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1. INTRODUCTION 

 
1.1 Sensor Networks 

 
 

Sensor Networks are formed with a number of small low cost sensor devices 

which connect wirelessly to gather data. A sensor can obtain data from it’s 

surrounding and transmit to a central base station where it can be processed into 

meaningful information. Common applications include defense systems and 

environment monitoring. These use multi-hop routing similar to Ad-hoc wireless 

techniques, to communicate with one another which allows a certain degree of 

mobility and flexibility. They can be deployed in a number of ways with a multitude 

of configurations in large numbers, depending on the application they are intended 

for.      

Sensors used in the real world have a number of limitations in resources and 

capabilities. Research conducted in these areas aim at enhancing or improving on 

these limitations. Most of the work done is in improving the life of the power source 

available in the sensor which is limited with what’s available during deployment and 

improving aspects of the network and communication layers. The limited resources 

available to process and store the collected data is also a challenging problem 
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1.1.1 Energy and Power Consumption 

            Power consumption is a major focus for many applications as power is a very 

limited resource. Power supply for the sensors is through a battery source that is not 

replenished. Sensors rely on periods of inactivity to conserve and lower their power 

consumption. Data collection and computation is not done constantly but in periods of 

relevance. They do this in aggregation where only some nodes remain in the active 

state and some of them go into a passive mode to conserve power. The Tiny OS 

beaconing protocol is used to operate the sensors and nodes. A breath first spanning 

tree is constructed to map all the nodes in the vicinity and they are constantly updated 

with each hop [1]. 

Security is an important criterion after power. A secure network would work more 

reliably with minimal threats from intrusions [5]. Tradeoffs between power and 

security are usually the deciding factor in a successful sensor network deployment. 

Security may not be an important factor in a building structural change monitoring 

sensor where there is little or no threat but power consumption is an important factor. 

However in a battlefield where security plays an important role, the options are 

usually low computation intensive algorithms to protect inter node communication. 

Some of the more complex forms of encryption are not feasible because of the limited 

computation available and the possibility of breaking into a node which can be 

physically compromised. Some of the security related efforts are aimed at improving, 

routing protocols to protect sensors from malicious attacks and being energy efficient 

too. A lot of new research has proposed various security mechanisms for sensor 

networks. Various countermeasures in response to attacks have been proposed. 

However, as far as we are aware, no one has investigated the energy consumed in 

activating and executing these various countermeasures. If a countermeasure requires 
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large amounts of energy, it may not be economical.  On the other hand, there may be 

countermeasures for other attacks which may not require a lot of energy. Knowing the 

energy consumed in defending against attacks will help the sensor network designer 

in deciding which countermeasures should be encoded into a sensor.  As far as we are 

aware, this is the first work to measure the energy consumed in defending individual 

sensor nodes against different kinds of attacks.  The results from this work can be 

extrapolated to provide defense mechanisms for a whole sensor network.   

The thesis concentrates on documenting power drain in various attacks that 

occur on sensor networks in a real world scenario and to apply relative 

countermeasures to recover from these attacks. Power levels of the sensors are 

constantly monitored to determine the best solution. Some of the work performed on 

monitoring power levels are on simulators with communication rates and node duty 

cycles without considering the power consumed by devices on the sensors themselves. 

Some of the real world scenarios may usually reveal a lot more issues than a typical 

setup in a simulator. 

1.1.2  Sensor Overview 

A sensor network is a combination of the central data gathering unit called a 

base station and several sensors. The number usually ranges from 100~1000 units. 

Some of these sensors have a multitude of sensing capabilities like temperature, 

pressure, location (GPS), altitude, movement and light. The configuration and 

deployment preferences depend on the application at hand. The base station serves as 

the gateway to collect data from the nodes and channel it to the data processor. The 

base handled computation has better resources than the sensors themselves.  
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Nodes communicate in a multi hop approach. During an initial deployment 

phase the nodes are randomly deployed around a base station and a trust relationship 

is formed where all the nodes start communicating with the base station. Normal 

working period of a node is usually from 2-3 months with the battery pack normally 

equipped with the nodes.  

 

 
Typical Sensor node manufactured by Crossbow. 

Figure 1 
 

Although several sensors are available, in this thesis we work on the Mica 

Mote sensors. This sensor has good simulation support and is commonly used for 

research purposes.   

 
The processor used, is an Atmel 8bit CPU with a 4 MHz clock speed, 4 KB or 

RAM and 512 KB of cache memory8. The power consumption of the CPU is 5.5mA 

(3V) when active and half that amount when it is in the sleeping mode. The node is 

equipped with a radio beacon that has a range of around 250 – 300 meters [6].  

Crossbow manufactures the motes with various sensor setups. Research is ongoing to 

improve sensor capabilities and communication protocols. 
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            Tiny OS is an operating system developed by Berkeley to operate the sensors. 

The TinyOS beacon protocol is used for communication for the sensors. A typical 

setup can have more than one base station and a node can be associated with more 

than one base station at a time.  Power management is a critical issue for sensor 

networks which depend on very limited power supply (two AA type batteries for the 

Mica Mote sensors). Prolonging the power is typically achieved by using energy 

efficient routing mechanisms. Sensors enter constant idle moments or sleep states to 

conserve power. Some event triggers the sensors out of sleep mode into active mode.  

In active mode each event or task requires precious power and drains the batteries.  

Besides energy conservation, the other major issue facing sensor networks in 

security from an adversary. Attacks can occur when the sensors least expect them and 

the applied countermeasure may require substantial power expenditure. In this thesis 

some of these attacks and countermeasure are studied with a provision to monitor the 

remaining power levels. Effects of various attacks reveal information about the 

outcome of these attacks and the success of these countermeasures.  

1.1.3  Security Issues 

Since the nodes in a sensor network lack capability and power capacity, 

communication typically takes place through an insecure channel with an emphasis on 

low power consumption and low radio communication. This makes it very susceptible 

to attacks. An adversary can take control of the sensors physically and snoop at the 

information available or modify certain parameters in the sensor to take control of the 

entire network. Alternately an attacker can override the built in security measures to 

cause inexplicable damage from which a network cannot recover. An attacker can 

also obtain information about the details of data capture and its contents, both of 
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which could prove damaging to the network. Some of the secure routing protocols 

like distance routing and source routing protocols used in Ad-Hoc networking are not 

suitable in sensor networks because of their incapability to sustain the overheads 

involved. Other secure protocols can be deployed but the trade-off might be to 

sacrifice either lifetime of a normal working sensor or some of its other capabilities. 

Some of the best solutions to secure routing are at the application layer where 

an adversary can be prevented by data checking and correction. Some of the attacks 

are described here with countermeasures.  

In Chapter 2 we review the various attacks on sensor networks and the 

corresponding countermeasures. Chapters 3 and 4 describe the methodology and 

implementation details. This includes the tools used to simulate our attacks and 

countermeasures. Chapter 5 provides the results of the experiments. The conclusions 

are given in chapter 6  
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2. LITERATURE REVIEW 

 

2.1 Attacks 

 

Sensor routing protocols are primarily designed with energy efficiency and not 

security in mind. Consequently, they are susceptible to most of the attacks. The 

attacks can be classified into the following categories [1]. 

2.1.1  Spoofed, altered or replayed routing information 

An adversary can spoof, alter or replay routing information communicated to a 

target node to node communication. This form of attack is common as it does not take 

much to achieve; rather it involves intercepting information being exchanged between 

nodes and relaying them. A successful attack may involve creating routing loops, 

generate false error messages or partitioning the network into incompatible nodes or 

increase the end-to-end latency between nodes. 

2.1.2 Selective forwarding 

In selective forwarding the attacker needs complete access to the path of the 

data flow. An adversary can successfully jam or cause collision to the data thereby 

causing disruption to the data flow. Multi-hop networks are often based on the 

assumption that these participating nodes will faithfully forward messages received. 

Malicious nodes may refuse to forward certain messages and simply drop them, 

ensuring that they are not propagated any farther. A simple form of this attack is when 
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a malicious node behaves like a black hole and refuses to forward every packet she 

sees. However, such an attacker runs the risk of neighboring nodes determining that 

she has failed and deciding to seek another route. A more subtle form of this attack is 

when an adversary selectively forwards packets. An adversary interested in 

suppressing or modifying packets originating from a select few nodes can reliably 

forward the remaining traffic and limit suspicion of any wrongdoing. The other 

attacks where an attacker can include in the path of the data flow are Sybil attack and 

sinkhole attack. 

2.1.3 Sybil attacks 

A Sybil attack is created when a malicious node assumes the identity of 

another node on the network. A node illegally assumes multiple identities either 

forging an identity or stealing legal identities. A simple way to detect a Sybil attack is 

to verify the identity of each node and confirm its integrity [14]. Without a central 

system verifying the identities it becomes easy for a malicious node to infiltrate a 

network.  

 

2.1.4 Sinkhole attacks 

Sinkhole attacks are similar to selective forwarding, where a rogue node 

attracts all the traffic from neighboring networks depending on the routing algorithm. 

A metaphorical sinkhole is created with the adversary in the center luring all the 

application data towards it. Sinkhole attacks can also cause many other attacks like 

selective forwarding because of the inherent nature of their presence near the path of 

the data. 
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 Routing data away from the sink is possible by replaying an advertisement 

from a previously good quality link. Some protocols might actually contain reliability 

or latency information. An adversary with a palm pilot or a laptop which is much 

higher powered than a sensor sink can provide a higher link by transmitting enough 

power that the nodes might think that the base station can be reached in one hop 

thereby deceiving the others into thinking that they are nearer to the base station to 

which they need to report. This information is later propagated to its neighbors and 

traffic is eventually diverted. Effectively, the adversary creates a large “sphere of 

influence” [1], attracting all traffic destined for a base station from nodes several (or 

more) hops away from the compromised node. 

One motivation for mounting a sinkhole attack is that it makes selective 

forwarding trivial. By ensuring that all traffic in the targeted area flows through a 

compromised node, an adversary can selectively suppress or modify packets 

originating from any node in the area.  It should be noted that the reason sensor 

networks are particularly susceptible to sinkhole attacks is due to their specialized 

communication pattern. Since all packets share the same ultimate destination (in 

networks with only one base station), to influence a potentially large number of nodes 

a compromised node need only to provide a single high quality route to the base 

station. 

2.1.5 Wormhole Attack 

A Wormhole Attack is caused by an attacker who tunnels packets at one point 

to another point in the network, and then replays them into the network from that 

point. The wormhole attacks can form a serious threat in wireless networks, especially 

against many routing protocols. The simplest instance of this attack is a single node 
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situated between two other nodes forwarding messages between the two of them. 

Since the tunneled distances are longer than the normal wireless transmission range of 

a single hop, the source will prefer the path including the attack nodes. Then the 

attack nodes may perform various attacks, such as the black hole attacks (by dropping 

all data packets) and grey hole attacks (by selectively dropping data packets). Because 

the wormhole nodes do not modify or fabricate packet, cryptographic techniques 

cannot detect this type of attack. It is a severe attack that is particularly challenging to 

defend against. Methods to defend a wormhole attack are by adding information about 

geography or time to a packet to restrict the packets maximum allowed transmission 

distance. 

In some cases, an adversary situated close to a base station may be able to 

disrupt routing completely by creating a well-placed wormhole. An adversary could 

convince nodes who would normally be multiple hops from a base station that they 

are only one or two hops away via the wormhole. This may create a sinkhole due to 

the potential attractiveness of the route created by the wormhole [1]. Those nodes 

neighboring the adversary on the other side of the wormhole may choose to forward 

packets destined for a base station through this route. The result would be to 

propagate knowledge of this route to their neighbors and attract more traffic.  

Wormholes become particularly difficult when combined with either a Sybil 

or a selective forwarding attack as they are similar and detection is extremely 

difficult. 

2.1.6 HELLO flood attack 

This is similar to the Sybil attack, except it takes advantage of a basic 

characteristic in the protocol. Many protocols require nodes to broadcast HELLO 
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packets to announce themselves to their neighbors, and a node receiving such a packet 

may assume that it is within range of the sender. Hence a laptop-class attacker with a 

powerful radio can send out a strong transmission to convince every node on the 

network that the adversary was the neighbor. In the preceding mayhem, every node 

will try to use this route, but those nodes sufficiently far away from the adversary 

would send packets into oblivion. The network is left in a state of confusion. A node 

realizing the link to the adversary is false could be left with few options: all its 

neighbors might be attempting to forward packets to the adversary as well [1]. 

