

A COMBINED FINE-GRAINED AND ROLE-BASED

ACCESS CONTROL MECHANISM

By

HONGI CHANDRA TJAN

Bachelor of Science

Oklahoma State University

Stillwater, Oklahoma

2001

Submitted to the faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the degree of

MASTER OF SCIENCE
May 2006

C O P Y R I G H T

By

Hongi Chandra Tjan

Graduation Date
(May, 2006)

iii

A COMBINED FINE-GRAINED AND ROLE-BASED
ACCESS CONTROL MECHANISM

Approved By:

_ _____ ______Dr. Johnson P. Thomas_____ ________ _
Thesis Adviser

_ ___ _________Dr. George E. Hedrick______________ _

_ __ __ _______Dr. Debao Chen_____ ___________ _

_ _______ ______Dr. Gordon Emslie__ ______ ______ _
Dean of the Graduate College

iv

TABLE OF CONTENTS

Chapter Page

I. TABLE OF FIGURES.. vi

II. LIST OF TABLES... viii

III. Chapter 1 Introduction... 1

IV. Chapter 2 Definitions.. 4

V. Chapter 3 Literature Review... 7

VI. Chapter 4 Steps for Accessing the Combined Access

 Control system ... 13

VII. Chapter 5 FGAC-RBAC combined System............................... 16

5.1 Combined system for one user with one role.. 23

5.1.1 One user with one role with RBAC priority

 over FGAC option... 25

5.1.2 Single user with single role for FGAC priority over RBAC option.

 27

5.2 Combined system for many users with single role. 29

5.3 Combined system for single user with many roles. 32

v

5.3.1 One user with many roles with RBAC

 priority over FGAC option.. 34

5.3.2 One user with many roles with FGAC

 priority over RBAC option. .. 39

5.4 Combined system for many users with many roles. 43

5.4.1 Many users with many roles with RBAC priority over FGAC. .. 43

5.4.1 Hierarchy Role. .. 44

VIII. Chapter 6 Simulation... 50

IX. Chapter 7.. 54

X. Algorithm and Tools to Support the Combined System.............. 54

7.1 Algorithm of the combined FGAC and RBAC system. 54

7.2 Automaton for the Combined FGAC and RBAC System 55

7.3 Grammar for the combined FGAC and RBAC system. 57

7.4 Mathematical Induction for the Combined FGAC and RBAC System.. 58

7.5 Implementation of the FGRBAC System ... 60

XI. Chapter 8 Conclusion ... 62

XII. References... 65

vi

TABLE OF FIGURES

Figure Page

1. Figure 1. Example of Graph for Combined System ... 2

2. Figure 2. Example of FGAC... 8

3. Figure 3. Example of RBAC with Collective Rules ... 10

4. Figure 4. Combination of Fine-grained and RBAC.. 14

5. Figure 5. Fine-grained access control's rule.. 16

6. Figure 6.Role-based Access Control's Rule.. 17

7. Figure 7. Fine-grained role-based access control ... 18

8. Figure 8. Graph of the Combined System .. 20

9. Figure 9. Fine-grained role-based access control with fine-grained priority over role-

based. .. 22

10. Figure 10. Fine-grained role-based access control with role-based priority over 11.

fine-grained. .. 23

11. Figure 11. Combined Access Control – FGRBAC for One User to One Role..... 24

12. Figure 12. One user with one role with RBAC priority over FGAC.................... 26

13. Figure 13. One user with one role with FGAC priority over RBAC.................... 28

14. Figure 14. Graph for many users with one role for RBAC priority over FGAC. 30

15. Figure 15. The combined access control – FGRBAC for one user to many roles 33

vii

16. Figure 16. One User with Many Roles with RBAC Priority over FGAC System and

the Role System is Hierarchy Role ... 36

17. Figure 17. One User with Many Roles with RBAC Priority over FGAC System and

the Role System is Non-HIERARCHICAL.. 38

18. Figure 18. One User with Many Roles with FGAC priority over RBAC System and

the Role System in Hierarchy Role... 40

19. Figure 19. One User with Many Roles with FGAC Priority over RBAC System and

the Role System is Non-hierarchy Role.. 42

20. Figure 20. Many Users with Many Roles for RBAC Priority over FGAC System in

Hierarchy Role .. 44

21. Figure 21. Many Users with Many Roles for RBAC Priority over FGAC System in

Non-hierarchy Role... 47

22. Figure 22. DFA for Combined RBAC and FGAC System with k =4 56

viii

LIST OF TABLES

Table Page

 1. Table 1. Comparison of Information Stored in FGAC, RBAC, and FGRBAC.... 51

 2. Table 2. Example of Information Stored in User, and File for FGAC System..... 52

 3. Table 3. Example of Information Stored in User, Role, and File

 for RBAC System ... 52

 4. Table 4. Example of Information Stored in User, Role, and File for FGRBAC

System... 52

 5. Table 5. Number of Information Stored in FGAC compared to FGRBAC.......... 53

 6. Table 6. Inferred string for the string or rraarrara.. 58

1

Chapter 1

Introduction

 Companies and enterprises need a reliable and secure system to manage and

analyze their data. Researchers have developed several kinds of secure systems for data

access. In particular, Fine-Grained Access Control (FGAC) system and Role-Based

Access Control (RBAC) are widely used secure systems [Andrei, 2005]. The FGAC

system determines access control rights based on individual data. The access rights of

every user allowed to access the data are stored inside the data itself [Damiani, 2002]. In

RBAC, access rights are defined based on the position or role of the user [Zhang, 2003].

There may be multiple users with the same role. These multiple users may have access to

the group or collection of data.

 In FGAC, the access rights of a user are stored in the data itself [Damiani, 2002].

Hence, if multiple users have access to the same data, the data must be replicated

multiple times. This results in a complex system which does not scale well [Ahn, 2000].

The RBAC system has a simpler environment. Since all the users are grouped based on

categories, the access right to data is based on the user’s category. The problem with the

RBAC system is the absence of identity of the user. Since all the users are recognized by

their categories, the real identity of the user is lost. All activities of the user in the system

2

are based on their categories, and the user’s real identity is therefore unknown. Therefore,

a RBAC system results in a less secure system.

 Combining both the FGAC and RBAC system can solve the problem of

complexity and lack of security. The main objective of combining FGAC and RBAC is

to inject the users’ identity into the RBAC system while reducing the amount of data

replication involved. In the combined FGAC-RBAC systems, all the users in the system

are categorized into several groups, and at the same time, the users still retain their

identity. When the user accesses the data, the access permission is based on the user’s

category. All activities of the users are based on the users’ identity and category. The

combined system is much simpler because data is not replicated.

 Graphs are used to present the combined system. Graphs formalism is used to

define the process of combining the two systems. The following figure is an example of

a graph:

Figure 1. Example of Graph for Combined System

 Automata, and grammar are used in addition to the graph. In our approach, the

process of accessing data is represented as a number of transitions from one state to

another. An automaton is used to capture the transition between states and the

corresponding inputs and outputs in our system. Furthermore, the automaton is formally

3

represented using grammatical representation. Properties of the combined system are

proven.

 A definition for the terms used in the thesis is presented in chapter 2. A review of

FGAC and RBAC systems is presented in chapter 3. In chapter 4, we propose our

solution to the combined access control system. In chapter 5, we show a variation of the

combined FGRBAC system such as the FGAC priority over RBAC in the system in

single user with single role as explained in chapter 5. Partial results of the simulation are

shown in chapter 6. The simulation in this chapter shows the differences of the

information load stored inside FGAC, RBAC, and FGRBAC systems. An algorithm, a

DFA, and a grammar are used to support the FGRBAC system shown in chapter 7. The

results are summarized in Chapter 8.

4

Chapter 2

Definitions

In this chapter, terms used in this thesis are defined.

CFG. Context-free-grammar, a formal grammar that contains four important components

in the grammatical description of a language, that is: G = (V,T,P,S), where:

 V → Variables, which is also called nonterminal or syntactic categories.

 T → Terminal or terminal symbols, which is a finite set of symbols that form the

stings of the language being defined.

 P → Productions, which is a finite set of rules that represent the recursive

definition of a language. Each production consists of:

 A variable that is being defined by the production. This variable is often

called the head of the production.

 The production symbol ‘→’

 A string of zero or more terminals and variables. This string, called the

body of the productions, represents one way to form stings in the language

of the variable of the head.

5

S → Start symbol, which is one of the variables, represents the language being

defined.

Collective rule. A rule that corresponds to the user’s role, not the user itself (rule in

 RBAC).

Data Rules. rules that belong to the data in the system, which define the access right of

users. (Defines which user can read or write the data).

