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Chapter I. Introduction to Genetic Algorithms 

1.1 General Introduction 

Genetic algorithms are now widely applied in science and engineering as stochastic 

algorithms for solving practical optimization problems.  Genetic algorithms (GA) 

were first introduced by John H. Holland in his fundamental book “Adaptation in 

Natural and Artificial Systems” in 1975 [4].  Holland presented the algorithm as an 

abstraction of biological evolution and his schema theory laid a theoretical foundation 

for GA.  

The idea behind GAs is to simulate what nature does.  Simply speaking, GA is a 

simulation of Darwin’s Theory of Evolution – the fittest survive.  A simple GA works 

as follows: First, a number of individuals (the population) are randomly initialized at 

the beginning of the algorithm. Individuals are then selected according to their fitness.  

Next, the genetic operators (crossover, mutation) are applied with certain probabilities 

on these selected individuals, the parents, to produce offspring.  The original 

generation is then replaced by the new generation which consists in whole or in part 

of the newly created offspring.  The above process is repeated if the termination 

criterion is not met; otherwise, the algorithm stops. [2] 

Whereas in nature the "fitness" relates to the ability of the organism to survive and 

reproduce, that is, organisms with a better "fitness" score are more likely to be 

selected for reproduction, in genetic algorithms, the "fitness" is the evaluated result of 

a user-defined objective function. [1] 
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1.2 Biological Terminology [1] [2] 

Let us introduce some of the basic biological terminology that is useful for a better 

understanding of GAs.   

Each cell of a living creature consists of a certain set of chromosomes.  Chromosomes 

are made of genes, which are blocks of DNA.  Each gene encodes one or more 

characters (eye color, hair color, etc) that can be passed on to the next generation.   

Each gene can be in different states, called alleles.  Genes are located at certain 

positions on the chromosome, which are called loci. 

The cell of many creatures has more than one chromosome.  The entire set of 

chromosomes in the cell is called the genome.  If the chromosomes in each cell of the 

organism are unpaired, the organism is called haploid.  If, on the other hand, the 

chromosomes are paired, the organism is called diploid.  In nature, many living 

organisms are diploid, but almost all GAs employ haploid representations, since they 

are simple to construct. 

In the natural reproduction process, pieces of gene material are exchanged between 

the two parents’ chromosomes to form new genes.  This process is called 

recombination or crossover.  Genes in the offspring are subject to mutation, in which 

a certain block of DNA in the gene undergoes a random change. 

In genetic algorithms, a chromosome is used to represent a potential solution to a 

problem.  Since we use single-chromosome individuals to represent the problem 

solution, the term individual and chromosome are often used interchangeably.   
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1.3 How GAs Work 

Despite its amazing power, a genetic algorithm is actually quite elegant and so easy to 

understand that it can be expressed in just a few lines of computer pseudo-codes.  

Following is the C version of the GA structure originally presented in [1]:  

 
Figure 1.1 Procedure of Simple GA 

where,  P(t) is the population of individuals for iteration t.   

Here is a more descriptive version of GA, slightly modified from [1]: 

Figure 1.2   A descriptive version of GA 

Procedure Simple GA 
{ 

t=0; 
initialize P(t); 
evaluate P(t); 
while(! termination-condition) 
{ 
     select P(t+1) from P(t); 
     genetic_operate P(t+1); 
     evaluate P(t+1); 
     t++; 
} 

} 
 

1. [Initialize] Generate a random population of n chromosomes (suitable 
solutions for the problem).  

2. [Evaluate] Evaluate the fitness f(x) of each chromosome x in the population.  
3. [Offspring] Create a new population by executing the following steps.   

a. [Selection] Select n parent chromosomes from the population 
according to their fitness (the better the fitness, the better the chance to be 
selected).  

b. [Crossover] Recombine the parents with a certain crossover 
probability to form new offspring.  

c. [Mutation] Mutate the new offspring with certain mutation probability 
at each locus (position in chromosome).  

4. [Replace] Replace the current population with the newly generated 
population.  

5. [Test] If the termination condition is satisfied, stop, and return the best 
chromosome found; otherwise, go to step 2.  
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The convergence of a genetic algorithm is originally based on Holland’s schema 

theory [4].  However, his theory has raised criticism and controversy over the years.  

Since this thesis is focused on the real world application of GAs instead of theoretical 

deduction, interested readers may refer to [5] for a precise mathematical description 

of genetic algorithms.   

  

1.4 An Example 

A good example speaks better than thousands of words.  Let’s work on a simple 

example, One Max [6], to illustrate the basic steps of GA.  As its name says, the goal 

of One Max is to maximize the number of 1’s in 8-bit-strings such as 10010011.   

First, we create an initial population of individuals.  For simplicity, we assume a 

population of size 4.   The value of each individual is initially assigned randomly.   

Then the population is evaluated based on a fitness function to determine how well 

each individual does the required task.  In our case, the fitness function is 

straightforward:  

f (v) = n, where n is the number of 1’s in individual v. 

For example, the fitness value of an individual with chromosome 10011001 would be 

4.  After initialization, a random population of four individuals and their fitness values 

are listed in Table 1.1. 

Individual String Representation Fitness 
V1 01101001 4 
V2 00100100 2 
V3 11110001 5 
V4 00001110 3 

Table 1.1 One max individual values 



 

 5 

Next, select two parents to generate two offspring.  In this example, we use the plain 

but widely adopted fitness-proportionate selection scheme, in which the probability of 

an individual being chosen to reproduce is proportional to its fitness value.  In our 

case, let’s assume that the parents selected are [V3, V1] and [V3, V4], with V3 being 

selected twice because of its higher fitness.  Note that V2 may also be selected, with a 

lower probability, in real world applications. 

 

After the selection, we are ready to apply the crossover operator to the selected 

individuals. Suppose the crossover probability is 0.5, which means 50% of the 

population will undergo crossover (2 individuals in our case).  Let’s say parent V3 

and V1 undergo crossover after the fourth bit, the process is shown in the figure 

below: 

 
Figure 1.3 Single point crossover demonstration 

 

The offspring generated are V1’ = 01100001 and V3’ = 11111001. On the other hand, 

the offspring of V3 and V4, which do not go through crossover, are the exact copies 

of themselves. Suppose we utilize generational replacement model, i.e., replace the 

parents with the newly generated offspring, the new population now becomes: 

Individual String Representation Fitness 
V1’ 01100001 3 
V2’ (V3) 11110001 5 
V3’ 11111001 6 
V4 00001110 3 

Table 1.2 Population after crossover 

0110 1001 

1111 0001 

0110 0001 

1111 1001 

Parents Offspring 
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Next, the mutation operator is applied to individuals in the new population with a 

certain mutation probability.  Suppose V4 is mutated at the 8th bit position, the 

resultant V4’ is 00001111 with a fitness value 4. 

 

At this point, one cycle has been finished.  Repeat the above steps. In the second 

round selection, V3’ and V4’ may be chosen as parents, and the offspring after 

crossover are V3”=11111111, V4’’=00001001.   Suppose the mutation happens to 

V2’ at the second position, which results in V2’’=10110001.  After the second 

iteration, the population now is: 

Individual String Representation Fitness 
V1’ 01100001 3 
V2’’ 10110001 4 
V3’’ 11111111 8 
V4’’ 00001001 2 

Table 1.3 Final population 

 

We can see that individual V3’’ has fitness value 8, which is the maximum we are 

looking for; thus the GA can stop here if we have some way of knowing we have 

reached the optimal solution .   

 

Interested readers can observe an animated java applet demonstration on [9] for a 

vivid picture of how a GA works. 

 

The simple procedure just described is the basis for most applications of GAs.  There 

are a number of details to fill in, such as the size of the population and various 

methods of crossover and mutation.  The success of the algorithm often depends 

greatly on those parameters.  We will talk more about them in the following chapters.   
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Chapter II. Literature Review 

 

2.1 Brief Introduction to Optimization  

The purpose of optimization is to find the minimum or maximum result of a 

mathematical function, called the objective function, by tuning the values of its 

variables.  During the past decades, the significance of optimization has grown 

dramatically in engineering application, mathematical and computational models.  

Consequently, dozens of optimization methods have been developed over the years.   

 

The exhaustive search method searches a sufficiently large sampling space of the 

objective function to find the global optimum.  This brute force approach involves a 

huge number of function evaluations, which makes it only practical for a small 

number of parameters in a limited search space. [7]   

 

Calculus optimization is a mathematical approach that can be applied if the objective 

function is smooth (continuously differentiable).  First, the objective function is 

differentiated with respect to all the independent variables; next, the derivatives of 

function are set to zero and the equations are then solved to find the parameter values.  

This method is more computationally efficient than many of its peers.  However, if 

the problem has too many parameters, then it becomes quite difficult or even 

impossible to solve the derivative equations, let alone that some practical problems 

can’t be expressed as mathematical functions [7].  Also, the nonlinear equations may 

have no solution, many solutions, or even infinity of solution points.  



 

 8 

A hill-climbing method starts from a single point and selects a new point from the 

vicinity of the current point in each iteration.  If the new point has a better value, the 

current point is replaced by the new point.  Otherwise, the current point is kept and 

the process continues with a smaller step size or in another direction until the 

termination criterion is met.  The drawback of this method is that it only guarantees a 

local optimum, which is determined by the position of the start point.   Also, the 

objective function must be smooth (continuously differentiable) for most hill-

climbing methods to succeed. 

 

Two relatively new natural optimization methods, Simulated Annealing (SA) and 

Genetic Algorithm (GA) are successful in the area where the traditional methods fall 

short.  Whereas GA models the natural selection and evolution process, SA simulates 

the annealing phenomenon.  Compared with hill-climbing, SA introduces a 

probability of accepting the new point and the probability is controlled by an 

additional parameter T, the temperature.  With a high temperature at the beginning, 

the algorithm is more likely to accept new points, and thus explore more regions in 

the solution space.  As the temperature goes down, the probability of accepting new 

points becomes smaller and smaller.  Since T is lowered in small steps, the algorithm 

has an opportunity to discover the global optimum instead of converging to a local 

optimal point [8].  Some published SA algorithms fail on many practical problems [24]. 

Perhaps the best existing SA software package is the free c language program ASA, 

which was developed by Lester Ingber and is downloadable at [25]. 

 

Compared with traditional optimization methods, GA has advantages in several 

aspects [7]:  it can optimize both continuous and discrete functions; it does not require 
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complicated differential equations or a smooth objective function; it can be highly 

parallelized to improve computational performance; it searches more of the solution 

space and thus increases the probability of finding the global optimum.  The 

disadvantage is that GA is often much slower than calculus   methods, when the latter 

can used. 

 

2.2 GA Packages Review 

Due to their inherent advantages, GAs have been widely applied in numerous 

scientific and engineering problems.  A number of GA packages have been developed 

as implementations of genetic algorithms over the years.  In this section, we will give 

a short review of existing GA packages. 

 

2.2.1 GAlib [10] 

GAlib is a C++ genetic algorithm package developed at MIT (GAlib should not be 

confused with GALib, developed at the University of Tulsa).  This genetic algorithm 

will create a population of solutions based on a sample data structure that you provide.  

In GAlib, the sample data structure is called a GAGenome, which functions as a 

chromosome.  The library contains four types of genomes: GAListGenome, 

GATreeGenome, GAArrayGenome, and GABinaryStringGenome.    

Each genome type has three operators: initialization, mutation, and crossover.   

• Initialization operator: Initializes a genome when the genetic algorithm starts.   

• Mutation operator: Mutates each genome based on its data type.  For example, 

mutation on a binary string genome flips the bits in the string, but mutation on a 

tree would swap subtrees. 
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• Crossover operator: Generates children from two parent genomes based on data 

types.  Users are allowed to develop new mating methods other than the default 

ones.   

GAlib comes with these operators pre-defined for each genome type, but you can 

customize any of them so that it is specific not only to the data type, but also to the 

problem type.   

