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CHAPTER 1 

Introduction 

1.1 Motivation 

The widespread proliferation of the internet, as well as small organizational intranets, has 

provided seamless access to information that is distributed in remote locations across the 

network. There are many ways that application software components of different 

machines can communicate with one another over a network. 

 The first generation of the distributed communication mechanism uses the call 

interface of the network layer directly, such as socket mechanism. While flexible and 

sufficient for general communication, the use of sockets requires the client and server 

using this medium to engage in some application-level protocol to encode and decode 

messages for exchange. Design of such protocols is cumbersome and can be error-

prone[40]. 

 An already classic alternative to sockets is Remote Procedure Call (RPC). RPC allows 

a program running on one computer to cause a subroutine on another computer to be 

executed without explicitly coding[11, 22]. Arguments and return values are 

automatically packaged and sent between the local and remote procedures. However, 

while RPC is well suited for the procedural programming paradigm, it does not translate 

well into distributed object systems that have gained much popularity in recent years.  

 In order to match the semantics of object invocation, distributed object systems require 

remote method invocation (RMI). RMI is similar to RPC, but integrates the distributed 
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object model into the Java language in a natural way[33]. While RMI has many 

similarities with RPC, it supports Java’s security mechanism, multi-threaded nature, and 

object-oriented characters such as inheritance, polymorphism and dynamic binding. RMI 

has emerged as a powerful and easy to use language. It provides integrated and reliable 

communication between objects in a distributed system via remote method calls. It allows 

programmers to develop distributed Java programs with the same syntax and semantics 

used for non-distributed programs. For many people who are used to Java, RMI support 

powerful tools without understanding special new concept for the distributed object 

system.  

 However, although RMI is attractive to the dynamic distributed systems, it is not 

desirable in many applications due to its synchronous nature. The client is blocked while 

the call is processed by the server. The trend in distributed systems goes towards 

asynchronous and reactive systems that cannot wait indefinitely for a synchronous call to 

terminate. The synchronous nature of RMI leads to lower performance. Therefore, a 

number of projects have investigated fast implementations supporting asynchronous 

communication. Apparently the bottleneck caused by synchronous remote method 

invocation effects Java technologies and challenges to look for a suitable solution. 

 

1.1.1 Problem Statement 

The main shortcoming of RMI is that it causes the execution of the requesting object to 

be suspended until the computation is carried out in a remote address space. This delay is 

incurred regardless of whether the invoking objects require the return value or not. 

Therefore, the invoker always waits for a reply before continuing the remaining processes. 
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Another limitation of RMI is that it only supports point-to-point communication. 

Remote invocations can only be forwarded to a single destination. Although point-to-

point communication is perfectly suited for expressing communication in client-server 

applications, many parallel applications are difficult to implement efficiently using this 

limited model and require broadcast communication.  

 

1.2 Research Overview 

The overall goal of this study is to design, implement and evaluate an asynchronous RMI 

system that is suitable for use in parallel and distributed system for grid computing. The 

detailed objectives are as follows. 

� Explore the description of the RMI model and analyze the performance of an 

existing RMI implementation. 

� Study the related programming models for designing asynchronous RMI 

structure. 

� Introduce the structure and concepts for a new asynchronous way of 

communication in RMI accepting the publish/subscribe paradigm, which 

provides a conceptual simplicity and has the benefit to decouple objects in space 

and time.  

� Provide the framework with concrete interfaces and classes. 

� Evaluate the performance of an asynchronous way of RMI communication on the 

local/remote and homogeneous/heterogeneous environments. 
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1.3 Contributions 

A publish/subscribe based asynchronous RMI framework (PARMI) has been 

implemented and experimentally evaluated in large-scale systems with up to a 51 

machine cluster system. These experiments demonstrate that PARMI successfully 

improves the overall performance and stability. The contributions of PARMI are 

elaborated as follows: 

� Optimizing performance with PARMI support, applications linked with RMI will 

be improved. In presence, middleware technologies are primarily based on some 

modification of the RPC/RMI mechanism [35]. In the first instance, RMI is one 

of supporting technologies on the well-known middleware Jini. Jini is an 

infrastructure that runs on top of Java and RMI to create a federation of devices 

and software components to implement services. In combination with object-

based technologies, Jini allows the creation of large distributed programs without 

greater problems. In the second instance, as a standard component of the 

enterprise level, the basic concepts of Enterprise Java Bean (EJB) started from 

RMI. One of protocol uses in the internal of EJB is JRMP (as a transport protocol 

of RMI, EJB support IIOP) and the class design in EJB is similar to RMI except 

home interface.  

� PARMI can be used as a communication element in diverse scientific 

applications, such as mathematics, physics, chemistry, large-scale image 

processing, and distributed stochastic simulations. 
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1.4 Outlines of the Thesis 

The remainder of the thesis is organized as follows. Chapter 2 studies theories and related 

work in the areas of PARMI. Chapter 3 describes the architecture and overall design of 

framework including important features provided. Chapter 4 presents the evaluation of 

the framework and reports the performance and the nature of losses and overheads 

involved.  Finally, Chapter 5 draws conclusions and also discusses the opportunities for 

improvement and future work. 
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CHAPTER 2 

Programming Models and Related Work 

With the increasing adoption of Java for parallel and distributed computing, RMI is one 

of the most popular communication paradigms in distributed computing. There are many 

considerable works for enhancing the high performance RMI implementations. This 

chapter presents the background and approaches for PARMI implementations and gives 

an overview of the proposed strategies. 

 Section 2.1 describes the features provided by the Java RMI. Section 2.2 reviews 

various research done on mechanisms and complete systems which are related to 

asynchronous RMI. Section 2.3 discusses Generics provided on Java languages. Section 

2.4 introduces the highlighted communication paradigm in the diversified distributed 

computing, the publish/subscribe communication. Finally, Section 2.5 studies scientific 

and grid computing in use for the application model for PARMI. 

 

2.1 Remote Method Invocation 

In this section, an overall RMI mechanism is described. The RMI system allows an object 

running in one Java virtual machine (JVM) to invoke methods on an object running in 

another JVM. A user can utilize a remote reference in the same manner as a local 

reference. This feature is regarded as an object-oriented version of a Remote Procedure 

Call (RPC). 
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2.1.1 RMI System Architecture 

Starting with an overview of the underlying RMI architecture, there are three layers that 

comprise the basic remote-object communication facilities in RMI: the stub/skeleton 

layer, the remote reference layer, and the transport layer[40]. As Figure 2.1 shows, each 

layer is independent of the next and can be replaced by an alternate implementation 

without affecting the other layers in the system. 

 

Figure 2.1 The RMI runtime architecture, courtesy: A. Wollrath 
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The stub/skeleton layer provides the interface between the application layer and the 

rest of the RMI system. In RMI, a stub for a remote object acts as a client's local 

representative or proxy for the remote object. A stub implements the same set of remote 

interfaces that a remote object uses. If a caller invokes a method on the local stub, then 

the stub carries out the method call on the remote object. When a stub’s method is 

invoked, it initiates a connection with the remote JVM containing the remote object, 

marshals (writes and transmits) the parameters, receives them from the RRL, unmarshals 

(reads) the return value, and finally transmits the value to the client. A skeleton 

dispatches the call to the actual remote object implementation. When a skeleton receives 

an incoming method invocation, it unmarshals (reads) the parameters for the remote 

method, invokes the method on the actual remote object implementation, and marshals 

(writes and transmits) the result to the client[34]. However, the skeleton is no longer 

required in JDK 1.2 or newer versions because additional stub protocol was introduced. 

 The remote reference layer (RRL) is the middleware between the stub/skeleton layer 

and the underlying transport protocol. This layer handles the life of remote object 

references, controls the communication between client/server and virtual machines, and 

performs threading and garbage collecting for remote objects. Furthermore, it is 

responsible for the semantics of the invocation. For example, the RRL determines 

whether the server is a single object or is a replicated object requiring communications 

with multiple locations. Each remote object implementation chooses its own remote 

reference semantics – whether the server is a single object or is a replicated object 

requiring communications with multiple locations. Also the RRL handles the reference 

semantics for the server. The RRL abstracts the different ways of referring to objects that 
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are implemented in (a) servers that are always running on some machine, and (b) servers 

that are run only when some method invocation is made on them. At the layers above the 

RRL, these differences are not seen[20]. 

 The transport layer is the binary data protocol that sends remote object requests over 

the wire. It is different from OSI protocols transport layer. It is responsible for connection 

set-up, connection management; it keeps track of and dispatches to remote objects, 

targets of remote calls, in the transport's address space. 

 

2.1.2 The RMI Syntax 

To create an RMI application, the programmer has to satisfy certain requirements[28]. 

interface Hello extends java.rmi.Remote { 
 void sayHello(String name) throws java.rmi.RemoteException;
}

class HelloImpl extends java.rmi.server.UnicastRemoteObject 
implements Hello { 

 public void sayHello(String name) throws java.rmi.RemoteException { 
 System.out.println(“Hello” + name); 
 }
}

class Server {  
 public static void main(String args) { 
 if (System.getSecurityManager() == null) { 
 System.setSecurityManager(new RMISecurityManager()); 
 }

Naming.rebind("myHost", new HelloImpl()); 
}

}

class Client { 
 public static void main (String args[]) { 
 try{ 
 Hello hello = (Hello) Naming.lookup(“myHost”); 
 Hello.sayHello(“Jane!”); 
 }catch(java.rmi.RemoteException e) 
 }
}

Table 2.1 General syntax for RMI 
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As Table 2.1 shows, remote objects should be made by following steps[26, 27].  

