
ANALYSIS OF SOFT FRIEND OR FOE REINFORCEMENT

LEARNING ALGORITHM IN MULTIAGENT ENVIRONMENT

By

MICHAEL D. WIDENER

Bachelor of Science in Computer Science
Colorado School of Mines

Golden, Colorado, United States of America
2002

Submitted to the Faculty of the
Graduate College of

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

July, 2010

COPYRIGHT c©

By

MICHAEL D. WIDENER

July, 2010

ANALYSIS OF SOFT FRIEND OR FOE REINFORCEMENT

LEARNING ALGORITHM IN MULTIAGENT ENVIRONMENT

Thesis Approved:

Dr. Douglas Heisterkamp

Thesis Advisor

Dr. Blayne Mayfield

Dr. John P. Chandler

Dr. Mark E. Payton

Dean of the Graduate College

iii

ACKNOWLEDGMENTS

I would like to thank...

Dr. Doug Heisterkamp for suggested improvements to the algorithms analysed

and environments used for analysis. Also for suggested improvements to the program

implemented to run the algorithms and collect results; including the method used to

convert state action value estimates into a policy. Recommendations on the notation

and LateX functions were greatly appreciated.

Dr. Doug Heisterkamp, Dr. K.M. George, Dr. John Chandler for their time,

patience, and encouragement.

iv

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION 1

2 NOTATION 3

2.0.1 Notation for Algorithms . 7

3 LITERATURE REVIEW 10

3.1 Sutton and Barto Reinforcement Learning 10

3.2 Q-Learning . 12

3.3 Littman’s Friend or Foe . 13

3.4 Hu and Wellman’s Nash-Q . 14

4 THESIS 17

4.1 Soft Friend or Foe . 17

4.1.1 Calculating Correlation . 18

4.1.2 Calculating State Value Estimate 19

5 EXPERIMENTAL RESULTS AND ANALYSIS 23

5.1 Experimental Methodology . 23

5.1.1 General Procedure . 23

5.1.2 Statistics To Be Collected . 24

5.1.3 Games . 24

5.2 Results . 25

5.2.1 Returns . 25

v

5.2.2 Policies . 28

5.2.3 Convergence . 29

5.2.4 Speed . 29

5.2.5 Memory Usage . 30

6 SUMMARY 33

BIBLIOGRAPHY 35

A TEST SPECIFICATIONS 37

B AVERAGE RETURN PER EPISODE GRAPHS 38

C RATIO OF RETURNS IN COMPETITION 40

D RETURN HISTOGRAM GRAPHS 42

E RETURN AGGREGATE HISTOGRAM GRAPHS 47

F COMPUTATIONAL SPEED GRAPHS 50

G CONVERGENCE GRAPHS DISCOUNT FACTOR 0.50 51

H CONVERGENCE GRAPHS DISCOUNT FACTOR 0.90 53

I AVG REWARDS 55

J AVG REWARDS PER AGENT WITH MIXED ALGORITHMS 57

K RESOURCE UTILIZATION 59

L STATE ACTION VALUE ANALYSIS DISCOUNT FACTOR 0.50 60

M STATE ACTION VALUE ANALYSIS DISCOUNT FACTOR 0.90 64

vi

N ALGORITHMS 68

N.1 Main . 68

N.2 Friend or Foe - FF(x,s) . 69

N.3 Soft Friend or Foe - SFF(x,s) . 70

N.4 Q-Learning - Q(x,s) . 71

vii

LIST OF TABLES

Table Page

5.1 Grid Game 1 Policy for initial state shown in figure 5.1 (Discount

Factor = 0.50) . 29

5.2 Grid Game 2 Policy for initial state shown in figure 5.1 (Discount

Factor = 0.50) . 30

5.3 Grid Game 3 Policy for initial state shown in figure 5.1 (Discount

Factor = 0.50) . 31

A.1 Configuration . 37

I.1 Average Rewards Per Episode in Simple Grid Games (Discount Factor

= 0.50) . 55

I.2 Standard Deviation of Rewards Per Episode in Simple Grid Games

(Discount Factor = 0.50) . 55

I.3 Average Rewards Per Episode in Simple Grid Games (Discount Factor

= 0.90) . 56

I.4 Standard Deviation of Rewards Per Episode in Simple Grid Games

(Discount Factor = 0.90) . 56

J.1 Q-Learning vs. Soft Friend or Foe Average Rewards Per Agent Per

Episode in Simple Grid Games (Discount Factor = 0.50) 57

J.2 Q-Learning vs. Soft Friend or Foe Standard Deviation of Rewards Per

Episode Per Agent in Simple Grid Games (Discount Factor = 0.50) . 57

viii

J.3 Friend or Foe vs. Soft Friend or Foe Average Rewards Per Agent Per

Episode in Simple Grid Games (Discount Factor = 0.50) 57

J.4 Friend or Foe vs. Soft Friend or Foe Standard Deviation of Rewards

Per Episode Per Agent in Simple Grid Games (Discount Factor = 0.50) 58

K.1 Time (ms) to Calculate Estimated State Value V(s) (Discount Factor

= 0.50) . 59

K.2 Time (ms) to Calculate Estimated State Value V(s) (Discount Factor

= 0.90) . 59

L.1 Grid Game 1 Estimated State Action Value Q(s,a) Ratios for initial

state shown in figure 5.1 (Discount Factor = 0.50) 60

L.2 Grid Game 1 Estimated State Action Value Q(s,a) for initial state

shown in figure 5.1 (Discount Factor = 0.50) 61

L.3 Grid Game 2 Estimated State Action Value Q(s,a) Ratios for initial

state shown in figure 5.1 (Discount Factor = 0.50) 61

L.4 Grid Game 2 Estimated State Action Value Q(s,a) for initial state

shown in figure 5.1 (Discount Factor = 0.50) 62

L.5 Grid Game 3 Estimated State Action Value Q(s,a) Ratio for initial

state shown in figure 5.1 (Discount Factor = 0.50) 62

L.6 Grid Game 3 Estimated State Action Value Q(s,a) for initial state

shown in figure 5.1 (Discount Factor = 0.50) 63

M.1 Grid Game 1 Estimated State Action Value Q(s,a) Ratio for initial

state shown in figure 5.1 (Discount Factor = 0.90) 64

M.2 Grid Game 1 Estimated State Action Value Q(s,a) for initial state

shown in figure 5.1 (Discount Factor = 0.90) 65

M.3 Grid Game 2 Estimated State Action Value Q(s,a) Ratios for initial

state shown in figure 5.1 (Discount Factor = 0.90) 65

ix

M.4 Grid Game 2 Estimated State Action Value Q(s,a) for initial state

shown in figure 5.1 (Discount Factor = 0.90) 66

M.5 Grid Game 3 Estimated State Action Value Q(s,a) Ratios for initial

state shown in figure 5.1 (Discount Factor = 0.90) 66

M.6 Grid Game 3 Estimated State Action Value Q(s,a) for initial state

shown in figure 5.1 (Discount Factor = 0.90) 67

x

LIST OF FIGURES

Figure Page

3.1 Bi matrix game . 15

5.1 Grid games . 25

5.2 Average Return (Discount Factor = 0.90) 26

5.3 Number of Episodes with Reward ≥ x (GG1 Discount Factor = 0.50) 26

5.4 Number of Episodes with Reward ≥ x (GG2 Discount Factor = 0.50) 27

5.5 Number of Episodes with Reward ≥ x (GG3 Discount Factor = 0.50) 27

5.6 Number of Episodes with Reward ≥ x (GG1 Discount Factor = 0.90) 28

5.7 Convergence of State Action Value Estimates for Friend or Foe Algorithm 31

5.8 Convergence of State Action Value Estimates for Q-Learning Algorithm 32

5.9 Convergence of State Action Value Estimates for Soft Friend or Foe

Algorithm . 32

5.10 Relative Speed in Determining State Value Estimate V(s) 32

B.1 Average Return Per Episode (Discount Factor = 0.50) 38

B.2 Average Return Per Episode (Discount Factor = 0.90) 39

C.1 Ratios of Average Return per Agent per Episode Q vs SFF (Discount

Factor = 0.50) . 40

C.2 Ratios of Average Return per Agent per Episode FF vs SFF (Discount

Factor = 0.50) . 41

D.1 Average Return Per Agent Per Episode Histogram (GG1 Discount Fac-

tor = 0.50) . 42

xi

D.2 Average Return Per Episode Histogram (GG1 Discount Factor = 0.50) 43

D.3 Average Return Per Agent Per Episode Histogram (GG2 Discount Fac-

tor = 0.50) . 43

D.4 Average Return Per Episode Histogram (GG2 Discount Factor = 0.50) 43

D.5 Average Return Per Agent Per Episode Histogram (GG3 Discount Fac-

tor = 0.50) . 44

D.6 Average Return Per Episode Histogram (GG3 Discount Factor = 0.50) 44

D.7 Average Return Per Agent Per Episode Histogram (GG1 Discount Fac-

tor = 0.90) . 44

D.8 Average Return Per Episode Histogram (GG1 Discount Factor = 0.90) 45

D.9 Average Return Per Agent Per Episode Histogram (GG2 Discount Fac-

tor = 0.90) . 45

D.10 Average Return Per Episode Histogram (GG2 Discount Factor = 0.90) 45

D.11 Average Return Per Agent Per Episode Histogram (GG3 Discount Fac-

tor = 0.90) . 46

D.12 Average Return Per Episode Histogram (GG3 Discount Factor = 0.90) 46

E.1 Number of Episodes with Reward ≥ x (GG1 Discount Factor = 0.50) 47

E.2 Number of Episodes with Reward ≥ x (GG2 Discount Factor = 0.50) 47

E.3 Number of Episodes with Reward ≥ x (GG3 Discount Factor = 0.50) 48

E.4 Number of Episodes with Reward ≥ x (GG1 Discount Factor = 0.90) 48

E.5 Number of Episodes with Reward ≥ x (GG2 Discount Factor = 0.90) 49

E.6 Number of Episodes with Reward ≥ x (GG3 Discount Factor = 0.90) 49

F.1 Relative Speed in Determining State Value Estimate V(s) 50

G.1 Convergence of State Action Value Estimates for Friend or Foe Algorithm 51

G.2 Convergence of State Action Value Estimates for Q-Learning Algorithm 51

xii

G.3 Convergence of State Action Value Estimates for Soft Friend or Foe

Algorithm . 52

H.1 Convergence of State Action Value Estimates for Friend or Foe Algorithm 53

H.2 Convergence of State Action Value Estimates for Q-Learning Algorithm 53

H.3 Convergence of State Action Value Estimates for Soft Friend or Foe

Algorithm . 54

xiii

CHAPTER 1

INTRODUCTION

Two existing Multiagent Reinforcement Learning Algorithms are compared with a

third algorithm named the Soft Friend or Foe algorithm. The Soft Friend or Foe al-

gorithm introduces the use of correlation of returns into the Friend or Foe algorithm[1]

in an attempt to gain the advantages of the Nash-Q Learning[2][3] algorithm without

the added complexity of calculating Nash Equilibrium Points[4][5]. I have not come

across any papers describing investigations of a technique similar to the Soft Friend or

Foe algorithm. Littman’s Friend or Foe[1] and Q-Learning[6] are the algorithms used

to compare with and investigate the potential of the Soft Friend or Foe algorithm.

