
PARMI: A PUBLISH/SUBSCRIBE BASED

ASYNCHRONOUS RMI FRAMEWORK

By

HEE JIN SON

Bachelor of Arts
Kyung Hee University

Seoul, Korea
1998

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
May, 2007

ii

PARMI: A PUBLISH/SUBSCRIBE BASED

ASYNCHRONOUS RMI FRAMEWORK

Thesis Approved:

Xiaolin Li

 Thesis Adviser

Nohpill Park

Venkatesh Sarangan

A. Gordon Emslie

Dean of the Graduate College

iii

TABLE OF CONTENTS

Chapter Page

CHAPTER 1 Introduction... 1

1.1 Motivation... 1
1.2 Research Overview ... 3
1.3 Contributions... 4
1.4 Outlines of the Thesis ... 5

CHAPTER 2 Programming Models and Related Work ... 6

2.1 Remote Method Invocation... 6
2.2 Asynchronous RMI... 12
2.3 Publish/Subscribe Communication... 15
2.4 Generics in the Java Programming Language .. 16
2.5 Scientific Computing and Grid Computations.. 17

CHAPTER 3 System Architecture.. 33

3.1 Asynchronous RMI with a Future Object ... 34
3.2 PARMI Framework Architecture ... 42
3.3 Application of PARMI with Jacobi Iteration.. 49

CHAPTER 4 Evaluation ... 55

4.1 System Setup... 55
4.2 Results... 58
4.3 Conclusion .. 66

CHAPTER 5 Conclusion and Future Work.. 69

5.1 Conclusion .. 69
5.2 Future Work .. 70

REFERENCES…………………………………………………………………………..72

iv

LIST OF TABLES

Table Page

Table 2.1 General syntax for RMI .. 9

Table 2.2 Program of π calculation... 20

Table 2.3 Sequential Jacobi iteration .. 26

Table 2.4 Functional inlining for enhanced performance... 27

Table 2.5 Parallel Jacobi iteration... 28

Table 3.1 RMI codes in the server side... 36

Table 3.2 RMI codes in the client side ... 38

Table 3.3 Sync/async RMI over local calls. ... 40

Table 3.4 Sync/async RMI over remote calls. .. 40

Table 4.1 Shell script controlling SSH shells ... 60

Table 4.2 Comparisons of speedup using different environment. 68

v

LIST OF FIGURES

Figure Page

Figure 2.1 The RMI runtime architecture, courtesy: A. Wollrath 7

Figure 2.2 The stage of RMI call .. 12

Figure 2.3 Asynchronous invocation vs. publish/subscribe, courtesy: P.T. Eugster 14

Figure 2.4 π calculation .. 19

Figure 2.5 Computation of two- dimensional finite difference .. 21

Figure 2.6 Exchange the edges and boundaries between two processes 29

Figure 3.1 Operation of the asynchronous RMI with a future object 39

Figure 3.2 Sync/async RMI over local calls. .. 41

Figure 3.3 Sync/async RMI over remote calls.. 42

Figure 3.4 PARMI organization ... 46

Figure 3.5 Flow chart for a publisher.. 47

Figure 3.6 Flow chart for a subscriber .. 48

Figure 3.7 The Jacobi iteration processes between a master and workers: part 1 50

Figure 3.8 The Jacobi iteration processes between a master and workers: part 2 51

Figure 3.9 Implementations of Jacobi application using PARMI framework 52

Figure 3.10 Time analysis for computation and communication 53

Figure 4.1 Execution cost for sync/async versions... 60

Figure 4.2 The number of iteration for sync/async versions .. 61

Figure 4.3 Average communication cost for sync/async versions.................................... 62

Figure 4.4 Average computation cost for sync/async versions... 63

vi

Figure 4.5 The number of processors: Linux versus Windows .. 64

Figure 4.6 Execution cost for sync/async versions... 64

Figure 4.7 The number of iteration for sync/async versions .. 65

Figure 4.8 Average communication cost for sync/async versions.................................... 65

Figure 4.9 Average computation cost for sync/async versions... 66

1

CHAPTER 1

Introduction

1.1 Motivation

The widespread proliferation of the internet, as well as small organizational intranets, has

provided seamless access to information that is distributed in remote locations across the

network. There are many ways that application software components of different

machines can communicate with one another over a network.

 The first generation of the distributed communication mechanism uses the call

interface of the network layer directly, such as socket mechanism. While flexible and

sufficient for general communication, the use of sockets requires the client and server

using this medium to engage in some application-level protocol to encode and decode

messages for exchange. Design of such protocols is cumbersome and can be error-

prone[40].

 An already classic alternative to sockets is Remote Procedure Call (RPC). RPC allows

a program running on one computer to cause a subroutine on another computer to be

executed without explicitly coding[11, 22]. Arguments and return values are

automatically packaged and sent between the local and remote procedures. However,

while RPC is well suited for the procedural programming paradigm, it does not translate

well into distributed object systems that have gained much popularity in recent years.

 In order to match the semantics of object invocation, distributed object systems require

remote method invocation (RMI). RMI is similar to RPC, but integrates the distributed

2

object model into the Java language in a natural way[33]. While RMI has many

similarities with RPC, it supports Java’s security mechanism, multi-threaded nature, and

object-oriented characters such as inheritance, polymorphism and dynamic binding. RMI

has emerged as a powerful and easy to use language. It provides integrated and reliable

communication between objects in a distributed system via remote method calls. It allows

programmers to develop distributed Java programs with the same syntax and semantics

used for non-distributed programs. For many people who are used to Java, RMI support

powerful tools without understanding special new concept for the distributed object

system.

 However, although RMI is attractive to the dynamic distributed systems, it is not

desirable in many applications due to its synchronous nature. The client is blocked while

the call is processed by the server. The trend in distributed systems goes towards

asynchronous and reactive systems that cannot wait indefinitely for a synchronous call to

terminate. The synchronous nature of RMI leads to lower performance. Therefore, a

number of projects have investigated fast implementations supporting asynchronous

communication. Apparently the bottleneck caused by synchronous remote method

invocation effects Java technologies and challenges to look for a suitable solution.

1.1.1 Problem Statement

The main shortcoming of RMI is that it causes the execution of the requesting object to

be suspended until the computation is carried out in a remote address space. This delay is

incurred regardless of whether the invoking objects require the return value or not.

Therefore, the invoker always waits for a reply before continuing the remaining processes.

3

Another limitation of RMI is that it only supports point-to-point communication.

Remote invocations can only be forwarded to a single destination. Although point-to-

point communication is perfectly suited for expressing communication in client-server

applications, many parallel applications are difficult to implement efficiently using this

limited model and require broadcast communication.

1.2 Research Overview

The overall goal of this study is to design, implement and evaluate an asynchronous RMI

system that is suitable for use in parallel and distributed system for grid computing. The

detailed objectives are as follows.

� Explore the description of the RMI model and analyze the performance of an

existing RMI implementation.

� Study the related programming models for designing asynchronous RMI

structure.

� Introduce the structure and concepts for a new asynchronous way of

communication in RMI accepting the publish/subscribe paradigm, which

provides a conceptual simplicity and has the benefit to decouple objects in space

and time.

� Provide the framework with concrete interfaces and classes.

� Evaluate the performance of an asynchronous way of RMI communication on the

local/remote and homogeneous/heterogeneous environments.

4

1.3 Contributions

A publish/subscribe based asynchronous RMI framework (PARMI) has been

implemented and experimentally evaluated in large-scale systems with up to a 51

machine cluster system. These experiments demonstrate that PARMI successfully

improves the overall performance and stability. The contributions of PARMI are

elaborated as follows:

� Optimizing performance with PARMI support, applications linked with RMI will

be improved. In presence, middleware technologies are primarily based on some

modification of the RPC/RMI mechanism [35]. In the first instance, RMI is one

of supporting technologies on the well-known middleware Jini. Jini is an

infrastructure that runs on top of Java and RMI to create a federation of devices

and software components to implement services. In combination with object-

based technologies, Jini allows the creation of large distributed programs without

greater problems. In the second instance, as a standard component of the

enterprise level, the basic concepts of Enterprise Java Bean (EJB) started from

RMI. One of protocol uses in the internal of EJB is JRMP (as a transport protocol

of RMI, EJB support IIOP) and the class design in EJB is similar to RMI except

home interface.

� PARMI can be used as a communication element in diverse scientific

applications, such as mathematics, physics, chemistry, large-scale image

processing, and distributed stochastic simulations.

5

1.4 Outlines of the Thesis

The remainder of the thesis is organized as follows. Chapter 2 studies theories and related

work in the areas of PARMI. Chapter 3 describes the architecture and overall design of

framework including important features provided. Chapter 4 presents the evaluation of

the framework and reports the performance and the nature of losses and overheads

involved. Finally, Chapter 5 draws conclusions and also discusses the opportunities for

improvement and future work.

6

CHAPTER 2

Programming Models and Related Work

With the increasing adoption of Java for parallel and distributed computing, RMI is one

of the most popular communication paradigms in distributed computing. There are many

considerable works for enhancing the high performance RMI implementations. This

chapter presents the background and approaches for PARMI implementations and gives

an overview of the proposed strategies.

 Section 2.1 describes the features provided by the Java RMI. Section 2.2 reviews

various research done on mechanisms and complete systems which are related to

asynchronous RMI. Section 2.3 discusses Generics provided on Java languages. Section

2.4 introduces the highlighted communication paradigm in the diversified distributed

computing, the publish/subscribe communication. Finally, Section 2.5 studies scientific

and grid computing in use for the application model for PARMI.

2.1 Remote Method Invocation

In this section, an overall RMI mechanism is described. The RMI system allows an object

running in one Java virtual machine (JVM) to invoke methods on an object running in

another JVM. A user can utilize a remote reference in the same manner as a local

reference. This feature is regarded as an object-oriented version of a Remote Procedure

Call (RPC).

7

2.1.1 RMI System Architecture

Starting with an overview of the underlying RMI architecture, there are three layers that

comprise the basic remote-object communication facilities in RMI: the stub/skeleton

layer, the remote reference layer, and the transport layer[40]. As Figure 2.1 shows, each

layer is independent of the next and can be replaced by an alternate implementation

without affecting the other layers in the system.

Figure 2.1 The RMI runtime architecture, courtesy: A. Wollrath

8

The stub/skeleton layer provides the interface between the application layer and the

rest of the RMI system. In RMI, a stub for a remote object acts as a client's local

representative or proxy for the remote object. A stub implements the same set of remote

interfaces that a remote object uses. If a caller invokes a method on the local stub, then

the stub carries out the method call on the remote object. When a stub’s method is

invoked, it initiates a connection with the remote JVM containing the remote object,

marshals (writes and transmits) the parameters, receives them from the RRL, unmarshals

(reads) the return value, and finally transmits the value to the client. A skeleton

dispatches the call to the actual remote object implementation. When a skeleton receives

an incoming method invocation, it unmarshals (reads) the parameters for the remote

method, invokes the method on the actual remote object implementation, and marshals

(writes and transmits) the result to the client[34]. However, the skeleton is no longer

required in JDK 1.2 or newer versions because additional stub protocol was introduced.

