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Chapter 1 

Introduction 

 Companies and enterprises need a reliable and secure system to manage and 

analyze their data.  Researchers have developed several kinds of secure systems for data 

access.  In particular, Fine-Grained Access Control (FGAC) system and Role-Based 

Access Control (RBAC) are widely used secure systems [Andrei, 2005].  The FGAC 

system determines access control rights based on individual data.  The access rights of 

every user allowed to access the data are stored inside the data itself [Damiani, 2002].  In 

RBAC, access rights are defined based on the position or role of the user [Zhang, 2003].  

There may be multiple users with the same role.  These multiple users may have access to 

the group or collection of data. 

 In FGAC, the access rights of a user are stored in the data itself [Damiani, 2002].  

Hence, if multiple users have access to the same data, the data must be replicated 

multiple times.  This results in a complex system which does not scale well  [Ahn, 2000]. 

The RBAC system has a simpler environment.  Since all the users are grouped based on 

categories, the access right to data is based on the user’s category.  The problem with the 

RBAC system is the absence of identity of the user.  Since all the users are recognized by 

their categories, the real identity of the user is lost.  All activities of the user in the system 
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are based on their categories, and the user’s real identity is therefore unknown.  Therefore, 

a RBAC system results in a less secure system.   

 Combining both the FGAC and RBAC system can solve the problem of 

complexity and lack of security.  The main objective of combining FGAC and RBAC is 

to inject the users’ identity into the RBAC system while reducing the amount of data 

replication involved.  In the combined FGAC-RBAC systems, all the users in the system 

are categorized into several groups, and at the same time, the users still retain their 

identity.  When the user accesses the data, the access permission is based on the user’s 

category.  All activities of the users are based on the users’ identity and category.  The 

combined system is much simpler because data is not replicated. 

 Graphs are used to present the combined system.  Graphs formalism is used to 

define the process of combining the two systems.  The following figure is an example of 

a graph: 

 

Figure 1. Example of Graph for Combined System 
 

 Automata, and grammar are used in addition to the graph.  In our approach, the 

process of accessing data is represented as a number of transitions from one state to 

another.  An automaton is used to capture the transition between states and the 

corresponding inputs and outputs in our system.  Furthermore, the automaton is formally 



 

3 
 

 

represented using grammatical representation.  Properties of the combined system are 

proven.   

 A definition for the terms used in the thesis is presented in chapter 2.  A review of 

FGAC and RBAC systems is presented in chapter 3. In chapter 4, we propose our 

solution to the combined access control system. In chapter 5, we show a variation of the 

combined FGRBAC system such as the FGAC priority over RBAC in the system in 

single user with single role as explained in chapter 5.  Partial results of the simulation are 

shown in chapter 6.  The simulation in this chapter shows the differences of the 

information load stored inside FGAC, RBAC, and FGRBAC systems.  An algorithm, a 

DFA, and a grammar are used to support the FGRBAC system shown in chapter 7.  The 

results are summarized in Chapter 8. 
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Chapter 2 

Definitions 

In this chapter, terms used in this thesis are defined.   

CFG. Context-free-grammar, a formal grammar that contains four important components 

in the grammatical description of a language, that is: G = (V,T,P,S), where: 

 V → Variables, which is also called nonterminal or syntactic categories. 

 T → Terminal or terminal symbols, which is a finite set of symbols that form the 

stings of the language being defined. 

 P → Productions, which is a finite set of rules that represent the recursive 

definition of a language.  Each production consists of: 

 A variable that is being defined by the production.  This variable is often 

called the head of the production. 

 The production symbol ‘→’ 

 A string of zero or more terminals and variables.  This string, called the 

body of the productions, represents one way to form stings in the language 

of the variable of the head. 



 

5 
 

 

S → Start symbol, which is one of the variables, represents the language being 

defined. 

Collective rule. A  rule that corresponds to the user’s role, not the user itself (rule in 

 RBAC). 

Data Rules.  rules that belong to the data in the system, which define the access right of 

users.  (Defines which user can read or write the data). 

Delegation.  The process of assigning a role to a new user by another user who is more 

senior or has a higher ranking in the system. 

DFA. Deterministic Finite Automata, is a quintuple M = (K, , , s, F) where 

K is a finite set of states,  

 is an alphabet,  

  K is the initial state,  

F a subset of K is the set of final states, and  

 is a function from K cross  to K. 

 

FGAC. Fine-grained access control, a system that allows the definition and enforcement 

of access restrictions for individual users directly on the structure and content of 

the documents. 

 

Individual rule. The right of every user  that responds directly to the user itself without 

going through the user’s role.  
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RBAC. Role-based access control, a security system that is based on the roles of the user 

or position of the user inside the system. 

 

Revocation.  The opposite of delegation, that is, the process whereby an active entity is 

withdrawn from a distributed environment by another entity that is superior to the 

eliminated entity. 

 

Rule.  Defines the access right of the user to the data.  Categorized as Individual Rule, 

 Collective Rule, and Data Rule. 

 

Rule based access control.  Access control system that is based on the rules where all 

access permission is controlled by rule comparison (between rules that belong to 

data and rules that belong to either the user or the role). 
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Chapter 3 

Literature Review 

 

Fine-grained access control was introduced by E. Damiani in his paper, “A fine-

grained access control system for XML documents.” [Damiani, 2002].  Prior to fine-

grained systems, file-system security depended on the file itself (file-level systems) [Ravi, 

2000].  A fine-grained security system protects the entire system at a fine grain so that the 

system can be accessed only by an authorized user.  In file-level systems, everyone could 

access the system not simply authorized users.  Thus, the fine-grained security system 

introduced by Damiani was better than the previous system that implemented security at 

a file-level. 

The Fine-Grained Access Control (FGAC) system is based on “individual rules” 

[Damiani, 2002].  Individual rules are the rules associated with or corresponding directly 

to the user.  These individual rules describe clearly what data the user can access and 

what data the user cannot access. The following graph is an example of a FGAC system 

[Koch, 2002]: 
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               Figure 2. Example of FGAC 
 

 In Figure 2, ru1 and ru2 are individual rules that describe the rights of the user.  

The definition of the fine-grained access control in Figure 2 is as follows: 

The components of the system are: 

 User: The person who is accessing the system. 

 Name: User’s identification, which is unique or specific for every user. 

 Password: User’s security code, which verifies the identification of the user 

 Individual rule: The rule(s) that define the rights of the user in the system. 

• Each vertex represents the following: 

User: us = a User  

Name: n = name for user 

Password: p = password for user 

An individual rule k: IRk 

The set of individual rules is: iru ={IR1, IR2,…, IRm} where IRi is 

individual rule i 

The set of individual rules for a user i:  irui ⊆ iru 

• The  FGAC access control system graph is defined as follows 
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 G = {VF, EF} 

Where 

{ } iruVF U pn, us, =  

{ } { }UU
m

i
iIRusEF

1
),((p)(us, n),{(us,

=
=  

 
 In the FGAC system, a user logs in with his username and password. The 

information pertaining to a user (such as his username and password) are also stored in 

the data. Other security related information pertaining to data such as the access rights of 

the user in relation to that particular data are also stored as part of the data. These are 

stored as individual rules within the data. Information pertaining to a user such as his 

username, passwords, and the data he can access with corresponding access rights, size of 

e-mail permitted for the user, etc. is also stored separately as individual rules associated 

with that user in the FGAC system. When the user wants to access a datum, the datum 

will match the user’s information. This is stored as individual rules within the data along 

with the separate individual rules that store the user’s information to verify the rights of 

the user [Wainer, 2005].  The FGAC system is, therefore, a very complex system because 

of its individuality.  When added into the system, a new user is assigned individual rules.  

