
COMPARISON OF GENETIC OPERATORS ON A

GENERAL GENETIC ALGORITHM

PACKAGE

 By

 HUAWEN XU

 Master of Science

Shanghai Jiao Tong University

Shanghai, China

1999

 Submitted to the Faculty of the
 Graduate College of the

 Oklahoma State University
 in partial fulfillment of

 the requirements for
 the Degree of

 MASTER OF SCIENCE
 May, 2005

 ii

 COMPARISON OF GENETIC OPERATORS ON A

GENERAL GENETIC ALGORITHM

PACKAGE

 Thesis Approved:

J.P. Chandler
 Thesis Adviser

 B.E. Mayfield

D.R. Heisterkamp

 A. Gordon Emslie
 Dean of the Graduate College

 iii

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my thesis committee for their guidance

and support. As the chairman of the committee, Professor J.P. Chandler offered his

academic expertise and insightful knowledge all the way through completion of this

thesis. His affable manner of communication made the tense research process much less

stressful. I also thank the other two committee members, Dr. Blayne E. Mayfield and Dr.

Douglas R. Heisterkamp, for their thoughtful comments and the time they spent on

reviewing this document.

As always, my wife Haowen Yu has provided the much needed understanding and

encouragement. Her love gives me the courage to face the difficulties in daily life. I also

thank all of my friends for the good memories and wish them all successful in their future

endeavor.

 iv

TABLE OF CONTENTS

Chapter Page

I. Introduction to Genetic Algorithms

1.1 General Introduction…………………………………………………... 1
1.2 Biological Terminology……………………………………………….. 2
1.3 How GAs Work……………………………………………………….. 3
1.4 An Example…………………………………………………………… 4

II. Literature Review
 2.1 Brief Introduction to Optimization…………………………………….. 7

2.2 GA Packages Review…………………………………………………... 9
 2.2.1 GAlib………………………………………………………… 9
 2.2.2 Genesis……………………………………………………….. 10
 2.2.3 Genetic Algorithm Driver……………………………………. 12

2.2.4 Other GA Packages…………………………………………... 13

III. Blueprint of a General GA Package

3.1 Encoding……………………………………………………………….. 14
3.1.1 Bit-string Encoding…………………………………………... 15
3.1.2 Integer Encoding……………………………………………... 15
3.1.3 Floating-point Encoding……………………………………... 17

3.2 Selection Methods……………………………………………………… 17
3.2.1 Improved Roulette Wheel Selection……………………......... 18
3.2.2 Stochastic Universal Sampling………………………………. 19
3.2.3 Rank Selection……………………………………………….. 20

3.2.3.1 Baker Linear Rank Method………………………… 21
3.2.3.2 Reeves Rank Method………………………………. 22

3.2.4 Tournament Selection………………………………………... 23
3.3 Generation Replacement Model……………………………………...... 24

3.3.1 Generational Replacement…………………………………… 24
3.3.2 Steady State Replacement……………………………………. 24
3.3.3 Evolution Strategy (N+m) Replacement……………………... 24
3.3.4 Elitism………………………………………………………... 25

3.4 Crossover………………………………………………………. ……... 25
3.4.1 Single Point Crossover………………………………….......... 26
3.4.2 Double Point Crossover……………………………………… 26
3.4.3 Uniform Crossover……………………………………………27
3.4.4 Arithmetical Crossover………………………………………. 27
3.4.5 Heuristic Crossover…………………………………………... 28

3.5 Mutation………………………………………………………………... 29

 v

3.5.1 Uniform Mutation……………………………………………. 29
3.5.2 Non-uniform Mutation……………………………………….. 30
3.5.3 Boundary Mutation…………………………………………... 31
3.5.4 Creep Mutation………………………………………………. 31

3.6 Termination Condition…………………………………………………. 32
3.6.1 Maximum Number of Generations…………………………... 32
3.6.2 Convergence Termination……………………………………. 32
3.6.3 Progress in Fitness…………………………………………… 33

IV. Implementation of the GA Package
4.1 Introduction to Modules………………………………………………... 34

4.1.1 Initialization Module………………………………………… 34
4.1.2 Genetic Operation Module…………………………………… 35
4.1.3 Output Module……………………………………………….. 39
4.1.4 Utility Module………………………………………………... 39

4.2 Program Structure……………………………………………………… 40
4.3 Data Structures…………………………………………………………. 41
4.4 A Sample Run………………………………………………………….. 42

V. Tests and Results

5.1 General Testing………………………………………………………… 47
5.1.1 Mixed Mode Rosenbrock Functions……………………......... 47
5.1.2 0/1 Knapsack Problem……………………………………….. 49
5.1.3 Floating-point Functions……………………………………... 52

5.2 Comparison Experiments………………………………………………. 53
5.2.1 Comparison Experiments on Encodings……………………... 53
5.2.2 Comparison Experiments on Selection Methods…………….. 55
5.2.3 Comparison Experiments on Crossover Methods…………….60

VI. Conclusions and future Work

6.1 Conclusions…………………………………………………………….. 65
6.2 Future Work …………………………………………………………… 67

REFERENCES…………………………………………………………………….. 69

APPENDIX

Input Files of Tests and Experiments………………………………………. 71

 vi

LIST OF TABLES

 Table Page

 1.1 One Max individual values……………………………………………............. 4

 1.2 Population after crossover……………………………………………………...5

 1.3 Final population……………………………………………………………….. 6

 3.1 Gray codes of first 6 integers………………………………………………….. 16

 3.2 Single point crossover………………………………………………………..... 26

 3.3 Double point crossover……………………………………………………....... 27

 3.4 Uniform crossover…………………………………………………………….. 27

 3.5 Arithmetical crossover…………………………………………………............ 28

 5.1 Results of Flat-ground Rosenbrock function………………………………….. 48

 5.2 Results of Hollow-ground Rosenbrock function……………………………… 49

 5.3 Weights and Profits of Knapsack problem …………………………………… 50

 5.4 Results of Knapsack problem with 10 items…………………………………...51

 5.5 Results of Knapsack problem with 100 items………………………………….51

 5.6 Results of Bohachevsky function………………………………………………52

 5.7 Results of Schaffer function F7……………………………………………….. 53

 5.8 Encoding comparison ………………………………………………….............54

 5.9 Selection methods comparison I………………………………………………. 56

 5.10 Time complexity of selection methods I…………………………………….. 57

 5.11 Selection methods comparison II…………………………………………...... 58

 vii

 5.12 Time complexity of selection methods II……………………………………. 59

 5.13 Crossover methods comparison I…………………………………………….. 60

 5.14 Time complexity of crossover methods I…………………………………….. 62

 5.15 Crossover methods comparison II……………………………………............ 62

 5.16 Time complexity of crossover methods II…………………………………… 63

 viii

LIST OF FIGURES

Figure Page

 1.1 Procedures of Simple GA ………………………..…………………………… 3

 1.2 A descriptive version of GA…………………………………………………... 3

 1.3 Single point crossover demonstration…………………………………............. 5

 3.1 Binary and Gray code conversion functions…………………………………... 16

 3.2 Roulette wheel selection procedures…………………………………………... 18

 3.3 SUS procedures……………………………………………………………….. 20

 4.1 Program flow chart……………………………………………………............. 41

 4.2 Input file of the sample run…………………………………………………… 43

 4.3 User function specification……………………………………………………. 45

 4.4 Output file……………………………………………………………………... 46

 5.1 Encoding comparison…………………………………………………..............55

 5.2 Selection methods comparison I………………………………………............. 57

 5.3 Selection methods comparison II……………………………………………… 59

 5.4 Crossover methods comparison I……………………………………………… 61

 5.5 Crossover methods comparison II…………………………………………….. 63

 1

Chapter I. Introduction to Genetic Algorithms

1.1 General Introduction

Genetic algorithms are now widely applied in science and engineering as stochastic

algorithms for solving practical optimization problems. Genetic algorithms (GA)

were first introduced by John H. Holland in his fundamental book “Adaptation in

Natural and Artificial Systems” in 1975 [4]. Holland presented the algorithm as an

abstraction of biological evolution and his schema theory laid a theoretical foundation

for GA.

The idea behind GAs is to simulate what nature does. Simply speaking, GA is a

simulation of Darwin’s Theory of Evolution – the fittest survive. A simple GA works

as follows: First, a number of individuals (the population) are randomly initialized at

the beginning of the algorithm. Individuals are then selected according to their fitness.

Next, the genetic operators (crossover, mutation) are applied with certain probabilities

on these selected individuals, the parents, to produce offspring. The original

generation is then replaced by the new generation which consists in whole or in part

of the newly created offspring. The above process is repeated if the termination

criterion is not met; otherwise, the algorithm stops. [2]

Whereas in nature the "fitness" relates to the ability of the organism to survive and

reproduce, that is, organisms with a better "fitness" score are more likely to be

selected for reproduction, in genetic algorithms, the "fitness" is the evaluated result of

a user-defined objective function. [1]

 2

1.2 Biological Terminology [1] [2]

Let us introduce some of the basic biological terminology that is useful for a better

understanding of GAs.

Each cell of a living creature consists of a certain set of chromosomes. Chromosomes

are made of genes, which are blocks of DNA. Each gene encodes one or more

characters (eye color, hair color, etc) that can be passed on to the next generation.

Each gene can be in different states, called alleles. Genes are located at certain

positions on the chromosome, which are called loci.

The cell of many creatures has more than one chromosome. The entire set of

chromosomes in the cell is called the genome. If the chromosomes in each cell of the

organism are unpaired, the organism is called haploid. If, on the other hand, the

chromosomes are paired, the organism is called diploid. In nature, many living

organisms are diploid, but almost all GAs employ haploid representations, since they

are simple to construct.

In the natural reproduction process, pieces of gene material are exchanged between

the two parents’ chromosomes to form new genes. This process is called

recombination or crossover. Genes in the offspring are subject to mutation, in which

a certain block of DNA in the gene undergoes a random change.

In genetic algorithms, a chromosome is used to represent a potential solution to a

problem. Since we use single-chromosome individuals to represent the problem

solution, the term individual and chromosome are often used interchangeably.

 3

1.3 How GAs Work

Despite its amazing power, a genetic algorithm is actually quite elegant and so easy to

understand that it can be expressed in just a few lines of computer pseudo-codes.

Following is the C version of the GA structure originally presented in [1]:

Figure 1.1 Procedure of Simple GA

where, P(t) is the population of individuals for iteration t.

Here is a more descriptive version of GA, slightly modified from [1]:

Figure 1.2 A descriptive version of GA

Procedure Simple GA
{

t=0;
initialize P(t);
evaluate P(t);
while(! termination-condition)
{
 select P(t+1) from P(t);
 genetic_operate P(t+1);
 evaluate P(t+1);
 t++;
}

}

1. [Initialize] Generate a random population of n chromosomes (suitable
solutions for the problem).

2. [Evaluate] Evaluate the fitness f(x) of each chromosome x in the population.
3. [Offspring] Create a new population by executing the following steps.

a. [Selection] Select n parent chromosomes from the population
according to their fitness (the better the fitness, the better the chance to be
selected).

b. [Crossover] Recombine the parents with a certain crossover
probability to form new offspring.

c. [Mutation] Mutate the new offspring with certain mutation probability
at each locus (position in chromosome).

4. [Replace] Replace the current population with the newly generated
population.

5. [Test] If the termination condition is satisfied, stop, and return the best
chromosome found; otherwise, go to step 2.

 4

The convergence of a genetic algorithm is originally based on Holland’s schema

theory [4]. However, his theory has raised criticism and controversy over the years.

Since this thesis is focused on the real world application of GAs instead of theoretical

deduction, interested readers may refer to [5] for a precise mathematical description

of genetic algorithms.

1.4 An Example

A good example speaks better than thousands of words. Let’s work on a simple

example, One Max [6], to illustrate the basic steps of GA. As its name says, the goal

of One Max is to maximize the number of 1’s in 8-bit-strings such as 10010011.

First, we create an initial population of individuals. For simplicity, we assume a

population of size 4. The value of each individual is initially assigned randomly.

Then the population is evaluated based on a fitness function to determine how well

each individual does the required task. In our case, the fitness function is

straightforward:

f (v) = n, where n is the number of 1’s in individual v.

For example, the fitness value of an individual with chromosome 10011001 would be

4. After initialization, a random population of four individuals and their fitness values

are listed in Table 1.1.

Individual String Representation Fitness
V1 01101001 4
V2 00100100 2
V3 11110001 5
V4 00001110 3

Table 1.1 One max individual values

 5

Next, select two parents to generate two offspring. In this example, we use the plain

but widely adopted fitness-proportionate selection scheme, in which the probability of

an individual being chosen to reproduce is proportional to its fitness value. In our

case, let’s assume that the parents selected are [V3, V1] and [V3, V4], with V3 being

selected twice because of its higher fitness. Note that V2 may also be selected, with a

lower probability, in real world applications.

