

ENERGY CONSUMPTION DURING

ATTACKS AND COUNTERMEASURES

IN SENSOR NETWORKS

BY

KARTHIKRAM SHESHACHALAM

Bachelor of Engineering and Computer Science

Annamalai University

Annamalai Nagar, INDIA

2002

Submitted to the faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
 the requirements for

the Degree of
MASTER OF SCIENCE

July, 2006

 ENERGY CONSUMPTION DURING

ATTACKS AND COUNTERMEASURES

IN SENSOR NETWORKS

 Thesis Approved:

 Dr. Johnson P Thomas

 Thesis Adviser
 Dr.Venkatesh Sarangan

 Dr.Debao Chen

A. Gordon Emslie

 Dean of the Graduate College

 ii

ACKNOWLEDGEMENTS

I would like to convey my sincere gratitude to my thesis advisor Dr. Johnson P

Thomas for the guidance and encouragement that he gave me throughout my thesis

work.

I would also like to extend my appreciation and gratefulness to my committee

members Dr. Venkatesh Sarangan and Dr. Debao Chen for their support and advice.

I would like to thank my parents Mr. Sheshachalam,Mrs. Renuka

Sheshachalam and my brother Mr. Ajay Ram for their love and support throughout

the years.

Finally I would like to thank all my friends who stood beside me with their

unfailing and indispensable support.

 iii

TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION ..1

1.1 Sensor Networks ..1
1.1.1 Energy and Power Consumption .. 2
1.1.2 Sensor Overview ... 3
1.1.3 Security Issues... 5

2. LITERATURE REVIEW ...7

2.1 Attacks ...7
2.1.1 Spoofed, altered or replayed routing information .. 7
2.1.2 Selective forwarding ... 7
2.1.3 Sybil attacks .. 8
2.1.4 Sinkhole attacks .. 8
2.1.5 Wormhole Attack... 9
2.1.6 HELLO flood attack.. 10
2.1.7 Acknowledgement spoofing ... 11

2.2 Counter-measures ..12
2.2.1 Spoofed and altered attacks. ... 12
2.2.2 Selective forwarding ... 13
2.2.3 The Sybil attack... 13
2.2.4 HELLO flood attacks .. 14
2.2.5 Sinkhole attacks .. 15
2.2.6 Wormhole countermeasures.. 16

3. METHODOLOGY ...18

3.1 Sensor attacks and their effects on power and performance........................18

3.2 Simulation of Attacks and countermeasures..19

4. IMPLMENTATION...23

 iv

4.1 Simulation and Environment setup..23

4.2 Network composition...25

4.3 Data Analysis ...26

4.4 Network communication on TinyOS...27

4.5 Architecture..28

4.6 TOS communication paradigm..29

4.7 Multi-hoping routing..29

4.8 Using Avrora simulator and AEON plugin ...32
4.8.1 Step 0 – Download Avrora .. 32
4.8.2 Step 1 – Install java ... 32
4.8.3 Step 2 – Compile the TinyOS program... 32
4.8.4 Step 3 – Disassemble the program.. 33
4.8.5 Step 4 – Run programs.. 33
4.8.6 Step 5 – Collect power consumption data .. 34

4.9 Points of Measurement ..36
4.9.1 Types of Simulations... 36
4.9.2 Normal Operation.. 37

5. RESULTS...39

5.1 Spoofed attack and countermeasure...39
5.1.1 Action and result ... 39
5.1.2 Network composition.. 39
5.1.3 SpoofReplay attack details.. 39
5.1.4 Spoof Attack Countermeasure details... 40
5.1.5 Replayed message tracking... 41
5.1.6 Simulation/Power Analysis - Spoofed attack and countermeasure.................................. 42

5.2 Selective forwarding attack and countermeasure ..51
5.2.1 Action and result ... 51
5.2.2 Network composition.. 52
5.2.3 Selective forwarding attack details... 53
5.2.4 Countermeasure on selective forwarding ... 53
5.2.5 Simulation / Power Analysis - Selective forward attack.. 54

5.3 Sinkhole attack and countermeasure..62
5.3.1 Action and result ... 62
5.3.2 Network composition.. 64
5.3.3 Sinkhole attack details .. 64
5.3.4 Countermeasure... 64
5.3.5 Simulation / Power Analysis - Sinkhole attack .. 65

5.4 Sybil attack and countermeasure ...73

 v

5.4.1 Action and result ... 73
5.4.2 Network composition.. 74
5.4.3 Sybil attack and counter details .. 74
5.4.4 Simulation / Power Analysis of Sybil Attack with Encryption / Decryption:- 75

5.5 Hello attack and countermeasure ...78
5.5.1 Action and result ... 78
5.5.2 Network composition.. 79
5.5.3 Hello attack details.. 80
5.5.4 Countermeasure details ... 80
5.5.5 Simulation / Power Analysis - Hello attack.. 81

5.6 Wormhole attack..89
5.6.1 Conclusion:.. 92

6. Conclusion and Future Work..92

 vi

LIST OF FIGURES
Chapter Page

1.1 Typical sensor mote manufactured by Crossbow...……….…………….................4

3.1 HELLO Attacks……………………………………..13

3.2 Sybil Attacks…………………..20

3.3 Selective Forwarding Attacks…………..21

4.1 Network composition ………..24

4.2 TOS communication architecture..27

5.1 Active message packet format of SpoofSurge……...34

5.2 Message forwarding multi-hop protocol..34

5.3 Program Execution Sequence - Spoof…..………………………………………..38

5.4 Spoof Radio Power Consumption………………………………………………..39

5.5 Spoof Radio Power Consumption - Overall……………………………………...40

5.6 Spoof Attack Radio Power Consumption ...……………………………………..40

5.7 Spoof Countermeasure Radio Power Consumption……………………………...41

5.8 Spoof CPU Power Consumption…………………………………………...…….42

5.9 Spoof CPU Power Consumption- Overall…………………………………….…42

5.10 Spoof Attack CPU Power Consumption ...…………………………………......43

5.11 Spoof Countermeasure CPU Power Consumption…………….………………..43

5.12 Spoof Attack Overall Power Consumption……………………………..............44

5.13 Spoof Countermeasure Overall Power Consumption…………………………..45

5.14 Choose another parent – Selective Forwarding. ……………….………………47

5.15 Program Execution Sequence - Selective Forward ...…………………………..48

5.16 Selective forward Radio Power Consumption……………….…………………51

5.17 Selective forward Radio Power Consumption - Overall……….……………….51

5.18 Selective forward Attack Radio Power Consumption ..………………………..52

5.19 Selective forward Countermeasure Radio Power Consumption………………..52

5.20 Selective forward CPU Power Consumption…………………………………..53

5.21 Selective forward CPU Power Consumption- Overall…………………………54

5.22 Selective forward Attack CPU Power Consumption ...……..…………………54

5.23 Selective forward Countermeasure CPU Power Consumption…………………55

5.24 Selective forward Attack Overall Power Consumption…………………...……56

 vii

5.25 Selective forward Countermeasure Overall Power Consumption…………..…..56

5.26 Different Setups for Data Measurement - Sinkhole …………………………60

5.27 Sinkhole Radio Power Consumption…………………………………………...61

5.28 Sinkhole Radio Power Consumption - Overall…………………………………61

5.29 Sinkhole Attack Radio Power Consumption ...…………………………………62

5.30 Sinkhole Countermeasure Radio Power Consumption…………………………62

5.31 Sinkhole CPU Power Consumption…………………………………………….63

5.32 Sinkhole CPU Power Consumption- Overall…………………………………...64

5.33 Sinkhole Attack CPU Power Consumption ...…………………………………..64

5.34 Sinkhole Countermeasure CPU Power Consumption…………………………..66

5.35 Sinkhole Attack Overall Power Consumption…………………………….........66

5.36 Sinkhole Countermeasure Overall Power Consumption…………………….….67

5.37 Sybil Attack Power Consumption – Overall with Authentication but without

Encryption/Decryption………………………………………….…………………....69

5.38 Sybil Attack Power Consumption – Overall with Authentication – Encryption

/Decryption………………………………………….……………………………..…70

5.39 Failure to send message back – HELLO countermeasure.............................…...67

5.40 Program Execution Sequence - Hello..…..……………………………………..74

5.41 Hello Radio Power Consumption……………………………………………….75

5.42 Hello Radio Power Consumption - Overall…………………………………….75

5.43 Hello Attack Radio Power Consumption ...………………………………….....76

5.44 Hello Countermeasure Radio Power Consumption……………………………..76

5.45 Hello CPU Power Consumption………………………………………….……..77

5.46 Hello CPU Power Consumption- Overall………………………………………78

5.47 Hello Attack CPU Power Consumption ...……………………………………...78

5.48 Hello Countermeasure CPU Power Consumption……………………………...78

5.49 Hello Attack Overall Power Consumption……………………………...............80

5.50 Hello Countermeasure Overall Power Consumption…………………………...80

5.51 Wormhole Power Consumption - Comparison…………………………………82

5.52: Comprehensive Attacks Power Consumption - Comparison…………………..86

5.53: Comprehensive Countermeasure Power Consumption - Comparison…………86

 viii

LIST OF TABLES
Chapter Page

3.1 Power consumption in different operating modes (crossbow).............……..........26

5.1Typical Power consumption with Surge – Normal Operation……………………36

5.1.1 Spoof Attack Power consumption……………………………………...36

5.1.2 Spoof Countermeasure Power consumption…………………………...36

5.1.3 Spoof Attack Average Radio Power consumption…………….……….37

5.1.4 Spoof Attack Average CPU Power consumption……………….……...39

5.2 Typical Power consumption with Surge – Normal Operation…………….……..45

5.2.1 Selective forward attack Power consumption…………………….……46

5.2.2 Selective forward countermeasure Power consumption…………….…46

5.2.3 Selective forward Average Radio Power consumption………………..46

5.2.4 Selective forward Attack Average CUP Power consumption…………47

5.3 Sinkhole Attack Power consumption…………………………………………….55

5.3.1 Sinkhole countermeasure Power consumption………………………...55

5.3.2 Sinkhole Attack Average Power consumption………………………..56

5.3.3 Sinkhole countermeasure Average CPU Power consumption…………58
5.4 Sybil Attack Average Radio Power Consumption

5.4.1 Sybil Attack Average Power consumption – Overall With Authentication
but without Encryption/Decryption…………………………………………..63

5.4.2 Sybil Attack Average Power consumption – Overall………………….63

5.5 Typical Power consumption with Surge – Normal Operation Nodes 0, 4, 8…….67

5.5.1 HELLO Attack Power consumption…………………………………...68

5.5.2 HELLO countermeasure Power consumption…………………………68

5.5.3 HELLO Attack Radio Average Power consumption…………………..69

5.5.4 HELLO countermeasure CPU Average Power consumption………….71

5.6.1 Wormhole Power consumption (433MHz & 916MHz) – Average…………..76

5.6.2 Wormhole Power consumption 433MHz …………………………………….76

 1

1. INTRODUCTION

1.1 Sensor Networks

Sensor Networks are formed with a number of small low cost sensor devices

which connect wirelessly to gather data. A sensor can obtain data from it’s

surrounding and transmit to a central base station where it can be processed into

meaningful information. Common applications include defense systems and

environment monitoring. These use multi-hop routing similar to Ad-hoc wireless

techniques, to communicate with one another which allows a certain degree of

mobility and flexibility. They can be deployed in a number of ways with a multitude

of configurations in large numbers, depending on the application they are intended

for.

