Conclusions 
 
               

This paper proposes to mine fault-tolerant frequent patterns with classifiers (CFT-

FPM).  CFT-FPM mines fault-tolerant frequent patterns (FT-FP) based on the data’s 

properties.  Furthermore, the paper implements and tests CFT-FPM over modified retail 

supermarket shopping basket data.  This research observed that:  

1) Compares to FT-FPM, CFT-FPM finds fault-tolerant patterns based on classifiers. 

Thus, patterns closer to reality are found since classifiers are added. 

2) In CFT-FPM, since the dataset is classified into n1 smaller groups that contain 

fewer records compared to the entire dataset, support thresholds are harder to be 

reached.  Thus, compared to FT-FPM, CFT-FPM finds fewer patterns. 

3) In CFT-FPM, since the entire dataset is classified into n smaller groups, in each 

group, less length-k itemsets are generated and checked, thus, less length-(k+1) 

are generated and checked, and so on.  Thus, compared to FT-Apriori,  

      CFT-Apriori is much faster. 

      4)   CFT-Apriori is based on FT-Apriori and FT-Apriori is known to be very   

            memory-consuming and time-consuming over large number of records,  

            CFT-FPM is also very memory-consuming and time-consuming. 
                                                
1 n – is a random non-negative integer. 
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5.2. Future Work 

 
More efficient CFT-FPM algorithms need to be developed in the future, such as  

            1) Algorithms that are based on H-Mine or the Pattern-Growth Method.   

            2) Algorithms that consume less memory.  

            3) Algorithms that can sort fast over multiple attributes (classifiers). 
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APPEDIX A 

 

GlOSSARY 

       
 

Data Mining (DM): Find hidden patterns in the database.       

Frequent Pattern Mining (FPM): A mining technique to find the complete set of 

frequent patterns in a given transaction database with respect to a given support threshold.         

Fault-tolerant Frequent Pattern Mining (FT-FPM): A mining technique that allows 

certain number of mismatch items in frequent pattern mining in order to achieve higher 

support and discover longer, more general, frequent patterns.       

Fault-tolerant Frequent Pattern Mining with Classifiers (CFT-FPM): A mining 

technique that mines fault-tolerant frequent patterns based on one or a set of classifier(s). 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 



 

 47 

 
 
 

 
 

APPEDIX B 
 
 
The Generation Program: gen.java 
 
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
// Author: Bei Xu 
// Date: 5/01/2006 
// Program purpose: Generate suitable dataset “retail1.txt” for CFT-FPM from dataset 
//“retail.txt” which is suitable for FT-FPM by inserting a random variable ‘age’ at the 
//beginning of each record.  ‘age’ is generated by uniform distribution among 16-80. 
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
 
//import java libraries 
import java.io.*;          
import java.util.*; 
 
public class gen{ 
     public static void main(String args[])throws IOException 
     { 
          BufferedReader in = new BufferedReader(new FileReader("retail.txt")); 
 
          File outFile = new File("retail1.txt"); 
          FileOutputStream fos = new FileOutputStream(outFile); 
          PrintWriter out = new PrintWriter(fos); 
 
          int age=0; 
          Random rand=new Random();   //set random seeds 
 
          //pre: each record is fit for FT-FPM 
          //post: generate age, combine with FT-FPM record, each record is fit for CFT-FPM 
          for (String line = in.readLine(); line != null; line = in.readLine()) 
          { 
                ArrayList person=new ArrayList();    
 
     //generate random value for age by uniform distribution 
                age =16 + rand.nextInt(64);  //age is between 16-80 
 
     person.add(String.valueOf(age)); 
 
                //pre: age and FT-FPM are separated 
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                //post: age combines each FT-FPM record and become CFT-FPM record. 
     for (StringTokenizer ST = new StringTokenizer(line);ST.hasMoreTokens();) 
     { 
             Integer item = new Integer(ST.nextToken()); 
  person.add(item); 
     } 
     //pre: made the CFT-FPM records                 
                //post: output CFT-FPM records. 
                 for (int i=0;i<person.size();i++) 
     { 
             out.print(person.get(i)+" "); 
      } 
      out.println(); 
      out.flush();   //flush the buffer 
            } 
 
           out.close();     //close file out pointer 
           in.close();       //close file in pointer 
      }//end of main() 
} //end of gen.java 
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APPEDIX C 
 