After the selection, we are ready to apply the crossover operator to the selected

individuals. Suppose the crossover probability is 0.5, which means 50% of the

population will undergo crossover (2 individuals in our case). Let’s say parent V3

and V1 undergo crossover after the fourth bit, the process is shown in the figure

below:

Figure 1.3 Single point crossover demonstration

The offspring generated are V1’ = 01100001 and V3’ = 11111001. On the other hand,

the offspring of V3 and V4, which do not go through crossover, are the exact copies

of themselves. Suppose we utilize generational replacement model, i.e., replace the

parents with the newly generated offspring, the new population now becomes:

Individual String Representation Fitness
V1’ 01100001 3
V2’ (V3) 11110001 5
V3’ 11111001 6
V4 00001110 3

Table 1.2 Population after crossover

0110 1001

1111 0001

0110 0001

1111 1001

Parents Offspring

 6

Next, the mutation operator is applied to individuals in the new population with a

certain mutation probability. Suppose V4 is mutated at the 8th bit position, the

resultant V4’ is 00001111 with a fitness value 4.

At this point, one cycle has been finished. Repeat the above steps. In the second

round selection, V3’ and V4’ may be chosen as parents, and the offspring after

crossover are V3”=11111111, V4’’=00001001. Suppose the mutation happens to

V2’ at the second position, which results in V2’’=10110001. After the second

iteration, the population now is:

Individual String Representation Fitness
V1’ 01100001 3
V2’’ 10110001 4
V3’’ 11111111 8
V4’’ 00001001 2

Table 1.3 Final population

We can see that individual V3’’ has fitness value 8, which is the maximum we are

looking for; thus the GA can stop here if we have some way of knowing we have

reached the optimal solution .

Interested readers can observe an animated java applet demonstration on [9] for a

vivid picture of how a GA works.

The simple procedure just described is the basis for most applications of GAs. There

are a number of details to fill in, such as the size of the population and various

methods of crossover and mutation. The success of the algorithm often depends

greatly on those parameters. We will talk more about them in the following chapters.

 7

Chapter II. Literature Review

2.1 Brief Introduction to Optimization

The purpose of optimization is to find the minimum or maximum result of a

mathematical function, called the objective function, by tuning the values of its

variables. During the past decades, the significance of optimization has grown

dramatically in engineering application, mathematical and computational models.

Consequently, dozens of optimization methods have been developed over the years.

The exhaustive search method searches a sufficiently large sampling space of the

objective function to find the global optimum. This brute force approach involves a

huge number of function evaluations, which makes it only practical for a small

number of parameters in a limited search space. [7]

Calculus optimization is a mathematical approach that can be applied if the objective

function is smooth (continuously differentiable). First, the objective function is

differentiated with respect to all the independent variables; next, the derivatives of

function are set to zero and the equations are then solved to find the parameter values.

This method is more computationally efficient than many of its peers. However, if

the problem has too many parameters, then it becomes quite difficult or even

impossible to solve the derivative equations, let alone that some practical problems

can’t be expressed as mathematical functions [7]. Also, the nonlinear equations may

have no solution, many solutions, or even infinity of solution points.

 8

A hill-climbing method starts from a single point and selects a new point from the

vicinity of the current point in each iteration. If the new point has a better value, the

current point is replaced by the new point. Otherwise, the current point is kept and

the process continues with a smaller step size or in another direction until the

termination criterion is met. The drawback of this method is that it only guarantees a

local optimum, which is determined by the position of the start point. Also, the

objective function must be smooth (continuously differentiable) for most hill-

climbing methods to succeed.

Two relatively new natural optimization methods, Simulated Annealing (SA) and

Genetic Algorithm (GA) are successful in the area where the traditional methods fall

short. Whereas GA models the natural selection and evolution process, SA simulates

the annealing phenomenon. Compared with hill-climbing, SA introduces a

probability of accepting the new point and the probability is controlled by an

additional parameter T, the temperature. With a high temperature at the beginning,

the algorithm is more likely to accept new points, and thus explore more regions in

the solution space. As the temperature goes down, the probability of accepting new

points becomes smaller and smaller. Since T is lowered in small steps, the algorithm

has an opportunity to discover the global optimum instead of converging to a local

optimal point [8]. Some published SA algorithms fail on many practical problems [24].

Perhaps the best existing SA software package is the free c language program ASA,

which was developed by Lester Ingber and is downloadable at [25].

Compared with traditional optimization methods, GA has advantages in several

aspects [7]: it can optimize both continuous and discrete functions; it does not require

 9

complicated differential equations or a smooth objective function; it can be highly

parallelized to improve computational performance; it searches more of the solution

space and thus increases the probability of finding the global optimum. The

disadvantage is that GA is often much slower than calculus methods, when the latter

can used.

2.2 GA Packages Review

Due to their inherent advantages, GAs have been widely applied in numerous

scientific and engineering problems. A number of GA packages have been developed

as implementations of genetic algorithms over the years. In this section, we will give

a short review of existing GA packages.

2.2.1 GAlib [10]

GAlib is a C++ genetic algorithm package developed at MIT (GAlib should not be

confused with GALib, developed at the University of Tulsa). This genetic algorithm

will create a population of solutions based on a sample data structure that you provide.

In GAlib, the sample data structure is called a GAGenome, which functions as a

chromosome. The library contains four types of genomes: GAListGenome,

GATreeGenome, GAArrayGenome, and GABinaryStringGenome.

Each genome type has three operators: initialization, mutation, and crossover.

• Initialization operator: Initializes a genome when the genetic algorithm starts.

• Mutation operator: Mutates each genome based on its data type. For example,

mutation on a binary string genome flips the bits in the string, but mutation on a

tree would swap subtrees.

 10

• Crossover operator: Generates children from two parent genomes based on data

types. Users are allowed to develop new mating methods other than the default

ones.

GAlib comes with these operators pre-defined for each genome type, but you can

customize any of them so that it is specific not only to the data type, but also to the

problem type.

The library contains four basic types of genetic algorithms.

• Simple genetic algorithm: The classical replacement method in which the entire

generation is replaced by the newly produced individuals.

• Steady-state genetic algorithm: Only a fraction of the population is replaced by the

offspring. The user can specify how large the fraction is.

• Incremental genetic algorithm: Only one or two children are created in each

generation and the users have the choices to select the parents that are to be

replaced. For example, the child could replace an individual randomly, or replace

an individual that is most like it.

• Deme genetic algorithm: This algorithm “evolves multiple populations in parallel

using a steady-state algorithm”. In each generation, some of the individuals are

copied from one population to the other to maintain the population diversity.

2.2.2 Genesis [11]

Genesis, which stands for GENEtic Search Implementation System, is a popular

genetic algorithm package developed by John J. Grefenstette using C language.

 11

Genesis has three levels of representation for its evolving structures. The lowest level

(Packed representation) is used to “maximize both space and time efficiency in

manipulating structures”. The middle level (String representation) represents

structures as arrays of characters. This level provides the users the freedom to create

their own genetic structures. The third level (Floating-point representation) represents

the genetic structures as vectors of real numbers. Numeric optimization problems are

solved by working on this level.

The user can specify the range, number of values, and output format of each

parameter. The system then automatically translates the structure among the three

representation levels.

Genesis consists of two main modules – initialization and generation. Initialization

module sets up the initial population using a file named "init.c". The generation

module (file "generate.c") comprises mainly the following procedures: selection,

mutation, crossover, and evaluation.

• Selection: The default selection procedure is Universal Sampling Selection

implemented in file "select.c". Genesis also provides users the linear ranking

selection method if the option ‘R’ is specified.

• Mutation: Genesis implements the classical mutation method – Uniform Mutation

in file “mutate.c”.

• Crossover: Genesis implements the traditional two-point crossover method in file

"cross.c".

 12

Genesis requires the user to write an evaluation procedure to serve as the objective

function. The procedure must be declared in the user's input file in a certain format.

Genesis allows a number of options to employ different strategies during the search.

Each option is associated with a single character. For instance,

E - Use the "elitist" selection strategy. The elitist strategy stipulates that the

best performing structure always survives from one generation to the next.

G - Use Gray code to encode integers.

2.2.3 Genetic Algorithm Driver [15]

The FORTRAN Genetic Algorithm Driver is a GA package created by D.L. Carroll.

The latest version of this driver is dated 2001. The features of this package are listed

as follows:

• Encoding: Bits string, which is the only option provided by this package.

• Selection: Tournament selection with “a shuffling technique for choosing random

pairs for mating”.

• Mutation: The package implements jump mutation and creep mutation.

• Crossover: The package provides the option for single-point or uniform crossover.

In the latest version, the author added two features into the package. One is niching,

the process of dividing individuals that are in some sense similar into groups; the

other is micro-GA, the process of reinitializing a small subset of population.

For the use of his package, Carroll recommends the following settings:

• Binary coding (the only option of his GA)

 13

• Tournament selection (the only option of his GA)

• Uniform crossover (iunifrm=1)

• Creep mutations (icreep=1)

• Niching or sharing (iniche=1)

• Elitism (ielite=1)

Carroll also suggests using the micro-GA technique (microga=1) with uniform

crossover (iunifrm=1). Besides that, he advises using certain formulas to calculate the

population size and creep mutation rate. Interested readers may refer to [15] for the

detailed formulas.

2.2.4 Other GA Packages

Besides the GA packages introduced above, there are quite a number of other good

ones such as GENETIC, GENOCOP, GAJIT, etc. GA-Archive [13] is an excellent

source to explore the existing GA packages. GA packages on that website are either

archived as compressed files or maintained as links to the package authors’ web pages.

There is an index of source code for implementations of genetic algorithms. The GA

packages listed on the site are categorized according to the implementation language

such as C/C++, Java, FORTRAN, Perl, Lisp, etc.

 14

Chapter III. Blueprint of a General GA Package

In chapter 2, we reviewed several existing GA packages. Most packages use a single

representation: either binary string or floating point; some packages are specially

designed for certain types of problems. To handle the variety of optimization

problems in practical applications, I will design and implement a general GA package

that gives users much more options on the problem representation and genetic

operators. In other words, this package offers the choice of representing the

chromosome using bit-string, integer, or floating-point or a combination of the three.

A preliminary version of this package, which only implements the simplest methods

of crossover and mutation, was developed by Ting Zhu [26]. The package I propose

will significantly extend the original package by providing users the choice of

choosing from a rich set of selection, replacement, mutation, and crossover methods

based on the specific problem type.

How to encode the chromosomes is the problem to solve when starting to work on a

problem with GA. Encoding depends heavily on the problem. In this chapter, we

will start with the introduction to some encodings that will be implemented in this

package.

3.1 Encoding

The way in which candidate solutions are encoded is “a central factor in the success

of a genetic algorithm” [1]. This package will employ three commonly used

 15

encodings – bit-string, Gray-coded integer, and floating point, to represent candidate

solutions.

3.1.1 Bit-string Encoding

Bit-string encoding, introduced by Holland in his original GA book, is the most

widely used encoding method. Bit-string encoding has its own inherent advantages.

First, it is easy to understand and implement; second, researchers have accumulated

rather rich experiences on the parameter settings such as population size, crossover,

and mutation rate in its context.

3.1.2 Integer Encoding

When the parameters of the problem are integers, it is natural to use a binary string to

encode the variables. However, there is a problem with representing integers by

ordinary binary strings. Consider the following example. Two integers 15 (01111)

and 16 (10000) are selected as parents. Note that the integers are quite close to each

other and their fitness values are also likely to be close. But, their binary string

representations are quite different from each other. Moreover, let’s assume a single

point crossover is applied after bit position 1. The resultant offspring are 11111 and

00000, whose corresponding integer values are 31 and 0, respectively. We can see

that the offspring fall far away from their parents, which tends to interfere with the

expected convergence [7].

One way to overcome this problem is to encode the binary string using Gray code.

The procedures for converting a binary number b=b1b2…bm into a Gray code number

g=g1g2…gm and vice versa are given in the following figure [2].

 16

Figure 3.1 Binary and Gray code conversion functions

According to these conversion procedures, the Gray codes of the first 6 integers are

listed in Table 3.1.

Decimal value Binary string Gray code
0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101

Table 3.1 Gray codes of first 6 integers

Note that the Gray coding representation has the property that any two consecutive

points in the problem space differ by only one bit in the representation space, which is

highly desired for GA convergence. Let’s reconsider the previous example using

Gray coding. The Gray codes of 15 and 16 are 01000 and 11000 respectively. After

applying the same crossover procedure, the offspring are 11000 and 01000, whose

integer values are 16 and 15 respectively. Thus we can observe that offspring are

function Binary-to-Gray
{
 g1 =b 1;
 for (k = 2; k <= m; k++)
 {

 gk= bk-1 XOR bk ;
 }
}

function Gray-to-Binary
{
 temp = g1;
 b1= temp;
 for (k = 2; k <= m; k++)
 {

if (gk==1) temp = NOT temp;
bk = temp ;

 }
}

 17

much closer (actually identical in this extreme case) to their parents than in the

previous case, which helps preserve the desired characteristics of the parents.