A review of important concepts in Off Policy Reinforcement Learning is provided

which includes the general equation for Q-Learning[6] that all of the algorithms com-

pared in this study use. The Friend or Foe and Nash-Q algorithms are described. An

explanation of the Soft Friend or Foe algorithm follows with equations and pseudo

code. The simple three by three grid environments that are used for comparison

are described. The environments are all finite state games[6], for which the Markov

decision property[6] holds. Finally the results of the comparison are summarized and

analysed.

In the worst cases Soft Friend or Foe results in returns that are comparable to

returns recieved using Q-Learning. In one case Soft Friend or Foe results in positive

returns comparable to Friend or Foe returns while negative returns result from using

the Q-Learning algorithm.

State action value estimates for the Soft Friend or Foe algorithm are shown to

1

consistently converge faster than state action value estimates of the other two algo-

rithms. Policies generated from the state action value estimates show that the Soft

Friend or Foe algorithm is more aggressive than the Q-Learning algorithm in the en-

vironments used. The Q-Learning algorithm executed in half the time of the Friend

or Foe and Soft Friend or Foe algorithms.

2

CHAPTER 2

NOTATION

- In following notation × is used for Cartesian product and ∗ is used

for multiplication

• Environment is described by a tuple {S,X,A,F , δA, δp, fp, δr}

• R denotes the set of real numbers

• S = set of states {s1, s2, s3, . . . sm}

• X = sequence of agents (x1, x2, x3, . . . xn)

• A = set of actions {a1, a2, a3, . . . al}

• F = set of reward functions {f1, f2, f3, ...fq}

which take no input and return a real number

• δA (x, s) = D|x ∈X, s ∈ S,D ⊆ A

- Set of actions available to agent x at state s

• K (s) = δA (x1, s)× δA (x2, s)× . . . δA (xn, s)

- Matrix of possible actions at state s. A row in the matrix is a possible action

sequence or vector at state s. A column, ci, in the matrix is a set of actions

available to a single agent, xi, at state s. An action sequence is a sequence

of actions where every agent contributes one action. The set of possible action

sequences is the Cartesian product of the actions available to each agent at state

3

s. The ith element of the action sequence is an action available to the ith agent

of the agent sequence X at state s.

• Λ (s) ∈ K (s)

- Action sequence: a sequence of actions where every agent contributes one action.

The ith element of the action sequence is an action available to the ith agent of

the agent sequence X at state s.

• δp (s,Λ (s) , s′) = p|s ∈ S ∧ s′ ∈ S,

p is a real number in range [0, 1] ∧
∑

s′∈S δp (s,Λ (s) , s′) = 1

P ⊂ R|p ∈ P → p ≥ 0 ∧ p ≤ 1

δp : S ×An × S → P

- Transition probability matrix defines the probability that action vector Λ (s)

will result in a transition from state s to next state s′.

• fp (s,Λ (s)) = s′|s′ ∈ S, the probability that

fp returns s
′ is equal to δp (s,Λ (s) , s′)

p : S ×An → S

- Transition function accepts the current state, s, and an action vector, Λ (s),

and returns the next state s′.

• δr (x,Λ (s) , s, s′) = f |x ∈X, s ∈ S, s′ ∈ S, f ∈ F

δr : X ×A
n × S2 → F

- Reward function matrix defines the reward function that will be used for a given

agent, x, for a given transition from state s to next state s′ on action vector

Λ (s). State s may be equal to s′.

Behavior of agents is described by policy, π

4

• π (x, s) = (π (x, s, a1) , π (x, s, a2) . . . π(x, s, al)) |x ∈X, s ∈ S,

π (x, s, a) gives a value in range [0, 1] ∧
∑

a∈δA(x,s) π (x, s, a) = 1

π : X × S → Rl

π : X × S ×A → P

- π (x, s) provides a probability distribution over elements of action sequence

Λ (s)

• Π (s) = π (x1, s)× π (x2, s)× . . .π (xn, s)

- Π (s) provides a probability distribution over all possible action sequences at

state s, K (s). So given an action sequence Λ (s), Π (s) defines the probability

of that action sequence which is equal to the product of the probability of each

action in the action sequence at state s.

• a (xi,Λ (s)) = ai|ai ∈ δA (xi, s)∧Λ (s) ∈ δA (x1, s)×δA (x2, s)× . . . δA (xi−1, s)×

ai × δA (xi+1, s)× . . . δA (xn, s)

- The action from agent xi in the action sequence Λ (s). If xi is the ith element in

the agent sequence X, then ai is the ith element of the action sequence Λ (s).

• π (Λ (s) , s) = π (x1, s, a (x1,Λ (s)))∗π (x2, s, a (x2,Λ (s))) . . . π (xn, s, a (xn,Λ (s)))

- The probability defined in Π (s) for action sequence Λ (s)

• Agents receive feedback through a sequence of return values, R

• R (x) = (r1, r2, . . . ri . . . rt) |x ∈X, ∀i ri ∈ f ∧ f = δr (x,Λ (s) , s, s′)

∧ s′ = fp (s,Λ (s) , δp) for all s ∈ S

- Sequence of returns for agent x.

• R (x, s) ⊆ R (x) |s ∈ S, ri ∈ R (x, s)⇔ ri ∈ f ∧ f = δr (x,Λ (s) , s, s′)

∧ s′ = fp (s,Λ (s) , δp) ∧ ri ∈ R (x)

5

- Sequence of returns for agent x when transitioning from state s to some other

state.

• R (x, s, a) ⊆ R (x, s) |a ∈ δA (x, s) , ri ∈ R (x, s, a)⇔

ri ∈ f ∧ f = δr (x,Λ (s) , s, s′) ∧ s′ = fp (s,Λ (s) , δp) ∧

Λ (s) ∈ δA (x1, s)× δA (x2, s) . . .× a× . . . δA (xn, s) ∧ ri ∈ R (x, s)

- Sequence of returns for agent x when transitioning from state s to some other

state and action a selected for agent x.

• R (x, s,Λ (s)) ⊆ R (x, s) |ri ∈ R (x, s,Λ (s))⇔ ri ∈ f ∧

f = δr (x,Λ (s) , s, s′) ∧ s′ = fp (s,Λ (s) , δp) ∧ ri ∈ R (x, s)

- Sequence of returns for agent x when transitioning from state s to some other

state on action sequence Λ (s).

• rj (x, s, a) = rj|R (x, s, a) = (r1, r2, . . . ri, rj . . . rk) ∧ |(r1 . . . ri)| = j − 1

- jth element of R (x, s, a)

• rj (x, s,Λ (s)) = rj |R (x, s,Λ (s)) = (r1, r2, . . . ri, rj . . . rk) ∧ |(r1 . . . ri)| = j − 1

- jth element of R (x, s,Λ (s))

• rj (x, s) = rj|R (x, s) = (r1, r2, . . . ri, rj . . . rk) ∧ |(r1 . . . ri)| = j − 1

- jth element of R (x, s)

• Each return in R has a corresponding state in the state history, H

• H = (h1, h2, . . . hi . . . ht) |for i > 1 hi ∈ fp (hi−1,Λ (hi−1) , δp) , h1 ∈ S

- Sequence of states

• H (s) ⊆ H|s ∈ S, hi ∈ H (s)→ hi ∈ fp (s,Λ (s) , δp)

6

- Sequence of next states when transitioning from state s

• H (x, s, a) ⊆ H (s) |a = a (x,Λ (s)) , hi ∈ H (x, s, a)→ hi ∈ fp (s,Λ (s) , δp)

- Sequence of next states when transitioning from state s and action a selected

for agent x

• H (s,Λ (s)) ⊆ H (s) |hi ∈ H (s,Λ (s))→ hi ∈ fp (s,Λ (s) , δp)

- Sequence of next states when transitioning from state s on action sequence Λ (s)

• hj (x, s, a) = hj|H (x, s, a) = (h1, h2, . . . hi, hj . . . hk) ∧ |(h1 . . . hi)| = j − 1

- jth element of H (x, s, a)

• hj (s,Λ (s)) = hj |H (s,Λ (s)) = (h1, h2, . . . hi, hj . . . hk) ∧ |(h1 . . . hi)| = j − 1

- jth element of H (s,Λ (s))

• hj (s) = hj|H (s) = (h1, h2, . . . hi, hj . . . hk) ∧ |(h1 . . . hi)| = j − 1

- jth element of H (s)

2.0.1 Notation for Algorithms

- Subsets of K (s)

• K (B, s) = δA (x1, s) × δA (x2, s) × . . . δA (xb, s) |B ⊆ X ∧ b = |B| ∧ ∀xi ∈

x1..xb xi ∈ B

- Set of possible action sequences at state s where only agents in subsequence B

contribute actions. The ith element of the action sequence is an action available

to the ith agent of the agent sequence B at state s.

• Λ (B, s) ∈ K (B, s)

7

- Limited action sequence where only agents in subsequence B constribute an

action. The ith element of the action sequence is an action available to the ith

agent of the agent sequence B at state s.

• a (xi,Λ (B, s)) = ai|ai ∈ δA (xi, s)∧Λ (B, s) ∈ δA (x1, s)×δA (x2, s)×. . . δA (xi−1, s)×

ai × δA (xi+1, s)× . . . δA (xb, s)

- The action from agent xi in the action sequence Λ (B, s). If xi is the ith element

in the agent sequence B, then ai is the ith element of the action sequence

Λ (B, s).