� Define an interface for the remote class that extends the interface 

java.rmi.Remote, which must include every method available for remote 

invocation. While java.rmi.Remote does not define any methods, it serves as the 

marker interface that allows a RMI compiler and a runtime system to recognize 

remote interfaces. Also, all remotely accessible methods must be declared to 

throw a java.rmi.RemoteException that is used to report communication 

problems and to forward application exceptions from one JVM to another. 

� Create a class that implements the interfaces. The HelloImpl class in Table 2.1 

illustrates how a remote object is defined. By implementing the Hello interface, 

the HelloImpl is suitable for receiving remote invocations. It also extends one of 

RMI’s classes UnicastRemoteObject, which provides methods for remote objects.  

� Create a server program that creates an instance of the HelloImpl and binds the 

service with the RMI registry. It also assigns a security manager to the JVM, to 

prevent any untrusted clients using the service. 

� Create a client program that accesses the remote interface. Compile the client 

program. The client finds the “myHost” object on the server and create a remote 

reference to this object by using Naming.lookup. This remote reference can be 

used to do RMI calls on the HelloImpl object. 

� Compile all classes including interfaces using the javac, the Java compiler. Then 

compile the server/client programs using the rmic, the Java special stub compiler, 

which produces two extra layers of code. These are a skeleton which runs on 

server side and a stub on client side. 
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� Start the rmiregistry. A remote object registry is a bootstrap naming service that 

is used by RMI servers on the same host to bind remote objects to names. Clients 

on local and remote hosts can then look up remote objects and make remote 

method invocations[32].  

� Start the server application followed by the client application. 

 

2.1.3 The Process of RMI Communication 

A client application is able to invoke a method of a remote object with two methods. First, 

the client gets the reference of remote object from registry, a bootstrap-naming service in 

server machine. Secondly, it gets the reference of remote object using parameters or a 

return value. 

 The RMI client invokes a method of remote object through the remote object reference. 

To forward a method invocation to another JVM, the RMI runtime system must be able 

to transfer method parameters and a result value from one JVM to another. This is done 

using serialization to preserve the object type. Serialization is object to provide the 

object-oriented polymorphism. 

 As Figure 2.2 shows, when a client calls a remote method, method parameters are 

encoded (marshalled) simultaneously and transmitted from the network layer to remote 

reference. A server carries out the processes successively: decodes (unmarshals) the 

parameters, executes the method, encodes (marshals) the result again and finally 

transmits the encoded results to the client. Undoubtedly, the client decodes and uses the 

return value from the stub. 
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Figure 2.2 The stage of RMI call 

 

2.2 Asynchronous RMI 

As mentioned in the introduction, RMI, an object-oriented alternative of Remote 

Procedure Calls, is one of the most popular communication paradigms currently used in 

the mainstream of distributed computing, both in the industrial and scientific 

domains[31]. 

 However, the synchronous nature of RMI leads network latency and effects to a 

limited performance. Thus, several implementations have been developed that support 

extended protocols for RMI. These include JavaParty, Manta, and NinjaRMI by changing 

the underlying protocols such as the serialization protocols. This section presents the 
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considerable work completed in the field of RMI performance enhancement based on the 

previous articles[35]. 

 

2.2.1 Optimized Sequential RMI 

There have been implementations, e.g. Ninja RMI and KaRMI, for optimizing the 

sequential RMI by the more effective marshalling and simplified channel initialization. 

These implementations decrease overhead of marshalling but there is no enhancement for 

Round-Trip Time (RTT).  

 

2.2.2 Asynchronous RMI using Thread 

When clients communicate with multiple objects/servers, a sequential communication 

pattern causes a bottleneck effect. There has been research using multithreading, which is 

natively supported in Java.  

 But it also has limitations. Ironically, one of the most important characterizations of 

RMI, such as thread management and garbage collection, cause the pause when the 

system enhances the performance. Also, each thread requires using separate system 

resources and TCP connections. As a result, the limited number of concurrent open TCP 

connections allows covering 100 invocations. 

 

2.2.3 Asynchronous RMI with a Future Object. 

In 1997, Object System provided a communication system called Voyager, providing 

several communication modes allowing for synchronous invocation, asynchronous 

invocations with no reply (one way), and asynchronous invocation with a reply 
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(future/promise). Thereafter, several papers has implemented asynchronous RMI using 

this concept[19, 37, 24, 30, 25]. 

 This way does not require an excessive number of threads and TCP connections. The 

records of all 1000 invocations executed stably. This model overcomes synchronization 

but it is still tightly coupled for space and time[14]. 

 

2.2.1 The Combination of Object-Orientation and Publish/Subscribe 

Communication 

Figure 2.3 Asynchronous invocation vs. publish/subscribe, courtesy: P.T. Eugster 

 

The classical categories of publish/subscribe communications are topic-based and 

content-based systems. However, the classical approaches have a limitation on designing 

the object oriented system. It claims that the combination of object-orientation and the 

publish/subscribe communication, might be applied to the current commercial practices 
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in distributed object-oriented computing[16, 18], which are mainly based on the 

derivatives of the remote procedure call such as DCOM, Java RMI, and CORBA[15].  

 As Figure 2.3 shows, asynchronous invocation with a future object has the similar 

character with a publish/subscribe model, which will be a powerful tool for devising 

distributed applications. A type-based publish/subscribe system enables an object-

oriented design and asynchronous communication. The type-based system characterizes 

to regroup events not only based on contents but also structure. This also facilitates a 

closer integration of the language and the middleware and guarantees type-safety.  

 

2.3 Publish/Subscribe Communication 

Starting with the information bus architecture, the publish/subscribe model comes in for 

the solution for “24 by 7” commercial environment, in which a distributed system must 

remain operational twenty-four hours a day, seven days a week. The information bus 

requires operating constantly and tolerating for dynamic system evolution and legacy 

system. Providers publish data to an information bus and consumers subscribe data they 

want to receive[29]. Providers and consumers are independent and need not even know of 

their existence. In general, the provider is called the publisher, the consumer is called the 

subscriber, and the information bus is called middleware or broker. With systems based 

on the publish/subscribe interaction scheme, subscribers register their interest in an event, 

or pattern of events, and are subsequently asynchronously notified of events generated by 

publishers[14]. 

 As distributed systems on wide-area networks grow, the demand of flexible, efficient, 

and dynamic communication mechanisms are needed. The publish/subscribe 
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communication paradigm provides a many-to-many data dissemination. It is an 

asynchronous messaging paradigm that allows for better scalable and a more dynamic 

network topology. The publish/subscribe interaction is an asynchronous messaging 

paradigm, characterized by the strong decoupling of participants in both time and 

space[38]. 

 There are two most widely used approaches to publish/subscribe models. One is a 

topic-based system[29] and the other is a content-based one[7]. In the topic-based system,

messages are published to topics, or named logical channels, which are hosted by a 

broker. Subscribers obtain all messages published to the topics to which they subscribe 

and all subscribers to the topic will receive the same messages. Each topic is grouped by 

keywords. In the content-based system, messages are only delivered to a subscriber if the 

attributes or content of those messages match constraints defined by one or more of the 

subscriber’s subscriptions. This method is based on tuple-based system. Subscribers can 

get a selective event using filter in form of name-value pairs of properties and basic 

comparison operators (=, >, ≥, ≤, <). However, these approaches consider the different 

models for the middleware and the programming language. Consequently, the object-

oriented and message-oriented worlds are often claimed to be incompatible[16]. 

Therefore, Patrick T. Eugster presents a type-based publish-subscribe which provides 

type safety and encapsulation[17]. 

 

2.4 Generics in the Java Programming Language 

JDK 1.5 introduces several extensions to the Java programming language. One of these is 

the introduction of Generics. Generics is designed to increase the flexibility of object-



17

oriented type systems with parameterized classes and polymorphic methods. A similar 

mechanism has recently been described for C#, and is likely to become part of a future 

version of that language[36]. 

 Generics provides a way to communicate the type of collection to a compiler, so that it 

can be checked. Once a compiler knows an object’s type, then the compiler can check 

that the object user has used the object consistently and can insert the correct casts on 

values being taken out of the object. 

 Generic methods allow type parameters to be used to express dependencies among 

types of one or more arguments to a method and/or its return type. If there isn’t such a 

dependency, a generic method should not be used[12]. Using wild cards is clearer and 

more concise then declaring explicit type parameters, and should therefore be preferred 

whenever possible. 

 

2.5 Scientific Computing and Grid Computations 

This study focuses on developing a model for a large-scaled scientific computing and 

grid computation. 

 Scientific computing constructs mathematical models and numerical solution 

techniques using computers to analyze and solve scientific and engineering problems[39]. 

In practical use, it is typically an application of computer simulation and other forms of 

computation to problems in various scientific disciplines. 

 Grid computations start as a numerical solution to partial differential equations 

(PDEs). PDEs are used as a model because many phenomena in nature are 

mathematically described by PDEs, such as whether, airflow over a wing, turbulence in 
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fluids, and so on. There are two methods to solve PDEs: a direct method and an iterative 

method. Simple PDEs can be solved directly, but in general, it is necessary to estimate 

the result at a finite number of points using iterative numerical methods. 

 Before this study moves on an iterative method, we will deal with the Monte-Carlo 

method to introduce parallelism. And we introduce Laplace’s equation as a fundamental 

PDEs[10, 2] and Jacobi iteration as an iterative method to solve PDEs correspondingly. 