3.1.3 Floating-point Encoding

Despite the advantages it has, binary encoding has some drawbacks when applied to

problems with continuous parameters. In such numerical problems that demand

parameters of high precision, each variable requires a rather long binary string to fully

represent it. This results in a huge search space which bogs down the GA

performance severely [2].

For applications with variables over continuous domains, it is more natural and

logical to encode them using floating-point numbers instead of binary strings. In

contrast to bit-string encodings, floating-point encoding represents the continuous

parameters more accurately, requires less storage space, and makes it more

straightforward to implement the genetic operators [7].

3.2 Selection Methods

The next decision to make after encoding is selection – the process of selecting the

individuals from the population as parents that will create offspring for the next

generation. The aim of selection is to assign higher probabilities to individuals with

greater fitness. There are two main issues associated with selection: population

diversity and selective pressure [16]. A high selective pressure will result in only good

individuals being selected, reducing the diversity needed for evolution toward the

global optimum, thus tending to lead the GA to a premature convergence. On the

other hand, a weak selective pressure will get too many not-so-good individuals

 18

involved in the population and slow down the evolution process. Therefore, it is

critical to seek a balance between these two factors [16].

Numerous selection schemes have been developed over the years. Every method has

its own strength and weakness; it is still an open question which method is superior to

the others. In the following subsections, I will describe the selection methods that

will be implemented in this package.

3.2.1 Improved Roulette Wheel Selection

Roulette Wheel Selection is the traditional selection method proposed in Holland’s

original GA work: the expected value (the expected number of times of being selected)

of an individual is proportional to its fitness. This method can be implemented using

a roulette wheel in the following way. Each individual is assigned a slice of a circular

roulette wheel, with the size of the slice being proportional to the individual’s fitness.

The wheel is then spun N (population size) times. After each spin, the individual

pointed by the wheel’s marker is selected. The procedures of this method are

detailed in the following figure [2].

Figure 3.2 Roulette wheel selection procedures

1. Calculate the fitness value f(i) for each chromosome vi
2. Find the total fitness of the population

�
=

=
N

i

ifF
1

)(

3. Calculate each chromosome’s expected value Ei
 FifNEi /)(.=
4. Calculate cumulative expected value for each chromosome

 �
=

=
i

j
ji ES

1

5. Generate a random number r of range [0, N]
6. If r< S1, then select v1, otherwise select vi such that Si-1< r ≤ Si

7. Go to step 5 until N chromosomes have been selected.

 19

We can see that it takes O(N) time in step 6 to locate the individual with the

accumulative expected value that equals to r . If we notice that Si is a sorted array in

ascending order, it is natural to come up with some ideas about binary search.

Therefore, we replace step 6 with finding Si using binary search in the above

algorithm. Thus the performance of the algorithm can be improved from O(N) to

O(logN).

In the case of a theoretically infinite population, the roulette wheel method will

allocate the expected values of each chromosome in proportion to its fitness.

However, if the real GA application has a relatively small population size, the actual

number of an individual being chosen may be quite different from its expected value.

In the worst case scenario, an extreme series of spin of the wheel can “allocate all the

offspring to the worst individual in the population” [1]. Another restriction of roulette

wheel method is that all fitness values of the objective function must be positive. The

minimum value of the function is important: adding a constant to all the fitness values,

a scaling technique that should be harmless, will change the expected values of

individuals.

3.2.2 Stochastic Universal Sampling

To overcome the drawback of roulette wheel selection, James Baker proposed

Stochastic Universal Sampling (SUS) [17]. SUS rebuilds the roulette wheel with N

equally spaced pointers. Thus unlike roulette wheel selection, SUS spins the wheel

only once, and the individuals pointed by each of the N markers are selected as

parents. Below is an elegant C implementation of SUS [17].

 20

Figure 3.3 SUS procedure

Where S[i] is the accumulative probability of chromosome i. Under this method,

each individual is guaranteed to be selected at least floor(Ei) times but no more than

ceiling(Ei) times, where floor and ceiling functions are the same as defined in C

language.

SUS does a better job in sampling than roulette wheel, but does not solve the major

problems with fitness proportionate selection. Under the fitness proportionate

selection, a small number of highly fit individuals are much more likely to be selected

and their descendants will quickly dominate the population. After a few generations,

the super individuals may eliminate the desirable diversity and lead the GA to a

premature convergence [1].

3.2.3 Rank Selection

One way to address the problems associated with fitness proportionate selection

methods is to introduce a mapping mechanism that maps the raw fitness values to

intermediate parameters. These parameters are then used to calculate the expected

values. Rank selection is a method in this category: the individuals are sorted

according to their fitness values, and then the selection probabilities of individuals are

calculated based on their ranks rather than on their actual fitness values. Doing so

avoids allocating too much quota of the offspring to individuals with high fitness

SUS Algorithm:
ptr=rand(); //random pointer in range [0,1]
for(i=1; i<=N; i++)

 while(ptr<=S[i]) //increases ptr to simulate equally spaced pointers.
 {
 select(i);
 ptr++;
 }

 21

values. This also solves the problem associated with a scaling technique in roulette

wheel and SUS selection.

Like everything else in the universe, the rank method also has drawbacks. In some

cases, the GA takes a longer time to converge to an optimum point because of the

lower selection pressure. Rank also requires sorting the entire population for each

generation, which is a time consuming task in the case of a large population size [18].

There are many approaches to calculating the expected values based on ranking. Two

ranking methods are employed in this GA package.

3.2.3.1 Baker Linear Rank Method [12]

The linear ranking method proposed by Baker is quite straightforward. In his method,

each individual is ranked in ascendant order of fitness, from 1 to N. The expected

value of each individual is set by the following formula,

N-

Rank(j)-
(Max-Min).MinjE

1
1

)(+=

where Min is the expected value of individual with rank 1, Max is the expected value

of the individual with rank N, and also is the upper bound of expected values defined

by the user. Given the condition that� =
j

NjE)(, it is easy to show that Min= 2-

Max. Baker recommended the user to take Max=1.1. Once the expected values are

established, the SUS method is used to sample the population.

 22

3.2.3.2 Reeves Rank Method [18]

Colin R. Reeves proposed another method of linear ranking, in which the probability

of selecting the individual ranked k in the population is denoted by

Pr[k] = a + bk

where a and b are positive scalars. The fact that Pr[k] must be a probability

distribution gives us the following deduction:

1)
2

1
(1)(

1

=++�=+�
=

N
baNbka

N

k

In his work, Reeves gives a formal definition of the selection pressure:

]Pr[
]Pr[

individualaverageselecting
individualfittestselecting=φ , which is a parameter specified by the user.

If we interpret the average as the median individual, it is easy to get

2/)1(++
+=
Nba

bNaφ .

In terms ofφ and N, we are able to get

)1(
)1(2

)1(
)1(2

−
+−=

−
−=

NN
NN

aand
NN

b
φφ

,

which implies 21 ≤≤ φ . It is easy to see that the cumulative probability of each

individual can be expressed in terms of the sum of an arithmetic progression, so that

finding the k for a given random number r is simply to solve the quadratic equation

r
kk

bak =++
2

)1(
 for k . Note that k is an integer, thus

�
�

�

�

�
�

�

� ++++−
=

b
brbaba

ceilingk
2

8)2()2(2

.

Note that the individual can be directly found by the above formula, which takes only

O(1) time, whereas the traditional roulette wheel method takes O(N) time to find the

 23

corresponding individual with a cumulative probability equal to r. For a large size of

population, this will considerably improve the computational efficiency.

3.2.4 Tournament Selection

The tournament selection method is akin to the rank method, but is more time-

efficient than rank selection because it works on a smaller set of individuals instead of

working on the whole population. This method randomly picks a set of m individuals

from the population and then chooses the best one of them to be the parent. This

process is repeated N times to get the N parents needed [2]. Obviously, selection

pressure rises as m increases. The commonly used value of m is 2.

Michalewicz proposed a tournament selection method which is blended with some

simulated annealing flavor [2]. Two individuals are randomly chosen, and then a

random number r in [0, 1] is generated. The winner is determined in the following

way: If
e T

jfif |)()(|

1

1
−

+
< r, then the fitter individual is chosen; otherwise, the less fit

individual is chosen. In the formula, T is the temperature and f(i) and f(j) are the

fitness values.

As in simulated annealing, the temperature starts at a high value, which indicates a

low selection pressure. The temperature is gradually lowered according to a

predefined scheme. The lower the temperature goes, the higher the selection pressure

becomes, therefore allowing the GA to narrow down the search space on highly fit

individuals.

 24

3.3 Generation Replacement Model

The generation replacement model determines how the population proceeds from one

generation to the next generation. In this package, several choices are provided as

described in the following subsections.

3.3.1 Generational Replacement

This is the classical replacement method presented in Holland’s original GA work – at

each generation, N offspring are generated to make up the new generation. In other

words, the entire generation is replaced; no individual from the last generation is kept.

3.3.2 Steady State Replacement

The potential problem of the generational replacement is that we are running the risk

of discarding some good individuals in the old generation. To address this problem,

De Jong introduced the idea of a ‘generation gap’ in his Ph.D. thesis [19]. At each

generation, only a fraction of the population is replaced by the offspring. This

fraction is called the generation gap. Therefore overlap is allowed between

successive generations.

There are a number of mechanisms to select the parents that are to be replaced. In this

package, I use the classical method: the least fit individuals in the old generation are

chosen to be replaced by the newly generated offspring.

3.3.3 Evolution Strategy (N+m) Replacement [2]

Unlike the previous two replacement schemes, in which the children replace their

parents, in this evolution scheme, the children compete with their parents for survival.

 25

 In a single generation, m offspring are generated and then are combined with the N

parent to constitute an intermediate population of size N+m, from which the best N

individuals are chosen to form the next generation.

3.3.4 Elitism [2]

It is possible that some individuals in the earlier generation are fitter than the best

individual found in the last generation. Such individuals may be lost if they are not

selected or are ruined by crossover or mutation. Thus it is intuitive to keep track of

the best individuals in the entire evolution process and this is called elitism. Elitism

ensures that the best nElite individuals of the population are passed on to the next

generation without being altered by genetic operators. Elitism is essentially a special

case of (N+m) replacement.

3.4 Crossover

After parents have been selected through one of the methods introduced above, they

are randomly paired. The genetic operators are then applied on these paired parents to

produce offspring. There are two main categories of operators: crossover and

mutation. Let us have a look at crossover in this section and move on to mutation in

the next section.

The purpose of crossover is to vary the individual quality by combining the desired

characteristics from two parents. Over the years, numerous variants of crossover have

been developed in the GA literature, and comparisons also have been made among

these methods [20]. However, most of these studies rely on a small set of test problems,

and thus it is hard to draw a general conclusion on which method is better than others.

 26

In this GA package, a number of commonly used crossover techniques are

implemented. Some of them apply only to bit-string or Gray-coded integer genes on

the chromosome.

3.4.1 Single Point Crossover

This is the traditional and the simplest way of crossover: a position is randomly

chosen as the crossover point and the segment of the parents after the point are

exchanged to form two offspring. The position can be anywhere between the first and

the last allele. For example, let us suppose position 2 is the crossover point, the

process is shown in the following table. Please note that xi or yi stands for a bit for

bit-string chromosomes; whereas for floating point chromosome, it stands for a

floating point variable.

Parent Offspring
[x1,x2, x3, x4, x5, x6] [x1,x2, y3, y4, y5, y6]
[y1,y2, y3, y4, y5, y6] [y1,y2, x3, x4, x5, x6]

Table 3.2 Single point crossover

Single point crossover has several drawbacks. One of them is the so-called positional

bias: the single point combination of this method can’t create certain schemas [20].

The other is the endpoint effect – the end point of the two parents is always

exchanged, which is unfair to other points [1].

3.4.2 Double Point Crossover

In this crossover method, two positions are randomly chosen and the segments

between them are exchanged. For instance, assuming position 2 and 5 are chosen as

crossover points, the process is shown in the following table.

 27

Parent Offspring
[x1,x2, x3, x4, x5, x6] [x1,x2, y3, y4, x5, x6]
[y1,y2, y3, y4, y5, y6] [y1,y2, x3, x4, y5, y6]

Table 3.3 Double point crossover

Compared with single point crossover, double point crossover is able to combine

more schemas and eliminate the ending point effect. But similar to single point

crossover, there are some schemas that it can’t create.