Some of them may be new rules, whereas others may be existing rules when rules such as 

access rights already exist. However, the associated parameters such as the name of the 

user must be added.   

 The data in an FGAC system needs to keep all the users’ information.  If there is a 

new user added to the system, the authentication information of the database needs to be 

updated, otherwise, he or she will not be able to access the data.  Therefore, this kind of 
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system is complicated.  If the number of users and data is permanent and small, an FGAC 

system can be used.  If a system is flexible (frequently updated) and large, an FGAC 

system incurs a large overhead. 

Role-Based Access Control system is the other commonly used security system 

[Ahn, 2000].  In the Role-Based Access Control system (RBAC), users have access based 

on the role(s) of the users in the system.  This means every user who is allowed to access 

the system has his/her roles, and, once the user is inside the system, the identity of the 

user is ignored.  The only information that matters is the user’s role. 

The RBAC system is also based on rules [Ahn, 2000].  The rules in RBAC are 

recognized as collective rules or group rules.  Collective rules correspond to the user’s 

role.  These collective rules define what data a role is allowed to access.  The following 

figure is an example of an RBAC system [Koch, 2002]: 

User

Role

ru5ru4ru3

 

             Figure 3. Example of RBAC with Collective Rules 
 

 In Figure 3, ru3, ru4, and ru5 illustrate collective rules, which describe what data 

the user’s role can or cannot access.  

The definition of the role-based access control in Figure 3 is as follows. 

• Explanation of the vertices: 

 Role: The position of the user inside the system. 

 Collective or group rule: The rule(s) define the right of the role in the system 
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• Each vertex represents the following: 

Role: roi represents Role for user i 

A collective rule j:  

The set of collective rules is: cru = {CR1, CR2,…, CRn}- where CRi is 

collective rule i 

The set of collective rules for a user i:  crui ⊆ cru 

• The RBAC access control system graph is defined as follows 

 G = {VR, ER} 

Where 

{ } cruVR U ro =  

{ }U
n

i
iCRroER

1
),(

=
=  

 

 In the RBAC system, collective rules that specify the roles of a user are stored in 

the system. These new rules are also stored in the data specifying which roles can access 

the data.  When a user wants to access data, the system will match the collective rules 

stored in the system with those stored in the data to verify the rights of the user.  When 

the data in the system has been compromised by an attacker, the role of the user who 

accessed the data will be recognized, but not the identity of the individual himself.  

Therefore the RBAC system is insecure.   

 The database in the RBAC system must retain all the information about the user’s 

role [Delis, 2005].  The RBAC system creates a very simple process if there is a new user 

added to the system.  The user can be assigned the appropriate roles without creating new 

rules.  Not all the data has to be updated as in a FGAC system.  However, the security is 
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weak compared to the FGAC system.  Therefore, the RBAC system can be used in any 

system where data is not critical.  If the database of the company is critical, the RBAC 

system provides less security than FBAC.  

 The recent research done by Wainer and Kumar [Wainer, 2005] shows a simple 

delegation and revocation process in the RBAC system.  The delegation method in 

Wainer’s paper is the user-to-user delegation method.  [Zhang, 2003] The method 

introduced involves the delegation and revocation of certain rights as opposed to Zhang’s 

method, which delegates and revokes at the role level.  Revocation and delegation at the 

role level means the revocation and delegation of all access rights of the user.   

 There are pros and cons with both Wainer’s and Zhang’s system.  If the system 

only requires a simple delegation or revocation of certain rights, then this system is the 

best choice.  On the other hand, if all the user’s rights need to be delegated or revoked, 

then this system is not the best choice.   

 The delegation and revocation system [Wainer, 2005] is good for certain access 

rights because all the rights are delegated or revoked one by one.  This system is bad for 

delegation and revocation of a large number of access rights for the same reason, because 

it cannot delegate or revoke all the access rights of multiple users at one time.  
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Chapter 4 

Steps for Accessing the Combined Access 

Control system 

 Security systems such as Fine-Grained Access Control (FGAC) and Role-Based 

Access Control (RBAC) have several problems such as insufficient security and 

complexity.  We propose to integrate the FGAC into a RBAC system by adding the 

users’ identities to the RBAC system instead of eliminating them as in the original RBAC 

system.  Hence, our proposed system provides the security of FBAC and the simplicity of 

RBAC. 

 In the combined system, there are two kinds of accounts activated when a user 

signs in to the system.  One of the accounts is a fine-grained system account, where the 

user’s personal identity is stored.  The other is a role-based system account, where the 

role or position of the user in the system is stored.  Further explanation is given in Figure 

4. 



 

14 
 

 

System

User

Authentication

Role 1 Role 2

Role 3

Role 4

Collective Rule

1
3

2

4

5

Fine- grained system

Individual Rule

  

Figure 4. Combination of Fine-grained and RBAC 
 

  

The steps involved in a combined system are shown in Figure 4: 

1. The user enters identification and password. 

2. If the user’s identification and password is authenticated, the user is directed 

to the system and assigned to his or her role in the system.  In this step, two 

accounts are activated; the first is the user identification (fine-grained system); 

the second is the user’s role(s) in the system (role-based system). 

3. If the user’s permission is denied, then the user is not allowed to enter the 

system and is informed of his or her rejection. 

4. After the user is granted access, he or she can use the system directly without 

going through the authentication stage. 

5. Whenever he or she wants to store edited data, the user is requested to re-enter 

his or her information and password.   
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The difference between role-based access control and the combination of Fine-

Grained and Role-Based Access Control (FGRBAC) is defined in step 4.  In the RBAC, 

only one account is activated, that is, the user’s role.  Figure 4 shows, the combination of 

FGAC and RBAC in the system. 

In the RBAC system, once the user logs in into the system, the user’s 

identification is not checked again.  This situation happens after step 4 in Figure 4.  When 

the user needs to store the edited data, he does not need to verify his ID or password.  

This means that step 5 in Figure 4 does not exist in the RBAC system.   

In the FGAC system, the entire user’s activity has to pass the individual rules 

stored inside the system itself.  The individual rules are the rules inside the fine grained 

system in Figure 4.  Once the user is permitted into the system, all the files that are 

allowed to be accessed by the user, which include read, write, delete, store, etc., are 

defined by individual rules.  This situation can create a complicated and huge number of 

individual rules. 

The integration of the FGAC into the RBAC system is to keep the user’s personal 

identity in the system for security reasons.  For example, if there is a problem in the data, 

the system can trace the identity of the users who accessed the data.  If the system does 

not contain the FGAC system, it cannot trace the identities of the users who access the 

data. 
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Chapter 5 

FGAC-RBAC combined System  

 In this thesis, we combine FGAC and RBAC by integrating FGAC into RBAC or 

adding the identity of the user in the RBAC system.   

 

 

Figure 5. Fine-grained access control's rule. 
 

The definition of the fine-grained access control for Figure 5 is: 

• Components of the system 

 User: The person accessing the system. 

 Name: User’s identification, which is unique or specific for every user. 

 Password: User’s security code, which verifies the identification of the user. 

 Individual rule: The rule(s) that define the rights of the user in the system. 