Delegation. The process of assigning a role to a new user by another user who is more

senior or has a higher ranking in the system.

DFA. Deterministic Finite Automata, is a quintuple M = (K, , , s, F) where

K is a finite set of states,

 is an alphabet,

 K is the initial state,

F a subset of K is the set of final states, and

 is a function from K cross to K.

FGAC. Fine-grained access control, a system that allows the definition and enforcement

of access restrictions for individual users directly on the structure and content of

the documents.

Individual rule. The right of every user that responds directly to the user itself without

going through the user’s role.

6

RBAC. Role-based access control, a security system that is based on the roles of the user

or position of the user inside the system.

Revocation. The opposite of delegation, that is, the process whereby an active entity is

withdrawn from a distributed environment by another entity that is superior to the

eliminated entity.

Rule. Defines the access right of the user to the data. Categorized as Individual Rule,

 Collective Rule, and Data Rule.

Rule based access control. Access control system that is based on the rules where all

access permission is controlled by rule comparison (between rules that belong to

data and rules that belong to either the user or the role).

7

Chapter 3

Literature Review

Fine-grained access control was introduced by E. Damiani in his paper, “A fine-

grained access control system for XML documents.” [Damiani, 2002]. Prior to fine-

grained systems, file-system security depended on the file itself (file-level systems) [Ravi,

2000]. A fine-grained security system protects the entire system at a fine grain so that the

system can be accessed only by an authorized user. In file-level systems, everyone could

access the system not simply authorized users. Thus, the fine-grained security system

introduced by Damiani was better than the previous system that implemented security at

a file-level.

The Fine-Grained Access Control (FGAC) system is based on “individual rules”

[Damiani, 2002]. Individual rules are the rules associated with or corresponding directly

to the user. These individual rules describe clearly what data the user can access and

what data the user cannot access. The following graph is an example of a FGAC system

[Koch, 2002]:

8

 Figure 2. Example of FGAC

 In Figure 2, ru1 and ru2 are individual rules that describe the rights of the user.

The definition of the fine-grained access control in Figure 2 is as follows:

The components of the system are:

 User: The person who is accessing the system.

 Name: User’s identification, which is unique or specific for every user.

 Password: User’s security code, which verifies the identification of the user

 Individual rule: The rule(s) that define the rights of the user in the system.

• Each vertex represents the following:

User: us = a User

Name: n = name for user

Password: p = password for user

An individual rule k: IRk

The set of individual rules is: iru ={IR1, IR2,…, IRm} where IRi is

individual rule i

The set of individual rules for a user i: irui ⊆ iru

• The FGAC access control system graph is defined as follows

9

 G = {VF, EF}

Where

{ } iruVF U pn, us, =

{ } { }UU
m

i
iIRusEF

1
),((p)(us, n),{(us,

=
=

 In the FGAC system, a user logs in with his username and password. The

information pertaining to a user (such as his username and password) are also stored in

the data. Other security related information pertaining to data such as the access rights of

the user in relation to that particular data are also stored as part of the data. These are

stored as individual rules within the data. Information pertaining to a user such as his

username, passwords, and the data he can access with corresponding access rights, size of

e-mail permitted for the user, etc. is also stored separately as individual rules associated

with that user in the FGAC system. When the user wants to access a datum, the datum

will match the user’s information. This is stored as individual rules within the data along

with the separate individual rules that store the user’s information to verify the rights of

the user [Wainer, 2005]. The FGAC system is, therefore, a very complex system because

of its individuality. When added into the system, a new user is assigned individual rules.

Some of them may be new rules, whereas others may be existing rules when rules such as

access rights already exist. However, the associated parameters such as the name of the

user must be added.

 The data in an FGAC system needs to keep all the users’ information. If there is a

new user added to the system, the authentication information of the database needs to be

updated, otherwise, he or she will not be able to access the data. Therefore, this kind of

10

system is complicated. If the number of users and data is permanent and small, an FGAC

system can be used. If a system is flexible (frequently updated) and large, an FGAC

system incurs a large overhead.

Role-Based Access Control system is the other commonly used security system

[Ahn, 2000]. In the Role-Based Access Control system (RBAC), users have access based

on the role(s) of the users in the system. This means every user who is allowed to access

the system has his/her roles, and, once the user is inside the system, the identity of the

user is ignored. The only information that matters is the user’s role.

The RBAC system is also based on rules [Ahn, 2000]. The rules in RBAC are

recognized as collective rules or group rules. Collective rules correspond to the user’s

role. These collective rules define what data a role is allowed to access. The following

figure is an example of an RBAC system [Koch, 2002]:

User

Role

ru5ru4ru3

 Figure 3. Example of RBAC with Collective Rules

 In Figure 3, ru3, ru4, and ru5 illustrate collective rules, which describe what data

the user’s role can or cannot access.

The definition of the role-based access control in Figure 3 is as follows.

• Explanation of the vertices:

 Role: The position of the user inside the system.

 Collective or group rule: The rule(s) define the right of the role in the system

11

• Each vertex represents the following:

Role: roi represents Role for user i

A collective rule j:

The set of collective rules is: cru = {CR1, CR2,…, CRn}- where CRi is

collective rule i

The set of collective rules for a user i: crui ⊆ cru

• The RBAC access control system graph is defined as follows

 G = {VR, ER}

Where

{ } cruVR U ro =

{ }U
n

i
iCRroER

1
),(

=
=

 In the RBAC system, collective rules that specify the roles of a user are stored in

the system. These new rules are also stored in the data specifying which roles can access

the data. When a user wants to access data, the system will match the collective rules

stored in the system with those stored in the data to verify the rights of the user. When

the data in the system has been compromised by an attacker, the role of the user who

accessed the data will be recognized, but not the identity of the individual himself.

Therefore the RBAC system is insecure.

 The database in the RBAC system must retain all the information about the user’s

role [Delis, 2005]. The RBAC system creates a very simple process if there is a new user

added to the system. The user can be assigned the appropriate roles without creating new

rules. Not all the data has to be updated as in a FGAC system. However, the security is

12

weak compared to the FGAC system. Therefore, the RBAC system can be used in any

system where data is not critical. If the database of the company is critical, the RBAC

system provides less security than FBAC.

 The recent research done by Wainer and Kumar [Wainer, 2005] shows a simple

delegation and revocation process in the RBAC system. The delegation method in

Wainer’s paper is the user-to-user delegation method. [Zhang, 2003] The method

introduced involves the delegation and revocation of certain rights as opposed to Zhang’s

method, which delegates and revokes at the role level. Revocation and delegation at the

role level means the revocation and delegation of all access rights of the user.

 There are pros and cons with both Wainer’s and Zhang’s system. If the system

only requires a simple delegation or revocation of certain rights, then this system is the

best choice. On the other hand, if all the user’s rights need to be delegated or revoked,

then this system is not the best choice.

 The delegation and revocation system [Wainer, 2005] is good for certain access

rights because all the rights are delegated or revoked one by one. This system is bad for

delegation and revocation of a large number of access rights for the same reason, because

it cannot delegate or revoke all the access rights of multiple users at one time.

13

Chapter 4

Steps for Accessing the Combined Access

Control system

 Security systems such as Fine-Grained Access Control (FGAC) and Role-Based

Access Control (RBAC) have several problems such as insufficient security and

complexity. We propose to integrate the FGAC into a RBAC system by adding the

users’ identities to the RBAC system instead of eliminating them as in the original RBAC

system. Hence, our proposed system provides the security of FBAC and the simplicity of

RBAC.

 In the combined system, there are two kinds of accounts activated when a user

signs in to the system. One of the accounts is a fine-grained system account, where the

user’s personal identity is stored. The other is a role-based system account, where the

role or position of the user in the system is stored. Further explanation is given in Figure

4.

14

System

User

Authentication

Role 1 Role 2

Role 3

Role 4

Collective Rule

1
3

2

4

5

Fine- grained system

Individual Rule

Figure 4. Combination of Fine-grained and RBAC

The steps involved in a combined system are shown in Figure 4:

1. The user enters identification and password.

2. If the user’s identification and password is authenticated, the user is directed

to the system and assigned to his or her role in the system. In this step, two

accounts are activated; the first is the user identification (fine-grained system);

the second is the user’s role(s) in the system (role-based system).

3. If the user’s permission is denied, then the user is not allowed to enter the

system and is informed of his or her rejection.

4. After the user is granted access, he or she can use the system directly without

going through the authentication stage.

5. Whenever he or she wants to store edited data, the user is requested to re-enter

his or her information and password.

15

The difference between role-based access control and the combination of Fine-

Grained and Role-Based Access Control (FGRBAC) is defined in step 4. In the RBAC,

only one account is activated, that is, the user’s role. Figure 4 shows, the combination of

FGAC and RBAC in the system.