• Φ (xi,Λ (B, s)) = UV |U = (a (x1,Λ (B, s)) , a (x2,Λ (B, s)) , . . . a (xi−1,Λ (B, s)))∧

V = (a (xi+1,Λ (B, s)) , . . . a (xb,Λ (B, s))) ∧ |UV | = |B| − 1

- Action sequence resulting from removing an action from Λ (B, s). The action

removed is the action provided by agent xi.

• Ψ (xi,Λ (B, s)) = a (x1,Λ (B, s)) × a (x2,Λ (B, s)) × . . . a (xi−1,Λ (B, s)) ×

δA (xi, s)×a (xi+1,Λ (B, s))×. . . a (xb,Λ (B, s)) |xi ∈ B∧Λ (B, s) ∈ Ψ (xi,Λ (B, s))∧

|Λ (B, s) | = |B|

- Set of action sequences resulting from varying the action provided by agent xi.

• ψ (xi,Λ (B, s)) = δA (x1, s) × δA (x2, s) × . . . δA (xi−1, s) × a (xi,Λ (B, s)) ×

δA (xi+1, s) × . . . δA (xb, s) |∀i ∈ [1, b] xi ∈ B ∧ Λ (B, s) ∈ ψ (xi,Λ (B, s)) ∧

|Λ (B, s) | = |B|

- Set of action sequences resulting from varying all of the actions in action se-

quence Λ (B, s), but keeping action provided by agent xi fixed.

• Reward statistics

• r̄k (x, s, a) is the mean of the first k returns in the sequence R (x, s, a)

8

• r̄k (x, s) is the mean of the first k returns in the sequence R (x, s)

• R̄k (x, s,Λ (s)) is the mean of the first k returns in the sequence R (x, s,Λ (s))

• V ark (x, s) is the variance of the first k returns in the sequence R (x, s)

• σk (x1, x2, s) is the covariance between the first k returns of sequences R (x1, s)

and R (x2, s) |x1 ∈X, x2 ∈X

• ρk (x1, x2, s) is the correlation between the first k returns of sequences R (x1, s)

and R (x2, s) |x1 ∈X, x2 ∈X

• Functions

• Q (x, s,Λ (B, s)) is the expected return for agent x ∈ X when taking action

sequence Λ (B, s) at state s ∈ S where a ∈ δA (x, s) ∧ a ∈ Λ (B, s)

• V (x, s) is the value approximation for state s ∈ S with respect to agent x ∈X

• γ is a constant discount factor in range [0, 1]

• α (k) is a function of k used to dampen the change in Q

9

CHAPTER 3

LITERATURE REVIEW

3.1 Sutton and Barto Reinforcement Learning

The basics of Reinforcement Learning are described in Sutton and Barto’s book, Re-

inforcement Learning: An Introduction [6].

The key to this branch of Artificial Inteligence is estimating the value of each state-

action pair in the environment. A sequence of returns generated by a state-action

pair is the bases for estimating the relative goodness of that state action pair.

One method presented in Sutton and Barto’s book is to take the average of the

returns as a reasonable estimate of the value of that state-action pair[6]. There

are other ways to estimate the expected value of a state-action pair, but all of the

algorithms I am considering will utilize this simple statistical method. Equation 3.1

[6, p. 27]:

Q (x, s, a) =
1

k

∑

rj∈R(x,s,a)

rj

 (3.1)

• k = |R (x, s, a) |

The equation above only accounts for the immediate returns from an action. If

there are multiple states in the environment, then relying solely on equation 3.1 will

isolate the states and relay no feedback from future consequences of their actions.

More information is needed.

The link that feeds information from state to state is the approximate value of

the next state. V (x, s) is the notation used for an approximation of the value of

state s for agent x. The three algorithms that I wish to compare each calculate

10

V (x, s) differently in an attempt to approximate a state value that would result from

an optimal policy. The addition of V (x, s) to equation 3.1 results in the following

equation. Equation 3.3 [6, p. 75]:

V (x, s) ≈ max
Π

V Π (x, s) (3.2)

Q (x, s, a) =
1

k

∑

rj∈R(x,s,a)

[rj + V (x, sj)]

 (3.3)

• k = |R (x, s, a) |

• rj = rj (x, s, a)

• sj = hj (x, s, a)

To avoid entering into infinite loops, and to add some incentive to reach a final

state more quickly (win/loss), a discount factor, γ ∈ [0, 1], is added to the state action

value equation. Equation 3.4 [6, p. 75]:

Q (x, s, a) =
1

k

∑

rj∈R(x,s,a)

[rj + γV (x, sj)]

 (3.4)

• k = |R (x, s, a) |

• rj = rj (x, s, a)

• sj = hj (x, s, a)

A discount factor close to one means that a long term goal is more acceptable

than with a discount factor close to zero[6].

It is easier to store a previous state-action value and a counter, k, than it is to store

a set of returns. Also it would be nice to update the state-action value estimate after

each return. With this in mind, observe that the equation above can be re-written

into an iterative form. Equation 3.5 [6, p. 148]:

Q (x, s, a)← Q (x, s, a) +
1

k
[rk + γV (x, sk+1)−Q (x, s, a)] (3.5)

11

• k = |R (x, s, a) |

• rk = rk (x, s, a)

• sk+1 = hk+1 (x, s, a)

One final tweak is the replacement of 1
k
with the function α (k). The motivation for

this is to allow the state-action value estimate to adjust to changes in the environment.

Alpha may decrease rapidly until a minimum value is reached which allows the value

of Q(s,a) to change where 1
k
approaches zero; preventing an update to the estimate.

Switching α (k) for 1
k
gives the more general equation 3.6 [6, p. 148]:

Q (x, s, a)← Q (x, s, a) + α (k) [rk + γV (x, sk+1)−Q (x, s, a)] (3.6)

• α (k) may be constant

• k = |R (x, s, a) |

• rk = rk (x, s, a)

• sk+1 = hk+1 (x, s, a)

3.2 Q-Learning

Q-Learning uses the maximum expected return value of the next state to approximate

the value of the next state[6, p. 148]. Equation 3.7 [6]:

Q (x, s, a)← Q (x, s, a) + α (k)
[

rk (x, s, a) + γmax
b
Q (x, sk+1, b)−Q (x, s, a)

]

(3.7)

• k = |R (x, s, a) |

• α (k) may be constant

• rk = rk (x, s, a)

12

• sk+1 = hk+1 (x, s, a)

Like all of the algorithms I will be comparing, Q-Learning is an off-policy learning

algorithm[6]. Off-Policy reinforcement learning algorithms are those algorithms which

provide state-action value estimates that are independant of the policy being used to

select actions[6]. An action must be selected enough to allow it’s state action value

estimate to converge to some value.

Q-Learning is proven to give state-action value estimates that converge to the

optimal value in single agent environments[7]. I do not know if the same is true for

environments with multiple agents.

The following algorithms will make use of knowledge of the actions taken by other

agents in the environment. The returns that other agents receive are also known.

Equation 3.6 will be used to calculate Q (x, s,Λ (s)). Each of the following algorithms

will generate a value for V (x, s).

3.3 Littman’s Friend or Foe

Littman suggested a simplified algorithm in which every other agent in the game is

identified as a friend or a foe[1]. The Friend or Foe algorithm reduces the calculation

of V(s) to a mini-max problem[1]. For example, say there are two agents in the envi-

ronment: our principle agent, x1, for which we are calculating state action values, and

the accomplice/opponent, x2. Agent x1 produces action a1, and agent x2 produced

action a2. If x2 were identified as a friend, then the Friend function [1] below would

be used to calculate V (x1, s). If x2 is a foe, then the value of V (x1, s) is given by the

Foe equation [1].

•

Friend (x1, x2, s) = max
a1,a2

[Q (x1, s, (a1, a2))] (3.8)

13

•

Foe (x1, x2, s) = max
a1

min
a2

[Q (x1, s, (a1, a2))] (3.9)

The general equation is a typcial min max equation where actions are chosen for

foes that minimize the best expected return that can be achieved by the primary

agent. Actions are then selected for friends and the primary agent that maximize the

expected return of the primary agent. Here is the more general equation where x1 is

the principle agent. agents in the set U = {x2, ...xu} are friends, and agents in the

set V = {xu+1, xu+2, ...xu+v} are foes. Equation 3.10 [1]:

V (x1, s) = max
Λ(U,s)

min
Λ(V,s)

[Q (x1, s,Λ (U, s)Λ (V, s))] (3.10)

Friend or Foe is best viewed as a benchmark. The explicit classification of the

secondary agents as either a friend or a foe means that the algorithm is not as self

sufficient as Q-Learning. The advantages of Friend or Foe are that the state action

value estimates always converge and it is less expensive computationally[1].

3.4 Hu and Wellman’s Nash-Q

Nash-Q[2] is a multiagent reinforcement learning algorithm that attempts to find an

estimate for the value of a state, V(x,s), that is close to optimal using the concept of

an Equilibrium Point [5]. An estimate of V(x,s) that is optimal is the value that would

result from following an optimal policy [6]. An optimal policy maximizes the returns

for an agent [6]. Nash-Q was not implemented, but the algorithms is described here

so that the motivation for the Soft Friend or Foe algorithm is more clear.

Hu and Wellman proposed that some sort of equilibrium value could be found

among the competing/cooperating agents for each state, and that the equilibrium

value should be used for the approximation of the state’s value, V (x, s) [2]. A Nash

Equilibrium is the concept they used to find this equilibrium value [5].

14

A Nash Equilibrium is a set of policies among agents, Π, such that no individual

agent can improve their expected return by changing their policy, as long as the

policies of other agents remain unchanged [2]. Here is an example to demonstrate:

return values for agent a and agent b are shown in the figure 3.1.

Figure 3.1: Bi matrix game

If agent a chooses action 1 and agent b chooses action 2, then agent a will get

a return of zero and agent b will get a return of 1. The Nash Equilibrium for this

example is for agent a to choose action 1 50% of the time and agent b to choose action

1 50% of the time. Bernhard Von Stengel provided a survey of methods that can be

used to calculate a Nash Equilibrium[8].

V (x, s)←
∑

Λ(s)∈κ(s)

[Q (x, s,Λ (s)) ∗ π (Λ (s) , s)] (3.11)

• Π (s) is an equilibrium policy

The problem with the Nash-Q approach is that there may be more than one Nash

Equilibrium for each n-matrix game, where n is the number and dimension of matrices

[2]. The approximation of the state action value may never converge if a different

V (x, s), which is based on the Nash Equilibrium, is calculated each time. Another

15

problem is that the complexity of calculating an equilibrium point increases quickly

with the number of agents in the game[4], and the number of actions available to each

agent[8].