 The remote reference layer (RRL) is the middleware between the stub/skeleton layer

and the underlying transport protocol. This layer handles the life of remote object

references, controls the communication between client/server and virtual machines, and

performs threading and garbage collecting for remote objects. Furthermore, it is

responsible for the semantics of the invocation. For example, the RRL determines

whether the server is a single object or is a replicated object requiring communications

with multiple locations. Each remote object implementation chooses its own remote

reference semantics – whether the server is a single object or is a replicated object

requiring communications with multiple locations. Also the RRL handles the reference

semantics for the server. The RRL abstracts the different ways of referring to objects that

9

are implemented in (a) servers that are always running on some machine, and (b) servers

that are run only when some method invocation is made on them. At the layers above the

RRL, these differences are not seen[20].

 The transport layer is the binary data protocol that sends remote object requests over

the wire. It is different from OSI protocols transport layer. It is responsible for connection

set-up, connection management; it keeps track of and dispatches to remote objects,

targets of remote calls, in the transport's address space.

2.1.2 The RMI Syntax

To create an RMI application, the programmer has to satisfy certain requirements[28].

interface Hello extends java.rmi.Remote {
 void sayHello(String name) throws java.rmi.RemoteException;
}

class HelloImpl extends java.rmi.server.UnicastRemoteObject
implements Hello {

 public void sayHello(String name) throws java.rmi.RemoteException {
 System.out.println(“Hello” + name);
 }
}

class Server {
 public static void main(String args) {
 if (System.getSecurityManager() == null) {
 System.setSecurityManager(new RMISecurityManager());
 }

Naming.rebind("myHost", new HelloImpl());
}

}

class Client {
 public static void main (String args[]) {
 try{
 Hello hello = (Hello) Naming.lookup(“myHost”);
 Hello.sayHello(“Jane!”);
 }catch(java.rmi.RemoteException e)
 }
}

Table 2.1 General syntax for RMI

10

As Table 2.1 shows, remote objects should be made by following steps[26, 27].

� Define an interface for the remote class that extends the interface

java.rmi.Remote, which must include every method available for remote

invocation. While java.rmi.Remote does not define any methods, it serves as the

marker interface that allows a RMI compiler and a runtime system to recognize

remote interfaces. Also, all remotely accessible methods must be declared to

throw a java.rmi.RemoteException that is used to report communication

problems and to forward application exceptions from one JVM to another.

� Create a class that implements the interfaces. The HelloImpl class in Table 2.1

illustrates how a remote object is defined. By implementing the Hello interface,

the HelloImpl is suitable for receiving remote invocations. It also extends one of

RMI’s classes UnicastRemoteObject, which provides methods for remote objects.

� Create a server program that creates an instance of the HelloImpl and binds the

service with the RMI registry. It also assigns a security manager to the JVM, to

prevent any untrusted clients using the service.

� Create a client program that accesses the remote interface. Compile the client

program. The client finds the “myHost” object on the server and create a remote

reference to this object by using Naming.lookup. This remote reference can be

used to do RMI calls on the HelloImpl object.

� Compile all classes including interfaces using the javac, the Java compiler. Then

compile the server/client programs using the rmic, the Java special stub compiler,

which produces two extra layers of code. These are a skeleton which runs on

server side and a stub on client side.

11

� Start the rmiregistry. A remote object registry is a bootstrap naming service that

is used by RMI servers on the same host to bind remote objects to names. Clients

on local and remote hosts can then look up remote objects and make remote

method invocations[32].

� Start the server application followed by the client application.

2.1.3 The Process of RMI Communication

A client application is able to invoke a method of a remote object with two methods. First,

the client gets the reference of remote object from registry, a bootstrap-naming service in

server machine. Secondly, it gets the reference of remote object using parameters or a

return value.

 The RMI client invokes a method of remote object through the remote object reference.

To forward a method invocation to another JVM, the RMI runtime system must be able

to transfer method parameters and a result value from one JVM to another. This is done

using serialization to preserve the object type. Serialization is object to provide the

object-oriented polymorphism.

 As Figure 2.2 shows, when a client calls a remote method, method parameters are

encoded (marshalled) simultaneously and transmitted from the network layer to remote

reference. A server carries out the processes successively: decodes (unmarshals) the

parameters, executes the method, encodes (marshals) the result again and finally

transmits the encoded results to the client. Undoubtedly, the client decodes and uses the

return value from the stub.

12

Figure 2.2 The stage of RMI call

2.2 Asynchronous RMI

As mentioned in the introduction, RMI, an object-oriented alternative of Remote

Procedure Calls, is one of the most popular communication paradigms currently used in

the mainstream of distributed computing, both in the industrial and scientific

domains[31].

 However, the synchronous nature of RMI leads network latency and effects to a

limited performance. Thus, several implementations have been developed that support

extended protocols for RMI. These include JavaParty, Manta, and NinjaRMI by changing

the underlying protocols such as the serialization protocols. This section presents the

13

considerable work completed in the field of RMI performance enhancement based on the

previous articles[35].

2.2.1 Optimized Sequential RMI

There have been implementations, e.g. Ninja RMI and KaRMI, for optimizing the

sequential RMI by the more effective marshalling and simplified channel initialization.

These implementations decrease overhead of marshalling but there is no enhancement for

Round-Trip Time (RTT).

2.2.2 Asynchronous RMI using Thread

When clients communicate with multiple objects/servers, a sequential communication

pattern causes a bottleneck effect. There has been research using multithreading, which is

natively supported in Java.

 But it also has limitations. Ironically, one of the most important characterizations of

RMI, such as thread management and garbage collection, cause the pause when the

system enhances the performance. Also, each thread requires using separate system

resources and TCP connections. As a result, the limited number of concurrent open TCP

connections allows covering 100 invocations.

2.2.3 Asynchronous RMI with a Future Object.

In 1997, Object System provided a communication system called Voyager, providing

several communication modes allowing for synchronous invocation, asynchronous

invocations with no reply (one way), and asynchronous invocation with a reply

14

(future/promise). Thereafter, several papers has implemented asynchronous RMI using

this concept[19, 37, 24, 30, 25].

 This way does not require an excessive number of threads and TCP connections. The

records of all 1000 invocations executed stably. This model overcomes synchronization

but it is still tightly coupled for space and time[14].

2.2.1 The Combination of Object-Orientation and Publish/Subscribe

Communication

Figure 2.3 Asynchronous invocation vs. publish/subscribe, courtesy: P.T. Eugster

The classical categories of publish/subscribe communications are topic-based and

content-based systems. However, the classical approaches have a limitation on designing

the object oriented system. It claims that the combination of object-orientation and the

publish/subscribe communication, might be applied to the current commercial practices

15

in distributed object-oriented computing[16, 18], which are mainly based on the

derivatives of the remote procedure call such as DCOM, Java RMI, and CORBA[15].

 As Figure 2.3 shows, asynchronous invocation with a future object has the similar

character with a publish/subscribe model, which will be a powerful tool for devising

distributed applications. A type-based publish/subscribe system enables an object-

oriented design and asynchronous communication. The type-based system characterizes

to regroup events not only based on contents but also structure. This also facilitates a

closer integration of the language and the middleware and guarantees type-safety.

2.3 Publish/Subscribe Communication

Starting with the information bus architecture, the publish/subscribe model comes in for

the solution for “24 by 7” commercial environment, in which a distributed system must

remain operational twenty-four hours a day, seven days a week. The information bus

requires operating constantly and tolerating for dynamic system evolution and legacy

system. Providers publish data to an information bus and consumers subscribe data they

want to receive[29]. Providers and consumers are independent and need not even know of

their existence. In general, the provider is called the publisher, the consumer is called the

subscriber, and the information bus is called middleware or broker. With systems based

on the publish/subscribe interaction scheme, subscribers register their interest in an event,

or pattern of events, and are subsequently asynchronously notified of events generated by

publishers[14].

 As distributed systems on wide-area networks grow, the demand of flexible, efficient,

and dynamic communication mechanisms are needed. The publish/subscribe

16

communication paradigm provides a many-to-many data dissemination. It is an

asynchronous messaging paradigm that allows for better scalable and a more dynamic

network topology. The publish/subscribe interaction is an asynchronous messaging

paradigm, characterized by the strong decoupling of participants in both time and

space[38].

 There are two most widely used approaches to publish/subscribe models. One is a

topic-based system[29] and the other is a content-based one[7]. In the topic-based system,

messages are published to topics, or named logical channels, which are hosted by a

broker. Subscribers obtain all messages published to the topics to which they subscribe

and all subscribers to the topic will receive the same messages. Each topic is grouped by

keywords. In the content-based system, messages are only delivered to a subscriber if the

attributes or content of those messages match constraints defined by one or more of the

subscriber’s subscriptions. This method is based on tuple-based system. Subscribers can

get a selective event using filter in form of name-value pairs of properties and basic

comparison operators (=, >, ≥, ≤, <). However, these approaches consider the different

models for the middleware and the programming language. Consequently, the object-

oriented and message-oriented worlds are often claimed to be incompatible[16].

Therefore, Patrick T. Eugster presents a type-based publish-subscribe which provides

type safety and encapsulation[17].

2.4 Generics in the Java Programming Language

JDK 1.5 introduces several extensions to the Java programming language. One of these is

the introduction of Generics. Generics is designed to increase the flexibility of object-

17

oriented type systems with parameterized classes and polymorphic methods. A similar

mechanism has recently been described for C#, and is likely to become part of a future

version of that language[36].

 Generics provides a way to communicate the type of collection to a compiler, so that it

can be checked. Once a compiler knows an object’s type, then the compiler can check

that the object user has used the object consistently and can insert the correct casts on

values being taken out of the object.

 Generic methods allow type parameters to be used to express dependencies among

types of one or more arguments to a method and/or its return type. If there isn’t such a

dependency, a generic method should not be used[12]. Using wild cards is clearer and

more concise then declaring explicit type parameters, and should therefore be preferred

whenever possible.

2.5 Scientific Computing and Grid Computations

This study focuses on developing a model for a large-scaled scientific computing and

grid computation.

 Scientific computing constructs mathematical models and numerical solution

techniques using computers to analyze and solve scientific and engineering problems[39].

In practical use, it is typically an application of computer simulation and other forms of

computation to problems in various scientific disciplines.

 Grid computations start as a numerical solution to partial differential equations

(PDEs). PDEs are used as a model because many phenomena in nature are

mathematically described by PDEs, such as whether, airflow over a wing, turbulence in

18

fluids, and so on. There are two methods to solve PDEs: a direct method and an iterative

method. Simple PDEs can be solved directly, but in general, it is necessary to estimate

the result at a finite number of points using iterative numerical methods.

 Before this study moves on an iterative method, we will deal with the Monte-Carlo

method to introduce parallelism. And we introduce Laplace’s equation as a fundamental

PDEs[10, 2] and Jacobi iteration as an iterative method to solve PDEs correspondingly.

2.5.1 π Calculation

There are a number of ways to calculate the value of π. Monte Carlo methods can be

thought of as statistical simulation methods that utilize a sequences of random numbers to

perform the simulation[21]. Given the possibility that an event will occur in certain

conditions, a computer can be used to generate those conditions repeatedly. The number

of times the event occurs divided by the number of times the conditions are generated

should be approximately equal to the possibility[1].