In the RBAC system, once the user logs in into the system, the user’s

identification is not checked again. This situation happens after step 4 in Figure 4. When

the user needs to store the edited data, he does not need to verify his ID or password.

This means that step 5 in Figure 4 does not exist in the RBAC system.

In the FGAC system, the entire user’s activity has to pass the individual rules

stored inside the system itself. The individual rules are the rules inside the fine grained

system in Figure 4. Once the user is permitted into the system, all the files that are

allowed to be accessed by the user, which include read, write, delete, store, etc., are

defined by individual rules. This situation can create a complicated and huge number of

individual rules.

The integration of the FGAC into the RBAC system is to keep the user’s personal

identity in the system for security reasons. For example, if there is a problem in the data,

the system can trace the identity of the users who accessed the data. If the system does

not contain the FGAC system, it cannot trace the identities of the users who access the

data.

16

Chapter 5

FGAC-RBAC combined System

 In this thesis, we combine FGAC and RBAC by integrating FGAC into RBAC or

adding the identity of the user in the RBAC system.

Figure 5. Fine-grained access control's rule.

The definition of the fine-grained access control for Figure 5 is:

• Components of the system

 User: The person accessing the system.

 Name: User’s identification, which is unique or specific for every user.

 Password: User’s security code, which verifies the identification of the user.

 Individual rule: The rule(s) that define the rights of the user in the system.

• Each vertex represents the following:

17

User: us = a User

Name: n = name for user

Password: p = password for user

An individual rule k: IRk

The set of individual rules is: iru = {IR1, IR2,…, IRm} where IRk is the kth

individual rule for user and k ≤ m

• The FGAC access control system is defined as follows

 G = {VF, EF}

Where

{ } iruVF U pn, us, =

{ } { }UU
m

k
kIRusEF

1
),((p)(us, n),{(us,

=
=

 Figure 6.Role-based Access Control's Rule

The definition of the role-based access control in Figure 6 is:

• Components of the system

18

 Role: The position of the user inside the system.

 Collective or group rule: The rule(s) define the right of the role in the system.

• Each vertex represents the following:

Role: ro = Role for the user

A collective rule j: CRj

The set of collective rules is: cru = {CR1, CR2,…, CRn}- where CRj is the

jth collective rule for user and j ≤ n

• The RBAC access control system is defined as follows

 G = {VR, ER}

Where

{ } cruVR U ro =

{ }U
n

j
jCRroER

1
),(

=
=

 Figure 7. Fine-grained role-based access control

 The rules ru1 and ru2 associated with the user define the Fine-Grained Access

Control (individual rule) and the rules ru3, ru4, and ru5 associated with the role define

19

the Role-Based Access Control (collective rule). In the combined system, a role is

associated with a user. This is shown in Figure 7. Figure 7 shows association of the user

in FGAC with the role in RBAC. However, conflict and repetition between individual

rule(s) and collective rule(s) can occur in this system.

A conflict happens when one or more rules contradict other rules. For example, if

the individual rule defines the storage size for user ‘A’ as 2 Gigabyte and the collective

rule defines the storage size for user ‘A’ as 4 Gigabyte, then a conflict occurs.

Replication takes place when the existing rule is restated by another rule. For example, if

the individual rule defines the storage size for user ‘A’ as 2 Gigabyte, and the collective

rule defines the same storage size for user ‘A’, we have replication.

Conflict between an individual rule in FGAC and a collective rule in RBAC can

arise in the combined system. For example, assume there are three data called A, B, and

C. If the collective rule in the user’s role permits the user to access data A and data B

and forbids access to data C, but the individual rule permits the user to access data C,

then a conflict occurs. This kind of problem can be solved by an FGAC priority over

RBAC or an RBAC priority over FGAC setting in the system. FGAC priority over

RBAC means that, when the conflict happens, the individual rule is chosen rather than

the collective rule. RBAC priority over FGAC means that the collective rule is chosen

rather than the individual rule when conflict occurs.

20

 Figure 8. Graph of the Combined System

 Figure 8 shows the structure of the combined system. Users enter their ID and

password. In the fine-grained component of the system, there are rules associated with

each individual user. These rules define how each user may access the data. Rules 6 and

7 in Figure 8. In the role-based component of the system, there are roles associated with

each user. A role will have a number of associated rules. Each rule linked to a role

defines the access rights associated with that role. For example, see rules 1, 2 and 3.

 In order to ensure the integrity of the system, rules are associated with the data. If

a user wishes to access data, any rules associated with that user and rules associated with

the roles of the user must match the rules associated with the data. For example, if user

wishes to access data, any of its associated rules, which include individual rules (rules 6

and 7) and collective rules that belong to the user’s role (role 2 and the collective rules 1,

2, and 3) must match rule 4 and rule 5 associated with the data.

The proposed system has a number of advantages.

21

• One advantage of the proposed system is the reduced number of rules required.

All the rules that apply to an individual user do not have to be stored. Typically,

this is because there is considerable overlap in the rules associated with an

individual user and a role. User-specific rules (password for example) must be

stored for each individual; whereas, access rights are stored as rules associated

with roles. The data does not need to maintain all of the individual user rules as in

fine-grained access control. The data only needs to maintain the rules that are

associated with the role of the user who is allowed to access the data. When a user

requests access to data, the rules associated with the user’s role are matched to the

data rules specifying the role’s access rights. For example, rules 4 and 5

associated with the data define that users with roles 1 and 2 are allowed to access

it. Similarly rules 1, 2, and 3 associated with role 2 define the access rights of that

role.

• A typical role-based system does not allow customization. However, in the

proposed system, the combination of roles and individual rules provide the

advantages of both systems.

• Furthermore, the proposed combined system maintains the identity of the user,

providing for a more secure system since the user identity can be traced in the

event of a security breach.

 There are two ways to resolve the rule conflicts and rule repetition problem

between FGAC and RBAC:

• Fine-grained access system (FGAC) priority over role-based access system

(RBAC).

22

In this priority, the collective rule(s) will be removed if conflict or repetition

occurs. Figure 9 shows a graph of the combined system when this priority is

applied to the system shown in figure 7. Here ru1 and ru2 (individual rules)

conflict or repeat with ru3 and ru4 (collective rules).

Figure 9. Fine-grained role-based access control with fine-grained priority over role-based.

• Role-based access system with priority over fine-grained access system.

In this priority, the individual rule(s) will be removed if the individual rule(s)

conflict with or duplicate collective rule(s). Figure 10 shows a graph of the

combined system when this priority is applied to the system shown in Figure 7.

Here ru2 (individual rule) conflicts or repeats with ru3 (collective rule):

23

Role

ru5ru5ru4ru4ru3ru3

userusernamename

Passwor
d

Passwor
d

ru1ru1

Figure 10. Fine-grained role-based access control with role-based priority over fine-grained.

There are four categories of the combined FGAC and RBAC system:

• One user with single role

• One user with many roles

• Many users with single role

• Many users with many roles.

5.1 A combined system for one user with one role.

The simplest format is the combined system for one user with one role. In this

format, the system only considers a single user who has one role in the system. Here, the

combined system can be categorized as RBAC priority over FGAC and FGAC priority

over RBAC. Please refer to the algorithm in section 5.1.1 and 5.1.2 for the one user with

one role FGRBAC system.

24

Figure 11. Combined Access Control – FGRBAC for One User to One Role

 The definition of the fine-grained role-based access control for one user with

single role is:

• Components of the system

User: The person who is accessing the system.

Name: User’s identification which is unique or specific for every user.

Password: User’s security code which verifies the identification of the user

Role: The position of the user inside the system.

Individual rules: The rules that define the individual rights of the user.

Collective rules: The rules that define the rights of the role to which a user

belongs.

Combined rule: The rule(s) that define the rights of the user in the system (this

includes both individual and collective rules).

• Each vertex represents the following:

User: us represents a User

Name: n represents name for user

Password: p represents password for user

Role: ro represents Role for user

25

An individual rule k: IRk

The set of individual rules is: iru = {IR1, IR2,…, IRm} where IRk is the kth

individual rule for user and k ≤ m

A collective rule j: CRj

The set of collective rules is: cru = {CR1, CR2,…, CRn}- where CRj is the

jth collective rule for user and j ≤ n

• The combined access control graph for one user with single role is defined as

follows

 G = {V, E}

Where

{ } cruiruV UU rop,n, us, =

{ } { })),(()),((),(usp)(us,n)(us,
11

UU UUUU
n

j
j

m

k
k CRroIRusroE

==
=

5.1.1 One user with one role with RBAC priority over FGAC option.

 In the category of one user with one role with RBAC priority over FGAC, when

the individual rules either conflict or replicate collective rules, the individual rules will be

removed. For the FGAC graph, refer to Figure 5. For the RBAC graph, refer to Figure 6.