16

CHAPTER 4

THESIS

4.1 Soft Friend or Foe

Soft Friend or Foe is a modification to the Friend or Foe[1] algorithm that I don’t

believe has been tried before. The goal of the modification is to move V (x, s) closer to

the value that would result from an optimal policy without the problems that result

from using the Nash-Q[3] algorithm.

The correlation between the returns of a primary agent and secondary agent can

be used to classify the secondary agent as a friend or a foe. The primary agent being

the agent we want to estimate state values for. The correlation in return values of

the two agents can be used to infer a policy for the secondary agent. The state action

values for the primary agent are estimated using the policy imposed on the secondary

agent. Finally the state value estimate is taken to be the maximum state action value

at that state.

Nash-Q should give better results because the policy imposed on both agents to

calculate V (x, s) is an equilibrium policy, Π (s), which means that neither agent can

increase their expected return by unilaterally changing their policy, π (x, s). How-

ever, calculating an equilibrium point is not simple and there may be more than one

equilibrium point at a given state [3][8]. Soft Friend or Foe simply estimates a Nash

Equilibrium point by increasing the probability that agent x2 will select an action

that results in a higher expected return for agent x1 if the returns for the two agents

are correlated. Calculating correlation is much simpler than calculating an equilib-

rium point. The results are more stable because there is only one correlation value

17

for each pair of agents.

Friend or Foe is less computationally expensive because no information is obtained

about a pair of agents besides a boolean indication of their relation, which is constant.

Soft Friend or Foe is more complex than the original Friend or Foe algorithm, but

does not require the programmer to identify each pair of agents as friends or foes.

One simple way to identify another agent as a friend or a foe is to observe whether or

not the actions that benefit the primary agent also benefit the other agent. If there

is a strong positive correlation in returns, then the other agent can be treated as a

friend. If there is a negative correlation in returns, then the other agent should be

treated as an opponent. In the case of a weak correlation, it would be inappropriate

to classify another agent as a friend or foe. Such classifications might cause severe

fluctuations in the state value estimate, V (x, s). A method is needed to soften the

transition between friend and foe. A linear relation may work. The next obstacle is

the calculation of the correlation which requires knowledge of ALL of the previous

returns for both agents, as well as knowledge of the mean for both agents. Fortunately

the mean can be approximated by the average incrementally. The covariance can also

be calculated incrementally, and the two results can be used to find the correlation.

4.1.1 Calculating Correlation

For every agent in the game, other than the primary agent, a value for the correlation

with the primary agent is maintained at every state. The correlation is based on the

sequence of return values for the primary agent, x1, and some other agent, x2. To

describe the equations we need to define k as the number of returns both agents have

received at that state.

The average return for agent x at state s after k returns, r̄k (x, s), can be calculated

iteratively . . .

18

¯rk+1 (x, s)←
r̄k (x, s) ∗ k + rk+1 (x, s)

k + 1
(4.1)

V ark (x, s) is the variance of the return for agent x after k observations, and can

be calculated iteratively . . .

V ark+1 (x, s) ←

[

V ark (x, s) ∗ k + (rk+1 (x, s)− r̄k (x, s))
2
]

k + 1

− (¯rk+1 (x, s)− r̄k (x, s))
2 (4.2)

σk (x1, x2, s) is the covariance between agent x1 and agent x2 at state s after k

observations, and can be calculated iteratively . . .

σk+1 (x1, x2, s) ←
σk (x1, x2, s) ∗ k

k + 1

+
(rk+1 (x1, s)− r̄k (x1, s)) ∗ (rk+1 (x2, s)− r̄k (x2, s))

k + 1

− (¯rk+1 (x1, s)− r̄k (x1, s)) ∗ (¯rk+1 (x2, s)− r̄k (x2, s))

(4.3)

ρk (x1, x2, s) is the correlation between agent x1 and agent x2 at state s after k

observations . . .

ρk (x1, x2, s) =
σk (x1, x2, s)

√

V ark (x1, s) ∗ V ark (x2, s)
(4.4)

The covariance value falls into the range [-1,1]; -1 meaning the two agents are foes

and 1 meaning the two agents are friends.

4.1.2 Calculating State Value Estimate

The correlation in returns can be used as a measurement of the expected degree of

cooperation between the two agents. The result of the function ρk (x1, x2, s) gives a

19

real number in the range [−1, 1] for state s. A value of 1 means the agents are fully

cooperative at that state. A value of -1 means the agents are fully competetive.

A state value estimate, V (x1, s), can be calculated using the results of ρk (x1, xi, s).

For all state action sequence value estimates, Q (x1, s,Λ (s)), of the state s, a weight

is applied for each opposing agent, xi. The weight is calculated using the following

equation which gives a value in the range [0,1] (W : X2 × S ×An → P).

W (x1, x2, s,Λ (s)) =
1

2
+ ρk (x1, x2, s) ∗

Q (x1, s,Λ (s))−medi (x1, x2, s,Λ (s))

maxi (x1, x2, s,Λ (s))−mini (x1, x2, s,Λ (s))

(4.5)

maxi (x1, x2, s,Λ (s)) = max
w∈Ψ(x2,Λ(s))

Q (x1, s, w) (4.6)

mini (x1, x2, s,Λ (s)) = min
w∈Ψ(x2,Λ(s))

Q (x1, s, w) (4.7)

medi (x1, x2, s,Λ (s)) =
maxi (x1, x2, s,Λ (s)) +mini (x1, x2, s,Λ (s))

2
(4.8)

The algorithm used to convert the weights into a state value estimate is in Ap-

pendix N and also at the end of this section. The idea is to generate a policy for

each agent using the weights. Say we are calculating the estimated value of a state,

V (x1, s), for agent x1 and w is an action vector for state s containing action b for

agent x2 (w ∈ K (s) |a (x2,w) = b). The probability of selecting action b is the

proportion of the sum of weights where action b is selected to the sum of all weights

for all possible action vectors at this state.

π (x2, s, b) =

∑

Λ(s)∈ψ(x2,w)W (x1, x2, s,Λ(s))
∑

Λ(s)∈K(s)W (x1, x2, s,Λ(s))
(4.9)

Once the policy is derived for all other agents, V (x1, s) can be calculated by taking

the maximum of the expected state action values. Suppose w is an action vector for

20

state s containing action a for agent x1 (w ∈ K (s) |a (x1,w) = a). Suppose policy

for agent x1 is to always select action a (π (x1, s, a) = 1).

Q (s, a) =
∑

Λ(s)∈ψ(x1,w)

(π (Λ (s) , s) ∗Q (s,Λ(s))) (4.10)

Now that a state action value is available for agent x1 at state s, the Q-Learning

algorithm can be used to finish determining the value of the state by selecting the

best choice for agent x1.

V (x1, s) = max
a∈δA(x1,s)

Q (s, a) (4.11)

The algorithm described in appendix N tries to minimize the complexity of cal-

culating V (x, s) by calculating intermediate Q (x,B) values.

1. B ← X

2. while |B| > 1

(a) y ← xi|minxi∈B ρk (x, xi, s)

(b) for all w ∈ ψ (y,Λ (B, s))

i. w′ ← Φ (y, w)

ii. Q (x, s, w′)←

∑

Λ(s)∈Ψ(y,w)
W (x,y,s,Λ(s))∗Q(x,s,Λ(s))

∑

Λ(s)∈Ψ(y,w)
W (x,y,s,Λ(s))

(c) B ← B ∩ y

3. V (x, s)← maxw∈Λ(B,s)Q (x, s, w)

*W (x, y, s,Λ (s)) defined in equation 4.5

The Soft Friend or Foe algorithm starts by setting the agent sequence B equal

to the agent sequence of the problem definition, X. An agent, y, is selected from B

that has the lowest correlation with the primary agent, x. For every available action

sequence, w′ ∈ Λ (B ∩ y), at state s using actions from agent sequence B where the

21

action provided by agent y is omited, a new state action sequence value estimate,

Q (x, s, w′), is calculated. The new state action sequence value estimate is calculated

by weighting existing state action sequence value estimates.

A weight is determined by what happens when the action provided by agent y is

varied. All other actions are held constant so we can imagine we are dealing with

state action value estimates where the action is provided by agent y. The current

action for y results in a state action value estimate that lies somewhere in the range

of values that result by varying the action provided by agent y. Equation 4.5 shows

that if the state action value estimate is greater than the value half way between the

upper bound and lower bound, and the correlation is positive, then the weight will

be greater. A negative correlation would mean that an estimated value that is closer

to the upper bound would be given a low weighting.

The weights are used to calculate an expected value for Q (x, s, w′) that can be

used in subsequent iterations until only Q (x, s, a) remains where action a is the

action provided by agent x. At that point the maximum state action value estimate

is returned as the estimated value for the state.

22

CHAPTER 5

EXPERIMENTAL RESULTS AND ANALYSIS

5.1 Experimental Methodology

5.1.1 General Procedure

Agents have full knowlege of the environment state. Agents follow set policies in

which actions are selected randomly; ∀a ∈ δA (x, s) , π (x, s, a) = 1
|δA(x,s)|

. Agents

recieve rewards and are aware of the rewards that other agents recieve.

Actions are selected randomly for each agent, with each action having an equal

probability of being selected. This gives meaningful results because all of the algo-

rithms I wish to compare are Off-Policy algorithms[6]. The next state is determined

by the environment based on the actions taken by each player and environmental

factors. The immediate reward function for each agent is determined by the state

transition and the actions taken by each player. The reward function may be con-

stant. The immediate reward is recorded for each agent for the original environment

state and the set of actions taken.

A set number of episodes is executed for learning. The number of episodes is

selected so that the state action sequence value estimates converge to a stable value.

The same algorithm is used for both agents. A policy is then derived from the

state actione sequence value estimates using the softmax equation[6, p. 30] with a

temperature of 4.1. An equal number of episodes is run and the rewards for each

agent for each episode are recorded. The number of iterations for each episode is also

recorded.

23

5.1.2 Statistics To Be Collected

State action value estimates are monitored for convergence. Average execution time

for calculating V (x, s) is monitored for each algorithm. Policies are derived for each

agent using the final state action value estimates. Average returns based on the

derived policies and knowledge of the environment are reported for each agent. Key

state-action value estimates are reported and analyzed for some games.