Sensors used in the real world have a number of limitations in resources and

capabilities. Research conducted in these areas aim at enhancing or improving on

these limitations. Most of the work done is in improving the life of the power source

available in the sensor which is limited with what’s available during deployment and

improving aspects of the network and communication layers. The limited resources

available to process and store the collected data is also a challenging problem

 2

1.1.1 Energy and Power Consumption

 Power consumption is a major focus for many applications as power is a very

limited resource. Power supply for the sensors is through a battery source that is not

replenished. Sensors rely on periods of inactivity to conserve and lower their power

consumption. Data collection and computation is not done constantly but in periods of

relevance. They do this in aggregation where only some nodes remain in the active

state and some of them go into a passive mode to conserve power. The Tiny OS

beaconing protocol is used to operate the sensors and nodes. A breath first spanning

tree is constructed to map all the nodes in the vicinity and they are constantly updated

with each hop [1].

Security is an important criterion after power. A secure network would work more

reliably with minimal threats from intrusions [5]. Tradeoffs between power and

security are usually the deciding factor in a successful sensor network deployment.

Security may not be an important factor in a building structural change monitoring

sensor where there is little or no threat but power consumption is an important factor.

However in a battlefield where security plays an important role, the options are

usually low computation intensive algorithms to protect inter node communication.

Some of the more complex forms of encryption are not feasible because of the limited

computation available and the possibility of breaking into a node which can be

physically compromised. Some of the security related efforts are aimed at improving,

routing protocols to protect sensors from malicious attacks and being energy efficient

too. A lot of new research has proposed various security mechanisms for sensor

networks. Various countermeasures in response to attacks have been proposed.

However, as far as we are aware, no one has investigated the energy consumed in

activating and executing these various countermeasures. If a countermeasure requires

 3

large amounts of energy, it may not be economical. On the other hand, there may be

countermeasures for other attacks which may not require a lot of energy. Knowing the

energy consumed in defending against attacks will help the sensor network designer

in deciding which countermeasures should be encoded into a sensor. As far as we are

aware, this is the first work to measure the energy consumed in defending individual

sensor nodes against different kinds of attacks. The results from this work can be

extrapolated to provide defense mechanisms for a whole sensor network.

The thesis concentrates on documenting power drain in various attacks that

occur on sensor networks in a real world scenario and to apply relative

countermeasures to recover from these attacks. Power levels of the sensors are

constantly monitored to determine the best solution. Some of the work performed on

monitoring power levels are on simulators with communication rates and node duty

cycles without considering the power consumed by devices on the sensors themselves.

Some of the real world scenarios may usually reveal a lot more issues than a typical

setup in a simulator.

1.1.2 Sensor Overview

A sensor network is a combination of the central data gathering unit called a

base station and several sensors. The number usually ranges from 100~1000 units.

Some of these sensors have a multitude of sensing capabilities like temperature,

pressure, location (GPS), altitude, movement and light. The configuration and

deployment preferences depend on the application at hand. The base station serves as

the gateway to collect data from the nodes and channel it to the data processor. The

base handled computation has better resources than the sensors themselves.

 4

Nodes communicate in a multi hop approach. During an initial deployment

phase the nodes are randomly deployed around a base station and a trust relationship

is formed where all the nodes start communicating with the base station. Normal

working period of a node is usually from 2-3 months with the battery pack normally

equipped with the nodes.

Typical Sensor node manufactured by Crossbow.

Figure 1

Although several sensors are available, in this thesis we work on the Mica

Mote sensors. This sensor has good simulation support and is commonly used for

research purposes.

The processor used, is an Atmel 8bit CPU with a 4 MHz clock speed, 4 KB or

RAM and 512 KB of cache memory8. The power consumption of the CPU is 5.5mA

(3V) when active and half that amount when it is in the sleeping mode. The node is

equipped with a radio beacon that has a range of around 250 – 300 meters [6].

Crossbow manufactures the motes with various sensor setups. Research is ongoing to

improve sensor capabilities and communication protocols.

 5

 Tiny OS is an operating system developed by Berkeley to operate the sensors.

The TinyOS beacon protocol is used for communication for the sensors. A typical

setup can have more than one base station and a node can be associated with more

than one base station at a time. Power management is a critical issue for sensor

networks which depend on very limited power supply (two AA type batteries for the

Mica Mote sensors). Prolonging the power is typically achieved by using energy

efficient routing mechanisms. Sensors enter constant idle moments or sleep states to

conserve power. Some event triggers the sensors out of sleep mode into active mode.

In active mode each event or task requires precious power and drains the batteries.

Besides energy conservation, the other major issue facing sensor networks in

security from an adversary. Attacks can occur when the sensors least expect them and

the applied countermeasure may require substantial power expenditure. In this thesis

some of these attacks and countermeasure are studied with a provision to monitor the

remaining power levels. Effects of various attacks reveal information about the

outcome of these attacks and the success of these countermeasures.

1.1.3 Security Issues

Since the nodes in a sensor network lack capability and power capacity,

communication typically takes place through an insecure channel with an emphasis on

low power consumption and low radio communication. This makes it very susceptible

to attacks. An adversary can take control of the sensors physically and snoop at the

information available or modify certain parameters in the sensor to take control of the

entire network. Alternately an attacker can override the built in security measures to

cause inexplicable damage from which a network cannot recover. An attacker can

also obtain information about the details of data capture and its contents, both of

 6

which could prove damaging to the network. Some of the secure routing protocols

like distance routing and source routing protocols used in Ad-Hoc networking are not

suitable in sensor networks because of their incapability to sustain the overheads

involved. Other secure protocols can be deployed but the trade-off might be to

sacrifice either lifetime of a normal working sensor or some of its other capabilities.

Some of the best solutions to secure routing are at the application layer where

an adversary can be prevented by data checking and correction. Some of the attacks

are described here with countermeasures.

In Chapter 2 we review the various attacks on sensor networks and the

corresponding countermeasures. Chapters 3 and 4 describe the methodology and

implementation details. This includes the tools used to simulate our attacks and

countermeasures. Chapter 5 provides the results of the experiments. The conclusions

are given in chapter 6

 7

2. LITERATURE REVIEW

2.1 Attacks

Sensor routing protocols are primarily designed with energy efficiency and not

security in mind. Consequently, they are susceptible to most of the attacks. The

attacks can be classified into the following categories [1].

2.1.1 Spoofed, altered or replayed routing information

An adversary can spoof, alter or replay routing information communicated to a

target node to node communication. This form of attack is common as it does not take

much to achieve; rather it involves intercepting information being exchanged between

nodes and relaying them. A successful attack may involve creating routing loops,

generate false error messages or partitioning the network into incompatible nodes or

increase the end-to-end latency between nodes.

2.1.2 Selective forwarding

In selective forwarding the attacker needs complete access to the path of the

data flow. An adversary can successfully jam or cause collision to the data thereby

causing disruption to the data flow. Multi-hop networks are often based on the

assumption that these participating nodes will faithfully forward messages received.

Malicious nodes may refuse to forward certain messages and simply drop them,

ensuring that they are not propagated any farther. A simple form of this attack is when

 8

a malicious node behaves like a black hole and refuses to forward every packet she

sees. However, such an attacker runs the risk of neighboring nodes determining that

she has failed and deciding to seek another route. A more subtle form of this attack is

when an adversary selectively forwards packets. An adversary interested in

suppressing or modifying packets originating from a select few nodes can reliably

forward the remaining traffic and limit suspicion of any wrongdoing. The other

attacks where an attacker can include in the path of the data flow are Sybil attack and

sinkhole attack.

2.1.3 Sybil attacks

A Sybil attack is created when a malicious node assumes the identity of

another node on the network. A node illegally assumes multiple identities either

forging an identity or stealing legal identities. A simple way to detect a Sybil attack is

to verify the identity of each node and confirm its integrity [14]. Without a central

system verifying the identities it becomes easy for a malicious node to infiltrate a

network.

2.1.4 Sinkhole attacks

Sinkhole attacks are similar to selective forwarding, where a rogue node

attracts all the traffic from neighboring networks depending on the routing algorithm.

A metaphorical sinkhole is created with the adversary in the center luring all the

application data towards it. Sinkhole attacks can also cause many other attacks like

selective forwarding because of the inherent nature of their presence near the path of

the data.

 9

 Routing data away from the sink is possible by replaying an advertisement

from a previously good quality link. Some protocols might actually contain reliability

or latency information. An adversary with a palm pilot or a laptop which is much

higher powered than a sensor sink can provide a higher link by transmitting enough

power that the nodes might think that the base station can be reached in one hop

thereby deceiving the others into thinking that they are nearer to the base station to

which they need to report. This information is later propagated to its neighbors and

traffic is eventually diverted. Effectively, the adversary creates a large “sphere of

influence” [1], attracting all traffic destined for a base station from nodes several (or

more) hops away from the compromised node.

One motivation for mounting a sinkhole attack is that it makes selective

forwarding trivial. By ensuring that all traffic in the targeted area flows through a

compromised node, an adversary can selectively suppress or modify packets

originating from any node in the area. It should be noted that the reason sensor

networks are particularly susceptible to sinkhole attacks is due to their specialized

communication pattern. Since all packets share the same ultimate destination (in

networks with only one base station), to influence a potentially large number of nodes

a compromised node need only to provide a single high quality route to the base

station.

2.1.5 Wormhole Attack

A Wormhole Attack is caused by an attacker who tunnels packets at one point

to another point in the network, and then replays them into the network from that

point. The wormhole attacks can form a serious threat in wireless networks, especially

against many routing protocols. The simplest instance of this attack is a single node

 10

situated between two other nodes forwarding messages between the two of them.

Since the tunneled distances are longer than the normal wireless transmission range of

a single hop, the source will prefer the path including the attack nodes. Then the

attack nodes may perform various attacks, such as the black hole attacks (by dropping

all data packets) and grey hole attacks (by selectively dropping data packets). Because

the wormhole nodes do not modify or fabricate packet, cryptographic techniques

cannot detect this type of attack. It is a severe attack that is particularly challenging to

defend against. Methods to defend a wormhole attack are by adding information about

geography or time to a packet to restrict the packets maximum allowed transmission

distance.

In some cases, an adversary situated close to a base station may be able to

disrupt routing completely by creating a well-placed wormhole. An adversary could

convince nodes who would normally be multiple hops from a base station that they

are only one or two hops away via the wormhole. This may create a sinkhole due to

the potential attractiveness of the route created by the wormhole [1]. Those nodes

neighboring the adversary on the other side of the wormhole may choose to forward

packets destined for a base station through this route. The result would be to

propagate knowledge of this route to their neighbors and attract more traffic.

Wormholes become particularly difficult when combined with either a Sybil

or a selective forwarding attack as they are similar and detection is extremely

difficult.

2.1.6 HELLO flood attack

This is similar to the Sybil attack, except it takes advantage of a basic

characteristic in the protocol. Many protocols require nodes to broadcast HELLO

 11

packets to announce themselves to their neighbors, and a node receiving such a packet

may assume that it is within range of the sender. Hence a laptop-class attacker with a

powerful radio can send out a strong transmission to convince every node on the

network that the adversary was the neighbor. In the preceding mayhem, every node

will try to use this route, but those nodes sufficiently far away from the adversary

would send packets into oblivion. The network is left in a state of confusion. A node

realizing the link to the adversary is false could be left with few options: all its

neighbors might be attempting to forward packets to the adversary as well [1].