The algorithm for the RBAC priority over FGAC for one user with one role FGRBAC

system is:

for all IRk ∈ iru do
 for all CRj ∈ cru do

26

{
 if IRk conflicts or replicate CRj then
 iru = iru – {IRk}
 V = V – {IRk}
 E = E – (us,IRk)
 }

Example: The graph for one user with one role with RBAC priority over FGAC option is:

Figure 12. One user with one role with RBAC priority over FGAC.

 The definition of the fine-grained role-based access control with one user to one

role for role-based priority over fine-grained access control system is:

• Refer to section 5.1 for definition of components.

• Each vertex represents the following:

User: us represents a user

Name: n represents name for user

Password: p represents password for user

Role: ro represents Role for user

An individual rule k: IRk

27

The set of individual rules is: iru = {IR1, IR2,…, IRm} = {IR1, IR2,…,

IRf}- {CR1, CR2,…, CRn}where IRk is the kth individual rule for user and

k ≤ m

A collective rule j: CRj

The set of collective rules is: cru = {CR1, CR2,…, CRn}- where CRj is the

jth collective rule for user and j ≤ n

• The one user with one role with RBAC priority over FGAC graph is defined as

follows

 G = {V, E}

Where

{ } cruiruV UU rop,n, us, =

{ } { })),(()),((),(usp)(us,n)(us,
11

UU UUUU
n

j
j

m

k
k CRroIRusroE

==
=

5.1.2 A single user with a single role for FGAC priority over RBAC option.

 In the one user with one role with FGAC priority over RBAC category, when the

individual rules either conflict or repeat collective rules, the collective rules will be

removed. For the FGAC graph, please refer to Figure 5. For the RBAC graph, please

refer to Figure 6. The algorithm for the FGAC priority over RBAC in one user with one

role FGRBAC system is:

for all IRk ∈ iru do
 for all CRj ∈ cru do

{
 if IRk conflicts or replicate CRj then
 cru = cru – {CRj}

28

 V = V – {CRj}
 E = E – (ro,CRj)
 }

Example: The graph for one user with one role with FGAC priority over RBAC option is:

Figure 13. One user with one role with FGAC priority over RBAC.

 The definition of the fine-grained role-based access control with one user to one

role for fine-grained priority over role-based access control system is:

• Refer to section 5.1 for definition of components.

• Each vertex represents the following:

User: us represents a user

Name: n represents name for user

Password: p represents password for user

Role: ro represents Role for user

An individual rule k: IRk

The set of individual rules is: iru = {IR1, IR2,…, IRm} where IRk is the kth

individual rule for user and k ≤ m

A collective rule j: CRj

29

The set of collective rules is: cru = {CR1, CR2,…, CRn} = {CR1, CR2,…,

CRg} - {IR1, IR2,…, IRm} where CRj is the jth collective rule for user and j

≤ n

• The one user with one role with FGAC priority over RBAC graph is defined as

follows

 G = {V, E}

Where

{ } cruiruV UU rop,n, us, =

{ } { }UU UUUU
n

j
j

m

k
k CRroIRusroE

11
)),(()),((),(usp)(us,n)(us,

==
=

5.2 A combined system for many users with single role.

This rule is used to define multiple users who have the same role or position. For

example, a company which hires two or more accountants will have multiple users with

the same role or category. In the many users with one role condition, the fine-grained

priority over role-based access control system by eliminating the collective rule can’t be

realized because the collective rule (rule(s) belong to the role) is shared among more than

one user. The algorithm for the RBAC priority over FGAC in one user with one role

FGRBAC system is:

for all USt ∈ us do
for all IRk ∈ irut do
 for all CRj ∈ cru do

{
 if IRk conflicts or replicate CRj then
 irut = irut – {IRk}

30

 V = V – {IRk}
 E = E – (USt,IRk)
 }

Example: The graph of many users with one role with RBAC priority over FGAC option

is:

User 1

Role

rururu

User 2 User 3
User 4Name

1

Password
1

Name
2

Password
2 Name

3

Password
3

Name
4

Password
4

ru ru ru
ru

Figure 14. Graph for many users with one role for RBAC priority over FGAC.

 The definition of the fine-grained role-based access control with many users to

one role for RBAC priority over FGAC system is:

• Refer to section 5.1 for definition of components.

• Each vertex represents the following:

User t: USt

The set of users is: us ={US1, US2,…, USq} where usi is the ith user and i ≤

q

Name r: Nt

31

The set of names is: n ={N1, N2,…, Nq} where ni is the name for ith user

and i ≤ q

Password s: Ps

The set of password is: p ={P1, P2,…, Pq} where pi is the password for ith

user and i ≤ q

Role: ro represents the single Role for all the users

An individual rule k: IRk

The set of individual rules is: iru = {IR1, IR2,…, IRm} = {IR1, IR2,…,

IRf}- {CR1, CR2,…, CRn}where IRk is the kth individual rule for all users

and k ≤ m

A collective rule j: CRj

The set of collective rules is: cru = {CR1, CR2,…, CRn}- where CRj is the

jth collective rule for ith user and j ≤ n

The set of collective rules for a user i: crui ⊆ cru

• The many users with one role with RBAC priority over FGAC graph is defined

as follows

 G = {V, E}

Where

{ } cruirupnusV UUUUU ro =

32

{ } { } { }

{ } { }
,...,q, iru and twhere iru

CRroIRUS

roUSPUSNUSE

t

n

j
j

iruk
kt

q

t

q

t
t

q

t
tt

q

t
tt

t

21 ,

)),(()),((

)),(()),(()),((

11

111

=∈

=

=∈=

===

UUU

UUU

UU

UU

5.3 Combined system for single user with many roles.

This category can be described as a user who has more than one position in the

system. An example is a user who is the president and also the CEO of a company. In

this category, the combined system can be categorized as RBAC priority over FGAC and

FGAC priority over RBAC. Refer to the algorithm in section 5.3.1 and 5.3.2 for the one

user with many roles FGRBAC system.

33

Figure 15. Combined access control – FGRBAC for one user to many roles

 The definition of the fine-grained role-based access control with single user to

many roles for RBAC priority over FGAC system in the hierarchy role:

• Refer to section 5.1 for definition of components.

• Each vertex represents the following:

User: us represents a user

Name: n represents name for user

Password: p represents password for user

Role o: ROo

The set of roles is: ro ={RO1, RO2,…, ROp} where roo is the oth role for

user and o ≤ q

A collective rule j: CRj

34

The set of collective rules is: cru = {CR1, CR2,…, CRn}- where CRj is the

jth collective rule for the user and j ≤ n

An individual rule k: IRk

The set of individual rules is: iru = {IR1, IR2,…, IRm}- where IRk is the kth

individual rule for the user and k ≤ m

• The one user with one role with RBAC priority over FGAC graph is defined as

follows:

 G = {V, E}

Where

{ } cruiruroV UUU pn, us, =

{ } { } { }

{ } { }
,...,p, cru and owhere cru

CRROIRus

ROROROusE

o

cruj
jo

p

o

m

k
k

p

o
oo

p

o
o

o

21 ,

)),(()),((

)),(()),((p)(us, n),(us,

11

1
1

1

=∈

=

∈==

=
+

=

UUU

UU

UU

UU

5.3.1 One user with many roles with RBAC priority over FGAC option.

 In one user with many roles with RBAC priority over FGAC option category,

when the individual rules either conflict or repeat over with collective rules, the

individual rules will be removed. In this system, the role in the company can be

categorized either as a hierarchy role or a non-hierarchy role [Wainer, 2005]. In a

35

Hierarchical role, a user is directed to one role and other roles are inherited from that role.

Inheritance in this paper means all the rules belong to the role, which is connected to the

upper most roles (the role connected to the user), are inherited partially or totally from

that upper most role. For example, if the user is a CEO of a company and the user can

also have a role as a manager or accountant of the company then these roles (manager

and accountant) are inherited from the CEO role. A non-hierarchy role is the condition

when a user is directed to many roles without inheritance. For example, if the user is a

CEO of a company and the user is also a manager of the company, where this role,

manager, is not inherited from the CEO. The algorithm for the RBAC priority over

FGAC in one user with many roles FGRBAC system for either hierarchy or non-

hierarchy role is:

for all IRk ∈ iru do
for all ROo ∈ ro do
 for all CRj ∈ cru do

{
 if IRk conflicts or replicate CRj then
 iru = iru – {IRk}
 V = V – {IRk}
 E = E – (us,IRk)
 }

5.3.1.1 Hierarchy Role.

For the FGAC graph, refer to Figure 5. For the RBAC graph, refer to Figure 6.