Protocols which depend on localized information exchange between neighboring 

nodes for topology maintenance or flow control are also subjected to this attack. 

HELLO floods can also be thought of as one-way, broadcast wormholes.  

Even though this is a form of flood attack as seen earlier HELLO attack uses a 

single hop broadcast to transmit a message to many receivers to cause a state of 

confusion. 

2.1.7 Acknowledgement spoofing 

Spoofing is a form of deceiving a node into thinking what’s not true. For 

example a weak link may be portrayed as a strong one or a dead node is shown as a 

live node. Several sensor network routing algorithms rely on implicit or explicit link 

layer acknowledgements. Due to the inherent broadcast medium, an adversary can 

spoof link layer acknowledgments for overheard packets addressed to neighboring 

nodes. A routing protocol may select the next hop in a path using link reliably. 

Artificially reinforcing a weak or dead link is a subtle way of manipulating such a 

scheme.  
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Packets sent along those paths will not reach its destination and will inherently 

be lost, thus launching such an attack an adversary can cause enough data loss. Hence 

besides that selective forwarding attacks can be launched by spoofing. 

 

 

2.2 Counter-measures 

 

2.2.1 Spoofed and altered attacks. 

Since base stations are trustworthy, adversaries must not be able to spoof 

broadcast or flooded messages from any base station. This requires some level of 

asymmetry since every node in the network can potentially be compromised, no node 

should be able to spoof messages from a base station, and every node should be able 

to verify them [1]. Authenticating broadcast is also useful for localized node 

interactions. Using a global shared key reduces a number of attacks, such as by a 

simple link layer encryption and authentication with a global and shared key. Only 

nodes from the same group would have access to the global key and, hence message 

authentication can be performed by this method. Spoofing and altering packet 

information can be avoided. 

This prevents replay attacks and changing data packets. A counter is 

maintained to monitor each link and the next value of the counter is checked to see if 

messages are being replayed. The counter keeps track of identical messages received 

from each node. Each node simply remembers the most recently received counter 

value from each of its neighbors and discards packets containing older values. These 

mechanisms are enough to counter most of the discussed attacks when mounted by 
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outsiders. Most of selective forwarding and sinkhole attacks are not possible because 

the adversary is prevented from joining the topology. 

2.2.2 Selective forwarding 

Link layer security can provide some degree of security by validating some of 

the messages using authentication. A selective forwarding attack is followed by a 

malicious node not forwarding certain messages. The most vulnerable nodes are those 

that are near the base station. Multi path routing counters these types of selective 

forwarding attacks [1]. Messages routed over paths whose nodes are completely 

disjoint are protected against selective forwarding attacks involving at most 

compromised nodes and still offer some probabilistic protection when other nodes are 

compromised. However, completely disjoint paths may be difficult to create. 

Nevertheless link layer security is totally useless with other attacks like wormholes 

and Sybil attacks. 

2.2.3 The Sybil attack 

Several solutions have been proposed including symmetric key cryptography. 

Some of these forms require a lot of computation and processing power. With some 

authentication in the link layer a Sybil attack can be thwarted. A pair of neighboring 

nodes can use a shared key to implement an authenticated, encrypted link between 

them. However an adversary trying to infiltrate the network from inside cannot be 

stopped. To prevent an insider from wandering around a stationary network and 

establishing shared keys with every node in the network, the base station can 

reasonably limit the number of neighbors a node is allowed to have and send an error 

message when a node exceeds it. If a node is compromised the damage is limited to a 
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set of known neighbors [2]. In a link layer authentication mechanism the Sybil attack 

is no longer relevant because nodes are unwilling to accept even a single identity of 

the adversary. Even with a wormhole an artificial link can only create an unreliable 

path between two paths but the information cannot be compromised in this method. 

The damage is limited to low latency between the node and base station and not for 

the message loss themselves.  

When the network size is limited or the topology is well-structured or 

controlled, global knowledge can be leveraged in security mechanisms. In a relatively 

small network of around 100 nodes or less, it can be assumed that no nodes are 

compromised during deployment, then after the initial topology is formed, each node 

could send information such as neighboring nodes and its geographic location -if 

known back to a base station. Using this information, the base station can map the 

topology of the entire network. To account for topology changes due to radio 

interference or node failure, nodes would periodically update a base station with the 

appropriate information.  

2.2.4 HELLO flood attacks 

When compared to linked layer security mechanism, an authenticated code in 

the packet cannot stop a HELLO attack from distributing false node messages. It 

would up to a degree stop forwarding and replaying but has no effect on other type of 

attacks. 

Link layer security mechanisms using a globally shared key are completely 

ineffective in presence of insider attacks or compromised nodes. Insiders can attack 

the network by spoofing or injecting bogus routing information, creating sinkholes, 

using the Sybil attack, and broadcasting HELLO floods. An identity verification 
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protocol to verify the nodes identity to use a shared key would be more than sufficient 

in preventing a HELLO flood attack. The simplest defense against HELLO flood 

attacks is to verify the bi-directionality of a link before taking significant action based 

on a message received over that link. A base station limitation could also be used to 

limit the number of trusted nodes from exchanging information thereby preventing a 

large number of HELLO messages from interfering with its performance. This is also 

done by verifying the bi-directionality of the link between two nodes.  

 

 

 

2.2.5 Sinkhole attacks 

A significant challenge in securing large sensor networks is their inherent self-

organizing, decentralized nature. Sinkholes are particularly vulnerable in protocols 

that use remaining energy or reliability information between nodes because this 

information is hard to verify from actual value. In a wormhole attack, the out-of-band 

channel not being available to the sensor network could compromise a network [18]. 

Routes that minimize the hop count to a base station are easier to verify, however 

hop-count can be completely misrepresented through a wormhole. When routes are 

established simply based on the reception of a packet as in TinyOS beaconing or 

directed diffusion, sinkholes are easy to create because there is no information to 

verify the validity of a sinkhole. Probabilistic selection of a next hop from several 

acceptable destinations or multi path routing to multiple base stations can help with 

this problem, but it is not perfect. When a node must route around a “hole”, an 
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adversary can “help” by appearing to be the only reasonable node to forward packets 

to [1]. 

The compromised node advertising its location on a path between the targeted 

node and a base station will guarantee it is the destination for all forwarded packets 

from that node. Sufficiently restricting the structure of the topology can eliminate the 

requirement for nodes to advertise their locations if all nodes’ locations are well 

known. For example, nodes can be arranged in a grid with square, triangular, or hex 

shaped cells. Every node can easily derive its neighbors’ locations from its own, and 

nodes can be addressed by location rather than by an identifier 

 

 

 

2.2.6 Wormhole countermeasures 

The most elaborate form of worm hole checking and countermeasures are to 

obtain a statistical analysis of routes obtain during route discovery and send an ACK 

on suspicious paths to check for a wormhole, but this method could be more processor 

intensive and also not power efficient requiring constant time synchronization.  

  The other possible method is to use geographic location models to 

document wormhole attacks. Since we know how data moves we can be sure when a 

suspicious route is created and data diverted. Artificial links are easily detected in 

geographic routing protocols because the “neighboring” nodes will notice the distance 

between them is well beyond normal radio range. Drastic or suspicious changes to the 

topology might indicate a node compromise, and the appropriate action can be taken 

.Wormhole is most effective when used to create sinkholes or artificial links that 
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attract traffic. Geographic routing can be effective in stopping many attacks but that 

location information is trusted. Apart from Geographic routing methods, directional 

antennas can also be used to prevent a wormhole attack. Nodes share directional 

information to avoid being compromised by false neighbors using endpoints [15]. 

Nodes with one hop accessibility maintain accurate information about their proximity 

locations and the direction other nodes are located. In this method, zones are created 

and nodes communicate in separate channels in each zone thus eliminating malicious 

false neighbors. 
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3. METHODOLOGY 

 

3.1 Sensor attacks and their effects on power and performance 

 
With the increasing applications of sensors, it becomes more critical to protect 

sensor networks from malicious attacks.  As seen in the previous sections, potential 

attacks on sensor networks have been identified and furthermore, counter measures to 

these attacks have been proposed. However, there is no work reported in the literature 

on the impact of these attacks and counter measures with relation to energy and 

performance.  As energy is severely limited in sensor networks, the impact of these 

attacks on energy consumption is critical.  Furthermore, the energy consumed in 

protecting or defending these networks is also a critical factor, since high energy 

consumption approaches to protect sensor networks may not be a practical proposition 

[3]. The validity of the proposed counter measures is therefore in question until their 

energy consumption is determined.  

In this thesis we propose to measure the change in energy consumption on 

nodes due to malicious attacks as well as the energy overheads in defending against 

these attacks. Furthermore, we also propose to investigate the impact caused by these 

attacks and the subsequent overheads in the counter measures. 

In normal conditions the above mentioned sensors operate at full operating 

capability at 100% power load for a maximum of two weeks [4]. If an attack occurs 

and sensors are compromised the recovery could be expensive in terms of energy. 

This is important as the nodes cannot be replaced. Obtaining the energy and 

performance measures will be essential to determining the best solution for recovery 

and countermeasure.  
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 Given that counter measures consume energy, it may make sense not to 

commit a countermeasure and instead quarantine the affected sensors thus saving the 

current network from unsafe affected nodes and conserve power. Because of an attack 

some extra precautionary measures could be employed to avoid either spreading the 

same attack or containing it to certain areas. 

 Measurement of attack effects and the application of related counter effects 

can be documented over a period of time frame; this could give us an average 

working model of the sensors in real time. Sensor networks use Tiny OS which is an 

event driven operating system.  Because of its simplicity the network lacks the 

security required in an otherwise secure network. They are vulnerable to most of the 

attacks previously discussed. 

In this thesis we will model the following attacks and counter measures and 

document their power profiles. 

 

3.2 Simulation of Attacks and countermeasures 

 

HELLO flooding attack: 

Motes are configured with a program to listen and perform the initial HELLO 

handshake. A powerful base station with the capability to reach directly out to the 

nodes is deployed after the network is formed and repeated requests for neighbor 

information is requested from the motes, causing them to flood the networks with 

HELLO packets. 

Countermeasures are followed up immediately by resetting the motes to load 

the default program, thus dropping the flood packets. It will restrict the number of 

connections a base station or a mote can accept. A counter keeps track of the HELLO 
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packets received from and to the mote. After a few minutes of restricted operation a 

counter relax that allows more connection between motes and return to normal 

operating conditions. Replay attacks can also be avoided with this mechanism. 

 

A typical Operational Hierarchy: 

• Deploy motes with the basic network program loaded in them connected to 

base station A 

• Deploy another adversary base station B which is more powerful than 

most of the other motes in the network to simulate a HELLO attack. 

• Attack becomes evident and data is logged to document effects when the 

counter shows increased network activity. 

• Countermeasure is to load a modified program which would limit 

incoming and outgoing connections on motes and base station. 

• Counter deployed to keep track of messages received 

 

Figure 3.1: HELLO Attacks 
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Sybil Attack: 

Sybil Attacks can be simulated by deploying an adversary node on a network 

which assumes one of an existing mote’s identities. Attack detection is assumed when 

packets are seen dropping at the base station when the adversary node is started [17]. 

Countermeasure to a Sybil attack is to check the number of connections made 

by the base station at any given time and compare with the node ID which forms part 

of the header data transmitted by the nodes. Neighbors ID’s can be logged and 

compared to find cloned node connections. Such comparisons and computations are 

intensive on energy consumption and can be documented. 

 

 

 

Figure 3.2: Sybil Attacks 

 
 

Selective forwarding attacks: 

In selective forwarding attacks nodes that appear near the base station are 

targeted which are assumed to have a lot of data due to their proximity to the base 

station. 