Protocols which depend on localized information exchange between neighboring

nodes for topology maintenance or flow control are also subjected to this attack.

HELLO floods can also be thought of as one-way, broadcast wormholes.

Even though this is a form of flood attack as seen earlier HELLO attack uses a

single hop broadcast to transmit a message to many receivers to cause a state of

confusion.

2.1.7 Acknowledgement spoofing

Spoofing is a form of deceiving a node into thinking what’s not true. For

example a weak link may be portrayed as a strong one or a dead node is shown as a

live node. Several sensor network routing algorithms rely on implicit or explicit link

layer acknowledgements. Due to the inherent broadcast medium, an adversary can

spoof link layer acknowledgments for overheard packets addressed to neighboring

nodes. A routing protocol may select the next hop in a path using link reliably.

Artificially reinforcing a weak or dead link is a subtle way of manipulating such a

scheme.

 12

Packets sent along those paths will not reach its destination and will inherently

be lost, thus launching such an attack an adversary can cause enough data loss. Hence

besides that selective forwarding attacks can be launched by spoofing.

2.2 Counter-measures

2.2.1 Spoofed and altered attacks.

Since base stations are trustworthy, adversaries must not be able to spoof

broadcast or flooded messages from any base station. This requires some level of

asymmetry since every node in the network can potentially be compromised, no node

should be able to spoof messages from a base station, and every node should be able

to verify them [1]. Authenticating broadcast is also useful for localized node

interactions. Using a global shared key reduces a number of attacks, such as by a

simple link layer encryption and authentication with a global and shared key. Only

nodes from the same group would have access to the global key and, hence message

authentication can be performed by this method. Spoofing and altering packet

information can be avoided.

This prevents replay attacks and changing data packets. A counter is

maintained to monitor each link and the next value of the counter is checked to see if

messages are being replayed. The counter keeps track of identical messages received

from each node. Each node simply remembers the most recently received counter

value from each of its neighbors and discards packets containing older values. These

mechanisms are enough to counter most of the discussed attacks when mounted by

 13

outsiders. Most of selective forwarding and sinkhole attacks are not possible because

the adversary is prevented from joining the topology.

2.2.2 Selective forwarding

Link layer security can provide some degree of security by validating some of

the messages using authentication. A selective forwarding attack is followed by a

malicious node not forwarding certain messages. The most vulnerable nodes are those

that are near the base station. Multi path routing counters these types of selective

forwarding attacks [1]. Messages routed over paths whose nodes are completely

disjoint are protected against selective forwarding attacks involving at most

compromised nodes and still offer some probabilistic protection when other nodes are

compromised. However, completely disjoint paths may be difficult to create.

Nevertheless link layer security is totally useless with other attacks like wormholes

and Sybil attacks.

2.2.3 The Sybil attack

Several solutions have been proposed including symmetric key cryptography.

Some of these forms require a lot of computation and processing power. With some

authentication in the link layer a Sybil attack can be thwarted. A pair of neighboring

nodes can use a shared key to implement an authenticated, encrypted link between

them. However an adversary trying to infiltrate the network from inside cannot be

stopped. To prevent an insider from wandering around a stationary network and

establishing shared keys with every node in the network, the base station can

reasonably limit the number of neighbors a node is allowed to have and send an error

message when a node exceeds it. If a node is compromised the damage is limited to a

 14

set of known neighbors [2]. In a link layer authentication mechanism the Sybil attack

is no longer relevant because nodes are unwilling to accept even a single identity of

the adversary. Even with a wormhole an artificial link can only create an unreliable

path between two paths but the information cannot be compromised in this method.

The damage is limited to low latency between the node and base station and not for

the message loss themselves.

When the network size is limited or the topology is well-structured or

controlled, global knowledge can be leveraged in security mechanisms. In a relatively

small network of around 100 nodes or less, it can be assumed that no nodes are

compromised during deployment, then after the initial topology is formed, each node

could send information such as neighboring nodes and its geographic location -if

known back to a base station. Using this information, the base station can map the

topology of the entire network. To account for topology changes due to radio

interference or node failure, nodes would periodically update a base station with the

appropriate information.

2.2.4 HELLO flood attacks

When compared to linked layer security mechanism, an authenticated code in

the packet cannot stop a HELLO attack from distributing false node messages. It

would up to a degree stop forwarding and replaying but has no effect on other type of

attacks.

Link layer security mechanisms using a globally shared key are completely

ineffective in presence of insider attacks or compromised nodes. Insiders can attack

the network by spoofing or injecting bogus routing information, creating sinkholes,

using the Sybil attack, and broadcasting HELLO floods. An identity verification

 15

protocol to verify the nodes identity to use a shared key would be more than sufficient

in preventing a HELLO flood attack. The simplest defense against HELLO flood

attacks is to verify the bi-directionality of a link before taking significant action based

on a message received over that link. A base station limitation could also be used to

limit the number of trusted nodes from exchanging information thereby preventing a

large number of HELLO messages from interfering with its performance. This is also

done by verifying the bi-directionality of the link between two nodes.

2.2.5 Sinkhole attacks

A significant challenge in securing large sensor networks is their inherent self-

organizing, decentralized nature. Sinkholes are particularly vulnerable in protocols

that use remaining energy or reliability information between nodes because this

information is hard to verify from actual value. In a wormhole attack, the out-of-band

channel not being available to the sensor network could compromise a network [18].

Routes that minimize the hop count to a base station are easier to verify, however

hop-count can be completely misrepresented through a wormhole. When routes are

established simply based on the reception of a packet as in TinyOS beaconing or

directed diffusion, sinkholes are easy to create because there is no information to

verify the validity of a sinkhole. Probabilistic selection of a next hop from several

acceptable destinations or multi path routing to multiple base stations can help with

this problem, but it is not perfect. When a node must route around a “hole”, an

 16

adversary can “help” by appearing to be the only reasonable node to forward packets

to [1].

The compromised node advertising its location on a path between the targeted

node and a base station will guarantee it is the destination for all forwarded packets

from that node. Sufficiently restricting the structure of the topology can eliminate the

requirement for nodes to advertise their locations if all nodes’ locations are well

known. For example, nodes can be arranged in a grid with square, triangular, or hex

shaped cells. Every node can easily derive its neighbors’ locations from its own, and

nodes can be addressed by location rather than by an identifier

2.2.6 Wormhole countermeasures

The most elaborate form of worm hole checking and countermeasures are to

obtain a statistical analysis of routes obtain during route discovery and send an ACK

on suspicious paths to check for a wormhole, but this method could be more processor

intensive and also not power efficient requiring constant time synchronization.

 The other possible method is to use geographic location models to

document wormhole attacks. Since we know how data moves we can be sure when a

suspicious route is created and data diverted. Artificial links are easily detected in

geographic routing protocols because the “neighboring” nodes will notice the distance

between them is well beyond normal radio range. Drastic or suspicious changes to the

topology might indicate a node compromise, and the appropriate action can be taken

.Wormhole is most effective when used to create sinkholes or artificial links that

 17

attract traffic. Geographic routing can be effective in stopping many attacks but that

location information is trusted. Apart from Geographic routing methods, directional

antennas can also be used to prevent a wormhole attack. Nodes share directional

information to avoid being compromised by false neighbors using endpoints [15].

Nodes with one hop accessibility maintain accurate information about their proximity

locations and the direction other nodes are located. In this method, zones are created

and nodes communicate in separate channels in each zone thus eliminating malicious

false neighbors.

 18

3. METHODOLOGY

3.1 Sensor attacks and their effects on power and performance

With the increasing applications of sensors, it becomes more critical to protect

sensor networks from malicious attacks. As seen in the previous sections, potential

attacks on sensor networks have been identified and furthermore, counter measures to

these attacks have been proposed. However, there is no work reported in the literature

on the impact of these attacks and counter measures with relation to energy and

performance. As energy is severely limited in sensor networks, the impact of these

attacks on energy consumption is critical. Furthermore, the energy consumed in

protecting or defending these networks is also a critical factor, since high energy

consumption approaches to protect sensor networks may not be a practical proposition

[3]. The validity of the proposed counter measures is therefore in question until their

energy consumption is determined.

In this thesis we propose to measure the change in energy consumption on

nodes due to malicious attacks as well as the energy overheads in defending against

these attacks. Furthermore, we also propose to investigate the impact caused by these

attacks and the subsequent overheads in the counter measures.

In normal conditions the above mentioned sensors operate at full operating

capability at 100% power load for a maximum of two weeks [4]. If an attack occurs

and sensors are compromised the recovery could be expensive in terms of energy.

This is important as the nodes cannot be replaced. Obtaining the energy and

performance measures will be essential to determining the best solution for recovery

and countermeasure.

 19

 Given that counter measures consume energy, it may make sense not to

commit a countermeasure and instead quarantine the affected sensors thus saving the

current network from unsafe affected nodes and conserve power. Because of an attack

some extra precautionary measures could be employed to avoid either spreading the

same attack or containing it to certain areas.

 Measurement of attack effects and the application of related counter effects

can be documented over a period of time frame; this could give us an average

working model of the sensors in real time. Sensor networks use Tiny OS which is an

event driven operating system. Because of its simplicity the network lacks the

security required in an otherwise secure network. They are vulnerable to most of the

attacks previously discussed.

In this thesis we will model the following attacks and counter measures and

document their power profiles.

3.2 Simulation of Attacks and countermeasures

HELLO flooding attack:

Motes are configured with a program to listen and perform the initial HELLO

handshake. A powerful base station with the capability to reach directly out to the

nodes is deployed after the network is formed and repeated requests for neighbor

information is requested from the motes, causing them to flood the networks with

HELLO packets.

Countermeasures are followed up immediately by resetting the motes to load

the default program, thus dropping the flood packets. It will restrict the number of

connections a base station or a mote can accept. A counter keeps track of the HELLO

 20

packets received from and to the mote. After a few minutes of restricted operation a

counter relax that allows more connection between motes and return to normal

operating conditions. Replay attacks can also be avoided with this mechanism.

A typical Operational Hierarchy:

• Deploy motes with the basic network program loaded in them connected to

base station A

• Deploy another adversary base station B which is more powerful than

most of the other motes in the network to simulate a HELLO attack.

• Attack becomes evident and data is logged to document effects when the

counter shows increased network activity.

• Countermeasure is to load a modified program which would limit

incoming and outgoing connections on motes and base station.

• Counter deployed to keep track of messages received

Figure 3.1: HELLO Attacks

 21

Sybil Attack:

Sybil Attacks can be simulated by deploying an adversary node on a network

which assumes one of an existing mote’s identities. Attack detection is assumed when

packets are seen dropping at the base station when the adversary node is started [17].

Countermeasure to a Sybil attack is to check the number of connections made

by the base station at any given time and compare with the node ID which forms part

of the header data transmitted by the nodes. Neighbors ID’s can be logged and

compared to find cloned node connections. Such comparisons and computations are

intensive on energy consumption and can be documented.

Figure 3.2: Sybil Attacks

Selective forwarding attacks:

In selective forwarding attacks nodes that appear near the base station are

targeted which are assumed to have a lot of data due to their proximity to the base

station.