The graph for one user with many roles with RBAC priority over FGAC option in the

hierarchy role is:

36

User

Role 1

ru

ru

ru

Role 2

ru

ru

ru

Role 3

ru

ru

ru

name

Passwor
d

Figure 16. One User with Many Roles with RBAC Priority over FGAC System and the Role System
is Hierarchy Role

 The definition of the fine-grained role-based access control with single user to

many roles for RBAC priority over FGAC system in the hierarchy role:

• Refer to section 5.1 for definition of components.

• Each vertex represents the following:

User: us represents a user

Name: n represents name for user

Password: p represents password for user

Role o: ROo

The set of roles is: ro ={RO1, RO2,…, ROp} where roo is the oth role for

user and o ≤ q

37

A collective rule j: CRj

The set of collective rules is: cru = {CR1, CR2,…, CRn}- where CRj is the

jth collective rule for the user and j ≤ n

An individual rule k: IRk

The set of individual rules is: iru = {IR1, IR2,…, IRm}= {IR1, IR2,…, IRf}-

{CR1, CR2,…, CRn} where IRk is the kth individual rule for the user and k

≤ m

• The one user with many roles with RBAC priority over FGAC graph for

hierarchy role is defined as follows:

 G = {V, E}

Where

{ } cruiruroV UUU pn, us, =

{ } { }

{ } { }
,...,p, cru and owhere cru

CRROIRus

ROROROE

o

cruj
jo

p

o

m

k
k

p

o
oo

o

21 ,

)),(()),((

)),((),(us p),(us, n),(us,

11

1
11

=∈

=

∈==

=
+

UUU

U

UU

U

38

5.3.1.2 Non-hierarchy Role.

For the FGAC graph, refer to Figure 5. For the RBAC graph, refer to Figure 6.

The graph for one user with many roles with RBAC priority over FGAC option in the

non-hierarchy role is:

Figure 17. One User with Many Roles with RBAC Priority over FGAC System and the Role System
is Non-HIERARCHICAL

 The definitions of the fine-grained role-based access control with single user to

many roles for RBAC priority over FGAC system in the non-hierarchy role are:

• Refer to section 5.3.1.1 for definition of components, vertices representation of

the system.

• The one user with many roles with RBAC priority over FGAC graph for non-

hierarchy role is defined as follows:

 G = {V, E}

Where

39

{ } cruiruroV UUU pn, us, =

{ } { } { }

{ } { }
,...,p, cru and owhere cru

CRROIRus

ROROROusE

o

cruj
jo

p

o

m

k
k

p

o
oo

p

o
o

o

21 ,

)),(()),((

)),(()),((p)(us, n),(us,

11

1
1

1

=∈

=

∈==

=
+

=

UUU

UU

UU

UU

5.3.2 One user with many roles with FGAC priority over RBAC option.

 In the one user with many roles with FGAC priority over RBAC option category,

when the individual rules either conflict or duplicate the collective rules, the collective

rules will be removed. In this system, the role in the company can be categorized as

hierarchy role and non-hierarchy role [Wainer, 2005]. The algorithm for the FGAC

priority over RBAC in one user with one role FGRBAC system for both hierarchy and

non-hierarchy role is:

for all IRk ∈ iru do
for all ROo ∈ ro do
 for all CRj ∈ cru do

{
 if IRk conflicts or replicate CRj then
 iru = iru – { CRj }
 V = V – { CRj }
 E = E – (ROo, CRj)
 }

40

5.3.2.1 Hierarchy Role.

For the FGAC graph, refer to Figure 5. For the RBAC graph, refer to Figure 6.

The graph for one user with many roles with FGAC priority over RBAC option in the

hierarchy role is:

Figure 18. One User with Many Roles with FGAC priority over RBAC System and the Role System
in Hierarchy Role

 The definition of the fine-grained role-based access control with single user to

many roles for RBAC priority over FGAC system in the hierarchy role is:

• Refer to section 5.1 for definition of components.

• Each vertex represents the following:

User: us represents a user

Name: n represents name for user

Password: p represents password for user

41

Role o: ROo

The set of roles is: ro ={RO1, RO2,…, ROp} where roo is the oth role for

the user and o ≤ q

An individual rule k: IRk

The set of individual rules is: iru = {IR1, IR2,…, IRm}- where IRk is the kth

individual rule for the user and k ≤ m

A collective rule j: CRj

The set of collective rules is: cru = {CR1, CR2,…, CRn}= {CR1, CR2,…,

CRg}- {IR1, IR2,…, IRm}- where CRj is the jth collective rule for the user

and j ≤ n

• The one user with many roles with FGAC priority over RBAC graph for

hierarchy role is defined as follows:

 G = {V, E}

Where

{ } cruiruroV UUU rop,n, us, =

{ }

{ } { }
,...,p, cru and owhere cru

CRROIRus

ROROROE

o

cruj
jo

p

o

m

k
k

p

o
oo

o

21 ,

)),(()),((

)),((),(usp)(us,n)(us,

11

1
11

=∈

=

∈==

=
+

UUU

U

UU

UUU

42

5.3.2.2 Non-hierarchy Role.

For the FGAC graph, refer to Figure 5. For the RBAC graph, refer to Figure 6.

The graph for one user with many roles with FGAC priority over RBAC option in non-

hierarchy role is:

Figure 19. One User with Many Roles with FGAC Priority over RBAC System and the Role System
is Non-hierarchy Role

 The definition of the fine-grained role-based access control with single user to

many roles for FGAC priority over RBAC system in the non-hierarchy role is:

• Please refer to section 5.3.2.1 for definition of components, vertices

representation of the system.

• The one user with many roles with FGAC priority over RBAC graph for non-

hierarchy role is defined as follows:

 G = {V, E}

43

Where

{ } cruiruroV UUU pn, us, =

{ } { }

{ } { }
,...,p, cru and owhere cru

CRROIRus

ROROROusE

o

cruj
jo

p

o

m

k
k

p

o
oo

p

o
o

o

21 ,

)),(()),((

)),(()),((p)(us,n)(us,

11

1
1

1

=∈

=

∈==

=
+

=

UUU

UU

UU

UUU

5.4 A combined system for many users with many roles.

This category is the most complex situation. This category can be described as

the combination of all the rules above. In this many users with many roles, the fine-

grained priority over role-based access control by eliminating the collective rule is

impossible because the collective rule (rule(s) belonging to the role) is shared by more

than one user. Please refer to the algorithm in section 5.4.1 for the one user with many

roles FGRBAC system.

5.4.1 Many users with many roles with RBAC priority over FGAC.

In the many users with many roles with RBAC priority over FGAC option, when the

individual rules either conflict or are identical to collective rules, the individual rules will

be removed. In this system, the roles in the company can be categorized as hierarchy and

non-hierarchy roles [Wainer, 2005]. The algorithm for the RBAC priority over FGAC in

a one user with one role FGRBAC system for both hierarchy and non-hierarchy role is:

for all USt ∈ us do

44

for all IRk ∈ irut do
for all ROo ∈ rot do
 for all CRj ∈ cru do

{
 if IRk conflicts or replicate CRj then
 irut = irut – { IRk }
 V = V – { IRk }
 E = E – (USt, IRk)
 }

5.4.1 The hierarchy Role.

For the FGAC graph, refer to Figure 5. For the RBAC graph, refer to Figure 6.

The graph for one user with many roles with RBAC priority over FGAC option in

hierarchy role is:

Figure 20. Many Users with Many Roles for RBAC Priority over FGAC System in Hierarchy Role

45

 The definition of the fine-grained role-based access control with many users to

many roles for RBAC priority over FGAC system in the hierarchy role is:

• Refer to section 5.1 for definition of components.