 
 
CFT program: CFTmine.java 
 
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
//Author: Bei Xu 
//Date: 5/01/2006 
//Program purpose: This program demonstrates the fault-tolerant frequent pattern mining 
//with classifier.  The dataset is retail1.txt, which contains 10,000 sales records from a 
//store’s sales information. This program outputs all the CFT-FP’s found, execution time 
//and IO time. 
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
 
import java.util.*; 
import java.io.*; 
 
public class CFTmine{ 
 public static void main(String[] args) throws IOException 
 {    //initialize support variables 
  final int MIN_ITEM_COUNT = 99;             //min_supitem 
  final int MIN_PATTERN_COUNT = 100;   //min_supFT 
  final int MIN_PATTERN_LENGTH =5;     //min_length 
  final int [] MAX_MISSING_ITEMS= {2,1,0};   //fault-tolerance 
 
                 //create three empty categories to hold each items 
  TreeMap [] items =new TreeMap[3];   //three categoires 
  for (int eachAge=0;eachAge<3;eachAge++) 
  { 
     items[eachAge]=new TreeMap(); 
  } 
     
       //create three empty categories to hold each record   
             ArrayList [] peopleAge=new ArrayList[3];   //three categories       
                        for (int eachAge=0;eachAge<3;eachAge++) 
  { 
     peopleAge[eachAge]=new ArrayList(0); 
  } 
 
                       int totalPatterns=0;   //calculate total CFT-patterns discovered 
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                       long totalTime=0;     //calculate total run time 
                       int IOcount=0;          //calculate total IO operations 
 
                //fill people's lists, read in items from input file. 
  BufferedReader in = new BufferedReader(new FileReader(args[0])); 
                //input each record as a person 
  for(String line = in.readLine(); line != null; line = in.readLine()) 
  {   //each person is a record in the file 
   HashSet person = new HashSet(); 
 
   StringTokenizer ST = new StringTokenizer(line); 
   IOcount=IOcount+1; 
   //input first column in the file, which is, the age value.  
                                   Integer age =new Integer(ST.nextToken()); 
                         // input the rest data in the record to person.   
   for(;ST.hasMoreTokens(); ) 
   { 
    Integer item = new Integer(ST.nextToken()); 
 
   //Assume that each people cannot have same item multiple times?  
    if(person.contains(item)) continue; 
   //If it is not a duplicated item, add it to the person   
                                               person.add(item); 
 
    // if age is under 30 
                                                if (age.intValue()<30) 
    {    //count occurences of this item 
     Integer oldCount = (Integer)items[0].get(item);            
                                                            if(oldCount == null) 
        items[0].put(item, new Integer(1)); 
                else 
        items[0].put(item, new     
                                                                                    Integer(oldCount.intValue() + 1)); 
                }   
               //if age is between 30 and 50 inclusive 
                                               else if ((age.intValue()>=30) && (age.intValue()<=50)) 
    { 
     Integer oldCount = (Integer)items[1].get(item); 
     if(oldCount = = null) 
                     items[1].put(item, new Integer(1)); 
     else 
          items[1].put(item, new  
                                                                                     Integer(oldCount.intValue() + 1)); 
                } 
               else //if (age.intValue()>50) 
    { 
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     Integer oldCount = (Integer)items[2].get(item); 
     if(oldCount == null) 
         items[2].put(item, new Integer(1)); 
     else 
         items[2].put(item, new  
                                                                                    Integer(oldCount.intValue() + 1)); 
                }//end of if/else 
         }//end of for loop 
                           //add each person to the proper category 
      if (age.intValue()<30)     
            peopleAge[0].add(person); 
      else 
          if((age.intValue()>=30) && (age.intValue()<=50)) 
       peopleAge[1].add(person); 
                else 
                       peopleAge[2].add(person); 
  }//end of each input record 
 
  in = null;    
 