 

2.5.1 π Calculation 

There are a number of ways to calculate the value of π. Monte Carlo methods can be 

thought of as statistical simulation methods that utilize a sequences of random numbers to 

perform the simulation[21]. Given the possibility that an event will occur in certain 

conditions, a computer can be used to generate those conditions repeatedly. The number 

of times the event occurs divided by the number of times the conditions are generated 

should be approximately equal to the possibility[1].  
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Figure 2.4 π calculation 

 Figure 2.4 illustrates how to get π approximation. AS is the area of a square and AC is 

the area of a circle. The π value is derived from both AS and AC. Assuming that r is 0.5, 

i.e. the range of dots is between -0.5 and +0.5, we randomly select points in the square 

and count how many of them lie inside of the circle. Then we can approximately compute 

π according to the formula in Figure 2.4. For example, if 785 points are inside of the 

circle out of 1000 points, then π=4*785/1000=3.14. Statistically, the more points 

generated, the better the approximation gets. However, we set an accurate π value as 

3.14159265 and a threshold as 0.0000001, and calculate an approximate π value within 

the threshold. Table 2.2 shows the details for a program to calculate π value. 
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public double calculate(int threadNo){ 
 THRESHOLD = 0.0000001; 
 THRESHOLD = THRESHOLD * threadNo; 
 

double error = 1.0; 
 

while(error > THRESHOLD){ 
 double x = Math.random(); 
 double y = Math.random(); 
 double magX = .5 - x; 
 double magY = .5 - y; 
 

boolean inUnitCircle=Math.sqrt(magX*magX + magY*magY) <= .5; 
 if(inUnitCircle)    pointsInCircle++; 
 pointsInSquare++; 
 

approxiPi = (double) pointsInCircle * 4 / pointsInSquare; 
 error = Math.abs(approxiPi - ACCURATE_PI); 
 }//while 
 

return approxiPi; 
}//calculate 
 
public int getPointsInCircle(){ 
 return pointsInCircle; 
}

public int getPointsInSquare(){ 
 return pointsInSquare; 
}

Table 2.2 Program of π calculation 

 

2.5.2 Laplace’s Equation 

Laplace’s equation is an example of an elliptic PDE. The equation for two dimensions is 

as follows: 
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Assume that there is a two-dimensional space having coordinates x and y. Given a 

spatial region and values for points on the boundaries of the region, the goal is to 

approximate the steady-state solution for points in the interior[2]. 

 

(x,y)

x

y

(x- ,y) (x+ ,y)

(x,y+ )

(x,y- )

Figure 2.5 Computation of two- dimensional finite difference 

 

As shown in Figure 2.5, we can evenly space a grid of points, the region and the 

interior points, and they are calculated by repeated iterations. The new value of a point is 

computed by the values of four neighboring points. The computation terminates after a 

given number of iterations or when the difference of each interior point, between a new 

and an old value, is less than a given value. If the distance ∆ between x and y is small 

enough, the PDE of f for x and y can be described as first derivatives respectively: 
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And the second derivative for x is mentioned in equation (2.4): 
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From the second derivative (2.4), we are led to formula (2.5) after we plug in the first 

derivative (2.2) and (2.3). 
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By rearranging, we have (2.6) and (2.7). 
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By substituting in Laplace’s equation, we have 
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By rearranging, we have 
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The formula can be written as an iterative formula: 
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Where ),( yxf k is the value obtained from kth iteration, and ),(1 yxf k− is the value 

obtained from (k -1)th iteration. By repeated application of the formula, we can converge 

on the solution. 

 We have several iterative methods for solving Laplace’s equation including Jacobi and 

Gauss-Seidel algorithms. Gauss-Seidel algorithms may converge faster than Jacobi 

ones[3]. However, this study demonstrates Jacobi iteration due to its simplicity and 

readiness to be parallelized[2]. 

 

2.5.3 Jacobi Iteration 

Jacobi’s method is the simplest approach to designing an iterative method for 

solving bAx = . This uses the first equation and the current values of )()(
3
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2 ,...,, k

n
kk xxx to 

find a new value )1(
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+kx , where the superscript indicates the iteration. And then similarly 
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This can also be written as 
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D, L, and U are the diagonal, the lower triangular of A, and the upper triangular of A

respectively: 
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Then Jacobi’s Method can be written more concisely in matrix-vector notation as 

 bxULDx kk =+++ )()1( )( (2.13)

This formula is simply (k +1)th equation rearranged to have the (k +1)th unknown on 

the left side. 

 [ ]bxULDx kk +−−= −+ )(1)1( )( (2.14)
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It is proven that the Jacobi method will converge if the diagonal values have absolute 

values greater than the sum of the absolute values of the other a’s on the row. This 
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condition is called that the array of a is diagonally dominant. Therefore, the convergence 

is guaranteed if 

 |||| ,, ii
ij

ji aa <∑
≠

(2.16)

This condition is sufficient but not necessary. The method may converge even if the 

array is not diagonally dominant. However, the iteration formula will not work if any of 

the diagonal elements are zero because it requires dividing by zero[10]. Because iterative 

methods may not always converge, we terminates the computation in the ith iteration 

when all values are within a given error tolerance, i.e. ke > | )1()( −− k
i

k
i xx |. Also, iterations 

should stop the process when a maximum number of iterations have been reached. Since 

the parallel formulation requires all iterations to use the previous iteration’s values, the 

calculations have to be synchronized globally. 

 

� Sequential Jacobi Iteration 

In Jacobi iteration, the new value for each grid point is set to the average of the old values 

of the four neighboring points left, right, above, and below it. This process is repeated 

until the computation terminates. Table 2.3 shows suede codes for a sequential Jacobi 

program. This program works with two copies of matrix, oldMtx and newMtx. One copy 

represents the grid and its boundary and another copy represents the set of new values, 

i.e., oldMtx performs only read operations, and newMtx is for write only. 

 The boundaries of both matrices are initialized to the appropriate boundary conditions, 

and the interior points are initialized to zero, a starting value. Assume that the program 
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terminates the computation when every new value on iteration is within EPSILON of its 

prior value. Then the main computational loop for Jacobi iteration is as follows: 

 

double oldMtx[0:n+1, 0:n+1], newMtx [0:n+1, 0:n+1] 
double maxdiff; 
int iters; 
 
while(true){ 
 //1.compute new values for all interior points 
 for(i=1 to n, j=1 to n) 
 newMtx[i,j] = (oldMtx[i-1,j]+ oldMtx[i+1,j]+ 
 oldMtx[i,j-1]+oldMtx[i,j+1])/4; 
 iters++; 
 

//2.compute the maximum difference 
 maxdiff=0.0; 
 for(i=1 to n, j=1 to n) 
 maxdiff = max(maxdiff, abs(newMtx [i,j]- oldMtx[i,j])); 
 

//3.check for termination 
 if(maxdiff < EPSILON) 
 break; 
 

//4. copy newMtx to oldMtx to prepare for next updates 
 for(i=1 to n, j=1 to n) 
 oldMtx[i,j] = newMtx[i,j]; 
}

Table 2.3 Sequential Jacobi iteration 

 

This code assumes that arrays are stored in row-major order as in C or Java, which 

loops iterate over i then j. However, loops iterate over j then i if arrays are stored in 

column-major order as in Fortran.  

 This code is correct but not efficient. So we can improve its performance with some 

changes. In the first loop, the division by 4 can be replaced by the multiplication by 0.25 

because it takes fewer machine cycles to execute a multiplication than a division. This 

optimization is called strength reduction, which replaces a strong and expensive 
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operation with a weaker one. In fact, it could be replaced with an even weaker operation, 

shift right by 2. 

 And when we compute maximum difference, we can get rid of the overhead of two 

function calls, abs and max using function inlining as follows: Function inlining optimize 

compiler by expanding the body of the function inline instead of calling and returning 

from a function. 

 
double temp = oldMtx[i, j] - newMtx[i, j]; 
if(temp <0) temp = - temp; 
if(temp > maxdiff) maxdiff = temp; 
 

Table 2.4 Functional inlining for enhanced performance 

 

� Parallel Jacobi Iteration 

Suppose that we have PR processors and the dimensionality of the grid, n, is much larger 

than PR. We can divide the grid either into PR rectangular blocks or into PR rectangular 

strips. This thesis uses strips because that is easier to implement and more efficient. Long 

strips have better data locality than shorter blocks, and this leads to better use of data 

cache[2].  