5.1.3 Games

The environment model is a simple grid world game where two agents compete to

reach the final state as fast as possible without running into eachother[3]. The advan-

tage of this environment is that the results are easily interpreted. Figure 5.1, summer-

izes a set of games described in Greenwald and Hall’s paper [9], which are similar to

games used in Hu and Wellman’s 98 paper Multiagent Reinforcement Learning: Theo-

retical Framework and Algorithm [2] and 03 paper Nash Q-Learning for General-Sum

Stochasic Games [3]. In grid game 1, the players, represented by stick figure people,

receive one hundred points for reaching the goal, represented by a doorway. If the

players attempt to move into the same square, each player receives a reward of -1.

The game ends when one or more players have reached the goal. It is to the player’s

advantage to reach the goal as soon as possible so that they do not miss out on any

points. Final states are states in which one or both players have reached the goal.

Grid Game 2 has a shared goal and players are awarded 120 pts if they both enter the

goal from the side. If one player enters the goal from the side while the other enters

the goal from below, then the agent entering from below receives 125 points and the

agent entering from the side receives 100 points. In Grid Game 3 there is one shared

goal and agents receive 100 points for entering that goal, but there are two barriers

that agents have a 50 percent chance of crossing on every attempt.

24

Figure 5.1: Grid games

5.2 Results

5.2.1 Returns

In the simple environments used, Soft Friend and Foe received returns comparable to

the other two algorithms used. In the only test case where returns varied significantly,

the Q-Learning algorithm resulted in returns that were negative on average while the

value of returns provided by the other two algorithms (Figure 5.2) were positive.

Soft Friend or Foe outperformed the other algorithms in head to head competition.

However the difference in average returns per episode was well within one standard

deviation in most cases.

The return for agent 1 over an episode is calculated by summing agent 1’s returns

for all iterations from the initial state until the final state. The same is done for agent

2. For each episode the return over that episode for agent 1 and agent 2 are added

to give the return for that episode. The average return is calculated by taking the

average of the returns for all episodes.

Figure E.1 shows the number of episodes with a return greater than or equal to x.

The x axis value starts with the maximum reward possible and progresses toward the

minimun. It is desirable for the line to reach the total number of episodes as quickly as

possible. In grid game 1 the Soft Friend or Foe algorithm found the optimal solution

25

GG1 GG2 GG3

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Ratio of Average Returns per Episode

Discount Factor = 0.90

Q-Learning

Friend or Foe

Soft FF

Figure 5.2: Average Return (Discount Factor = 0.90)

of 100 only slightly more often than the Q-Learning algorithm. The optimal solution

is found when both agents receive the maximum reward of 100 in the fewest steps,

which is 4 steps. The unmodified Friend or Foe algorithm resulted in the magority of

the episodes ending with only one agent reaching the goal.

200

150

100

50

0

-50

-100

-150

0

200

400

600

800

1000

1200

Q_GG1_5

FF_GG1_5

SFF_GG1_5

Figure 5.3: Number of Episodes with Reward ≥ x (GG1 Discount Factor = 0.50)

In grid game 2 (Fig 5.1), the Soft Friend or Foe algorithm was less likely than the

other two algorithms to find the optimal solution for the pair of agents and more likely

to find the optimal solution for a single agent (Figure E.2). The optimal solution for

the pair is acheived when both agents enter the goal from the side and get a reward

of 120 each in 3 steps. The optimal solution for a single agent results when one agent

26

enters the goal from below and receives a reward of 125 while the other agent enters

from the side and receives a reward of 100 in 3 steps.

240 225

0

500

1000

1500

2000

2500

Q_GG2_5

FF_GG2_5

SFF_GG2_5

Figure 5.4: Number of Episodes with Reward ≥ x (GG2 Discount Factor = 0.50)

In grid game 3 (Fig 5.1), the algorithms gave similar results. The Soft Friend or

Foe algorithm found the optimal solution only slightly more frequently than the other

two algorithms (Figure E.3). The optimal solution for the pair is achieved when both

agents enter the goal in 3 steps receiving 100 points each and 200 for the episode.

More often only one agent reached the goal for a return of 100.

200

150

100

0

500

1000

1500

2000

2500

Q_GG3_5

FF_GG3_5

SFF_GG3_5

Figure 5.5: Number of Episodes with Reward ≥ x (GG3 Discount Factor = 0.50)

27

When the discount factor was increase to 0.90 to allow for more acceptable long

term rewards in grid game 1, the Q-Learning policy resulted in disastrous results, but

the Soft Friend or Foe algorithm maintained good results.

200

150

100

50

0

-50

-100

-150

0

200

400

600

800

1000

1200

Q_GG1_9

FF_GG1_9

SFF_GG1_9

Figure 5.6: Number of Episodes with Reward ≥ x (GG1 Discount Factor = 0.90)

5.2.2 Policies

Appendix L summarizes the state action value estimates. From those estimates the

following policies for the initial states shown in figure 5.1 are derived. The policies

shown here are the policies that result in the returns that are discussed in the previous

paragraphs. The equation used to derive the policy from state action value estimates

is the softmax equation [6, pg. 30].

In grid game 1 Soft Friend or Foe and Q-Learning result in almost identical policies

at the initial state. Friend or Foe is so pessimistic that all of the options from the

initial state look just as bad and so Friend or Foe results in more collisions from the

initial state.

Soft Friend or Foe results in the most aggressive policy for grid game 2. Friend or

Foe takes the safe route since agents are defined as Foes. The results show that agents

following a policy that results from the Friend or Foe algorithm take the middle path

28

Table 5.1: Grid Game 1 Policy for initial state shown in figure 5.1 (Discount Factor

= 0.50)

Agent 2 Action

UP LEFT

Alg. Probability Alg. Probability

Agent UP Q 0.53 Q 0.20

1 SFF 0.51 SFF 0.20

Action FF 0.28 FF 0.25

RIGHT Q 0.20 Q 0.07

SFF 0.21 SFF 0.08

FF 0.25 FF 0.22

less than one percent of the time. The policies must become more aggressive when

the agents get closer to the goal.

If the discount factor is increased agents do become more aggressive, and the

average return suffers. Collisions increase and agents more often attempt to increase

their own score which results in a lower combined score.

In grid game 3 Soft Friend or Foe is the most aggressive. The results do not vary

significantly among the three algorithms.

5.2.3 Convergence

Soft Friend or For seems to converge more quickly than the other two algorithms

(Figures: 5.7,5.8,5.9).

5.2.4 Speed

Q-Learning was the least computationally expensive, with Friend or Foe and Soft

Friend or Foe nearly the same in the test cases (Figure 5.10).

29

Table 5.2: Grid Game 2 Policy for initial state shown in figure 5.1 (Discount Factor

= 0.50)

Agent 2 Action

UP LEFT

Alg. Probability Alg. Probability

Agent UP Q 0.88 Q 0.06

1 SFF 0.79 SFF 0.10

Action FF 0.98 FF 0.01

RIGHT Q 0.06 Q 0.00

SFF 0.10 SFF 0.01

FF 0.01 FF 0.00

The Soft Friend or Foe algorithm was expected to be more computationally expen-

sive because the correlation must be updated for every pair of agents every iteration.

The small number of states and agents was probably not enough to demonstrate any

speed difference between Soft Friend or Foe and the original Friend or Foe.

5.2.5 Memory Usage

There was not a significant difference in memory usage among the three algorithms

compared. Memory requirements were expected to be greater for the Soft Friend or

Foe algorithm because the correlation must be stored for all agent pairs for every

state. My advisor and I suspect that the memory requirements of the program used

to evaluate the algorithms far exceeded the memory requirements of each of the

algorithms because of the simplicity of the environments used.

30

Table 5.3: Grid Game 3 Policy for initial state shown in figure 5.1 (Discount Factor

= 0.50)

Agent 2 Action

UP LEFT

Alg. Probability Alg. Probability

Agent UP Q 0.46 Q 0.22

1 SFF 0.32 SFF 0.25

Action FF 0.55 FF 0.15

RIGHT Q 0.21 Q 0.11

SFF 0.25 SFF 0.18

FF 0.23 FF 0.07

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Log Base 10 of Maximum Change in Q(s,a) FF
Discount Factor = 0.50

per 300 iterations

GG1

GG2

GG3

Figure 5.7: Convergence of State Action Value Estimates for Friend or Foe Algorithm

31

-1

-0.5

0

0.5

1

1.5

2

2.5

Log Base 10 of Maximum Change in Q(s,a) Q-Learning
Discount Factor = 0.50

per 300 iterations

GG1

GG2

GG3

Figure 5.8: Convergence of State Action Value Estimates for Q-Learning Algorithm

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Log Base 10 of Maximum Change in Q(s,a) SFF
Discount Factor = 0.50

per 300 iterations

GG1

GG2

GG3

Figure 5.9: Convergence of State Action Value Estimates for Soft Friend or Foe

Algorithm

GG1 GG2 GG3

0

0.2

0.4

0.6

0.8

1

1.2

Relative Speed of Algorithms Calculating State Value Estimate V(s)

Q-Learning

Friend or Foe

Soft FF

Figure 5.10: Relative Speed in Determining State Value Estimate V(s)

32

CHAPTER 6

SUMMARY

The Soft Friend or Foe was shown to converge faster than the other two algorithms

and get returns equal to or greater than returns received using Q-Learning. Soft

Friend or Foe received returns as good as Friend or Foe in all environments.

For future work, I think that the Soft Friend or Foe algorithm can be improved.

Also it would be interesting to see how the memory usage and computation speed

scale with more complex environments. For completeness, it would be nice to compare

Soft Friend or Foe with the Nash-Q learning that Hu and Wellman presented[3].

In this experiment, correlation was calculated on a per state basis using immediate

returns. I think that causes the big picture to be lost since only immediate returns are

considered when determining the correlation. In these environments the only positive

rewards are received when the final state is reached. Cases where both states are close

to their goal at the same time result in a high correlation of returns. When following

the paths of greatest expected rewards, in these environments, the agents often end

up in that scenario. Also all negative and most zero rewards are strongly correlated.

Better results might be achieved with the Soft Friend or Foe algorithm if the

estimated value of the next state, V (x, s), is factored into the correlation. Another

option is calculating correlation for the entire environment; not on a state by state

basis. I predict that the first option of incorporating state value estimates would give

the best results because it allows the agent to identify states where the two agents

are opposed in the long term. The second option of using correlation for the entire

environment would use less memory and might give better results than the method

33

used in this experiment.

Another possible improvement would be to consider the combined returns when

agents are highly correlated. Currently if agents are highly correlated, then higher

weights are assigned to actions that benefit the primary agent more. It might be

better to grant higher weights to actions that result in a higher combined score for

the two agents.