3.4.3 Uniform Crossover

As a natural extension to single and double point crossover, uniform crossover allows

each allele in the parents to be exchanged with a certain probability p. For example,

given p=0.6, and the series of random numbers drawn for alleles 1 to 6 are: 0.4, 0.7,

0.3, 0.8, 0.9, 0.5, the results will be:

Parent Offspring
[x1,x2, x3, x4, x5, x6] [x1,y2, x3, y4, y5, x6]
[y1,y2, y3, y4, y5, y6] [y1,x2, y3, x4, x5, y6]

Table 3.4 Uniform crossover

Since any point in the parent can be exchanged, uniform crossover can recombine any

schemas. However, this advantage comes at cost. The random bit exchange may

prevent the forming of valuable building blocks (short and highly fit segments that are

able to form strings of potentially higher fitness through recombination) [3], because

the random exchange of uniform crossover can be highly disruptive to any evolution

schemas [21].

3.4.4 Arithmetic Crossover (floating point only)

The above crossover methods work fine for the bit-string representation. However,

there is a problem when applying them to floating-point encoding: the crossed

 28

parameter values in the parents are propagated to their offspring unchanged, only in

different combinations [7]. In other words, no new parameter values are introduced.

To address this problem, GA researchers introduced arithmetical crossover [7]: the ith

parameter in offspring, Zi, is a linear combination of the ith parameters of two parents,

Xi and Yi, i.e.,

iii YaaXZ)1(−+=

where a is a random value in the interval [0,1].

This linear formula guarantees that the value of the newly created offspring is always

within the domain of the problem. For example, suppose the crossover happens at

position 2 and 5, the resultant offspring are given in the table below:

Parent Offspring
[x1,x2, x3, x4, x5, x6] [x1, ax2+(1-a)y2, x3, x4, ax5+(1-a)y5, x6]
[y1,y2, y3, y4, y5, y6] [y1, ay2+(1-a)x2, y3, y4, ay5+(1-a)x5, y6]

Table 3.5 Arithmetical crossover

3.4.5 Heuristic Crossover (floating point only)

Heuristic crossover [22] uses the values of the fitness function to determine the

direction of search according to the following formula:

	

�

+−
≤+−

=
otherwiseXYXa

XfYfifYXYa
Z

)(
)()()(

where a is also a random value in the interval [0,1]; X and Y are the parental

parameter vectors; f(X) and f(Y) are the fitness function values.

Contrary to arithmetic crossover which always creates offspring within the range of

their parents, heuristic crossover always generates offspring outside of the range of

 29

the parents. Sometimes the offspring values are so far away from their parents that

they get beyond the allowed range of that variable. In such a case, the offspring is

discarded, and a new a is tried and a new offspring created. If after a specified

number times no feasible offspring is generated, the operator quits with no offspring

produced.

In this package, instead of being discarded, the infeasible offspring is assigned the

maximum or minimum permissible value as follows:

	

�

+−
≤+−

=
otherwiseiMaxxyxaiMin

XfYfifiMaxyxyaiMin
z

iii

iii
i)),)(min(,max(

)()()),)(min(,max(

where iMin and iMax are the minimum and maximum allowable values for the ith

parameter.

3.5 Mutation

Mutation is another essential operator of genetic algorithm. The idea behind mutation

is to introduce diversity into the population and thus prevent the premature

convergence. Like crossover, GA researchers have developed numerous variants of

mutation method over the GA history. Since every method has its strength and

weakness, it is still an open question as to claim which method is the best. This

general GA package employs a number of widely used mutation procedures.

3.5.1 Uniform Mutation

This is the conventional method of mutation, in which each allele has an equal

opportunity to be mutated. For each allele, a random number r is generated and then

 30

compared with the mutation rate pm (a user specified parameter), if r > pm, then this

allele is mutated; otherwise, stays unchanged.

For the binary encoding, either bit-string or Gray-coded integer, the mutation simply

flips the bit from 0 to 1 or vice versa. For floating-point encoding, the allele is

replaced with a random value within the domain of that variable. For example, if x2 is

selected for mutation in the chromosome X= [3.221, 4.556, 2.341, 5.897], and the

domain of x2 is [3.000, 5.500], then the chromosome after mutation may be X= [3.221,

3.938, 2.341, 5.897].

3.5.2 Non-uniform Mutation (floating point only)

To increase the fine tuning of the chromosome and reduce the randomness of uniform

mutation, Michalewicz presented a dynamic mutation operator called non-uniform

mutation [2]. The mechanism works as follows: if element ix was selected for

mutation, the resultant offspring is determined by the following formula,

	

�

≤−∆−
>−∆+

=
5.0),(

5.0),(

aifLBxtx

aifxUBtx
z

iii

iii
i

where a is a random number between 0 and 1, LBi and UBi represent lower and upper

bounds of variable ix . The function),(xt∆ is defined by

)1(),()/1(bTtrxxt −−=∆

where r is also a random number between 0 and 1, T is the maximal generation

number, and b is a user-defined system parameter that determines the degree of

dependency on iteration number t. This simulated annealing flavored formula returns

a value in the range [0, x] such that the probability of),(xt∆ being close to 0

increases as t increases. This property guarantees the newly created offspring is in the

 31

feasible range. Moreover, it enables the operator to explore the space broadly with an

initially large mutation step, but very locally at later stages; thus make the newly

generated offspring closer to its predecessor than a randomly generated one [2].

3.5.3 Boundary Mutation (floating point only)

Boundary Mutation is a variant of uniform mutation. In uniform mutation, the newly

generated allele is a random value within the domain of that allele. In boundary

mutation, however, the newly generated allele is either the upper bound or the lower

bound of the domain, with equal probability [2], i.e.,

	

�

≤
>

=
5.0
5.0

aifLB

aifUB
zi

where the parameters have the same meaning as in non-uniform mutation.

This mutation operator is extremely functional in optimizing problems where the

optimal solution either lies on or near the boundary of the constrained search space.

In addition, the conjunction of this operator with arithmetic crossover will help to

counteract the later operator’s “contraction effect” on the population [14]. However,

this operator has obvious disadvantages for many problems.

3.5.4 Creep Mutation (floating point only)

Davis introduced the creep mutation operator in his GA handbook [23], in which the

allele values which are to be mutated are incremented or decremented by the creep

fraction – the fraction of the valid range for that variable’s value. The selected

variable ix is mutated according to the following formula:

zi = min(iMax, max(iMin, xi + rs(iMax- iMin)))

 32

where iMax and iMin are the upper bound and lower bound of the variable’s domain

respectively; r is a random number in the range [-1, 1]; s is the creep factor, a user-

defined number between 0 and 1.

It is equally likely that the allele value will be incremented or decremented, and the

value is adjusted to the boundary value if the newly generated allele falls out of the

valid range of the allele.

3.6 Termination Condition

Unlike the traditional search methods that terminates when a local optimum is reached,

GAs are stochastic methods that could run forever. The termination criterion plays an

important role in the solution quality. Three commonly used approaches are adopted

in this package.

3.6.1 Maximum Number of Generations

The simplest and most common method is to check the current generation number;

the genetic process will end when the specified number of generations has been

reached. This method has several variants such as using a maximum number of

fitness function evaluations, or using a maximum elapsed time, as the termination

criterion [1].

3.6.2 Convergence Termination

The drawback of the above termination criterion and its variants is that they assume

the user’s knowledge of the characteristics of the problems to be solved. In many

occasions, however, it is quite difficult to specify the number of generations (or

 33

evaluation or elapse time) without prior experience on the problem. Thus it is much

better if the evolution process stalls when the chance for a significant improvement is

fairly slim [18].

There are mainly two categories of termination criteria to tell the chances of

improvement of the algorithm: chromosome structure diversity, and fitness

improvement [18]. Convergence termination belongs to the first category. It makes

the termination decision by checking the number of converged alleles. If a predefined

percentage of the chromosomes of the whole population have the same or similar

values for this allele, the algorithm stops.

3.6.3 Progress in Fitness

As an instance of the second category mentioned above, this approach measures the

progress made by the algorithm in a predefined number of generations. If there is no

change, or if the improvement on the best chromosome is smaller than a user

specified factor, the genetic process ends.

 34

Chapter IV. Implementation of the GA Package

In this chapter, we’ll implement the GA package based on the population model and

operators described in the previous chapter. The package is written in Fortran 77, a

simple but powerful and highly efficient programming language. The program can

mainly be divided into four function modules: Initialization, Genetic Operations,

Output, and Utility. We begin with the introduction to the main modules.

4.1 Introduction to Modules

The package is designed with modular programming principles in mind. By

partitioning associated functionalities into relatively independent modules, the

package is made easier to understand, maintain and upgrade.

4.1.1 Initialization Module

This module reads from the input file the GA parameters such as population size,

mutation rate, crossover rate, etc; and randomly populates the initial generation. The

functionality of this module is implemented through two Fortran files: Inputf.for and

Init.for.

Inputf.for contains the following subroutines:

• InputF: The main subroutine of the unit, which reads the GA configuration

information from the input file by calling other auxiliary subroutines or functions.

 35

• rdLine: This subroutine reads one line from the input file and extract a real number

or a string from the line.

• rdInt: Reads an integer from the input file.

• rdRgeF: Reads the ranges of floating point variables.

• rdRgeI: Reads the ranges of integer variables.

Init.for is made up of the following subroutines:

• Init: The main subroutine of the unit, which calls subsidiary subroutines based on

the type of encoding and the types of variables.

• InitB: This subroutine randomly initializes population in the form of bit strings.

• InitI: This subroutine randomly initializes the integer variables of the

chromosomes.

• InitF: This subroutine randomly initializes the floating point variables of the

chromosomes.

4.1.2 Genetic Operation Module

This module is the core algorithm of the package, which implements the key GA

operations including selection, crossover, mutation, replacement, etc. This module

comprises five Fortran source files, which are listed below.

Eval.for includes two subroutines:

• Eval: The main subroutine of the unit, which evaluates the fitness of each

chromosome by calling user-defined function and records the best chromosome in

the current generation.

 36

• usrFun: The user-defined function, which is used to calculate the fitness value

each chromosome. Users may modify this function to optimize different problems.

Select.for comprises the following subroutines:

• Select: The main subroutine of the unit, which selects parents for the next

generation based on various selection methods.

• Roulet: This subroutine performs the roulette wheel selection.

• SUS: This subroutine performs the stochastic uniform sampling selection.

• Baker: This subroutine calculates the expected value based on Baker linear method.

• Reeves: This subroutine performs the Reeves Rank linear selection.

• Tourna: This subroutine performs the tournament selection.

• ToNewB: This subroutine copies the selected chromosomes (bit-string encoding)

into the new population.

• ToNewD: This subroutine copies the selected chromosomes (integer/floating-point

variables) into the new population.

Cross.for contains the following subroutines:

• Cross: The main subroutine of the unit, which recombines the selected parent

chromosomes to generate offspring based on different crossover methods.

• ScrosB: This subroutine performs single-point crossover on a pair of selected

parent chromosomes (bit-string encoding).

• ScrosD: This subroutine performs single-point crossover on a pair of selected

parent chromosomes (integer/floating-point encoding).

• DcrosB: This subroutine performs double-point crossover on a pair of selected

parent chromosomes (bit-string encoding).

 37

• DcrosD: This subroutine performs double-point crossover on a pair of selected

parent chromosomes (integer/floating-point encoding).

• UcrosB: This subroutine performs uniform crossover on a pair of selected parent

chromosomes (bit-string encoding).

• UcrosD: This subroutine performs uniform crossover on a pair of selected parent

chromosomes (integer/floating-point encoding).

• Across: This subroutine performs arithmetic crossover on a pair of selected parent

chromosomes (integer/floating-point encoding).

• Hcross: This subroutine performs heuristic crossover on a pair of selected parent

chromosomes (integer/floating-point encoding).

Mutate.for contains the following subroutines:

• Mutate: The main subroutine of the unit, which mutates the offspring according to

various mutation methods.

• MuteB: This subroutine performs uniform mutation on the selected chromosome

(bit-string encoding).

• UmuteI: This subroutine performs uniform mutation on the integer variables of the

selected chromosome.

• UmuteF: This subroutine performs uniform mutation on the floating point

variables of the selected chromosome.

• DmuteI: This subroutine performs dynamic (non-uniform) mutation on the integer

variables of the selected chromosome.

• DmuteF: This subroutine performs dynamic (non-uniform) mutation on the

floating point variables of the selected chromosome.

 38

• CmuteI: This subroutine performs creep mutation on the integer variables of the

selected chromosome.

• CmuteF: This subroutine performs creep mutation on the floating point variables

of the selected chromosome.

• BmuteI: This subroutine performs boundary mutation on the integer variables of

the selected chromosome.

• BmuteF: This subroutine performs the boundary mutation on the floating point

variables of the selected chromosome.

Replace.for includes the following subroutines:

• Replac: The main subroutine of the unit, which replaces parents with the newly

generated offspring based on various replacement methods.