19

Figure 2.4 π calculation

 Figure 2.4 illustrates how to get π approximation. AS is the area of a square and AC is

the area of a circle. The π value is derived from both AS and AC. Assuming that r is 0.5,

i.e. the range of dots is between -0.5 and +0.5, we randomly select points in the square

and count how many of them lie inside of the circle. Then we can approximately compute

π according to the formula in Figure 2.4. For example, if 785 points are inside of the

circle out of 1000 points, then π=4*785/1000=3.14. Statistically, the more points

generated, the better the approximation gets. However, we set an accurate π value as

3.14159265 and a threshold as 0.0000001, and calculate an approximate π value within

the threshold. Table 2.2 shows the details for a program to calculate π value.

20

public double calculate(int threadNo){
 THRESHOLD = 0.0000001;
 THRESHOLD = THRESHOLD * threadNo;

double error = 1.0;

while(error > THRESHOLD){
 double x = Math.random();
 double y = Math.random();
 double magX = .5 - x;
 double magY = .5 - y;

boolean inUnitCircle=Math.sqrt(magX*magX + magY*magY) <= .5;
 if(inUnitCircle) pointsInCircle++;
 pointsInSquare++;

approxiPi = (double) pointsInCircle * 4 / pointsInSquare;
 error = Math.abs(approxiPi - ACCURATE_PI);
 }//while

return approxiPi;
}//calculate

public int getPointsInCircle(){
 return pointsInCircle;
}

public int getPointsInSquare(){
 return pointsInSquare;
}

Table 2.2 Program of π calculation

2.5.2 Laplace’s Equation

Laplace’s equation is an example of an elliptic PDE. The equation for two dimensions is

as follows:

02

2

2

2

=
∂
∂

+
∂
∂

y
f

x
f

(2.1)

21

Assume that there is a two-dimensional space having coordinates x and y. Given a

spatial region and values for points on the boundaries of the region, the goal is to

approximate the steady-state solution for points in the interior[2].

(x,y)

x

y

(x- ,y) (x+ ,y)

(x,y+)

(x,y-)

Figure 2.5 Computation of two- dimensional finite difference

As shown in Figure 2.5, we can evenly space a grid of points, the region and the

interior points, and they are calculated by repeated iterations. The new value of a point is

computed by the values of four neighboring points. The computation terminates after a

given number of iterations or when the difference of each interior point, between a new

and an old value, is less than a given value. If the distance ∆ between x and y is small

enough, the PDE of f for x and y can be described as first derivatives respectively:

∆
−∆+

=
∂

∂
→∆

),(),(lim),(
0

yxfyxf
x

yxf
x

(2.2)

22

∆
∆−−

=
∂

∂
→∆

),(),(lim),(
0

yxfyxf
x

yxf
x

(2.3)

And the second derivative for x is mentioned in equation (2.4):

∆
∆

−
∆
∆+

=
∂
∂

),(),(

2

2
yxfyxf

x
f (2.4)

From the second derivative (2.4), we are led to formula (2.5) after we plug in the first

derivative (2.2) and (2.3).

∆
∆

∆−−
−

∆
−∆+

=
∂
∂

),(),(),(),(

2

2
yxfyxfyxfyxf

x
f (2.5)

By rearranging, we have (2.6) and (2.7).

)],(),(2),([1

22

2

yxfyxfyxf
x

f
∆−+−∆+

∆
≈

∂
∂

)],(),(2),([1
22

2

∆−+−∆+
∆

≈
∂
∂ yxfyxfyxf

y
f

(2.6)

(2.7)

By substituting in Laplace’s equation, we have

0)],(4),(),(),(),([1

2 =−∆−+∆++∆−+∆+
∆

yxfyxfyxfyxfyxf (2.8)

By rearranging, we have

)],(),(),(),([

4
1),(∆−+∆++∆−+∆+= yxfyxfyxfyxfyxf (2.9)

The formula can be written as an iterative formula:

23

),(),(),(),([
4
1),(1111 ∆−+∆++∆−+∆+= −−−− yxfyxfyxfyxfyxf kkkkk (2.10)

Where),(yxf k is the value obtained from kth iteration, and),(1 yxf k− is the value

obtained from (k -1)th iteration. By repeated application of the formula, we can converge

on the solution.

 We have several iterative methods for solving Laplace’s equation including Jacobi and

Gauss-Seidel algorithms. Gauss-Seidel algorithms may converge faster than Jacobi

ones[3]. However, this study demonstrates Jacobi iteration due to its simplicity and

readiness to be parallelized[2].

2.5.3 Jacobi Iteration

Jacobi’s method is the simplest approach to designing an iterative method for

solving bAx = . This uses the first equation and the current values of)()(
3

)(
2 ,...,, k

n
kk xxx to

find a new value)1(
1
+kx , where the superscript indicates the iteration. And then similarly

we use the thi equation and the old values of the other variables to find a new value)1(+k
ix .

Given current values)()(
2

)(
1 ,...,, k

n
kk xxx , we find new values by solving for)()(

2
)(

1 ,...,, k
n

kk xxx

in

n
k

nnn
k

n
k

n

k
nn

kk

k
nn

kk

bxaxaxa

bxaxaxa
bxaxaxa

=+++

=+++
=+++

+

+

+

)1()(
22

)(
11

2
)(

2
)1(

222
)(

221

1
)(

1
)(

212
)1(

111

...
...............

...

...

(2.11)

This can also be written as

24

=

+

−

−

+

n

k

nnnn

nn

n
k

nnn b

b
b

x

x
x

aa
aa

a
aa

x

x
x

a

a
a

......
0...

.........
......0

...0

...
0...0

0......0
.........
0...0

2

1
)(

2

1

11

1

21

112
)1(

2

1

22

11

(2.12)

D, L, and U are the diagonal, the lower triangular of A, and the upper triangular of A

respectively:

,

00...0
.........

......00
...0

0...
0.........
......0
0...00

,

0...0
0......0
.........
0...0

1

112

11

2122

11

=

=

=
−

−

nn

n

nnnnn

aa

aa

Uand

aa

a
L

a

a
a

D (2.13)

Then Jacobi’s Method can be written more concisely in matrix-vector notation as

 bxULDx kk =+++)()1()((2.13)

This formula is simply (k +1)th equation rearranged to have the (k +1)th unknown on

the left side.

 []bxULDx kk +−−= −+)(1)1()((2.14)

That is, for elements)1(+k
ix ,

−−= ∑∑

=

−

=

+
n

ij

k
jij

i

j

k
jiji

ii

k
i xaxab

a
x)(

1

1

)()1(1

−= ∑

≠

+

ij

k
jiji

ii

k
i xab

a
x)()1(1

(2.15)

It is proven that the Jacobi method will converge if the diagonal values have absolute

values greater than the sum of the absolute values of the other a’s on the row. This

25

condition is called that the array of a is diagonally dominant. Therefore, the convergence

is guaranteed if

 |||| ,, ii
ij

ji aa <∑
≠

(2.16)

This condition is sufficient but not necessary. The method may converge even if the

array is not diagonally dominant. However, the iteration formula will not work if any of

the diagonal elements are zero because it requires dividing by zero[10]. Because iterative

methods may not always converge, we terminates the computation in the ith iteration

when all values are within a given error tolerance, i.e. ke > |)1()(−− k
i

k
i xx |. Also, iterations

should stop the process when a maximum number of iterations have been reached. Since

the parallel formulation requires all iterations to use the previous iteration’s values, the

calculations have to be synchronized globally.

� Sequential Jacobi Iteration

In Jacobi iteration, the new value for each grid point is set to the average of the old values

of the four neighboring points left, right, above, and below it. This process is repeated

until the computation terminates. Table 2.3 shows suede codes for a sequential Jacobi

program. This program works with two copies of matrix, oldMtx and newMtx. One copy

represents the grid and its boundary and another copy represents the set of new values,

i.e., oldMtx performs only read operations, and newMtx is for write only.

 The boundaries of both matrices are initialized to the appropriate boundary conditions,

and the interior points are initialized to zero, a starting value. Assume that the program

26

terminates the computation when every new value on iteration is within EPSILON of its

prior value. Then the main computational loop for Jacobi iteration is as follows:

double oldMtx[0:n+1, 0:n+1], newMtx [0:n+1, 0:n+1]
double maxdiff;
int iters;

while(true){
 //1.compute new values for all interior points
 for(i=1 to n, j=1 to n)
 newMtx[i,j] = (oldMtx[i-1,j]+ oldMtx[i+1,j]+
 oldMtx[i,j-1]+oldMtx[i,j+1])/4;
 iters++;

//2.compute the maximum difference
 maxdiff=0.0;
 for(i=1 to n, j=1 to n)
 maxdiff = max(maxdiff, abs(newMtx [i,j]- oldMtx[i,j]));

//3.check for termination
 if(maxdiff < EPSILON)
 break;

//4. copy newMtx to oldMtx to prepare for next updates
 for(i=1 to n, j=1 to n)
 oldMtx[i,j] = newMtx[i,j];
}

Table 2.3 Sequential Jacobi iteration

This code assumes that arrays are stored in row-major order as in C or Java, which

loops iterate over i then j. However, loops iterate over j then i if arrays are stored in

column-major order as in Fortran.

 This code is correct but not efficient. So we can improve its performance with some

changes. In the first loop, the division by 4 can be replaced by the multiplication by 0.25

because it takes fewer machine cycles to execute a multiplication than a division. This

optimization is called strength reduction, which replaces a strong and expensive

27

operation with a weaker one. In fact, it could be replaced with an even weaker operation,

shift right by 2.

 And when we compute maximum difference, we can get rid of the overhead of two

function calls, abs and max using function inlining as follows: Function inlining optimize

compiler by expanding the body of the function inline instead of calling and returning

from a function.

double temp = oldMtx[i, j] - newMtx[i, j];
if(temp <0) temp = - temp;
if(temp > maxdiff) maxdiff = temp;

Table 2.4 Functional inlining for enhanced performance

� Parallel Jacobi Iteration

Suppose that we have PR processors and the dimensionality of the grid, n, is much larger

than PR. We can divide the grid either into PR rectangular blocks or into PR rectangular

strips. This thesis uses strips because that is easier to implement and more efficient. Long

strips have better data locality than shorter blocks, and this leads to better use of data

cache[2].

 Assuming that n is a multiple of PR and arrays are stored in memory in row-major

order, each process is assigned to a horizontal strip of size n/PR × n. Each process

updates its strip of points. Also we need to use barrier synchronization, between after

every process has completed one update phase and before any process begins the next

one. The processes share the points of the edges of the strips. Table 2.5 contains a parallel

program for the Jacobi iteration and Figure 2.5 shows the detailed communications for

exchanging the edges and boundaries between two processes.