The library contains four basic types of genetic algorithms.   

• Simple genetic algorithm: The classical replacement method in which the entire 

generation is replaced by the newly produced individuals.   

• Steady-state genetic algorithm: Only a fraction of the population is replaced by the 

offspring.  The user can specify how large the fraction is.   

• Incremental genetic algorithm: Only one or two children are created in each 

generation and the users have the choices to select the parents that are to be 

replaced.   For example, the child could replace an individual randomly, or replace 

an individual that is most like it. 

• Deme genetic algorithm: This algorithm “evolves multiple populations in parallel 

using a steady-state algorithm”.  In each generation, some of the individuals are 

copied from one population to the other to maintain the population diversity.   

 

2.2.2 Genesis [11] 

Genesis, which stands for GENEtic Search Implementation System, is a popular 

genetic algorithm package developed by John J. Grefenstette using C language.   



 

 11 

Genesis has three levels of representation for its evolving structures.  The lowest level 

(Packed representation) is used to “maximize both space and time efficiency in 

manipulating structures”.  The middle level (String representation) represents 

structures as arrays of characters.  This level provides the users the freedom to create 

their own genetic structures.  The third level (Floating-point representation) represents 

the genetic structures as vectors of real numbers.  Numeric optimization problems are 

solved by working on this level.    

 

The user can specify the range, number of values, and output format of each 

parameter.  The system then automatically translates the structure among the three 

representation levels. 

 

Genesis consists of two main modules – initialization and generation.  Initialization 

module sets up the initial population using a file named "init.c".  The generation 

module (file "generate.c") comprises mainly the following procedures: selection, 

mutation, crossover, and evaluation.   

 

• Selection:  The default selection procedure is Universal Sampling Selection 

implemented in file "select.c".  Genesis also provides users the linear ranking 

selection method if the option ‘R’ is specified.   

• Mutation: Genesis implements the classical mutation method – Uniform Mutation 

in file “mutate.c”.   

• Crossover: Genesis implements the traditional two-point crossover method in file 

"cross.c". 
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Genesis requires the user to write an evaluation procedure to serve as the objective 

function.  The procedure must be declared in the user's input file in a certain format.   

 

Genesis allows a number of options to employ different strategies during the search.   

Each option is associated with a single character.  For instance,  

E - Use the "elitist" selection strategy.   The elitist strategy stipulates that the 

best performing structure always survives from one generation to the next. 

G - Use Gray code to encode integers.    

 

2.2.3 Genetic Algorithm Driver [15] 

The FORTRAN Genetic Algorithm Driver is a GA package created by D.L. Carroll.   

The latest version of this driver is dated 2001.  The features of this package are listed 

as follows: 

• Encoding: Bits string, which is the only option provided by this package. 

• Selection: Tournament selection with “a shuffling technique for choosing random 

pairs for mating”.    

• Mutation: The package implements jump mutation and creep mutation.   

• Crossover: The package provides the option for single-point or uniform crossover.    

 

In the latest version, the author added two features into the package.  One is niching, 

the process of dividing individuals that are in some sense similar into groups; the 

other is micro-GA, the process of reinitializing a small subset of population. 

 

For the use of his package, Carroll recommends the following settings: 

• Binary coding (the only option of his GA)  
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• Tournament selection (the only option of his GA)  

• Uniform crossover (iunifrm=1)  

• Creep mutations (icreep=1)  

• Niching or sharing (iniche=1)  

• Elitism (ielite=1)  

Carroll also suggests using the micro-GA technique (microga=1) with uniform 

crossover (iunifrm=1).  Besides that, he advises using certain formulas to calculate the 

population size and creep mutation rate. Interested readers may refer to [15] for the 

detailed formulas.   

 

2.2.4 Other GA Packages 

Besides the GA packages introduced above, there are quite a number of other good 

ones such as GENETIC, GENOCOP, GAJIT, etc.  GA-Archive [13] is an excellent 

source to explore the existing GA packages.  GA packages on that website are either 

archived as compressed files or maintained as links to the package authors’ web pages.  

There is an index of source code for implementations of genetic algorithms.  The GA 

packages listed on the site are categorized according to the implementation language 

such as C/C++, Java, FORTRAN, Perl, Lisp, etc.
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Chapter III. Blueprint of a General GA Package 

 

In chapter 2, we reviewed several existing GA packages.  Most packages use a single 

representation: either binary string or floating point; some packages are specially 

designed for certain types of problems.  To handle the variety of optimization 

problems in practical applications, I will design and implement a general GA package 

that gives users much more options on the problem representation and genetic 

operators.  In other words, this package offers the choice of representing the 

chromosome using bit-string, integer, or floating-point or a combination of the three. 

A preliminary version of this package, which only implements the simplest methods 

of crossover and mutation, was developed by Ting Zhu [26]. The package I propose 

will significantly extend the original package by providing users the choice of 

choosing from a rich set of selection, replacement, mutation, and crossover methods 

based on the specific problem type.      

How to encode the chromosomes is the problem to solve when starting to work on a 

problem with GA.  Encoding depends heavily on the problem.   In this chapter, we 

will start with the introduction to some encodings that will be implemented in this 

package. 

3.1 Encoding 
 
The way in which candidate solutions are encoded is “a central factor in the success 

of a genetic algorithm” [1].  This package will employ three commonly used
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encodings – bit-string, Gray-coded integer, and floating point, to represent candidate 

solutions.    

 
3.1.1 Bit-string Encoding 

Bit-string encoding, introduced by Holland in his original GA book, is the most 

widely used encoding method.  Bit-string encoding has its own inherent advantages.  

First, it is easy to understand and implement; second, researchers have accumulated 

rather rich experiences on the parameter settings such as population size, crossover, 

and mutation rate in its context.   

 

3.1.2 Integer Encoding 

When the parameters of the problem are integers, it is natural to use a binary string to 

encode the variables.  However, there is a problem with representing integers by 

ordinary binary strings.  Consider the following example.  Two integers 15 (01111) 

and 16 (10000) are selected as parents.  Note that the integers are quite close to each 

other and their fitness values are also likely to be close.  But, their binary string 

representations are quite different from each other.  Moreover, let’s assume a single 

point crossover is applied after bit position 1.  The resultant offspring are 11111 and 

00000, whose corresponding integer values are 31 and 0, respectively.   We can see 

that the offspring fall far away from their parents, which tends to interfere with the 

expected convergence [7].   

 

One way to overcome this problem is to encode the binary string using Gray code.   

The procedures for converting a binary number b=b1b2…bm into a Gray code number 

g=g1g2…gm and vice versa are given in the following figure [2]. 
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Figure 3.1 Binary and Gray code conversion functions 

 

According to these conversion procedures, the Gray codes of the first 6 integers are 

listed in Table 3.1. 

Decimal value Binary string Gray code 
0 0000 0000 
1 0001 0001 
2 0010 0011 
3 0011 0010 
4 0100 0110 
5 0101 0111 
6 0110 0101 

Table 3.1 Gray codes of first 6 integers 

 

Note that the Gray coding representation has the property that any two consecutive 

points in the problem space differ by only one bit in the representation space, which is 

highly desired for GA convergence.  Let’s reconsider the previous example using 

Gray coding.  The Gray codes of 15 and 16 are 01000 and 11000 respectively.  After 

applying the same crossover procedure, the offspring are 11000 and 01000, whose 

integer values are 16 and 15 respectively.  Thus we can observe that offspring are 

function Binary-to-Gray 
{ 
        g1 =b 1; 
        for ( k = 2; k <= m; k++) 
        { 

 gk= bk-1 XOR bk ; 
        } 
} 
 
function Gray-to-Binary 
{ 
        temp = g1; 
        b1= temp; 
        for ( k = 2; k <= m; k++) 
        { 

if (gk==1)  temp = NOT temp;  
bk = temp ; 

        } 
} 
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much closer (actually identical in this extreme case) to their parents than in the  

previous case, which helps preserve the desired characteristics of the parents.   

 

3.1.3 Floating-point Encoding 

Despite the advantages it has, binary encoding has some drawbacks when applied to 

problems with continuous parameters.   In such numerical problems that demand 

parameters of high precision, each variable requires a rather long binary string to fully 

represent it.  This results in a huge search space which bogs down the GA 

performance severely [2].   

 

For applications with variables over continuous domains, it is more natural and 

logical to encode them using floating-point numbers instead of binary strings.  In 

contrast to bit-string encodings, floating-point encoding represents the continuous 

parameters more accurately, requires less storage space, and makes it more 

straightforward to implement the genetic operators [7].    

 

3.2 Selection Methods 

The next decision to make after encoding is selection – the process of selecting the 

individuals from the population as parents that will create offspring for the next 

generation.  The aim of selection is to assign higher probabilities to individuals with 

greater fitness.  There are two main issues associated with selection: population 

diversity and selective pressure [16].   A high selective pressure will result in only good 

individuals being selected, reducing the diversity needed for evolution toward the 

global optimum, thus tending to lead the GA to a premature convergence.  On the 

other hand, a weak selective pressure will get too many not-so-good individuals 



 

 18 

involved in the population and slow down the evolution process.  Therefore, it is 

critical to seek a balance between these two factors [16].    

 

Numerous selection schemes have been developed over the years.  Every method has 

its own strength and weakness; it is still an open question which method is superior to 

the others.   In the following subsections, I will describe the selection methods that 

will be implemented in this package.   

 

3.2.1 Improved Roulette Wheel Selection 

Roulette Wheel Selection is the traditional selection method proposed in Holland’s 

original GA work: the expected value (the expected number of times of being selected) 

of an individual is proportional to its fitness.  This method can be implemented using 

a roulette wheel in the following way.  Each individual is assigned a slice of a circular 

roulette wheel, with the size of the slice being proportional to the individual’s fitness.  

The wheel is then spun N (population size) times.  After each spin, the individual 

pointed by the wheel’s marker is selected.   The procedures of this method are 

detailed in the following figure [2]. 

 
Figure 3.2 Roulette wheel selection procedures 

1. Calculate the fitness value f(i) for each chromosome vi 
2. Find the total  fitness of the population 

�
=

=
N

i

ifF
1

)(  

3. Calculate each chromosome’s expected value Ei 
               FifNEi /)(.=  
4. Calculate cumulative expected value for each chromosome 

                      �
=

=
i

j
ji ES
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5. Generate a random number r of range [0, N] 
6.    If r< S1, then select v1, otherwise select vi such that Si-1< r ≤ Si 

7.   Go to step 5 until N chromosomes have been selected. 
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We can see that it takes O(N) time in step 6 to locate the individual with the 

accumulative expected value that equals to r .  If we notice that Si is a sorted array in 

ascending order, it is natural to come up with some ideas about binary search.  

Therefore, we replace step 6 with finding Si using binary search in the above 

algorithm.  Thus the performance of the algorithm can be improved from O(N) to 

O(logN). 

 

In the case of a theoretically infinite population, the roulette wheel method will 

allocate the expected values of each chromosome in proportion to its fitness.  

However, if the real GA application has a relatively small population size, the actual 

number of an individual being chosen may be quite different from its expected value.  

In the worst case scenario, an extreme series of spin of the wheel can “allocate all the 

offspring to the worst individual in the population” [1].  Another restriction of roulette 

wheel method is that all fitness values of the objective function must be positive.  The 

minimum value of the function is important: adding a constant to all the fitness values, 

a scaling technique that should be harmless, will change the expected values of 

individuals.  

 

3.2.2 Stochastic Universal Sampling  

To overcome the drawback of roulette wheel selection, James Baker proposed 

Stochastic Universal Sampling (SUS) [17].  SUS rebuilds the roulette wheel with N 

equally spaced pointers.  Thus unlike roulette wheel selection, SUS spins the wheel 

only once, and the individuals pointed by each of the N markers are selected as 

parents.  Below is an elegant C implementation of SUS [17]. 
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Figure 3.3 SUS procedure 

 

Where S[i] is the accumulative probability of chromosome i.  Under this method, 

each individual is guaranteed to be selected at least floor(Ei) times but no more than 

ceiling(Ei) times, where floor and ceiling functions are the same as defined in C 

language. 