• Each vertex represents the following:

User t: USt

The set of users is: us ={US1, US2,…, USq} where usi is the ith user and i ≤

q

Name r: Nt

The set of names is: n ={N1, N2,…, Nq} where ni is the name for ith user

and i ≤ q

Password s: Ps

The set of password is: p ={P1, P2,…, Pq} where pi is the password for ith

user and i ≤ q

Role o: ROo

The set of roles is: ro ={RO1, RO2,…, ROp} where roo is the oth role for

user i and o ≤ p

An individual rule k: IRk

The set of individual rules is: iru = {IR1, IR2,…, IRm} = {IR1, IR2,…, IRf}

- {CR1, CR2,…, CRn}- where IRk is the kth individual rule for us ith user

and k ≤ m

The set of individual rules for a user i: irui ⊆ iru

A collective rule j: CRj

46

The set of collective rules is: cru = {CR1, CR2,…, CRn}- where CRj is the

jth collective rule for ith user and j ≤ n

The set of collective rules for ith user: crui ⊆ cru

• The many users with many roles with RBAC priority over FGAC graph for

hierarchy role is defined as follows:

 G = {V, E}

Where

cruiruropnusV UUUUU =

{ } { }

{ }

{ }

{ }

{ }

,...,p, and o
,...,q, t

 iru iru
 cruwhere cru

IRUS

CRRO

RORO

ROUS

PUSNUSE

t

o

iruk
kt

q

t

cruj
jo

p

o

p

o
oo

q

t
oo

p

o

q

t
tt

q

t
tt

t

o

t

21,
21,

,
 ,

)),((

)),((

)),((

)),((

)),(()),((

1

1

1
1

1 1

11

=
=
∈

∈

=

∈=

∈=

=
+

= =

==

UU

UU

U

UU

UU

U

U

U

U

U

47

5.4.2 Non-hierarchy Role.

For the FGAC graph, refer to Figure 5. For the RBAC graph, refer to Figure 6.

The graph for many users with many roles with RBAC priority over FGAC option in

non-hierarchy role is:

User 2

User 3

User 4

Role 1

ru

ru

ru

Role 2

ru

ru

ru

Role 3

ru

ru

ru

User 1

Name
1

Password
1

Name
2

Password
2

Name
3

Password
3

Name
4

Password
4

Figure 21. Many Users with Many Roles for RBAC Priority over FGAC System in Non-hierarchy
Role

 The definition of the fine-grained role-based access control with many users to

many roles for RBAC priority over FGAC system in the non-hierarchy role is:

• Please refer to section 5.4.1 for the definition of components, vertices, and

representation of the system.

• The many users with many roles with RBAC priority over FGAC graph for non-

hierarchy role is defined as follows:

48

 G = {V, E}

Where

cruiruropnusV UUUUU =

{ }

{ }

{ }

{ }

{ }

{ }

,...,p, and o
,...,q, t

 ro ro
 iru iru

 cruwhere cru

IRUS

CRRO

RORO

ROUS

PUS

nUSE

t

t

o

iruk
kt

q

t

cruj
jo

p

o

p

o
oo

roo
ot

q

t

q

t
tt

q

t
tt

t

o

t

21,
21,

,
,
 ,

)),((

)),((

)),((

)),((

)),((

)),((

1

1

1
1

1

1

1

=
=
∈
∈

∈

=

∈=

∈=

=
+

∈=

=

=

UU

UU

U

UU

U

U

U

U

U

U

U

 Varieties of the combined access control system are shown in this chapter. The

varieties of one user with one role, one user with many roles, many users with one role,

and many users with many roles are explained. In addition to the varieties of users

against roles, FGAC priority over RBAC and RBAC priority over FGAC are also

49

explained in this chapter. In the next chapter, the result sample of the simulation is

shown.

50

Chapter 6

Simulation

 Simulation results in this chapter show the differences of information kept by the

user, data, and roles in the FGAC, RBAC, and FGRBAC systems. This information

shows the FGRBAC system is more secure than the RBAC system and simpler than the

FGAC system.

 A simulation program was implemented using the Java programming language.

The structures of the program used are fixed variables, and simple “if….else” statements.

The program requires input from the user for systems such as FGAC priority over RBAC

or RBAC priority over FGAC, user ID and user password. After the user enters these

three items of information, the program lets the user know what information is stored in

the user, data, and role (if available, i.e., RBAC and FGRBAC systems) variables. From

this information, the simplicity and the security structure can be determined from among

FGAC, RBAC and FGRBAC system. There are three users, two roles, and two files.

The program generates and shows the user’s individual rules, information carried by data,

and the role’s rules from the information entered by the user.

The information displayed by the simulation is:

51

Table 1. Comparison of Information Stored in FGAC, RBAC, and FGRBAC
Information stored in user Information stored in data Information stored in role

FGAC User ID User ID of the user allowed to access the data
User password Password of the user allowed to access the data
Access rights for specific file Access rights of the specific user

RBAC User ID Role that is allowed to access the data Password of the role
User password Access right of each role
Role of the user

FGRBAC User ID Role that is allowed to access the data Password of the role
User password Access right of each role User ID of the accessing user
Role of the user Access right of each role (Collective Rule)
Access rights for specific user (Individual Rule)

 The results in Table 1 show the differences of the information stored in user, data,

and role between FGAC, RBAC, and FGRBAC. The FGRBAC system gives more

security than the RBAC system because it provides information about the users who

access the specific files. The information of the user can be retrieved from the role

information as can be seen in Table 1. In the RBAC system, the role cannot store

information about the user accessing the data. In addition, the FGRBAC system requires

less information stored in the user and data than the FGAC system. When a user accesses

the data in the system, the data needs to check the ID, password, and the access rights of

the user. Table 1 show the FGRBAC system only requires the data to check the role of

the user and the access rights of the role instead of the ID, password, and access rights of

the user as in the FGAC system. In addition to the data stored in the data inside the

FGRBAC system, the user does not need to store all the access rights since all the access

rights have been stored in the role. Refer to Table 2 for example of FGAC system, Table

3 for example of RBAC system, and Table 4 for example of the combined FGRBAC

system.

52

Table 2. Example of Information Stored in User, and File for FGAC System

User A User B User C
Information stored in user ID : A ID : B ID : C

Password : A Password : B Password : C
Access Right for: Access Right for: Access Right for:
 - File 'A' : Read, Write - File 'A' : Read - File 'A' : Read
 - File 'B' : Read - File 'B' : Read, Write - File 'B' : Not Available

Information stored in File 'A' ID : A ID : B ID : C
Password : A Password : B Password : C
Access Right : Read, Write Access Right : Read Access Right : Read

Information stored in File 'B' ID : A ID : B ID : C
Password : A Password : B Password : C
Access Right : Read Access Right : Read, Write Access Right : None

Example of the information stored in FGAC system

Table 3. Example of Information Stored in User, Role, and File for RBAC System
User A User B User C

Information stored in user ID : A ID : B ID : C
Password : A Password : B Password : C
Role : Student Role : Role : Teaching Assistant

 - Student
 - Teaching Assistant

Information stored in role : Student Password: Stu Password: Stu Password: Stu
Information stored in Teaching Assistant Password: TA Password: TA Password: TA
Information stored in File 'A' Access Right for role "Student" Access Right for role "Student" Access Right for role "Student"

 - Read - Read - Read
Access Right for role "Teaching Assistant" Access Right for role "Teaching Assistant" Access Right for role "Teaching Assistant"
 - Read - Read - Read
 - Write - Write - Write

Information stored in File 'B' Access Right for role "Student" Access Right for role "Student" Access Right for role "Student"
 - None - None - None
Access Right for role "Teaching Assistant" Access Right for role "Teaching Assistant" Access Right for role "Teaching Assistant"
 - Read - Read - Read
 - Write - Write - Write

Example of the information stored in RBAC system

Table 4. Example of Information Stored in User, Role, and File for FGRBAC System
User A User B User C

Information stored in user ID : A ID : B ID : C
Password : A Password : B Password : C
Role : Student Role : Role : Teaching Assistant
Email Storage Size: '2 GB' - Student Email Storage Size: '2 GB'

 - Teaching Assistant
Email Storage Size: '2 GB'

Information stored in role : Student Password: Stu Password: Stu Password: Stu
Accessing user : A Accessing user : B Accessing user : C
Email Storage Size: '2 GB' Email Storage Size: '2 GB' Email Storage Size: '2 GB'

Information stored in Teaching Assistant Password: TA Password: TA Password: TA
Email Storage Size: '4 GB' Email Storage Size: '4 GB' Email Storage Size: '4 GB'

Information stored in File 'A' Access Right for role "Student" Access Right for role "Student" Access Right for role "Student"
 - Read - Read - Read
Access Right for role "Teaching Assistant" Access Right for role "Teaching Assistant" Access Right for role "Teaching Assistant"
 - Read - Read - Read
 - Write - Write - Write

Information stored in File 'B' Access Right for role "Student" Access Right for role "Student" Access Right for role "Student"
 - None - None - None
Access Right for role "Teaching Assistant" Access Right for role "Teaching Assistant" Access Right for role "Teaching Assistant"
 - Read - Read - Read
 - Write - Write - Write

Example of the information stored in FGRBAC system

As more information is stored in the data and user areas, the more complex a

system becomes. This result shows that the FGRBAC is much better than the FGAC and

RBAC system because it is more secure than the RBAC system and less complex than

53

the FGAC system. Table 5 show the reduced information stored in FGRBAC system

compared to FGAC system.