• GReplB: This subroutine replaces the whole generation with the newly

generated offspring (bit-string encoding).

• GReplD: This subroutine replaces the whole generation with the newly

generated offspring (integer/floating-point encoding).

• SReplB: This subroutine performs the steady state replacement on the generation

(bit-string encoding).

• SReplD: This subroutine performs the steady state replacement on the generation

(integer/floating-point encoding).

• EReplB: This subroutine performs the evolutionary strategy replacement on the

generation (bit-string encoding).

• EReplD: This subroutine performs the evolutionary strategy replacement on the

generation (integer/floating-point encoding).

 39

Terminate.for comprises the following subroutines:

• Termin: The main subroutine of the unit, which stops the GA by different

termination criteria.

• tNGen: This function terminates the GA by the number of generations the GA is

supposed to run.

• tAlleB: This function terminates the GA by the percentage of converged alleles in

the current generation (bit-string encoding).

• tAlleD: This function terminates the GA by the percentage of converged alleles in

the current generation (integer/floating-point encoding).

• tFitP: This function terminates the GA by fitness progress made in a certain

number of generations.

4.1.3 Output Module

The output module writes the results of the GA package, such as the optimal

chromosome, the optimal fitness, the corresponding generation number, to the output

file. The functionality of this module is implemented through a single Fortran file–

Output.for, which is composed of one subroutine. The user may modify this

subroutine to customize the output information.

4.1.4 Utility Module

This module groups the utility functions such as search, random, Gray/DeGray, bit-

string operation, sort, etc. Doing so prevents the main GA program unit from being

filled up with utility codes, and thus makes the main program clean and easy to follow.

 40

The functionality of utility module is implemented in a single Fortran file—Util.for.

This file contains quite a number of subroutines and functions. Some of the key units

are listed below:

• binSch: This function does a binary search on a sorted array and returns the index

of the element found.

• linSch: This function does a linear search on a regular array and returns the index

of element found.

• sort: This subroutine sorts an array into descending order.

• schRnk: This function returns the rank of a chromosome for use in some rank

selection methods.

• random: This function returns a randomly generated number between 0.0 and 1.0.

• delta: A simulated annealing flavored function used in dynamic mutation.

• bitLen: This function returns the length of the binary string required to represent

an integer/floating-point variable.

• binToD: This subroutine converts the bit strings representation of the current

generation into the integer/floating-point representation.

• btsToI: This function converts a single bit-string to an integer.

• Gray: This subroutine converts binary integers into the Gray-coded integers.

• deGray: This subroutine reverses the Gray-coded integers into binary integers.

• doXOR: This function does an exclusive OR on two bits.

4.2 Program Structure

The modules described in the above sections are linked together by the main

program—GA, which performs the genetic operations by calling the subroutines

implemented in separate files.

 41

The flow char below outlines how the program runs:

Figure 4.1 Program flow chart

4.3 Data Structures

The major population data are stored in the following data structures:

• bitStr(i, j, k): This three-dimensional array stores the bit-string representation of

the population, where i stands for the chromosome index, j stands for the string

index, and j stands for the bit index.

• ints(i, j): This two-dimensional array stores the integer variables in the

chromosome, where i stands for the chromosome index, j stands for the index of an

integer variable.

program GA

1. InputF - Reads the GA configuration information from the input file.

2. Init - Randomly initialize the population within domains of the problem.

3. Eval - Evaluate the fitness of each chromosome in the 1st generation.

4. while (termination condition not met)

 Select - Select parents based on various selection methods.

 Cross - Recombine the parents based on various crossover methods.

 Mutate - Mutate the offspring based on various mutation methods.

 Replac - Replace the generation based on various selection methods.

 Eval - Evaluate the fitness of each chromosome of the current generation.

5. Output - Write the result to output file.

End

 42

• floats(i, j): This two-dimensional array stores the floating point variables in the

chromosome, where i stands for the chromosome index, j stands for the index of an

floating point variable.

• iRange(i, j): This two-dimensional array stores the domain of integer variables,

where i stands for variable index; j=1 represents lower bound, j=2 represents upper

bound.

• fRange(i, j): This two-dimensional array stores the domain of floating point

variables, where i stands for variable index; j=1 represents lower bound, j=2

represents upper bound.

• GrayBs(i, j): This two-dimensional array stores the Gray-coded integer

representation of the population.

• fits(i): This one-dimensional array stores the fitness values of all the chromosomes

in the population, where i stands for the chromosome index.

• strLen(i): This one-dimensional array stores the bit-string length of each variable,

where i stands for the variable index.

• fBest(i): This one-dimensional array stores the floating point variables of the

optimal chromosome, where i stands for the variable index.

• iBest(i): This one-dimensional array stores the integer variables of the optimal

chromosome, where i stands for the variable index.

4.4 A Sample Run

In this section, we will go through an example to show how the package works. The

function to be optimized is one of the Rosenbrock functions:

f(x1,x2)=100(x1
2-x2)2 + (1-x1)2 , -3� x1�3 , -2.0� x2�2.0,

where x1 is an integer and x2 is a floating point variable.

 43

Step 1: Input file

First, we must set up the GA configuration parameters in an input file; the name of the

file could be arbitrary, let’s name it ‘ga.inp’ in our case. Below is the format and

content of this input file:

Figure 4.2 Input file of the sample run

We can see that most of the settings in the input file are self-explanatory. Please note

that lines starting with '#' are comments. The user may add his or her own comments

to make the input file even more readable.

We used ‘Mix’ in the encoding type, which means the problem has both integers and

floating point variables and they are encoded in integer/floating-point format. On the

###################Start of input file###########################
Population Size: 100
Crossover Rate: 0.4
Mutation Rate: 0.3

Seed for Random Function: 10000

Encoding: Mix

Selection Method: SUS
Crossover Method:
Crossover Method(Non-FP): Double Point
Crossover Method(FP): Double Point
Mutation Method(Non-FP): Uniform
Mutation Method(FP): Uniform
Replacement Method: Generational

Termination Criterion: Number of Generations
Number of Generations: 200
Percentage of Converged Alleles: 0.9
Factor of Fitness Progress: 0.01

###Variables setting
Number of Bit-string Variables: 0
 #String Var1 length: 12
Number of Floating-point Variables: 1
 FP Var1 Range: -2.0, 2.0
Number of Integer Variables: 1
 Int Var1 Range: -3, 3

####################End of input file###########################

 44

other hand, if the encoding type is set to ‘Bit String’, then all the variables will be

encoded in the form of bit strings.

 The package provides plenty of options the user can choose. They are listed as

follows:

• Selection methods include: Roulette Wheel, SUS, Baker Rank, Reeves Rank, and

Tournament.

• Crossover methods include: Single-point, Double-point, Uniform, Arithmetic, and

Heuristic.

• Mutation methods include: Uniform, Dynamic (Non-uniform), Boundary, and

Creep.

• Replacement method include: Generational, Steady State, and Evolution Strategy.

• Termination criteria include: Number of Generations, Percentage of Converged

Alleles, Fitness Progress, and Hybrid. Hybrid uses all the three termination criteria,

and the GA stops if any of them is satisfied.

The function setting section specifies the number of integer and floating point

variables and their ranges. If the problem has only one type of variables, then the

number of variables of the unenclosed type should be set to zero.

Step 2: User function

After the setup of the input file, the next step is to specify the function to be optimized.

To do this, we need to customize the ‘usrFun’ function in file ‘Eval.for’.

 45

Figure 4.3 User function specification

Step 3: Compile and run

After the specification of the user function, compile the package by issuing the

following command on UNIX platform:

g77 GA.for –o GA.out

To run the program, type in

g77 GA.out

The system will prompt you for names of the input file and the output file. Enter

them, and the program will then start running and the result will be written into the

output file you specified.

Step 4: Output

The output file records the result of the program, which includes the optimal

chromosome, its fitness value, and its generation number. The user may modify the

 double precision function usrFun(ix, fx)
c--
c This function calculates the fitness value for each chromosome.
c User may modify this function to define his own function.
c Called by: Eval
c--
 integer ix(*)
 double precision fx(*)
c
c Integer variables
 integer x1
c Floating point variables
 double precision x2
c
 x1=ix(1)
 x2=fx(1)
c Rosenbrock function
 usrFun=100*(x1**2-x2)**2 + (1-x1)**2
c
 return
 end

 46

subroutine ‘Output’ to write other information into the output file. The output file for

our sample run is shown below:

Figure 4.4 Output file

Our sample Rosenbrock function has the minimum value 0.0 at (1, 1.0). Obviously,

the package found a solution that is very close to the theoretical optimum. While

working with other problems, if the user is not satisfied with the results, he/she can

always adjust the GA parameters such as population size, number of generations,

another crossover method, etc, to get a better result.

Optimal fitness: 0.00000590
Optimal chromosome: 1, 0.99975700
Generation number: 197

 47

Chapter V. Tests and Results

In this chapter, we will test the GA package using various testing functions. The tests

will be performed in two parts. In the first part, a variety of optimization problems

will be input to the package and the output from the package will be compared with

the theoretical optimal solution. In the second part, we will test certain problems by

varying the selection, crossover, or mutation methods in order to compare the

performances of different genetic operation methods. To save space and highlight the

test results, the input files of all the test cases are not included here but are placed in

the appendices of the thesis.

5.1 General Testing

In this section, experiments will be conducted to test the robustness of this GA

package on a wide range of optimization problems. Let’s start with some classical

testing problems – Rosenbrock functions.

5.1.1 Mixed Mode Rosenbrock Functions

Rosenbrock functions have several variants, one of which, the Standard Rosenbrock

function, has been used as a sample in the previous chapter. In this subsection, we

will test the other two forms: Flat-ground and Hollow-ground Rosenbrock functions.

Test 1. Flat-ground Rosenbrock Function

f(x1,x2)=100|x1
2 - x2| + (x1 -1)2, -3� x1�3 , -2.5� x2�2.5,

 48

where x1 is an integer and x2 is a floating point number. This function has a minimum

value 0 at (1, 1.0). It is called flat-ground because a cross-section parallel to the x2

axis shows a V shape, like a flat-ground knife blade.

The results of a single run are shown in the following table:

Number of Generations Best Fitness Best Chromosome
100 0.07821111 1, 0.97203375
200 0.07821111 1, 0.97203375
400 0.00384010 1, 1.00619685
600 0.00384010 1, 1.00619685
800 0.00007044 1, 1.00083928
1000 0.00000016 1, 1.00003996

Table 5.1 Results of Flat-ground Rosenbrock function

It is easy to observe from the result table that, as the number generations grows, the

GA converges to a point near the optimal point of the flat-ground Rosenbrock

function. At generation 1000, the output result is already quite close to the theoretical

optimal value.

However, it is worth mentioning that since the results come from a single run of the

GA, there are some flat points existing between generations. For example, generation

100 and 200 have the same best fitness, so do generation 400 and 600. We will see in

the next experiment that this phenomenon can be eliminated by using the average

results of a number of runs.

Test 2. Hollow-ground Rosenbrock function

f(x1, x2)=100 2
1

2
12)1(|| −+− xxx , -3� x1�3 , -2.5� x2�2.5,

 49

where x1 is an integer and x2 is a floating point number. This function also has a

minimum value 0 at (1, 1.0). It is called hollow-ground because a cross-section

parallel to the x2 axis shows a square root cusp, like a hollow-ground knife blade.

The following table shows the average results of 20 runs:

Number of Generations Average Best Fitness
 100 1.35859689
 200 1.06156089
 400 0.74671261
 600 0.64429165
 800 0.45186317
1000 0.39576666

Table 5.2 Results of Hollow-ground Rosenbrock function

Mathematically speaking, the hollow-ground function is more difficult to optimize

than flat-ground, because its partial derivatives have infinite discontinuities rather

than finite discontinuities as in the flat-ground function. However, the GA package

works remarkably well on this function. The GA converges as the number of

generations grows; and at generation 1000, it presents us a solution close to the

theoretical optimal value.

Moreover, we can see that the flat point phenomenon has been eliminated by using

the average results of a number of runs instead of a single run. That is, the average

fitness value decreases steadily as the number of generations increases.

5.1.2 0/1 Knapsack Problem

An important combinatorial optimization problem is the 0/1 knapsack problem, the

task of this problem is to find a binary vector v=b1b2….bn such that

 50

][
1

iPbP
n

i
i�

=

= is maximized while the constraint CiWb
n

i
i ≤�

=1

][is satisfied,

where W[i], P[i] are the given sets of item weights and profits respectively; C is the

capacity of the sack, and is defined as half of the sum of the item weights; n is the

total number of items.

Various heuristic and exact methods have been devised to solve this problem. Among

these, genetic algorithms have emerged as a powerful new search paradigms. The

solution of this problem can be represented using bit string encoding: 1 indicates the

corresponding item is selected, 0 not selected. For instance, the bit string 100101

means that item 1, 4, and 6 are selected into the sack.