Finally the weighting can be improved. When considering the relative goodness

of an action, the point half way between the lower and upper bounds of the range of

estimated values is used as the fulcrum between a good and bad return. It would be

better to use the median or mean value.

Rather than using a linear function to weight the estimated values that result

from varying an action, it might be better to use an S shaped curve so that weights

stay very low until the fulcrum point is reached. Weights would then quickly increase

to 0.5 at the fulcrum and quickly increase to a value close to 1 where they would stay

for the remainder of the range. It might be better to move the transition past the

fulcrum to filter out even more choices.

34

BIBLIOGRAPHY

[1] M. L. Littman, “Friend-or-foe Q-learning in general-sum games,” in Proc. 18th

International Conf. on Machine Learning, pp. 322–328, Morgan Kaufmann, San

Francisco, CA, 2001.

[2] J. Hu and M. P. Wellman, “Multiagent reinforcement learning: theoretical frame-

work and an algorithm,” in Proc. 15th International Conf. on Machine Learning,

pp. 242–250, Morgan Kaufmann, San Francisco, CA, 1998.

[3] J. Hu and M. P. Wellman, “Nash q-learning for general-sum stochastic games,”

J. Mach. Learn. Res., vol. 4, pp. 1039–1069, 2003.

[4] R. McKelvey and A. McLennan, “Computation of equilibria in finite games,”

1996.

[5] J. Nash, “Non-cooperative games,” The Annals of Mathematics, vol. 54, pp. 286–

295, sep 1951.

[6] R. Sutton and A. Barto, Reinforcement Learning: An Introduction. Cambridge,

MA: MIT Press, 1998.

[7] C. Szepesvari and M. Littman, “A unified analysis of value-function-based

reinforcement-learning algorithms,” 1997.

[8] B. von Stengel, “Computing equilibria for two-person games,” 1996.

[9] A. Greenwald and K. Hall, “Correlated-q learning,” in Proceedings of the Twen-

tieth International Conference on Machine Learning, pp. 242–249, 2003.

35

[10] L. Lamport, LATEXUser’s Guide and Reference Manual. Addison Wesley, 2nd ed.,

1994.

[11] M. Tan, “Multi-agent reinforcement learning: Independent vs. cooperative learn-

ing,” in Readings in Agents (M. N. Huhns and M. P. Singh, eds.), pp. 487–494,

San Francisco, CA, USA: Morgan Kaufmann, 1997.

36

APPENDIX A

TEST SPECIFICATIONS

This data was collected with the following setup unless otherwise stated

Table A.1: Configuration

Environment Algorithm Episodes Discount Factor Iteration Limit

Offline Evaluation

Grid Game 1 Q-Learning 1000 0.50 50 250

SFF 1000 0.50 50 250

FF 1000 0.50 50 250

Grid Game 2 Q-Learning 2000 0.50 50 250

SFF 2000 0.50 50 250

FF 2000 0.50 50 250

Grid Game 3 Q-Learning 2000 0.50 50 250

SFF 2000 0.50 50 250

FF 2000 0.50 50 250

37

APPENDIX B

AVERAGE RETURN PER EPISODE GRAPHS

The average return per episode is calculated by averaging the return for each episode

that was run during the evaluation period, after the learning stage. The return for

each episode is calculated by summing the returns for all iterations from the initial

state to the final state. The return for an iteration is calculated by summing the

returns for all agents from that iteration. In other words the return for an episode is

the sum of all returns from start to finish of the episode. The results below are the

averages over 1000 episodes for grid game 1 and 2000 episodes for grid games 2 and

3.

GG1 GG2 GG3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ratio of Average Returns per Episode

Discount Factor = 0.50

Q-Learning

Friend or Foe

Soft FF

Figure B.1: Average Return Per Episode (Discount Factor = 0.50)

38

GG1 GG2 GG3

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Ratio of Average Returns per Episode

Discount Factor = 0.90

Q-Learning

Friend or Foe

Soft FF

Figure B.2: Average Return Per Episode (Discount Factor = 0.90)

39

APPENDIX C

RATIO OF RETURNS IN COMPETITION

The following results were gathered by letting one agent use the Soft Friend or Foe

algorithm to calculate the value of a state, and the other agent use either Q-Learning

or Littman’s Friend or Foe.

The average return per episode per agent is calculated by averaging the return per

agent for each episode that was run during the evaluation period, after the learning

stage. The return per agent for each episode is calculated by summing the returns for

all iterations from the initial state to the final state for each agent. In other words

the return per agent for an episode is the sum of all returns to a single agent from

start to finish of the episode. The results below are ratios of the averages over 1000

episodes for grid game 1 and 2000 episodes for grid games 2 and 3.

Q SFF

0

0.2

0.4

0.6

0.8

1

1.2

GG1

GG2

GG3

Figure C.1: Ratios of Average Return per Agent per Episode Q vs SFF (Discount

Factor = 0.50)

40

FF SFF

0

0.2

0.4

0.6

0.8

1

1.2

GG1

GG2

GG3

Figure C.2: Ratios of Average Return per Agent per Episode FF vs SFF (Discount

Factor = 0.50)

41

APPENDIX D

RETURN HISTOGRAM GRAPHS

An average return per agent per episode histogram graph displays the number of

episodes where an agent received a certain average return indicated on the x axis.

The average return for an agent for an episode is calculated by summing all of the

returns for an agent over a single episode and deviding that sum by the number of

iterations in the episode.

An average return per episode histogram graph displays the number of episodes

where the episode received a certain average return indicated on the x axis. The

average return for an episode is calculated by summing all of the returns for all

agents over a single episode and deviding that sum by the number of iterations in the

episode.

25 20 17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 -1

0

100

200

300

400

500

600

700

800

Q_GG1_5

FF_GG1_5

SFF_GG1_5

Figure D.1: Average Return Per Agent Per Episode Histogram (GG1 Discount Factor

= 0.50)

42

50 40 34 33 29 28 25 24 22 20 19 17 16 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 -1 -2

0

50

100

150

200

250

300

350

400

Q_GG1_5

FF_GG1_5

SFF_GG1_5

Figure D.2: Average Return Per Episode Histogram (GG1 Discount Factor = 0.50)

42 40 34 31 30 25 20

0

500

1000

1500

2000

2500

3000

3500

Q_GG2_5

FF_GG2_5

SFF_GG2_5

Figure D.3: Average Return Per Agent Per Episode Histogram (GG2 Discount Factor

= 0.50)

80 75 60 56 45

0

200

400

600

800

1000

1200

1400

1600

1800

Q_GG2_5

FF_GG2_5

SFF_GG2_5

Figure D.4: Average Return Per Episode Histogram (GG2 Discount Factor = 0.50)

43

34 25 20 17 15 14 13 12 0 -1

0

500

1000

1500

2000

2500

Q_GG3_5

FF_GG3_5

SFF_GG3_5

Figure D.5: Average Return Per Agent Per Episode Histogram (GG3 Discount Factor

= 0.50)

67 50 40 34 33 29 28 25 20 17 16 15 14 13 12

0

100

200

300

400

500

600

700

800

900

1000

Q_GG3_5

FF_GG3_5

SFF_GG3_5

Figure D.6: Average Return Per Episode Histogram (GG3 Discount Factor = 0.50)

25 20 17 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 -1

0

200

400

600

800

1000

1200

1400

1600

Q_GG1_9

FF_GG1_9

SFF_GG1_9

Figure D.7: Average Return Per Agent Per Episode Histogram (GG1 Discount Factor

= 0.90)

44

50 40 33 29 28 25 24 22 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 -1 -2

0

100

200

300

400

500

600

Q_GG1_9

FF_GG1_9

SFF_GG1_9

Figure D.8: Average Return Per Episode Histogram (GG1 Discount Factor = 0.90)

42 40 34 31 30 25 24 21 20 18 17 15 14 12

0

500

1000

1500

2000

2500

Q_GG2_9

FF_GG2_9

SFF_GG2_9

Figure D.9: Average Return Per Agent Per Episode Histogram (GG2 Discount Factor

= 0.90)

80 75 60 56 48 45 42 39 37 31 27 20

0

200

400

600

800

1000

1200

Q_GG2_9

FF_GG2_9

SFF_GG2_9

Figure D.10: Average Return Per Episode Histogram (GG2 Discount Factor = 0.90)

45

34 25 20 17 15 14 12 11 10 9 0 -1

0

500

1000

1500

2000

2500

Q_GG3_9

FF_GG3_9

SFF_GG3_9

Figure D.11: Average Return Per Agent Per Episode Histogram (GG3 Discount Fac-

tor = 0.90)

67 50 40 34 33 29 28 25 24 22 21 20 19 18 17 16 15 14 12

0

200

400

600

800

1000

1200

Q_GG3_9

FF_GG3_9

SFF_GG3_9

Figure D.12: Average Return Per Episode Histogram (GG3 Discount Factor = 0.90)

46

APPENDIX E

RETURN AGGREGATE HISTOGRAM GRAPHS

200

150

100

50

0

-50

-100

-150

0

200

400

600

800

1000

1200

Q_GG1_5

FF_GG1_5

SFF_GG1_5

Figure E.1: Number of Episodes with Reward ≥ x (GG1 Discount Factor = 0.50)

240 225

0

500

1000

1500

2000

2500

Q_GG2_5

FF_GG2_5

SFF_GG2_5

Figure E.2: Number of Episodes with Reward ≥ x (GG2 Discount Factor = 0.50)

47

200

150

100

0

500

1000

1500

2000

2500

Q_GG3_5

FF_GG3_5

SFF_GG3_5

Figure E.3: Number of Episodes with Reward ≥ x (GG3 Discount Factor = 0.50)

200

150

100

50

0

-50

-100

-150

0

200

400

600

800

1000

1200

Q_GG1_9

FF_GG1_9

SFF_GG1_9

Figure E.4: Number of Episodes with Reward ≥ x (GG1 Discount Factor = 0.90)

48

240 225

0

500

1000

1500

2000

2500

Q_GG2_9

FF_GG2_9

SFF_GG2_9

Figure E.5: Number of Episodes with Reward ≥ x (GG2 Discount Factor = 0.90)

200

150

100

0

500

1000

1500

2000

2500

Q_GG3_9

FF_GG3_9

SFF_GG3_9

Figure E.6: Number of Episodes with Reward ≥ x (GG3 Discount Factor = 0.90)

49

APPENDIX F

COMPUTATIONAL SPEED GRAPHS

GG1 GG2 GG3

0

0.2

0.4

0.6

0.8

1

1.2

Relative Speed of Algorithms Calculating State Value Estimate V(s)

Q-Learning

Friend or Foe

Soft FF

Figure F.1: Relative Speed in Determining State Value Estimate V(s)

50

APPENDIX G

CONVERGENCE GRAPHS DISCOUNT FACTOR 0.50

Convergence graphs show the maximum change in a state action sequence estimate

every 300 iterations. The x axis values are indexes into every 300th iteration. The y

value is the greatest change in a state action sequence estimate over a 300 iteration

period.