28

int n;
int PR;
int height = n/PR;

double oldMtx[0:height+1, 0:n+1], newMtx [0:height+1, 0:n+1]

//1. initialize old and new matrix, including boundaries;
for (i=0 to height+1){
 oldMtx[i,0] = 1;
 oldMtx[i,n+1] = 1;
 newMtx[i,0] = 1;
 newMtx[i,n+1] = 1;
}

for (i=0 to n+1){
 oldMtx[0,i] = 1;
 oldMtx[height+1,i] = 1;
 newMtx[0,i] = 1;
 newMtx[height+1,i] = 1;
}

//2. Compute new matrix values
for(i=1 to height)
 for(int j=1; j <= n; j++)
 newMtx[i,j] = (oldMtx[i-1,j]+oldMtx[i+1,j]
 +oldMtx[i,j-1]+oldMtx[i,j+1])*0.25;

//3. Send edges of new to neighbors
if(id >0)
 send newMtx[1,*] to the newMtx[height+1,*] of (id-1) process

if(id <nThread-1)
 send newMtx[height,*] to the newMtx[0,*] of (id+1) process

//4. Receive the value from neighbors to boundaries of new
if(id <nThread-1)
 receive the value to newMtx[height+1,*]
if(id >0)
 receive the value to newMtx[0,*]

//5. Compute old matrix values for interior of my strip
for(i=1 to height, j=1 to n)
 oldMtx[i,j] = (newMtx[i-1,j]+newMtx[i+1,j]
 +newMtx[i,j-1]+newMtx[i,j+1])*0.25;

//6. Compute maximum difference for my strip
for(i=1 to height, j=1 to n){
 double diff = oldMtx[i,j] - newMtx[i,j];
 if(diff <0) diff = -diff;
 if(diff > mydiff) mydiff = diff;
}

Table 2.5 Parallel Jacobi iteration

29

Figure 2.6 Exchange the edges and boundaries between two processes

Each process executes the same code but operates on different parts of the data. For

instance, if the size of matrix is 100*100 and the number of process is 5, then each

process will have 100*20 matrixes. In the initial condition, all the cells are set to 0 and

the boundary to 1. The boundary is a ghost layer communicated between processes. As

Figure 2.6 shows, each process communicates the ends of each row (red one) after it

calculates the value of the matrix. Neighboring workers exchange edges twice per

iteration of the main computational loop. All workers but the first send the top row of

their strip to the neighboring one above, and all workers but the last send the bottom row

of their strip to the neighbor below. Each worker then receives edges from its neighbors

and these become the boundaries of each worker’s strip. The second exchange is

identical, except that oldMtx is used instead of newMtx.

30

 After the appropriate number of iterations, each worker computes the maximum

difference for its strip, and the first worker collects these values.

 This program is optimized for better performance. First, it is not necessary to exchange

edges after every update phase. We could exchange edges after every other update.

Secondly, we can reprogram the remaining exchange to do local computation between

the sends and receives. In particular, we can have each worker (1) send its edges to

neighbors, (2) update the interior points of its strip, (3) receive edges from neighbors, and

(4) update the edges of its strip. This will greatly increase the possibility that neighboring

edges will have arrived before they are needed, and hence, receive statements will not be

delayed.

2.5.4 Asynchronous Iterative Algorithms

We will start off with a mathematical model of synchronous and asynchronous iterations

considering an iteration of the form)(: xfx = , where f is the iteration mapping defining

the algorithm[9]. There are p processors with the ith processor assigned the responsibility

of updating the ith component ix according to the rule),...,(: 1 pii xxfx = . We say that an

execution of iteration is synchronous if it can be described mathematically by the

formula,))(()1(kxfkx =+ where k is an integer-valued variable used to index different

iterations, not necessarily representing real time. On the contrary, in asynchronous

iteration, processors do not necessarily have to wait in anticipation of collecting all

messages generated during the previous iteration. Each processor keeps updating its own

part at its own speed. When the current value to be updated by other processor is not

available, an out-of-date value is used instead. Asynchronous convergence has been

31

proved by several authors starting with the work of Chazan and Miranker[13], under the

name of chaotic relaxation.

Now, we present communication categories with Synchronous and Asynchronous

communications. Synchronous communications require handshaking between tasks that

are sharing data. This can be explicitly ordered in code by a programmer, or it may be

occur at a low level unknown to the programmer. This is often referred to as blocking

communications since other work must wait until the communications have completed.

Asynchronous communications allow tasks to transfer data independently from one to

another. For example, task A sends a message to task B, and then immediately begins

doing other work whenever or not task B receives the data. So asynchronous

communications are often referred as non-blocking communications since other works

can be done while the communications are taking place. Interleaving computation with

communication is the greatest benefit to using asynchronous communications [8].

 Bahi, Couturier and Vuillemin seperates the classification of parallel iterative

algorithms into three main parts, synchronous iterations-synchronous communications

(SISC), synchronous iterations-asynchronous communications (SIAC), and asynchronous

iterations-asynchronous communications (AIAC) algorithms[5, 4, 3]. They renamed

AIAC algorithms to Asynchronous iterative algorithms. In SISC algorithms, all the

processors initiate the same iteration at the same time because data exchanges are

performed at the end of each iteration by synchronous global communications. In SIAC

ones, all the processors also wait for the receptions of needed data updated at the previous

iteration before they can begin the next one. In AIAC algorithms, all the nodes perform

their iterations without considering the progression of the others because local algorithms

32

do not need to wait for required data. In general, AIAC algorithms have a greater number

of iteration times to be converged. But the execution time could be significantly reduced.

Finally, they present a way to implement synchronous and asynchronous versions. In

synchronous algorithms, each processor reports its local error every iteration time to the

master node. And stops its activity and waits until it receives the convergence response

from the master. Therefore, this period effects the idle times. When the master has

received all the local errors, it computes the global error of the whole system and decides

whether the global convergence is achieved or not. Then the master node sends the

convergence responses to the others, which keep on computing. In asynchronous

algorithms, the nodes only send a message to the master when their local convergence

state changes and stays constant during several iterations. Hence, there are no idle times

between two iterations. The master decides that global convergence is reached when all

the nodes are in a local convergence state at a given time. Then it orders the other

processors to stop computing. Finally, in both versions, as long as the convergence is not

reached, the algorithm computes its iteration in order to get more accurate results.

33

CHAPTER 3

System Architecture

The goal of this study is to design a communication framework (PARMI) for complex

large-scaled scientific applications to minimize their overall execution time. The

challenging issues are follows: 1) how to overcome a synchronous and point-to-point

communication nature of RMI, 2) how to provide a scalable framework for dynamic

applications, and 3) how to maintain a strong decoupling of participants in both time and

space. This research adopts a publish/subscribe communication paradigm on the object-

oriented language framework, Java. Publish/subscribe provides a point-to-point

communication and a strong decoupling of participants in both time and space. With a

future object in Java, we overcome the synchronous nature of communication. Also

Generics in Java makes it possible to apply for any dynamic situation. Java’s object-

oriented character helps to build a scalable system.

 This chapter presents a design to implement the PARMI. Section 3.1 presents initial-

phase implementations with the future object, to reach the final destination for providing

a publish/subscribe communication. And Section 3.2 presents the PARMI with an adapter

module for providing a publish/subscribe communication.

34

3.1 Asynchronous RMI with a Future Object

As studied in Chapter 2, RMI design with a future object is the latest and most suitable

design for providing asynchronous communication between a client and a server. For a

concrete and qualified test, this research also implements the RMI application with a

future object and will be the criterion when we compare with our final goal, an

asynchronous RMI providing a publish/subscribe communication.

3.1.1 Conceptual Architecture

As mentioned in Section 2.2.3, a future object helps a client not to be suspended while

computation is carried out. Thanks to built-in classes and interfaces for the future object

which holds a result of an asynchronous call, we don’t need to spend time to implement

the future object after Java version 1.5 or later. The previous asynchronous RMI studies

have manipulated the stub class, which is generated automatically by an rmic compiler. It

produces many maintenance difficulties. For example, if a method which is invoked

remotely by an object is changed, then the corresponding classes and interfaces should be

changed. After a stub class is generated by an rmic compiler, we must change the stub

class manually. Therefore, this study does not attempt to change the stub class and add

some codes in client side to use the FutureTask.

 The following programs calculate the π value using the Monte-Carlo method, which is

defined in Section 2.5.1. Several client-side threads send signals to invoke server-side

methods to calculate the value of π.

The CalculatePi interface used by the server is also used by the client. On the server

side, there are CalculateServer and CalculatePiImpl classes. CalculateServer class

35

creates the registry and binds CalculatePiImpl object to the registry. CalculatePiImpl

class implements CalculatePi interface, i.e. CalculatePiImpl class has all business logics

for methods of CalculatePi. The threshold is equally divided by the number of clients

because the whole threshold is fixed. Therefore, the client submits the number of clients

as an input parameter when it invokes a server-side method. Table 3.1 shows detailed

server-side implementations for asynchronous RMI codes with the future object.

public class CalculateServer {

public CalculateServer(){
 try{
 // Create Remote Object
 CalculatePiImpl piRef =
 new CalculatePiImpl("CalculatePi");

// Create the registry
 // and bind the Server class to the registry
 LocateRegistry.createRegistry(1099);
 Registry r= LocateRegistry.getRegistry();
 r.bind(piRef.getName(), piRef);

}catch(Exception e){}
 }

public static void main(String[] args){
 // Create and install a security manager
 System.setSecurityManager(new RMISecurityManager());
 new CalculateServer();
 }
}

public interface CalculatePi extends Remote{
 public double calculate() throws RemoteException;
}

public class CalculatePiImpl extends UnicastRemoteObject
 implements CalculatePi{
 private String name;
 private static final double ACCURATE_PI = 3.14159265;
 private static double THRESHOLD;
 private int pointsInCircle =0;
 private int pointsInSquare =0;
 private double approxiPi =0;
 static final boolean debug =false;
 private static long startTime, endTime;

36

 private static NumberFormat df =NumberFormat.getInstance();

public CalculatePiImpl(String name) throws RemoteException{
 super();
 this.name= name;
 df.setMaximumFractionDigits(10);
 }

public String getName(){
 return name;
 }

public double calculate(int threadNo){
 THRESHOLD = 0.0000001;
 THRESHOLD = THRESHOLD * threadNo;

double error = 1.0;

while(error > THRESHOLD){
 double x = Math.random();
 double y = Math.random();
 double magX = .5 - x;
 double magY = .5 - y;
 boolean inUnitCircle=
 Math.sqrt(magX*magX + magY*magY) <= .5;
 if(inUnitCircle) pointsInCircle++;
 pointsInSquare++;

approxiPi =(double) pointsInCircle * 4 / pointsInSquare;
 error = Math.abs(approxiPi - ACCURATE_PI);
 }//while

return approxiPi;
 }//calculate

public int getPointsInCircle(){
 return pointsInCircle;
 }

public int getPointsInSquare(){
 return pointsInSquare;
 }
}

Table 3.1 RMI codes in the server side

The client-side needs CalculatePi interface, Main class, and CalculateClient class. Main

class creates several CalculateClients and invokes calculate() method using the

FutureTask object. By calling run() method in FutureTask, call() method in

37

CalculateClient is invoked. All FutureTasks are stored in HashTable and the results can

retrieved from CalculateClient when a computation has completed. CalculateClient class

implements Callable interface to provide a future object. Table 3.2 has the detailed

implementations for client-side asynchronous RMI codes with a future object.

public class Main{
 static final boolean debug =false;
 static long startTime, endTime;
 static DecimalFormat df = new DecimalFormat("###,###,###.###");

public static String url;
 public static int NO_PROC;
 static private Hashtable<Integer,FutureTask> future;
 static double pi;

public Main() throws InterruptedException{
 future = new Hashtable<Integer,FutureTask>();