  

SUS does a better job in sampling than roulette wheel, but does not solve the major 

problems with fitness proportionate selection.  Under the fitness proportionate 

selection, a small number of highly fit individuals are much more likely to be selected 

and their descendants will quickly dominate the population.  After a few generations, 

the super individuals may eliminate the desirable diversity and lead the GA to a 

premature convergence [1]. 

  

3.2.3 Rank Selection 

One way to address the problems associated with fitness proportionate selection 

methods is to introduce a mapping mechanism that maps the raw fitness values to 

intermediate parameters.  These parameters are then used to calculate the expected 

values.  Rank selection is a method in this category: the individuals are sorted 

according to their fitness values, and then the selection probabilities of individuals are 

calculated based on their ranks rather than on their actual fitness values.  Doing so 

avoids allocating too much quota of the offspring to individuals with high fitness 

SUS Algorithm: 
ptr=rand(); //random pointer in range [0,1] 
for(i=1; i<=N; i++) 

                   while( ptr<=S[i] ) //increases ptr to simulate equally spaced pointers.      
     { 
        select(i);   
        ptr++; 
     }  
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values.  This also solves the problem associated with a scaling technique in roulette 

wheel and SUS selection.  

 

Like everything else in the universe, the rank method also has drawbacks.  In some 

cases, the GA takes a longer time to converge to an optimum point because of the 

lower selection pressure.  Rank also requires sorting the entire population for each 

generation, which is a time consuming task in the case of a large population size [18]. 

 

There are many approaches to calculating the expected values based on ranking.  Two 

ranking methods are employed in this GA package.   

 

3.2.3.1 Baker Linear Rank Method [12] 

The linear ranking method proposed by Baker is quite straightforward.   In his method, 

each individual is ranked in ascendant order of fitness, from 1 to N.   The expected 

value of each individual is set by the following formula, 

 
N-

Rank(j)-
(Max-Min).MinjE

1
1

)( +=  

where Min is the expected value of individual with rank 1, Max is the expected value 

of the individual with rank N, and also is the upper bound of expected values defined 

by the user.  Given the condition that� =
j

NjE )( , it is easy to show that Min= 2-

Max.  Baker recommended the user to take Max=1.1.  Once the expected values are 

established, the SUS method is used to sample the population.   
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3.2.3.2 Reeves Rank Method [18] 

Colin R.  Reeves proposed another method of linear ranking, in which the probability 

of selecting the individual ranked k in the population is denoted by 

Pr[k] = a + bk 

where a and b are positive scalars.  The fact that Pr[k] must be a probability 

distribution gives us the following deduction: 
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In his work, Reeves gives a formal definition of the selection pressure: 

]Pr[
]Pr[

individualaverageselecting
individualfittestselecting=φ ,  which is a parameter specified by the user.   

If we interpret the average as the median individual, it is easy to get  
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which implies 21 ≤≤ φ .  It is easy to see that the cumulative probability of each 

individual can be expressed in terms of the sum of an arithmetic progression, so that 

finding the k for a given random number r is simply to solve the quadratic equation  

r
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 for k .  Note that k is an integer, thus  
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Note that the individual can be directly found by the above formula, which takes only 

O(1) time, whereas the traditional roulette wheel method takes O(N) time to find the 
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corresponding individual with a cumulative probability equal to r.  For a large size of 

population, this will considerably improve the computational efficiency.   

 

3.2.4 Tournament Selection 

The tournament selection method is akin to the rank method, but is more time-

efficient than rank selection because it works on a smaller set of individuals instead of 

working on the whole population.  This method randomly picks a set of m individuals 

from the population and then chooses the best one of them to be the parent.  This 

process is repeated N times to get the N parents needed [2].  Obviously, selection 

pressure rises as m increases.  The commonly used value of m is 2.   

 

Michalewicz proposed a tournament selection method which is blended with some 

simulated annealing flavor [2].  Two individuals are randomly chosen, and then a 

random number r in [0, 1] is generated.  The winner is determined in the following 

way:  If 
e T

jfif |)()(|

1

1
−

+
< r,   then the fitter individual is chosen; otherwise, the less fit 

individual is chosen.  In the formula, T is the temperature and f(i) and f(j) are the 

fitness values. 

 

As in simulated annealing, the temperature starts at a high value, which indicates a 

low selection pressure.  The temperature is gradually lowered according to a 

predefined scheme.  The lower the temperature goes, the higher the selection pressure 

becomes, therefore allowing the GA to narrow down the search space on highly fit 

individuals.   
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3.3 Generation Replacement Model 

The generation replacement model determines how the population proceeds from one 

generation to the next generation.  In this package, several choices are provided as 

described in the following subsections.   

 

3.3.1 Generational Replacement 

This is the classical replacement method presented in Holland’s original GA work – at 

each generation, N offspring are generated to make up the new generation.  In other 

words, the entire generation is replaced; no individual from the last generation is kept.   

 

3.3.2 Steady State Replacement 

The potential problem of the generational replacement is that we are running the risk 

of discarding some good individuals in the old generation.  To address this problem, 

De Jong introduced the idea of a ‘generation gap’ in his Ph.D. thesis [19].  At each 

generation, only a fraction of the population is replaced by the offspring.  This 

fraction is called the generation gap.  Therefore overlap is allowed between 

successive generations. 

 

There are a number of mechanisms to select the parents that are to be replaced.  In this 

package, I use the classical method: the least fit individuals in the old generation are 

chosen to be replaced by the newly generated offspring.   

 

3.3.3 Evolution Strategy (N+m) Replacement [2] 

Unlike the previous two replacement schemes, in which the children replace their 

parents, in this evolution scheme, the children compete with their parents for survival. 
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 In a single generation, m offspring are generated and then are combined with the N 

parent to constitute an intermediate population of size N+m, from which the best N 

individuals are chosen to form the next generation.   

 

3.3.4 Elitism [2] 

It is possible that some individuals in the earlier generation are fitter than the best 

individual found in the last generation.  Such individuals may be lost if they are not 

selected or are ruined by crossover or mutation.  Thus it is intuitive to keep track of 

the best individuals in the entire evolution process and this is called elitism.  Elitism 

ensures that the best nElite individuals of the population are passed on to the next 

generation without being altered by genetic operators.   Elitism is essentially a special 

case of (N+m) replacement.  

 

3.4 Crossover  

After parents have been selected through one of the methods introduced above, they 

are randomly paired. The genetic operators are then applied on these paired parents to 

produce offspring.  There are two main categories of operators: crossover and 

mutation.  Let us have a look at crossover in this section and move on to mutation in 

the next section. 

 

The purpose of crossover is to vary the individual quality by combining the desired 

characteristics from two parents.  Over the years, numerous variants of crossover have 

been developed in the GA literature, and comparisons also have been made among 

these methods [20].  However, most of these studies rely on a small set of test problems, 

and thus it is hard to draw a general conclusion on which method is better than others.  
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In this GA package, a number of commonly used crossover techniques are 

implemented.  Some of them apply only to bit-string or Gray-coded integer genes on 

the chromosome.  

  

3.4.1 Single Point Crossover 

This is the traditional and the simplest way of crossover: a position is randomly 

chosen as the crossover point and the segment of the parents after the point are 

exchanged to form two offspring.  The position can be anywhere between the first and 

the last allele.  For example, let us suppose position 2 is the crossover point, the 

process is shown in the following table.  Please note that xi or yi stands for a bit for 

bit-string chromosomes; whereas for floating point chromosome, it stands for a 

floating point variable.  

Parent Offspring 
[x1,x2, x3, x4, x5, x6] [x1,x2, y3, y4, y5, y6] 
[y1,y2, y3, y4, y5, y6] [y1,y2, x3, x4, x5, x6] 

Table 3.2 Single point crossover 

 

Single point crossover has several drawbacks.  One of them is the so-called positional 

bias:  the single point combination of this method can’t create certain schemas [20].  

The other is the endpoint effect – the end point of the two parents is always 

exchanged, which is unfair to other points [1]. 

 

3.4.2 Double Point Crossover 

In this crossover method, two positions are randomly chosen and the segments 

between them are exchanged.   For instance, assuming position 2 and 5 are chosen as 

crossover points, the process is shown in the following table. 
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Parent Offspring 
[x1,x2, x3, x4, x5, x6] [x1,x2, y3, y4, x5, x6] 
[y1,y2, y3, y4, y5, y6] [y1,y2, x3, x4, y5, y6] 

Table 3.3 Double point crossover 
 

Compared with single point crossover, double point crossover is able to combine 

more schemas and eliminate the ending point effect.  But similar to single point 

crossover, there are some schemas that it can’t create. 

 

3.4.3 Uniform Crossover 

As a natural extension to single and double point crossover, uniform crossover allows 

each allele in the parents to be exchanged with a certain probability p.  For example, 

given p=0.6, and the series of random numbers drawn for alleles 1 to 6 are: 0.4, 0.7, 

0.3, 0.8, 0.9, 0.5, the results will be: 

Parent Offspring 
[x1,x2, x3, x4, x5, x6] [x1,y2, x3, y4, y5, x6] 
[y1,y2, y3, y4, y5, y6] [y1,x2, y3, x4, x5, y6] 

Table 3.4 Uniform crossover 

Since any point in the parent can be exchanged, uniform crossover can recombine any 

schemas.  However, this advantage comes at cost.  The random bit exchange may 

prevent the forming of valuable building blocks (short and highly fit segments that are 

able to form strings of potentially higher fitness through recombination) [3], because 

the random exchange of uniform crossover can be highly disruptive to any evolution 

schemas [21].  

 

3.4.4 Arithmetic Crossover (floating point only) 

The above crossover methods work fine for the bit-string representation.  However, 

there is a problem when applying them to floating-point encoding: the crossed 
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parameter values in the parents are propagated to their offspring unchanged, only in 

different combinations [7].  In other words, no new parameter values are introduced.   

 

To address this problem, GA researchers introduced arithmetical crossover [7]: the ith 

parameter in offspring, Zi, is a linear combination of the ith parameters of two parents, 

Xi and Yi, i.e., 

iii YaaXZ )1( −+=  

where a is a random value in the interval [0,1]. 

 

This linear formula guarantees that the value of the newly created offspring is always 

within the domain of the problem.  For example, suppose the crossover happens at 

position 2 and 5, the resultant offspring are given in the table below:  

Parent Offspring 
[x1,x2, x3, x4, x5, x6] [x1, ax2+(1-a)y2, x3, x4, ax5+(1-a)y5, x6] 
[y1,y2, y3, y4, y5, y6] [y1, ay2+(1-a)x2, y3, y4, ay5+(1-a)x5, y6] 

Table 3.5 Arithmetical crossover 

 

3.4.5 Heuristic Crossover (floating point only) 

Heuristic crossover [22] uses the values of the fitness function to determine the 

direction of search according to the following formula:  
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where a is also a random value in the interval [0,1]; X and Y are the parental 

parameter vectors; f(X) and f(Y) are the fitness function values.    

 

Contrary to arithmetic crossover which always creates offspring within the range of 

their parents, heuristic crossover always generates offspring outside of the range of 
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the parents.  Sometimes the offspring values are so far away from their parents that 

they get beyond the allowed range of that variable.  In such a case, the offspring is 

discarded, and a new a is tried and a new offspring created.  If after a specified 

number times no feasible offspring is generated, the operator quits with no offspring 

produced. 

 

In this package, instead of being discarded, the infeasible offspring is assigned the 

maximum or minimum permissible value as follows:  
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where iMin and iMax are the minimum and maximum allowable values for the ith 

parameter.    