 Assuming that n is a multiple of PR and arrays are stored in memory in row-major 

order, each process is assigned to a horizontal strip of size n/PR × n. Each process 

updates its strip of points. Also we need to use barrier synchronization, between after 

every process has completed one update phase and before any process begins the next 

one. The processes share the points of the edges of the strips. Table 2.5 contains a parallel 

program for the Jacobi iteration and Figure 2.5 shows the detailed communications for 

exchanging the edges and boundaries between two processes. 
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int n; 
int PR; 
int height = n/PR; 
 
double oldMtx[0:height+1, 0:n+1], newMtx [0:height+1, 0:n+1] 
 
//1. initialize old and new matrix, including boundaries; 
for (i=0 to height+1){ 
 oldMtx[i,0] = 1; 
 oldMtx[i,n+1] = 1; 
 newMtx[i,0] = 1; 
 newMtx[i,n+1] = 1; 
}

for (i=0 to n+1){ 
 oldMtx[0,i] = 1; 
 oldMtx[height+1,i] = 1; 
 newMtx[0,i] = 1; 
 newMtx[height+1,i] = 1; 
}

//2. Compute new matrix values 
for(i=1 to height) 
 for(int j=1; j <= n; j++) 
 newMtx[i,j] = (oldMtx[i-1,j]+oldMtx[i+1,j] 
 +oldMtx[i,j-1]+oldMtx[i,j+1])*0.25; 
 
//3. Send edges of new to neighbors 
if(id >0) 
 send newMtx[1,*] to the newMtx[height+1,*] of (id-1) process 
 
if(id <nThread-1) 
 send newMtx[height,*] to the newMtx[0,*] of (id+1) process 
 
//4. Receive the value from neighbors to boundaries of new 
if(id <nThread-1) 
 receive the value to newMtx[height+1,*] 
if(id >0) 
 receive the value to newMtx[0,*] 
 
//5. Compute old matrix values for interior of my strip 
for(i=1 to height, j=1 to n) 
 oldMtx[i,j] = (newMtx[i-1,j]+newMtx[i+1,j] 
 +newMtx[i,j-1]+newMtx[i,j+1])*0.25; 
 
//6. Compute maximum difference for my strip 
for(i=1 to height, j=1 to n){ 
 double diff = oldMtx[i,j] - newMtx[i,j]; 
 if(diff <0)   diff = -diff; 
 if(diff > mydiff)   mydiff = diff; 
}

Table 2.5 Parallel Jacobi iteration 
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Figure 2.6 Exchange the edges and boundaries between two processes 

 

Each process executes the same code but operates on different parts of the data. For 

instance, if the size of matrix is 100*100 and the number of process is 5, then each 

process will have 100*20 matrixes. In the initial condition, all the cells are set to 0 and 

the boundary to 1. The boundary is a ghost layer communicated between processes. As 

Figure 2.6 shows, each process communicates the ends of each row (red one) after it 

calculates the value of the matrix. Neighboring workers exchange edges twice per 

iteration of the main computational loop. All workers but the first send the top row of 

their strip to the neighboring one above, and all workers but the last send the bottom row 

of their strip to the neighbor below. Each worker then receives edges from its neighbors 

and these become the boundaries of each worker’s strip. The second exchange is 

identical, except that oldMtx is used instead of newMtx. 
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 After the appropriate number of iterations, each worker computes the maximum 

difference for its strip, and the first worker collects these values.  

 This program is optimized for better performance. First, it is not necessary to exchange 

edges after every update phase. We could exchange edges after every other update. 

Secondly, we can reprogram the remaining exchange to do local computation between 

the sends and receives. In particular, we can have each worker (1) send its edges to 

neighbors, (2) update the interior points of its strip, (3) receive edges from neighbors, and 

(4) update the edges of its strip. This will greatly increase the possibility that neighboring 

edges will have arrived before they are needed, and hence, receive statements will not be 

delayed.  

 

2.5.4 Asynchronous Iterative Algorithms 

We will start off with a mathematical model of synchronous and asynchronous iterations 

considering an iteration of the form )(: xfx = , where f is the iteration mapping defining 

the algorithm[9]. There are p processors with the ith processor assigned the responsibility 

of updating the ith component ix according to the rule ),...,(: 1 pii xxfx = . We say that an 

execution of iteration is synchronous if it can be described mathematically by the 

formula, ))(()1( kxfkx =+ where k is an integer-valued variable used to index different 

iterations, not necessarily representing real time. On the contrary, in asynchronous 

iteration, processors do not necessarily have to wait in anticipation of collecting all 

messages generated during the previous iteration. Each processor keeps updating its own 

part at its own speed. When the current value to be updated by other processor is not 

available, an out-of-date value is used instead. Asynchronous convergence has been 
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proved by several authors starting with the work of Chazan and Miranker[13], under the 

name of chaotic relaxation.

Now, we present communication categories with Synchronous and Asynchronous 

communications. Synchronous communications require handshaking between tasks that 

are sharing data. This can be explicitly ordered in code by a programmer, or it may be 

occur at a low level unknown to the programmer. This is often referred to as blocking 

communications since other work must wait until the communications have completed. 

Asynchronous communications allow tasks to transfer data independently from one to 

another. For example, task A sends a message to task B, and then immediately begins 

doing other work whenever or not task B receives the data. So asynchronous 

communications are often referred as non-blocking communications since other works 

can be done while the communications are taking place. Interleaving computation with 

communication is the greatest benefit to using asynchronous communications [8]. 

 Bahi, Couturier and Vuillemin seperates the classification of parallel iterative 

algorithms into three main parts, synchronous iterations-synchronous communications 

(SISC), synchronous iterations-asynchronous communications (SIAC), and asynchronous 

iterations-asynchronous communications (AIAC) algorithms[5, 4, 3]. They renamed 

AIAC algorithms to Asynchronous iterative algorithms. In SISC algorithms, all the 

processors initiate the same iteration at the same time because data exchanges are 

performed at the end of each iteration by synchronous global communications. In SIAC 

ones, all the processors also wait for the receptions of needed data updated at the previous 

iteration before they can begin the next one. In AIAC algorithms, all the nodes perform 

their iterations without considering the progression of the others because local algorithms 
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do not need to wait for required data. In general, AIAC algorithms have a greater number 

of iteration times to be converged. But the execution time could be significantly reduced. 

Finally, they present a way to implement synchronous and asynchronous versions. In 

synchronous algorithms, each processor reports its local error every iteration time to the 

master node. And stops its activity and waits until it receives the convergence response 

from the master. Therefore, this period effects the idle times. When the master has 

received all the local errors, it computes the global error of the whole system and decides 

whether the global convergence is achieved or not. Then the master node sends the 

convergence responses to the others, which keep on computing. In asynchronous 

algorithms, the nodes only send a message to the master when their local convergence 

state changes and stays constant during several iterations. Hence, there are no idle times 

between two iterations. The master decides that global convergence is reached when all 

the nodes are in a local convergence state at a given time. Then it orders the other 

processors to stop computing. Finally, in both versions, as long as the convergence is not 

reached, the algorithm computes its iteration in order to get more accurate results. 
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CHAPTER 3 

System Architecture 

The goal of this study is to design a communication framework (PARMI) for complex 

large-scaled scientific applications to minimize their overall execution time. The 

challenging issues are follows: 1) how to overcome a synchronous and point-to-point 

communication nature of RMI, 2) how to provide a scalable framework for dynamic 

applications, and 3) how to maintain a strong decoupling of participants in both time and 

space. This research adopts a publish/subscribe communication paradigm on the object-

oriented language framework, Java. Publish/subscribe provides a point-to-point 

communication and a strong decoupling of participants in both time and space. With a 

future object in Java, we overcome the synchronous nature of communication. Also 

Generics in Java makes it possible to apply for any dynamic situation. Java’s object-

oriented character helps to build a scalable system. 

 This chapter presents a design to implement the PARMI. Section 3.1 presents initial-

phase implementations with the future object, to reach the final destination for providing 

a publish/subscribe communication. And Section 3.2 presents the PARMI with an adapter 

module for providing a publish/subscribe communication. 
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3.1 Asynchronous RMI with a Future Object 

As studied in Chapter 2, RMI design with a future object is the latest and most suitable 

design for providing asynchronous communication between a client and a server. For a 

concrete and qualified test, this research also implements the RMI application with a 

future object and will be the criterion when we compare with our final goal, an 

asynchronous RMI providing a publish/subscribe communication. 

 

3.1.1 Conceptual Architecture 

As mentioned in Section 2.2.3, a future object helps a client not to be suspended while 

computation is carried out. Thanks to built-in classes and interfaces for the future object 

which holds a result of an asynchronous call, we don’t need to spend time to implement 

the future object after Java version 1.5 or later. The previous asynchronous RMI studies 

have manipulated the stub class, which is generated automatically by an rmic compiler. It 

produces many maintenance difficulties. For example, if a method which is invoked 

remotely by an object is changed, then the corresponding classes and interfaces should be 

changed. After a stub class is generated by an rmic compiler, we must change the stub 

class manually. Therefore, this study does not attempt to change the stub class and add 

some codes in client side to use the FutureTask. 

 The following programs calculate the π value using the Monte-Carlo method, which is 

defined in Section 2.5.1. Several client-side threads send signals to invoke server-side 

methods to calculate the value of π.

The CalculatePi interface used by the server is also used by the client. On the server 

side, there are CalculateServer and CalculatePiImpl classes. CalculateServer class 
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creates the registry and binds CalculatePiImpl object to the registry. CalculatePiImpl 

class implements CalculatePi interface, i.e. CalculatePiImpl class has all business logics 

for methods of CalculatePi. The threshold is equally divided by the number of clients 

because the whole threshold is fixed. Therefore, the client submits the number of clients 

as an input parameter when it invokes a server-side method. Table 3.1 shows detailed 

server-side implementations for asynchronous RMI codes with the future object. 