Table 5. Number of Information Stored in FGAC compared to FGRBAC

FGAC system RBAC system FGRBAC system
Information load for 2 Users 13 13 13

2 Roles - 2 6
2 Files 19 8 15

32 23 34
30 24 30

Information load for 10 Users 60 40 40
2 Roles - 2 14
2 Files 80 8 15

140 50 69
100 24 100

Information load for 30 Users 180 120 120
2 Roles - 2 33
2 Files 240 8 120

420 130 273
300 24 300Number of comparisons

Number of data stored in the System

Total

Total

Total

Information load for

Number of comparisons

Number of comparisons

Note: Number of comparison is comparisons between information stored in the data and

collective rules. The more comparisons, the more secure a system.

54

Chapter 7

Algorithm and Tools to Support the

Combined System

In chapter 5, we proposed different combinations of the FGAC and RBAC system

in a graphical format. The basic foundation of the combined system is based on the

individual rules of the FGAC system and the collective rules of the RBAC system.

7.1 Algorithm of the combined FGAC and RBAC system.

The data must check the user’s access right before it allows the user to access a

database in the system. The data will check from the individual rules of the user before it

goes to the collective rules of the user’s role. The algorithm is used to support the

combined system by simplifying the idea in pseudocode. The algorithm representation of

the system is:

FOR all rules of the user (individual rules)

 IF rule of the user match the data access right

 THEN user is allowed to access the data

 ELSE

 FOR all user’s role

55

 FOR all rules of the user’s role (collective rules)

 IF rule of the user’s role match the data access right

 THEN user is allowed to access the data

 ELSE user is rejected to access the data

7.2 Automaton for the Combined FGAC and RBAC System

Automaton is used in our proposal in order to express the paths taken by the

processes to match the rules (individual and collective) from the user with the

information kept by the data in the FGRBAC system. Each node in the automaton

represents either the individual user itself or the role of the user. Contained inside the

node are the rules to decide whether the access is accepted or rejected when compared to

the information inside the data. The acceptance is represented by ‘a’ and rejection is

represented by ‘r’. These ‘a’ and ‘r’ are used in both automaton and grammar. The

automaton used is Deterministic Finite Automaton (DFA). DFA is used to define the

combined system as an abstract model. The automaton facilitates implementation of the

combined system in a programming language. If nondeterministic finite automaton

(NFA) is selected instead of DFA, it must be translated into DFA before it can be

implemented in the computer languages for easier translation, which involves more steps

and hence is less efficient. The DFA graph is:

56

Figure 22. DFA for Combined RBAC and FGAC System with k =4

 The definition of Deterministic Finite Automaton (DFA) representations when

k = 4 => ({q0, q1, q2}, {a, r}, q0, {q2})

q = user or user’s role where the individual rule(s) or collective rule(s) belong to.

a = accepted

r = rejected

q0 = the starting state, it represents the user (where individual rule(s) belong to).

q1, q2 = user’s role (where collective rule(s) belong to)

q2 = the condition or role when the request of a certain data is accepted (can be defined

as accepted state)

 = direction of the action taken.

For example, if the permission of the access control process is: “rrrrra”, then it will start

from q0 and the process is rejected (‘r’) and it turns to q1. From q1, it goes to the second

rejection (‘r’) and it goes to q2. From q2, it has another rejection (‘r’) and will go back to

q2. The rejection after q2 will cause a recursive process in q2 until the access permission

57

is accepted (‘a’), which is the last process in “rrrrra”. With a result of ‘a’ from q2 goes to

q3, which is an accepted state. This process means the permission is granted.

7.3 Grammar for the combined FGAC and RBAC system.

The grammar in this paper shows the languages accepted by the automaton

defined in section 7.2. If the language is supported by this grammar, then the language

can be implemented in the FGRBAC system because it also is supported by the DFA

defined in section 7.2. The example below is representing the accepting ‘a’ or rejection

‘r’ of the access permission in each node in the DFA. In order to introduce the combined

system mathematically in a formal way, grammar is used. The grammar used in this

research is a regular grammar. The language recognized from the DFA in Figure 19 is:

{a, r}* {a}

Suppose we take a string, say x = rraarrara, the trace of its processing by the finite

automaton is:

Substring processed so far State
Λ q0
r q1

rr q1
rra q2

rraa q2
rraar q0

rraarr q1
rraarra q2

rraarrar q0
rraarrara q2

Table 5. Substring Process with DFA in Figure 19 for rraarrara

If the line of Table One is listed consecutively with the separation of =>, then we obtain

the derivation of:

58

q0 => rq1 => rrq1 => rraq2 => rraaq2 => rraarq0 => rraarrq1 => rraaraq1 => rraararq0

=> rraararaq2

The production of the form used in this system is:

1. P a

2. P aP

3. P rP

With the application of the production above, the last step in the derivation becomes:

rraararq0 => rraarara

The inferred string based on the production used in the system is:

String Inferred For the language of Production Used String Used
(i) r rP Λ
(ii) rr rP r
(iii) rra aP rr
(iv) rraa aP rra
(v) rraar rP rraa
(vi) rraarr rP rraar
(vii) rraarra aP rraarr
(viii) rraarrar rP rraarra
(ix) rraarrara a rraarrar

Table 6. Inferred string for the string or rraarrara

7.4 A proof for the Combined FGAC and RBAC System

 In order for the process to be accepted by the FGRBAC system, the following

proposition must be satisfied:

Proposition: The access rights information of the data has to match the rule(s) of the

user (the rules belong to the user or individual rules) or the collective rule(s) (the rules

belong to the user’s role) for a user to access the data..

59

 The DFA in section 7.2 has to be true in order for the above proposition to be true.

Mathematical induction is used to prove the above proposition based on the DFA in

section 7.2 and the grammar in section 7.3.

 The mathematical induction representation is:

k = number of user’s role + 1, where 1 represents the user itself.

i = user (represented by q0 in DFA section 7.2) or the ith role of the user (represented by

q1, q2 in DFA section 7.2)

δ = the transition state from current state (Si) with the result of the current state (a, r)

Si = the current state of the system, where S1 is the user and S2, S3 are the user’s role.

a = ‘accepted’ request

r = ‘rejected’ request

Basis: δ’ (s, Є) = s. That is, if we are in state ‘s’ and read no inputs, then we are still in

state s. In another word, if the state ‘s’ is not an accepted state and the information inside

the data does not match any of the rules (individual or collective rules), then the request

will be denied or rejected.

Induction: If the result of the match between the rules inside the data and the rules of the

user (individual rules and collective rules) is simplified as ‘r’ as rejected and ‘a’ as

accepted, the results can be formed as a string. Suppose w is a string that results from the

match between data’s rules and user’s rules, w can be categorized as the form of xy; that

is, y is the last symbol or character of w, and x is the string consisting of all but the last

U
k

i
i ras

1
)},(,{

=
δ

60

symbol. For example, w = rrrra is broken into x = rrrr and y = a. Then δ’ (s, w) = δ (δ’ (s,

x), a).

 In order to compute δ (s, w), δ’ (s’, x) must be computed. The state of the

automaton after processing δ’ (s’, x) is in all but the last symbol of w. Suppose this state

is p; that is δ’ (s’, x) = p. Then δ (s, w) is what we get by making a transition from state p

on input r, the last symbol of w. That is, δ (s, w) = δ’ (p, r). This induction shows that

the result is accepted because ‘r’, the last input, is an accepted match.

 The algorithm in section 7.1 shows the basic programming logic of the system in

the FGRBAC system. The expression of the path taken in the system is represented by

DFA in section 7.2. The language formed from the result of the path taken in DFA is

supported by grammar in section 7.3. The rule to define the system access process is

supported by mathematical induction.

7.5 Implementation of the FGRBAC System

 The FGRBAC system can be implemented in Java. Graphs in the FGRBAC

system can be represented in a tree structure in the implementation of the system.

Insertion or deletion of users, roles, and rules inside the FGRBAC system can be realized

by categorizing the users, roles, and rules using XML transformation language. XML is

extensible Mark-up Language, a specification developed by the World Wide Web

Consortium. The reason for using the XML transformation language is the flexibility of

XML. If the users, roles, and rules are categorized in XML transformation language, it

can be used by any languages in addition to JAVA for the delegation and revocation

process of the system. For example, the XML implementation from figure 7 is:

61

The implementation of the XML in the system above shows its flexibility. When the

rules or role needs to be delegated or revoked, it can be easily done by recognition of the

tag name. The delegation and revocation process can be accomplished with any

languages if the structure of the system is implemented in XML format as in the previous

example.