Countermeasure: In an attack, nodes which are assumed to be affected are

made to use a multi-path routing approach to the base station to deliver packets. In our

example nodes A to D represent those that lie close to the base station and vulnerable

to a selective forwarding attack. If node D is compromised packets coming to the base

station are sent in a multi path route through nodes A through C. Any discrepancy can

 22

be detected by comparing packet count received from A, B and C with that of D. This

would confirm a selective forwarding attack.

Figure 3.3: Selective Forwarding Attacks

 23

4. IMPLMENTATION

4.1 Simulation and Environment setup

A typical setup for the experiment would involve around 8-9 motes, devices

which form the sensor component and a radio component with a battery. They are

deployed over a wide area where they form a multi hop connection with one another

and eventually connect to a base station. The number of base stations in our

experiment is assumed to be one. The motes are separated a distance 10-15 feet and

spread wide apart so that they do not connect directly to the base station like an access

point in an ad-hoc network. The most commonly used motes for research purposes is

called Mica2 and manufactured by a company called Crossbow. A computer loaded

with Tiny OS and a suite of test programs to measure throughput and power

consumption is configured. The base station is connected to this computer to enable

data transfers between the motes and the computer.

 Motes have limited memory capacity and computational power,

with the capability to execute one application at a time. Surge-view is a program

written by Crossbow the manufacturer of these motes, to help in forming a very basic

topology connecting all motes in the network. Once the network is formed using

Surge-View, the test program we developed to simulate an attack and counter measure

are loaded into the motes. The programs are loaded and run to obtain performance

measures.

 Each experiment is carried out for 10 minutes, to enable the network to

configure properly and give a consistent output. Sometimes readings that are taken

 24

within a short starting time tend to be skewed. On the real motes we need to wire

extensive measuring instruments like a multi meter to each mote, so that power

consumption changes can be gathered in real time. However, before the motes are

used for the actual experiment, we develop our programs on a simulator like POWER-

TOSSIM or Avrora because of the flexibility achieved in the development process.

The programs hence developed using the simulator is compatible with any mote

without any modification. . Hence these programs can be loaded into the motes

without any modifications and executed. A simulator like Avrora helps us in

calculating power readings without using multi meters to measure power

consumption.

Tools to be used in performing our simulation:

• Tiny OS Operating system developed by UC, Berkeley

• Programs developed in nesC which is an embedded system development

environment.

• Data Logging application to gather our data, built on Tiny OS.

• AEON (Accurate Prediction of Power Consumption) Plug-in to Model power

consumption. AEON is integrated with AVRORA – A simulation and

Analysis Framework tool.

Methods to measure or document power consumption – On a real network the
following are needed:

• Multi-meter reading at constant intervals.

• Surge view and Oscilloscope program developed by Crossbow.

• Power-TOSSIM like simulation environment [3].

 25

4.2 Network composition

The composition of network:

Figure 4.1: Network composition

In all the experiments is with 8-9 Motes running the surge program and one

malicious mote representing the attacker.

Normal motes

- All normal motes run a program named “SpoofSurge”. The surge application

is a simple multi-hop application. It takes light sensor readings from the motes

and sends the data to the base station.

Malicious mote

- For Example: Runs a program named “SpoofReplay”, which is a modified

version of Surge-View program to simulate a Spoof Attack.

Base station

- Also runs SpoofSurge application. The address of the base station is 0. It

receives messages and forwards them through a UART. This node is connected

to a PC via a serial link. The PC runs a version of the Tiny OS operating

system.

PC

Base
station

Radio
Communication Malicious mote

Normal
motes

 26

The Attacks are simulated separately with normal versions of the programs

running on some motes, and the countermeasure programs are tested with the Attack

programs. Several configurations are explored in the experiments. These included

choosing parameters such as percentage of attack and the ratio of normal motes to

countermeasure and attack motes.

4.3 Data Analysis

Throughput of data packets between the base station and the motes is logged

in our data logging application. Other important indicators of network performance

like routing overhead and Average End-to-end delay are also calculated.

Measurement conditions and required observations:

- Before an Attack under normal operating conditions.

- During an Attack.(Measure data loss)

- After an Attack (Measure power levels and mote states)

- During counter measure implementations (Power levels)

- After Counter measures are successfully implemented – current state

of the network.

Values are charted on a graph where the data could help us determine

overheads especially when counter measures are applied. These results would indicate

performance degradation in terms of data loss and slow transmission rates. Thus the

tradeoffs using a particular approach could be documented.

Power consumption of a sensor node is the important performance

characteristics of interest. Considering that the power supply is at a constant voltage

throughout the operation (3V), the power consumed is proportional to the leaked

 27

current [7]. We can therefore compare power consumption of the sensors before, and

after an attack, and the power consumed when deploying countermeasures. Because

power levels in a sensor could indicate the remaining life of a sensor, it should be

constantly monitored.

 Under normal operating conditions transmitting consumes more power

than receiving. A special power down mode is even thriftier in saving power than the

idle state of a sensor.

State

Leaked current (mA)

Reception 12 ~ 16

Transmission 14~18

Idle (radio rx mode) 11 ~ 15

Idle (radio tx mode) 13-15

Idle (radio off) 8 – 8

Idle (power down) 0.0 ~ 0.1

Table 3.1: Power consumption in different operating modes (crossbow)

Power supply voltage remains in a constant flux. Voltage has a linear effect on

current and a quadratic effect on power and energy. Voltage fluctuations can lead to

constant changes in energy use. Hence measuring voltage alone does not give us a

clear idea of a sensors power consumption level.

4.4 Network communication on TinyOS

TinyOS (TOS) is the preferred operating system for wireless embedded sensor

networks. The Open source community maintained it with some active participation

from the University of California at Berkeley it has matured into a very stable

 28

platform.

It supports a wide range of sensors with drivers, data acquisition tools and

programs necessary to run them. The time and effort required to develop in this

environment is very minimal due to its component-based architecture [7]. TOS uses

active message (AM Model) as defined in $TOS/system/types/AM.h to communicate.

Message is “active” when it contains destination address, group id, and type.

TinyOS has NesC as the programming language, and most of the programs are

developed in NesC.

4.5 Architecture

Figure 4.2: TOS communication architecture [16]

We provide an example of the active messaging standard. Components are wired

together by connecting users with providers, which forms a hierarchy. In the example

Commands flow downward from the application to the radio stack, and events flow

Application

GenericComm

AMStandard

Radio Stack Radio Stack

AMStandard

GenericComm

AM handler
47

AM handler
48

AM handler
49

Wireless

Tos_Msg[AM=47]

 29

upward to the AM handler from the radio stack. The TOS Thread model is classified

into Tasks and Events. Tasks being time flexible and support longer background

processing jobs and events are time critical and of shorter durations. As of with Tiny

OS version 1.1 the number of concurrent tasks supported are 7.

4.6 TOS communication paradigm

The Network is modeled as a pipeline with minimal buffering for messages to get the

maximum efficiency [9].

Send message

To send a message a buffer needs to be filled with data, and the address of the

recipients to whom it has to be sent. This Information is passed onto the operating

system where it is used by the applications. It is also determined whether this

information can be reused again.

Receive message

Incoming message would fill a buffer and the application is notified of the

new message’s arrival. The application fetches the data from the buffer. The memory

management for this operation is dynamic, and the buffer is cleared automatically for

the next message to be received.

4.7 Multi-hoping routing

 30

A multi-hoping algorithm is used to route messages in the network. An Active

Message is an alternative method to handle network messaging in Tiny OS instead of

TCP/IP. The figure below describes a Multi-Hop network.

Figure 4.3: Message forwarding multi-hop protocol

Route discovery is done by shortest path from every node to the base station.

The base station broadcasts its identity from time to time. A table is maintained with

their hop counts from the base station. A parent node is determined by the closest

node discovered during this phase. Node A sends an AM (Active Message) packet to

node B, B being the parent on the list for node A. When B receives the data packet

successfully it will read the destination address to see if this message is for itself. If

the destination is not B, then B will forward it to a parent node on the routing table.

Suppose nodes C, D and E are “neighbors” of node B. Now B forwards the

packet to its “parent” which is the node most likely on its list to receive data. In this

case, E is B’s parent.

B will update its neighbor list periodically by the hop count returned from

other nodes, When E stops responding to B, E is determined not to be a reliable node

to receive data and act as a “parent”, hence another node is selected to be the new

parent of B which can be C or D, depending on their proximity to Node B. Nodes

look for parents with minimum hop count from the base station. This process is done

periodically to find the best possible route for data.

A B
C

D

E

 31

Data packet format

 Data structure definition

 TOS uses active messages as defined in AM.h header. Message is

active because it contains a destination address, groupID and type [16]. A message

consists of the Header with handler name and data payload as argument. The

following excerpts of a typical program explain the part involved in managing Radio

communication. This allows the user to control the radio strength, acknowledgment

and security modes.

Header (5bytes) Payload (max 29bytes) CRC (2 bytes)

typedef struct TOS_Msg
{
 /* The following fields are transmitted/received on the radio. */
 uint16_t addr;
 uint8_t type;
 uint8_t group;
 uint8_t length;
 int8_t data[TOSH_DATA_LENGTH];
 uint16_t crc;

 /* The following fields are not actually transmitted or received
 * on the radio! They are used for internal accounting only.
 * The reason they are in this structure is that the AM interface
 * requires them to be part of the TOS_Msg that is passed to
 * send/receive operations.
 */
 uint16_t strength;
 uint8_t ack;
 uint16_t time;
 uint8_t sendSecurityMode;
 uint8_t receiveSecurityMode;
} TOS_Msg;

 32

4.8 Using Avrora simulator and AEON plugin

Compared to Power-Tossim and the Emstar simulators, Avrora has the ability

to measure power consumption as well as simulating a sensor network at the same

time. TOSSIM is a single application simulator and cannot simulate a collection of

nodes on a network. For example when a single application like “surge” is run,

TOSSIM will spawn 10 separate threads to run the program on 10 nodes. On Avrora

with AEON, the results returned are accurate to the component level.

4.8.1 Step 0 – Download Avrora

Avrora is available from UCLA’s website. It is a simulation program written

mainly for the AVR and mica2 platforms. [12].

4.8.2 Step 1 – Install java

Avrora is written in java (platform independent). Pre-requisite is to install java

SDK. (Used Java Version j2sdk1.4.2)

4.8.3 Step 2 – Compile the TinyOS program

The Avrora only supports mica2 platform. Since a binary image composed of

ELF and SREC files cannot be directly loaded into Avrora, it is converted into a

textual format before it can be used. This is done as follows:

$ cd $TINYOS_ROOT/apps/SpoofSurge

$ make mica2

mkdir -p build/mica2
 compiling SpoofSurge to a mica2 binary
ncc -o build/mica2/main.exe -Os -board=micasb -target=mica2 -I%T/lib/Queue -I%T/
lib/Broadcast -Wall -Wshadow -DDEF_TOS_AM_GROUP=0x7d -Wnesc-all -finline-limit=1
00000 -fnesc-cfile=build/mica2/app.c SpoofSurge.nc -lm
RouterLEPSM.nc:633:2: warning: no newline at end of file
C:/cygwin/opt/tinyos-1.x/tos/system/RealMain.nc: In function `main':
C:/cygwin/opt/tinyos-1.x/tos/interfaces/StdControl.nc:63: warning: `result' migh
t be used uninitialized in this function
 compiled SpoofSurge to build/mica2/main.exe

15318 b t i ROM

 33

4.8.4 Step 3 – Disassemble the program

 After obtaining the main exe file, the “avr-objdump” tool is used to disable

textual format file.