// start invoke the tasks
 for(int i=0; i< NO_PROC; i++){
 FutureTask<Double> client=
 new FutureTask<Double>(new CalculateClient(i+""));
 client.run();
 future.put(i, client);
 }

// get the future result
 for(int i=0; i< NO_PROC; i++){
 FutureTask<Double> client = future.get(i);

try{
 pi +=client.get();
 if(debug)
 System.out.println("pi +: "+pi);

}catch(InterruptedException e){ e.printStackTrace();
 }catch(ExecutionException e){ e.printStackTrace();}

}

pi = pi/NO_PROC;
 System.out.println("pi: "+pi);

endTime = System.currentTimeMillis();
 System.out.println("time spend: "+
 df.format(endTime - startTime));
 }

38

 public static void main(String[] args){
 startTime = System.currentTimeMillis();

// Print the program usage
 if(args.length != 2) {
 System.out.println("Usage : hostName NO_PROC");
 return;
 }

// Create and install a security manager
 if (System.getSecurityManager() == null)
 System.setSecurityManager(new RMISecurityManager());

// Create the url string
 url = args;
 NO_PROC = Integer.parseInt(args[23]);

try{
 new Main();
 }catch(InterruptedException e){}
 }
}

public interface CalculatePi extends Remote{
 public double calculate() throws RemoteException;
}

public class CalculateClient implements Callable<Double>{
 static final boolean debug =false;

String id = null;
 CalculatePi cp = null;

public CalculateClient(String id){
 this.id = id;
 }

public Double call() throws Exception{
 //Get a remote reference by calling Naming.lookup()
 Registry r= LocateRegistry.getRegistry(Main.url);
 cp= (CalculatePi)r.lookup("CalculatePi");

// Now use the reference cp to call remote methods
 return cp.calculate(Main.NO_PROC);
 }
}

Table 3.2 RMI codes in the client side

39

3.1.2 Operation of the Asynchronous RMI with a Future Object

CalculatePiImpl

Server

1.Create Remote
Object

RMI registry
2.Register

object

object

ThreadThread

ClientClientClient

Client
ClientClient

Client

Client

Client

Main

3. Run the client threads

4. Lookup registry

remote
reference

5. Invoke a method

6. Start the method

Future

No wait

Figure 3.1 Operation of the asynchronous RMI with a future object

Figure 3.1 shows the operations of each class. After Server registers CalculatePiImpl

object to RMI registry, a client is able to get a remote reference from the RMI registry.

Once a client invokes a method, it proceeds with the remaining works without waiting

because a future object is returned instantly when it is called.

3.1.3 Experimental Evaluation

The tests were performed to explore the different costs of standard RMI synchronous

methods and our extended asynchronous method with future objects. These tests were

performed on a local machine with a different directory with 2.8GHz processor running

JDK 1.5.0_08 and two remote Windows machines with 2.8GHz and 1.86GHz processors

connected by 10MB Ethernet running JDK 1.5.0_08 and 1.5.0_09. Performance results

40

were carried out in groups of 5 to 10,000 threads. Measurements were performed using

the System.currentTimeMillis() method of Java. π value was calculated on the conditions

of ACCURATE_PI = 3.14159265 and THRESHOLD = 0.0000001.

Threads Sync(A)
(milliseconds)

Future(B)
(milliseconds)

A-B((A-B)/A)
(milliseconds(%)) Exception

20 594 407 187(31.48)
40 828 453 375(45.29)
60 969 500 469(48.40)
80 1,265 516 749(59.21)

100 1,312 562 750(57.16)
300 3,235 906 2,329(71.99) Sync
400 4,031 1,062 2,969(73.65) Sync

1,000 12,343 1,906 10,437(84.55) Sync
100,000 87,672 Sync

Table 3.3 Sync/async RMI over local calls.

Threads Sync(A)
(milliseconds)

Future(B)
(milliseconds)

A-B((A-B)/A)
(milliseconds(%)) Exception

20 406 406 0(0.00)
40 610 422 188(30.82)
60 3,454 1,187 2,267(65.63)
80 3,704 1,328 2,376(64.15)
90 6,922 641 6,281(90.74)
95 3,469 1,485 1,984(57.19)

100 3,546 703 2,843(80.17)
300 10,031 2,203 7,828(78.04)
400 14,812 2,625 12,187(82.28)

1,000 21,156 7,313 13,843(65.43)
10,000 38,688 Sync

Table 3.4 Sync/async RMI over remote calls.

Table 3.3 displays the execution costs for synchronous and asynchronous RMI calls

with future objects on local modes. This table shows that asynchronous calls have less

41

execution time than synchronous calls. We encountered java.net.ConnectionException on

the synchronous RMI call with more than 300 threads. This exception is because of the

limited number of concurrently opened sockets. On the contrary, the asynchronous calls

with future objects show very stable executions until it finishes its processes.

 Table 3.4 shows the execution costs for synchronous and asynchronous RMI calls with

future objects on remote modes. The same exceptions started to occur on the synchronous

RMI call with more than 100,000 threads.

 The following figures show the graphs for Table 3.3 and 3.4 respectively.

300

1,300

2,300

3,300

4,300

5,300

6,300

7,300

8,300

9,300

5 15 25 35 45 55 65 75 85 95 200 400

number of threads

tim
e

in
m

ill
is

ec
on

ds

Synch
Future

Figure 3.2 Sync/async RMI over local calls.

42

300

1,300

2,300

3,300

4,300

5,300

6,300

7,300

8,300

9,300

5 15 25 35 45 55 65 75 85 95 200 400

number of threads

tim
e

in
m

ill
is

ec
on

ds

Synch
Future

Figure 3.3 Sync/async RMI over remote calls.

As Figure 3.2 and 3.3 shows, the asynchronous communication with future objects

decreased the execution time significantly on both local and remote calls. And also the

exceptions for connection failures were decreased when we chose the asynchronous way

of communication. With these considerable experiments, we reached the conclusion that

the future object will contribute to performance improvement on our PARMI framework.

3.2 PARMI Framework Architecture

We added a new function to the adapter class to provide a publish/subscribe paradigm.

The function of the adapter class is to keep track of those instances that are interested in

the method’s results. Thus, the adapter needs to watch the status of items holding

43

interests and results, to determine when a result is ready. We chose the Observer-

Observable design pattern for this function. The Observer-Observable design is a very

useful pattern for maintaining one-way communication between one object and a set of

other objects[41]. This design pattern consists of observers and observables and the

communication is strictly from the observables to the observers. Observers only receive

communications from the observable. Observers do not have a reference back to the

Observable. Observable is the object that Observers are watching. Observers are always

notified via their update methods whenever the Observable’s update method is called. We

have applied the observable to an item and the observer to a subscriber in PARMI

system. If a subscriber is interested in an item, the subscriber is notified via its method

whenever the item is changed.

 When publishers and subscribers execute their jobs, they need to invoke methods in the

adapter asynchronously for better performance. Based on the experimental result

achieved with a future object, we can implement asynchronous invocations with the

future object. Further, RMI supports an object-oriented communication framework for

distributed computation in a heterogeneous network on remote address space.

3.2.1 Conceptual Architecture

In the previous chapter reviewed, we have introduced three design models for

Publish/Subscribe: the topic-based, the content-based, and the type-based system. Each

design model for the publish/subscribe system offers different degrees of expressiveness

and performance overhead. The topic-based design model is rather static and primitive,

but can be implemented very efficiently. The content-based one is highly expressive but

44

requires sophisticated protocols that have higher runtime overhead. Therefore, we select

the type-based one for PARMI which is suitable for an object-oriented system. In the

type-based design model, an object can be a class, a method, or a variable. The object is

implemented by generic code which provides the Meta programming environment and

guarantees run-time type safety.

 Also there is a study of formal approaches for a publish/subscribe communication

system with respect to the semantic notification of information[6]. Therefore, we also can

consider the formal approach for terminologies and operations for each process.

3.2.2 Terminology

We have four main components to provide the publish/subscribe communication:

publishers, subscribers, the adapter, and items. The publish/subscribe system is

composed by a set of process, Π= {p1… pn} that communicate by exchanging

information items.

 Each process pi can be either a publisher or a subscriber. If pi is a publisher, then it

sends the data to the adapter when it is ready. On the contrary, pi is a subscriber Si, it

registers itself with an item in the adapter to receive the data interested in, or releases

itself from an item in the adapter if the subscriber doesn’t want to subscribe anymore. pi

interacts with other processes by subscribing the class of events interested in and by

publishing event notification. Both cases invoke methods of the adapter whenever they

execute their operations. In the PARMI, publishers and subscribers carry out the same

role as clients in the existing RMI system.

45

 The adapter is a central entity which keeps a set of all available items for publishers

and subscribers in a hierarchical structure. The set is present as a form of Hashtable €=

{x1… xm} where xi is an item. The set has a unique topic as a key mapping with an item xi

for a value as Hashtable. The adapter collects subscriptions and forwards events to

subscribers. The adapter executes the same role as a server in the existing RMI system.

 An item xi is an element in the adapter holding the mapping information including a

topic, a value, and a remote reference collection ₤= {S1 … Sm}, which subscriber Si is

interested in. It can be generated by either a publisher or a subscriber when submitting the

value v about a specific topic to the adapter at the very first time. When a subscriber

informs the adapter that it is interested in a topic, the adapter searches the set € if the item

xi with the topic exists or not. If the adapter already has the item xi, then returns it.

Otherwise, the adapter creates a new item. When a publisher sends a value with a topic,

the adapter creates an item if it does not exist on the set €. Otherwise, the adapter updates

the value of the existing item xi.

Figure 3.4 presents the four elements in the PARMI system. Because publishers and

subscribers use the same objects and methods from the RMI system, their structures

preserve the stub/skeleton and the remote reference layer. As contrasted with these

elements, the adapter and items are newly created objects that provide the

publish/subscribe communication. The adapter is a storage unit providing the event-

based service between publishers and subscribers. Basically, the adapter carries out an

intermediary role to invoke a method and to forward the result from a subscriber. The

detailed operations will be presented in the next section.

46

Figure 3.4 PARMI organization

3.2.3 Operation of Asynchronous RMI

Each process pi executes the following operations: publishi(v, t), registeri(Si, t),

unregisteri(Si, t), where v is a value of an information item, t is a topic for publish and

subscribe, and S is a subscriber itself. Because all three methods exist in the adapter and

return types are void, pi invokes each method using RMI with a future object and passes

the control to the adapter. All reference data such as method’s name, method’s parameter,

and remote reference, are handed over to the adapter, but pi does not need to wait until

the method finishes its work.

 Each process pi can submit a value v with a topic t to the adapter by executing

publishi(v, t) operation. And pi also can receive a value v submitted by other processes by

47

executing an upcall to subscribei(v, t). Subscriptions are respectively installed and

removed at each process by calling registeri(S, t) and unregisteri(S, t) operations. That is

pi receives a value v only after registering its interest by calling registeri(S, t). After that,

if pi carries out unregisteri (S, sub), then it is excluded from the subscription list. Figure

3.5 and 3.6 present how the PARMI system works when each method is called.