• Each vertex represents the following: 
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User: us = a User 

Name: n = name for user  

Password: p = password for user  

An individual rule k:  IRk  

The set of individual rules is: iru = {IR1, IR2,…, IRm} where IRk is the kth 

individual rule for user and k ≤ m 

• The  FGAC access control system is defined as follows 

 G = {VF, EF} 

Where 

{ } iruVF U pn, us, =  

{ } { }UU
m

k
kIRusEF

1
),((p)(us, n),{(us,

=
=  

 

 

 

 

 Figure 6.Role-based Access Control's Rule 
 

The definition of the role-based access control in Figure 6 is: 

• Components of the system 
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 Role: The position of the user inside the system. 

 Collective or group rule: The rule(s) define the right of the role in the system. 

• Each vertex represents the following: 

Role: ro = Role for the user  

A collective rule j: CRj 

The set of collective rules is: cru = {CR1, CR2,…, CRn}- where CRj is the 

jth collective rule for user and j ≤ n 

• The RBAC access control system is defined as follows 

 G = {VR, ER} 

Where 

{ } cruVR U ro =  

{ }U
n

j
jCRroER

1
),(

=
=  

 

 

 

 Figure 7. Fine-grained role-based access control 
 

 The rules ru1 and ru2 associated with the user define the Fine-Grained Access 

Control (individual rule) and the rules ru3, ru4, and ru5 associated with the role define 
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the Role-Based Access Control (collective rule).  In the combined system, a role is 

associated with a user.  This is shown in Figure 7.  Figure 7 shows association of the user 

in FGAC with the role in RBAC.  However, conflict and repetition between individual 

rule(s) and collective rule(s) can occur in this system. 

A conflict happens when one or more rules contradict other rules.  For example, if 

the individual rule defines the storage size for user ‘A’ as 2 Gigabyte and the collective 

rule defines the storage size for user ‘A’ as 4 Gigabyte, then a conflict occurs.  

Replication takes place when the existing rule is restated by another rule.  For example, if 

the individual rule defines the storage size for user ‘A’ as 2 Gigabyte, and the collective 

rule defines the same storage size for user ‘A’, we have replication. 

Conflict between an individual rule in FGAC and a collective rule in RBAC can 

arise in the combined system.  For example, assume there are three data called A, B, and 

C.  If the collective rule in the user’s role permits the user to access data A and data B 

and forbids access to data C, but the individual rule permits the user to access data C, 

then a conflict occurs.  This kind of problem can be solved by an FGAC priority over 

RBAC or an RBAC priority over FGAC setting in the system.  FGAC priority over 

RBAC means that, when the conflict happens, the individual rule is chosen rather than 

the collective rule.  RBAC priority over FGAC means that the collective rule is chosen 

rather than the individual rule when conflict occurs.  
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 Figure 8. Graph of the Combined System 
 

 Figure 8 shows the structure of the combined system.  Users enter their ID and 

password.  In the fine-grained component of the system, there are rules associated with 

each individual user.  These rules define how each user may access the data.  Rules 6 and 

7 in Figure 8.  In the role-based component of the system, there are roles associated with 

each user.  A role will have a number of associated rules.  Each rule linked to a role 

defines the access rights associated with that role. For example, see rules 1, 2 and 3.  

 In order to ensure the integrity of the system, rules are associated with the data.  If 

a user wishes to access data, any rules associated with that user and rules associated with 

the roles of the user must match the rules associated with the data. For example, if user 

wishes to access data, any of its associated rules, which include individual rules (rules 6 

and 7) and collective rules that belong to the user’s role (role 2 and the collective rules 1, 

2, and 3) must match rule 4 and  rule 5 associated with the data.  

The proposed system has a number of advantages.  
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• One advantage of the proposed system is the reduced number of rules required. 

All the rules that apply to an individual user do not have to be stored. Typically, 

this is because there is considerable overlap in the rules associated with an 

individual user and a role.  User-specific rules (password for example) must be 

stored for each individual; whereas, access rights are stored as rules associated 

with roles. The data does not need to maintain all of the individual user rules as in 

fine-grained access control. The data only needs to maintain the rules that are 

associated with the role of the user who is allowed to access the data. When a user 

requests access to data, the rules associated with the user’s role are matched to the 

data rules specifying the role’s access rights. For example, rules 4 and 5 

associated with the data define that users with roles 1 and 2 are allowed to access 

it. Similarly rules 1, 2, and 3 associated with role 2 define the access rights of that 

role.  

• A typical role-based system does not allow customization. However, in the 

proposed system, the combination of roles and individual rules provide the 

advantages of both systems.  

• Furthermore, the proposed combined system maintains the identity of the user, 

providing for a more secure system since the user identity can be traced in the 

event of a security breach.   

 
 There are two ways to resolve the rule conflicts and rule repetition problem 

between FGAC and RBAC: 

• Fine-grained access system (FGAC) priority over role-based access  system 

(RBAC). 
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In this priority, the collective rule(s) will be removed if conflict or repetition 

occurs. Figure 9 shows a graph of the combined system when this priority is 

applied to the system shown in figure 7. Here ru1 and ru2 (individual rules) 

conflict or repeat with ru3 and ru4 (collective rules). 

 

Figure 9. Fine-grained role-based access control with fine-grained priority over role-based. 
 

 

• Role-based access system with priority over fine-grained access system. 

In this priority, the individual rule(s) will be removed if the individual rule(s) 

conflict with or duplicate collective rule(s).  Figure 10 shows a graph of the 

combined system when this priority is applied to the system shown in Figure 7.  

Here ru2 (individual rule) conflicts or repeats with ru3 (collective rule): 
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Role

ru5ru5ru4ru4ru3ru3

userusernamename

Passwor
d

Passwor
d

ru1ru1

 
Figure 10.  Fine-grained role-based access control with role-based priority over fine-grained. 

 

There are four categories of the combined FGAC and RBAC system:  

• One user with single role 

• One user with many roles 

• Many users with single role 

• Many users with many roles.   

5.1 A combined system for one user with one role. 
 

The simplest format is the combined system for one user with one role.  In this 

format, the system only considers a single user who has one role in the system.  Here, the 

combined system can be categorized as RBAC priority over FGAC and FGAC priority 

over RBAC.  Please refer to the algorithm in section 5.1.1 and 5.1.2 for the one user with 

one role FGRBAC system.  
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Figure 11. Combined Access Control – FGRBAC for One User to One Role 
 
 The definition of the fine-grained role-based access control for one user with 

single role is: 

• Components of the system 

User: The person who is accessing the system. 

Name: User’s identification which is unique or specific for every user. 

Password: User’s security code which verifies the identification of the user 

Role: The position of the user inside the system. 

Individual rules: The rules that define the individual rights of the user. 

Collective rules: The rules that define the rights of the role to which a user 

belongs. 

Combined rule: The rule(s) that define the rights of the user in the system (this 

includes both individual and collective rules). 

• Each vertex represents the following: 

User: us represents a User 

Name: n represents name for user 

Password: p represents password for user 

Role: ro represents Role for user 
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An individual rule k:  IRk  

The set of individual rules is: iru = {IR1, IR2,…, IRm} where IRk is the kth 

individual rule for user and k ≤ m 

A collective rule j: CRj 

The set of collective rules is: cru = {CR1, CR2,…, CRn}- where CRj is the 

jth collective rule for user and j ≤ n 

 

• The  combined access control graph for one user with single role is defined as 

follows 

 G = {V, E} 

Where 

{ } cruiruV UU rop,n, us, =  

{ } { })),(()),((),(usp)(us,n)(us,
11

UU UUUU
n

j
j

m

k
k CRroIRusroE

==
=  

 

 

5.1.1 One user with one role with RBAC priority over FGAC option. 
 
 In the category of one user with one role with RBAC priority over FGAC, when 

the individual rules either conflict or replicate collective rules, the individual rules will be 

removed.  For the FGAC graph, refer to Figure 5. For the RBAC graph, refer to Figure 6.  