Countermeasure: In an attack, nodes which are assumed to be affected are 

made to use a multi-path routing approach to the base station to deliver packets. In our 

example nodes A to D represent those that lie close to the base station and vulnerable 

to a selective forwarding attack. If node D is compromised packets coming to the base 

station are sent in a multi path route through nodes A through C. Any discrepancy can 
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be detected by comparing packet count received from A, B and C with that of D. This 

would confirm a selective forwarding attack. 

   

Figure 3.3: Selective Forwarding Attacks 
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4. IMPLMENTATION 

 

4.1 Simulation and Environment setup 

 
A typical setup for the experiment would involve around 8-9 motes, devices 

which form the sensor component and a radio component with a battery. They are 

deployed over a wide area where they form a multi hop connection with one another 

and eventually connect to a base station. The number of base stations in our 

experiment is assumed to be one. The motes are separated a distance 10-15 feet and 

spread wide apart so that they do not connect directly to the base station like an access 

point in an ad-hoc network. The most commonly used motes for research purposes is 

called Mica2 and manufactured by a company called Crossbow. A computer loaded 

with Tiny OS and a suite of test programs to measure throughput and power 

consumption is configured. The base station is connected to this computer to enable 

data transfers between the motes and the computer.  

                   Motes have limited memory capacity and computational power, 

with the capability to execute one application at a time. Surge-view is a program 

written by Crossbow the manufacturer of these motes, to help in forming a very basic 

topology connecting all motes in the network.  Once the network is formed using 

Surge-View, the test program we developed to simulate an attack and counter measure 

are loaded into the motes. The programs are loaded and run to obtain performance 

measures.  

 Each experiment is carried out for 10 minutes, to enable the network to 

configure properly and give a consistent output. Sometimes readings that are taken 
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within a short starting time tend to be skewed. On the real motes we need to wire 

extensive measuring instruments like a multi meter to each mote, so that power 

consumption changes can be gathered in real time. However, before the motes are 

used for the actual experiment, we develop our programs on a simulator like POWER-

TOSSIM or Avrora because of the flexibility achieved in the development process. 

The programs hence developed using the simulator is compatible with any mote 

without any modification. . Hence these programs can be loaded into the motes 

without any modifications and executed. A simulator like Avrora helps us in 

calculating power readings without using multi meters to measure power 

consumption. 

Tools to be used in performing our simulation:  
 

• Tiny OS Operating system developed by UC, Berkeley 

• Programs developed in nesC which is an embedded system development 

environment. 

• Data Logging application to gather our data, built on Tiny OS. 

• AEON (Accurate Prediction of Power Consumption) Plug-in to Model power 

consumption. AEON is integrated with AVRORA – A simulation and 

Analysis Framework tool. 

Methods to measure or document power consumption – On a real network the 
following are needed: 
 

• Multi-meter reading at constant intervals. 

• Surge view and Oscilloscope program developed by Crossbow. 

• Power-TOSSIM like simulation environment [3]. 
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4.2 Network composition  

 
The composition of network: 

 
 
 

 
 
 
 
 
 
 
 
 

Figure 4.1: Network composition 

In all the experiments is with 8-9 Motes running the surge program and one 

malicious mote representing the attacker. 

Normal motes 

- All normal motes run a program named “SpoofSurge”.  The surge application 

is a simple multi-hop application. It takes light sensor readings from the motes 

and sends the data to the base station. 

Malicious mote 

- For Example: Runs a program named “SpoofReplay”, which is a modified 

version of Surge-View program to simulate a Spoof Attack. 

Base station 

- Also runs SpoofSurge application. The address of the base station is 0. It 

receives messages and forwards them through a UART. This node is connected 

to a PC via a serial link. The PC runs a version of the Tiny OS operating 

system. 

 

 

PC

Base 
station 

Radio 
Communication  Malicious mote 

Normal 
motes 
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The Attacks are simulated separately with normal versions of the programs 

running on some motes, and the countermeasure programs are tested with the Attack 

programs.  Several configurations are explored in the experiments. These included 

choosing parameters such as percentage of attack and the ratio of normal motes to 

countermeasure and attack motes.  

 

4.3 Data Analysis 

 

Throughput of data packets between the base station and the motes is logged 

in our data logging application. Other important indicators of network performance 

like routing overhead and Average End-to-end delay are also calculated. 

Measurement conditions and required observations: 

- Before an Attack under normal operating conditions. 

- During an Attack.(Measure data loss) 

- After an Attack (Measure power levels and mote states) 

- During counter measure implementations (Power levels) 

- After Counter measures are successfully implemented – current state 

of the network. 

Values are charted on a graph where the data could help us determine 

overheads especially when counter measures are applied. These results would indicate 

performance degradation in terms of data loss and slow transmission rates. Thus the 

tradeoffs using a particular approach could be documented.  

Power consumption of a sensor node is the important performance 

characteristics of interest. Considering that the power supply is at a constant voltage 

throughout the operation (3V), the power consumed is proportional to the leaked 
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current [7]. We can therefore compare power consumption of the sensors before, and 

after an attack, and the power consumed when deploying countermeasures.  Because 

power levels in a sensor could indicate the remaining life of a sensor, it should be 

constantly monitored.  

           Under normal operating conditions transmitting consumes more power 

than receiving. A special power down mode is even thriftier in saving power than the 

idle state of a sensor.  

State 

 

Leaked current (mA) 

Reception 12 ~ 16 

Transmission 14~18 

Idle (radio rx mode) 11 ~ 15 

Idle ( radio tx mode) 13-15 

Idle (radio off) 8 – 8 

Idle ( power down) 0.0 ~ 0.1 

 

Table 3.1: Power consumption in different operating modes (crossbow) 

Power supply voltage remains in a constant flux. Voltage has a linear effect on 

current and a quadratic effect on power and energy. Voltage fluctuations can lead to 

constant changes in energy use. Hence measuring voltage alone does not give us a 

clear idea of a sensors power consumption level. 

4.4 Network communication on TinyOS 

 

TinyOS (TOS) is the preferred operating system for wireless embedded sensor 

networks. The Open source community maintained it with some active participation 

from the University of California at Berkeley it has matured into a very stable 
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platform.  

It supports a wide range of sensors with drivers, data acquisition tools and 

programs necessary to run them. The time and effort required to develop in this 

environment is very minimal due to its component-based architecture [7]. TOS uses 

active message (AM Model) as defined in $TOS/system/types/AM.h to communicate. 

Message is “active” when it contains destination address, group id, and type. 

TinyOS has NesC as the programming language, and most of the programs are 

developed in NesC.  

 

 

 

4.5 Architecture 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.2: TOS communication architecture [16] 

We provide an example of the active messaging standard. Components are wired 

together by connecting users with providers, which forms a hierarchy.  In the example 

Commands flow downward from the application to the radio stack, and events flow 
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upward to the AM handler from the radio stack. The TOS Thread model is classified 

into Tasks and Events. Tasks being time flexible and support longer background 

processing jobs and events are time critical and of shorter durations. As of with Tiny 

OS version 1.1 the number of concurrent tasks supported are 7. 

 

4.6 TOS communication paradigm 

    

The Network is modeled as a pipeline with minimal buffering for messages to get the 

maximum efficiency [9]. 

 
Send message 

To send a message a buffer needs to be filled with data, and the address of the 

recipients to whom it has to be sent. This Information is passed onto the operating 

system where it is used by the applications. It is also determined whether this 

information can be reused again. 

Receive message 

Incoming message would fill a buffer and the application is notified of the 

new message’s arrival. The application fetches the data from the buffer. The memory 

management for this operation is dynamic, and the buffer is cleared automatically for 

the next message to be received. 

 

   

4.7 Multi-hoping routing 
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A multi-hoping algorithm is used to route messages in the network. An Active 

Message is an alternative method to handle network messaging in Tiny OS instead of 

TCP/IP. The figure below describes a Multi-Hop network. 

 

 

 

  

Figure 4.3: Message forwarding multi-hop protocol 
 

Route discovery is done by shortest path from every node to the base station. 

The base station broadcasts its identity from time to time. A table is maintained with 

their hop counts from the base station. A parent node is determined by the closest 

node discovered during this phase. Node A sends an AM (Active Message) packet to 

node B, B being the parent on the list for node A. When B receives the data packet 

successfully it will read the destination address to see if this message is for itself. If 

the destination is not B, then B will forward it to a parent node on the routing table. 

Suppose nodes C, D and E are “neighbors” of node B. Now B forwards the 

packet to its “parent” which is the node most likely on its list to receive data. In this 

case, E is B’s parent.  

B will update its neighbor list periodically by the hop count returned from 

other nodes, When E stops responding to B, E is determined not to be a reliable node 

to receive data and act as a “parent”, hence another node is selected to be the new 

parent of B which can be C or D, depending on their proximity to Node B.  Nodes 

look for parents with minimum hop count from the base station. This process is done 

periodically to find the best possible route for data. 

 
 

A B
C

D

E
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Data packet format 

 

 

    
  Data structure definition 

           TOS uses active messages as defined in AM.h header. Message is 

active because it contains a destination address, groupID and type [16]. A message 

consists of the Header with handler name and data payload as argument. The 

following excerpts of a typical program explain the part involved in managing Radio 

communication. This allows the user to control the radio strength, acknowledgment 

and security modes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Header (5bytes) Payload (max 29bytes) CRC (2 bytes)

typedef struct TOS_Msg 
{ 
  /* The following fields are transmitted/received on the radio. */ 
  uint16_t addr; 
  uint8_t type; 
  uint8_t group; 
  uint8_t length; 
  int8_t data[TOSH_DATA_LENGTH]; 
  uint16_t crc; 
 
  /* The following fields are not actually transmitted or received  
   * on the radio! They are used for internal accounting only. 
   * The reason they are in this structure is that the AM interface 
   * requires them to be part of the TOS_Msg that is passed to 
   * send/receive operations. 
   */ 
  uint16_t strength; 
  uint8_t ack; 
  uint16_t time; 
  uint8_t sendSecurityMode; 
  uint8_t receiveSecurityMode;   
} TOS_Msg; 
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4.8 Using Avrora simulator and AEON plugin 

 

Compared to Power-Tossim and the Emstar simulators, Avrora has the ability 

to measure power consumption as well as simulating a sensor network at the same 

time. TOSSIM is a single application simulator and cannot simulate a collection of 

nodes on a network. For example when a single application like “surge” is run, 

TOSSIM will spawn 10 separate threads to run the program on 10 nodes. On Avrora 

with AEON, the results returned are accurate to the component level. 

4.8.1 Step 0 – Download Avrora 

Avrora is available from UCLA’s website. It is a simulation program written 

mainly for the AVR and mica2 platforms. [12]. 

4.8.2  Step 1 – Install java 

Avrora is written in java (platform independent). Pre-requisite is to install java 

SDK. (Used Java Version j2sdk1.4.2) 

4.8.3 Step 2 – Compile the TinyOS program 

The Avrora only supports mica2 platform. Since a binary image composed of 

ELF and SREC files cannot be directly loaded into Avrora, it is converted into a 

textual format before it can be used. This is done as follows: 

 

 

 

 

$ cd  $TINYOS_ROOT/apps/SpoofSurge 
 
$ make mica2 
 
mkdir -p build/mica2 
    compiling SpoofSurge to a mica2 binary 
ncc -o build/mica2/main.exe -Os -board=micasb -target=mica2 -I%T/lib/Queue -I%T/ 
lib/Broadcast -Wall -Wshadow -DDEF_TOS_AM_GROUP=0x7d -Wnesc-all -finline-limit=1 
00000 -fnesc-cfile=build/mica2/app.c  SpoofSurge.nc -lm 
RouterLEPSM.nc:633:2: warning: no newline at end of file 
C:/cygwin/opt/tinyos-1.x/tos/system/RealMain.nc: In function `main': 
C:/cygwin/opt/tinyos-1.x/tos/interfaces/StdControl.nc:63: warning: `result' migh 
t be used uninitialized in this function 
    compiled SpoofSurge to build/mica2/main.exe 

15318 b t i ROM
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4.8.4 Step 3 – Disassemble the program 

 After obtaining the main exe file, the “avr-objdump” tool is used to disable 

textual format file. 

 

   

Note that the extension of the output file must be “.od”. 