<user1>
 <name> John </name>
 <password> john </password>
 <rule1> …. </rule1>
 <rule2> …. </rule2>
 <role>

 <rule3> …. </rule3>
 <rule4> …. </rule4>

 <rule5> …. </rule5>
 </role>
</user1>

62

Chapter 8

Conclusion

 Although the development of access control systems has improved, problems can

be found in these systems such as the complexity problem in FGAC and lack of desired

security in RBAC. Combining the FGAC and RBAC system can solve the complexity

and insecurity problems.

 Prior to this research, existing access control systems were based on either FGAC

or RBAC systems. Any improvement that had been done added more layers of roles in

the RBAC system. This kind of improvement is not secure enough due to the lack of user

identity in the system. In addition to the improvement in the RBAC system, the

complexity of information needs to be carried by the data in the FGAC system.

Introduction of the combined system is a big step in improving the access control system.

The combined system, FGRBAC, is implemented by injecting the user information into

the RBAC system.

 In the combined system, there are two problems: repetition and conflict between

individual rules and collective rules. The solution to these problems is to eliminate the

duplicated or conflicting rules. The way to eliminate these duplications and conflict is to

choose either the FGAC priority over RBAC method or the RBAC priority over FGAC

method. These two methods can be implemented in the system in the following format:

63

one user one role, one user many roles, many users one role, or many users with many

roles. Chapter 5 includes a detailed explanation of the solution.

One of the advantages of this system is the reduced information load required by

the user and the data in the system compared to the pure FGAC system. With this system,

not all the rules must be store for the user. Only part of the user’s individual rules and the

roles are stored. Data within the system does not have to keep all users’ information as in

FGAC system. The data is required to keep the role of the user who is allowed to access

the data. When the user requests access to the data, the user’s roles are matched to the

data’s rule to permit or deny access to the data.

The other advantage of this system relates to the security issue. The FGRBAC

system provides a more secure system compared to the RBAC system. In the FGRBAC

system, the user ID is kept inside the data to backtrack when there is a security breach. In

the pure RBAC system, this method is not provided. When a security breach occurs in an

RBAC system, it is impossible to backtrack a use since the data does not keep the user’s

identification. Refer to Table 1 in chapter 6 for a better understanding of the differences

in FGAC, RBAC, and FGRBAC system.

 We have used an automaton, a grammar, and a proof to validate the FGRBAC

system. The automaton used in this research is a deterministic finite automaton (DFA).

The automaton is used to express the paths taken by the system to match the rules

(individual rules and collective rules) of the user with the information kept by the data in

the FGRBAC system. A DFA is selected to save the running time of the system

implementation. If nondeterministic finite automaton (NFA) is selected instead of DFA,

translation from NFA to DFA is required before the system implementation.

64

 The grammar used in this research is a regular grammar. A regular grammar is

selected to show the languages that are accepted by the automaton. If the language is

supported by the grammar in chapter 7, it is certain that the language can be implemented

in the FGRBAC system. The mathematical induction in chapter 7 is used to prove that

the FGRBAC theorem has to be true for the system implementation based on the

automaton and grammar in chapter 7.

 The research done for this thesis combines the FGAC and RBAC systems.

Further research can be done by implementing the delegation and revocation of the users

and their roles in the FGRBAC system. Delegation and revocation of the FGRBAC

system will show how users and their roles are added or removed from the system. The

system can be used by any computer system with the implementation of delegation and

revocation in the FGRBAC system. In addition to delegation and revocation, this system

can also be implemented in XML transformation language. The implementation of the

FGRBAC system can show the flexibility of this system to be implemented in various

machines.

65

References

[Ahn, 2000] Ahn G.J., Sandhu R., Kang M., “Injecting RBAC to secure a web-based
workflow system.”, Fifth ACM Workshop on Role-Based Access Control, Vol. 5,
No.1, 2000.

[Andrei , 2005] Andrei S.L., “Information retrieval in current research information

system”, http://arxiv.org/ftp/cs/papers/0110/0110026.pdf [April 5, 2005].

[Bassam , 2005]Bassam A., “Agent technology in electronic commerce and information

retrieval on the Internet”, http://ausweb.scu.edu.au/aw96/tech/aoun/paper.htm [April
5, 2005].

[Damiani, 2002] Damiani E., Vimercati S. C., Paraboschi S., and Samarati P., “A fine-

grained access control system for XML documents.”, Fifth ACM Workshop on
Information and System Security, Vol.5, No.2, 2002

[Delis, 2005] Alex D., Lisa H., Nasir M., and Torsten S.., “Database and information

retrieval. ” Department of Computer and Communication Science, Polytechnic
University, http://cis.poly.edu/research/dsb.shtml [April 5, 2005].

[Hong, 2004] Hong C.,“Role-based fine-grained XML access control”, Masters thesis,

Computer Science Department, Oklahoma State University, 2004

[Koch, 2002] Koch M., Mancini L. V., and Parisi-Presicce F., “A graph-based formalism

for RBAC.”, Fifth ACM Workshop on Information and System Security, Vol.5, No.3,
2002

[Park, 2001] Park J. S., Ahn G. J., and Shandu R., “Role-based access control on the

web.”, Fourth ACM Workshop on Information and System Security, Vol.4, No.1,
2001

[Ravi, 2000] Ravi S., David F., and Richard K., “The NIST model for role-based access

control: towards a unified standard”, ACM workshop on Role-based access control,
Vol.5, No.6, 2000

[Wainer, 2005] Wainer J., and Kumar A., “A Fine-Grained, Controllable, User-toUser

Delegation Method in RBAC”, ACM workshop on Role-based access control, pages
59-66, ACM press, 2005.

66

[Workshop, 2005] Workshop on networked information retrieval,
http://ciir.cs.umass.edu/nir96 [April 5, 2005].

[Yao, 2005] Yao J.T., Yao Y.Y., “Web-based information retrieval support systems:

building research tools for scientists in the new information age,
http://www2.cs.uregina.ca/~jtyao/Papers/113.pdf [April 5, 2005].

[Zhang , 2003] Zhang L., Ahn G. J.,”A rule-based framework for role-based delegation

and revocation.”, Sixth ACM Workshop on Information and System Security, Vol.6,
No.3, 2003

VITA

Hongi Chandra Tjan

Candidate for the Degree of

Master of Science

Thesis: A GRAPH-BASED MECHANISM FOR BRIDGING ACCESS CONTROL

LANGUAGE

Major Field: Computer Science

Biographical:

Personal Data: Born in Medan, Indonesia, On January 24, 1980, the son of
Hong Tjai Khiang and Tjan Siu Tjoe.

 Education: Graduated from Kristen Yusuf High School, Jakarta Utara,

Indonesia in May 1998; received Bachelor of Science degree in Computer
Science from Oklahoma State University, Stillwater, Oklahoma in May
2002. Completed the requirements for the Master of Science degree with
major in Computer Science at Oklahoma State University in (May, 2006)

 Experience: Employed by Oklahoma State University, Residential Life as a

computer technician for on campus residence, Fall 1999; Employed by
Designer Wicker and Rattan as the network specialist during summer 2001.

 Professional Memberships: The Starr Foundation Scholarship, Golden Key,

National Society Collegiate Scholars.

Name: Hongi Chandra Tjan Date of Degree: May, 2006

Institution: Oklahoma State University Location: Tulsa, Oklahoma

Title of Study: A COMBINED FINE-GRAINED AND ROLE-BASED

 ACCESS CONTROL MECHANISM

Pages in Study: 66 Candidate for the Degree of Master of Science

Major Field: Computer Science

Scope and Method of Study: Different access control methods have been proposed to
ensure data security in a computer system. Approaches to access control include
role-based access control and fine-grained access control. However these systems
suffer from complexity or inadequate security. Although the role-based access
control is efficient in terms of the overheads related to security it is not as secure
as fine-grained access control. On the other hand fine-grained access control is
secure, but very inefficient for storing access information. To solve this problem,
we propose a combined fine grained-role based access control system.
A graph representation is used to capture the combined model. Furthermore, in
this thesis we propose a combined system which caters for the following:
- System with one user and one role
- System with one user and multiple roles
- System with multiple users and one role
- System with multiple users and multiple roles.

Findings and Conclusions: Formal Graph Merging operations for the above four
scenarios have been defined. The merging operation merges a graph representing
the fine-grained system with a graph representing the role based system to
generate a new graph model of the combined role-based fine-grained system. The
combined system introduces the new rules for access control based on the above
four categories. Simulation results show that the combined system has the
efficiency of the role-based access control and at the same time, the security of
the fine-grained control system. . A formal grammar in introduced to capture the
access control for the combined system. Future works will involve implementing
the proposed system in a real world environment.

ADVISER’S APPROVAL: __ Dr. Johnson P. Thomas