The algorithm for the RBAC priority over FGAC for one user with one role FGRBAC 

system is: 

for all IRk ∈ iru do 
 for all CRj ∈ cru do  
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{ 
  if IRk conflicts or replicate CRj then  
   iru = iru – {IRk} 
   V = V – {IRk} 
   E = E – (us,IRk) 
  } 

 

Example: The graph for one user with one role with RBAC priority over FGAC option is: 

 
Figure 12. One user with one role with RBAC priority over FGAC. 

 
 The definition of the fine-grained role-based access control with one user to one 

role for role-based priority over fine-grained access control system is: 

• Refer to section 5.1 for definition of components.  

• Each vertex represents the following: 

User: us represents a user 

Name: n represents name for user 

Password: p represents password for user 

Role: ro represents Role for user 

An individual rule k:  IRk  
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The set of individual rules is: iru = {IR1, IR2,…, IRm} = {IR1, IR2,…, 

IRf}- {CR1, CR2,…, CRn}where IRk is the kth individual rule for user and 

k ≤ m 

 

A collective rule j: CRj 

The set of collective rules is: cru = {CR1, CR2,…, CRn}- where CRj is the 

jth collective rule for user and j ≤ n 

• The  one user with one role with RBAC priority over FGAC graph is defined as 

follows 

 G = {V, E} 

Where 

{ } cruiruV UU rop,n, us, =  

{ } { })),(()),((),(usp)(us,n)(us,
11

UU UUUU
n

j
j

m

k
k CRroIRusroE

==
=  

5.1.2 A single user with a single role for FGAC priority over RBAC option. 
 
 In the one user with one role with FGAC priority over RBAC category, when the 

individual rules either conflict or repeat collective rules, the collective rules will be 

removed.  For the FGAC graph, please refer to Figure 5. For the RBAC graph, please 

refer to Figure 6.  The algorithm for the FGAC priority over RBAC in one user with one 

role FGRBAC system is: 

for all IRk ∈ iru do 
 for all CRj ∈ cru do  

{ 
  if IRk conflicts or replicate CRj then  
   cru = cru – {CRj} 
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   V = V – {CRj} 
   E = E – (ro,CRj) 
  } 

 

Example: The graph for one user with one role with FGAC priority over RBAC option is: 

 

Figure 13. One user with one role with FGAC priority over RBAC. 
 

 The definition of the fine-grained role-based access control with one user to one 

role for fine-grained priority over role-based access control system is: 

• Refer to section 5.1 for definition of components.  

• Each vertex represents the following: 

User: us represents a user 

Name: n represents name for user 

Password: p represents password for user 

Role: ro represents Role for user 

An individual rule k:  IRk  

The set of individual rules is: iru = {IR1, IR2,…, IRm} where IRk is the kth 

individual rule for user and k ≤ m 

A collective rule j: CRj 
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The set of collective rules is: cru = {CR1, CR2,…, CRn} = {CR1, CR2,…, 

CRg} - {IR1, IR2,…, IRm} where CRj is the jth collective rule for user and j 

≤ n 

• The  one user with one role with FGAC priority over RBAC graph is defined as 

follows 

 G = {V, E} 

Where 

{ } cruiruV UU rop,n, us, =  

{ } { }UU UUUU
n

j
j

m

k
k CRroIRusroE

11
)),(()),((),(usp)(us,n)(us,

==
=  

 

5.2 A combined system for many users with single role. 
 

This rule is used to define multiple users who have the same role or position.  For 

example, a company which hires two or more accountants will have multiple users with 

the same role or category.  In the many users with one role condition, the fine-grained 

priority over role-based access control system by eliminating the collective rule can’t be 

realized because the collective rule (rule(s) belong to the role) is shared among more than 

one user.  The algorithm for the RBAC priority over FGAC in one user with one role 

FGRBAC system is: 

for all USt ∈ us do 
for all IRk ∈ irut do 
 for all CRj ∈ cru do  

{ 
  if IRk conflicts or replicate CRj then  
   irut = irut – {IRk} 
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   V = V – {IRk} 
   E = E – (USt,IRk) 
  } 

 

Example: The graph of many users with one role with RBAC priority over FGAC option 

is: 

User 1

Role

rururu

User 2 User 3
User 4Name 

1

Password 
1

Name 
2

Password 
2 Name 

3

Password 
3

Name 
4

Password 
4

ru ru ru
ru

 
 

Figure 14.  Graph for many users with one role for RBAC priority over FGAC. 
 

 The definition of the fine-grained role-based access control with many users to 

one role for RBAC priority over FGAC system is: 

• Refer to section 5.1 for definition of components.  

• Each vertex represents the following: 

User t: USt 

The set of users is: us ={US1, US2,…, USq} where usi is the ith user and i ≤ 

q 

Name r: Nt 
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The set of names is: n ={N1, N2,…, Nq} where ni is the name for ith user 

and i ≤ q 

Password s: Ps 

The set of password is: p ={P1, P2,…, Pq} where pi is the password for ith 

user and i ≤ q 

Role: ro represents the single Role for all the users 

An individual rule k:  IRk  

The set of individual rules is: iru = {IR1, IR2,…, IRm} = {IR1, IR2,…, 

IRf}- {CR1, CR2,…, CRn}where IRk is the kth individual rule for all users 

and k ≤ m 

A collective rule j: CRj 

The set of collective rules is: cru = {CR1, CR2,…, CRn}- where CRj is the 

jth collective rule for ith user and j ≤ n 

The set of collective rules for a user i:  crui ⊆ cru 

• The  many users with one role with RBAC priority over FGAC graph is defined 

as follows 

 G = {V, E} 

Where 

{ } cruirupnusV UUUUU  ro =  
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5.3 Combined system for single user with many roles. 
 

This category can be described as a user who has more than one position in the 

system.  An example is a user who is the president and also the CEO of a company.  In 

this category, the combined system can be categorized as RBAC priority over FGAC and 

FGAC priority over RBAC. Refer to the algorithm in section 5.3.1 and 5.3.2 for the one 

user with many roles FGRBAC system.  
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Figure 15. Combined access control – FGRBAC for one user to many roles 
  

 The definition of the fine-grained role-based access control with single user to 

many roles for RBAC priority over FGAC system in the hierarchy role: 

• Refer to section 5.1 for definition of components.  

• Each vertex represents the following: 

User: us represents a user 

Name: n represents name for user  

Password: p represents password for user 

Role o: ROo 

The set of roles is: ro ={RO1, RO2,…, ROp} where roo is the oth role for  

user and o ≤ q 

  

A collective rule j: CRj 
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The set of collective rules is: cru = {CR1, CR2,…, CRn}- where CRj is the 

jth collective rule for the user and j ≤ n 

An individual rule k:  IRk  

The set of individual rules is: iru = {IR1, IR2,…, IRm}- where IRk is the kth 

individual rule for the user and k ≤ m 

 

• The  one user with one role with RBAC priority over FGAC graph is defined as 

follows: 

 G = {V, E} 

Where 

{ } cruiruroV UUU  pn, us, =  

{ } { } { }
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5.3.1 One user with many roles with RBAC priority over FGAC option. 
 