 

3.5 Mutation 

Mutation is another essential operator of genetic algorithm.  The idea behind mutation 

is to introduce diversity into the population and thus prevent the premature 

convergence.  Like crossover, GA researchers have developed numerous variants of 

mutation method over the GA history.  Since every method has its strength and 

weakness, it is still an open question as to claim which method is the best.  This 

general GA package employs a number of widely used mutation procedures.   

 

3.5.1 Uniform Mutation 

This is the conventional method of mutation, in which each allele has an equal 

opportunity to be mutated.  For each allele, a random number r is generated and then 
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compared with the mutation rate pm (a user specified parameter), if r > pm, then this 

allele is mutated; otherwise, stays unchanged.    

 

For the binary encoding, either bit-string or Gray-coded integer, the mutation simply 

flips the bit from 0 to 1 or vice versa.  For floating-point encoding, the allele is 

replaced with a random value within the domain of that variable.  For example, if x2 is 

selected for mutation in the chromosome X= [3.221, 4.556, 2.341, 5.897], and the 

domain of x2 is [3.000, 5.500], then the chromosome after mutation may be X= [3.221, 

3.938, 2.341, 5.897].   

 

3.5.2 Non-uniform Mutation (floating point only) 

To increase the fine tuning of the chromosome and reduce the randomness of uniform 

mutation, Michalewicz presented a dynamic mutation operator called non-uniform 

mutation [2].  The mechanism works as follows: if element ix  was selected for 

mutation, the resultant offspring is determined by the following formula,  
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where a is a random number between 0 and 1, LBi and UBi represent lower and upper 

bounds of variable ix .  The function ),( xt∆  is defined by 

)1(),( )/1( bTtrxxt −−=∆  

where r is also a random number between 0 and 1, T is the maximal generation 

number, and b is a user-defined system parameter that determines the degree of 

dependency on iteration number t.  This simulated annealing flavored formula returns 

a value in the range [0, x] such that the probability of ),( xt∆  being close to 0 

increases as t increases.  This property guarantees the newly created offspring is in the 
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feasible range.  Moreover, it enables the operator to explore the space broadly with an 

initially large mutation step, but very locally at later stages; thus make the newly 

generated offspring closer to its predecessor than a randomly generated one [2].   

 

3.5.3 Boundary Mutation (floating point only) 

Boundary Mutation is a variant of uniform mutation.  In uniform mutation, the newly 

generated allele is a random value within the domain of that allele.  In boundary 

mutation, however, the newly generated allele is either the upper bound or the lower 

bound of the domain, with equal probability [2], i.e.,  
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where the parameters have the same meaning as in non-uniform mutation.   

 

This mutation operator is extremely functional in optimizing problems where the 

optimal solution either lies on or near the boundary of the constrained search space.  

In addition, the conjunction of this operator with arithmetic crossover will help to 

counteract the later operator’s “contraction effect” on the population [14].   However, 

this operator has obvious disadvantages for many problems. 

 

3.5.4 Creep Mutation (floating point only) 

Davis introduced the creep mutation operator in his GA handbook [23], in which the 

allele values which are to be mutated are incremented or decremented by the creep 

fraction – the fraction of the valid range for that variable’s value.  The selected 

variable ix  is mutated according to the following formula: 

zi = min( iMax, max( iMin,   xi + rs(iMax- iMin)) ) 
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where iMax and iMin are the upper bound and lower bound of the variable’s domain 

respectively; r is  a random number in the range [-1, 1]; s is the creep factor, a user- 

defined number between 0 and 1. 

  

It is equally likely that the allele value will be incremented or decremented, and the 

value is adjusted to the boundary value if the newly generated allele falls out of the 

valid range of the allele.   

 

3.6 Termination Condition 

Unlike the traditional search methods that terminates when a local optimum is reached, 

GAs are stochastic methods that could run forever.  The termination criterion plays an 

important role in the solution quality.  Three commonly used approaches are adopted 

in this package.   

 

3.6.1 Maximum Number of Generations 

The simplest and most common method is to check the current generation number; 

the genetic process will end when the specified number of generations has been 

reached.   This method has several variants such as using a maximum number of 

fitness function evaluations, or using a maximum elapsed time, as the termination 

criterion [1]. 

 

3.6.2 Convergence Termination 

The drawback of the above termination criterion and its variants is that they assume 

the user’s knowledge of the characteristics of the problems to be solved.  In many 

occasions, however, it is quite difficult to specify the number of generations (or 
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evaluation or elapse time) without prior experience on the problem.  Thus it is much 

better if the evolution process stalls when the chance for a significant improvement is 

fairly slim [18].   

  

There are mainly two categories of termination criteria to tell the chances of 

improvement of the algorithm: chromosome structure diversity, and fitness 

improvement [18].  Convergence termination belongs to the first category.  It makes 

the termination decision by checking the number of converged alleles.  If a predefined 

percentage of the chromosomes of the whole population have the same or similar 

values for this allele, the algorithm stops.   

 

3.6.3 Progress in Fitness 

As an instance of the second category mentioned above, this approach measures the 

progress made by the algorithm in a predefined number of generations.  If there is no 

change, or if the improvement on the best chromosome is smaller than a user 

specified factor, the genetic process ends. 
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Chapter IV. Implementation of the GA Package 

 

In this chapter, we’ll implement the GA package based on the population model and 

operators described in the previous chapter.  The package is written in Fortran 77, a 

simple but powerful and highly efficient programming language.  The program can 

mainly be divided into four function modules: Initialization, Genetic Operations, 

Output, and Utility.  We begin with the introduction to the main modules. 

 

4.1 Introduction to Modules 

The package is designed with modular programming principles in mind. By 

partitioning associated functionalities into relatively independent modules, the 

package is made easier to understand, maintain and upgrade.  

 

4.1.1 Initialization Module 

This module reads from the input file the GA parameters such as population size, 

mutation rate, crossover rate, etc; and randomly populates the initial generation.  The 

functionality of this module is implemented through two Fortran files: Inputf.for and 

Init.for.  

 

Inputf.for contains the following subroutines: 

• InputF: The main subroutine of the unit, which reads the GA configuration 

information from the input file by calling other auxiliary subroutines or functions. 
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• rdLine: This subroutine reads one line from the input file and extract a real number 

or a string from the line. 

• rdInt: Reads an integer from the input file. 

• rdRgeF: Reads the ranges of floating point variables. 

• rdRgeI: Reads the ranges of integer variables. 

 

Init.for is made up of the following subroutines: 

• Init: The main subroutine of the unit, which calls subsidiary subroutines based on 

the type of encoding and the types of variables.  

• InitB: This subroutine randomly initializes population in the form of bit strings.  

• InitI: This subroutine randomly initializes the integer variables of the 

chromosomes.  

• InitF: This subroutine randomly initializes the floating point variables of the 

chromosomes.  

 

4.1.2 Genetic Operation Module 

This module is the core algorithm of the package, which implements the key GA 

operations including selection, crossover, mutation, replacement, etc. This module 

comprises five Fortran source files, which are listed below. 

 

Eval.for includes two subroutines: 

• Eval: The main subroutine of the unit, which evaluates the fitness of each 

chromosome by calling user-defined function and records the best chromosome in 

the current generation. 
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• usrFun:  The user-defined function, which is used to calculate the fitness value 

each chromosome. Users may modify this function to optimize different problems. 

 

Select.for comprises the following subroutines: 

• Select: The main subroutine of the unit, which selects parents for the next 

generation based on various selection methods. 

• Roulet: This subroutine performs the roulette wheel selection. 

• SUS: This subroutine performs the stochastic uniform sampling selection. 

• Baker: This subroutine calculates the expected value based on Baker linear method. 

• Reeves: This subroutine performs the Reeves Rank linear selection. 

• Tourna:  This subroutine performs the tournament selection. 

• ToNewB: This subroutine copies the selected chromosomes (bit-string encoding) 

into the new population.  

• ToNewD: This subroutine copies the selected chromosomes (integer/floating-point 

variables) into the new population.  

 

Cross.for contains the following subroutines: 

• Cross: The main subroutine of the unit, which recombines the selected parent 

chromosomes to generate offspring based on different crossover methods.  

• ScrosB: This subroutine performs single-point crossover on a pair of selected 

parent chromosomes (bit-string encoding). 

• ScrosD: This subroutine performs single-point crossover on a pair of selected 

parent chromosomes (integer/floating-point encoding). 

• DcrosB: This subroutine performs double-point crossover on a pair of selected 

parent chromosomes (bit-string encoding). 
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• DcrosD: This subroutine performs double-point crossover on a pair of selected 

parent chromosomes (integer/floating-point encoding). 

• UcrosB: This subroutine performs uniform crossover on a pair of selected parent 

chromosomes (bit-string encoding). 

• UcrosD: This subroutine performs uniform crossover on a pair of selected parent 

chromosomes (integer/floating-point encoding). 

• Across: This subroutine performs arithmetic crossover on a pair of selected parent 

chromosomes (integer/floating-point encoding). 

• Hcross: This subroutine performs heuristic crossover on a pair of selected parent 

chromosomes (integer/floating-point encoding). 

 

Mutate.for contains the following subroutines: 

• Mutate: The main subroutine of the unit, which mutates the offspring according to 

various mutation methods. 

• MuteB: This subroutine performs uniform mutation on the selected chromosome 

(bit-string encoding).  

• UmuteI: This subroutine performs uniform mutation on the integer variables of the 

selected chromosome.  

• UmuteF: This subroutine performs uniform mutation on the floating point 

variables of the selected chromosome.  

• DmuteI: This subroutine performs dynamic (non-uniform) mutation on the integer 

variables of the selected chromosome.  

• DmuteF: This subroutine performs dynamic (non-uniform) mutation on the 

floating point variables of the selected chromosome.  
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• CmuteI: This subroutine performs creep mutation on the integer variables of the 

selected chromosome.  

• CmuteF: This subroutine performs creep mutation on the floating point variables 

of the selected chromosome.  

• BmuteI: This subroutine performs boundary mutation on the integer variables of 

the selected chromosome.  

• BmuteF: This subroutine performs the boundary mutation on the floating point 

variables of the selected chromosome.  

 

Replace.for includes the following subroutines: 

• Replac: The main subroutine of the unit, which replaces parents with the newly 

generated offspring based on various replacement methods. 

• GReplB: This subroutine replaces the whole generation with the newly      

generated offspring (bit-string encoding). 

• GReplD: This subroutine replaces the whole generation with the newly      

generated offspring (integer/floating-point encoding). 

• SReplB: This subroutine performs the steady state replacement on the generation 

(bit-string encoding). 

• SReplD: This subroutine performs the steady state replacement on the generation 

(integer/floating-point encoding). 

• EReplB: This subroutine performs the evolutionary strategy replacement on the 

generation (bit-string encoding). 

• EReplD: This subroutine performs the evolutionary strategy replacement on the 

generation (integer/floating-point encoding). 
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Terminate.for comprises the following subroutines: 

• Termin: The main subroutine of the unit, which stops the GA by different 

termination criteria. 

• tNGen: This function terminates the GA by the number of generations the GA is 

supposed to run. 

• tAlleB: This function terminates the GA by the percentage of converged alleles in 

the current generation (bit-string encoding). 

• tAlleD: This function terminates the GA by the percentage of converged alleles in 

the current generation (integer/floating-point encoding). 

• tFitP: This function terminates the GA by fitness progress made in a certain 

number of generations. 

 

4.1.3 Output Module 

The output module writes the results of the GA package, such as the optimal 

chromosome, the optimal fitness, the corresponding generation number, to the output 

file.  The functionality of this module is implemented through a single Fortran file– 

Output.for, which is composed of one subroutine. The user may modify this 

subroutine to customize the output information.  