Experiment 1. Knapsack Problem with 10 Items

In this experiment, we test the problem with 10 items. The item weights and profits

are shown in the table below:

Item Weight Profit
1 100 40
2 50 35
3 45 18
4 20 4
5 10 10
6 5 2
7 1 50
8 5 20
9 10 49

10 8 19
Table 5.3 Weights and Profits of Knapsack problem

The results of this experiment are shown in the following table in next page:

 51

Number of Generations Best Fitness Best Chromosome
50 191 0 1 1 0 0 0 1 1 1 1
100 191 0 1 1 0 0 0 1 1 1 1
150 193 0 1 1 0 0 1 1 1 1 1
200 193 0 1 1 0 0 1 1 1 1 1
300 193 0 1 1 0 0 1 1 1 1 1
500 193 0 1 1 0 0 1 1 1 1 1

Table 5.4 Results of Knapsack problem with 10 items

It took the GA only 150 generations to catch the maximum profit value, 193, for this

knapsack. In the next experiment, we are going to test a much harder knapsack

problem with 100 items.

Experiment 2. Knapsack Problem with 100 Items

In this experiment, we test the problem with 100 items. We intentionally built the

item weights and profits such that the first 50 items ought to be put into the sack. By

this way, we are able to know what the correct solution is. GA reads the item weights

and profits from an input file named knapsack.txt, which is too lengthy to be listed

here and thus is attached in the appendices of this thesis.

The results of this experiment are shown in the following table:

Number of Generations Best Fitness
500 3325
1000 3556
1500 3608
2000 3701
2500 3701
3000 3701
3500 3759

Table 5.5 Results of Knapsack problem with 100 items

Even though the large number of items makes this problem much more difficult to

optimize, the GA still successfully discovers the maximum profit value, 3759, which

is the exact solution for this knapsack.

 52

5.1.3 Floating-point Functions

In general, floating point problems are harder to optimize than integer problems.

Thus, in this subsection we are going to test the more challenging problems with pure

floating-point variables. It is not a surprise to observe that these problems usually

require many more generations to obtain satisfactory results.

Test1. Bohachevsky Function

The Bohachevsky function [2] is defined as follows:

7.0)4cos(4.0)3cos(3.02),(21
2

2
2

121 +−−+= xxxxxxf ππ

where -5.0� x1�5.0 , -5.0� x2�5.0, and x1 and x2 are both floating-point numbers.

This function has a minimum value of 0 at (0.0, 0.0).

The average results of 20 runs are shown in the following table:

Number of Generations Average Best Fitness
500 0.10841466
1000 0.01410626
1500 0.00421070
2000 0.00072386
2500 0.00014686
3000 0.00006754

Table 5.6 Results of Bohachevsky function

The GA package performs well on this tough problem. After 3000 iterations, it found

the solution value 0.00006754, which is very close to the optimal value 0.

Test2. Schaffer Function F7

The Schaffer function F7 [2] is defined as follows:

]0.1))(50([sin)(),(1.02
2

2
1

225.02
2

2
121 +++= xxxxxxf ,

where -5.0� x1�5.0 , -4.0� x2�4.0, and x1 and x2 are both floating-point numbers.

This function also has a minimum value of 0 at (0.0, 0.0).

 53

The average results of 20 runs of this experiment are shown in the following table:

Number of Generations Average Best Fitness
500 0.13019798
1000 0.10833847
1500 0.10169734
2000 0.09560061
2500 0.09227524
3000 0.07749864
3500 0.07537527

Table 5.7 Results of Schaffer function F7

Clearly, this problem is tougher than Bohachevsky function, because after 3500

iterations, the package has not yet found a solution that is as good as the one found in

the Bohachevsky function test. Nonetheless, the solution found is still rather

satisfactory. Moreover, it is easy to see the trend from the table that the fitness value

keeps getting better as the generation number increases.

5.2 Comparison Experiments

In the section, we will test certain problems by varying the encodings or genetic

operators to compare their performances. We start with the comparison test on bit

string encoding (Gray-coded integer stored as bit string) and floating-point encoding.

5.2.1 Comparison Experiments on Encodings

The function used to test the encodings is defined as follows:

||||||10),,,(432
2

14321 xxxxxxxxf ++−= ,

where -5.0� x1�5.0 , -8.0� x2�8.0, -10.0� x3, x4�10.0. All are floating-point numbers.

This function has a minimum value of -8.0 at (0.0, -8.0, 0.0, 0.0). The reason we

 54

choose such a relatively simple function is that both encodings will make observable

progresses within a reasonable amount of generations.

The two tests differ only by representation and applicable crossover methods, and

equivalent in all other aspects. Such an approach gives us a better basis for a

relatively fair comparison.

Following is the average results of 20 runs given by both of the encodings:

Number of Generations Average Best Fitness
(Bit string)

Average Best Fitness
(Floating-point)

100 -6.90264789 -7.85441872
200 -7.12828289 -7.91631431
300 -7.22735720 -7.95372628
400 -7.33161072 -7.97331920
500 -7.40571019 -7.98351918
600 -7.41846586 -7.98543751
700 -7.44085430 -7.98692431
800 -7.47598949 -7.98820886
900 -7.49707214 -7.99019063
1000 -7.49821985 -7.99132945

Table 5.8 Encoding comparison

To make it easier to compare the progress of the encodings, the following chart in the

next page is drawn based on the results table.

 55

Comparison of Encodings

-8.00
-7.95
-7.90
-7.85
-7.80
-7.75
-7.70
-7.65
-7.60
-7.55
-7.50
-7.45
-7.40
-7.35
-7.30
-7.25
-7.20
-7.15
-7.10

200 300 400 500 600 700 800 900 1000

Number of Generations

Fi
tn

es
s

V
al

ue

Bit string Floating-point

Figure 5.1 Encoding comparison

It is easy to conclude from the results table and the comparison chart that floating-

point encoding outperforms bit string encoding on all the 10 runs and converges much

faster. The same conclusion was also reached in [22]. Another important standard

not shown in the above figure but worth mentioning is the time performance. It took

bit string encoding 60 seconds to finish a single run whereas floating-point only 7

seconds. That is, floating-point encoding is approximately 10 times faster than its

contender. Needless to say, for optimization problems with pure floating-point

variables, floating-point encoding is a better choice than bit string encoding.

5.2.2 Comparison Experiments on Selection Methods

In this subsection, we compare the performances of the different selection methods

implemented in this package.

 56

Experiment 1. Six-hump Camel-back Function

The first function used to test the encodings is defined as follows [2]:

2
2

2
221

2
1

4
1

2
121)44()

3
1

1.24(),(xxxxxxxxxf +−+++−= ,

where -3.0� x1�3.0 , -2.0� x2�2.0, and they are both floating-point numbers. This

function has a minimum value of -1.0316 at (-0.0898, 0.7126).

In this experiment, only the selection methods change from run to run, while all the

other parameters remain the same. The average experiment results of 20 runs are

given by all the selection methods are displayed in the table below:

Average Best Fitness from Selection Methods Number of
Generation Roulette Wheel SUS Baker Rank Reeves Rank Tournament
100 -1.03114500 -1.03100989 -1.03105640 -1.03125479 -1.03106746
200 -1.03140260 -1.03140046 -1.03141977 -1.03134332 -1.03143091
300 -1.03148664 -1.03141983 -1.03149341 -1.03144544 -1.03149980
400 -1.03151137 -1.03147497 -1.03151160 -1.03150060 -1.03152329
500 -1.03153135 -1.03148977 -1.03153912 -1.03152207 -1.03153050
600 -1.03154257 -1.03153066 -1.03155011 -1.03156348 -1.03156149
700 -1.03155473 -1.03154150 -1.03155882 -1.03157261 -1.03156222
800 -1.03157913 -1.03155637 -1.03157120 -1.03157741 -1.03156657
900 -1.03157961 -1.03156444 -1.03157651 -1.03157851 -1.03156785
1000 -1.03158692 -1.03157732 -1.03157993 -1.03158432 -1.03157703

Table 5.9 Selection methods comparison I

The following figure gives us a more direct portrait of the performance comparison:

 57

Comparison of Selection Methods

-1.03159
-1.03158
-1.03157
-1.03156
-1.03155
-1.03154
-1.03153
-1.03152
-1.03151
-1.03150
-1.03149
-1.03148
-1.03147
-1.03146
-1.03145
-1.03144
-1.03143
-1.03142
-1.03141
-1.03140

200 300 400 500 600 700 800 900 1000

Number of Generations

Fi
tn

es
s

V
al

ue

Roulette SUS Baker Reeves Tournament

Figure 5.2 Selection methods comparison I

The results indicate that all the selection methods converge to the optimal value with

Roulette wheel the closest and SUS the furthest. Generally speaking, SUS has better

performance than Roulette wheel [1], but this is not observed in our case. This may be

attributed to the relatively large population size used in our experiment, which helps

Roulette wheel reduce the statistical error in the sampling process.

In the real world, we need a GA that not only converges to the global optimum, but

also accomplishes the searching within a reasonable period of time. The following

table presents the average time of the 20 runs of the selection methods.

 Roulette Wheel SUS Baker Rank Reeves Rank Tournament
Time (sec) 39 41 76 79 43

Table 5.10 Time complexity of selection methods I

 58

Even though time performance depends on the machine on which the program is

running, and thus may vary from machine to machine, the table still offers us a

general view about the time performances of the experimented selection methods. We

can see that the rank methods are slower than the non-rank methods. That is because

the rank methods require the extra workload of sorting the entire population for each

generation.

Experiment 2. A Variant of Rosenbrock Function

We do the experiment with a smaller population size using the following function:

||||510),,,(43
2

2
4

14321 xxxxxxxxf +++= ,

where -3.0� x1�3.0 , -2.0� x2�2.0, -10.0� x3 , x4�10.0, and they are all floating-point

numbers. This function has a minimum value of 0.0 at (0.0, 0.0, 0.0, 0.0).

The average experiment results of 20 runs given by all the selection methods are

demonstrated in the table below:

Average Best Fitness from Selection Methods Number of
Generation Roulette Wheel SUS Baker Rank Reeves Rank Tournament
200 0.62074692 1.17537384 1.01028536 0.91488335 0.99969623
400 0.24587467 0.49969066 0.36765408 0.36795605 0.45573758
600 0.12767855 0.22791289 0.17581551 0.18460126 0.18285148
800 0.06404160 0.10356454 0.09113826 0.10086967 0.09976915
1000 0.03956093 0.06685801 0.04961130 0.05218824 0.06214369
1200 0.02484145 0.04334301 0.02697711 0.04040424 0.03401128
1400 0.01926923 0.02958915 0.01850648 0.03021167 0.02649636
1600 0.01613904 0.02274243 0.01202055 0.02358456 0.01735248
1800 0.01147213 0.01620587 0.00933664 0.01928891 0.01478172
2000 0.01048350 0.01448187 0.00702963 0.01782664 0.01256342

Table 5.11 Selection methods comparison II

The average results are drawn in the following chart. Please note that the fitness

value axis used a logarithmic scale (“semi-log”) to make the small differences among

selection methods more observable.

 59

Comparison of Selection Methods

0.00

0.01

0.10

1.00
400 600 800 1000 1200 1400 1600 1800 2000

Number of Generations

Fi
tn

es
s

V
al

ue

Roulette SUS Baker Reeves Tournament

Figure 5.3 Selection methods comparison II

Similar to the previous experiment, the results indicate that all the selection methods

are converging toward the optimal value. However, unlike experiment 1, Baker rank

outperforms all the other competitors. Roulette wheel not winning the game may be

attributed to the smaller population size employed in this experiment.

The average time performances are compared in the following table.

 Roulette Wheel SUS Baker Rank Reeves Rank Tournament
Time (sec) 52 58 101 99 60

Table 5.12 Time complexity of selection methods II

The same pattern is observed as in the previous experiment. That is, the non-rank

methods are much faster than the rank methods.

 60

There are other interesting phenomena worth mentioning. For example, SUS

selection methods did not perform well in either experiment (second worst in test 2

and worst in the test 1). As for the two rank methods, Baker performs slightly better

than Reeves in both the experiments.

5.2.3 Comparison Experiments on Crossover Methods

In this subsection, we conduct experiments to compare the performance of crossover

methods implemented in this package.

Experiment 1. A Variant of Easom Function

The function selected for this experiment is defined as follows [2]:

||21050)cos()cos(1),,,,(5
2

4
4

3
)()(

2154321

2
2

2
1 xxxexxxxxxxf xx +++−= −−−− ππ ,

where -3.0� x1 , x2�5.0 , -10.0� x3 , x4 , x5�10.0, and they are all floating-point

numbers. This function has a minimum value of 0.0 at (�, �, 0.0, 0.0, 0.0).