 

public class CalculateServer { 
 

public CalculateServer(){ 
 try{ 
 // Create Remote Object 
 CalculatePiImpl piRef =  
 new CalculatePiImpl("CalculatePi"); 
 

// Create the registry 
 // and bind the Server class to the registry 
 LocateRegistry.createRegistry(1099); 
 Registry r= LocateRegistry.getRegistry(); 
 r.bind(piRef.getName(), piRef); 
 

}catch(Exception e){} 
 }

public static void main(String[] args){  
 // Create and install a security manager 
 System.setSecurityManager(new RMISecurityManager()); 
 new CalculateServer(); 
 }
}

public interface CalculatePi extends Remote{ 
 public double calculate() throws RemoteException; 
}

public class CalculatePiImpl extends UnicastRemoteObject 
 implements CalculatePi{ 
 private String name; 
 private static final double ACCURATE_PI = 3.14159265; 
 private static double THRESHOLD; 
 private int pointsInCircle =0; 
 private int pointsInSquare =0; 
 private double approxiPi =0; 
 static final boolean debug =false; 
 private static long startTime, endTime; 
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 private static NumberFormat df =NumberFormat.getInstance(); 
 

public CalculatePiImpl(String name) throws RemoteException{ 
 super(); 
 this.name= name; 
 df.setMaximumFractionDigits(10); 
 }

public String getName(){ 
 return name;  
 }

public double calculate(int threadNo){ 
 THRESHOLD = 0.0000001; 
 THRESHOLD = THRESHOLD * threadNo; 
 

double error = 1.0; 
 

while(error > THRESHOLD){ 
 double x = Math.random(); 
 double y = Math.random(); 
 double magX = .5 - x; 
 double magY = .5 - y; 
 boolean inUnitCircle= 
 Math.sqrt(magX*magX + magY*magY) <= .5; 
 if(inUnitCircle)    pointsInCircle++; 
 pointsInSquare++; 
 

approxiPi =(double) pointsInCircle * 4 / pointsInSquare; 
 error = Math.abs(approxiPi - ACCURATE_PI); 
 }//while 
 

return approxiPi; 
 }//calculate 
 

public int getPointsInCircle(){ 
 return pointsInCircle; 
 }

public int getPointsInSquare(){ 
 return pointsInSquare; 
 }
}

Table 3.1 RMI codes in the server side 

 

The client-side needs CalculatePi interface, Main class, and CalculateClient class. Main 

class creates several CalculateClients and invokes calculate() method using the 

FutureTask object.  By calling run() method in FutureTask, call() method in 
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CalculateClient is invoked. All FutureTasks are stored in HashTable and the results can 

retrieved from CalculateClient when a computation has completed. CalculateClient class 

implements Callable interface to provide a future object. Table 3.2 has the detailed 

implementations for client-side asynchronous RMI codes with a future object. 

 

public class Main{ 
 static final boolean debug =false; 
 static long startTime, endTime; 
 static DecimalFormat df = new DecimalFormat("###,###,###.###"); 
 

public static String url; 
 public static int NO_PROC; 
 static private Hashtable<Integer,FutureTask> future; 
 static double pi; 
 

public Main() throws InterruptedException{ 
 future = new Hashtable<Integer,FutureTask>(); 
 

// start invoke the tasks 
 for(int i=0; i< NO_PROC; i++){ 
 FutureTask<Double> client= 
 new FutureTask<Double>(new CalculateClient(i+"")); 
 client.run(); 
 future.put(i, client); 
 }

// get the future result 
 for(int i=0; i< NO_PROC; i++){ 
 FutureTask<Double> client = future.get(i); 
 

try{ 
 pi +=client.get(); 
 if(debug) 
 System.out.println("pi +: "+pi); 
 

}catch(InterruptedException e){ e.printStackTrace(); 
 }catch(ExecutionException e){ e.printStackTrace();} 
 

}

pi = pi/NO_PROC; 
 System.out.println("pi: "+pi); 
 

endTime = System.currentTimeMillis(); 
 System.out.println("time spend: "+ 
 df.format(endTime - startTime)); 
 }
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 public static void main(String[] args){ 
 startTime = System.currentTimeMillis(); 
 

// Print the program usage  
 if(args.length != 2) {  
 System.out.println("Usage : hostName NO_PROC"); 
 return; 
 }

// Create and install a security manager 
 if (System.getSecurityManager() == null) 
 System.setSecurityManager(new RMISecurityManager()); 
 

// Create the url string 
 url = args;  
 NO_PROC = Integer.parseInt(args[23]); 
 

try{ 
 new Main(); 
 }catch(InterruptedException e){} 
 } 
}

public interface CalculatePi extends Remote{ 
 public double calculate() throws RemoteException; 
}

public class CalculateClient implements Callable<Double>{ 
 static final boolean debug =false; 
 

String id = null; 
 CalculatePi cp = null; 
 

public CalculateClient(String id){ 
 this.id = id; 
 }

public Double call() throws Exception{ 
 //Get a remote reference by calling Naming.lookup() 
 Registry r= LocateRegistry.getRegistry(Main.url); 
 cp= (CalculatePi)r.lookup("CalculatePi"); 
 

// Now use the reference cp to call remote methods 
 return cp.calculate(Main.NO_PROC); 
 }
}

Table 3.2 RMI codes in the client side 
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3.1.2 Operation of the Asynchronous RMI with a Future Object 
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Figure 3.1 Operation of the asynchronous RMI with a future object 

 

Figure 3.1 shows the operations of each class. After Server registers CalculatePiImpl 

object to RMI registry, a client is able to get a remote reference from the RMI registry. 

Once a client invokes a method, it proceeds with the remaining works without waiting 

because a future object is returned instantly when it is called.  

 

3.1.3 Experimental Evaluation 

The tests were performed to explore the different costs of standard RMI synchronous 

methods and our extended asynchronous method with future objects. These tests were 

performed on a local machine with a different directory with 2.8GHz processor running 

JDK 1.5.0_08 and two remote Windows machines with 2.8GHz and 1.86GHz processors 

connected by 10MB Ethernet running JDK 1.5.0_08 and 1.5.0_09. Performance results 
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were carried out in groups of 5 to 10,000 threads. Measurements were performed using 

the System.currentTimeMillis() method of Java. π value was calculated on the conditions 

of ACCURATE_PI = 3.14159265 and THRESHOLD = 0.0000001.  

 

Threads  Sync(A) 
(milliseconds) 

Future(B) 
(milliseconds) 

A-B((A-B)/A) 
(milliseconds(%)) Exception 

20 594 407 187(31.48)
40 828 453 375(45.29)
60 969 500 469(48.40)
80 1,265 516 749(59.21)

100 1,312 562 750(57.16)
300 3,235 906 2,329(71.99) Sync 
400 4,031 1,062 2,969(73.65) Sync 

1,000 12,343 1,906 10,437(84.55) Sync 
100,000 87,672 Sync 

Table 3.3 Sync/async RMI over local calls. 

 

Threads  Sync(A) 
(milliseconds) 

Future(B) 
(milliseconds) 

A-B((A-B)/A) 
(milliseconds(%)) Exception 

20 406 406 0(0.00) 
40 610 422 188(30.82) 
60 3,454 1,187 2,267(65.63) 
80 3,704 1,328 2,376(64.15) 
90 6,922 641 6,281(90.74) 
95 3,469 1,485 1,984(57.19) 

100 3,546 703 2,843(80.17) 
300 10,031 2,203 7,828(78.04) 
400 14,812 2,625 12,187(82.28) 

1,000 21,156 7,313 13,843(65.43) 
10,000 38,688 Sync 

Table 3.4 Sync/async RMI over remote calls. 

 

Table 3.3 displays the execution costs for synchronous and asynchronous RMI calls 

with future objects on local modes. This table shows that asynchronous calls have less 
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execution time than synchronous calls. We encountered java.net.ConnectionException on 

the synchronous RMI call with more than 300 threads. This exception is because of the 

limited number of concurrently opened sockets. On the contrary, the asynchronous calls 

with future objects show very stable executions until it finishes its processes. 

 Table 3.4 shows the execution costs for synchronous and asynchronous RMI calls with 

future objects on remote modes. The same exceptions started to occur on the synchronous 

RMI call with more than 100,000 threads. 

 The following figures show the graphs for Table 3.3 and 3.4 respectively.  
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Figure 3.2 Sync/async RMI over local calls. 
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Figure 3.3 Sync/async RMI over remote calls. 

 

As Figure 3.2 and 3.3 shows, the asynchronous communication with future objects 

decreased the execution time significantly on both local and remote calls. And also the 

exceptions for connection failures were decreased when we chose the asynchronous way 

of communication. With these considerable experiments, we reached the conclusion that 

the future object will contribute to performance improvement on our PARMI framework. 

 

3.2 PARMI Framework Architecture 

We added a new function to the adapter class to provide a publish/subscribe paradigm. 

The function of the adapter class is to keep track of those instances that are interested in 

the method’s results. Thus, the adapter needs to watch the status of items holding 
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interests and results, to determine when a result is ready. We chose the Observer-

Observable design pattern for this function. The Observer-Observable design is a very 

useful pattern for maintaining one-way communication between one object and a set of 

other objects[41]. This design pattern consists of observers and observables and the 

communication is strictly from the observables to the observers. Observers only receive 

communications from the observable. Observers do not have a reference back to the 

Observable. Observable is the object that Observers are watching. Observers are always 

notified via their update methods whenever the Observable’s update method is called. We 

have applied the observable to an item and the observer to a subscriber in PARMI 

system. If a subscriber is interested in an item, the subscriber is notified via its method 

whenever the item is changed. 

 When publishers and subscribers execute their jobs, they need to invoke methods in the 

adapter asynchronously for better performance. Based on the experimental result 

achieved with a future object, we can implement asynchronous invocations with the 

future object. Further, RMI supports an object-oriented communication framework for 

distributed computation in a heterogeneous network on remote address space. 

 

3.2.1 Conceptual Architecture 

In the previous chapter reviewed, we have introduced three design models for 

Publish/Subscribe: the topic-based, the content-based, and the type-based system. Each 

design model for the publish/subscribe system offers different degrees of expressiveness 

and performance overhead. The topic-based design model is rather static and primitive, 

but can be implemented very efficiently. The content-based one is highly expressive but 
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requires sophisticated protocols that have higher runtime overhead. Therefore, we select 

the type-based one for PARMI which is suitable for an object-oriented system. In the 

type-based design model, an object can be a class, a method, or a variable. The object is 

implemented by generic code which provides the Meta programming environment and 

guarantees run-time type safety. 