 

4.1.4 Utility Module 

This module groups the utility functions such as search, random, Gray/DeGray, bit-

string operation, sort, etc.  Doing so prevents the main GA program unit from being 

filled up with utility codes, and thus makes the main program clean and easy to follow. 
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The functionality of utility module is implemented in a single Fortran file—Util.for. 

This file contains quite a number of subroutines and functions. Some of the key units 

are listed below: 

• binSch: This function does a binary search on a sorted array and returns the index 

of the element found. 

• linSch: This function does a linear search on a regular array and returns the index 

of element found. 

• sort: This subroutine sorts an array into descending order. 

• schRnk: This function returns the rank of a chromosome for use in some rank 

selection methods. 

• random: This function returns a randomly generated number between 0.0 and 1.0. 

• delta: A simulated annealing flavored function used in dynamic mutation. 

• bitLen: This function returns the length of the binary string required to represent 

an integer/floating-point variable. 

• binToD: This subroutine converts the bit strings representation of the current 

generation  into the integer/floating-point representation. 

• btsToI: This function converts a single bit-string to an integer. 

• Gray: This subroutine converts binary integers into the Gray-coded integers. 

• deGray: This subroutine reverses the Gray-coded integers into binary integers. 

• doXOR: This function does an exclusive OR on two bits. 

 

4.2 Program Structure 

The modules described in the above sections are linked together by the main 

program—GA, which performs the genetic operations by calling the subroutines 

implemented in separate files.  
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The flow char below outlines how the program runs: 

Figure 4.1 Program flow chart 

 

 

4.3 Data Structures 

The major population data are stored in the following data structures: 

• bitStr(i, j, k): This three-dimensional array stores the bit-string representation of 

the population, where i stands for the chromosome index,  j stands for  the string 

index, and j stands for the bit index. 

• ints(i, j): This two-dimensional array stores the integer variables in the 

chromosome, where i stands for the chromosome index, j stands for the index of an 

integer variable. 

program GA 

1. InputF - Reads the GA configuration information from the input file. 

2. Init - Randomly initialize the population within domains of the problem. 

3. Eval - Evaluate the fitness of each chromosome in the 1st generation.  

4. while (termination condition not met)  

  Select - Select parents based on various selection methods.  

               Cross - Recombine the parents based on various crossover methods.  

               Mutate - Mutate the offspring based on various mutation methods.    

               Replac - Replace the generation based on various selection methods. 

               Eval - Evaluate the fitness of each chromosome of the current generation. 

5. Output - Write the result to output file.  

End 
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• floats(i, j): This two-dimensional array stores the floating point variables in the 

chromosome, where i stands for the chromosome index, j stands for the index of an 

floating point variable. 

• iRange(i, j): This two-dimensional array stores the domain of integer variables, 

where i stands for variable index; j=1 represents lower bound, j=2 represents upper 

bound.  

• fRange(i, j): This two-dimensional array stores the domain of floating point 

variables, where i stands for variable index; j=1 represents lower bound, j=2 

represents upper bound.  

• GrayBs(i, j): This two-dimensional array stores the Gray-coded integer 

representation of the population. 

• fits(i): This one-dimensional array stores the fitness values of all the chromosomes 

in the population, where i stands for the chromosome index. 

• strLen(i): This one-dimensional array stores the bit-string length of each variable, 

where i stands for the variable index. 

• fBest(i): This one-dimensional array stores the floating point variables of the 

optimal chromosome, where i stands for the variable index. 

• iBest(i): This one-dimensional array stores the integer variables of the optimal 

chromosome, where i stands for the variable index. 

 

4.4 A Sample Run 

In this section, we will go through an example to show how the package works.  The 

function to be optimized is one of the Rosenbrock functions: 

f(x1,x2)=100(x1
2-x2)2 + (1-x1)2 ,    -3� x1�3 ,  -2.0� x2�2.0,     

where x1 is an integer and x2 is a floating point variable. 
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Step 1: Input file 

First, we must set up the GA configuration parameters in an input file; the name of the 

file could be arbitrary, let’s name it ‘ga.inp’ in our case. Below is the format and 

content of this input file: 

Figure 4.2 Input file of the sample run 
 

We can see that most of the settings in the input file are self-explanatory. Please note 

that lines starting with '#' are comments. The user may add his or her own comments 

to make the input file even more readable.  

 

We used ‘Mix’ in the encoding type, which means the problem has both integers and 

floating point variables and they are encoded in integer/floating-point format. On the 

###################Start of input file########################### 
Population Size: 100 
Crossover Rate: 0.4 
Mutation Rate: 0.3 
### 
Seed for Random Function: 10000 
### 
Encoding: Mix 
### 
Selection Method: SUS 
Crossover Method:  
Crossover Method(Non-FP): Double Point 
Crossover Method(FP): Double Point 
Mutation Method(Non-FP): Uniform 
Mutation Method(FP): Uniform 
Replacement Method: Generational 
### 
Termination Criterion: Number of Generations 
Number of Generations: 200 
Percentage of Converged Alleles: 0.9 
Factor of Fitness Progress: 0.01 
### 
###Variables setting 
Number of Bit-string Variables: 0 
 #String Var1 length: 12 
Number of Floating-point Variables: 1 
  FP Var1 Range: -2.0, 2.0     
Number of Integer Variables: 1  
  Int Var1 Range: -3, 3   
###   
####################End of input file########################### 
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other hand, if the encoding type is set to ‘Bit String’, then all the variables will be 

encoded in the form of bit strings. 

 

 The package provides plenty of options the user can choose.  They are listed as 

follows: 

• Selection methods include: Roulette Wheel, SUS, Baker Rank, Reeves Rank, and 

Tournament. 

• Crossover methods include: Single-point, Double-point, Uniform, Arithmetic, and 

Heuristic. 

• Mutation methods include: Uniform, Dynamic (Non-uniform), Boundary, and 

Creep. 

• Replacement method include: Generational, Steady State, and Evolution Strategy. 

• Termination criteria include: Number of Generations, Percentage of Converged 

Alleles, Fitness Progress, and Hybrid.  Hybrid uses all the three termination criteria, 

and the GA stops if any of them is satisfied. 

 

The function setting section specifies the number of integer and floating point 

variables and their ranges. If the problem has only one type of variables, then the 

number of variables of the unenclosed type should be set to zero. 

 

Step 2: User function 

After the setup of the input file, the next step is to specify the function to be optimized. 

To do this, we need to customize the ‘usrFun’ function in file ‘Eval.for’.  
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Figure 4.3 User function specification 

 

 

Step 3: Compile and run 

After the specification of the user function, compile the package by issuing the 

following command on UNIX platform: 

g77 GA.for –o GA.out    

To run the program, type in 

g77 GA.out    

The system will prompt you for names of the input file and the output file.  Enter 

them, and the program will then start running and the result will be written into the 

output file you specified.   

 

Step 4: Output  

The output file records the result of the program, which includes the optimal 

chromosome, its fitness value, and its generation number.  The user may modify the 

      double precision function usrFun(ix, fx) 
c------------------------------------------------------------------ 
c  This function calculates the fitness value for each chromosome. 
c  User may modify this function to define his own function. 
c  Called by: Eval  
c------------------------------------------------------------------
 integer ix(*) 
      double precision fx(*) 
c 
c  Integer variables  
      integer x1 
c  Floating point variables 
      double precision x2 
c 
      x1=ix(1) 
      x2=fx(1) 
c  Rosenbrock function 
 usrFun=100*(x1**2-x2)**2 + (1-x1)**2 
c 
      return 
      end 
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subroutine ‘Output’ to write other information into the output file.  The output file for 

our sample run is shown below: 

 
Figure 4.4 Output file 

 

Our sample Rosenbrock function has the minimum value 0.0 at (1, 1.0).  Obviously, 

the package found a solution that is very close to the theoretical optimum. While 

working with other problems, if the user is not satisfied with the results, he/she can 

always adjust the GA parameters such as population size, number of generations, 

another crossover method, etc, to get a better result. 

 

 

 

 

 

 

 

 

 

 

 

 

Optimal fitness: 0.00000590 
Optimal chromosome: 1, 0.99975700 
Generation number: 197 
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Chapter V. Tests and Results  

 

In this chapter, we will test the GA package using various testing functions. The tests 

will be performed in two parts. In the first part, a variety of optimization problems 

will be input to the package and the output from the package will be compared with 

the theoretical optimal solution.  In the second part, we will test certain problems by 

varying the selection, crossover, or mutation methods in order to compare the 

performances of different genetic operation methods.  To save space and highlight the 

test results, the input files of all the test cases are not included here but are placed in 

the appendices of the thesis. 

 

5.1 General Testing 

In this section, experiments will be conducted to test the robustness of this GA 

package on a wide range of optimization problems.  Let’s start with some classical 

testing problems – Rosenbrock functions. 

 

5.1.1 Mixed Mode Rosenbrock Functions 

Rosenbrock functions have several variants, one of which, the Standard Rosenbrock 

function, has been used as a sample in the previous chapter.  In this subsection, we 

will test the other two forms: Flat-ground and Hollow-ground Rosenbrock functions.  

 

Test 1. Flat-ground Rosenbrock Function 

f(x1,x2)=100|x1
2  - x2| + (x1 -1)2,    -3� x1�3 ,  -2.5� x2�2.5,     
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where x1 is an integer and x2 is a floating point number. This function has a minimum 

value 0 at (1, 1.0).  It is called flat-ground because a cross-section parallel to the x2 

axis shows a V shape, like a flat-ground knife blade. 

 

The results of a single run are shown in the following table: 

Number of Generations Best Fitness Best Chromosome 
100 0.07821111 1,  0.97203375 
200 0.07821111 1,  0.97203375 
400 0.00384010 1,  1.00619685 
600 0.00384010 1,  1.00619685 
800 0.00007044 1,  1.00083928 
1000 0.00000016 1,  1.00003996 

Table 5.1 Results of Flat-ground Rosenbrock function 

 

It is easy to observe from the result table that, as the number generations grows, the 

GA converges to a point near the optimal point of the flat-ground Rosenbrock 

function.  At generation 1000, the output result is already quite close to the theoretical 

optimal value.   

 

However, it is worth mentioning that since the results come from a single run of the 

GA, there are some flat points existing between generations.  For example, generation 

100 and 200 have the same best fitness, so do generation 400 and 600.  We will see in 

the next experiment that this phenomenon can be eliminated by using the average 

results of a number of runs. 

 

Test 2. Hollow-ground Rosenbrock function 

f(x1, x2)=100 2
1

2
12 )1(|| −+− xxx ,    -3� x1�3 ,  -2.5� x2�2.5,     
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where x1 is an integer and x2 is a floating point number.  This function also has a 

minimum value 0 at (1, 1.0).  It is called hollow-ground because a cross-section 

parallel to the x2 axis shows a square root cusp, like a hollow-ground knife blade. 

 

The following table shows the average results of 20 runs: 

Number of Generations Average Best Fitness 
 100  1.35859689 
 200  1.06156089 
 400  0.74671261 
 600  0.64429165 
 800  0.45186317 
1000 0.39576666 

Table 5.2 Results of Hollow-ground Rosenbrock function 

 

Mathematically speaking, the hollow-ground function is more difficult to optimize 

than flat-ground, because its partial derivatives have infinite discontinuities rather 

than finite discontinuities as in the flat-ground function.  However, the GA package 

works remarkably well on this function. The GA converges as the number of 

generations grows; and at generation 1000, it presents us a solution close to the 

theoretical optimal value. 

 

Moreover, we can see that the flat point phenomenon has been eliminated by using 

the average results of a number of runs instead of a single run.  That is, the average 

fitness value decreases steadily as the number of generations increases.  

 

5.1.2  0/1 Knapsack Problem  

An important combinatorial optimization problem is the 0/1 knapsack problem, the 

task of this problem is to find a binary vector v=b1b2….bn such that   
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where W[i], P[i] are the given sets of item weights and profits respectively; C is the 

capacity of the sack, and is defined as half of the sum of the item weights;  n is the 

total number of items.  