We can obtain SpoofReplay.od in the same way. (Before compile, set 

TIMER_RATE=100) 

4.8.5 Step 4 – Run programs 

 Now we have the programs which can be read by Avrora. The .od extension 

file can be run using avrora-beta-1.6.0.jar in the following syntax: 

 

 

 

 

Options used with avrora program and their explanations: 

-platform=mica2: 

$  avr-objdump –zhD ./build/mica2/main.exe > SpoofSurge.od 

$  java -jar avrora-beta-1.6.0.jar -platform=mica2 -seconds=600 -colors=false -report-seconds -
monitors=energy-log -action=simulate -simulation=sensor-network -nodecount=9,1 
SpoofSurge.od SpoofReplay.od 
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Now Avrora only supports mica2 platform. 

-seconds=600: 

Let all nodes run for 10 minutes. 

-colors=false: 

Do not display color on terminal. 

-report-seconds: 

Display event time in second instead of CPU cycle. 

-monitors=energy-log: 

Monitor power consumption and output log file for each node. 

–action=simulate: 

Indicate action type. 

-simulation=sensor-network: 

Simulate multi nodes. 

-nodecount=9, 1: 

“9, 1” is a node list. That means the first 9 nodes (node 0 to node 8) run the 

first program, and 1 node (node 9) runs the second program. 

    SpoofSurge.od SpoofReplay.od 

In our example the programs we want to run - 9 nodes run SpoofSurge.od 

(Normal) and 1 node runs SpoofReplay.od (Attack).     SpoofSurge and SpoofReplay 

are examples of the Spoof Attack. 

4.8.6 Step 5 – Collect power consumption data 

The final step is to collect the data. The data obtained from a real network is 

usually light and temperature readings of the sensors.The data from these sensors are 



 35 
 

transmitted every 50 Seconds to the base station. On the simulator we get similar 

readings with LED indicators. 

 Power consumption contains several aspects: CPU, led, radio, sensor board 

and flash. Power consumption levels for each node is recorded and calculated in the 

analysis. Sample output (Avrora with AEON): 

 

Power comparisons in the simulator are calculated with two factors. 

After an Attack: 

- Power consumption 1 = After an Attack – Before an attack 
                                       ------------------------------------------            …. (4.1) 

Before an Attack 

After Countermeasures: 

- Power consumption 2 = After countermeasures – Before an Attack 
                                       ----------------------------------------------------- …. (4.2) 

Before an Attack 
 

 
Energy Consumption Component Breakdown: 
 