 In one user with many roles with RBAC priority over FGAC option category, 

when the individual rules either conflict or repeat over with collective rules, the 

individual rules will be removed.  In this system, the role in the company can be 

categorized either as a hierarchy role or a non-hierarchy role [Wainer, 2005].  In a 
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Hierarchical role, a user is directed to one role and other roles are inherited from that role.  

Inheritance in this paper means all the rules belong to the role, which is connected to the 

upper most roles (the role connected to the user), are inherited partially or totally from 

that upper most role.   For example, if the user is a CEO of a company and the user can 

also have a role as a manager or accountant of the company then these roles (manager 

and accountant) are inherited from the CEO role. A non-hierarchy role is the condition 

when a user is directed to many roles without inheritance.  For example, if the user is a 

CEO of a company and the user is also a manager of the company, where this role, 

manager, is not inherited from the CEO.  The algorithm for the RBAC priority over 

FGAC in one user with many roles FGRBAC system for either hierarchy or non-

hierarchy role is: 

for all IRk ∈ iru do 
for all ROo ∈ ro do 
 for all CRj ∈ cru do  

{ 
  if IRk conflicts or replicate CRj then  
   iru = iru – {IRk} 
   V = V – {IRk} 
   E = E – (us,IRk) 
  } 

 

5.3.1.1 Hierarchy Role. 

For the FGAC graph, refer to Figure 5. For the RBAC graph, refer to Figure 6.  

The graph for one user with many roles with RBAC priority over FGAC option in the 

hierarchy role is: 
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Figure 16. One User with Many Roles with RBAC Priority over FGAC System and the Role System 
is Hierarchy Role 

 

 The definition of the fine-grained role-based access control with single user to 

many roles for RBAC priority over FGAC system in the hierarchy role: 

• Refer to section 5.1 for definition of components.  

• Each vertex represents the following: 

User: us represents a user 

Name: n represents name for user 

Password: p represents password for user 

Role o: ROo 

The set of roles is: ro ={RO1, RO2,…, ROp} where roo is the oth role for  

user and o ≤ q 
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A collective rule j: CRj 

The set of collective rules is: cru = {CR1, CR2,…, CRn}- where CRj is the 

jth collective rule for the user and j ≤ n 

An individual rule k:  IRk  

The set of individual rules is: iru = {IR1, IR2,…, IRm}= {IR1, IR2,…, IRf}- 

{CR1, CR2,…, CRn} where IRk is the kth individual rule for the user and k 

≤ m 

• The  one user with many roles with RBAC priority over FGAC graph for 

hierarchy role is defined as follows: 

 G = {V, E} 

Where 

{ } cruiruroV UUU  pn, us, =  
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5.3.1.2 Non-hierarchy Role. 

For the FGAC graph, refer to Figure 5. For the RBAC graph, refer to Figure 6.  

The graph for one user with many roles with RBAC priority over FGAC option in the 

non-hierarchy role is: 

 

Figure 17. One User with Many Roles with RBAC Priority over FGAC System and the Role System 
is Non-HIERARCHICAL 

 

 The definitions of the fine-grained role-based access control with single user to 

many roles for RBAC priority over FGAC system in the non-hierarchy role are: 

• Refer to section 5.3.1.1 for definition of components, vertices representation of 

the system. 

• The  one user with many roles with RBAC priority over FGAC graph for non-

hierarchy role is defined as follows: 

 G = {V, E} 

Where 
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5.3.2 One user with many roles with FGAC priority over RBAC option. 
 
 In the one user with many roles with FGAC priority over RBAC option category, 

when the individual rules either conflict or duplicate the collective rules, the collective 

rules will be removed.  In this system, the role in the company can be categorized as 

hierarchy role and non-hierarchy role [Wainer, 2005].  The algorithm for the FGAC 

priority over RBAC in one user with one role FGRBAC system for both hierarchy and 

non-hierarchy role is: 

for all IRk ∈ iru do 
for all ROo ∈ ro do 
 for all CRj ∈ cru do  

{ 
  if IRk conflicts or replicate CRj then  
   iru = iru – { CRj } 
   V = V – { CRj } 
   E = E – (ROo, CRj) 
  } 
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5.3.2.1 Hierarchy Role. 

For the FGAC graph, refer to Figure 5. For the RBAC graph, refer to Figure 6.  

The graph for one user with many roles with FGAC priority over RBAC option in the 

hierarchy role is: 

 

Figure 18. One User with Many Roles with FGAC priority over RBAC System and the Role System 
in Hierarchy Role 

 

 The definition of the fine-grained role-based access control with single user to 

many roles for RBAC priority over FGAC system in the hierarchy role is: 

• Refer to section 5.1 for definition of components.  

• Each vertex represents the following: 

User: us represents a user 

Name: n represents name for user 

Password: p represents password for user 
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Role o: ROo 

The set of roles is: ro ={RO1, RO2,…, ROp} where roo is the oth role for  

the user and o ≤ q 

An individual rule k:  IRk  

The set of individual rules is: iru = {IR1, IR2,…, IRm}- where IRk is the kth 

individual rule for the user and k ≤ m 

A collective rule j: CRj 

The set of collective rules is: cru = {CR1, CR2,…, CRn}= {CR1, CR2,…, 

CRg}- {IR1, IR2,…, IRm}-  where CRj is the jth collective rule for the user 

and j ≤ n 

• The  one user with many roles with FGAC priority over RBAC graph for 

hierarchy role is defined as follows: 

 G = {V, E} 

Where 

{ } cruiruroV UUU  rop,n, us, =  
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5.3.2.2 Non-hierarchy Role. 

For the FGAC graph, refer to Figure 5. For the RBAC graph, refer to Figure 6.  

The graph for one user with many roles with FGAC priority over RBAC option in non-

hierarchy role is: 

 

Figure 19. One User with Many Roles with FGAC Priority over RBAC System and the Role System 
is Non-hierarchy Role 

 

 The definition of the fine-grained role-based access control with single user to 

many roles for FGAC priority over RBAC system in the non-hierarchy role is: 

• Please refer to section 5.3.2.1 for definition of components, vertices 

representation of the system. 

• The  one user with many roles with FGAC priority over RBAC graph for non-

hierarchy role is defined as follows: 

 G = {V, E} 
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Where 
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5.4 A combined system for many users with many roles. 

This category is the most complex situation.  This category can be described as 

the combination of all the rules above.  In this many users with many roles, the fine-

grained priority over role-based access control by eliminating the collective rule is 

impossible because the collective rule (rule(s) belonging to the role) is shared by more 

than one user.  Please refer to the algorithm in section 5.4.1 for the one user with many 

roles FGRBAC system.  

 

5.4.1 Many users with many roles with RBAC priority over FGAC. 

 
In the many users with many roles with RBAC priority over FGAC option, when the 

individual rules either conflict or are identical to collective rules, the individual rules will 

be removed.  In this system, the roles in the company can be categorized as hierarchy and 

non-hierarchy roles [Wainer, 2005].  The algorithm for the RBAC priority over FGAC in 

a one user with one role FGRBAC system for both hierarchy and non-hierarchy role is: 

for all USt ∈ us do 
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for all IRk ∈ irut do 
for all ROo ∈ rot do 
 for all CRj ∈ cru do  

{ 
  if IRk conflicts or replicate CRj then  
   irut = irut – { IRk } 
   V = V – { IRk } 
   E = E – (USt, IRk) 
  } 

 
 
 
 

 

5.4.1 The hierarchy Role. 

For the FGAC graph, refer to Figure 5. For the RBAC graph, refer to Figure 6.  