 

Various heuristic and exact methods have been devised to solve this problem. Among 

these, genetic algorithms have emerged as a powerful new search paradigms.  The 

solution of this problem can be represented using bit string encoding: 1 indicates the 

corresponding item is selected, 0 not selected. For instance, the bit string 100101 

means that item 1, 4, and 6 are selected into the sack.  

 

Experiment 1. Knapsack Problem with 10 Items  

In this experiment, we test the problem with 10 items.  The item weights and profits 

are shown in the table below: 

Item Weight Profit 
1 100 40 
2 50 35 
3 45 18 
4 20 4 
5 10 10 
6 5 2 
7 1 50 
8 5 20 
9 10 49 

10 8 19 
Table 5.3 Weights and Profits of Knapsack problem  

 

The results of this experiment are shown in the following table in next page: 
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Number of Generations Best Fitness Best Chromosome 
50 191 0 1 1 0 0 0 1 1 1 1 
100 191 0 1 1 0 0 0 1 1 1 1 
150 193 0 1 1 0 0 1 1 1 1 1 
200 193 0 1 1 0 0 1 1 1 1 1 
300 193 0 1 1 0 0 1 1 1 1 1 
500 193 0 1 1 0 0 1 1 1 1 1 

Table 5.4 Results of Knapsack problem with 10 items 

 

It took the GA only 150 generations to catch the maximum profit value, 193, for this 

knapsack.  In the next experiment, we are going to test a much harder knapsack 

problem with 100 items.  

 

Experiment 2. Knapsack Problem with 100 Items  

In this experiment, we test the problem with 100 items.  We intentionally built the 

item weights and profits such that the first 50 items ought to be put into the sack. By 

this way, we are able to know what the correct solution is.  GA reads the item weights 

and profits from an input file named knapsack.txt, which is too lengthy to be listed 

here and thus is attached in the appendices of this thesis.  

 

The results of this experiment are shown in the following table: 

Number of Generations Best Fitness 
500 3325 
1000 3556 
1500 3608 
2000 3701 
2500 3701 
3000 3701 
3500 3759 

Table 5.5 Results of Knapsack problem with 100 items 

Even though the large number of items makes this problem much more difficult to 

optimize, the GA still successfully discovers the maximum profit value, 3759, which 

is the exact solution for this knapsack.    
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5.1.3 Floating-point Functions 

In general, floating point problems are harder to optimize than integer problems.  

Thus, in this subsection we are going to test the more challenging problems with pure 

floating-point variables. It is not a surprise to observe that these problems usually 

require many more generations to obtain satisfactory results.   

 

Test1. Bohachevsky Function 

The Bohachevsky function [2] is defined as follows: 

7.0)4cos(4.0)3cos(3.02),( 21
2

2
2

121 +−−+= xxxxxxf ππ  

where -5.0� x1�5.0 , -5.0� x2�5.0,  and x1 and x2 are both floating-point numbers.  

This function has a minimum value of 0 at (0.0, 0.0).   

 

The average results of 20 runs are shown in the following table: 

Number of Generations Average Best Fitness 
500  0.10841466 
1000  0.01410626 
1500  0.00421070 
2000  0.00072386 
2500  0.00014686 
3000  0.00006754 

Table 5.6 Results of Bohachevsky function 

The GA package performs well on this tough problem.  After 3000 iterations, it found 

the solution value 0.00006754, which is very close to the optimal value 0.  

 

Test2. Schaffer Function F7 

The Schaffer function F7 [2] is defined as follows: 

]0.1))(50([sin)(),( 1.02
2

2
1

225.02
2

2
121 +++= xxxxxxf  , 

where -5.0� x1�5.0 , -4.0� x2�4.0,  and x1 and x2 are both floating-point numbers.  

This function also has a minimum value of 0 at (0.0, 0.0). 
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The average results of 20 runs of this experiment are shown in the following table: 

Number of Generations Average Best Fitness 
500  0.13019798 
1000  0.10833847 
1500  0.10169734 
2000  0.09560061 
2500  0.09227524 
3000  0.07749864 
3500  0.07537527 

Table 5.7 Results of Schaffer function F7 

 

Clearly, this problem is tougher than Bohachevsky function, because after 3500 

iterations, the package has not yet found a solution that is as good as the one found in 

the Bohachevsky function test.  Nonetheless, the solution found is still rather 

satisfactory. Moreover, it is easy to see the trend from the table that the fitness value 

keeps getting better as the generation number increases.    

 

 

5.2 Comparison Experiments 

In the section, we will test certain problems by varying the encodings or genetic 

operators to compare their performances. We start with the comparison test on bit 

string encoding (Gray-coded integer stored as bit string) and floating-point encoding. 

 

5.2.1 Comparison Experiments on Encodings 

The function used to test the encodings is defined as follows: 

||||||10),,,( 432
2

14321 xxxxxxxxf ++−=  , 

where -5.0� x1�5.0 , -8.0� x2�8.0,  -10.0� x3, x4�10.0. All are floating-point numbers.  

This function has a minimum value of -8.0 at (0.0, -8.0, 0.0, 0.0).  The reason we 
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choose such a relatively simple function is that both encodings will make observable 

progresses within a reasonable amount of generations.  

 

The two tests differ only by representation and applicable crossover methods, and 

equivalent in all other aspects.  Such an approach gives us a better basis for a 

relatively fair comparison. 

 

Following is the average results of 20 runs given by both of the encodings: 

Number of Generations Average Best Fitness 
(Bit string) 

Average Best Fitness 
(Floating-point) 

100  -6.90264789 -7.85441872 
200  -7.12828289 -7.91631431 
300  -7.22735720 -7.95372628 
400  -7.33161072 -7.97331920 
500  -7.40571019 -7.98351918 
600  -7.41846586 -7.98543751 
700  -7.44085430 -7.98692431 
800  -7.47598949 -7.98820886 
900  -7.49707214 -7.99019063 
1000  -7.49821985 -7.99132945 

Table 5.8 Encoding comparison 

 

To make it easier to compare the progress of the encodings, the following chart in the 

next page is drawn based on the results table. 
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Figure 5.1 Encoding comparison 

 

It is easy to conclude from the results table and the comparison chart that floating-

point encoding outperforms bit string encoding on all the 10 runs and converges much 

faster.  The same conclusion was also reached in [22].  Another important standard 

not shown in the above figure but worth mentioning is the time performance. It took 

bit string encoding 60 seconds to finish a single run whereas floating-point only 7 

seconds.  That is, floating-point encoding is approximately 10 times faster than its 

contender.  Needless to say, for optimization problems with pure floating-point 

variables, floating-point encoding is a better choice than bit string encoding.  

 

 

5.2.2 Comparison Experiments on Selection Methods 

In this subsection, we compare the performances of the different selection methods 

implemented in this package.  
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Experiment 1. Six-hump Camel-back Function 

The first function used to test the encodings is defined as follows [2]: 

2
2

2
221

2
1

4
1

2
121 )44()

3
1

1.24(),( xxxxxxxxxf +−+++−= , 

where -3.0� x1�3.0 , -2.0� x2�2.0, and they are both floating-point numbers.  This 

function has a minimum value of -1.0316 at (-0.0898, 0.7126).  

 

In this experiment, only the selection methods change from run to run, while all the 

other parameters remain the same.  The average experiment results of 20 runs are 

given by all the selection methods are displayed in the table below: 

Average Best Fitness from Selection Methods Number of 
Generation Roulette Wheel SUS Baker Rank Reeves Rank Tournament 
100 -1.03114500 -1.03100989 -1.03105640 -1.03125479 -1.03106746 
200 -1.03140260 -1.03140046 -1.03141977 -1.03134332 -1.03143091 
300 -1.03148664 -1.03141983 -1.03149341 -1.03144544 -1.03149980 
400 -1.03151137 -1.03147497 -1.03151160 -1.03150060 -1.03152329 
500 -1.03153135 -1.03148977 -1.03153912 -1.03152207 -1.03153050 
600 -1.03154257 -1.03153066 -1.03155011 -1.03156348 -1.03156149 
700 -1.03155473 -1.03154150 -1.03155882 -1.03157261 -1.03156222 
800 -1.03157913 -1.03155637 -1.03157120 -1.03157741 -1.03156657 
900 -1.03157961 -1.03156444 -1.03157651 -1.03157851 -1.03156785 
1000 -1.03158692 -1.03157732 -1.03157993 -1.03158432 -1.03157703 

Table 5.9 Selection methods comparison I 

 

The following figure gives us a more direct portrait of the performance comparison: 
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Figure 5.2 Selection methods comparison I 

 

The results indicate that all the selection methods converge to the optimal value with 

Roulette wheel the closest and SUS the furthest.  Generally speaking, SUS has better 

performance than Roulette wheel [1], but this is not observed in our case.  This may be 

attributed to the relatively large population size used in our experiment, which helps 

Roulette wheel reduce the statistical error in the sampling process.  

 

In the real world, we need a GA that not only converges to the global optimum, but 

also accomplishes the searching within a reasonable period of time.  The following 

table presents the average time of the 20 runs of the selection methods. 

 Roulette Wheel SUS Baker Rank Reeves Rank Tournament 
Time (sec) 39 41 76 79 43 

Table 5.10 Time complexity of selection methods I 
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Even though time performance depends on the machine on which the program is 

running, and thus may vary from machine to machine, the table still offers us a 

general view about the time performances of the experimented selection methods. We 

can see that the rank methods are slower than the non-rank methods. That is because 

the rank methods require the extra workload of sorting the entire population for each 

generation.  

 

Experiment 2. A Variant of Rosenbrock Function 

We do the experiment with a smaller population size using the following function:  

||||510),,,( 43
2

2
4

14321 xxxxxxxxf +++= , 

where -3.0� x1�3.0 , -2.0� x2�2.0, -10.0� x3 , x4�10.0, and they are all floating-point 

numbers.  This function has a minimum value of 0.0 at (0.0, 0.0, 0.0, 0.0).  

 

The average experiment results of 20 runs given by all the selection methods are 

demonstrated in the table below: 

Average Best Fitness from Selection Methods Number of 
Generation Roulette Wheel SUS Baker Rank Reeves Rank Tournament 
200  0.62074692  1.17537384  1.01028536  0.91488335  0.99969623 
400  0.24587467  0.49969066  0.36765408  0.36795605  0.45573758 
600  0.12767855  0.22791289  0.17581551  0.18460126  0.18285148 
800  0.06404160  0.10356454  0.09113826  0.10086967  0.09976915 
1000  0.03956093  0.06685801  0.04961130  0.05218824  0.06214369 
1200  0.02484145  0.04334301  0.02697711  0.04040424  0.03401128 
1400  0.01926923  0.02958915  0.01850648  0.03021167  0.02649636 
1600  0.01613904  0.02274243  0.01202055  0.02358456  0.01735248 
1800  0.01147213  0.01620587  0.00933664  0.01928891  0.01478172 
2000  0.01048350  0.01448187  0.00702963  0.01782664  0.01256342 

Table 5.11 Selection methods comparison II 

 

The average results are drawn in the following chart.  Please note that the fitness 

value axis used a logarithmic scale (“semi-log”) to make the small differences among 

selection methods more observable. 
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Figure 5.3 Selection methods comparison II 

 

Similar to the previous experiment, the results indicate that all the selection methods 

are converging toward the optimal value.  However, unlike experiment 1, Baker rank 

outperforms all the other competitors.  Roulette wheel not winning the game may be 

attributed to the smaller population size employed in this experiment.  

 

The average time performances are compared in the following table. 