Node lifetime: 4423680000 cycles, 600.0 seconds 
 
CPU: 6.519386674160156 Joule 
   Active: 0.8983985768261719 Joule, 291792240 cycles 
   Idle: 5.620988097333984 Joule, 4131887760 cycles 
   RESERVED 1: 0.0 Joule, 0 cycles 
   ADC Noise Reduction: 0.0 Joule, 0 cycles 
   RESERVED 2: 0.0 Joule, 0 cycles 
   Power Down: 0.0 Joule, 0 cycles 
   Standby: 0.0 Joule, 0 cycles 
   Power Save: 0.0 Joule, 0 cycles 
   Extended Standby: 0.0 Joule, 0 cycles 
~~~~~~~~~ 
Radio: 17.86987400952148 Joule 
   Power Off: 0.0 Joule, 3140 cycles 
   Crystal: 3.2385253906249998E-6 Joule, 132650 cycles 
   Crystal + Bias: 1.7126464843749999E-6 Joule, 3050 cycles 
   Receive (Rx): 13.765509851562499 Joule, 3523970522 cycles 
   Transmit (Tx):        0: 0.058114546875 Joule, 22670208 cycles 
   Transmit (Tx):        15: 4.046244659912109 Joule, 876900430 cycles 
~~~~~~~~~ 
Sensor Board: 1.26 Joule 
   on:  : 1.26 Joule, 4423680000 cycles 
~~~~~~~~~~ 
flash: 0.0036 Joule 
   standby: 0.0036 Joule, 4423680000 cycles 
   read: 0.0 Joule, 0 cycles 
   write: 0.0 Joule, 0 cycles 
   load: 0.0 Joule, 0 cycles 
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4.9 Points of Measurement 

 

 

 

Figure 4.3 Timeline of readings taken 

The figure indicates the various points at which we obtain our measurements, 

with key phase Before, After and During referring to Before Attacks, After Attacks 

and During Countermeasures. ‘After’ attack refers to the time period when the node is 

under attack without any countermeasures.  

4.9.1 Types of Simulations  

Two sets of simulations were performed. In the first set, 9 nodes were ‘good’ with 1 

malicious node. In the second set, we used a proportion of malicious nodes in the 

network, which ranged from 10 – 90%. In our second set of simulations we varied the 

number of malicious nodes. In the graphs below 10% in attacks means that 1 of the 
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node is malicious from a total of 10 nodes. Therefore 90% in attacks means that 9 of 

the nodes are malicious and 1 node is good. 

In the case of Countermeasures, 90% where nodes that are defending, the ratio 

was split up to 9 ‘countermeasure’ and 1 malicious node. This was done to get some 

node to provide attack data on the network. 

  

4.9.2 Normal Operation 

    “Surge View” is the program that executes in the normal operational mode when 

the node is good; it uses the multi hop network protocol described above. This 

program is designed and implemented by Crossbow. A node waits for a packet from 

other nodes on the network and when it receives a packet, it checks the destination 

address to determine if that packet is addressed to itself. If it is not, then the packet is 

forwarded to the next node on the network. The next node is determined by the 

neighbor list for multi-hop routing as described in Section 4.9. The output LED 

indicates the status of the message. The three states are Green On for Sending a 

message, Green Off for Send done and Yellow Toggle On and Off for a new message 

arrival.  

High Level Pseudo Code for Surge View (Normal Program): 
 

 
Surge Normal Operation 
 
 Initialize: Comm,TimerC,LEdC,RandomLFSR( Randomizer) 
 Get Communication and timer Parameters 
 
 Make a neighbor list from nearby motes 
  
 Input: Get message from any mote 
 Compute: Make copy of the message 
 Output: Retransmit to the next node on the neighbor list 
 
 Show output on Led: Green On -Sending Message; Green off - Send done. ;  
                                   Yellow Toggle- new message obtained. 
 Repeat operation. 
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The above Pseudo code describes the normal operation of a Surge program; it consists 

of input, output and Compute stages. The first step would be to initialize the various 

service components; Comm for Communication, this module would be to determine 

which network interface is the standard communication medium. TimerC keeps track 

of timer functions and provides clock counts, LedC has information about the LEDs 

used on the device and RandomLFSR provides a random number generation 

capability. The service modules are ‘wired’ together in a typical program. 

4.9.3 Simulation Environment / Details  

The simulations using Avrora involved 10 nodes, Avrora has the ability to specify 

which node runs the ‘Other’ program. The nodes being run on the simulator cannot be 

placed in specific proximity to the others, i.e. their location cannot be specified. 

However Avrora assumes a random distance from the base station providing a truly 

multi-hop capability to the network. Avrora uses a free space radio propagation 

model, where the default distance is 10 meters between motes and a random distance 

from the base station. The Free space radio propagation model is used in Avrora to 

determine the signal strength using the distance between nodes; noise and power 

transmission strength is also calculated in this way for each node. Although the user 

can change the distance factor between nodes, the user has no control over the overall 

area to accommodate the entire node collection. 

 To simulate the experiment in a real world, would involve deploying 10 motes 

in a small area and making sure that they are spread out to create a multi-hop network. 

The programs from these experiments can be directly loaded into the nodes. The data 

from the base station can be logged in a file and a multi meter can be hooked to each 

node to gather power consumption readings. 
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5. RESULTS 

 

5.1 Spoofed attack and countermeasure 

 

Action and result 

Attack 

- Action: Replay the same data we receive from the other motes and re-transmit 

it to other neighbors. 

- Result: Increases network traffic and power consumption. 

Countermeasure 

- Action: Keep tracking messages that sent by other motes. Find out if the 

received message is old or duplicated by comparing the count we maintain in 

the program. 

- Result: Do not forward duplicated messages and discard them. 

5.1.1 Network composition 

Same as the Network composition in Figure 4.1 

5.1.2 SpoofReplay attack details 
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When SpoofReplay receives data message from a neighbor mote by radio, it 

will duplicate many copies and send them out to the base station and the other motes 

in its vicinity. The action is: 

Receive message -> Duplicate message -> Send out message 

    If that malicious mote received a new message, but has not finished sending 

out copies of the old message, it will do nothing on this new message. Messages are 

sent out repeatedly until the entire network is flooded. The received message is, AM 

(active message). Below is the data packet format: 

 
 
 
 
 
 
 
 

 

 

Figure 5.1: Active message packet format of SpoofSurge 

 
 
 

High Level Pseudo Code for Spoof Attack: 
 

5.1.3 S

p

o

o

f

 

Attack Countermeasure details 

Address 
2bytes 

Network Layer 
Header 7bytes 

CRC 
2bytes 

Type 
1byte 

Group 
1byte 

Length 
1byte 

Application 
Layer 5bytes 

Sourceaddr 
2bytes 

Originaddr 
2bytes 

Seqno 
2bytes 

Hopcount 
1bytes 

Type2 
1bytes 

Reading 
2bytes 

Parentaddr 
2bytes 

MAC layer header Payload (max 29bytes) 

SpoofReplay Attack 
 
Initialize: Comm,TimerC,LEdC,RandomLFSR( Randomizer) 
Get Communication and timer Parameters 
 
Make a neighbor list from nearby motes 
 
Input: Get message from any mote 
Compute: Make duplicates of the message 
Output: Retransmit to random motes for 100 times - Once every second. 
 
Show output on Led: Green On -Sending Message; Green off - Send done. ; 
Yellow Toggle- new message obtained. 
Repeat operation. 
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SpoofSurge is an application that uses multi-hop routing. Each Surge node 

takes light readings and forwards them to a base station. The node can also respond to 

broadcast commands from the base. To avoid replayed messages attack, a counting 

and tracking system is implemented. 

High Level Pseudo Code for Spoof Attack Countermeasure: 
 

 

 Replayed message tracking 

Suppose node A is a malicious node. When A receives a message from another 

node, it duplicates that message and sends as many copies to its parent node B. 

Because B holds information of A, it will find out if this message is duplicated 

according to the last received message number (last_seqno in struct 

TOS_MhopNeighbor). 

SpoofAttack CounterMeasure 
 
 Initialize: Comm,TimerC,LEdC 
 Get Communication and timer Parameters 
 
 Input: when a message is received from a mote 
 Compute: Check for last sequence Number associated with the packet 
         If sequence number is not bigger than the last one received - do not forward message 
         If sequence number is bigger - forward to the next node on Neighbor list. 
 
 Show output on Led’s: 
    Red toggle:    send message error; 
    Green on:      sending message; 
    Green off:     send done; 
Repeat operation. 
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If seqno in received message is not bigger than last_seqno, then node B 

believes the message is duplicated and will not pass the message to the next node. 

5.1.4 Simulation/Power Analysis - Spoofed attack and countermeasure 

5.1.4.1 Before attack 

    First we just let 9 nodes run SpoofSurgeNoCounter.od (Normal program) 

and do not inject any malicious nodes. Following is the value of power consumption 

on node 0, 4, 8. (Run time 10 minutes) shown below in Joules. These are default 

readings for all normal operation on the network.  

Node CPU Led Radio Sensor Board Flash Total 
0 6.432 0.013 17.283 1.26 0.004 24.992 
4 6.416 0.291 17.315 1.26 0.004 25.286 
8 6.416 0.286 17.315 1.26 0.004 25.281 

 

Table 5.1: Typical Power consumption with Surge – Normal Operation 

 

/* Fields of neighbor table */ 
typedef struct TOS_MHopNeighbor { 
  uint16_t addr;                          // state provided by nbr 
  uint16_t recv_count;                // since last goodness update 
  uint16_t fail_count;                 // since last goodness, adjusted by TOs 
  int16_t last_seqno; 
  uint8_t goodness; 
  uint8_t hopcount; 
  uint8_t timeouts;          // since last recv 
} TOS_MHopNeighbor; 
 

typedef struct MultihopMsg { 
  uint16_t sourceaddr; 
  uint16_t originaddr; 
  int16_t seqno; 
  uint8_t hopcount; 
  uint8_t data[(TOSH_DATA_LENGTH - 7)];  
} __attribute__ ((packed)) TOS_MHopMsg; 
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Note:  Radio power consumption is normally higher than the CPU because of the 

main communication medium being wireless. 

5.1.4.2  After attack 

We next inject the malicious node (node 9), which is running the SpoofReplay 

(Attack) program. The power consumed after the attack is over is shown below.  

Node CPU Led Radio Sensor 
Board 

Flash Total 

0 6.482 0.019 17.283 1.26 0.004 25.048 
4 6.450 0.324 17.322 1.26 0.004 25.36 
8 6.452 0.344 17.331 1.26 0.004 25.391 
9 6.514 4.490 17.812 1.26 0.004 30.08 

 

Table 5.1.1: Spoof Attack Power consumption (10 Minutes | Unit in Joules) 

5.1.4.3 During counter 

         Change SpoofSurgeNoCounter.od (Normal) to SpoofSurge.od 

(Countermeasure),   and run again. 

Node CPU Led Radio Sensor 
Board 

Flash Total 

0 6.462 0.016 17.283 1.26 0.004 25.025 
4 6.445 0.345 17.316 1.26 0.004 25.37 
8 6.444 0.337 17.315 1.26 0.004 25.36 
9 6.51 4.408 17.813 1.26 0.004 29.995 

 

Table 5.1.2: Spoof Countermeasure Power consumption (10 Minutes | Unit in Joules) 
 

 
Figure 5.3: Different Setups for Data Measurement. SpoofSurge.od – Normal,  

Normal Mode 
10 Motes 

All Running 
SpoofSurge 

Attack Mode 
10 Motes 

 
9-SpoofNoCounter 

 
1 - SpoofReplay 

CounterMeasure Mode 
10 Motes 

 
9 – SpoofSurge 

 
1- SpoofReplay 
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SpoofReplay.od - Attack, SpoofNoCounter.od – No Countermeasure 

 
 
 
 
 

5.1.4.4 Radio power consumption comparison 

Here we can compare radio power consumption before attack, after attack and 

during countermeasure: (unit is in Joule). 

Node Before After During 
0 17.28294837495117 17.28294837495117 17.28294837495117 
1 17.31497163474121 17.328573483569336 17.32782377536621 
2 17.31497163474121 17.33232202458496 17.326003055444335 
3 17.31497163474121 17.33939070192871 17.316042646459955 
4 17.31497163474121 17.322147413964842 17.31572134223633 
5 17.31497163474121 17.32525552224121 17.31497163474121 
6 17.31497163474121 17.328573483569336 17.317541992773435 
7 17.31668525349121 17.32664566247558 17.320540895678707 
8 17.314973809741208 17.331251082958982 17.31497163474121 
9  17.811831745922852 

(do not include) 
17.81333011376953 (do 

not include) 
Total 155.804437246630848 155.917107750244126 155.836565352392562 

 

Table 5.1.3: Spoof Attack Average Radio Power consumption 

From section 4.6.8 
 

Power increase rate 1 = (After – Before)/before = 0.000723153368443069894 

Power increase rate 2 = (During – Before)/before = 2.06207899656007683e-4 
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Figure 5.4: Spoof Radio Power Consumption 

Spikes are noticed in the Attack data indicated as ‘Attack’ in the chart because 

of the increased radio operation to transmit/receive data between the motes during 

spoof replay. Node 0 with no power level change is the Base Station, which is not 

affected by spoof attacks. In the graph in fig 5.4 9 nodes are in normal mode with one 

attacking node. . The attack node is assumed to be the 10th node in the network. 
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Figure 5.5: Spoof Radio Power Consumption – Overall 
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The data shows countermeasures consume only marginally more power than 

during attacks. 
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Figure 5.6: Spoof Attack Radio Power Consumption 
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Figure 5.7: Spoof Countermeasure Radio Power Consumption  

In the graph in fig 5.6, spoof attack shows 90% (9 bad nodes) of the nodes in 

the network providing attack data and 10% running the normal version of Surge at the 

first instance. Similarly in fig 5.7 we have 10% (1 counter node) providing 
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countermeasure with the remainder configured to provide attack data. The maximum 

impact is noticed at 70:30(Attack: Counter) configurations which are 7 nodes 

providing attack data and 3 nodes defending by providing countermeasure, this could 

be because of a large number of normal modes being compromised and influenced by 

the spoof attack. 

Countermeasures are effective as their numbers increase from 70:30 (7 counter 

and 3 bad nodes) to 10:90 (1 counter and 9 bad node) where power consumption level 

can be seen going down.  

 

5.1.4.5  CPU power consumption comparison 

Node Before After During 
0 6.433002153463135 6.481989058326172 6.4620128746928716 
1 6.416962906932617 6.451140489597656 6.447122198427491 
2 6.416563857842529 6.452043172607422 6.446680593976806 
3 6.416787227515625 6.453460800742431 6.44511507122754 
4 6.416692427858399 6.449759634051026 6.444794257116699 