 Also there is a study of formal approaches for a publish/subscribe communication 

system with respect to the semantic notification of information[6]. Therefore, we also can 

consider the formal approach for terminologies and operations for each process. 

 

3.2.2 Terminology 

We have four main components to provide the publish/subscribe communication:  

publishers, subscribers, the adapter, and items. The publish/subscribe system is 

composed by a set of process, Π= {p1… pn} that communicate by exchanging 

information items.  

 Each process pi can be either a publisher or a subscriber. If pi is a publisher, then it 

sends the data to the adapter when it is ready. On the contrary, pi is a subscriber Si, it 

registers itself with an item in the adapter to receive the data interested in, or releases 

itself from an item in the adapter if the subscriber doesn’t want to subscribe anymore. pi

interacts with other processes by subscribing the class of events interested in and by 

publishing event notification. Both cases invoke methods of the adapter whenever they 

execute their operations. In the PARMI, publishers and subscribers carry out the same 

role as clients in the existing RMI system.  
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 The adapter is a central entity which keeps a set of all available items for publishers 

and subscribers in a hierarchical structure. The set is present as a form of Hashtable €= 

{x1… xm} where xi is an item. The set has a unique topic as a key mapping with an item xi

for a value as Hashtable. The adapter collects subscriptions and forwards events to 

subscribers. The adapter executes the same role as a server in the existing RMI system. 

 An item xi is an element in the adapter holding the mapping information including a 

topic, a value, and a remote reference collection ₤= {S1 … Sm}, which subscriber Si is 

interested in. It can be generated by either a publisher or a subscriber when submitting the 

value v about a specific topic to the adapter at the very first time. When a subscriber 

informs the adapter that it is interested in a topic, the adapter searches the set € if the item 

xi with the topic exists or not. If the adapter already has the item xi, then returns it. 

Otherwise, the adapter creates a new item. When a publisher sends a value with a topic, 

the adapter creates an item if it does not exist on the set €. Otherwise, the adapter updates 

the value of the existing item xi.

Figure 3.4 presents the four elements in the PARMI system. Because publishers and 

subscribers use the same objects and methods from the RMI system, their structures 

preserve the stub/skeleton and the remote reference layer. As contrasted with these 

elements, the adapter and items are newly created objects that provide the 

publish/subscribe communication. The adapter is a storage unit providing the event-

based service between publishers and subscribers. Basically, the adapter carries out an 

intermediary role to invoke a method and to forward the result from a subscriber. The 

detailed operations will be presented in the next section. 
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Figure 3.4 PARMI organization 

 

3.2.3 Operation of Asynchronous RMI 

Each process pi executes the following operations: publishi(v, t), registeri(Si, t), 

unregisteri(Si, t), where v is a value of an information item, t is a topic for publish and 

subscribe, and S is a subscriber itself. Because all three methods exist in the adapter and 

return types are void, pi invokes each method using RMI with a future object and passes 

the control to the adapter. All reference data such as method’s name, method’s parameter, 

and remote reference, are handed over to the adapter, but pi does not need to wait until 

the method finishes its work.  

 Each process pi can submit a value v with a topic t to the adapter by executing 

publishi(v, t) operation. And pi also can receive a value v submitted by other processes by 
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executing an upcall to subscribei(v, t). Subscriptions are respectively installed and 

removed at each process by calling registeri(S, t) and unregisteri(S, t) operations. That is 

pi receives a value v only after registering its interest by calling registeri(S, t). After that, 

if pi carries out unregisteri (S, sub), then it is excluded from the subscription list. Figure 

3.5 and 3.6 present how the PARMI system works when each method is called. 

 

Figure 3.5 Flow chart for a publisher 

 

As shown in Figure 3.5, when publishi(v, t) method is invoked by process pi, the 

adapter checks its Hashtable € whether it contains the item with the key t. If the item x

already exists, the adapter updates the item’s value v. If not, the adapter creates x with v.
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After updating with the value, the adapter notifies to all subscribers ₤= {S1 … Sm} who 

registered themselves to x.

(a) register                                                                  (b)unregister 

Figure 3.6 Flow chart for a subscriber 

 

Figure 3.6 shows the way a subscriber registers and unregisters its interests to the 

adapter. The adapter checks Hashtable € with a key t for registeri(v, t) method which is 

invoked by a subscriber Si. If an item x with t already exists, the adapter adds Si to x and 

notifies only to the current added Si who wants to receive x at this instant. If not, the 
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adapter creates x with adding Si to subscription collection ₤. On the other hand, the 

adapter removes Si after unregisteri(v, t) method is called. 

 PARMI provides an Item<V> class with generic forms which enables type-safety and 

simple interfaces to create automated data objects. <V> can be any type of object such as 

Integer, Boolean, Double, String, Arrays, or even Class. 

 The Item class has three attributes: a topic as a String type, a value as a generic form, 

and a collection of subscriber’ remote references to interested in the topic. Whenever a 

corresponding event occurs, an item keeps adding or removing three attributes. When 

notifySubscribers method is locally invoked, it notifies all subscribe methods of each 

subscriber registered. And this mechanism is inspired by the observer-observable design 

pattern provided by java.util.* libraries in the form of interface Observer and class 

Observable.  

 

3.3 Application of PARMI with Jacobi Iteration 

To provide a parallel grid computing with the Jacobi method, we use centralized 

summation algorithm that is composed of a central master and N workers[21]. The master 

partitions a matrix into N number, assigns a unique id to each process, keeps the 

information item which is provided by workers, and collects all convergence rates from 

each worker. The workers are labeled with a unique id which indicates the position of the 

matrix. Each worker calculates interior points of the matrix, exchanges boundaries of the 

matrix, and computes the maximum difference between the old matrix and the new 

matrix. Figure 3.7 and 3.8 shows the detailed Jacobi iteration processes on the RARMI 

between master and workers. 
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Figure 3.7 The Jacobi iteration processes between a master and workers: part 1 

 

Figure 3.7 shows communications between a master and workers before workers start 

their own calculation. (1)A master registers itself with the RMI registry on its host name 

using a unique name, “Jacobi”. A worker requests the remote reference of the master to 

the RMI registry using lookup service. (2)The master returns the remote reference of 

itself. Now, each worker is ready to invoke methods of the master. (3)The master assigns 

ids to all the workers at the same time. If there is a worker that has not requested an id, 

then the rest of the workers wait until the entire workers request ids. As soon as the last 

worker requests an id, all the workers are notified and ids are simultaneously assigned. 

(4) After that, the workers can start their calculating methods.  
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Figure 3.8 The Jacobi iteration processes between a master and workers: part 2 

 

Figure 3.8 illustrates the remaining communications between a master and workers 

after workers start their own calculation. (1)A worker registers it to the master which 

topic they are interested in, i.e. the topic is the boundaries of the assigned matrix. And it 

calculates the two matrix values and computes the maximum difference between two 

matrixes. (2)A worker publishes the boundary values of the matrix. (3) If a worker 

registered its topic and that topic’s value is published, then it automatically subscribes the 

topic’s value from the master. Because we cannot anticipate the speed of each worker, the 

information items in the Hashtable are created by register method or publish method. 

Each worker repeats its process until the maximum difference reaches the convergence 

rate. When the condition is satisfied, a worker sends its convergence rate to the master 

and master notifies its decision to stop the worker if all the workers reach the local 

convergence.  
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Figure 3.9 Implementations of Jacobi application using PARMI framework 

 

Finally, Figure 3.9 is a diagram for the final asynchronous Jacobi implementations. 

The PARMI framework provides the package, s3lab.parmi.*. A user needs to implement 

Adapter and Subscriber interface. For the first time user, we provide AdapterTask class 
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which already implemented three methods in Adapter interface using Item class. For 

Jacobi iteration, we made three different package, jacobi.master.*, jacobi.commnon.*,

and jacobi.worker.* according to the RMI syntax. The master implements Adapter 

interface and the worker implements Subscriber interface respectively. For remote site 

calls, the jacobi.commnon.* package need to be located on both master and worker sides. 

A worker in jacobi.worker.* package has the roles that registers its interested parts, 

calculates its own part, publish the edges of its own matrix, and send its id, value, and 

iteration time to the master node when reaches the convergence rate. A master in 

jacobi.master* package has the role that divides the whole matrix into the number of 

worker, allocates the matrix to each worker, collects the convergence rate and notifies its 

decision to stop worker if all worker reach the convergence rate. 

(a) Synchronous algorithm 

(a) Asynchronous algorithm 
 

Figure 3.10 Time analysis for computation and communication 
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As we mentioned in section 2.5.4, we uses asynchronous iterative algorithm in our 

Jacobi application. Figure 3.10 compares the synchronous and asynchronous iterations 

and communications to analyze the waiting time and difference of communications.  

Different from synchronous algorithm, asynchronous one does not has synchronization 

between two iterations. Therefore, there is no idle time in asynchronous algorithm. 
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CHAPTER 4 

Evaluation 

In this chapter, we present the results of our experiment and analysis. We have performed 

our experiments on two different environments to evaluate the system, because these 

experiments are restricted to a single-site supercomputer because of the firewall. First, we 

conducted our experiments on a cluster with up to 50 Linux machines on OSU’s Tulsa 

campus. Secondly, we evaluate our system performance on 1 Unix, 4 Linux, and 15 

Windows machines on OSU’s Stillwater campus. These results show that PARMI 

provides good speedup in both cases. 