      //mine FT-patterns in each category 
            for(int eachAge =0; eachAge<3; eachAge++) 
 { 
  HashSet nxtPop =new HashSet();     //length-k candidates 
  HashSet curPop = new HashSet();    //length-k FT-patterns 
 
  int numPatterns = 0; 
  int newSize = 1; 
  long time; 
  System.out.println("Group "+ (eachAge+1)+"*****************"); 
  IOcount=IOcount+1; 
              // If number of person in each group is less than min_supFT, eliminate the group.  
  if (peopleAge[eachAge].size()<MIN_PATTERN_COUNT) 
             {  
                    System.out.println("Sorry, not enough records in group "+  
                                                                (eachAge+1)+"\n"); 
                    IOcount=IOcount+1; 
                    continue; 
             } 
 
     //remove scarce items, leave frequent length-1 items only 
  for(Iterator i = items[eachAge].values().iterator(); i.hasNext();) 
  { 
   int count = ((Integer)i.next()).intValue(); 
   if(count < MIN_ITEM_COUNT) 
    i.remove(); 
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  } 
 
  //generate length-1 item list 
  for(Iterator i = items[eachAge].keySet().iterator(); i.hasNext();) 
  { 
   ArrayList pattern = new ArrayList(3); 
   pattern.add(i.next()); 
   curPop.add(pattern);   //curPop contains length-1 frequent items 
  } 
                          
  while(!curPop.isEmpty())   //curPop has length-1 frequent pattern 
  { 
   newSize++; 
   nxtPop = new HashSet(); 
   System.out.print("Creating patterns length " + newSize + ": "); 
   time = System.currentTimeMillis(); 
 
  //create length n+1 candidates 
loop:  for(Iterator i = curPop.iterator(); i.hasNext();)   
                        { 
        ArrayList pattern = (ArrayList)i.next();    
 
loop4:      for(Iterator j = items[eachAge].keySet().iterator();;) 
                            { 
   Object item = j.next(); 
   if(pattern.lastIndexOf(item) >= 0) 
         continue loop; 
 
   //create new pattern 
    ArrayList newPattern = (ArrayList)pattern.clone(); 
   newPattern.add(item); 
 
   //Are all sublists in current candidates 
   for(ListIterator k = newPattern.listIterator(); k.hasNext();) 
   { 
    item = k.next(); 
    k.remove(); 
    if(!curPop.contains(newPattern)) 
    continue loop4; 
    k.add(item); 
   } 
 
   nxtPop.add(newPattern); 
  } 
 } 
   System.out.println("| population =" + nxtPop.size()); 
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   IOcount=IOcount+1; 
 
   curPop = nxtPop; 
 
   System.out.print("Checking constraints: "); 
    
                //check candidates against support thresholds 
loop2:     for (Iterator i = curPop.iterator(); i.hasNext();)   
               { 
  ArrayList pattern = (ArrayList)i.next(); 
   
  //reset item counts 
  For (Iterator j = pattern.iterator(); j.hasNext();) 
         items[eachAge].put(j.next(), new Integer(0)); 
 
  int bodySize = 0;   //FT-body size 
loop3:  for (Iterator j = peopleAge[eachAge].iterator(); j.hasNext(); ) 
                       { 
          HashSet person = (HashSet)j.next(); 
           //check if person is in the body of set 
          int misses = 0; 
          for (Iterator k = pattern.iterator(); k.hasNext();) 
         { 
    Object item = k.next(); 
   if(!person.contains(item)) 
    misses++; 
   if(misses > MAX_MISSING_ITEMS[eachAge]) 
    continue loop3; 
           } 
  bodySize++; 
 
  //If person is in FT-body, then add to item counts 
  int min = Integer.MAX_VALUE; 
  for (Iterator k = pattern.iterator(); k.hasNext();) 
  { 
   Object item = k.next(); 
   int count = ((Integer)items[eachAge].get(item)).intValue(); 
   if(person.contains(item)) 
        items[eachAge].put(item, new Integer(++count)); 
   if(count < min) 
        min = count; 
  } 
 
  //check against min_supitem and min_supFT 
  if ((bodySize >= MIN_PATTERN_COUNT) &&   
                             (min >= MIN_ITEM_COUNT)) 
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   continue loop2; 
 } 
 