Note that the extension of the output file must be “.od”.

We can obtain SpoofReplay.od in the same way. (Before compile, set

TIMER_RATE=100)

4.8.5 Step 4 – Run programs

 Now we have the programs which can be read by Avrora. The .od extension

file can be run using avrora-beta-1.6.0.jar in the following syntax:

Options used with avrora program and their explanations:

-platform=mica2:

$ avr-objdump –zhD ./build/mica2/main.exe > SpoofSurge.od

$ java -jar avrora-beta-1.6.0.jar -platform=mica2 -seconds=600 -colors=false -report-seconds -
monitors=energy-log -action=simulate -simulation=sensor-network -nodecount=9,1
SpoofSurge.od SpoofReplay.od

 34

Now Avrora only supports mica2 platform.

-seconds=600:

Let all nodes run for 10 minutes.

-colors=false:

Do not display color on terminal.

-report-seconds:

Display event time in second instead of CPU cycle.

-monitors=energy-log:

Monitor power consumption and output log file for each node.

–action=simulate:

Indicate action type.

-simulation=sensor-network:

Simulate multi nodes.

-nodecount=9, 1:

“9, 1” is a node list. That means the first 9 nodes (node 0 to node 8) run the

first program, and 1 node (node 9) runs the second program.

 SpoofSurge.od SpoofReplay.od

In our example the programs we want to run - 9 nodes run SpoofSurge.od

(Normal) and 1 node runs SpoofReplay.od (Attack). SpoofSurge and SpoofReplay

are examples of the Spoof Attack.

4.8.6 Step 5 – Collect power consumption data

The final step is to collect the data. The data obtained from a real network is

usually light and temperature readings of the sensors.The data from these sensors are

 35

transmitted every 50 Seconds to the base station. On the simulator we get similar

readings with LED indicators.

 Power consumption contains several aspects: CPU, led, radio, sensor board

and flash. Power consumption levels for each node is recorded and calculated in the

analysis. Sample output (Avrora with AEON):

Power comparisons in the simulator are calculated with two factors.

After an Attack:

- Power consumption 1 = After an Attack – Before an attack
 -- …. (4.1)

Before an Attack

After Countermeasures:

- Power consumption 2 = After countermeasures – Before an Attack
 --- …. (4.2)

Before an Attack

Energy Consumption Component Breakdown:

Node lifetime: 4423680000 cycles, 600.0 seconds

CPU: 6.519386674160156 Joule
 Active: 0.8983985768261719 Joule, 291792240 cycles
 Idle: 5.620988097333984 Joule, 4131887760 cycles
 RESERVED 1: 0.0 Joule, 0 cycles
 ADC Noise Reduction: 0.0 Joule, 0 cycles
 RESERVED 2: 0.0 Joule, 0 cycles
 Power Down: 0.0 Joule, 0 cycles
 Standby: 0.0 Joule, 0 cycles
 Power Save: 0.0 Joule, 0 cycles
 Extended Standby: 0.0 Joule, 0 cycles
~~~~~~~~~ 
Radio: 17.86987400952148 Joule 
   Power Off: 0.0 Joule, 3140 cycles 
   Crystal: 3.2385253906249998E-6 Joule, 132650 cycles 
   Crystal + Bias: 1.7126464843749999E-6 Joule, 3050 cycles 
   Receive (Rx): 13.765509851562499 Joule, 3523970522 cycles 
   Transmit (Tx):        0: 0.058114546875 Joule, 22670208 cycles 
   Transmit (Tx):        15: 4.046244659912109 Joule, 876900430 cycles 
~~~~~~~~~ 
Sensor Board: 1.26 Joule
 on: : 1.26 Joule, 4423680000 cycles
~~~~~~~~~~ 
flash: 0.0036 Joule 
   standby: 0.0036 Joule, 4423680000 cycles 
   read: 0.0 Joule, 0 cycles 
   write: 0.0 Joule, 0 cycles 
   load: 0.0 Joule, 0 cycles 
 



 36 
 

 

 

4.9 Points of Measurement 

 

 

 

Figure 4.3 Timeline of readings taken 

The figure indicates the various points at which we obtain our measurements, 

with key phase Before, After and During referring to Before Attacks, After Attacks 

and During Countermeasures. ‘After’ attack refers to the time period when the node is 

under attack without any countermeasures.  

4.9.1 Types of Simulations  

Two sets of simulations were performed. In the first set, 9 nodes were ‘good’ with 1 

malicious node. In the second set, we used a proportion of malicious nodes in the 

network, which ranged from 10 – 90%. In our second set of simulations we varied the 

number of malicious nodes. In the graphs below 10% in attacks means that 1 of the 



 37 
 

node is malicious from a total of 10 nodes. Therefore 90% in attacks means that 9 of 

the nodes are malicious and 1 node is good. 

In the case of Countermeasures, 90% where nodes that are defending, the ratio 

was split up to 9 ‘countermeasure’ and 1 malicious node. This was done to get some 

node to provide attack data on the network. 

  

4.9.2 Normal Operation 

    “Surge View” is the program that executes in the normal operational mode when 

the node is good; it uses the multi hop network protocol described above. This 

program is designed and implemented by Crossbow. A node waits for a packet from 

other nodes on the network and when it receives a packet, it checks the destination 

address to determine if that packet is addressed to itself. If it is not, then the packet is 

forwarded to the next node on the network. The next node is determined by the 

neighbor list for multi-hop routing as described in Section 4.9. The output LED 

indicates the status of the message. The three states are Green On for Sending a 

message, Green Off for Send done and Yellow Toggle On and Off for a new message 

arrival.  

High Level Pseudo Code for Surge View (Normal Program): 
 

 
Surge Normal Operation 
 
 Initialize: Comm,TimerC,LEdC,RandomLFSR( Randomizer) 
 Get Communication and timer Parameters 
 
 Make a neighbor list from nearby motes 
  
 Input: Get message from any mote 
 Compute: Make copy of the message 
 Output: Retransmit to the next node on the neighbor list 
 
 Show output on Led: Green On -Sending Message; Green off - Send done. ;  
                                   Yellow Toggle- new message obtained. 
 Repeat operation. 



 38 
 

 
The above Pseudo code describes the normal operation of a Surge program; it consists 

of input, output and Compute stages. The first step would be to initialize the various 

service components; Comm for Communication, this module would be to determine 

which network interface is the standard communication medium. TimerC keeps track 

of timer functions and provides clock counts, LedC has information about the LEDs 

used on the device and RandomLFSR provides a random number generation 

capability. The service modules are ‘wired’ together in a typical program. 

4.9.3 Simulation Environment / Details  

The simulations using Avrora involved 10 nodes, Avrora has the ability to specify 

which node runs the ‘Other’ program. The nodes being run on the simulator cannot be 

placed in specific proximity to the others, i.e. their location cannot be specified. 

However Avrora assumes a random distance from the base station providing a truly 

multi-hop capability to the network. Avrora uses a free space radio propagation 

model, where the default distance is 10 meters between motes and a random distance 

from the base station. The Free space radio propagation model is used in Avrora to 

determine the signal strength using the distance between nodes; noise and power 

transmission strength is also calculated in this way for each node. Although the user 

can change the distance factor between nodes, the user has no control over the overall 

area to accommodate the entire node collection. 

 To simulate the experiment in a real world, would involve deploying 10 motes 

in a small area and making sure that they are spread out to create a multi-hop network. 

The programs from these experiments can be directly loaded into the nodes. The data 

from the base station can be logged in a file and a multi meter can be hooked to each 

node to gather power consumption readings. 



 39 
 

 

 

 

 

 

 

5. RESULTS 

 

5.1 Spoofed attack and countermeasure 

 

Action and result 

Attack 

- Action: Replay the same data we receive from the other motes and re-transmit 

it to other neighbors. 

- Result: Increases network traffic and power consumption. 

Countermeasure 

- Action: Keep tracking messages that sent by other motes. Find out if the 

received message is old or duplicated by comparing the count we maintain in 

the program. 

- Result: Do not forward duplicated messages and discard them. 

5.1.1 Network composition 

Same as the Network composition in Figure 4.1 

5.1.2 SpoofReplay attack details 



 40 
 

When SpoofReplay receives data message from a neighbor mote by radio, it 

will duplicate many copies and send them out to the base station and the other motes 

in its vicinity. The action is: 

Receive message -> Duplicate message -> Send out message 

    If that malicious mote received a new message, but has not finished sending 

out copies of the old message, it will do nothing on this new message. Messages are 

sent out repeatedly until the entire network is flooded. The received message is, AM 

(active message). Below is the data packet format: 

 
 
 
 
 
 
 
 

 

 

Figure 5.1: Active message packet format of SpoofSurge 

 
 
 

High Level Pseudo Code for Spoof Attack: 
 

5.1.3 S

p

o

o

f

 

Attack Countermeasure details 

Address 
2bytes 

Network Layer 
Header 7bytes 

CRC 
2bytes 

Type 
1byte 

Group 
1byte 

Length 
1byte 

Application 
Layer 5bytes 

Sourceaddr 
2bytes 

Originaddr 
2bytes 

Seqno 
2bytes 

Hopcount 
1bytes 

Type2 
1bytes 

Reading 
2bytes 

Parentaddr 
2bytes 

MAC layer header Payload (max 29bytes) 

SpoofReplay Attack 
 
Initialize: Comm,TimerC,LEdC,RandomLFSR( Randomizer) 
Get Communication and timer Parameters 
 
Make a neighbor list from nearby motes 
 
Input: Get message from any mote 
Compute: Make duplicates of the message 
Output: Retransmit to random motes for 100 times - Once every second. 
 
Show output on Led: Green On -Sending Message; Green off - Send done. ; 
Yellow Toggle- new message obtained. 
Repeat operation. 



 41 
 

SpoofSurge is an application that uses multi-hop routing. Each Surge node 

takes light readings and forwards them to a base station. The node can also respond to 

broadcast commands from the base. To avoid replayed messages attack, a counting 

and tracking system is implemented. 

High Level Pseudo Code for Spoof Attack Countermeasure: 
 

 

 Replayed message tracking 

Suppose node A is a malicious node. When A receives a message from another 

node, it duplicates that message and sends as many copies to its parent node B. 

Because B holds information of A, it will find out if this message is duplicated 

according to the last received message number (last_seqno in struct 

TOS_MhopNeighbor). 

SpoofAttack CounterMeasure 
 
 Initialize: Comm,TimerC,LEdC 
 Get Communication and timer Parameters 
 
 Input: when a message is received from a mote 
 Compute: Check for last sequence Number associated with the packet 
         If sequence number is not bigger than the last one received - do not forward message 
         If sequence number is bigger - forward to the next node on Neighbor list. 
 
 Show output on Led’s: 
    Red toggle:    send message error; 
    Green on:      sending message; 
    Green off:     send done; 
Repeat operation. 
 



 42 
 

 

 

If seqno in received message is not bigger than last_seqno, then node B 

believes the message is duplicated and will not pass the message to the next node. 

5.1.4 Simulation/Power Analysis - Spoofed attack and countermeasure 

5.1.4.1 Before attack 

    First we just let 9 nodes run SpoofSurgeNoCounter.od (Normal program) 

and do not inject any malicious nodes. Following is the value of power consumption 

on node 0, 4, 8. (Run time 10 minutes) shown below in Joules. These are default 

readings for all normal operation on the network.  

Node CPU Led Radio Sensor Board Flash Total 
0 6.432 0.013 17.283 1.26 0.004 24.992 
4 6.416 0.291 17.315 1.26 0.004 25.286 
8 6.416 0.286 17.315 1.26 0.004 25.281 

 

Table 5.1: Typical Power consumption with Surge – Normal Operation 

 

/* Fields of neighbor table */ 
typedef struct TOS_MHopNeighbor { 
  uint16_t addr;                          // state provided by nbr 
  uint16_t recv_count;                // since last goodness update 
  uint16_t fail_count;                 // since last goodness, adjusted by TOs 
  int16_t last_seqno; 
  uint8_t goodness; 
  uint8_t hopcount; 
  uint8_t timeouts;          // since last recv 
} TOS_MHopNeighbor; 
 

typedef struct MultihopMsg { 
  uint16_t sourceaddr; 
  uint16_t originaddr; 
  int16_t seqno; 
  uint8_t hopcount; 
  uint8_t data[(TOSH_DATA_LENGTH - 7)];  
} __attribute__ ((packed)) TOS_MHopMsg; 
 



 43 
 

Note:  Radio power consumption is normally higher than the CPU because of the 

main communication medium being wireless. 

5.1.4.2  After attack 

We next inject the malicious node (node 9), which is running the SpoofReplay 

(Attack) program. The power consumed after the attack is over is shown below.  

Node CPU Led Radio Sensor 
Board 

Flash Total 

0 6.482 0.019 17.283 1.26 0.004 25.048 
4 6.450 0.324 17.322 1.26 0.004 25.36 
8 6.452 0.344 17.331 1.26 0.004 25.391 
9 6.514 4.490 17.812 1.26 0.004 30.08 

 

Table 5.1.1: Spoof Attack Power consumption (10 Minutes | Unit in Joules) 

5.1.4.3 During counter 

         Change SpoofSurgeNoCounter.od (Normal) to SpoofSurge.od 

(Countermeasure),   and run again. 

Node CPU Led Radio Sensor 
Board 

Flash Total 

0 6.462 0.016 17.283 1.26 0.004 25.025 
4 6.445 0.345 17.316 1.26 0.004 25.37 
8 6.444 0.337 17.315 1.26 0.004 25.36 
9 6.51 4.408 17.813 1.26 0.004 29.995 

 

Table 5.1.2: Spoof Countermeasure Power consumption (10 Minutes | Unit in Joules) 
 

 
Figure 5.3: Different Setups for Data Measurement. SpoofSurge.od – Normal,  

Normal Mode 
10 Motes 

All Running 
SpoofSurge 

Attack Mode 
10 Motes 

 
9-SpoofNoCounter 

 
1 - SpoofReplay 

CounterMeasure Mode 
10 Motes 

 
9 – SpoofSurge 

 
1- SpoofReplay 



 44 
 

SpoofReplay.od - Attack, SpoofNoCounter.od – No Countermeasure 

 
 
 
 
 

5.1.4.4 Radio power consumption comparison 

Here we can compare radio power consumption before attack, after attack and 

during countermeasure: (unit is in Joule). 

Node Before After During 
0 17.28294837495117 17.28294837495117 17.28294837495117 
1 17.31497163474121 17.328573483569336 17.32782377536621 
2 17.31497163474121 17.33232202458496 17.326003055444335 
3 17.31497163474121 17.33939070192871 17.316042646459955 
4 17.31497163474121 17.322147413964842 17.31572134223633 
5 17.31497163474121 17.32525552224121 17.31497163474121 
6 17.31497163474121 17.328573483569336 17.317541992773435 
7 17.31668525349121 17.32664566247558 17.320540895678707 
8 17.314973809741208 17.331251082958982 17.31497163474121 
9  17.811831745922852 

(do not include) 
17.81333011376953 (do 

not include) 
Total 155.804437246630848 155.917107750244126 155.836565352392562 

 

Table 5.1.3: Spoof Attack Average Radio Power consumption 

From section 4.6.8 
 

Power increase rate 1 = (After – Before)/before = 0.000723153368443069894 

Power increase rate 2 = (During – Before)/before = 2.06207899656007683e-4 

 



 45 
 

17.24

17.26

17.28

17.30

17.32

17.34

17.36

0 1 2 3 4 5 6 7 8

Po
w

er
 (J

ou
le

)

Normal Attack CounterMeasure

 

Figure 5.4: Spoof Radio Power Consumption 

Spikes are noticed in the Attack data indicated as ‘Attack’ in the chart because 

of the increased radio operation to transmit/receive data between the motes during 

spoof replay. Node 0 with no power level change is the Base Station, which is not 

affected by spoof attacks. In the graph in fig 5.4 9 nodes are in normal mode with one 

attacking node. . The attack node is assumed to be the 10th node in the network. 

155.74
155.76
155.78
155.80
155.82
155.84
155.86
155.88
155.90