5 6.416900482207275 6.450354235359863 6.444584724852783 
6 6.4168850328396 6.45118967839087 6.445155471581788 
7 6.420200987850098 6.450451128157226 6.4454439623159185 
8 6.416699559657715 6.451737467600097 6.444475981239014 
9  6.513512369165772 

(do not include) 
6.510362461346924 
(do not include) 

Total 57.770694636166993 58.09212566483276 58.02538513543091 
Table 5.1.4: Spoof Attack Average CPU Power consumption 

 

From section 4.6.8 
Power increase rate 1 = (After – Before)/before = 0.005563911437972221541 

Power increase rate 2 = (During – Before)/before = 0.00440864526327628156 
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Figure 5.8: Spoof CPU Power Consumption 

Node 0 is the base station; increased power consumption is a result of it 

receiving most of the messages from the malicious node. Most replayed messages are 

sent to the base station. Notice the increase in power surge after attack. In 

countermeasure the duplicate messages are eliminated and an attack is thwarted thus 

attributing to a small reduction in power consumption. 
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Figure 5.9: Spoof CPU Power Consumption- Overall 

The low power consumption shows that these Countermeasures are effective 

in stopping attacks occurring on the network. 
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Figure 5.10: Spoof Attack CPU Power Consumption 

Similar to Radio power consumption levels in Fig 5.6/5.7 CPU power 

consumption levels reflect the same behavior with more countermeasure nodes in the 

network resulting in lower levels of power consumption. This could mean effective 

countermeasures being utilized. 
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Figure 5.11: Spoof Countermeasure CPU Power Consumption 
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5.1.4.6 Conclusion 

In a spoofed attack, when the malicious node was injected, the power 

consumption of the entire sensor network increased. During countermeasure, the 

whole power consumption for the network decreased, though it was higher than 

before the attack. 

Attacks consumed 0.7% more power when compared to normal operation 

modes, and the power consumed by countermeasures was 0.2% more than normal 

values. The difference between the two shows the impact of the two operations, 

clearly showing that these countermeasures are more effective.  
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Figure 5.12: Spoof Attack Overall Power Consumption 
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Figure 5.13: Spoof Countermeasure Overall Power Consumption 

In the graph in fig 5.12 and 5.13 we have the total power consumption levels of CPU 

and radio from 10 motes. Maximum power levels are noticed in 70:30 (Attack: 

Countermeasure) configurations with power levels going down as the proportion of 

countermeasure nodes are increased from 70:30 ( 7 Counter nodes and 3 bad nodes)  

to 10:90 (1 counter node and 9 bad nodes) . Hence countermeasures are effective 

against the spoof attack. 

5.2 Selective forwarding attack and countermeasure 

 

5.2.1 Action and result 

Attack 

- Action: The malicious mote will only forward received messages from whose 

address is an even number. For example, messages from motes whose 

addresses are 2, 4, 6, 8...will be forwarded, and messages from 1, 3, 5, and 

7...will be dropped. 

- Result: Data loss, longer path to reach destination. 
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High Level Pseudo Code for Selective Forward Attack: 

 

 

 

 

Countermeasure 

- Action: Two-path routing.  

- Result: Each node will send same message twice. 

High Level Pseudo Code for Selective Forward Attack: 
 

 

 

 

 

 

 

 

 

5.2.2 Network composition 

 
Sforward Attack 
 
 Initialize: Comm,TimerC,LEdC 
 Get Communication and timer Parameters 
 
 Make a neighbor list from nearby motes 
  
 Input: Ready to receive message from other motes 
 Compute: Drop messages from motes 1,3,5,7 …….; 
 Output: Retransmit only messages from motes 2, 4, 6, 8……. 
  
 Show output on Led: Green On -Sending Message; Green off - Send done.  
 Repeat operation. 

 
Sforward Countermeasure 
 
 Initialize: Comm,TimerC,LEdC 
 Get Communication and timer Parameters 
 
 Input: when a message is received from any mote 
 Compute: Choose two parents from the neighbor list 
 Output: Retransmit to both motes on the network. 
 
 Show output on Led:  
    Green on:      sending message to main parent; 
    Green off:     send done; 
    Yellow on:     sending message to another parent; 
    Yellow off:    send done; 
 
Repeat operation.
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Same as the Network composition in Figure 4.2 

5.2.3 Selective forwarding attack details 

This attack application is modified from multi-hop router program [13].  

In the RouterM.nc program, when a message is received, if the destination 

address in message is equal or part of the local address, then it must be forwarded. In 

the attack mode, only messages from even numbered addresses are forwarded. 

 

 

 

 

5.2.4 Countermeasure on selective forwarding 

To avoid data loss caused by selective forwarding, when sending a message, 

we can choose two different paths. In section Error! Reference source not found., 

we discussed the parent choosing mechanism for routing. For the countermeasure we 

modify the routing approach by having two different parent nodes. If one route is 

compromised, the alternative will deliver the message to the destination. 

 

. 

 

    if (pMsg->addr == TOS_LOCAL_ADDRESS) { // Addressed to local node 
      if ((signal Intercept.intercept[id](pMsg,&pMHMsg->data[0],PayloadLen)) == SUCCESS) { 
        if (pMHMsg->originaddr % 2 == 0) 
          pMsg = mForward(pMsg,id); 
        else 
          dbg(DBG_ROUTE, "MHop: message from 0x%x dropped\n", pMHMsg->originaddr); 
      } 
    } 

Base station
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Figure 5.14: Choose another parent – Selective Forwarding. 

In figure 5, suppose node “A” wants to send a message to the base station and 

node B, C, and D are neighbors of A. A has a parent B. We must choose another good 

parent in C and D. We can take this topology as a tree with the base station as root. 

The depth (hop count) of C is 1 and D is 2, we think C is better than D because C is 

nearer to the root than D. Hence we choose node C as A’s other parent and send a 

message copy to it. Since we transmit the message in two different paths we achieve 

redundancy. 

5.2.5 Simulation / Power Analysis - Selective forward attack 

5.2.5.1 Before attack 

    Let 10 nodes run “Surge.od” for 10 minutes this time. Following is the data 

on nodes 0, 5, 9. (Unit is Joule) 

Node CPU Led Radio Sensor 
Board 

Flash Total 

0 6.439 0.000 17.283 1.26 0.004 24.986 
5 6.419 0.000 17.322 1.26 0.004 25.005 
9 6.418 0.000 17.322 1.26 0.004 25.004 

Table 5.2: Typical Power consumption with Surge – Normal Operation 

 

5.2.5.2 After attack 

A normal node becomes a malicious node (node 9, run SForwardAttack.od), 

and run again. (Run 10 minutes, unit is) 

Node CPU Led Radio Sensor Flash Total 

A

B C (hop count is 1) 

D (hop count is 2) 
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Board 
0 6.437 0.000 17.283 1.26 0.004 24.984 
5 6.420 0.000 17.324 1.26 0.004 25.008 
9 6.418 0.328 17.315 1.26 0.004 25.325 

 

Table 5.2.1: Selective forward attack Power consumption 

5.2.5.3 During counter 

Change Surge (Normal) to SForwardCounter.od, and run again. (Run 10 

minutes, unit is Joule) 

Node CPU Led Radio Sensor 
Board 

Flash Total 

0 6.475 0.000 17.283 1.26 0.004 25.022 
5 6.440 0.000 17.358 1.26 0.004 25.062 
9 6.431 0.408 17.315 1.26 0.004 25.418 

Table 5.2.2: Selective forward countermeasure Power consumption 
 
 

 
Figure 5.15: Program Execution sequence. Surge.od – Normal,  

SForwardAttack.od - Attack, SForwardCounter.od – Countermeasures 

 

5.2.5.4 Only radio power consumption comparison 

Now we just compare radio power consumption before attack, after attack and 

during counter: (unit is Joule) 

Node Before After During 
0 17.28294848432617 17.28294848432617 17.282948317333982
1 17.314971744116207 17.314978269824216 17.346994830200195
2 17.314971744116207 17.314971744116207 17.346994830200195

Normal Mode 
10 Motes 

All Running Surge 

Attack Mode 
10 Motes 

 
9-Surge 

 
1 - SForwardAttack 

CounterMeasure Mode 
10 Motes 

 
9 – SForwardCounter 

 
1- SForwardAttack 
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3 17.314971744116207 17.314971744824216 17.346999180200193
4 17.314971744116207 17.31497826911621 17.375057510815427
5 17.322473176147458 17.32375404020996 17.35727654270019 
6 17.314971744116207 17.314971744116207 17.346999180200193
7 17.314971744116207 17.318082028100584 17.34870844895019 
8 17.31497826911621 17.315721452319334 17.346994830200195
9 17.31497826911621 17.31497163474121 17.31497163474121 

Total 173.12520866340329 173.130349411694314 173.41394530554197
 

Table 5.2.3: Selective forward Average Radio Power consumption 

 

From section 4.6.8 
Power increase rate 1 = (After – Before)/before = 2.9693817155298516704e-5 

Power increase rate 2 = (During – Before)/before = 0.00166779086863111263 
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Figure 5.16: Selective forward Radio Power Consumption 

The Base station (node 0) does not show any increase in power consumption 

levels.  The base station receives messages only from the border motes, and therefore 

it does not have a role in the selective forwarding attack or the countermeasure. 

Increase in countermeasure power consumption is noticed in all the nodes because 

most of them retransmit the message they receive in two paths to achieve redundancy 

from selective forwarding attacks. Chart below indicates the same.  
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Figure 5.17: Selective forward Radio Power Consumption - Overall 

Countermeasure results show more power consumption due to redundant 

messages being generated in different paths simultaneously resulting in increased 

traffic. 
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Figure 5.18: Selective forward Attack Radio Power Consumption  
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Figure 5.19: Selective forward Countermeasure Radio Power Consumption 

 

 

5.2.5.5 Only CPU power consumption comparison 

Node Before After During 
0 6.436892733870361 6.437137944034423 6.4745700777771 
1 6.417669621845215 6.417784338985352 6.4373625115061035
2 6.417714777305175 6.417729432723145 6.437382373996827 
3 6.4179184683676755 6.417910607921874 6.4374748089899905
4 6.417709932837158 6.417771974335694 6.442518032521241 
5 6.419206613960204 6.419599966203369 6.439364050125 
6 6.417693816689209 6.417890334708252 6.437257338947509 
7 6.41787958201709 6.418542258498535 6.437660701487305 
8 6.417750651114991 6.417954426384277 6.437547921103272 
9 6.41788059078003 6.417910599329345 6.430664973464844 

Total 64.1983167887871085 64.200231883124266 64.411802789919192
 

Table 5.2.4: Selective forward Attack Average CUP Power consumption 

 
From section 4.6.8 

Power increase rate 1 = (After – Before)/before = 2.9830911976371174568e-5 

Power increase rate 2 = (During – Before)/before = 0.00332541430695844987 



 59 
 

6.38

6.40

6.42

6.44

6.46

6.48

0 1 2 3 4 5 6 7 8 9

Po
w

er
 (J

ou
le

)

Normal Attack CounterMeasure

 

Figure 5.20: Selective forward CPU Power Consumption 

 

Increased countermeasure is a result of transmitting packets in two paths as 

opposed to sending in one. 
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Figure 5.21: Selective forward CPU Power Consumption- Overall 
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Figure 5.22: Selective forward Attack CPU Power Consumption 
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Figure 5.23: Selective forward Countermeasure CPU Power Consumption 

5.2.5.6 Conclusion 

In the selective forwarding attack, the power consumption loss is small. 

However the sensors consume more power to counter this attack. This attack results in 
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loss of data and there is little or no power consumption spike due to lost data. 

However, power readings are more when countermeasures are being applied to avoid 

this loss. 

This attack did not affect power consumption much; a difference of 0.0002% 

from normal running mode does not indicate any significant change. However the 

data loss is damaging for this attack. The countermeasures applied consumed almost 

0.3 % more than the normal operating modes; this was significantly higher than the 

attack power levels. This cost is only because of the attempt to retransmit the same 

data. 
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Figure 5.24: Selective forward Attacks Power Consumption – Overall 

In the graph in fig.5.24, the maximum power consumption level is noticed at 

30% level with 3 of the nodes providing the attack and 70% or 7 nodes consisting of 

normal motes. 
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Figure 5.25: Selective forward Countermeasure Power Consumption - Overall 

 

In the above graph fig 5.25 the proportion of nodes providing countermeasures 

at 90% (9 Counter Nodes) consumes more power than a smaller number. This is due 

to the fact that the data is actually dropped and not forwarded in the 10% (1 Counter 

node and 9 Attack nodes) configuration, with the defending nodes having to defend 

the network and actually relay back messages on two routes. In this type of attack, 

countermeasures are not very effective and cause more damage when they are 

deployed in large numbers. 

 

 

5.3 Sinkhole attack and countermeasure 

5.3.1 Action and result 

Attack 
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Sinkhole Attacks aim at causing data loss by dropping packets and not 

forwarding any message. The also deceive motes in their proximity into thinking that 

the base station is nearer than the normal path. 

High Level Pseudo Code for Sinkhole Attack: 

 

 

Countermeasure 

The Attacks can be solved by using a two path routing strategy and also 

transmitting the same message twice. 

 
 
 

High Level Pseudo Code for Sinkhole Attack Countermeasure: 
 

Sinkhole Attack 
 
 Initialize: Comm,TimerC,LEdC 
 Get Communication and timer Parameters 
 
 Make a neighbor list from nearby motes 
  
 Input: Ready to receive message from other motes 
 Compute: Drop all packets 
Output: Increase Message send success rate to base station.  
  
 Show output on Led: 
    Green on:      sending message; 
    Green off:     send done; 
 
 Repeat operation. 



 64 
 

 

5.3.2 Network composition 

Same as the Network composition in Figure 4.2 

5.3.3 Sinkhole attack details 

Sinkhole attack is similar to selective forwarding attack. When a malicious 

mote receives a message, it will do nothing and drop packets. 

 

 

 

 

 

5.3.4 Countermeasure 

    if (pMsg->addr == TOS_LOCAL_ADDRESS) { // Addressed to local node 
      if ((signal Intercept.intercept[id](pMsg,&pMHMsg->data[0],PayloadLen)) == 
SUCCESS) { 
        // Do nothing 
        dbg(DBG_ROUTE, "MHop: message from 0x%x dropped\n", pMHMsg->originaddr); 