 Roulette Wheel SUS Baker Rank Reeves Rank Tournament 
Time (sec) 52 58 101 99 60 

Table 5.12 Time complexity of selection methods II 

 

The same pattern is observed as in the previous experiment. That is, the non-rank 

methods are much faster than the rank methods.   
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There are other interesting phenomena worth mentioning.  For example, SUS 

selection methods did not perform well in either experiment (second worst in test 2 

and worst in the test 1).  As for the two rank methods, Baker performs slightly better 

than Reeves in both the experiments.  

 

 

5.2.3 Comparison Experiments on Crossover Methods 

In this subsection, we conduct experiments to compare the performance of crossover 

methods implemented in this package.  

 

Experiment 1. A Variant of Easom Function 

The function selected for this experiment is defined as follows [2]:  

||21050)cos()cos(1),,,,( 5
2

4
4

3
)()(

2154321

2
2

2
1 xxxexxxxxxxf xx +++−= −−−− ππ , 

where -3.0� x1 , x2�5.0 , -10.0� x3 , x4 , x5�10.0, and they are all floating-point 

numbers.  This function has a minimum value of 0.0 at (�, �, 0.0, 0.0, 0.0).  

 

The average experiment results of 20 runs given by all the crossover methods are 

demonstrated in the table below: 

Average Best Fitness from Crossover Methods Number of 
Generation Single Point Double Point Uniform Arithmetic Heuristic 
300 6.53963748 5.90342281 7.22753797 3.52300873  7.04832794 
600 3.84814084 3.76738204 3.09755289 1.69161245  3.83451180 
900 2.48216041 2.86849293 2.16271252 1.05478382  2.26491010 
1200 1.91600364 1.82472980 1.77030236 0.76704362  1.93611046 
1500 1.49884491 1.65801896 1.50038787 0.49035510  1.41774216 
1800 1.18686305 1.48398141 1.19765466 0.33054074  1.23351500 
2100 1.00443808 1.20197642 1.00505996 0.19386521  1.04875887 
2400 0.83122766 1.00045785 0.85575393 0.09411635  0.90943283 
2700 0.68335077 0.78665758 0.71635394 0.06433915  0.81680672 
3000 0.50794689 0.65037215 0.54692489 0.04681860  0.69502116 
3300 0.41780563 0.53414647 0.41821502 0.03354762  0.57154467 

Table 5.13 Crossover methods comparison I 
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The results are drawn using logarithmic scale in the following chart: 
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Figure 5.4 Crossover methods comparison I 

  

Similar to the selection methods experiment, the results obtained from this experiment 

also indicate that all the crossover methods lead the GA to the convergence with 

Arithmetic the closest and Heuristic the furthest.  

 

If we take a closer look, the performance of the contenders can roughly be divided 

into three groups: Arithmetic in the superior group, Uniform and Single point in the 

intermediate group, Heuristic and Double point in the inferior group.  Arithmetic 

outperforming other competitors may be attributed to its unique capability of 

generating new offspring within the range of the parents and its ability of creating 

more genetic schemas than the single point and double point crossovers.   
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The time performances of the crossover methods are compared in the following table. 

 Single Point Double Point Uniform Arithmetic Heuristic 
Time (sec) 220 226 231 221 219 

Table 5.14 Time complexity of crossover methods I 

 

Unlike the time complexity variation observed in the selection methods test, the time 

performances of all the crossover methods are pretty close to each other.  

 

Experiment 2. A Variant of Squared Radius Function 

The experimented is repeated using the following function:  

2
n

n

xny �= , 

where -10.0� xn �10.0 , for n =1 to 5, and are all floating-point numbers.  This 

function has a minimum value of 0.0 at (0.0, 0.0, 0.0, 0.0, 0.0).  

 

The average experiment results of 20 runs given by all the crossover methods are 

demonstrated in the table below: 

Average Best Fitness from Crossover Methods Number of 
Generation Single Point Double Point Uniform Arithmetic Heuristic 
300 23.59322033 20.19726184  21.23134067 7.82278207 34.01789885 
600  11.84879552 13.07524367  11.31882723 2.78603796 20.25611526 
900   6.27316003  7.24433722   6.44028531 1.03588042 13.80272412 
1200   4.17823117  4.32724269   3.24527675 0.53103251 10.13046719 
1500   2.48152476  3.01946040   1.98943355 0.19708694  9.41284500 
1800   1.88963018  2.34222704   1.40765973 0.08382558  7.07262043 
2100   1.27979614  1.36751549   0.99008349 0.04833465  4.94206167 
2400   1.03410710  0.96161507   0.80888099 0.02563513  4.05980383 
2700   0.81998893  0.71481592   0.52794773 0.01396669  2.77400604 
3000   0.56398378  0.54536879   0.38935216 0.00887969  2.28372226 
3300   0.46887681  0.45644971   0.30927899 0.00636384  2.17092762 

Table 5.15 Crossover methods comparison II 

 

The results are drawn using logarithmic scale in the following chart: 
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Comparison of Crossover Methods
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Figure 5.5 Crossover methods comparison II 

  

The same convergence pattern is observed in this experiment. Moreover, the 

performance hierarchy is nearly preserved: Arithmetic, Uniform, Double Point, Single 

Point, and Heuristic.  In both the competitions, Arithmetic is the leading performer 

whereas Heuristic is the worst player.  

 

The time performances of the crossover methods are compared in the following table. 

 Single Point Double Point Uniform Arithmetic Heuristic 
Time (sec) 218 222 227 230 226 

Table 5.16 Time complexity of crossover methods II 

 

Like the time complexity observed in the experiment 1, the time performances of all 

the crossover methods are at the same level.  
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As we have mentioned in Chapter 3, the performance of crossover methods have 

complicated relationships with the fitness function, encoding, and other parameters of 

the GA.  There is no crossover method that guarantees to work best in all the cases.  

With that said, however, the experiments of this section still offer us some guidance 

on the usage of crossover methods.  In general, Arithmetic or Uniform crossover 

should be the first choice. Only when you are not satisfied with the results obtained, 

then consider trying other candidates.  
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Chapter VI. Conclusions and Future Work 

 

6.1 Conclusions 

Genetic Algorithm models the natural selection and evolution process and has been 

successful in areas where the traditional methods fall short.   GA has quite a number 

of advantages over traditional optimization methods:  it can optimize both continuous 

and discrete functions; it does not require complicated differential equations or a 

smooth objective function; it can be highly parallelized to improve computation 

performance; it searches more of the solution space and thus increases the probability 

of finding the global optimum.    

 

Most of the existing GA packages either use single representation or offer limited 

choices of genetic operator.  To handle the variety of optimization problems in 

practical applications, a more comprehensive and powerful general GA package is 

designed and implemented in this thesis.  This package gives users a rich set of 

options on the problem representation and genetic operators based on the specific 

problem type.  The following list outlines the feature methods that are implemented in 

the package:  

• Encodings: Bit strings, Floating point, Integer (Gray code) 

• Selection Methods: Improved Roulette Wheel, Stochastic Universal Sampling, 

Baker Linear Rank, Reeves Rank, Tournament  
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• Generation Replacement Models: Generational, Steady State, Evolution Strategy 

(N+m) Replacement, Elitism 

• Crossover Methods: Single Point, Double Point, Uniform, Arithmetic, Heuristic   

• Mutation Methods: Uniform, Dynamic(Non-uniform), Boundary, Creep 

• Termination Criteria: Hybrid, Number of Generations, Convergence, Progress in 

Fitness 

 

The package has been tested through two groups of experiments. The first group tests 

the general robustness by inputting a variety of optimization problems to the package. 

The second group compares the performances of different genetic operators by 

varying the encoding, selection, or crossover methods on a certain input function.  

The experiments results indicate that the GA package achieved convergence and 

found satisfactory solution.   

 

Some other experiments are made but are not listed in Chapter 5.  Based on all the 

experiments conducted, I summarized the following tips regarding the usage of this 

package:  

• To optimize problems with pure floating-point variables, floating-point encoding 

outperforms bit string encoding in both the solution quality and time required.  

• Baker rank SUS are both recommended for selection methods. If time is also 

considered, then SUS has the upper hand.  

• Arithmetic and Uniform are recommended for crossover methods.  

• Uniform and Dynamic are recommended for mutation methods. 
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• Generational replacement converges faster than Steady state, but has more risk of 

leading the GA to a local optimum point.  In contrast, Steady state converges 

relatively slow, but usually leads the GA to the global optimum point.  

• For termination criteria, Number of generations is recommended. The other two 

criteria have small probabilities to lead the GA into infinite loop in case the 

expected progress is not made.  In this package, this case is handled by specifying 

an upper bound of loops. 

 

Once again, these tips just serve as general suggestions.  Please keep in mind that the 

performances of genetic operators are intricately related to the problem context and 

other GA parameters.  No operator is guaranteed to work best in all the cases.  When 

the results obtained are inferior to the expectation, the best way is to adjust the GA 

parameters and give it another try. 

  

 

6.2 Future Work  

More experiments can be done in effort to resolve the influence of various factors on 

the performance of genetic algorithms. In particular, the answer to question like how 

to select the best representation and operators for a specific problem will save the time 

people spend on trying different sets of GA configurations.  

 

There is still room for improvement to make this package more powerful. The 

following features may be considered to be added into this package in the future:
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• The combination with other optimization methods: Needless to say, GA is a 

powerful optimization technique. On the other hand, there exists a rich set of 

optimization methods and each of them has its unique strength.    The combination 

of GA with these methods will help yield better solution on some problems. For 

example, after a certain number of generations, GA is probably in the valley where 

the global optimum resides, and a hill-climbing method might be used to take over 

the task hereafter to locate the optimum point more rapidly and accurately, 

providing the function is smooth (continuously differentiable).  

• Parallelism: Genetic algorithms are very suitable for parallel implementation. The 

inclusion of parallelism will enable this GA package to search a wide range of 

sampling space simultaneously, and thus greatly reduce the time complexity.  
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APPENDIX 
 

INPUT FILES OF TESTS AND EXPERIMENTS 
 
 

Input file for Flat-round Rosenbrock function 
 

Population Size: 500 
Crossover Rate: 0.4 
Mutation Rate: 0.1 
### 
Seed for Random Function: 100589 
### 
Encoding: Mix 
### 
###Selection methods include: Roulette Wheel, SUS,Baker Rank,Reeves Rank,Tournament 
###Crossover methods include: Single Point, Double Point,Uniform, Arithmetic, Heuristic 
###Mutation methods include: Boundary, Creep 
###Replacement Method include: Generational,Steady State,Evolution Strategy 
### 
Selection Method: SUS 
Crossover Method(Non-FP): Uniform  
Crossover Method(FP): Arithmetic 
Mutation Method(Non-FP): Uniform 
Mutation Method(FP): Uniform 
Replacement Method: Steady State 
### 
Termination Criterion: Number of Generations 
Number of Generations: 1000 
Percentage of Converged Alleles: 0.9 
Factor of Fitness Progress: 0.01 
### 
###Variables setting 
Number of Bit-string Variables: 0 
Number of Floating-point Variables: 1 
   FP Var1 Range: -2.5,2.5 
### 
Number of Integer Variables: 1 
   Int Var1 Range: -3, 3   
### 
 
 

Input file for Hollow-round Rosenbrock function 
 

Population Size: 500 
Crossover Rate: 0.4 
Mutation Rate: 0.1 
### 
Seed for Random Function: 100589 
### 
Encoding: Mix 
### 
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###Selection methods include: Roulette Wheel, SUS,Baker Rank,Reeves Rank,Tournament 
###Crossover methods include: Single Point, Double Point,Uniform, Arithmetic, Heuristic 
###Mutation methods include: Boundary, Creep 
###Replacement Method include: Generational,Steady State,Evolution Strategy 
### 
Selection Method: SUS 
Crossover Method(Non-FP): Uniform  
Crossover Method(FP): Arithmetic 
Mutation Method(Non-FP): Uniform 
Mutation Method(FP): Dynamic  
Replacement Method: Generational 
### 
Termination Criterion: Number of Generations 
Number of Generations: 1000 
#Percentage of Converged Alleles: 0.9 
#Factor of Fitness Progress: 0.01 
### 
###Variables setting 
Number of Bit-string Variables: 0 
Number of Floating-point Variables: 1 
   FP Var1 Range: -2.5,2.5 
### 
Number of Integer Variables: 1 
   Int Var1 Range: -3, 3    
### 
 