Figure 3.5 Flow chart for a publisher

As shown in Figure 3.5, when publishi(v, t) method is invoked by process pi, the

adapter checks its Hashtable € whether it contains the item with the key t. If the item x

already exists, the adapter updates the item’s value v. If not, the adapter creates x with v.

48

After updating with the value, the adapter notifies to all subscribers ₤= {S1 … Sm} who

registered themselves to x.

(a) register (b)unregister

Figure 3.6 Flow chart for a subscriber

Figure 3.6 shows the way a subscriber registers and unregisters its interests to the

adapter. The adapter checks Hashtable € with a key t for registeri(v, t) method which is

invoked by a subscriber Si. If an item x with t already exists, the adapter adds Si to x and

notifies only to the current added Si who wants to receive x at this instant. If not, the

49

adapter creates x with adding Si to subscription collection ₤. On the other hand, the

adapter removes Si after unregisteri(v, t) method is called.

 PARMI provides an Item<V> class with generic forms which enables type-safety and

simple interfaces to create automated data objects. <V> can be any type of object such as

Integer, Boolean, Double, String, Arrays, or even Class.

 The Item class has three attributes: a topic as a String type, a value as a generic form,

and a collection of subscriber’ remote references to interested in the topic. Whenever a

corresponding event occurs, an item keeps adding or removing three attributes. When

notifySubscribers method is locally invoked, it notifies all subscribe methods of each

subscriber registered. And this mechanism is inspired by the observer-observable design

pattern provided by java.util.* libraries in the form of interface Observer and class

Observable.

3.3 Application of PARMI with Jacobi Iteration

To provide a parallel grid computing with the Jacobi method, we use centralized

summation algorithm that is composed of a central master and N workers[21]. The master

partitions a matrix into N number, assigns a unique id to each process, keeps the

information item which is provided by workers, and collects all convergence rates from

each worker. The workers are labeled with a unique id which indicates the position of the

matrix. Each worker calculates interior points of the matrix, exchanges boundaries of the

matrix, and computes the maximum difference between the old matrix and the new

matrix. Figure 3.7 and 3.8 shows the detailed Jacobi iteration processes on the RARMI

between master and workers.

50

Figure 3.7 The Jacobi iteration processes between a master and workers: part 1

Figure 3.7 shows communications between a master and workers before workers start

their own calculation. (1)A master registers itself with the RMI registry on its host name

using a unique name, “Jacobi”. A worker requests the remote reference of the master to

the RMI registry using lookup service. (2)The master returns the remote reference of

itself. Now, each worker is ready to invoke methods of the master. (3)The master assigns

ids to all the workers at the same time. If there is a worker that has not requested an id,

then the rest of the workers wait until the entire workers request ids. As soon as the last

worker requests an id, all the workers are notified and ids are simultaneously assigned.

(4) After that, the workers can start their calculating methods.

51

Figure 3.8 The Jacobi iteration processes between a master and workers: part 2

Figure 3.8 illustrates the remaining communications between a master and workers

after workers start their own calculation. (1)A worker registers it to the master which

topic they are interested in, i.e. the topic is the boundaries of the assigned matrix. And it

calculates the two matrix values and computes the maximum difference between two

matrixes. (2)A worker publishes the boundary values of the matrix. (3) If a worker

registered its topic and that topic’s value is published, then it automatically subscribes the

topic’s value from the master. Because we cannot anticipate the speed of each worker, the

information items in the Hashtable are created by register method or publish method.

Each worker repeats its process until the maximum difference reaches the convergence

rate. When the condition is satisfied, a worker sends its convergence rate to the master

and master notifies its decision to stop the worker if all the workers reach the local

convergence.

52

Figure 3.9 Implementations of Jacobi application using PARMI framework

Finally, Figure 3.9 is a diagram for the final asynchronous Jacobi implementations.

The PARMI framework provides the package, s3lab.parmi.*. A user needs to implement

Adapter and Subscriber interface. For the first time user, we provide AdapterTask class

53

which already implemented three methods in Adapter interface using Item class. For

Jacobi iteration, we made three different package, jacobi.master.*, jacobi.commnon.*,

and jacobi.worker.* according to the RMI syntax. The master implements Adapter

interface and the worker implements Subscriber interface respectively. For remote site

calls, the jacobi.commnon.* package need to be located on both master and worker sides.

A worker in jacobi.worker.* package has the roles that registers its interested parts,

calculates its own part, publish the edges of its own matrix, and send its id, value, and

iteration time to the master node when reaches the convergence rate. A master in

jacobi.master* package has the role that divides the whole matrix into the number of

worker, allocates the matrix to each worker, collects the convergence rate and notifies its

decision to stop worker if all worker reach the convergence rate.

(a) Synchronous algorithm

(a) Asynchronous algorithm

Figure 3.10 Time analysis for computation and communication

54

As we mentioned in section 2.5.4, we uses asynchronous iterative algorithm in our

Jacobi application. Figure 3.10 compares the synchronous and asynchronous iterations

and communications to analyze the waiting time and difference of communications.

Different from synchronous algorithm, asynchronous one does not has synchronization

between two iterations. Therefore, there is no idle time in asynchronous algorithm.

55

CHAPTER 4

Evaluation

In this chapter, we present the results of our experiment and analysis. We have performed

our experiments on two different environments to evaluate the system, because these

experiments are restricted to a single-site supercomputer because of the firewall. First, we

conducted our experiments on a cluster with up to 50 Linux machines on OSU’s Tulsa

campus. Secondly, we evaluate our system performance on 1 Unix, 4 Linux, and 15

Windows machines on OSU’s Stillwater campus. These results show that PARMI

provides good speedup in both cases.

4.1 System Setup

We did not measure the initial response time of each worker. All workers wait until the

last one requests its id and completes its connection to a master. We cannot predict the

time between workers and a master because each machine has a different time interval

between these processes. Due to this unpredictability, we did not include the time before

all processes connected to the master to be assigned ids.

 Measurements were performed using the System.currentTimeMillis() method of Java.

We set up the convergence criterion to 0.03, and then we carried out our experiments.

When the convergence criterion was set to less than 0.03, one or two workers didn’t

converge in asynchronous algorithm. This is because even if a sequential iterative

56

algorithm converges with the right solution, its asynchronous parallel counterpart may

not converge[5].

 We measured the execution time on both sides of a master and workers. The

measurements on the master are useful for analyzing the overall performance. Because

the majority of methods are invoked by workers, we can extract the communication time

from the total execution time and compare the time involved in computation and

communication. This comparison provides enough evidence based on the asynchronous

applications on PARMI to be suitable for computational science in a grid context.

 The synchronous version was implemented using the current existing RMI

communication and synchronous iterative algorithm. The asynchronous version was

implemented using the PARMI framework and the asynchronous iterative algorithm.

4.1.1 System Configurations for a Local Heterogeneous Cluster

All experiments were conducted on a Rocks cluster with 60 processors. The cluster is

combined with a server and 4 racks:

� The server machine is a Dell PowerEdge 4800 with dual Xeon 2.4 GHz and 2

GB memory.

� On the rack 0, there are 9 Pentium-D 3.0 GHz, 4 Pentium4 3.0 GHz, and 1

CeleronD 2.66 GHz machines all with 1 GB memory and 80 GB HDD.

� On the rack 1, we have 7 various Dell(1.5 to 2.4 GHz and 0.25 to 1 GB memory)

and 4 CeleronD machines with 2.66 GHz, 1 GB memory, and 80 GB HDD.

� On the rack 2, 12 CeleronD 2.66 GHz machines with 1 GB memory and 80 GB

HDD.

57

� On the rack 3, we have 14 CeleronD 2.66GHz machines with 1 GB memory and

80GB HDD.

 We used the server as a master and the 4 racks as workers. The server’s hostname is

eaton and the racks’ hostnames start from compute-0-0 to compute-3-14. Most of them

have either one or dual processors and only eaton has quad processors in it. All of the

machines are running on Linux 2.6.9. All experiments were conducted using SUN's JDK

version 1.5.0. All machines were connected to each other by GB interconnection

4.1.2 System Configurations for Remote Heterogeneous Machines

Experiments for the master were conducted on a Sun Fire 880 machine whose hostname

is csa. The configuration of the machines is described as follows:

� The csa has quad processors and all processors’ speed is 900 MHz. Memory size

is 8.19 GB. The machine is running on Sun OS 5.9 and JDK version is 1.5.0.

 Experiments for workers were conducted on a cluster of Linux machines and

individual 15 Windows machines:

� The cluster is combined with 4 machines. These machines have quad processors

each with dual CPU and their hostnames start from csx0 to csx3 sequentially. All

the processor speeds are 1000 MHz and all the memory sizes are 3.60 GB. All of

the machines are running on Linux 2.6.9 and JDK versions are 1.6.0. Therefore,

the total number of processors for the cluster is 16.

� For Windows machines, we used 15 machines on the OSU Kerr computer lab.

They all have dual processors and all processors’ speed is Pentium 4 CPU 3.2

GHz. Their memory size is 1.00 GB running on Windows XP Professional

58

Version 2002 Service Pack 2 and JDK version is 1.5.0. All machines connected

to each other by a standard 100Mb/s Ethernet network.

4.2 Results

4.2.1 The Experiments on a Local Heterogeneous Cluster

We conducted our experiments on a cluster. Basically, all commands were executed on

eaton node. After we started a master on the eaton node, we connected to compute-0-0 to

compute-3-14 nodes using Secure Shell(SSH). We employed a shell script to establish

SSH. Table 4.1 shows the code for the shell script. We assumed that the possible total

number of processors for workers is 60 based on the following conditions: Because a

node only has 255MB memory, we excluded this node from the total number of

processors. After that, we figured out the sum of processor numbers. If the machine had

dual processors, then we added 2. Again, we excluded 4 processors from 64 processors

because 4 processors existed on the eaton node for master.