 

4.1 System Setup 

We did not measure the initial response time of each worker. All workers wait until the 

last one requests its id and completes its connection to a master. We cannot predict the 

time between workers and a master because each machine has a different time interval 

between these processes. Due to this unpredictability, we did not include the time before 

all processes connected to the master to be assigned ids.  

 Measurements were performed using the System.currentTimeMillis() method of Java. 

We set up the convergence criterion to 0.03, and then we carried out our experiments. 

When the convergence criterion was set to less than 0.03, one or two workers didn’t 

converge in asynchronous algorithm. This is because even if a sequential iterative 



56 

algorithm converges with the right solution, its asynchronous parallel counterpart may 

not converge[5].  

 We measured the execution time on both sides of a master and workers. The 

measurements on the master are useful for analyzing the overall performance. Because 

the majority of methods are invoked by workers, we can extract the communication time 

from the total execution time and compare the time involved in computation and 

communication. This comparison provides enough evidence based on the asynchronous 

applications on PARMI to be suitable for computational science in a grid context. 

 The synchronous version was implemented using the current existing RMI 

communication and synchronous iterative algorithm. The asynchronous version was 

implemented using the PARMI framework and the asynchronous iterative algorithm.  

 

4.1.1 System Configurations for a Local Heterogeneous Cluster 

All experiments were conducted on a Rocks cluster with 60 processors. The cluster is 

combined with a server and 4 racks:  

� The server machine is a Dell PowerEdge 4800 with dual Xeon 2.4 GHz and 2 

GB memory. 

� On the rack 0, there are 9 Pentium-D 3.0 GHz, 4 Pentium4 3.0 GHz, and 1 

CeleronD 2.66 GHz machines all with 1 GB memory and 80 GB HDD. 

� On the rack 1, we have 7 various Dell(1.5 to 2.4 GHz and 0.25 to 1 GB memory) 

and 4 CeleronD machines with 2.66 GHz, 1 GB memory, and 80 GB HDD. 

� On the rack 2, 12 CeleronD 2.66 GHz machines with 1 GB memory and 80 GB 

HDD. 
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� On the rack 3, we have 14 CeleronD 2.66GHz machines with 1 GB memory and 

80GB HDD.  

 We used the server as a master and the 4 racks as workers. The server’s hostname is 

eaton and the racks’ hostnames start from compute-0-0 to compute-3-14. Most of them 

have either one or dual processors and only eaton has quad processors in it. All of the 

machines are running on Linux 2.6.9. All experiments were conducted using SUN's JDK 

version 1.5.0. All machines were connected to each other by GB interconnection 

 

4.1.2 System Configurations for Remote Heterogeneous Machines 

Experiments for the master were conducted on a Sun Fire 880 machine whose hostname 

is csa. The configuration of the machines is described as follows: 

� The csa has quad processors and all processors’ speed is 900 MHz. Memory size 

is 8.19 GB. The machine is running on Sun OS 5.9 and JDK version is 1.5.0. 

 Experiments for workers were conducted on a cluster of Linux machines and 

individual 15 Windows machines: 

� The cluster is combined with 4 machines. These machines have quad processors 

each with dual CPU and their hostnames start from csx0 to csx3 sequentially. All 

the processor speeds are 1000 MHz and all the memory sizes are 3.60 GB. All of 

the machines are running on Linux 2.6.9 and JDK versions are 1.6.0.  Therefore, 

the total number of processors for the cluster is 16. 

� For Windows machines, we used 15 machines on the OSU Kerr computer lab. 

They all have dual processors and all processors’ speed is Pentium 4 CPU 3.2 

GHz. Their memory size is 1.00 GB running on Windows XP Professional 
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Version 2002 Service Pack 2 and JDK version is 1.5.0. All machines connected 

to each other by a standard 100Mb/s Ethernet network. 

 

4.2 Results 

4.2.1 The Experiments on a Local Heterogeneous Cluster 

We conducted our experiments on a cluster. Basically, all commands were executed on 

eaton node. After we started a master on the eaton node, we connected to compute-0-0 to 

compute-3-14 nodes using Secure Shell(SSH). We employed a shell script to establish 

SSH. Table 4.1 shows the code for the shell script. We assumed that the possible total 

number of processors for workers is 60 based on the following conditions: Because a 

node only has 255MB memory, we excluded this node from the total number of 

processors. After that, we figured out the sum of processor numbers. If the machine had 

dual processors, then we added 2. Again, we excluded 4 processors from 64 processors 

because 4 processors existed on the eaton node for master. 

 

#!/bin/bash 
processN=xxx 
i=0 
 
while [ "$i" -lt $processN ] 
do 

echo "**start current id:$i" 
(( c = $i % 60 )) 
if [ "$c" -eq 0 ]; then a=0 b=0 
elif [ "$c" -eq 1 ]; then a=0 b=1 
elif [ "$c" -eq 2 ]; then a=0 b=2 
elif [ "$c" -eq 3 ]; then a=0 b=3 
elif [ "$c" -eq 4 ]; then a=0 b=4 
elif [ "$c" -eq 5 ]; then a=0 b=6 
elif [ "$c" -eq 6 ]; then a=0 b=8 
elif [ "$c" -eq 7 ]; then a=0 b=10 
elif [ "$c" -eq 8 ]; then a=0 b=12 
elif [ "$c" -eq 9 ]; then a=0 b=14 
elif [ "$c" -eq 10 ]; then a=0 b=15 
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elif [ "$c" -eq 11 ]; then a=0 b=18 
elif [ "$c" -eq 12 ]; then a=0 b=20 
elif [ "$c" -eq 13 ]; then a=0 b=22 
elif [ "$c" -eq 14 ]; then a=1 b=1 
# elif [ "$c" -eq 15 ]; then a=1 b=2 //memory is too small 
elif [ "$c" -eq 15 ]; then a=1 b=3 
elif [ "$c" -eq 16 ]; then a=1 b=4 
elif [ "$c" -eq 17 ]; then a=1 b=5 
elif [ "$c" -eq 18 ]; then a=1 b=6 
elif [ "$c" -eq 19 ]; then a=1 b=7 
elif [ "$c" -eq 20 ]; then a=1 b=8 
elif [ "$c" -eq 21 ]; then a=1 b=9 
elif [ "$c" -eq 22 ]; then a=1 b=10 
elif [ "$c" -eq 23 ]; then a=1 b=11 
elif [ "$c" -eq 24 ]; then a=2 b=0 
elif [ "$c" -eq 25 ]; then a=2 b=1 
elif [ "$c" -eq 26 ]; then a=2 b=2 
elif [ "$c" -eq 27 ]; then a=2 b=3 
elif [ "$c" -eq 28 ]; then a=2 b=4 
elif [ "$c" -eq 29 ]; then a=2 b=5 
elif [ "$c" -eq 30 ]; then a=2 b=6 
elif [ "$c" -eq 31 ]; then a=2 b=7 
elif [ "$c" -eq 32 ]; then a=2 b=8 
elif [ "$c" -eq 33 ]; then a=2 b=9 
elif [ "$c" -eq 34 ]; then a=2 b=10 
elif [ "$c" -eq 35 ]; then a=2 b=11 
elif [ "$c" -eq 36 ]; then a=2 b=12 
elif [ "$c" -eq 37 ]; then a=2 b=13 
elif [ "$c" -eq 38 ]; then a=3 b=0 
elif [ "$c" -eq 39 ]; then a=3 b=1 
elif [ "$c" -eq 40 ]; then a=3 b=2 
elif [ "$c" -eq 41 ]; then a=3 b=3 
elif [ "$c" -eq 42 ]; then a=3 b=4 
elif [ "$c" -eq 43 ]; then a=3 b=5 
elif [ "$c" -eq 44 ]; then a=3 b=6 
elif [ "$c" -eq 45 ]; then a=3 b=7 
elif [ "$c" -eq 46 ]; then a=3 b=8 
elif [ "$c" -eq 47 ]; then a=3 b=9 
elif [ "$c" -eq 48 ]; then a=3 b=10 
elif [ "$c" -eq 49 ]; then a=3 b=11 
elif [ "$c" -eq 50 ]; then a=3 b=12 
elif [ "$c" -eq 51 ]; then a=3 b=13 
elif [ "$c" -eq 52 ]; then a=3 b=14 

# dual processor start 
elif [ "$i" -eq 53 ]; then a=0 b=6 
elif [ "$i" -eq 54 ]; then a=0 b=8 
elif [ "$i" -eq 55 ]; then a=0 b=10 
elif [ "$i" -eq 56 ]; then a=0 b=12 
elif [ "$i" -eq 57 ]; then a=0 b=14 
elif [ "$i" -eq 58 ]; then a=0 b=18 
elif [ "$i" -eq 59 ]; then a=0 b=20 
elif [ "$i" -eq 60 ]; then a=0 b=22 

# dual processor end 
 fi 
 ssh -T compute-$a-$b <<EOI 
 echo " - compute-$a-$b to execute scriptX" 
 cd Thesis/asynch_future 
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 bash scriptX </dev/null>&result &  
 echo " - output of scriptX is redirected to result" 
 exit 
EOI 
 echo "**stop" 
 (( i = $i + 1)) 
done 

Table 4.1 Shell script controlling SSH shells 

 

Figure 4.1 and Figure 4.2 display the measurement on the master.  
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Figure 4.1 Execution cost for sync/async versions  

 
Figure 4.1 shows the execution costs for the synchronous and asynchronous versions in 

the eaton cluster in order to analyze the overall performance. We can see that the 

asynchronous version is faster than the synchronous one. This comes from two following 

reasons: First, in the synchronous algorithm, the fast machines are delayed by the slow 

ones. Although the number of iterations is greater in the asynchronous case, the fast 

For a 18,000*18,000 grid on a heterogeneous local 
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machines tend to speed up the slow ones[5]. Secondly, asynchronous case reduces the 

communication time by asynchronous method invocation. 
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Figure 4.2 The number of iteration for sync/async versions 

 
In Figure 4.2, we can see that the number of iterations of the asynchronous version is 

irregular. Nevertheless, with 20 processors the number of iterations falls; this is due to the 

computation time dropped. And this computation time decrease comes from the size of 

grid decreased as Figure 4.6 shows. The previous studies from other researchers indicates 

that the number of iterations relative to the asynchronous executions is not significant 

because each processor computes at its own speed, and the number of iterations can 

dramatically vary from one processor to another[5]. 