      } 

}

Sinkhole Countermeasure 
 
 Initialize: Comm,TimerC,LEdC 
 Get Communication and timer Parameters 
 
 Input: when a message is received from any mote 
 Compute: Choose two parents from the neighbor list 
 Output: Retransmit to both motes on the network. Also retransmit same message twice. 
 
 Show output on Led:  
    Green on:      sending message to main parent; 
    Green off:     send done; 
    Yellow on:     sending message to another parent; 
    Yellow off:    send done; 
 
Repeat operation. 
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Same as countermeasure on selective forwarding as outlined in section 5.2.4. 

Redundancy is achieved by retransmission of data and taking a two path route to 

reach the destination. The overheads achieved, would be similar to that of Selective 

forwarding. 

 

5.3.5 Simulation / Power Analysis - Sinkhole attack 

5.3.5.1 Before attack 

    Let 10 nodes run “Surge.od” (Normal) for 10 minutes. The same setup as in 

Selective forwarding attacks as in 5.2.5.  

5.3.5.2 After attack 

SinkholeAttack.od – program to simulate an Attack. 
A normal node is changed to a malicious node (node 9, run SinkholeAttack.od), and 

run the same setup again. (Run 10 minutes, unit is Joule). We simulate an attack by 

running the SinkholeAttack program simultaneously in 9 motes.  The simulations 

show dropped packets and increase in transmitting traffic from some motes. 

 
Node CPU Led Radio Sensor 

Board 
Flash Total 

0 6.438 0.000 17.283 1.26 0.004 24.985 
5 6.418 0.000 17.315 1.26 0.004 24.997 
9 6.418 0.174 17.316 1.26 0.004 25.172 

 
Table 5.3: Sinkhole Attack Power consumption 

5.3.5.3 During counter 

SinkholeCounter.od – program to simulate a Countermeasure. 
Change Surge.od to SinkholeCounter.od, and run again. (Run 10 minutes, unit 

is Joule) 
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Node CPU Led Radio Sensor 
Board 

Flash Total 

0 6.478 0.012 17.283 1.26 0.004 25.037 
5 6.436 0.344 17.348 1.26 0.004 25.392 
9 6.429 0.196 17.316 1.26 0.004 25.205 

 
Table 5.3.1: Sinkhole countermeasure Power consumption 

 
 

 
 

Figure 5.26: Program Execution sequence. Surge – Normal, 

SinkholeAttack - Attack, SinkholeCounter – Countermeasures 
 

5.3.5.4 Only radio power consumption comparison 

Node Before After During 
0 17.28294848432617 17.28294848432617 17.282948317333982 
1 17.314971744116207 17.31497826911621 17.346994830200195 
2 17.314971744116207 17.314971744116207 17.346994830200195 
3 17.314971744116207 17.314971744116207 17.346997005200194 
4 17.314971744116207 17.314971744116207 17.353635102856444 
5 17.322473176147458 17.314978270532226 17.34763743723144 
6 17.314971744116207 17.31668536286621 17.347423234887696 
7 17.314971744116207 17.314971744116207 17.346994830200195 
8 17.31497826911621 17.314971744116207 17.346994830200195 
9 17.31497826911621 17.31582844411621 17.31582844411621 

Total 173.12520866340329 173.120277551538061 173.382448862426746
 

Table 5.3.2: Sinkhole Radio Power consumption 

 

 

Normal Mode 
10 Motes 

All Running Surge 

Attack Mode 
10 Motes 

 
9-Surge 

 
1 - SinkholeAttack 

CounterMeasure Mode 
10 Motes 

 
9 – SinkholeCounter 

 
1- SinkholeAttack 
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From section 4.6.8 
Power increase rate 1 = (After – Before)/before = -2.848292229247941548e-5 

Power increase rate 2 = (During – Before)/before = 0.00148586217460446398 
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Figure 5.27: Sinkhole Radio Power Consumption 

 

Since packets are dropped no effect is seen due to the attacks power 

consumption readings; however, a huge spike is noticed in the countermeasure 

because of retransmission and the two path strategy being followed. 
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Figure 5.28: Sinkhole Radio Power Consumption – Overall 
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Figure 5.29: Sinkhole Attack Radio Power Consumption  

Sinkhole Counter
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Figure 5.30: Sinkhole Attack Countermeasure Power Consumption  

5.3.5.5  Only CPU power consumption comparison 

Node Before After During 
0 6.436892733870361 6.438104976496094 6.476776941757569
1 6.417669621845215 6.41796414969043 6.436301674402099
2 6.417714777305175 6.417907878934571 6.436459079227783
3 6.4179184683676755 6.418143987891601 6.436361210319092
4 6.417709932837158 6.417974214979249 6.437570359634277
5 6.419206613960204 6.418074903956055 6.43648570060205 
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6 6.417693816689209 6.4183431231950685 6.436419373149903
7 6.41787958201709 6.418045924791747 6.436295817734131
8 6.417750651114991 6.418063756008545 6.436592150010498
9 6.41788059078003 6.417884335404297 6.429456523581543
Total 64.19831679 64.20050725 64.39871883 
 

Table 5.3.3: Sinkhole CPU Power consumption 

 

From section 4.6.8 
Power increase rate 1 = (After – Before)/before = 3.4120209213042826881e-5 

Power increase rate 2 = (During – Before)/before = 0.00312160894584725451 
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Figure 5.31: Sinkhole CPU Power Consumption 
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Figure 5.32: Sinkhole CPU Power Consumption – Overall 
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Figure 5.33: Sinkhole Attacks CPU Power Consumption 

 

In the graph in Fig 5.33, 50% (5 Attack and 5 Normal) of the nodes being 

Attack configuration consume more power than the others. The graph below indicates 

an increase in power level as the proportion of Counter nodes increase in a network. 
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Figure 5.34: Sinkhole Countermeasure CPU Power Consumption 

 

CPU power consumption is expensive during countermeasures. The attacks 

configuration shows maximum power expenditure during the 70% and 50% mode 

where 7 and 5 motes are malicious respectively. 

5.3.5.6 Conclusion 

In sinkhole attack, the power consumption of the sensor network is similar to 

selective forward attack. We notice a spike in the power consumption readings when 

the countermeasures are applied. This is because of the increased traffic due to 

retransmission of the same data twice and redundant packets on the two paths. 
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Sinkhole - Overall
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Figure 5.35: Sinkhole Attacks Power Consumption- Overall 
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Figure 5.36: Sinkhole Countermeasure Power Consumption- Overall 

 

 

In the sinkhole attack the countermeasures applied are expensive when 

compared to the attacks themselves. Fig 5.36 shows that at 10%; Counter motes 

consumes less power compared to a 90:10 (Counter: Attack) configuration. Graph in 



 73 
 

Fig 5.32 also supports this theory as we can see Counter motes consume more power 

over the full scope of our experiment. 

 

 

 

 

 

 

 

 

 

 

 

 

5.4 Sybil attack and countermeasure 

5.4.1 Action and result 

Attack 

A malicious mote assumes the identity of an existing mote on the network. 

This causes confusion on the network and loss of data. 

Countermeasure 

This problem could be solved by authenticating the packets in the link layer. 

Normal motes would not receive messages from a mote whose mote-key is different. 

Malicious mote does not have the mote-key. 

High Level Pseudo Code for Sybil Attack 
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5.4.2 Network composition 

Same as the Network composition in Figure 4.2 

5.4.3 Sybil attack and counter details 

Both Sybil attack and counter program are secure versions of application 

"Surge" which is used to simulate a normal multi-hop network. Authentication and 

encryption mechanism have been provided by TinyOS. In the Surge application, we 

need to change "GenericCommPromiscuous" component to "SecureGenericComm", 

and when installing the above components on a mote, we need to specify a mote-key 

(Mote-key is a unique identifier for each mote). [7]. GenericCommPromiscuius and 

SecureGenericComm are the Interfaces needed for sending and receiving messages. 

The Generic version does not carry out Encryption/Decryption. 

For attacker, when we load the program, we use an address that a normal mote 

has used. Thus in network, there are two motes whose address is the same. 

However we use a different mote-key: 

Attacker 6D524D67F24F178B0A69933FDD6C6F7F 

Initialize: Comm,TimerC,LEdC 
 Get Communication and timer Parameters 
Include TinySec component for Secure transmit ion. 
Generate mote key 
 Make a neighbor list from nearby motes 
  
 Input: Ready to receive message from other motes 
 Compute: Check mote key for each packet received. 
     
Output: Retransmit messages only if they have a valid mote key.  
  Show output on Led: 
    Green on:      sending message; 
    Green off:     send done; 
Repeat operation. 
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For counter, when we load the program, we give each mote a unique address. 

All the motes have the same mote-key: 

Default  6D524D67F24F178B0A69933FDD6C6F7E 

5.4.4 Simulation / Power Analysis of Sybil Attack with Encryption / 

Decryption:- 

The simulator cannot model the Sybil attack where a node takes 2 addresses. 

We instead measure the overhead involved in encrypting/ decryption information on a 

mote. Encryption/Decryption could avoid Sybil attacks by authenticating packets in 

the link layer. 

By default, TinySec will authenticate all messages, but encryption is turned 

off. TinySec allows the user dynamically to alter the combination of security 

mechanisms for the application with the TinySecMode interface. The “AUTH” mode 

would check for the CRC, and Encrypt/Decrypt would alter the contents of the 

message body with an Encrypt/Decrypt algorithm. 

 

 

 

Let 10 nodes run SybilAttack.od for 10 minutes, and we note the power 

consumption of CPU and Radio. Next 10 nodes run Surge.od.  

Node CPU Radio Total (CPU+Radio)
0 6.596606413420167 17.31140640288086 23.90801282 
1 6.577923743991699 17.31336554460449 23.89128929 
2 6.576597169171142 17.310418992700193 23.88701616 
3 6.576780789803711 17.311841223242187 23.88862201 
4 6.5762329404467765 17.310556632202143 23.88678957 
5 6.576346703816162 17.310786741162108 23.88713344 
6 6.5775006151975095 17.31308867314453 23.89058929 
7 6.576381706343506 17.31047837890625 23.88686009 
8 6.577122562812011 17.31144219033203 23.88856475 
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9 6.575540114498535 17.31033415344238 23.88587427 
Total 65.78703276 173.1137189 238.90075166 

Table 5.4: Sybil Attack Average Radio Power Consumption 

 
Node CPU Radio Total (CPU+Radio)

0 6.436892733870361 17.28294848432617 23.71984122 
1 6.417669621845215 17.314971744116207 23.73264137 
2 6.417714777305175 17.314971744116207 23.73268652 
3 6.4179184683676755 17.314971744116207 23.73289021 
4 6.417709932837158 17.314971744116207 23.73268168 
5 6.419206613960204 17.322473176147458 23.74167979 
6 6.417693816689209 17.314971744116207 23.73266556 
7 6.41787958201709 17.314971744116207 23.73285133 
8 6.417750651114991 17.31497826911621 23.73272892 
9 6.41788059078003 17.31497826911621 23.73285886 

Total 64.19831679 173.1252087 237.32352549 
Table 5.4.1: Sybil Attack Average Power consumption - Overall 
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Figure 5.37: Sybil Attack Power Consumption – Overall 

With Authentication but without Encryption/Decryption 

 

From the above chart, we can see that here, to authenticate a message (without 

encryption and decryption); about 0.15 Joule of extra powers will be consumed on 

each node. 

If encryption/decryption is implemented on the data, the data obtained from 

the corresponding program SybilAuthEncrypt.od(Encryption) for 10 minutes would 



 77 
 

be as below. 

 
 
 

Node CPU Radio Total (CPU+Radio)
0 6.65703823563501 17.310620923217773 23.96765916 
1 6.648699144708251 17.32343519123535 23.97213434 
2 6.649376978411377 17.32364078818359 23.97301777 
3 6.6491497438186045 17.323546895678707 23.97269664 
4 6.650206918786621 17.325626301049805 23.97583322 
5 6.648507362891358 17.32324591301269 23.97175328 
6 6.648886167982421 17.324282210668944 23.97316838 
7 6.6487612824431155 17.323407421313476 23.9721687 
8 6.6508710611535635 17.3270611652832 23.97793223 
9 6.649017910360107 17.323569971606446 23.97258788 

Total 66.50051481 173.2284368 239.72895161 
Table 5.4.2: Sybil Attack Average Power consumption - Overall 
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Figure 5.38: Sybil Attack Power Consumption – Overall with 

Authentication – Encryption / Decryption 

5.4.4.1 Conclusion: 

About 0.09 Joule of extra powers is being consumed on encryption and 

decryption on each node with Authentication. Hence we can determine that the power 

consumption is normally greater in our proposed countermeasure. Real world 
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experiments may differ, because of the type of authentication used and the level of 

encryption. 

 

 

 

 

 

 

 

 

5.5 Hello attack and countermeasure 

5.5.1 Action and result 

Attack 

- Action: The malicious mote sends messages by using stronger radio power, and 

pretend to be a base station or a node near the base station by modify its hop count 

value. However, motes far from the malicious node cannot send messages back 

successfully, because their radio power is low. 

- Result: Network confusion and data loss. 

High Level Pseudo Code for Hello Attack: 

 

 

 

 

 

Initialize: Comm,TimerC,LEdC 
 Get Communication and timer Parameters 
 
 Make a neighbor list from nearby motes 
 Set Hop count to 1. To Simulate a Base Station 
 
 Input: Ready to receive message from other motes 
 Compute: Send message every two seconds to all motes 
Output: Retransmit to all motes on the network.  
  
 Show output on Led: 
    Green on:      sending message; 
    Green off:     send done; 
 Repeat operation 
 Repeat operation. 
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Countermeasure 

- Action: If a node fails to get through a reply message to a particular node which 

sends the HELLO, then that node is distrusted. 

- Result: Do not send messages to distrust nodes. 

 

 

 

 

 

High Level Pseudo Code for Hello Attack countermeasure: 

 

 

 

5.5.2 Network composition 

Hello Countermeasure 
 
 Initialize: Comm,TimerC,LEdC 
 Get Communication and timer Parameters 
 
 Input: when a message is received from any mote 
 Compute: If message is found to be not reaching the base station (malicious) 
    Stop sending anymore packets. 
 Output: Transmit only those packets that can reach a destination. 
 
 Show output on Led:  
    Green on:      sending message; 
    Green off:     send done; 
 
Repeat operation. 
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Same as the Network composition in Figure 4.2 

5.5.3 Hello attack details 

The mote which runs the Hello attack program will pretend to be a mote near 

the base station (hop count is always 1) and broadcast hello messages in every 2 

seconds. 

5.5.4 Countermeasure details 