  //if min_supFT or min_supitem count is not met, item is removed 
  i.remove(); 
 } 
   //output length-n patterns 
                                    System.out.println("| population =" + curPop.size()); 
   IOcount=IOcount+1; 
 
   if(curPop.isEmpty()) break; 
   //check against min_length 
                                    if(newSize >= MIN_PATTERN_LENGTH) 
   { 
    //print results 
    for(Iterator i = curPop.iterator(); i.hasNext();) 
    { 
     ArrayList pattern = (ArrayList)i.next(); 
     //print in sorted order 
                                                            System.out.println(new TreeSet(pattern)); 
     IOcount=IOcount+1; 
    } 
    numPatterns += curPop.size(); 
   } 
 
   time = System.currentTimeMillis()- time;  //calculate system time 
   System.out.println("time: " + time + "ms"); 
   IOcount=IOcount+1; 
 
   totalTime = totalTime + time; 
 
   System.out.println(); 
   IOcount=IOcount+1; 
 
  } 
 
  System.out.println("# of pattern found for group "+ (eachAge+1) + " are: "   
                                                        + numPatterns+"\n"); 
  totalPatterns = totalPatterns + numPatterns; 
  IOcount=IOcount+1; 
 
    }//end of eachAge (for loop) 
 
    //output statistics 
               System.out.println("total number of patterns found for all groups is:   
                                               "+totalPatterns); 
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    IOcount=IOcount+1; 
 
    System.out.println("total time(miliseconds) is: "+totalTime); 
    IOcount=IOcount+2; 
    System.out.println("total number of IO operaions is: "+IOcount); 
 } //end of main() 
} //end of the program 
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APPEDIX D 
 
 
 
CFTmine.java users’ manual 
 
 

1. Log on to Oklahoma State University Computer Science department CSA server 
(a.cs.okstate.edu) with valid userid and password. 

2. To compile, at command line, issue: 
javac  CFTmine.java 

3. To execute, at command line, issue: 
java –Xmx3200m CFTmine data10001.txt 
(note, -Xmx3200m means to allocate 3200 mb memory to this program, 
data10001.txt contains the first 10000 records of retail.txt) 

4. following is the partial execution result. 
 

 
 
Following is an explanation of the above result: 
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Group 1            //category 1 
Creating pattern length 2 :  | population =10    //generate 10 length-2 candidates 
Checking constraints:  | population 10   //all 10 candidates are fault-tolerant frequent  
                                                                  Patterns 
Time: 82ms          //the above process takes 82 milliseconds. 
……. 
Number of pattern found in group 1 is :1       //only 1 fault-tolerant frequent pattern found  
                                                                          for group 1 
 
The original program contains support thresholds of:  
min_supitem = 99,   min_supFT = 100,  min_length=5, fault-tolerance list = {2,1,0}. 
 
To change the values of support threshold, please modify line 6,7, 8, 9 (excluding the 
blank lines) in CFTmine.java. 
 
Line 6,7, 8, 9 (excluding the blank lines) in CFTmine.java: 
 
final int MIN_ITEM_COUNT = 99;       //min_supitem 
final int MIN_PATTERN_COUNT = 100;   //min_supFT 
final int MIN_PATTERN_LENGTH =5;     //min_length 
final int [] MAX_MISSING_ITEMS= {2,1,0};   //fault-tolerance 
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APPEDIX E 
 
 

 
CFTmine.java Programmer’s manual 
 
Variables: 
MIN_ITEM_COUNT: min_supitem 
MIN_PATTERN_COUNT:  min_supFT 
MIN_PATTERN_LENGTH:  min_length 
MAX_MISSING_ITEMS:   fault-tolerance 
items[]:  a category contains products’ number.  
peopleAge[]: a category contains product records (rows) 
person: one record (row) of data 
item: one product’s number in the record 
age:  each customer’s age, which is the first number in each record 
oldCount: number of the same item 
curPop: contains length-k FT-patterns 
nxtPop: contains length-k candidates 
IOcount: IO operation counts 
time: time to generate and check length-n candidates. 
totalTime: the program’s total execution time.  
numPatterns: number of FT-patterns found for each group 
totalPattern : total number of CFT-patterns found for all categories 
 
Data structures: 
Treemap:  items 
Hashset:  curPop, nextPop 
Arraylist:  peopleAge 
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