 Figure 4.3 and Figure 4.4 show the time measurement on each worker. For 

communication time, we measured the time before a worker invoked master’s method 

For a 18,000*18,000 grid on a heterogeneous local cluster 
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and after. Then, we calculated the difference between these times. After aggregating the 

total of computation time, we divided the times with worker numbers.  There is the last 

worker which decides the global convergence. To approach more accurate value for 

communication time, we took the middle value between the average computation time 

and the computation time of the last worker. Next, we subtracted communication time 

from total time to calculate computation time.  
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Figure 4.3 Average communication cost for sync/async versions 

 

Figure 4.3 shows asynchronous versions are faster than their synchronous counterparts 

for communication time. We can see that the asynchronous version achieves better results 

when the number of processors increases. In the synchronous version, workers become 

idle until the process of a master are completed and they get the data needed for their next 

For a 18,000*18,000 grid on a heterogeneous local cluster 
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iteration. Furthermore, the convergence detection is done with a gather-scatter operation 

at each iteration, which takes longer time than a totally asynchronous detection. 
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Figure 4.4 Average computation cost for sync/async versions 

 

Figure 4.4 demonstrates that the synchronous version has much less computation time 

than the asynchronous one because its iteration number is always less than the 

asynchronous one, as shown in Figure 4.2.  

 

4.2.2 The Experiments on Remote Heterogeneous Machines 

Processors(Machines) Total 
Processors Linux Windows 

8 4(4) 4(4)
10 4(4) 6(6)
20 16(4) 4(4)
24 16(4) 8(4)
27 16(4) 11(6)
30 16(4) 14(7)
36 16(4) 20(10)

For a 18,000*18,000 grid on a heterogeneous local cluster 
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40 16(4) 24(12)
45 16(4) 29(15)

Figure 4.5 The number of processors: Linux versus Windows 

In order to demonstrate the practical relevance of PARMI, we have evaluated the 

performance of synchronous and asynchronous versions using PARMI on the remote 

heterogeneous machines. A master was simulated on CSA, and workers were executed on 

Linux CSXs and separate Windows machines, as Figure 4.5 shows.  

 Figure 4.6 and Figure 4.7 show measurements involved in a master. After the total 

processors for workers reached at a point, the asynchronous version is faster than the 

synchronous one. In our experiment, that point was 24, as shown in Figure 4.6.  Figure 

4.7 displays the iteration numbers for synchronous and asynchronous versions. As in 

previous experiments, asynchronous versions have an irregular number because of the 

asynchronous algorithm.  
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Figure 4.6 Execution cost for sync/async versions 
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Figure 4.7 The number of iteration for sync/async versions 
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Figure 4.8 Average communication cost for sync/async versions 
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Figure 4.9 Average computation cost for sync/async versions 

 

Figure 4.8 and Figure 4.9 show that asynchronous version has better performance than 

the synchronous one on communication time. In case of computation time, the 

synchronous version has less time than the asynchronous one.  

 

4.3 Conclusion 

PARMI has excellent overall performance and high throughput. This is mainly caused by 

the improvement of communication time. We desynchronized the communication using 

asynchronous algorithms and asynchronous RMI method invocations. These suppress all 

the idle time and so reduce the whole execution times. 

 Finally, Table 4.2 summarizes all the results from the previous section. These results 

demonstrate that the speedup of synchronous versus asynchronous communication 

improves when a grid size increases and an experiment is conducted on a remote 

For a 2160*2160 grid on heterogeneous remote machines 
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environment. In the experiments, we can see that when the ratio of computation time to 

communication time increases, the ratio of synchronous time to asynchronous time 

decreases because computation time is significant when compared to communication 

times. Hence, for very large problems, it is necessary to involve even more processors in 

order to reduce computation times and preserve an efficient ratio of synchronous time to 

asynchronous time[3].  

 

(time in seconds) 
N of procs 5 10 20 30 35 42 50 60
Sync(t) 5 5 7 9 11 12 12 16
Async(t) 3 2 4 6 7 7 8 10
Speedup(t) 1.7 2.5 1.8 1.5 1.6 1.7 1.5 1.6
Sync(c) 1.6 4.6 6.4 8.4 10.5 11.7 11.6 15.0
Async(c) 0.4 0.7 1.9 4.4 4.1 5.1 6.6 8.1
Speedup(c) 4.0 6.6 3.4 1.9 2.6 2.3 1.8 1.9

(a) for a 2100*2100 grid on a local heterogeneous cluster  
 

(time in seconds) 
N of procs 5 10 16 20 25 40 50 76
Sync(t) 30 17 22 18 15 17 19 28
Async(t) 32 16 19 16 15 15 17 26
Speedup(t) 0.9 1.1 1.2 1.1 1.0 1.1 1.1 1.1
Sync(c) 2.4 2.4 14.2 9.3 7.4 13.6 16.7 23.0
Async(c) 0.2 0.8 0.9 1.3 1.4 6.3 8.6 17.6
Speedup(c) 12.0 3.0 16.2 7.4 5.3 2.2 1.9 1.3

(b) for a 7600* 7600 grid on a local heterogeneous cluster 
 

(t): total execution cost, (c): average communication cost.  
Speedup is the time on synchronous versus asynchronous versions.
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(time in seconds) 
N of procs 8 10 20 24 27 30 36 40 45
Sync(t) 7 6 10 13 24 38 49 55 58
Async(t) 32 26 15 14 15 16 18 20 19
Speedup(t) 0.2 0.2 0.7 0.9 1.6 2.4 2.7 2.8 3.1
Sync(c) 4.8 4.3 9.0 11.9 23.4 37.3 49.3 54.0 58.0
Async(c) 3.5 3.0 1.7 2.9 3.1 3.7 4.9 6.0 7.0
Speedup(c) 1.4 1.4 5.4 4.1 7.6 10.2 10.0 9.0 8.2

(c) for a 2160*2160 grid on remote heterogeneous machines 
 

Table 4.2 Comparisons of speedup using different environment. 
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CHAPTER 5 

Conclusion and Future Work 

5.1 Conclusion 

In this thesis, we have investigated how RMI can be made suitable for dynamic parallel 

and distributed systems. Our goal was to design a framework that provides highly 

efficient communication for scientific computing, preferably using communication 

models that integrate cleanly into Java and are easy to use. For this reason, we have taken 

the existing RMI model as a starting point in our work. 

 We have given a description of the RMI model and analyzed the former studies for 

asynchronous RMI implementations to evaluate their suitability for high-performance 

parallel programming. This analysis showed that these existing RMI implementations are 

not efficient enough to fully utilize a high-performance network because of point-to-point 

and asynchronous communication characters. 

 To solve this problem, we designed and implemented PARMI, a high-performance 

RMI framework that is specifically optimized for parallel programming on a 

heterogeneous cluster computer. To overcome point-to-point and asynchronous 

communication, we adapted a publish/subscribe communication model. Also we used 

Generics to provide a flexible and scalable object-oriented typed system.  

 A scientific application using the Jacobi iteration method has been developed to 

demonstrate the performance gain using PARMI communication framework compared to 
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using RMI mechanisms. To augment the performance improvement, we chose 

synchronous and asynchronous iterative algorithms. The synchronous version was 

implemented using the current existing RMI communication and synchronous iterative 

algorithm. The asynchronous version was implemented using PARMI framework and 

asynchronous iterative algorithm. We showed that the asynchronous application using 

PARMI significantly increases the speedup of parallel applications. We have also showed 

that the performance improvement is mainly due to communication overhead decrease.  

 

5.2 Future Work 

While our framework tries to provide features which will make it possible to implement 

high performance communication on a heterogeneous remote cluster, it is certainly not a 

finished product. A lot more simulations and improvements are possible as described in 

the follows: 

� As we mentioned on the starting point of chapter 4, the more simulation on 

geographically multi-sites environments is helpful to prove the performance 

enhancement of PARMI framework.  

� More applications using PARMI framework needed to demonstrate 

publish/subscribe communication benefit. While a publish/subscribe 

communication supports one-to-one, one-to-many, many-to-one, and many-to-

many communication between publishers and subscribers, the Jacobi application 

only need one-to-one communication.   

� As a result of our simulations, we found that Jacobi application using PARMI 

only support 150 workers per a master. If more than 150 workers concurrently 
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publish their data to a master, then communication overhead of a master 

increases and some workers cannot get the connection between the master and 

themselves. By using the middleware, a master distributes its workload in case 

two many of worker require its answer.  
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