#!/bin/bash
processN=xxx
i=0

while ["$i" -lt $processN]
do

echo "**start current id:$i"
((c = $i % 60))
if ["$c" -eq 0]; then a=0 b=0
elif ["$c" -eq 1]; then a=0 b=1
elif ["$c" -eq 2]; then a=0 b=2
elif ["$c" -eq 3]; then a=0 b=3
elif ["$c" -eq 4]; then a=0 b=4
elif ["$c" -eq 5]; then a=0 b=6
elif ["$c" -eq 6]; then a=0 b=8
elif ["$c" -eq 7]; then a=0 b=10
elif ["$c" -eq 8]; then a=0 b=12
elif ["$c" -eq 9]; then a=0 b=14
elif ["$c" -eq 10]; then a=0 b=15

59

elif ["$c" -eq 11]; then a=0 b=18
elif ["$c" -eq 12]; then a=0 b=20
elif ["$c" -eq 13]; then a=0 b=22
elif ["$c" -eq 14]; then a=1 b=1
elif ["$c" -eq 15]; then a=1 b=2 //memory is too small
elif ["$c" -eq 15]; then a=1 b=3
elif ["$c" -eq 16]; then a=1 b=4
elif ["$c" -eq 17]; then a=1 b=5
elif ["$c" -eq 18]; then a=1 b=6
elif ["$c" -eq 19]; then a=1 b=7
elif ["$c" -eq 20]; then a=1 b=8
elif ["$c" -eq 21]; then a=1 b=9
elif ["$c" -eq 22]; then a=1 b=10
elif ["$c" -eq 23]; then a=1 b=11
elif ["$c" -eq 24]; then a=2 b=0
elif ["$c" -eq 25]; then a=2 b=1
elif ["$c" -eq 26]; then a=2 b=2
elif ["$c" -eq 27]; then a=2 b=3
elif ["$c" -eq 28]; then a=2 b=4
elif ["$c" -eq 29]; then a=2 b=5
elif ["$c" -eq 30]; then a=2 b=6
elif ["$c" -eq 31]; then a=2 b=7
elif ["$c" -eq 32]; then a=2 b=8
elif ["$c" -eq 33]; then a=2 b=9
elif ["$c" -eq 34]; then a=2 b=10
elif ["$c" -eq 35]; then a=2 b=11
elif ["$c" -eq 36]; then a=2 b=12
elif ["$c" -eq 37]; then a=2 b=13
elif ["$c" -eq 38]; then a=3 b=0
elif ["$c" -eq 39]; then a=3 b=1
elif ["$c" -eq 40]; then a=3 b=2
elif ["$c" -eq 41]; then a=3 b=3
elif ["$c" -eq 42]; then a=3 b=4
elif ["$c" -eq 43]; then a=3 b=5
elif ["$c" -eq 44]; then a=3 b=6
elif ["$c" -eq 45]; then a=3 b=7
elif ["$c" -eq 46]; then a=3 b=8
elif ["$c" -eq 47]; then a=3 b=9
elif ["$c" -eq 48]; then a=3 b=10
elif ["$c" -eq 49]; then a=3 b=11
elif ["$c" -eq 50]; then a=3 b=12
elif ["$c" -eq 51]; then a=3 b=13
elif ["$c" -eq 52]; then a=3 b=14

dual processor start
elif ["$i" -eq 53]; then a=0 b=6
elif ["$i" -eq 54]; then a=0 b=8
elif ["$i" -eq 55]; then a=0 b=10
elif ["$i" -eq 56]; then a=0 b=12
elif ["$i" -eq 57]; then a=0 b=14
elif ["$i" -eq 58]; then a=0 b=18
elif ["$i" -eq 59]; then a=0 b=20
elif ["$i" -eq 60]; then a=0 b=22

dual processor end
 fi
 ssh -T compute-$a-$b <<EOI
 echo " - compute-$a-$b to execute scriptX"
 cd Thesis/asynch_future

60

 bash scriptX </dev/null>&result &
 echo " - output of scriptX is redirected to result"
 exit
EOI
 echo "**stop"
 ((i = $i + 1))
done

Table 4.1 Shell script controlling SSH shells

Figure 4.1 and Figure 4.2 display the measurement on the master.

0

10

20

30

40

50

60

70

80

90

100

10 15 20 25 36 40 45 50 55 60

number of processors

tim
e

in
se

co
nd

s

Synch Time

Asynch Time

Figure 4.1 Execution cost for sync/async versions

Figure 4.1 shows the execution costs for the synchronous and asynchronous versions in

the eaton cluster in order to analyze the overall performance. We can see that the

asynchronous version is faster than the synchronous one. This comes from two following

reasons: First, in the synchronous algorithm, the fast machines are delayed by the slow

ones. Although the number of iterations is greater in the asynchronous case, the fast

For a 18,000*18,000 grid on a heterogeneous local

61

machines tend to speed up the slow ones[5]. Secondly, asynchronous case reduces the

communication time by asynchronous method invocation.

40

45

50

55

60

65

70

10 15 20 25 36 40 45 50 55 60

number of processors

tim
e

in
se

co
nd

s

Synch Iteration

Asynch Iteration

Figure 4.2 The number of iteration for sync/async versions

In Figure 4.2, we can see that the number of iterations of the asynchronous version is

irregular. Nevertheless, with 20 processors the number of iterations falls; this is due to the

computation time dropped. And this computation time decrease comes from the size of

grid decreased as Figure 4.6 shows. The previous studies from other researchers indicates

that the number of iterations relative to the asynchronous executions is not significant

because each processor computes at its own speed, and the number of iterations can

dramatically vary from one processor to another[5].

 Figure 4.3 and Figure 4.4 show the time measurement on each worker. For

communication time, we measured the time before a worker invoked master’s method

For a 18,000*18,000 grid on a heterogeneous local cluster

62

and after. Then, we calculated the difference between these times. After aggregating the

total of computation time, we divided the times with worker numbers. There is the last

worker which decides the global convergence. To approach more accurate value for

communication time, we took the middle value between the average computation time

and the computation time of the last worker. Next, we subtracted communication time

from total time to calculate computation time.

0.0

5.0

10.0

15.0

20.0

25.0

30.0

10 15 20 25 36 40 45 50 55 60

 number of processors

tim
e

in
se

co
nd

s

Sync Communication

Async Communication

Figure 4.3 Average communication cost for sync/async versions

Figure 4.3 shows asynchronous versions are faster than their synchronous counterparts

for communication time. We can see that the asynchronous version achieves better results

when the number of processors increases. In the synchronous version, workers become

idle until the process of a master are completed and they get the data needed for their next

For a 18,000*18,000 grid on a heterogeneous local cluster

63

iteration. Furthermore, the convergence detection is done with a gather-scatter operation

at each iteration, which takes longer time than a totally asynchronous detection.

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

10 15 20 25 36 40 45 50 55 60

number of processors

tim
e

in
se

co
nd

s

Sync Computation

Async Computation

Figure 4.4 Average computation cost for sync/async versions

Figure 4.4 demonstrates that the synchronous version has much less computation time

than the asynchronous one because its iteration number is always less than the

asynchronous one, as shown in Figure 4.2.

4.2.2 The Experiments on Remote Heterogeneous Machines

Processors(Machines) Total
Processors Linux Windows

8 4(4) 4(4)
10 4(4) 6(6)
20 16(4) 4(4)
24 16(4) 8(4)
27 16(4) 11(6)
30 16(4) 14(7)
36 16(4) 20(10)

For a 18,000*18,000 grid on a heterogeneous local cluster

64

40 16(4) 24(12)
45 16(4) 29(15)

Figure 4.5 The number of processors: Linux versus Windows

In order to demonstrate the practical relevance of PARMI, we have evaluated the

performance of synchronous and asynchronous versions using PARMI on the remote

heterogeneous machines. A master was simulated on CSA, and workers were executed on

Linux CSXs and separate Windows machines, as Figure 4.5 shows.

 Figure 4.6 and Figure 4.7 show measurements involved in a master. After the total

processors for workers reached at a point, the asynchronous version is faster than the

synchronous one. In our experiment, that point was 24, as shown in Figure 4.6. Figure

4.7 displays the iteration numbers for synchronous and asynchronous versions. As in

previous experiments, asynchronous versions have an irregular number because of the

asynchronous algorithm.

0

10

20

30

40

50

60

70

8 10 20 24 27 30 36 40 45

number of processors

tim
e

in
se

co
nd

s

Synch Time

Asynch Time

Figure 4.6 Execution cost for sync/async versions

For a 2160*2160 grid on heterogeneous remote machines

65

40

45

50

55

60

65

8 10 20 24 27 30 36 40 45

number of processors

tim
e

in
se

co
nd

s

Synch Iteration

Asynch Iteration

Figure 4.7 The number of iteration for sync/async versions

-

10.0

20.0

30.0

40.0

50.0

60.0

70.0

8 10 20 24 27 30 36 40 45

 number of processors

tim
e

in
se

co
nd

s

Sync Communication

Async Communication

Figure 4.8 Average communication cost for sync/async versions

For a 2160*2160 grid on heterogeneous remote machines

For a 2160*2160 grid on heterogeneous remote machines

66

-

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

8 10 20 24 27 30 36 40 45

number of processors

tim
e

in
se

co
nd

s

Sync Computation

Async Computation

Figure 4.9 Average computation cost for sync/async versions

Figure 4.8 and Figure 4.9 show that asynchronous version has better performance than

the synchronous one on communication time. In case of computation time, the

synchronous version has less time than the asynchronous one.

4.3 Conclusion

PARMI has excellent overall performance and high throughput. This is mainly caused by

the improvement of communication time. We desynchronized the communication using

asynchronous algorithms and asynchronous RMI method invocations. These suppress all

the idle time and so reduce the whole execution times.

 Finally, Table 4.2 summarizes all the results from the previous section. These results

demonstrate that the speedup of synchronous versus asynchronous communication

improves when a grid size increases and an experiment is conducted on a remote

For a 2160*2160 grid on heterogeneous remote machines

67

environment. In the experiments, we can see that when the ratio of computation time to

communication time increases, the ratio of synchronous time to asynchronous time

decreases because computation time is significant when compared to communication

times. Hence, for very large problems, it is necessary to involve even more processors in

order to reduce computation times and preserve an efficient ratio of synchronous time to

asynchronous time[3].

(time in seconds)
N of procs 5 10 20 30 35 42 50 60
Sync(t) 5 5 7 9 11 12 12 16
Async(t) 3 2 4 6 7 7 8 10
Speedup(t) 1.7 2.5 1.8 1.5 1.6 1.7 1.5 1.6
Sync(c) 1.6 4.6 6.4 8.4 10.5 11.7 11.6 15.0
Async(c) 0.4 0.7 1.9 4.4 4.1 5.1 6.6 8.1
Speedup(c) 4.0 6.6 3.4 1.9 2.6 2.3 1.8 1.9

(a) for a 2100*2100 grid on a local heterogeneous cluster

(time in seconds)
N of procs 5 10 16 20 25 40 50 76
Sync(t) 30 17 22 18 15 17 19 28
Async(t) 32 16 19 16 15 15 17 26
Speedup(t) 0.9 1.1 1.2 1.1 1.0 1.1 1.1 1.1
Sync(c) 2.4 2.4 14.2 9.3 7.4 13.6 16.7 23.0
Async(c) 0.2 0.8 0.9 1.3 1.4 6.3 8.6 17.6
Speedup(c) 12.0 3.0 16.2 7.4 5.3 2.2 1.9 1.3

(b) for a 7600* 7600 grid on a local heterogeneous cluster

(t): total execution cost, (c): average communication cost.
Speedup is the time on synchronous versus asynchronous versions.

68

(time in seconds)
N of procs 8 10 20 24 27 30 36 40 45
Sync(t) 7 6 10 13 24 38 49 55 58
Async(t) 32 26 15 14 15 16 18 20 19
Speedup(t) 0.2 0.2 0.7 0.9 1.6 2.4 2.7 2.8 3.1
Sync(c) 4.8 4.3 9.0 11.9 23.4 37.3 49.3 54.0 58.0
Async(c) 3.5 3.0 1.7 2.9 3.1 3.7 4.9 6.0 7.0
Speedup(c) 1.4 1.4 5.4 4.1 7.6 10.2 10.0 9.0 8.2

(c) for a 2160*2160 grid on remote heterogeneous machines

Table 4.2 Comparisons of speedup using different environment.