The strategy of route selecting was modified a little. If a node fails to reply to 

repeat HELLO messages from a node, that node will be distrusted. 

 

 
 
 
 
 
 
 
 
 

Figure 5.39: Failure to send message back – HELLO countermeasure 

In figure 5.35, Node B is the malicious mote that is sending Hello messages. 

Node A receives the message and takes B as its neighbor. Moreover the hop count of 

B is 1, and B appears to be a good parent of A. However B is far away from A, when 

  task void SendData()  
  { 
    HelloMsg *p = (HelloMsg *)gMsgBuffer.data; 
     
    p->sourceaddr = p->originaddr = TOS_LOCAL_ADDRESS; 
    p->hopcount = 1; 
    p->seqno = gSendMsgNum; 
     
    dbg(DBG_USR1, "HelloM: Sending message from 0x%x to 0x%x.\n", p->sourceaddr, 
gMsgBuffer.addr); 
    call Leds.greenOn();       
    call SendMsg.send(TOS_BCAST_ADDR, sizeof(HelloMsg), &gMsgBuffer); 
}

Base station

A

B
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A sends a message to B, it may be a failure and not reach B. A keeps count of as to 

how many HELLO replies have been sent out to B. After several failures, A will not 

trust B and does not send any message to B.  

5.5.5 Simulation / Power Analysis - Hello attack 

5.5.5.1 Before attack 

The Hello attack can be simulated by first running the normal Surge.od program in a 

typical setup of 9 (0 to 8) motes. We measure power consumption for even numbered 

motes. 0, 4, 8 respectively run for 10 minutes where the unit of measure is in Joules.  

 

 

    

Node CPU Led Radio Sensor 
Board 

Flash Total 

0 6.431 0.000 17.283 1.26 0.004 24.978 
4 6.416 0.000 17.315 1.26 0.004 24.995 
8 6.416 0.000 17.315 1.26 0.004 24.995 

 

Table 5.5: Typical Power consumption with Surge – 

Normal Operation Nodes 0, 4, 8 

 

5.5.5.2 After attack 

We inject a malicious node (node 9), into the network and run Program 

HelloAttack.od (Run 10 minutes, unit is Joule) .This malicious node will flood the 

network with a HELLO messages thus starting a chain reaction throughout the 

network. 

 
Node CPU Led Radio Sensor 

Board 
Flash Total 
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0 6.465 0.000 17.283 1.26 0.004 25.012 
4 6.447 0.000 17.315 1.26 0.004 25.026 
8 6.447 0.000 17.315 1.26 0.004 25.026 
9 6.519 4.467 17.870 1.26 0.004 30.12 

 
Table 5.5.1: HELLO Attack Power consumption 

5.5.5.3 During counter measures 

In the Hello countermeasure, every node will maintain a list called a “neighbor list” to 

record information of its neighbor nodes. If the node finds that one of its neighbor 

fails by sending messages above a set limit at one time then this node is eliminated 

from the list or distrusted, and we do not send any more messages to it.  

 
Change Surge.od to HelloCounter.od, and run again. (Run 10 minutes, unit is Joule) 

 
Node CPU Led Radio Sensor 

Board 
Flash Total 

0 6.465 0.000 17.283 1.26 0.004 25.012 
4 6.447 0.000 17.315 1.26 0.004 25.026 
8 6.447 0.000 17.315 1.26 0.004 25.026 
9 6.519 4.705 17.867 1.26 0.004 30.355 

 
Table 5.5.2: HELLO countermeasure Power consumption 

 
 

Figure 5.40: Program Execution sequence. Surge – Normal, 

HELLOAttack - Attack, HELLOCounter – Countermeasures 
 
 

Normal Mode 
10 Motes 

All Running Surge 

Attack Mode 
10 Motes 

 
9-Surge 

 
1 – HELLO Attack 

CounterMeasure Mode 
10 Motes 

 
9 – HELLOCounter 

 
1- HELLOAttack 
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5.5.5.4 Only radio power consumption comparison 

Now we compare radio power consumption before attack, after attack and 

during counter: (unit is Joule) 

Node Before After During 
0 17.28294848432617 17.28294848432617 17.28294778046875 
1 17.314971744116207 17.31989839802246 17.32471724689941 
2 17.31498044411621 17.314971744116207 17.314971040258786 
3 17.314971744824216 17.31498044411621 17.314971040258786 
4 17.314971744116207 17.31497826911621 17.314971040258786 
5 17.314971744116207 17.314971744116207 17.314971040258786 
6 17.314978269824216 17.316042755834957 17.32043320002441 
7 17.320433903881835 17.329430402319336 17.32300362814941 
8 17.31498261911621 17.314971744824216 17.314971040258786 
9  17.86987400952148 (do 

not add) 
17.867303853271483 (do 

not add) 
Total 155.8082107 155.823194 155.8259571 

 

Table 5.5.3: HELLO Attack Radio Average Power consumption 

From section 4.6.8 
Power increase rate 1 = (After – Before)/before = 9.6165021937447870325e-5 

Power increase rate 2 = (During – Before)/before = 1.13899003911736725e-4 
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Figure 5.41: HELLO Radio Power Consumption 
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Figure 5.42: HELLO Radio Power Consumption - Overall 

In the HELLO attack radio power consumption is higher than the CPU due to 

the increase in traffic caused by the HELLO message. The base station sees very little 

traffic and only the nodes seem to be affected. This shows that the nodes are more 

vulnerable to this type of attack. 

 The reason countermeasure costs are higher is because the HELLO packet 

received from nodes which have been removed from the neighbor list for which no 

corresponding reply is sent back. 
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Figure 5.43: HELLO Attack Radio Power Consumption 
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Figure 5.44: HELLO Countermeasure Radio Power Consumption 

Fig 5.42 shows that Countermeasures consume a marginally higher power 

level than the attacks. Similarly from Figs 5.43 and 5.44 higher power levels can be 

noticed at 90:10 configuration (9 bad nodes and 1 good node) in attacks and 10:90 (1 

countermeasure node and 9 bad nodes) in Countermeasures, this is because of 

countermeasures not being entirely effective. In both cases a higher number of attack 

nodes caused more spikes in power levels than a smaller proportion. At 10:90 

(Counter: Attack) ratio, the counter attack power level was found to be lower when 

compared to a similar attack configuration of 90:10 (Attack: Normal).  

 

5.5.5.5 Only CPU power consumption comparison 

Node Before After During 
0 6.43128427829541 6.465208881431397 6.4649492134775395 
1 6.416177063417724 6.448134219654053 6.448881996545653 
2 6.416095092406739 6.446888423201415 6.446766703149903 
3 6.416248120197999 6.447075559896973 6.446752494543458 
4 6.416254074820801 6.44725894853125 6.44703907945459 
5 6.416176814234375 6.447446990879396 6.447067381527588 
6 6.416276387900878 6.447544859788085 6.448334918797851 
7 6.4173069449316404 6.450182401958985 6.448545011294677 
8 6.416049885391601 6.4471048535478515 6.446822740188965 
9  6.519386674160156 (do 6.519110843658691 (do 
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not add) not add) 
Total 57.76186866 58.04684514 58.04515954 

 

Table 5.5.4: HELLO countermeasure CPU Average Power consumption 
 
From section 4.6.8 
 

Power increase rate 1 = (After – Before)/before = 0.004933643710134082770 

Power increase rate 2 = (During – Before)/before = 0.00490446182874582922 
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Figure 5.45: HELLO attack CPU Power Consumption 
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Figure 5.46: HELLO attack CPU Power Consumption - Overall 

CPU power consumption is smaller in magnitude when compared to the radio 

traffic. This is because of the small number of tasks given to a CPU in a mote when a 

HELLO attack occurs. Countermeasures power levels are smaller when compared to 

the attacking modes. The CPU is only involved in maintaining the neighbor list. 
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Figure 5.47: HELLO attack CPU Power Consumption 
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Figure 5.48: HELLO Countermeasure CPU Power Consumption 

5.5.5.6 Conclusion 

A hello attack costs very little power to counter. The overall power consumed 

in the countermeasure is much less when compared to the other forms of attacks. 

HELLO message acknowledgment limit is set to 25 in our experiments, bringing this 

number down would still limit the power consumption further. 

The difference in power levels (Radio) is as much as 0.09% and 0.11 % on 

attacks and countermeasures. The difference between the two is not significant but the 

reason for a countermeasure being much higher is the flooding of the network with lot 

of HELLO messages. On the contrary, CPU power expenditure is lower for 

countermeasures compared to Radio power consumption. 
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Figure 5.49: HELLO Attack Power Consumption – Overall 

Hello Counter - Overall
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Figure 5.50: HELLO Countermeasure Power Consumption – Overall 

 

 

 

 

 

5.6 Wormhole attack 

 
A wormhole attack can be defined as one where two motes on a network being 

far apart from each other deceive the other motes on the network into thinking that the 
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distance is shorter to reach the base station if the packets travel between them. A 

decision to take that route would result in packets being lost or getting delayed. A 

wormhole attack is difficult to detect and countermeasure. In our experiment we 

decided to use different channels to simulate an attack. For example the two motes in 

question would be on channel 17 and the rest of the motes on the network would use 

channel 22. [11] Or they could be on a different frequency, 433 and 916 MHz. 

Theoretically this setup can work on a simulator but cannot be duplicated with real 

motes. Motes work on a fixed frequency and this is a limitation of the radio that’s 

built onto them. 

Similarly for countermeasure, it is impossible to check and modify a Channel 

ID of a mote during runtime. A node can only modify its own channel ID, by using 

the functions available in the CC2420 radio stack such as “TuneManual ()”. A 

malicious node would not change its channel ID by itself in this regard. 

 

Let node 8 and node 9 transmit data at 916MHz channel, and node 0 – 7 

transmit data at 433MHz. 

 

 

Node CPU Radio Total (CPU+Radio)
0 6.5174162215937494 17.292089890568032 23.80950611 
1 6.511739680535156 17.38051706500651 23.89225675 
2 6.511564614624755 17.380540147680662 23.89210476 
3 6.511588183932617 17.380497939982096 23.89208612 
4 6.5118502423281255 17.38050924910482 23.89235949 

  To Change the channel in a mote 
 
Changes in the Make File to include 
CFLAGS += -DCC2420_DEF_CHANNEL=x 
Where x is between channel 11 and 26 
 
CFLAGS=-DCC2420_DEF_CHANNEL=22 make telos 
CFLAGS=-DCC2420 DEF CHANNEL=13 make telos



 91 
 

5 6.511660555369873 17.380519677539063 23.89218023 
6 6.5118372968234866 17.380595147241213 23.89243244 
7 6.511551576320801 17.38052602746582 23.8920776 
8 6.512465730357178 17.382710398746745 23.89517613 
9 6.5143572003942865 17.408891925105795 23.92324913 

Total 65.1260313 173.7473975 238.8734288 
 

Table 5.6.1: Wormhole Power consumption (433MHz & 916MHz) – Average 
 

Node CPU Radio Total (CPU+Radio)
0 6.516963577461426 17.29209536669922 23.80905894 
1 6.51114897164209 17.380584572745768 23.89173354 
2 6.510851532647949 17.380632121752928 23.89148365 
3 6.511435345177002 17.386137372965496 23.89757272 
4 6.511041412078857 17.380480457080075 23.89152187 
5 6.511179158916017 17.380578258683265 23.89175742 
6 6.510981817732666 17.38201775579427 23.89299957 
7 6.5113287342290045 17.385510646166992 23.89683938 
8 6.511048169243897 17.380615702490235 23.89166387 
9 6.510974629222657 17.38051327855631 23.89148791 

Total 65.11695335 173.7291655 238.84611885 
 

Table 5.6.1: Wormhole Power consumption 433MHz  
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Figure 5.51: Wormhole Power Consumption - Comparison 

The above setup yielded constant power consumption and erratic changes not 

influenced by both the frequencies.  This is because in a real world experiment the 

two malicious motes would be far apart and working in a particular channel/frequency 
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thus deceiving the other motes into believing that they are actually closer, a shortcut 

to the base station. 

5.6.1 Conclusion: 

Wormhole attacks would consume more power with the malicious motes that 

are involved in the attack; this is because of the quantity of traffic that may propagate 

through them.  Countermeasures if devised would be effective in stopping packets 

from reaching these motes altogether, they would need to maintain a routing table and 

work on finding the actual path to the base station. It would be interesting to see the 

effects of an actual Wormhole attack on such motes. 

 

 

 

 

 

 

 

 

 

 

 

 

6. Conclusion and Future Work 

 

Research on sensor networks has been on the mainstream for the past couple 
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of years. One of the major focuses has been on the security and the quantity of power 

they consume. Relating these two fields would yield us some valuable insight on how 

they would perform in a given scenario. The different attacks defined for sensors were 

simulated with the resulting countermeasures. Some of the attacks were damaging as 

in they consumed more power than usual and some of the countermeasures applied 

were effective in curtailing the power consumed. Sometimes it may be more effective 

to quarantine the network and restrict the influence of malicious nodes, instead of 

resorting to counter measures.  

  Countermeasures were effective in stopping the attack with minimal power 

expenditure for Spoof attack, compared to selective forwarding and Sinkhole attacks, 

where the power consumed was much higher. The power consumed in spoof 

countermeasures was less than that consumed during an attack enabling the motes to 

recover with minimal loss of power. With Selective forwarding the effects were just 

the opposite with more power being consumed during countermeasures. Hello 

attack/countermeasures showed a mixed mode of power consumption, with attacks 

and countermeasures consuming the same levels. The normal operations of most of 

these motes were documented using the Surge program which showed a consistent 

power level. Though the magnitude of power difference ( E.g.: 0.1% - 0.6% for 10 

minutes) in most of our experiments is not significant enough to alter the power 

consumption of the single sensor, the study when extrapolated to a bigger network 

with larger number of motes working for longer periods of time would offer 

significant benefits. 

The decision to apply a countermeasure or not depends on the current power 

level left on the mote. It also depends on factors like the motes ability to recover from 

such an attack and provide seamless service for the rest of its operational life. Future 
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works in this area could be to develop effective detection and prevention mechanisms. 
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Figure 5.52: Comprehensive Attacks Power Consumption - Comparison 

Countermeasure
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Figure 5.53: Comprehensive Countermeasure Power Consumption – 

Comparison 
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