155.92
155.94

Normal Attack Countermeasure

Po
w

er
 (J

ou
le

)

 

 

Figure 5.5: Spoof Radio Power Consumption – Overall 



 46 
 

The data shows countermeasures consume only marginally more power than 

during attacks. 

Spoof Attacks

17.15
17.2

17.25
17.3

17.35
17.4

17.45
17.5

17.55

90 70 50 30 10

Percentage

Ra
di

o

 

Figure 5.6: Spoof Attack Radio Power Consumption 

 

Spoof Countermeasures

17.15
17.2

17.25
17.3

17.35
17.4

17.45
17.5

17.55

10 30 50 70 90

Percentage

Ra
di

o

 

Figure 5.7: Spoof Countermeasure Radio Power Consumption  

In the graph in fig 5.6, spoof attack shows 90% (9 bad nodes) of the nodes in 

the network providing attack data and 10% running the normal version of Surge at the 

first instance. Similarly in fig 5.7 we have 10% (1 counter node) providing 



 47 
 

countermeasure with the remainder configured to provide attack data. The maximum 

impact is noticed at 70:30(Attack: Counter) configurations which are 7 nodes 

providing attack data and 3 nodes defending by providing countermeasure, this could 

be because of a large number of normal modes being compromised and influenced by 

the spoof attack. 

Countermeasures are effective as their numbers increase from 70:30 (7 counter 

and 3 bad nodes) to 10:90 (1 counter and 9 bad node) where power consumption level 

can be seen going down.  

 

5.1.4.5  CPU power consumption comparison 

Node Before After During 
0 6.433002153463135 6.481989058326172 6.4620128746928716 
1 6.416962906932617 6.451140489597656 6.447122198427491 
2 6.416563857842529 6.452043172607422 6.446680593976806 
3 6.416787227515625 6.453460800742431 6.44511507122754 
4 6.416692427858399 6.449759634051026 6.444794257116699 
5 6.416900482207275 6.450354235359863 6.444584724852783 
6 6.4168850328396 6.45118967839087 6.445155471581788 
7 6.420200987850098 6.450451128157226 6.4454439623159185 
8 6.416699559657715 6.451737467600097 6.444475981239014 
9  6.513512369165772 

(do not include) 
6.510362461346924 
(do not include) 

Total 57.770694636166993 58.09212566483276 58.02538513543091 
Table 5.1.4: Spoof Attack Average CPU Power consumption 

 

From section 4.6.8 
Power increase rate 1 = (After – Before)/before = 0.005563911437972221541 

Power increase rate 2 = (During – Before)/before = 0.00440864526327628156 



 48 
 

6.38

6.40

6.42

6.44

6.46

6.48

6.50

0 1 2 3 4 5 6 7 8

Po
w

er
 (J

ou
le

)

Normal Attack Countermeasure

 

Figure 5.8: Spoof CPU Power Consumption 

Node 0 is the base station; increased power consumption is a result of it 

receiving most of the messages from the malicious node. Most replayed messages are 

sent to the base station. Notice the increase in power surge after attack. In 

countermeasure the duplicate messages are eliminated and an attack is thwarted thus 

attributing to a small reduction in power consumption. 

Total

57.60
57.70
57.80
57.90
58.00
58.10
58.20

Normal Attack Countermeasure

Po
w

er
 (J

ou
le

)

 

Figure 5.9: Spoof CPU Power Consumption- Overall 

The low power consumption shows that these Countermeasures are effective 

in stopping attacks occurring on the network. 



 49 
 

Spoof Attacks

6.3

6.35

6.4

6.45

6.5

6.55

90 70 50 30 10

Percentage

C
P

U

 

Figure 5.10: Spoof Attack CPU Power Consumption 

Similar to Radio power consumption levels in Fig 5.6/5.7 CPU power 

consumption levels reflect the same behavior with more countermeasure nodes in the 

network resulting in lower levels of power consumption. This could mean effective 

countermeasures being utilized. 

 

Spoof Countermeasures

6.3

6.35

6.4

6.45

6.5

6.55

10 30 50 70 90

Percentage

C
PU

 

 

Figure 5.11: Spoof Countermeasure CPU Power Consumption 



 50 
 

5.1.4.6 Conclusion 

In a spoofed attack, when the malicious node was injected, the power 

consumption of the entire sensor network increased. During countermeasure, the 

whole power consumption for the network decreased, though it was higher than 

before the attack. 

Attacks consumed 0.7% more power when compared to normal operation 

modes, and the power consumed by countermeasures was 0.2% more than normal 

values. The difference between the two shows the impact of the two operations, 

clearly showing that these countermeasures are more effective.  

 

Spoof Attacks Overall

23.4

23.5

23.6

23.7

23.8

23.9

24

24.1

90 70 50 30 10

Percentage

To
ta

l

 

Figure 5.12: Spoof Attack Overall Power Consumption 

 



 51 
 

Spoof Countermeasures

23.4

23.5

23.6

23.7

23.8

23.9

24

24.1

10 30 50 70 90

Percentage

To
ta

l 

 

Figure 5.13: Spoof Countermeasure Overall Power Consumption 

In the graph in fig 5.12 and 5.13 we have the total power consumption levels of CPU 

and radio from 10 motes. Maximum power levels are noticed in 70:30 (Attack: 

Countermeasure) configurations with power levels going down as the proportion of 

countermeasure nodes are increased from 70:30 ( 7 Counter nodes and 3 bad nodes)  

to 10:90 (1 counter node and 9 bad nodes) . Hence countermeasures are effective 

against the spoof attack. 

5.2 Selective forwarding attack and countermeasure 

 

5.2.1 Action and result 

Attack 

- Action: The malicious mote will only forward received messages from whose 

address is an even number. For example, messages from motes whose 

addresses are 2, 4, 6, 8...will be forwarded, and messages from 1, 3, 5, and 

7...will be dropped. 

- Result: Data loss, longer path to reach destination. 



 52 
 

High Level Pseudo Code for Selective Forward Attack: 

 

 

 

 

Countermeasure 

- Action: Two-path routing.  

- Result: Each node will send same message twice. 

High Level Pseudo Code for Selective Forward Attack: 
 

 

 

 

 

 

 

 

 

5.2.2 Network composition 

 
Sforward Attack 
 
 Initialize: Comm,TimerC,LEdC 
 Get Communication and timer Parameters 
 
 Make a neighbor list from nearby motes 
  
 Input: Ready to receive message from other motes 
 Compute: Drop messages from motes 1,3,5,7 …….; 
 Output: Retransmit only messages from motes 2, 4, 6, 8……. 
  
 Show output on Led: Green On -Sending Message; Green off - Send done.  
 Repeat operation. 

 
Sforward Countermeasure 
 
 Initialize: Comm,TimerC,LEdC 
 Get Communication and timer Parameters 
 
 Input: when a message is received from any mote 
 Compute: Choose two parents from the neighbor list 
 Output: Retransmit to both motes on the network. 
 
 Show output on Led:  
    Green on:      sending message to main parent; 
    Green off:     send done; 
    Yellow on:     sending message to another parent; 
    Yellow off:    send done; 
 
Repeat operation.



 53 
 

Same as the Network composition in Figure 4.2 

5.2.3 Selective forwarding attack details 

This attack application is modified from multi-hop router program [13].  

In the RouterM.nc program, when a message is received, if the destination 

address in message is equal or part of the local address, then it must be forwarded. In 

the attack mode, only messages from even numbered addresses are forwarded. 

 

 

 

 

5.2.4 Countermeasure on selective forwarding 

To avoid data loss caused by selective forwarding, when sending a message, 

we can choose two different paths. In section Error! Reference source not found., 

we discussed the parent choosing mechanism for routing. For the countermeasure we 

modify the routing approach by having two different parent nodes. If one route is 

compromised, the alternative will deliver the message to the destination. 

 

. 

 

    if (pMsg->addr == TOS_LOCAL_ADDRESS) { // Addressed to local node 
      if ((signal Intercept.intercept[id](pMsg,&pMHMsg->data[0],PayloadLen)) == SUCCESS) { 
        if (pMHMsg->originaddr % 2 == 0) 
          pMsg = mForward(pMsg,id); 
        else 
          dbg(DBG_ROUTE, "MHop: message from 0x%x dropped\n", pMHMsg->originaddr); 
      } 
    } 

Base station



 54 
 

 
 
 
 
 
 
 

Figure 5.14: Choose another parent – Selective Forwarding. 

In figure 5, suppose node “A” wants to send a message to the base station and 

node B, C, and D are neighbors of A. A has a parent B. We must choose another good 

parent in C and D. We can take this topology as a tree with the base station as root. 

The depth (hop count) of C is 1 and D is 2, we think C is better than D because C is 

nearer to the root than D. Hence we choose node C as A’s other parent and send a 

message copy to it. Since we transmit the message in two different paths we achieve 

redundancy. 

5.2.5 Simulation / Power Analysis - Selective forward attack 

5.2.5.1 Before attack 

    Let 10 nodes run “Surge.od” for 10 minutes this time. Following is the data 

on nodes 0, 5, 9. (Unit is Joule) 

Node CPU Led Radio Sensor 
Board 

Flash Total 

0 6.439 0.000 17.283 1.26 0.004 24.986 
5 6.419 0.000 17.322 1.26 0.004 25.005 
9 6.418 0.000 17.322 1.26 0.004 25.004 

Table 5.2: Typical Power consumption with Surge – Normal Operation 

 

5.2.5.2 After attack 

A normal node becomes a malicious node (node 9, run SForwardAttack.od), 

and run again. (Run 10 minutes, unit is) 

Node CPU Led Radio Sensor Flash Total 

A

B C (hop count is 1) 

D (hop count is 2) 



 55 
 

Board 
0 6.437 0.000 17.283 1.26 0.004 24.984 
5 6.420 0.000 17.324 1.26 0.004 25.008 
9 6.418 0.328 17.315 1.26 0.004 25.325 

 

Table 5.2.1: Selective forward attack Power consumption 

5.2.5.3 During counter 

Change Surge (Normal) to SForwardCounter.od, and run again. (Run 10 

minutes, unit is Joule) 

Node CPU Led Radio Sensor 
Board 

Flash Total 

0 6.475 0.000 17.283 1.26 0.004 25.022 
5 6.440 0.000 17.358 1.26 0.004 25.062 
9 6.431 0.408 17.315 1.26 0.004 25.418 

Table 5.2.2: Selective forward countermeasure Power consumption 
 
 

 
Figure 5.15: Program Execution sequence. Surge.od – Normal,  

SForwardAttack.od - Attack, SForwardCounter.od – Countermeasures 

 

5.2.5.4 Only radio power consumption comparison 

Now we just compare radio power consumption before attack, after attack and 

during counter: (unit is Joule) 

Node Before After During 
0 17.28294848432617 17.28294848432617 17.282948317333982
1 17.314971744116207 17.314978269824216 17.346994830200195
2 17.314971744116207 17.314971744116207 17.346994830200195

Normal Mode 
10 Motes 

All Running Surge 

Attack Mode 
10 Motes 

 
9-Surge 

 
1 - SForwardAttack 

CounterMeasure Mode 
10 Motes 

 
9 – SForwardCounter 

 
1- SForwardAttack 



 56 
 

3 17.314971744116207 17.314971744824216 17.346999180200193
4 17.314971744116207 17.31497826911621 17.375057510815427
5 17.322473176147458 17.32375404020996 17.35727654270019 
6 17.314971744116207 17.314971744116207 17.346999180200193
7 17.314971744116207 17.318082028100584 17.34870844895019 
8 17.31497826911621 17.315721452319334 17.346994830200195
9 17.31497826911621 17.31497163474121 17.31497163474121 

Total 173.12520866340329 173.130349411694314 173.41394530554197
 

Table 5.2.3: Selective forward Average Radio Power consumption 

 

From section 4.6.8 
Power increase rate 1 = (After – Before)/before = 2.9693817155298516704e-5 

Power increase rate 2 = (During – Before)/before = 0.00166779086863111263 

17.22
17.24
17.26
17.28
17.30
17.32
17.34
17.36
17.38
17.40

0 1 2 3 4 5 6 7 8 9

Po
w

er
 (J

ou
le

)

Normal Attack Countermeasure

 

Figure 5.16: Selective forward Radio Power Consumption 

The Base station (node 0) does not show any increase in power consumption 

levels.  The base station receives messages only from the border motes, and therefore 

it does not have a role in the selective forwarding attack or the countermeasure. 

Increase in countermeasure power consumption is noticed in all the nodes because 

most of them retransmit the message they receive in two paths to achieve redundancy 

from selective forwarding attacks. Chart below indicates the same.  



 57 
 

Total

172.90
173.00
173.10
173.20
173.30
173.40
173.50

Normal Attack Countermeasure

Po
w

er
 (J

ou
le

)

 

Figure 5.17: Selective forward Radio Power Consumption - Overall 

Countermeasure results show more power consumption due to redundant 

messages being generated in different paths simultaneously resulting in increased 

traffic. 

Selective Forward - Attacks

17.3105

17.311

17.3115

17.312

17.3125

17.313

17.3135

17.314

90 70 50 30 10

Percentage

Ra
di

o

 

Figure 5.18: Selective forward Attack Radio Power Consumption  



 58 
 

Selective Forward - Counter

17.295
17.3

17.305
17.31

17.315
17.32

17.325
17.33

17.335
17.34

17.345

10 30 50 70 90

Percentage

Ra
di

o

 

Figure 5.19: Selective forward Countermeasure Radio Power Consumption 

 

 

5.2.5.5 Only CPU power consumption comparison 

Node Before After During 
0 6.436892733870361 6.437137944034423 6.4745700777771 
1 6.417669621845215 6.417784338985352 6.4373625115061035
2 6.417714777305175 6.417729432723145 6.437382373996827 
3 6.4179184683676755 6.417910607921874 6.4374748089899905
4 6.417709932837158 6.417771974335694 6.442518032521241 
5 6.419206613960204 6.419599966203369 6.439364050125 
6 6.417693816689209 6.417890334708252 6.437257338947509 
7 6.41787958201709 6.418542258498535 6.437660701487305 
8 6.417750651114991 6.417954426384277 6.437547921103272 
9 6.41788059078003 6.417910599329345 6.430664973464844 

Total 64.1983167887871085 64.200231883124266 64.411802789919192
 

Table 5.2.4: Selective forward Attack Average CUP Power consumption 

 
From section 4.6.8 