The average experiment results of 20 runs given by all the crossover methods are

demonstrated in the table below:

Average Best Fitness from Crossover Methods Number of
Generation Single Point Double Point Uniform Arithmetic Heuristic
300 6.53963748 5.90342281 7.22753797 3.52300873 7.04832794
600 3.84814084 3.76738204 3.09755289 1.69161245 3.83451180
900 2.48216041 2.86849293 2.16271252 1.05478382 2.26491010
1200 1.91600364 1.82472980 1.77030236 0.76704362 1.93611046
1500 1.49884491 1.65801896 1.50038787 0.49035510 1.41774216
1800 1.18686305 1.48398141 1.19765466 0.33054074 1.23351500
2100 1.00443808 1.20197642 1.00505996 0.19386521 1.04875887
2400 0.83122766 1.00045785 0.85575393 0.09411635 0.90943283
2700 0.68335077 0.78665758 0.71635394 0.06433915 0.81680672
3000 0.50794689 0.65037215 0.54692489 0.04681860 0.69502116
3300 0.41780563 0.53414647 0.41821502 0.03354762 0.57154467

Table 5.13 Crossover methods comparison I

 61

The results are drawn using logarithmic scale in the following chart:

Comparison of Crossover Methods

0.01

0.1

1

10

300 600 900 1200 1500 1800 2100 2400 2700 3000 3300
Number of Generations

Fi
tn

es
s

V
al

ue

Single Point Double Point Uniform Arithmetic Heuristic

Figure 5.4 Crossover methods comparison I

Similar to the selection methods experiment, the results obtained from this experiment

also indicate that all the crossover methods lead the GA to the convergence with

Arithmetic the closest and Heuristic the furthest.

If we take a closer look, the performance of the contenders can roughly be divided

into three groups: Arithmetic in the superior group, Uniform and Single point in the

intermediate group, Heuristic and Double point in the inferior group. Arithmetic

outperforming other competitors may be attributed to its unique capability of

generating new offspring within the range of the parents and its ability of creating

more genetic schemas than the single point and double point crossovers.

 62

The time performances of the crossover methods are compared in the following table.

 Single Point Double Point Uniform Arithmetic Heuristic
Time (sec) 220 226 231 221 219

Table 5.14 Time complexity of crossover methods I

Unlike the time complexity variation observed in the selection methods test, the time

performances of all the crossover methods are pretty close to each other.

Experiment 2. A Variant of Squared Radius Function

The experimented is repeated using the following function:

2
n

n

xny �= ,

where -10.0� xn �10.0 , for n =1 to 5, and are all floating-point numbers. This

function has a minimum value of 0.0 at (0.0, 0.0, 0.0, 0.0, 0.0).

The average experiment results of 20 runs given by all the crossover methods are

demonstrated in the table below:

Average Best Fitness from Crossover Methods Number of
Generation Single Point Double Point Uniform Arithmetic Heuristic
300 23.59322033 20.19726184 21.23134067 7.82278207 34.01789885
600 11.84879552 13.07524367 11.31882723 2.78603796 20.25611526
900 6.27316003 7.24433722 6.44028531 1.03588042 13.80272412
1200 4.17823117 4.32724269 3.24527675 0.53103251 10.13046719
1500 2.48152476 3.01946040 1.98943355 0.19708694 9.41284500
1800 1.88963018 2.34222704 1.40765973 0.08382558 7.07262043
2100 1.27979614 1.36751549 0.99008349 0.04833465 4.94206167
2400 1.03410710 0.96161507 0.80888099 0.02563513 4.05980383
2700 0.81998893 0.71481592 0.52794773 0.01396669 2.77400604
3000 0.56398378 0.54536879 0.38935216 0.00887969 2.28372226
3300 0.46887681 0.45644971 0.30927899 0.00636384 2.17092762

Table 5.15 Crossover methods comparison II

The results are drawn using logarithmic scale in the following chart:

 63

Comparison of Crossover Methods

0.0

0.0

0.1

1.0

10.0

100.0

300 600 900 1200 1500 1800 2100 2400 2700 3000 3300

Number of Generations

Fi
tn

es
s

V
al

ue

Single Point Double Point Uniform Arithmetic Heuristic

Figure 5.5 Crossover methods comparison II

The same convergence pattern is observed in this experiment. Moreover, the

performance hierarchy is nearly preserved: Arithmetic, Uniform, Double Point, Single

Point, and Heuristic. In both the competitions, Arithmetic is the leading performer

whereas Heuristic is the worst player.

The time performances of the crossover methods are compared in the following table.

 Single Point Double Point Uniform Arithmetic Heuristic
Time (sec) 218 222 227 230 226

Table 5.16 Time complexity of crossover methods II

Like the time complexity observed in the experiment 1, the time performances of all

the crossover methods are at the same level.

 64

As we have mentioned in Chapter 3, the performance of crossover methods have

complicated relationships with the fitness function, encoding, and other parameters of

the GA. There is no crossover method that guarantees to work best in all the cases.

With that said, however, the experiments of this section still offer us some guidance

on the usage of crossover methods. In general, Arithmetic or Uniform crossover

should be the first choice. Only when you are not satisfied with the results obtained,

then consider trying other candidates.

 65

Chapter VI. Conclusions and Future Work

6.1 Conclusions

Genetic Algorithm models the natural selection and evolution process and has been

successful in areas where the traditional methods fall short. GA has quite a number

of advantages over traditional optimization methods: it can optimize both continuous

and discrete functions; it does not require complicated differential equations or a

smooth objective function; it can be highly parallelized to improve computation

performance; it searches more of the solution space and thus increases the probability

of finding the global optimum.

Most of the existing GA packages either use single representation or offer limited

choices of genetic operator. To handle the variety of optimization problems in

practical applications, a more comprehensive and powerful general GA package is

designed and implemented in this thesis. This package gives users a rich set of

options on the problem representation and genetic operators based on the specific

problem type. The following list outlines the feature methods that are implemented in

the package:

• Encodings: Bit strings, Floating point, Integer (Gray code)

• Selection Methods: Improved Roulette Wheel, Stochastic Universal Sampling,

Baker Linear Rank, Reeves Rank, Tournament

 66

• Generation Replacement Models: Generational, Steady State, Evolution Strategy

(N+m) Replacement, Elitism

• Crossover Methods: Single Point, Double Point, Uniform, Arithmetic, Heuristic

• Mutation Methods: Uniform, Dynamic(Non-uniform), Boundary, Creep

• Termination Criteria: Hybrid, Number of Generations, Convergence, Progress in

Fitness

The package has been tested through two groups of experiments. The first group tests

the general robustness by inputting a variety of optimization problems to the package.

The second group compares the performances of different genetic operators by

varying the encoding, selection, or crossover methods on a certain input function.

The experiments results indicate that the GA package achieved convergence and

found satisfactory solution.

Some other experiments are made but are not listed in Chapter 5. Based on all the

experiments conducted, I summarized the following tips regarding the usage of this

package:

• To optimize problems with pure floating-point variables, floating-point encoding

outperforms bit string encoding in both the solution quality and time required.

• Baker rank SUS are both recommended for selection methods. If time is also

considered, then SUS has the upper hand.

• Arithmetic and Uniform are recommended for crossover methods.

• Uniform and Dynamic are recommended for mutation methods.

 67

• Generational replacement converges faster than Steady state, but has more risk of

leading the GA to a local optimum point. In contrast, Steady state converges

relatively slow, but usually leads the GA to the global optimum point.

• For termination criteria, Number of generations is recommended. The other two

criteria have small probabilities to lead the GA into infinite loop in case the

expected progress is not made. In this package, this case is handled by specifying

an upper bound of loops.

Once again, these tips just serve as general suggestions. Please keep in mind that the

performances of genetic operators are intricately related to the problem context and

other GA parameters. No operator is guaranteed to work best in all the cases. When

the results obtained are inferior to the expectation, the best way is to adjust the GA

parameters and give it another try.

6.2 Future Work

More experiments can be done in effort to resolve the influence of various factors on

the performance of genetic algorithms. In particular, the answer to question like how

to select the best representation and operators for a specific problem will save the time

people spend on trying different sets of GA configurations.

There is still room for improvement to make this package more powerful. The

following features may be considered to be added into this package in the future:

 68

• The combination with other optimization methods: Needless to say, GA is a

powerful optimization technique. On the other hand, there exists a rich set of

optimization methods and each of them has its unique strength. The combination

of GA with these methods will help yield better solution on some problems. For

example, after a certain number of generations, GA is probably in the valley where

the global optimum resides, and a hill-climbing method might be used to take over

the task hereafter to locate the optimum point more rapidly and accurately,

providing the function is smooth (continuously differentiable).

• Parallelism: Genetic algorithms are very suitable for parallel implementation. The

inclusion of parallelism will enable this GA package to search a wide range of

sampling space simultaneously, and thus greatly reduce the time complexity.

 69

REFERENCES

[1] Melanie Mitchell, An Introduction to Genetic Algorithms, The MIT Press, 1996.

[2] Zbigniew Michalewicz, Genetic Algorithms+Data Structure=Evolution
Programs, Springer, 1996.

[3] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison-Wesley, 1989.

[4] John H. Holland, Adaptation in Natural and Artificial Systems, The University of
Michigan Press, 1975.

[5] Michael D. Vose, The Simple Genetic Algorithm, The MIT Press, 1999.

[6] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest� Introduction to
Algorithms, The MIT Press, 2001.

[7] Randy L. Haupt, Sue E. Haupt, Practical Genetic Algorithms, John Wiley & Sons,
1998.

[8] E.H.L. Aarts, J. Korst, Simulated Annealing and Boltzman Machines, John Wiley,
UK, 1989.

[9] GA Animation, http://homepage.sunrise.ch/homepage/pglaus/gentore.htm

[10] GAlib, http://lancet.mit.edu/galib-2.4/

[11] GENESIS, http://www-2.cs.cmu.edu/afs/cs/project/ai-
repository/ai/areas/genetic/ga/systems/genesis/0.html

[12] James E. Baker, Adaptive Selection Methods for Genetic Algorithms,
Proceedings of 1st International Conference on Genetic Algorithms and Their
Applications, pp. 101-111, LEA, Hillsdale, NJ, 1985.

[13] GA Archive, http://www.aic.nrl.navy.mil/galist/src/

[14] GENIAL Package, http://hjem.get2net.dk/widell/genial.htm

[15] Fortran GA Driver, http://cuaerospace.com/carroll/ga.html

[16] D. Whitley, The Genitor Algorithm and Selection Pressure: Why Rank-Based
Allocation of Reproductive Trials is Best, Proceedings of 3rd International

 70

Conference on Genetic Algorithms, pp. 116-121, Morgan Kaufmann Publishers, San
Mateo, CA, 1989.

[17] James E. Baker, Reducing Bias and Inefficiency in the Selection Algorithm,
Proceedings of 2nd International Conference on Genetic Algorithms and Their
Applications, pp. 14-21, LEA, Mahwah, NJ, 1987.

[18] Colin R. Reeves, Jonathan E. Rowe, Genetic Algorithms - Principles and
Perspectives: A Guide to GA Theory, Kluwer Academic Publishers, 2003.

[19] Kenneth A. De Jong, An Analysis of the Behavior of a Class of Genetic Adaptive
Systems, Doctoral Dissertation, University of Michigan, Ann Arbor, 1975.

[20] L.J. Eshelman, R.A. Caruana, J.D. Schaller, Biases in the Crossover Landscape,
Proceedings of 3rd International Conference on Genetic Algorithms, pp. 10-19,
Morgan Kaufmann Publishers, San Mateo, CA, 1989.

[21] W.M. Spears, K.A. De Jong, On the Virtues of Parameterized uniform
Crossover, Proceedings of 4th International Conference on Genetic Algorithms, pp.
230-236, Morgan Kaufmann Publishers, San Mateo, CA, 1991.

[22] A.H. Wright, Genetic Algorithms for Real Parameter Optimization, Foundations
of Genetic Algorithms, First Workshop on the Foundations of Genetic Algorithms and
Classifier Systems, pp. 205-218, Morgan Kaufmann Publishers, San Mateo, CA,
1991.

[23] Lawrence Davis, The Handbook of Genetic Algorithms, Van Nostrand Reinhold,
New York, 1991.

[24] Dong-Yeol Ohm, Generalized Simulated Annealing for Function Optimization
Over Continuous Variables, Master Degree Thesis, Oklahoma State University,
Stillwater, 1994.

[25] Lester Ingber's Archive, http://www.ingber.com

[26] Ting Zhu, A General Genetic Algorithm Package, Master Degree Thesis,
Oklahoma State University, Stillwater, 2003.