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Log Base 10 of Maximum Change in Q(s,a) FF
Discount Factor = 0.50

per 300 iterations

GG1

GG2

GG3

Figure G.1: Convergence of State Action Value Estimates for Friend or Foe Algorithm

-1

-0.5

0

0.5

1

1.5

2

2.5

Log Base 10 of Maximum Change in Q(s,a) Q-Learning
Discount Factor = 0.50

per 300 iterations

GG1

GG2

GG3

Figure G.2: Convergence of State Action Value Estimates for Q-Learning Algorithm

51

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Log Base 10 of Maximum Change in Q(s,a) SFF
Discount Factor = 0.50

per 300 iterations

GG1

GG2

GG3

Figure G.3: Convergence of State Action Value Estimates for Soft Friend or Foe

Algorithm

52

APPENDIX H

CONVERGENCE GRAPHS DISCOUNT FACTOR 0.90

-1

-0.5

0

0.5

1

1.5

2

2.5

Log Base 10 of Maximum Change in Q(s,a) FF
Discount Factor = 0.90

per 300 iterations

GG1

GG2

GG3

Figure H.1: Convergence of State Action Value Estimates for Friend or Foe Algorithm

-1

-0.5

0

0.5

1

1.5

2

2.5

Log Base 10 of Maximum Change in Q(s,a) Q-Learning
Discout Factor = 0.90

per 300 iterations

GG1

GG2

GG3

Figure H.2: Convergence of State Action Value Estimates for Q-Learning Algorithm

53

-1

-0.5

0

0.5

1

1.5

2

2.5

Log Base 10 of Maximum Change in Q(s,a) SFF
Discount Factor = 0.90

per 300 iterations

GG1

GG2

GG3

Figure H.3: Convergence of State Action Value Estimates for Soft Friend or Foe

Algorithm

54

APPENDIX I

AVG REWARDS

Table I.1: Average Rewards Per Episode in Simple Grid Games (Discount Factor =

0.50)

Algorithm Grid Game 1 Grid Game 2 Grid Game 3

Agent 1 Agent 2 Agent 1 Agent 2 Agent 1 Agent 2

Q-Learning 66.44 62.64 118.12 117.97 69.93 71.63

Soft Friend or Foe 57.60 60.90 117.58 117.18 71.76 74.61

Friend or Foe 61.66 61.06 118.67 118.32 71.50 68.50

Table I.2: Standard Deviation of Rewards Per Episode in Simple Grid Games (Dis-

count Factor = 0.50)

Algorithm Grid Game 1 Grid Game 2 Grid Game 3

Agent 1 Agent 2 Agent 1 Agent 2 Agent 1 Agent 2

Q-Learning 58.73 61.35 7.09 7.22 45.76 44.99

Soft Friend or Foe 73.88 71.67 8.40 8.28 44.83 43.30

Friend or Foe 48.48 48.62 6.17 6.49 45.07 46.39

55

Table I.3: Average Rewards Per Episode in Simple Grid Games (Discount Factor =

0.90)

Algorithm Grid Game 1 Grid Game 2 Grid Game 3

Agent 1 Agent 2 Agent 1 Agent 2 Agent 1 Agent 2

Q-Learning -94.11 -89.61 116.15 116.83 70.55 70.80

Soft Friend or Foe 66.72 71.52 113.56 115.71 70.63 71.68

Friend or Foe 62.48 61.98 116.89 115.61 70.46 67.31

Table I.4: Standard Deviation of Rewards Per Episode in Simple Grid Games (Dis-

count Factor = 0.90)

Algorithm Grid Game 1 Grid Game 2 Grid Game 3

Agent 1 Agent 2 Agent 1 Agent 2 Agent 1 Agent 2

Q-Learning 141.40 142.28 9.39 9.09 45.42 45.28

Soft Friend or Foe 59.81 52.18 11.89 11.08 45.25 44.79

Friend or Foe 48.24 48.44 9.20 9.70 45.59 46.88

56

APPENDIX J

AVG REWARDS PER AGENT WITH MIXED ALGORITHMS

Table J.1: Q-Learning vs. Soft Friend or Foe Average Rewards Per Agent Per Episode

in Simple Grid Games (Discount Factor = 0.50)

Algorithm Grid Game 1 Grid Game 2 Grid Game 3

Q-Learning 50.75 117.25 68.47

Soft Friend or Foe 67.45 118.65 72.97

Table J.2: Q-Learning vs. Soft Friend or Foe Standard Deviation of Rewards Per

Episode Per Agent in Simple Grid Games (Discount Factor = 0.50)

Algorithm Grid Game 1 Grid Game 2 Grid Game 3

Q-Learning 79.2 7.79 46.35

Soft Friend or Foe 64.36 6.72 44.27

Table J.3: Friend or Foe vs. Soft Friend or Foe Average Rewards Per Agent Per

Episode in Simple Grid Games (Discount Factor = 0.50)

Algorithm Grid Game 1 Grid Game 2 Grid Game 3

Friend or Foe 38.01 116.93 63.41

Soft Friend or Foe 98.21 118.71 78.01

57

Table J.4: Friend or Foe vs. Soft Friend or Foe Standard Deviation of Rewards Per

Episode Per Agent in Simple Grid Games (Discount Factor = 0.50)

Algorithm Grid Game 1 Grid Game 2 Grid Game 3

Friend or Foe 48.73 8.1 48.11

Soft Friend or Foe 10.29 6.8 41.26

58

APPENDIX K

RESOURCE UTILIZATION

* Memory usage was uniform over all algorithms and games.

Table K.1: Time (ms) to Calculate Estimated State Value V(s) (Discount Factor =

0.50)

Algorithm Grid Game 1 Grid Game 2 Grid Game 3

Q-Learning 173.72 234.22 267.04

Soft Friend or Foe 168.86 290.66 273.91

Friend or Foe 171.76 245.77 248.24

Table K.2: Time (ms) to Calculate Estimated State Value V(s) (Discount Factor =

0.90)

Algorithm Grid Game 1 Grid Game 2 Grid Game 3

Q-Learning 173.72 161.15 ??

Soft Friend or Foe 273.74 287.70 272.85

Friend or Foe 222.80 248.37 250.78

59

APPENDIX L

STATE ACTION VALUE ANALYSIS DISCOUNT FACTOR 0.50

Table L.1: Grid Game 1 Estimated State Action Value Q(s,a) Ratios for initial state

shown in figure 5.1 (Discount Factor = 0.50)

Agent 2 Action

UP LEFT

Alg. Agent 1 Agent 2 Alg. Agent 1 Agent 2

Reward Reward Reward Reward

Agent UP Q 0.85 0.83 Q 1.00 0.57

1 SFF 1.00 0.98 SFF 0.99 0.92

Action FF 1.00 1.00 FF 1.00 1.00

RIGHT Q 0.62 1.00 Q 0.24 0.22

SFF 0.95 1.00 SFF 0.38 0.37

FF 1.00 1.00 FF 0.00 0.00

60

Table L.2: Grid Game 1 Estimated State Action Value Q(s,a) for initial state shown

in figure 5.1 (Discount Factor = 0.50)

Agent 2 Action

UP LEFT

Alg. Agent 1 Agent 2 Alg. Agent 1 Agent 2

Reward Reward Reward Reward

Agent UP Q 7.06 6.43 Q 8.34 4.41

1 SFF 11.30 11.23 SFF 11.16 10.60

Action FF 0.00 0.00 FF 0.00 0.00

RIGHT Q 5.20 7.79 Q 1.98 1.71

SFF 10.78 11.51 SFF 4.32 4.30

FF 0.00 0.00 FF -1.00 -1.00

Table L.3: Grid Game 2 Estimated State Action Value Q(s,a) Ratios for initial state

shown in figure 5.1 (Discount Factor = 0.50)

Agent 2 Action

UP LEFT

Alg. Agent 1 Agent 2 Alg. Agent 1 Agent 2

Reward Reward Reward Reward

Agent UP Q 1.00 1.00 Q 0.97 0.81

1 SFF 0.99 1.00 SFF 1.00 0.97

Action FF 0.96 1.00 FF 1.00 0.00

RIGHT Q 0.79 1.00 Q 0.41 0.42

SFF 0.99 0.98 SFF 0.46 0.45

FF 0.00 1.00 FF 0.39 0.37

61

Table L.4: Grid Game 2 Estimated State Action Value Q(s,a) for initial state shown

in figure 5.1 (Discount Factor = 0.50)

Agent 2 Action

UP LEFT

Alg. Agent 1 Agent 2 Alg. Agent 1 Agent 2

Reward Reward Reward Reward

Agent UP Q 29.63 29.02 Q 28.64 23.60

1 SFF 30.64 30.55 SFF 30.82 29.70

Action FF 23.85 22.87 FF 24.97 0.00

RIGHT Q 23.33 29.23 Q 12.10 12.15

SFF 30.64 30.05 SFF 14.06 13.67

FF 0.00 22.87 FF 9.67 8.51

Table L.5: Grid Game 3 Estimated State Action Value Q(s,a) Ratio for initial state

shown in figure 5.1 (Discount Factor = 0.50)

Agent 2 Action

UP LEFT

Alg. Agent 1 Agent 2 Alg. Agent 1 Agent 2

Reward Reward Reward Reward

Agent UP Q 0.78 0.75 Q 0.82 1.00

1 SFF 0.72 0.77 SFF 0.77 1.00

Action FF 1.00 1.00 FF 0.81 0.75

RIGHT Q 1.00 0.79 Q 0.29 0.25

SFF 1.00 0.75 SFF 0.40 0.43

FF 0.97 0.81 FF 0.14 0.22

62

Table L.6: Grid Game 3 Estimated State Action Value Q(s,a) for initial state shown

in figure 5.1 (Discount Factor = 0.50)

Agent 2 Action

UP LEFT

Alg. Agent 1 Agent 2 Alg. Agent 1 Agent 2

Reward Reward Reward Reward

Agent UP Q 15.51 14.46 Q 16.41 19.24

1 SFF 16.76 18.00 SFF 17.91 23.42

Action FF 10.24 12.23 FF 8.33 9.21

RIGHT Q 20.00 15.18 Q 5.71 4.73

SFF 23.15 17.64 SFF 9.17 10.07

FF 9.97 9.96 FF 1.47 2.72

63

APPENDIX M

STATE ACTION VALUE ANALYSIS DISCOUNT FACTOR 0.90

The figures in this table relate to the grid games described in section 5.1.3; see Fig

5.1.