69

CHAPTER 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we have investigated how RMI can be made suitable for dynamic parallel

and distributed systems. Our goal was to design a framework that provides highly

efficient communication for scientific computing, preferably using communication

models that integrate cleanly into Java and are easy to use. For this reason, we have taken

the existing RMI model as a starting point in our work.

 We have given a description of the RMI model and analyzed the former studies for

asynchronous RMI implementations to evaluate their suitability for high-performance

parallel programming. This analysis showed that these existing RMI implementations are

not efficient enough to fully utilize a high-performance network because of point-to-point

and asynchronous communication characters.

 To solve this problem, we designed and implemented PARMI, a high-performance

RMI framework that is specifically optimized for parallel programming on a

heterogeneous cluster computer. To overcome point-to-point and asynchronous

communication, we adapted a publish/subscribe communication model. Also we used

Generics to provide a flexible and scalable object-oriented typed system.

 A scientific application using the Jacobi iteration method has been developed to

demonstrate the performance gain using PARMI communication framework compared to

70

using RMI mechanisms. To augment the performance improvement, we chose

synchronous and asynchronous iterative algorithms. The synchronous version was

implemented using the current existing RMI communication and synchronous iterative

algorithm. The asynchronous version was implemented using PARMI framework and

asynchronous iterative algorithm. We showed that the asynchronous application using

PARMI significantly increases the speedup of parallel applications. We have also showed

that the performance improvement is mainly due to communication overhead decrease.

5.2 Future Work

While our framework tries to provide features which will make it possible to implement

high performance communication on a heterogeneous remote cluster, it is certainly not a

finished product. A lot more simulations and improvements are possible as described in

the follows:

� As we mentioned on the starting point of chapter 4, the more simulation on

geographically multi-sites environments is helpful to prove the performance

enhancement of PARMI framework.

� More applications using PARMI framework needed to demonstrate

publish/subscribe communication benefit. While a publish/subscribe

communication supports one-to-one, one-to-many, many-to-one, and many-to-

many communication between publishers and subscribers, the Jacobi application

only need one-to-one communication.

� As a result of our simulations, we found that Jacobi application using PARMI

only support 150 workers per a master. If more than 150 workers concurrently

71

publish their data to a master, then communication overhead of a master

increases and some workers cannot get the connection between the master and

themselves. By using the middleware, a master distributes its workload in case

two many of worker require its answer.

72

REFERENCES

[1] E. Andersson, Calculation of Pi Using the Monte Carlo Method, 2006.

[2] G. R. Andrews, Foundations of multithreaded, parallel, and distributed

programming Addison-Wesley, Reading, Mass, 2000.

[3] J. Bahi, S. Contassot-Vivier and R. Couturier, Coupling Dynamic Load Balancing

with Asynchronism in Iterative Algorithms on the Computational Grid, 17th IEEE

and ACM int. conf. on International Parallel and Distributed Processing

Symposium, IEEE computer society press, Nice, France, 2003, pp. 40a, 9 pages.

[4] J. M. Bahi, R. Couturier and P. Vuillemin, Asynchronous Iterative Algorithms for

Computational Science on the Grid: Three Case Studies, High Performance

Computing for Computational Science, Springer, Valencia, Spain, 2004, pp. 302-

314.

[5] J. M. Bahi, R. Couturier and P. Vuillemin, Solving Nonlinear Wave Equations In

The Grid Computing Environment: An Experimental Study, Journal of

Computational Acoustics, 14 (2006), pp. 113-130.

[6] R. Baldoni, M. Contenti, S. T. Piergiovanni and A. Virgillito, Modeling

publish/subscribe communication systems: towards a formal approach, 2003, pp.

304-311.

[7] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. E. Strom and D. C.

Sturman, An efficient multicast protocol for content-based publish-subscribe

systems, 1999, pp. 262-272.

[8] B. Barney, Introduction to Parallel Computing, 2006.

73

[9] D. P. Bertsekas and J. N. Tsitsiklis, Convergence rate and termination of

asynchronous iterative algorithms, Proceedings of the 3rd international

conference on Supercomputing, ACM Press, Crete, Greece, 1989.

[10] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation :

numerical methods Prentice Hall, Englewood Cliffs, N.J. , 1989.

[11] A. D. Birrell and B. J. Nelson, Implementing Remote procedure calls, SOSP '83:

Proceedings of the ninth ACM symposium on Operating systems principles,

Bretton Woods, New Hampshire, United States, 1983, pp. 3.

[12] G. Bracha, Generics in the Java Programming Language, 2004.

[13] D. Chazan and W. Miranker, Chaotic relaxation, Linear Algebra and its

Applications, 2 (1969), pp. 199-222.

[14] P. T. Eugster, P. A. Felber, R. Guerraioui and A.-M. Kermarrec, The Many Faces

of Publish/Subscribe, ACM Computing Surveys, 35 (2003), pp. 114-131.

[15] P. T. Eugster, P. Guerraoui and J. Sventek, Distributed Asynchronous Collections:

Abstractions for Publish/Subsribe Interaction, ECOOP, 2000, pp. 252-276.

[16] P. T. Eugster, P. Guerraoui and J. Sventek, Type-Based Publish/Subscribe,

Technical Report (2000).

[17] P. T. Eugster and R. Guerraoui, Distributed Programming with Typed Events,

IEEE Software, 2004.

[18] P. T. Eugster, R. Guerraoui and C. H. Damm, On Objects and Events, Object-

Oriented Programming, Systems, Languages, and Applications, 2001, pp. 254-

269.

74

[19] K. E. K. Falkner, P. D. Coddington and M. J. Oudshoorn, Implementing

Asynchronous Remote Method Invocation in Java, Technical Report DHPC-072,

1999.

[20] D. Flanagan, J. Farley, W. Crawford and K. Magnusson, Java™ Enterprise in a

Nutshell: A Desktop Quick Reference, O'Reilly & Associates, 1999.

[21] I. Foster, Designing and Building Parallel Programs, 1996.

[22] L. E. Heindel and V. A. Kasten, Highly reliable synchronous and asynchronous

remote procedure calls, 1996, pp. 103-107.

[23] M. Hughes, 1972- Java network programming Manning, Greenwich 1997.

[24] M. Izatt, P. Chan and T. Brecht, Ajents: Towards an Environment for Parallel,

Distributed and Mobile Java Applications, Concurrency: Practice and Experience,

12 (2000), pp. 667-685.

[25] D. Kurzyniec and V. Sunderam, Semantic aspects of asynchronous RMI: the

RMIX approach, 2004, pp. 157.

[26] D. Lyon, Asynchronous RMI for CentiJ, Journal of Object Technology, 3 (2004),

pp. 49-64.

[27] D. J. Maassen, Method Invocation Based Communication Models for Parallel

Programming in Java, Vruhe Universiteit, 2003.

[28] S. Microsystems, Getting Started Using RMI, 2003.

[29] B. Oki, M. Pfluegl, A. Siegel and D. Skeen, The Information Bus: an architecture

for extensible distributed systems Proceedings of the fourteenth ACM symposium

on Operating systems principles Asheville, North Carolina, United States 1993,

pp. 58-68

75

[30] R. Raje, J. Williams and M. Boyles, An asynchronous Remote Method Invocation

(ARMI) mechanism for Java, Concurrency: Practice and Experience, 9 (1997), pp.

1207-1211.

[31] Sun Microsystems, Java Remote Method Invocation: Distributed computing for

Java, 1994.

[32] Sun Microsystems, Java™ 2 SDK, Standard Edition Documentation -

rmiregistry, 2001.

[33] Sun Microsystems, Java™ Remote Method Invocation Specification, Remote

Method Invocation Specification, 1996.

[34] Sun Microsystems, RMI System Overview, 1997-2003.

[35] T. Sysala and J. Janecek, Optimizing remote method invocation in Java, 2002, pp.

29-33.

[36] M. Torgersen, C. P. Hansen, E. Ernst, P. v. d. Ahe, G. Bracha and N. Gafter,

Adding wildcards to the Java programming language, Symposium on Applied

Computing (SAC2004), ACM Press, Nicosia, Cyprus, 2004, pp. 1289-1296.

[37] E. F. Walker, R. Floyd and P. Neves, Asynchronous remote operation execution

in distributed systems, 1990, pp. 253-259.

[38] Wikipedia, Publish/subscribe - Wikipedia, the free encyclopedia, 2006.

[39] Wikipedia, Scientific computing, 2007.

[40] A. Wollrath, R. Riggs and J. Waldo, A Distributed Object Model for the Java

System, USENIX Conference on Object-Oriented Technologies, Toronto, Ontario,

Canada, 1996.

[41] S. Wong, Object Oriented Programming Tips and Resources, 2005.

1

VITA

Hee Jin Son

Candidate for the Degree of

Master of Science

Thesis: PARMI: A Publish/Subscribe Based Asynchronous RMI Framework

Major Field: Computer Science

Biographical:

Personal Data: Born in Seoul, Korea, the daughter of S. K. Son and J. S. So.

Education: Graduated from Myungji High School, Seoul, Korea in February

1993. Received Bachelor of Art degree in International Trade from
Kyung Hee University, Seoul, Korea in February 1998. Completed the
requirements for the Master of Science degree with major in Computer
Science at Oklahoma State University in May, 2007

Experience:
 Worked in Hyundai Marine & Fire Insurance Co. Ltd from 1997 to

2001. Worked as Sr. Programmer in Checkfree from 2001 to 2002.
Worked as IT specialist in Aon Korea, 2002. Worked as System
designer in ING Life Korea from 2002 to 2003. Worked as Teaching
/Research assistant in Oklahoma State University from 2005 to 2006.

Name: Hee Jin Son Date of Degree: May, 2007

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: A Publish/Subscribe-Based Asynchronous RMI Framework

Pages in Study: 75 Candidate for the Degree of Master of Science

Major Field: Computer Science

Scope and Method of Study: This thesis designs a publish/subscribe-based asynchronous
RMI Framework (PARMI) residing on different machines over a network. The
objectives of this thesis are: (1) Explore the description of the RMI model and
analyze the performance of an existing RMI implementation; (2) Study the related
programming models for designing asynchronous RMI structure. Introduce the
structure and concepts for a new asynchronous way of communication in RMI; (3)
Design a new PARMI framework based on publish/subscribe paradigm, realizing
asynchronous communication and computation and decoupling objects in space and
time; (4) Evaluate the performance of the PARMI framework on the local/remote and
homogeneous/heterogeneous environments. An example scientific application based
on the Jacobi iteration numerical method is developed. Extensive experimental
evaluation on up to 60 processors demonstrates the performance improvement using
the PARMI framework.

Findings and Conclusions: In PARMI, we design the adapter module to provide the
publish/subscribe communication. The adapter behaves as a storage space for holding
the services that offer the event-based services between service providers and service
users. It is responsible for collecting subscriptions and forwarding events to service
users, holding the mapping information of remote references, method names, input
parameters, and results for methods. A scientific application using the Jacobi iteration
method has been developed to demonstrate the performance gain using PARMI
communication framework compared to using RMI mechanisms. We showed that the
asynchronous application using PARMI significantly increases the speedup of
parallel applications. We have also showed that the performance improvement is
mainly due to communication overhead decrease.

ADVISER’S APPROVAL: Xiaolin Li