The graph for one user with many roles with RBAC priority over FGAC option in 

hierarchy role is: 

 

Figure 20. Many Users with Many Roles for RBAC Priority over FGAC System in Hierarchy Role 
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 The definition of the fine-grained role-based access control with many users to 

many roles for RBAC priority over FGAC system in the hierarchy role is: 

• Refer to section 5.1 for definition of components.  

• Each vertex represents the following: 

User t: USt 

The set of users is: us ={US1, US2,…, USq} where usi is the ith user and i ≤ 

q 

Name r: Nt 

The set of names is: n ={N1, N2,…, Nq} where ni is the name for ith user 

and i ≤ q 

Password s: Ps 

The set of password is: p ={P1, P2,…, Pq} where pi is the password for ith 

user and i ≤ q 

Role o: ROo 

The set of roles is: ro ={RO1, RO2,…, ROp} where roo is the oth role for  

user i and o ≤ p 

An individual rule k:  IRk  

The set of individual rules is: iru = {IR1, IR2,…, IRm} = {IR1, IR2,…, IRf} 

- {CR1, CR2,…, CRn}- where IRk is the kth individual rule for us ith user 

and k ≤ m 

The set of individual rules for a user i:  irui ⊆ iru  

A collective rule j: CRj 
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The set of collective rules is: cru = {CR1, CR2,…, CRn}- where CRj is the 

jth collective rule for ith user and j ≤ n 

The set of collective rules for ith user:  crui ⊆ cru 

 

• The  many users with many roles with RBAC priority over FGAC graph for 

hierarchy role is defined as follows: 

 G = {V, E} 

Where 
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5.4.2 Non-hierarchy Role. 

For the FGAC graph, refer to Figure 5. For the RBAC graph, refer to Figure 6.  

The graph for many users with many roles with RBAC priority over FGAC option in 

non-hierarchy role is: 

User 2

User 3

User 4

Role 1

ru

ru

ru

Role 2

ru

ru

ru

Role 3

ru

ru

ru

User 1

Name 
1

Password 
1

Name 
2

Password 
2

Name 
3

Password 
3

Name 
4

Password 
4

 

Figure 21. Many Users with Many Roles for RBAC Priority over FGAC System in Non-hierarchy 
Role 

 

 The definition of the fine-grained role-based access control with many users to 

many roles for RBAC priority over FGAC system in the non-hierarchy role is: 

• Please refer to section 5.4.1 for the definition of components, vertices, and 

representation of the system. 

 

• The  many users with many roles with RBAC priority over FGAC graph for non-

hierarchy role is defined as follows: 
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 Varieties of the combined access control system are shown in this chapter.  The 

varieties of one user with one role, one user with many roles, many users with one role, 

and many users with many roles are explained.  In addition to the varieties of users 

against roles, FGAC priority over RBAC and RBAC priority over FGAC are also 
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explained in this chapter.  In the next chapter, the result sample of the simulation is 

shown.   



 

50 
 

 

Chapter 6 

Simulation 

 Simulation results in this chapter show the differences of information kept by the 

user, data, and roles in the FGAC, RBAC, and FGRBAC systems.  This information 

shows the FGRBAC system is more secure than the RBAC system and simpler than the 

FGAC system. 

 A simulation program was implemented using the Java programming language.  

The structures of the program used are fixed variables, and simple “if….else” statements.  

The program requires input from the user for systems such as FGAC priority over RBAC 

or RBAC priority over FGAC, user ID and user password.  After the user enters these 

three items of information, the program lets the user know what information is stored in 

the user, data, and role (if available, i.e., RBAC and FGRBAC systems) variables.  From 

this information, the simplicity and the security structure can be determined from among 

FGAC, RBAC and FGRBAC system.  There are three users, two roles, and two files.  

The program generates and shows the user’s individual rules, information carried by data, 

and the role’s rules from the information entered by the user. 

The information displayed by the simulation is: 
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Table 1.  Comparison of Information Stored in FGAC, RBAC, and FGRBAC 
Information stored in user Information stored in data Information stored in role

FGAC User ID User ID of the user allowed to access the data
User password Password of the user allowed to access the data
Access rights for specific file Access rights of the specific user

RBAC User ID Role that is allowed to access the data Password of the role
User password Access right of each role
Role of the user

FGRBAC User ID Role that is allowed to access the data Password of the role
User password Access right of each role User ID of the accessing user
Role of the user Access right of each role (Collective Rule)
Access rights for specific user (Individual Rule)

  
 The results in Table 1 show the differences of the information stored in user, data, 

and role between FGAC, RBAC, and FGRBAC.  The FGRBAC system gives more 

security than the RBAC system because it provides information about the users who 

access the specific files.  The information of the user can be retrieved from the role 

information as can be seen in Table 1.  In the RBAC system, the role cannot store 

information about the user accessing the data.  In addition, the FGRBAC system requires 

less information stored in the user and data than the FGAC system.  When a user accesses 

the data in the system, the data needs to check the ID, password, and the access rights of 

the user.  Table 1 show the FGRBAC system only requires the data to check the role of 

the user and the access rights of the role instead of the ID, password, and access rights of 

the user as in the FGAC system.  In addition to the data stored in the data inside the 

FGRBAC system, the user does not need to store all the access rights since all the access 

rights have been stored in the role.  Refer to Table 2 for example of FGAC system, Table 

3 for example of RBAC system, and Table 4 for example of the combined FGRBAC 

system. 
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Table 2.  Example of Information Stored in User, and File for FGAC System 

User A User B User C
Information stored in user ID : A ID : B ID : C

Password : A Password : B Password : C
Access Right for: Access Right for: Access Right for:
  - File 'A' : Read, Write   - File 'A' : Read   - File 'A' : Read
  - File 'B' : Read   - File 'B' : Read, Write   - File 'B' : Not Available

Information stored in File 'A' ID : A ID : B ID : C
Password : A Password : B Password : C
Access Right : Read, Write Access Right : Read Access Right : Read

Information stored in File 'B' ID : A ID : B ID : C
Password : A Password : B Password : C
Access Right : Read Access Right : Read, Write Access Right : None

Example of the information stored in FGAC system

 

Table 3. Example of Information Stored in User, Role, and File for RBAC System 
User A User B User C

Information stored in user ID : A ID : B ID : C
Password : A Password : B Password : C
Role : Student Role : Role : Teaching Assistant

  - Student
  - Teaching Assistant

Information stored in role : Student Password: Stu Password: Stu Password: Stu
Information stored in Teaching Assistant Password: TA Password: TA Password: TA
Information stored in File 'A' Access Right for role "Student" Access Right for role "Student" Access Right for role "Student"

  - Read   - Read   - Read
Access Right for role "Teaching Assistant" Access Right for role "Teaching Assistant" Access Right for role "Teaching Assistant"
  - Read   - Read   - Read
  - Write   - Write   - Write

Information stored in File 'B' Access Right for role "Student" Access Right for role "Student" Access Right for role "Student"
  - None   - None   - None
Access Right for role "Teaching Assistant" Access Right for role "Teaching Assistant" Access Right for role "Teaching Assistant"
  - Read   - Read   - Read
  - Write   - Write   - Write