 71

APPENDIX

INPUT FILES OF TESTS AND EXPERIMENTS

Input file for Flat-round Rosenbrock function

Population Size: 500
Crossover Rate: 0.4
Mutation Rate: 0.1

Seed for Random Function: 100589

Encoding: Mix

###Selection methods include: Roulette Wheel, SUS,Baker Rank,Reeves Rank,Tournament
###Crossover methods include: Single Point, Double Point,Uniform, Arithmetic, Heuristic
###Mutation methods include: Boundary, Creep
###Replacement Method include: Generational,Steady State,Evolution Strategy

Selection Method: SUS
Crossover Method(Non-FP): Uniform
Crossover Method(FP): Arithmetic
Mutation Method(Non-FP): Uniform
Mutation Method(FP): Uniform
Replacement Method: Steady State

Termination Criterion: Number of Generations
Number of Generations: 1000
Percentage of Converged Alleles: 0.9
Factor of Fitness Progress: 0.01

###Variables setting
Number of Bit-string Variables: 0
Number of Floating-point Variables: 1
 FP Var1 Range: -2.5,2.5

Number of Integer Variables: 1
 Int Var1 Range: -3, 3

Input file for Hollow-round Rosenbrock function

Population Size: 500
Crossover Rate: 0.4
Mutation Rate: 0.1

Seed for Random Function: 100589

Encoding: Mix

 72

###Selection methods include: Roulette Wheel, SUS,Baker Rank,Reeves Rank,Tournament
###Crossover methods include: Single Point, Double Point,Uniform, Arithmetic, Heuristic
###Mutation methods include: Boundary, Creep
###Replacement Method include: Generational,Steady State,Evolution Strategy

Selection Method: SUS
Crossover Method(Non-FP): Uniform
Crossover Method(FP): Arithmetic
Mutation Method(Non-FP): Uniform
Mutation Method(FP): Dynamic
Replacement Method: Generational

Termination Criterion: Number of Generations
Number of Generations: 1000
#Percentage of Converged Alleles: 0.9
#Factor of Fitness Progress: 0.01

###Variables setting
Number of Bit-string Variables: 0
Number of Floating-point Variables: 1
 FP Var1 Range: -2.5,2.5

Number of Integer Variables: 1
 Int Var1 Range: -3, 3

Weights and profits of Knapsack problem with 100 items

Item 1: 6, 98
Item 2: 3, 67
Item 3: 8, 86
Item 4: 2, 75
Item 5: 8, 71
Item 6: 3, 76
Item 7: 3, 60
Item 8: 10, 83
Item 9: 2, 63
Item 10: 5, 58
Item 11: 2, 58
Item 12: 7, 81
Item 13: 5, 52
Item 14: 1, 91
Item 15: 1, 83
Item 16: 4, 98
Item 17: 8, 93
Item 18: 9, 99
Item 19: 9, 51
Item 20: 8, 82
Item 21: 4, 89
Item 22: 5, 53
Item 23: 4, 76
Item 24: 2, 62
Item 25: 5, 71

Item 26: 8, 90
Item 27: 4, 95
Item 28: 5, 67
Item 29: 9, 59
Item 30: 3, 63
Item 31: 7, 84
Item 32: 7, 92
Item 33: 2, 68
Item 34: 2, 92
Item 35: 5, 71
Item 36: 6, 96
Item 37: 2, 82
Item 38: 5, 51
Item 39: 2, 73
Item 40: 5, 92
Item 41: 4, 53
Item 42: 1, 67
Item 43: 10, 79
Item 44: 3, 58
Item 45: 7, 76
Item 46: 10, 92
Item 47: 1, 97
Item 48: 9, 81
Item 49: 4, 59
Item 50: 9, 46

Item 51: 51, 27
Item 52: 71, 41
Item 53: 82, 34
Item 54: 109, 2
Item 55: 70, 31
Item 56: 28, 40
Item 57: 22, 18
Item 58: 15, 8
Item 59: 76, 39
Item 60: 83, 32
Item 61: 97, 16
Item 62: 26, 29
Item 63: 102, 31
Item 64: 77, 10
Item 65: 91, 29
Item 66: 68, 31
Item 67: 61, 7
Item 68: 30, 30
Item 69: 77, 17
Item 70: 76, 50
Item 71: 86, 18
Item 72: 47, 15
Item 73: 91, 4
Item 74: 32, 42
Item 75: 94, 20

Item 76: 106, 17
Item 77: 22, 23
Item 78: 108, 40
Item 79: 66, 36
Item 80: 32, 10
Item 81: 92, 27
Item 82: 108, 22
Item 83: 84, 2
Item 84: 75, 39
Item 85: 12, 32
Item 86: 72, 40
Item 87: 87, 1
Item 88: 88, 38
Item 89: 65, 24
Item 90: 41, 1
Item 91: 44, 28
Item 92: 29, 35
Item 93: 47, 24
Item 94: 83, 39
Item 95: 78, 16
Item 96: 11, 49
Item 97: 27, 13
Item 98: 98, 21
Item 99: 30, 1
Item 100: 36, 38

 73

Input file for Knapsack problem with 100 items

Population Size: 100
Crossover Rate: 0.4
Mutation Rate: 0.1

Seed for Random Function: 100589

Encoding: Bit String

Selection Method: SUS
Crossover Method(Non-FP): Uniform
Crossover Method(FP): Uniform
Mutation Method(Non-FP): Uniform
Mutation Method(FP): Uniform
Replacement Method: Steady State

Termination Criterion: Number of Generations
Number of Generations: 2000
Percentage of Converged Alleles: 0.9
Factor of Fitness Progress: 0.01

###Variables setting
Number of Bit-string Variables: 1
 String Var1 length: 100
Number of Floating-point Variables: 0

Number of Integer Variables: 0

Input file for Bohachevsky function

Population Size: 600
Crossover Rate: 0.4
Mutation Rate: 0.1

Seed for Random Function: 10058

Encoding: Mix

Selection Method: SUS
Crossover Method(Non-FP): Uniform
Crossover Method(FP): Arithmetic
Mutation Method(Non-FP): Uniform
Mutation Method(FP): Dynamic
Replacement Method: Steady State

Termination Criterion: Number of Generations
Number of Generations: 3000
Percentage of Converged Alleles: 0.9
Factor of Fitness Progress: 0.01

###Variables setting
Number of Bit-string Variables: 0
Number of Floating-point Variables: 2
 FP Var1 Range: -5, 5
 FP Var2 Range: -5, 5

 74

Number of Integer Variables: 0

Input file for Schaffer function F7

Population Size: 600
Crossover Rate: 0.4
Mutation Rate: 0.1

Seed for Random Function: 10058

Encoding: Mix

Selection Method: SUS
Crossover Method(Non-FP): Uniform
Crossover Method(FP): Arithmetic
Mutation Method(Non-FP): Uniform
Mutation Method(FP): Dynamic
Replacement Method: Steady State

Termination Criterion: Number of Generations
Number of Generations: 4000
Percentage of Converged Alleles: 0.9
Factor of Fitness Progress: 0.01

###Variables setting
Number of Bit-string Variables: 0
Number of Floating-point Variables: 2
 FP Var1 Range: -5, 5
 FP Var2 Range: -5, 5

Number of Integer Variables: 0

Input file for encoding comparison (bit-string)

Population Size: 800
Crossover Rate: 0.4
Mutation Rate: 0.4

Seed for Random Function: 10059

Encoding: Bit String

Selection Method: SUS
Crossover Method(Non-FP): Uniform
Crossover Method(FP): Uniform
Mutation Method(Non-FP): Uniform
Mutation Method(FP): Uniform
Replacement Method: Generational

Termination Criterion: Number of Generations
Number of Generations: 1000
Percentage of Converged Alleles: 0.9
Factor of Fitness Progress: 0.01

###Variables setting

 75

Number of Bit-string Variables: 0
Number of Floating-point Variables: 4
 FP Var1 Range: -5, 5
 FP Var2 Range: -8, 8
 FP Var3 Range: -10,10
 FP Var4 Range: -10,10

Number of Integer Variables: 0

Input file for encoding comparison (floating point)

Population Size: 800
Crossover Rate: 0.4
Mutation Rate: 0.4

Seed for Random Function: 10059

Encoding: Bit String

Selection Method: SUS
Crossover Method(Non-FP): Uniform
Crossover Method(FP): Heuristic
Mutation Method(Non-FP): Uniform
Mutation Method(FP): Uniform
Replacement Method: Generational

Termination Criterion: Number of Generations
Number of Generations: 1000
Percentage of Converged Alleles: 0.9
Factor of Fitness Progress: 0.01

###Variables setting
Number of Bit-string Variables: 0
Number of Floating-point Variables: 4
 FP Var1 Range: -5, 5
 FP Var2 Range: -8, 8
 FP Var3 Range: -10,10
 FP Var4 Range: -10,10

Number of Integer Variables: 0

Input file for selection methods comparison I

#Change the selection method(FP) for each run.
Population Size: 300
Crossover Rate: 0.4
Mutation Rate: 0.1

Seed for Random Function: 10058

Encoding: Mix

Selection Method: Roulette Wheel
Crossover Method(Non-FP): Uniform
Crossover Method(FP): Arithmetic

 76

Mutation Method(Non-FP): Uniform
Mutation Method(FP): Dynamic
Replacement Method: Steady State

Termination Criterion: Number of Generations
Number of Generations: 1000
Percentage of Converged Alleles: 0.9
Factor of Fitness Progress: 0.01

###Variables setting
Number of Bit-string Variables: 0
Number of Floating-point Variables: 2
 FP Var1 Range: -3, 3
 FP Var2 Range: -2, 2

Number of Integer Variables: 0

Input file for selection methods comparison II

#Change the selection method(FP) for each run.
Population Size: 200
Crossover Rate: 0.4
Mutation Rate: 0.1

Seed for Random Function: 10058

Encoding: Mix

Selection Method: Roulette Wheel
Crossover Method(Non-FP): Uniform
Crossover Method(FP): Arithmetic
Mutation Method(Non-FP): Uniform
Mutation Method(FP): Dynamic
Replacement Method: Steady State

Termination Criterion: Number of Generations
Number of Generations: 1000
Percentage of Converged Alleles: 0.9
Factor of Fitness Progress: 0.01

###Variables setting
Number of Bit-string Variables: 0
Number of Floating-point Variables: 4
 FP Var1 Range: -3, 3
 FP Var2 Range: -2, 2
 FP Var3 Range: -10,10
 FP Var4 Range: -10,10

Number of Integer Variables: 0

Input file for crossover methods comparison I

#Change the crossover method (FP) for each run.
Population Size: 500
Crossover Rate: 0.4

 77

Mutation Rate: 0.1

Seed for Random Function: 100589

Encoding: Mix

Selection Method: SUS
Crossover Method(Non-FP): Uniform
Crossover Method(FP): Single Point
Mutation Method(Non-FP): Uniform
Mutation Method(FP): Dynamic
Replacement Method: Steady State

Termination Criterion: Number of Generations
Number of Generations: 3300
Percentage of Converged Alleles: 0.9
Factor of Fitness Progress: 0.01

###Variables setting
Number of Bit-string Variables: 0
Number of Floating-point Variables: 5
 FP Var1 Range: -3, 5
 FP Var2 Range: -3, 5
 FP Var3 Range: -10,10
 FP Var4 Range: -10,10
 FP Var5 Range: -10,10

Number of Integer Variables: 0

Input file for crossover methods comparison II

#Change the crossover method(FP) for each run.
Population Size: 500
Crossover Rate: 0.4
Mutation Rate: 0.1

Seed for Random Function: 1005896

Encoding: Mix

Selection Method: SUS
Crossover Method(Non-FP): Uniform
Crossover Method(FP): Single Point
Mutation Method(Non-FP): Uniform
Mutation Method(FP): Dynamic
Replacement Method: Steady State

Termination Criterion: Number of Generations
Number of Generations: 3300
Percentage of Converged Alleles: 0.9
Factor of Fitness Progress: 0.01

###Variables setting
Number of Bit-string Variables: 0
Number of Floating-point Variables: 5
 FP Var1 Range: -10,10
 FP Var2 Range: -10,10

 78

 FP Var3 Range: -10,10
 FP Var4 Range: -10,10
 FP Var5 Range: -10,10

Number of Integer Variables: 0

VITA

Huawen Xu

Candidate for the Degree of

Master of Science

Thesis: COMPARISON OF GENETIC OPERATORS ON A GENERAL GENETIC
 ALGORITHM PACKAGE

Major Field: Computer Science

Education: Graduated from Shanghai Jiao Tong University, Shanghai, China in July

1996; received Bachelor of Science degree in Naval and Ocean Engineering.
Then graduated from the same university in April 1999; received Master of
Science degree in Structural Mechanics. Completed the requirements for the
Master of Science degree with a major in Computer Science at Oklahoma
State University in May, 2005.

Experience: Worked as a software engineer in Marine Research and Design Institute

of China from 1999 to 2000.