Table M.1: Grid Game 1 Estimated State Action Value Q(s,a) Ratio for initial state

shown in figure 5.1 (Discount Factor = 0.90)

Agent 2 Action

UP LEFT

Alg. Agent 1 Agent 2 Alg. Agent 1 Agent 2

Reward Reward Reward Reward

Agent UP Q 0.85 0.92 Q 1.00 0.65

1 SFF 0.96 0.99 SFF 1.00 1.00

Action FF 1.00 1.00 FF 1.00 1.00

RIGHT Q 0.69 1.00 Q 0.63 0.67

SFF 0.92 1.00 SFF 0.81 0.80

FF 1.00 1.00 FF 0.00 0.00

64

Table M.2: Grid Game 1 Estimated State Action Value Q(s,a) for initial state shown

in figure 5.1 (Discount Factor = 0.90)

Agent 2 Action

UP LEFT

Alg. Agent 1 Agent 2 Alg. Agent 1 Agent 2

Reward Reward Reward Reward

Agent UP Q 47.10 50.35 Q 55.70 35.80

1 SFF 66.72 64.03 SFF 69.57 64.85

Action FF 0.00 0.00 FF 0.00 0.00

RIGHT Q 38.56 54.99 Q 34.83 36.71

SFF 64.21 64.80 SFF 56.17 51.73

FF 0.00 0.00 FF -1.00 -1.00

Table M.3: Grid Game 2 Estimated State Action Value Q(s,a) Ratios for initial state

shown in figure 5.1 (Discount Factor = 0.90)

Agent 2 Action

UP LEFT

Alg. Agent 1 Agent 2 Alg. Agent 1 Agent 2

Reward Reward Reward Reward

Agent UP Q 0.93 0.96 Q 1.00 0.92

1 SFF 1.00 1.00 SFF 0.99 0.98

Action FF 0.99 1.00 FF 1.00 0.00

RIGHT Q 0.87 1.00 Q 0.73 0.79

SFF 0.97 0.98 SFF 0.86 0.86

FF 0.00 0.91 FF 0.67 0.61

65

Table M.4: Grid Game 2 Estimated State Action Value Q(s,a) for initial state shown

in figure 5.1 (Discount Factor = 0.90)

Agent 2 Action

UP LEFT

Alg. Agent 1 Agent 2 Alg. Agent 1 Agent 2

Reward Reward Reward Reward

Agent UP Q 87.46 93.16 Q 94.30 89.56

1 SFF 99.03 99.72 SFF 98.49 97.95

Action FF 68.18 72.98 FF 68.56 0.00

RIGHT Q 82.33 97.08 Q 68.90 76.22

SFF 95.93 97.76 SFF 85.16 85.53

FF 0.00 66.43 FF 45.74 44.23

Table M.5: Grid Game 3 Estimated State Action Value Q(s,a) Ratios for initial state

shown in figure 5.1 (Discount Factor = 0.90)

Agent 2 Action

UP LEFT

Alg. Agent 1 Agent 2 Alg. Agent 1 Agent 2

Reward Reward Reward Reward

Agent UP Q 0.81 0.80 Q 0.86 1.00

1 SFF 0.95 0.94 SFF 0.92 1.00

Action FF 1.00 1.00 FF 0.97 0.81

RIGHT Q 1.00 0.88 Q 0.60 0.59

SFF 1.00 0.95 SFF 0.81 0.84

FF 0.89 0.95 FF 0.63 0.51

66

Table M.6: Grid Game 3 Estimated State Action Value Q(s,a) for initial state shown

in figure 5.1 (Discount Factor = 0.90)

Agent 2 Action

UP LEFT

Alg. Agent 1 Agent 2 Alg. Agent 1 Agent 2

Reward Reward Reward Reward

Agent UP Q 55.52 53.08 Q 58.59 66.10

1 SFF 73.38 72.05 SFF 71.61 76.97

Action FF 37.34 33.63 FF 36.15 27.31

RIGHT Q 68.13 58.44 Q 40.95 38.90

SFF 77.62 73.33 SFF 62.85 64.29

FF 33.41 31.88 FF 23.55 17.08

67

APPENDIX N

ALGORITHMS

N.1 Main

1. A (x, s)← Q (x, s) XOR FF (x, s) XOR SFF (x, s)

2. H = ()

3. for each agent x ∈ X

(a) R (x)← ()

(b) for each state s ∈ S

i. R (x, s)← H (s)← ()

ii. for each action a ∈ δA (x, s)

A. R (x, s, a)← H (x, s, a)← ()

iii. for each action set Λ (s) ∈ k (s)

A. R (x, s,Λ (s))← H (s,Λ (s))← (), Q (x, s,Λ (s))← 0

4. γ ← .95

5. state s← s1|s1 ∈ S

6. H ← Hs

7. for t in 1..N where N is the number of iterations desired

(a) Λ (s)← ()

(b) for each agent x ∈ X

68

i. agent x selects action a ∈ δA (x, s) according to π (x, s)

ii. Λ (s)← Λ (s) (a)

(c) s′ ← fp (s,Λ (s) , δp)

(d) H ← Hs′

(e) H (s)← H (s) s′

(f) H (s,Λ (s))← H (s,Λ (s)) s′

(g) for each agent x ∈ X

i. f ← δr (x,Λ (s) , s, s′), r ← f

ii. R (x)← R (x) (r)

iii. R (x, s)← R (x, s) (r)

iv. R (x, s, a (x,Λ (s)))← R (x, s, a (x,Λ (s))) (r)

v. R (x, s,Λ (s))← R (x, s,Λ (s)) (r)

vi. H (x, s, a (x,Λ (s)))← H (x, s, a (x,Λ (s))) s′

vii. k ← |R (x, s,Λ (s)) |, rk ← r, α (k)← 1/k

viii. A (x, s′)

ix. Set Q (x, s,Λ (s)) with equation 3.6

(h) s← s′

N.2 Friend or Foe - FF(x,s)

1. U ← ()

2. V ← ()

3. for each agent xi ∈ X

(a) if xi is x or xi is a friend of x then

69

i. U ← U (xi)

(b) else

i. V ← V (xi)

4. B ← X

5. for each agent v ∈ V

(a) for all w ∈ ψ (v,Λ (B, s))

i. w′ ← Φ (v, w)

ii. Q (x, s, w′)← minz∈Ψ(v,w)Q (x, s, z)

(b) B ← B
⋂

v

6. for each agent u ∈ U

(a) for all w ∈ ψ (u,Λ (B, s))

i. w′ ← Φ (u, w)

ii. Q (x, s, w′)← maxz∈Ψ(u,w)Q (x, s, z)

(b) B ← B
⋂

u

7. V (x, s)← Q (x, s, {})

N.3 Soft Friend or Foe - SFF(x,s)

1. B ← X

2. while |B| > 1

(a) y ← xi|minxi∈B ρk (x, xi, s)

(b) for all w ∈ ψ (y,Λ (B, s))

i. w′ ← Φ (y, w)

70

ii. Q (x, s, w′)←

∑

Λ(s)∈Ψ(y,w)
W (x,y,s,Λ(s))∗Q(x,s,Λ(s))

∑

Λ(s)∈Ψ(y,w)
W (x,y,s,Λ(s))

(c) B ← B ∩ y

3. V (x, s)← maxw∈Λ(B,s)Q (x, s, w)

*W (x, y, s,Λ (s)) defined in equation 4.5

N.4 Q-Learning - Q(x,s)

1. B ← X

2. B ← B ∩ x

3. while |B| > 0

(a) y ← xi|xi ∈ B

(b) for all w ∈ ψ (y,Λ (B, s))

i. w′ ← Φ (y, w)

ii. Q (x, s, w′)←

∑

z∈Ψ(y,w)
Q(x,s,z)

|Ψ(y,w)|

(c) B ← B ∩ y

4. V (x, s)← maxaQ (x, s, a)

71

VITA

Michael Widener

Candidate for the Degree of

Master of Science

Thesis: ANALYSIS OF SOFT FRIEND OR FOE REINFORCEMENT LEARNING
ALGORITHM IN MULTIAGENT ENVIRONMENT

Major Field: Computer Science

Biographical:

Personal Data: Born in Greeley, Colorado, on March 17, 1980.

Education:
Received B.S. degree from Colorado School of Mines, Golden, Colorado,
2002, in Math with Computer Science Option
Completed the requirements for the degree of Master of Science with a
major in Computer Science Oklahoma State University in July, 2010.

Experience:
Programmer Intern for Michigan Electronic Materials Company South-
West in Sherman, Texas from 2002 to 2003. Software Engineer for Stanley
Associates in Lawton, Oklahoma from 2007 to present.

Name: Michael Widener Date of Degree: July, 2010

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: ANALYSIS OF SOFT FRIEND OR FOE REINFORCEMENT
LEARNING ALGORITHM IN MULTIAGENT ENVIRONMENT

Pages in Study: 71 Candidate for the Degree of Master of Science

Major Field: Computer Science

This paper evaluates a new off policy multiagent reinforcement learning algorithm
called Soft Friend or Foe. The new algorithm is the result of modifying the Friend
or Foe [1] algorithm by using the correlation in returns between two agents to soften
the distinction between friend and foe. The goal is to achieve results similar to the
Nash-Q [3] algorithm without the computational complexity and convergence issues.

Comparison of three multiagent reinforcement learning algorithms is performed on
three simple grid world environments. The algorithms consist of: Michael Littman’s
Friend or Foe algorithm[1], Soft Friend or Foe, and the Q-Learning algorithm[6] ad-
justed to a multiagent environment.

The Soft Friend or Foe was shown to converge faster than the other two algorithms
and get returns equal to or greater than returns received using Q-Learning. Soft
Friend or Foe received returns as good as Friend or Foe in all environments.

ADVISOR’S APPROVAL: Dr. Douglas Heisterkamp