Example of the information stored in RBAC system

 

Table 4.  Example of Information Stored in User, Role, and File for FGRBAC System 
User A User B User C

Information stored in user ID : A ID : B ID : C
Password : A Password : B Password : C
Role : Student Role : Role : Teaching Assistant
Email Storage Size: '2 GB'   - Student Email Storage Size: '2 GB'

  - Teaching Assistant
Email Storage Size: '2 GB'

Information stored in role : Student Password: Stu Password: Stu Password: Stu
Accessing user : A Accessing user : B Accessing user : C
Email Storage Size: '2 GB' Email Storage Size: '2 GB' Email Storage Size: '2 GB'

Information stored in Teaching Assistant Password: TA Password: TA Password: TA
Email Storage Size: '4 GB' Email Storage Size: '4 GB' Email Storage Size: '4 GB'

Information stored in File 'A' Access Right for role "Student" Access Right for role "Student" Access Right for role "Student"
  - Read   - Read   - Read
Access Right for role "Teaching Assistant" Access Right for role "Teaching Assistant" Access Right for role "Teaching Assistant"
  - Read   - Read   - Read
  - Write   - Write   - Write

Information stored in File 'B' Access Right for role "Student" Access Right for role "Student" Access Right for role "Student"
  - None   - None   - None
Access Right for role "Teaching Assistant" Access Right for role "Teaching Assistant" Access Right for role "Teaching Assistant"
  - Read   - Read   - Read
  - Write   - Write   - Write

Example of the information stored in FGRBAC system

 

As more information is stored in the data and user areas, the more complex a 

system becomes.  This result shows that the FGRBAC is much better than the FGAC and 

RBAC system because it is more secure than the RBAC system and less complex than 
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the FGAC system.  Table 5 show the reduced information stored in FGRBAC system 

compared to FGAC system. 

  

Table 5.  Number of Information Stored in FGAC compared to FGRBAC 

FGAC system RBAC system FGRBAC system
Information load for 2 Users 13 13 13

2 Roles - 2 6
2 Files 19 8 15

32 23 34
30 24 30

Information load for 10 Users 60 40 40
2 Roles - 2 14
2 Files 80 8 15

140 50 69
100 24 100

Information load for 30 Users 180 120 120
2 Roles - 2 33
2 Files 240 8 120

420 130 273
300 24 300Number of comparisons

Number of data stored in the System

Total

Total

Total

Information load for

Number of comparisons

Number of comparisons

 

Note: Number of comparison is comparisons between information stored in the data and 

collective rules.  The more comparisons, the more secure a system.
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Chapter 7 

Algorithm and Tools to Support the 

Combined System 

In chapter 5, we proposed different combinations of the FGAC and RBAC system 

in a graphical format.  The basic foundation of the combined system is based on the 

individual rules of the FGAC system and the collective rules of the RBAC system.   

7.1 Algorithm of the combined FGAC and RBAC system. 

The data must check the user’s access right before it allows the user to access a 

database in the system.  The data will check from the individual rules of the user before it 

goes to the collective rules of the user’s role. The algorithm is used to support the 

combined system by simplifying the idea in pseudocode.  The algorithm representation of 

the system is: 

FOR all rules of the user (individual rules)   

     IF rule of the user match the data access right 

     THEN user is allowed to access the data 

     ELSE  

          FOR all user’s role 
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   FOR all rules of the user’s role (collective rules) 

         IF rule of the user’s role match the data access right 

         THEN user is allowed to access the data 

         ELSE user is rejected to access the data 

 

 

7.2 Automaton for the Combined FGAC and RBAC System 

Automaton is used in our proposal in order to express the paths taken by the 

processes to match the rules (individual and collective) from the user with the 

information kept by the data in the FGRBAC system.  Each node in the automaton 

represents either the individual user itself or the role of the user.  Contained inside the 

node are the rules to decide whether the access is accepted or rejected when compared to 

the information inside the data.  The acceptance is represented by ‘a’ and rejection is 

represented by ‘r’.  These ‘a’ and ‘r’ are used in both automaton and grammar.  The 

automaton used is Deterministic Finite Automaton (DFA).  DFA is used to define the 

combined system as an abstract model.  The automaton facilitates implementation of the 

combined system in a programming language.  If nondeterministic finite automaton 

(NFA) is selected instead of DFA, it must be translated into DFA before it can be 

implemented in the computer languages for easier translation, which involves more steps 

and hence is less efficient.  The DFA graph is: 
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Figure 22.  DFA for Combined RBAC and FGAC System with k =4 
 

 The definition of Deterministic Finite Automaton (DFA) representations when  

k = 4 => ({q0, q1, q2}, {a, r}, q0, {q2}) 

q = user or user’s role where the individual rule(s) or collective rule(s) belong to. 

a = accepted 

r = rejected 

q0 = the starting state, it represents the user (where individual rule(s) belong to). 

q1, q2 = user’s role (where collective rule(s) belong to) 

q2 = the condition or role when the request of a certain data is accepted (can be  defined 

as accepted state) 

 = direction of the action taken. 

For example, if the permission of the access control process is: “rrrrra”, then it will start 

from q0 and the process is rejected (‘r’) and it turns to q1.  From q1, it goes to the second 

rejection (‘r’) and it goes to q2.  From q2, it has another rejection (‘r’) and will go back to 

q2.  The rejection after q2 will cause a recursive process in q2 until the access permission 
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is accepted (‘a’), which is the last process in “rrrrra”.  With a result of ‘a’ from q2 goes to 

q3, which is an accepted state.  This process means the permission is granted. 

7.3 Grammar for the combined FGAC and RBAC system. 

The grammar in this paper shows the languages accepted by the automaton 

defined in section 7.2.  If the language is supported by this grammar, then the language 

can be implemented in the FGRBAC system because it also is supported by the DFA 

defined in section 7.2.  The example below is representing the accepting ‘a’ or rejection 

‘r’ of the access permission in each node in the DFA.  In order to introduce the combined 

system mathematically in a formal way, grammar is used. The grammar used in this 

research is a regular grammar.  The language recognized from the DFA in Figure 19 is: 

{a, r}* {a} 

Suppose we take a string, say x = rraarrara, the trace of its processing by the finite 

automaton is: 

Substring processed so far State 
Λ q0 
r q1 

rr q1 
rra q2 

rraa q2 
rraar q0 

rraarr q1 
rraarra q2 

rraarrar q0 
rraarrara q2 
 

Table 5.  Substring Process with DFA in Figure 19 for rraarrara 
 

If the line of Table One is listed consecutively with the separation of =>, then we obtain 

the derivation of: 
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q0 => rq1 => rrq1 => rraq2 => rraaq2 => rraarq0 => rraarrq1 => rraaraq1 => rraararq0 

=> rraararaq2 

The production of the form used in this system is: 

1. P  a 

2. P  aP 

3. P  rP 

With the application of the production above, the last step in the derivation becomes: 

rraararq0 => rraarara 

The inferred string based on the production used in the system is: 

String Inferred For the language of Production Used String Used 
(i) r rP Λ 
(ii) rr rP r 
(iii) rra aP rr 
(iv) rraa aP rra 
(v) rraar rP rraa 
(vi) rraarr rP rraar 
(vii) rraarra aP rraarr 
(viii) rraarrar rP rraarra 
(ix) rraarrara a rraarrar 

 
Table 6. Inferred string for the string or rraarrara 

 

7.4 A proof for the Combined FGAC and RBAC System 

 In order for the process to be accepted by the FGRBAC system, the following 

proposition must be satisfied: 

Proposition: The access rights information of the data has to match the rule(s) of the 

user (the rules belong to the user or individual rules) or the collective rule(s) (the rules 

belong to the user’s role) for a user  to access the data.. 
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 The DFA in section 7.2 has to be true in order for the above proposition to be true.  