 

Weights and profits of Knapsack problem with 100 items  
 
Item   1:   6,  98 
Item   2:   3,  67 
Item   3:   8,  86 
Item   4:   2,  75 
Item   5:   8,  71 
Item   6:   3,  76 
Item   7:   3,  60 
Item   8:  10,  83 
Item   9:   2,  63 
Item  10:   5,  58 
Item  11:   2,  58 
Item  12:   7,  81 
Item  13:   5,  52 
Item  14:   1,  91 
Item  15:   1,  83 
Item  16:   4,  98 
Item  17:   8,  93 
Item  18:   9,  99 
Item  19:   9,  51 
Item  20:   8,  82 
Item  21:   4,  89 
Item  22:   5,  53 
Item  23:   4,  76 
Item  24:   2,  62 
Item  25:   5,  71 
 

Item  26:   8,  90 
Item  27:   4,  95 
Item  28:   5,  67 
Item  29:   9,  59 
Item  30:   3,  63 
Item  31:   7,  84 
Item  32:   7,  92 
Item  33:   2,  68 
Item  34:   2,  92 
Item  35:   5,  71 
Item  36:   6,  96 
Item  37:   2,  82 
Item  38:   5,  51 
Item  39:   2,  73 
Item  40:   5,  92 
Item  41:   4,  53 
Item  42:   1,  67 
Item  43:  10,  79 
Item  44:   3,  58 
Item  45:   7,  76 
Item  46:  10,  92 
Item  47:   1,  97 
Item  48:   9,  81 
Item  49:   4,  59 
Item  50:   9,  46 
 

Item  51:  51,  27 
Item  52:  71,  41 
Item  53:  82,  34 
Item  54: 109,   2 
Item  55:  70,  31 
Item  56:  28,  40 
Item  57:  22,  18 
Item  58:  15,   8 
Item  59:  76,  39 
Item  60:  83,  32 
Item  61:  97,  16 
Item  62:  26,  29 
Item  63: 102,  31 
Item  64:  77,  10 
Item  65:  91,  29 
Item  66:  68,  31 
Item  67:  61,   7 
Item  68:  30,  30 
Item  69:  77,  17 
Item  70:  76,  50 
Item  71:  86,  18 
Item  72:  47,  15 
Item  73:  91,   4 
Item  74:  32,  42 
Item  75:  94,  20 
 

Item  76: 106,  17 
Item  77:  22,  23 
Item  78: 108,  40 
Item  79:  66,  36 
Item  80:  32,  10 
Item  81:  92,  27 
Item  82: 108,  22 
Item  83:  84,   2 
Item  84:  75,  39 
Item  85:  12,  32 
Item  86:  72,  40 
Item  87:  87,   1 
Item  88:  88,  38 
Item  89:  65,  24 
Item  90:  41,   1 
Item  91:  44,  28 
Item  92:  29,  35 
Item  93:  47,  24 
Item  94:  83,  39 
Item  95:  78,  16 
Item  96:  11,  49 
Item  97:  27,  13 
Item  98:  98,  21 
Item  99:  30,   1 
Item 100:  36,  38 
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Input file for Knapsack problem with 100 items  
 

Population Size: 100 
Crossover Rate: 0.4 
Mutation Rate: 0.1 
### 
Seed for Random Function: 100589 
### 
Encoding: Bit String 
### 
Selection Method: SUS 
Crossover Method(Non-FP): Uniform  
Crossover Method(FP): Uniform  
Mutation Method(Non-FP): Uniform 
Mutation Method(FP): Uniform  
Replacement Method: Steady State 
### 
Termination Criterion: Number of Generations 
Number of Generations: 2000 
Percentage of Converged Alleles: 0.9 
Factor of Fitness Progress: 0.01 
### 
###Variables setting 
Number of Bit-string Variables: 1 
 String Var1 length: 100 
Number of Floating-point Variables: 0 
### 
Number of Integer Variables: 0 
### 
 

 
Input file for Bohachevsky function  

 
Population Size: 600 
Crossover Rate: 0.4 
Mutation Rate: 0.1 
### 
Seed for Random Function: 10058 
### 
Encoding: Mix 
### 
Selection Method: SUS 
Crossover Method(Non-FP): Uniform  
Crossover Method(FP): Arithmetic 
Mutation Method(Non-FP): Uniform 
Mutation Method(FP): Dynamic 
Replacement Method: Steady State 
### 
Termination Criterion: Number of Generations 
Number of Generations: 3000 
Percentage of Converged Alleles: 0.9 
Factor of Fitness Progress: 0.01 
### 
###Variables setting 
Number of Bit-string Variables: 0 
Number of Floating-point Variables: 2 
  FP Var1 Range: -5, 5   
  FP Var2 Range: -5, 5 
### 
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Number of Integer Variables: 0 
### 
 

 
Input file for Schaffer function F7 

 
Population Size: 600 
Crossover Rate: 0.4 
Mutation Rate: 0.1 
### 
Seed for Random Function: 10058 
### 
Encoding: Mix 
### 
Selection Method: SUS 
Crossover Method(Non-FP): Uniform  
Crossover Method(FP): Arithmetic 
Mutation Method(Non-FP): Uniform 
Mutation Method(FP): Dynamic 
Replacement Method: Steady State 
### 
Termination Criterion: Number of Generations 
Number of Generations: 4000 
Percentage of Converged Alleles: 0.9 
Factor of Fitness Progress: 0.01 
### 
###Variables setting 
Number of Bit-string Variables: 0 
Number of Floating-point Variables: 2 
  FP Var1 Range: -5, 5   
  FP Var2 Range: -5, 5 
### 
Number of Integer Variables: 0 
### 

 
 

Input file for encoding comparison (bit-string)  
 
Population Size: 800 
Crossover Rate: 0.4 
Mutation Rate: 0.4 
### 
Seed for Random Function: 10059 
### 
Encoding: Bit String 
### 
Selection Method: SUS 
Crossover Method(Non-FP): Uniform  
Crossover Method(FP): Uniform  
Mutation Method(Non-FP): Uniform 
Mutation Method(FP): Uniform  
Replacement Method: Generational 
### 
Termination Criterion: Number of Generations 
Number of Generations: 1000 
Percentage of Converged Alleles: 0.9 
Factor of Fitness Progress: 0.01 
### 
###Variables setting 
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Number of Bit-string Variables: 0 
Number of Floating-point Variables: 4 
  FP Var1 Range: -5, 5   
  FP Var2 Range: -8, 8 
  FP Var3 Range: -10,10   
  FP Var4 Range: -10,10 
### 
Number of Integer Variables: 0 
### 
 

 
Input file for encoding comparison (floating point)  

 
Population Size: 800 
Crossover Rate: 0.4 
Mutation Rate: 0.4 
### 
Seed for Random Function: 10059 
### 
Encoding: Bit String 
### 
Selection Method: SUS 
Crossover Method(Non-FP): Uniform  
Crossover Method(FP): Heuristic 
Mutation Method(Non-FP): Uniform 
Mutation Method(FP): Uniform  
Replacement Method: Generational 
### 
Termination Criterion: Number of Generations 
Number of Generations: 1000 
Percentage of Converged Alleles: 0.9 
Factor of Fitness Progress: 0.01 
### 
###Variables setting 
Number of Bit-string Variables: 0 
Number of Floating-point Variables: 4 
  FP Var1 Range: -5, 5   
  FP Var2 Range: -8, 8 
  FP Var3 Range: -10,10   
  FP Var4 Range: -10,10 
### 
Number of Integer Variables: 0 
### 
 

 
Input file for selection methods comparison I 

 
#Change the selection method(FP) for each run. 
Population Size: 300 
Crossover Rate: 0.4 
Mutation Rate: 0.1 
### 
Seed for Random Function: 10058 
### 
Encoding: Mix 
### 
Selection Method: Roulette Wheel  
Crossover Method(Non-FP): Uniform  
Crossover Method(FP): Arithmetic 
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Mutation Method(Non-FP): Uniform 
Mutation Method(FP): Dynamic 
Replacement Method: Steady State 
### 
Termination Criterion: Number of Generations 
Number of Generations: 1000 
Percentage of Converged Alleles: 0.9 
Factor of Fitness Progress: 0.01 
### 
###Variables setting 
Number of Bit-string Variables: 0 
Number of Floating-point Variables: 2 
  FP Var1 Range: -3, 3 
  FP Var2 Range: -2, 2 
### 
Number of Integer Variables: 0 
### 
 

 
Input file for selection methods comparison II 

 
#Change the selection method(FP) for each run. 
Population Size: 200 
Crossover Rate: 0.4 
Mutation Rate: 0.1 
### 
Seed for Random Function: 10058 
### 
Encoding: Mix 
### 
Selection Method: Roulette Wheel  
Crossover Method(Non-FP): Uniform  
Crossover Method(FP): Arithmetic 
Mutation Method(Non-FP): Uniform 
Mutation Method(FP): Dynamic 
Replacement Method: Steady State 
### 
Termination Criterion: Number of Generations 
Number of Generations: 1000 
Percentage of Converged Alleles: 0.9 
Factor of Fitness Progress: 0.01 
### 
###Variables setting 
Number of Bit-string Variables: 0 
Number of Floating-point Variables: 4 
  FP Var1 Range: -3, 3 
  FP Var2 Range: -2, 2 
  FP Var3 Range: -10,10   
  FP Var4 Range: -10,10 
### 
Number of Integer Variables: 0 
### 
 
 

Input file for crossover methods comparison I 
 
#Change the crossover method (FP) for each run. 
Population Size: 500 
Crossover Rate: 0.4 



 

 77 

Mutation Rate: 0.1 
### 
Seed for Random Function: 100589 
### 
Encoding: Mix 
### 
Selection Method: SUS 
Crossover Method(Non-FP): Uniform  
Crossover Method(FP): Single Point 
Mutation Method(Non-FP): Uniform 
Mutation Method(FP): Dynamic 
Replacement Method: Steady State 
### 
Termination Criterion: Number of Generations 
Number of Generations: 3300 
Percentage of Converged Alleles: 0.9 
Factor of Fitness Progress: 0.01 
### 
###Variables setting 
Number of Bit-string Variables: 0 
Number of Floating-point Variables: 5 
  FP Var1 Range: -3, 5 
  FP Var2 Range: -3, 5 
  FP Var3 Range: -10,10   
  FP Var4 Range: -10,10 
  FP Var5 Range: -10,10   
### 
Number of Integer Variables: 0 
### 
 

 
Input file for crossover methods comparison II 

 
#Change the crossover method(FP) for each run. 
Population Size: 500 
Crossover Rate: 0.4 
Mutation Rate: 0.1 
### 
Seed for Random Function: 1005896 
### 
Encoding: Mix 
### 
Selection Method: SUS 
Crossover Method(Non-FP): Uniform  
Crossover Method(FP): Single Point 
Mutation Method(Non-FP): Uniform 
Mutation Method(FP): Dynamic 
Replacement Method: Steady State 
### 
Termination Criterion: Number of Generations 
Number of Generations: 3300 
Percentage of Converged Alleles: 0.9 
Factor of Fitness Progress: 0.01 
### 
###Variables setting 
Number of Bit-string Variables: 0 
Number of Floating-point Variables: 5 
  FP Var1 Range: -10,10 
  FP Var2 Range: -10,10 
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  FP Var3 Range: -10,10   
  FP Var4 Range: -10,10 
  FP Var5 Range: -10,10   
### 
Number of Integer Variables: 0 
### 
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