Mathematical induction is used to prove the above proposition based on the DFA in 

section 7.2 and the grammar in section 7.3.   

   The mathematical induction representation is: 

 
 
 
 
 
k = number of user’s role + 1, where 1 represents the user itself. 

i = user (represented by q0 in DFA section 7.2) or the ith role of the user (represented by 

q1, q2 in DFA section 7.2)  

δ = the transition state from current state (Si) with the result of the current state (a, r) 

Si = the current state of the system, where S1 is the user and S2, S3 are the user’s role.  

a = ‘accepted’ request 

r =  ‘rejected’ request 

 

Basis: δ’ (s, Є) = s.  That is, if we are in state ‘s’ and read no inputs, then we are still in 

state s.  In another word, if the state ‘s’ is not an accepted state and the information inside 

the data does not match any of the rules (individual or collective rules), then the request 

will be denied or rejected. 

Induction: If the result of the match between the rules inside the data and the rules of the 

user (individual rules and collective rules) is simplified as ‘r’ as rejected and ‘a’ as 

accepted, the results can be formed as a string.  Suppose w is a string that results from the 

match between data’s rules and user’s rules, w can be categorized as the form of xy; that 

is, y is the last symbol or character of w, and x is the string consisting of all but the last 

U
k

i
i ras

1
)},(,{

=
δ
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symbol.  For example, w = rrrra is broken into x = rrrr and y = a. Then δ’ (s, w) = δ (δ’ (s, 

x), a).   

 In order to compute δ (s, w), δ’ (s’, x) must be computed. The state of the 

automaton after processing δ’ (s’, x) is in all but the last symbol of w.  Suppose this state 

is p; that is δ’ (s’, x) = p.  Then δ (s, w) is what we get by making a transition from state p 

on input r, the last symbol of w.  That is, δ (s, w) = δ’ (p, r).  This induction shows that 

the result is accepted because ‘r’, the last input, is an accepted match. 

 The algorithm in section 7.1 shows the basic programming logic of the system in 

the FGRBAC system.  The expression of the path taken in the system is represented by 

DFA in section 7.2.  The language formed from the result of the path taken in DFA is 

supported by grammar in section 7.3.  The rule to define the system access process is 

supported by mathematical induction.  

 

7.5 Implementation of the FGRBAC System 

 The FGRBAC system can be implemented in Java.  Graphs in the FGRBAC 

system can be represented in a tree structure in the implementation of the system. 

Insertion or deletion of users, roles, and rules inside the FGRBAC system can be realized 

by categorizing the users, roles, and rules using XML transformation language.  XML is 

extensible Mark-up Language, a specification developed by the World Wide Web 

Consortium.  The reason for using the XML transformation language is the flexibility of 

XML.  If the users, roles, and rules are categorized in XML transformation language, it 

can be used by any languages in addition to JAVA for the delegation and revocation 

process of the system.  For example, the XML implementation from figure 7 is: 
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The implementation of the XML in the system above shows its flexibility.  When the 

rules or role needs to be delegated or revoked, it can be easily done by recognition of the 

tag name.   The delegation and revocation process can be accomplished with any 

languages if the structure of the system is implemented in XML format as in the previous 

example. 

 

 

 

 

<user1> 
 <name> John </name> 
 <password> john </password> 
 <rule1> …. </rule1> 
 <rule2> …. </rule2> 
 <role> 

 <rule3> …. </rule3> 
 <rule4> …. </rule4> 

  <rule5> …. </rule5> 
 </role> 
</user1> 
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Chapter 8 

Conclusion 

 Although the development of access control systems has improved, problems can 

be found in these systems such as the complexity problem in FGAC and lack of desired 

security in RBAC.  Combining the FGAC and RBAC system can solve the complexity 

and insecurity problems.   

 Prior to this research, existing access control systems were based on either FGAC 

or RBAC systems.  Any improvement that had been done added more layers of roles in 

the RBAC system.  This kind of improvement is not secure enough due to the lack of user 

identity in the system.  In addition to the improvement in the RBAC system, the 

complexity of information needs to be carried by the data in the FGAC system.  

Introduction of the combined system is a big step in improving the access control system.  

The combined system, FGRBAC, is implemented by injecting the user information into 

the RBAC system. 

 In the combined system, there are two problems: repetition and conflict between 

individual rules and collective rules.  The solution to these problems is to eliminate the 

duplicated or conflicting rules.  The way to eliminate these duplications and conflict is to 

choose either the FGAC priority over RBAC method or the RBAC priority over FGAC 

method.  These two methods can be implemented in the system in the following format: 
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one user one role, one user many roles, many users one role, or many users with many 

roles.  Chapter 5 includes a detailed explanation of the solution. 

One of the advantages of this system is the reduced information load required by 

the user and the data in the system compared to the pure FGAC system.  With this system, 

not all the rules must be store for the user.  Only part of the user’s individual rules and the 

roles are stored.  Data within the system does not have to keep all users’ information as in 

FGAC system.  The data is required to keep the role of the user who is allowed to access 

the data.  When the user requests access to the data, the user’s roles are matched to the 

data’s rule to permit or deny access to the data.   

The other advantage of this system relates to the security issue.  The FGRBAC 

system provides a more secure system compared to the RBAC system.  In the FGRBAC 

system, the user ID is kept inside the data to backtrack when there is a security breach.  In 

the pure RBAC system, this method is not provided.  When a security breach occurs in an 

RBAC system, it is impossible to backtrack a use since the data does not keep the user’s 

identification.  Refer to Table 1 in chapter 6 for a better understanding of the differences 

in FGAC, RBAC, and FGRBAC system.   

 We have used an automaton, a grammar, and a proof to validate the FGRBAC 

system.  The automaton used in this research is a deterministic finite automaton (DFA).  

The automaton is used to express the paths taken by the system to match the rules 

(individual rules and collective rules) of the user with the information kept by the data in 

the FGRBAC system.  A DFA is selected to save the running time of the system 

implementation.  If nondeterministic finite automaton (NFA) is selected instead of DFA, 

translation from NFA to DFA is required before the system implementation.  
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 The grammar used in this research is a regular grammar.  A regular grammar is 

selected to show the languages that are accepted by the automaton.  If the language is 

supported by the grammar in chapter 7, it is certain that the language can be implemented 

in the FGRBAC system.  The mathematical induction in chapter 7 is used to prove that 

the FGRBAC theorem has to be true for the system implementation based on the 

automaton and grammar in chapter 7. 

 The research done for this thesis combines the FGAC and RBAC systems.  

Further research can be done by implementing the delegation and revocation of the users 

and their roles in the FGRBAC system.  Delegation and revocation of the FGRBAC 

system will show how users and their roles are added or removed from the system.  The 

system can be used by any computer system with the implementation of delegation and 

revocation in the FGRBAC system.  In addition to delegation and revocation, this system 

can also be implemented in XML transformation language.  The implementation of the 

FGRBAC system can show the flexibility of this system to be implemented in various 

machines.   
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