Power increase rate 1 = (After – Before)/before = 2.9830911976371174568e-5 

Power increase rate 2 = (During – Before)/before = 0.00332541430695844987 



 59 
 

6.38

6.40

6.42

6.44

6.46

6.48

0 1 2 3 4 5 6 7 8 9

Po
w

er
 (J

ou
le

)

Normal Attack CounterMeasure

 

Figure 5.20: Selective forward CPU Power Consumption 

 

Increased countermeasure is a result of transmitting packets in two paths as 

opposed to sending in one. 

64.05
64.10
64.15
64.20
64.25
64.30
64.35
64.40
64.45

Normal Attack Countermeasure

Po
w

er
 (J

ou
le

)

 

Figure 5.21: Selective forward CPU Power Consumption- Overall 

 

 



 60 
 

Selective Forward - Attacks

6.4175

6.418

6.4185

6.419

6.4195

6.42

6.4205

6.421

90 70 50 30 10

Percentage

C
P

U

 

Figure 5.22: Selective forward Attack CPU Power Consumption 

 

 

Selective Forward - Counter

6.405
6.41

6.415
6.42

6.425
6.43

6.435
6.44

6.445

10 30 50 70 90

Percentage

C
P

U

 

Figure 5.23: Selective forward Countermeasure CPU Power Consumption 

5.2.5.6 Conclusion 

In the selective forwarding attack, the power consumption loss is small. 

However the sensors consume more power to counter this attack. This attack results in 



 61 
 

loss of data and there is little or no power consumption spike due to lost data. 

However, power readings are more when countermeasures are being applied to avoid 

this loss. 

This attack did not affect power consumption much; a difference of 0.0002% 

from normal running mode does not indicate any significant change. However the 

data loss is damaging for this attack. The countermeasures applied consumed almost 

0.3 % more than the normal operating modes; this was significantly higher than the 

attack power levels. This cost is only because of the attempt to retransmit the same 

data. 

 

Selective Forward - Attacks

23.66

23.68

23.7

23.72

23.74

23.76

23.78

23.8

90 70 50 30 10

Percentage

To
ta

l C
P

U
 +

 R
ad

io

 

Figure 5.24: Selective forward Attacks Power Consumption – Overall 

In the graph in fig.5.24, the maximum power consumption level is noticed at 

30% level with 3 of the nodes providing the attack and 70% or 7 nodes consisting of 

normal motes. 



 62 
 

Selective Forward - Counter 

23.7
23.71
23.72
23.73
23.74
23.75
23.76
23.77
23.78
23.79

10 30 50 70 90

Percentage

To
ta

l C
P

U
 +

 R
ad

io

 

Figure 5.25: Selective forward Countermeasure Power Consumption - Overall 

 

In the above graph fig 5.25 the proportion of nodes providing countermeasures 

at 90% (9 Counter Nodes) consumes more power than a smaller number. This is due 

to the fact that the data is actually dropped and not forwarded in the 10% (1 Counter 

node and 9 Attack nodes) configuration, with the defending nodes having to defend 

the network and actually relay back messages on two routes. In this type of attack, 

countermeasures are not very effective and cause more damage when they are 

deployed in large numbers. 

 

 

5.3 Sinkhole attack and countermeasure 

5.3.1 Action and result 

Attack 



 63 
 

Sinkhole Attacks aim at causing data loss by dropping packets and not 

forwarding any message. The also deceive motes in their proximity into thinking that 

the base station is nearer than the normal path. 

High Level Pseudo Code for Sinkhole Attack: 

 

 

Countermeasure 

The Attacks can be solved by using a two path routing strategy and also 

transmitting the same message twice. 

 
 
 

High Level Pseudo Code for Sinkhole Attack Countermeasure: 
 

Sinkhole Attack 
 
 Initialize: Comm,TimerC,LEdC 
 Get Communication and timer Parameters 
 
 Make a neighbor list from nearby motes 
  
 Input: Ready to receive message from other motes 
 Compute: Drop all packets 
Output: Increase Message send success rate to base station.  
  
 Show output on Led: 
    Green on:      sending message; 
    Green off:     send done; 
 
 Repeat operation. 



 64 
 

 

5.3.2 Network composition 

Same as the Network composition in Figure 4.2 

5.3.3 Sinkhole attack details 

Sinkhole attack is similar to selective forwarding attack. When a malicious 

mote receives a message, it will do nothing and drop packets. 

 

 

 

 

 

5.3.4 Countermeasure 

    if (pMsg->addr == TOS_LOCAL_ADDRESS) { // Addressed to local node 
      if ((signal Intercept.intercept[id](pMsg,&pMHMsg->data[0],PayloadLen)) == 
SUCCESS) { 
        // Do nothing 
        dbg(DBG_ROUTE, "MHop: message from 0x%x dropped\n", pMHMsg->originaddr); 
      } 

}

Sinkhole Countermeasure 
 
 Initialize: Comm,TimerC,LEdC 
 Get Communication and timer Parameters 
 
 Input: when a message is received from any mote 
 Compute: Choose two parents from the neighbor list 
 Output: Retransmit to both motes on the network. Also retransmit same message twice. 
 
 Show output on Led:  
    Green on:      sending message to main parent; 
    Green off:     send done; 
    Yellow on:     sending message to another parent; 
    Yellow off:    send done; 
 
Repeat operation. 



 65 
 

Same as countermeasure on selective forwarding as outlined in section 5.2.4. 

Redundancy is achieved by retransmission of data and taking a two path route to 

reach the destination. The overheads achieved, would be similar to that of Selective 

forwarding. 

 

5.3.5 Simulation / Power Analysis - Sinkhole attack 

5.3.5.1 Before attack 

    Let 10 nodes run “Surge.od” (Normal) for 10 minutes. The same setup as in 

Selective forwarding attacks as in 5.2.5.  

5.3.5.2 After attack 

SinkholeAttack.od – program to simulate an Attack. 
A normal node is changed to a malicious node (node 9, run SinkholeAttack.od), and 

run the same setup again. (Run 10 minutes, unit is Joule). We simulate an attack by 

running the SinkholeAttack program simultaneously in 9 motes.  The simulations 

show dropped packets and increase in transmitting traffic from some motes. 

 
Node CPU Led Radio Sensor 

Board 
Flash Total 

0 6.438 0.000 17.283 1.26 0.004 24.985 
5 6.418 0.000 17.315 1.26 0.004 24.997 
9 6.418 0.174 17.316 1.26 0.004 25.172 

 
Table 5.3: Sinkhole Attack Power consumption 

5.3.5.3 During counter 

SinkholeCounter.od – program to simulate a Countermeasure. 
Change Surge.od to SinkholeCounter.od, and run again. (Run 10 minutes, unit 

is Joule) 



 66 
 

Node CPU Led Radio Sensor 
Board 

Flash Total 

0 6.478 0.012 17.283 1.26 0.004 25.037 
5 6.436 0.344 17.348 1.26 0.004 25.392 
9 6.429 0.196 17.316 1.26 0.004 25.205 

 
Table 5.3.1: Sinkhole countermeasure Power consumption 

 
 

 
 

Figure 5.26: Program Execution sequence. Surge – Normal, 

SinkholeAttack - Attack, SinkholeCounter – Countermeasures 
 

5.3.5.4 Only radio power consumption comparison 

Node Before After During 
0 17.28294848432617 17.28294848432617 17.282948317333982 
1 17.314971744116207 17.31497826911621 17.346994830200195 
2 17.314971744116207 17.314971744116207 17.346994830200195 
3 17.314971744116207 17.314971744116207 17.346997005200194 
4 17.314971744116207 17.314971744116207 17.353635102856444 
5 17.322473176147458 17.314978270532226 17.34763743723144 
6 17.314971744116207 17.31668536286621 17.347423234887696 
7 17.314971744116207 17.314971744116207 17.346994830200195 
8 17.31497826911621 17.314971744116207 17.346994830200195 
9 17.31497826911621 17.31582844411621 17.31582844411621 

Total 173.12520866340329 173.120277551538061 173.382448862426746
 

Table 5.3.2: Sinkhole Radio Power consumption 

 

 

Normal Mode 
10 Motes 

All Running Surge 

Attack Mode 
10 Motes 

 
9-Surge 

 
1 - SinkholeAttack 

CounterMeasure Mode 
10 Motes 

 
9 – SinkholeCounter 

 
1- SinkholeAttack 



 67 
 

From section 4.6.8 
Power increase rate 1 = (After – Before)/before = -2.848292229247941548e-5 

Power increase rate 2 = (During – Before)/before = 0.00148586217460446398 

17.24
17.26

17.28

17.30

17.32

17.34
17.36

0 1 2 3 4 5 6 7 8 9

Po
w

er
 (J

ou
le

)

Normal Attack CounterMeasure

 

Figure 5.27: Sinkhole Radio Power Consumption 

 

Since packets are dropped no effect is seen due to the attacks power 

consumption readings; however, a huge spike is noticed in the countermeasure 

because of retransmission and the two path strategy being followed. 

Total

172.90
173.00
173.10
173.20
173.30
173.40
173.50

Normal Attack Countermeasure

Po
w

er
 (J

ou
le

)

 

Figure 5.28: Sinkhole Radio Power Consumption – Overall 

 



 68 
 

Sinkhole Attacks

17.3105
17.311

17.3115
17.312

17.3125
17.313

17.3135
17.314

17.3145
17.315

90 70 50 30 10

Percentage

Ra
di

o

 

Figure 5.29: Sinkhole Attack Radio Power Consumption  

Sinkhole Counter

17.295
17.3

17.305
17.31

17.315
17.32

17.325
17.33

17.335
17.34

17.345

10 30 50 70 90

Percentage

Ra
di

o

 

Figure 5.30: Sinkhole Attack Countermeasure Power Consumption  

5.3.5.5  Only CPU power consumption comparison 

Node Before After During 
0 6.436892733870361 6.438104976496094 6.476776941757569
1 6.417669621845215 6.41796414969043 6.436301674402099
2 6.417714777305175 6.417907878934571 6.436459079227783
3 6.4179184683676755 6.418143987891601 6.436361210319092
4 6.417709932837158 6.417974214979249 6.437570359634277
5 6.419206613960204 6.418074903956055 6.43648570060205 



 69 
 

6 6.417693816689209 6.4183431231950685 6.436419373149903
7 6.41787958201709 6.418045924791747 6.436295817734131
8 6.417750651114991 6.418063756008545 6.436592150010498
9 6.41788059078003 6.417884335404297 6.429456523581543
Total 64.19831679 64.20050725 64.39871883 
 

Table 5.3.3: Sinkhole CPU Power consumption 

 

From section 4.6.8 
Power increase rate 1 = (After – Before)/before = 3.4120209213042826881e-5 

Power increase rate 2 = (During – Before)/before = 0.00312160894584725451 

6.38

6.40

6.42

6.44

6.46

6.48

6.50

0 1 2 3 4 5 6 7 8 9

Po
w

er
 (J

ou
le

)

Normal Attack Countermesure

 

Figure 5.31: Sinkhole CPU Power Consumption 

 



 70 
 

Total

64.05
64.10
64.15
64.20
64.25
64.30
64.35
64.40
64.45

Normal Attack Countermeasure

Po
w

er
 (J

ou
le

)

 

Figure 5.32: Sinkhole CPU Power Consumption – Overall 

Sinkhole Attacks

6.415
6.416
6.417
6.418
6.419
6.42

6.421
6.422
6.423

90 70 50 30 10

Percentage

C
P

U

 

Figure 5.33: Sinkhole Attacks CPU Power Consumption 

 

In the graph in Fig 5.33, 50% (5 Attack and 5 Normal) of the nodes being 

Attack configuration consume more power than the others. The graph below indicates 

an increase in power level as the proportion of Counter nodes increase in a network. 



 71 
 

Sinkhole Counter

6.405
6.41

6.415
6.42

6.425
6.43

6.435
6.44

6.445

10 30 50 70 90

Percentage

C
P

U

 

Figure 5.34: Sinkhole Countermeasure CPU Power Consumption 

 

CPU power consumption is expensive during countermeasures. The attacks 

configuration shows maximum power expenditure during the 70% and 50% mode 

where 7 and 5 motes are malicious respectively. 

5.3.5.6 Conclusion 

In sinkhole attack, the power consumption of the sensor network is similar to 

selective forward attack. We notice a spike in the power consumption readings when 

the countermeasures are applied. This is because of the increased traffic due to 

retransmission of the same data twice and redundant packets on the two paths. 

 

 



 72 
 

Sinkhole - Overall

23.68

23.69

23.7

23.71

23.72

23.73

23.74

23.75

90 70 50 30 10

Percentage

To
ta

l C
P

U
 +

 R
ad

io

 

Figure 5.35: Sinkhole Attacks Power Consumption- Overall 

Sinkhole Counter - Overall

23.7
23.71
23.72
23.73
23.74
23.75
23.76
23.77
23.78
23.79

10 30 50 70 90

Percentage

To
ta

l C
P

U
 +

 R
ad

io

 

Figure 5.36: Sinkhole Countermeasure Power Consumption- Overall 

 

 

In the sinkhole attack the countermeasures applied are expensive when 

compared to the attacks themselves. Fig 5.36 shows that at 10%; Counter motes 

consumes less power compared to a 90:10 (Counter: Attack) configuration. Graph in 



 73 
 

Fig 5.32 also supports this theory as we can see Counter motes consume more power 

over the full scope of our experiment. 

 

 

 

 

 

 

 

 

 

 

 

 

5.4 Sybil attack and countermeasure 

5.4.1 Action and result 

Attack 

A malicious mote assumes the identity of an existing mote on the network. 

This causes confusion on the network and loss of data. 

Countermeasure 

This problem could be solved by authenticating the packets in the link layer. 

Normal motes would not receive messages from a mote whose mote-key is different. 

Malicious mote does not have the mote-key. 

High Level Pseudo Code for Sybil Attack 



 74 
 

 

5.4.2 Network composition 

Same as the Network composition in Figure 4.2 

5.4.3 Sybil attack and counter details 

Both Sybil attack and counter program are secure versions of application 

"Surge" which is used to simulate a normal multi-hop network. Authentication and 

encryption mechanism have been provided by TinyOS. In the Surge application, we 

need to change "GenericCommPromiscuous" component to "SecureGenericComm", 

and when installing the above components on a mote, we need to specify a mote-key 

(Mote-key is a unique identifier for each mote). [7]. GenericCommPromiscuius and 

SecureGenericComm are the Interfaces needed for sending and receiving messages. 

The Generic version does not carry out Encryption/Decryption. 

For attacker, when we load the program, we use an address that a normal mote 

has used. Thus in network, there are two motes whose address is the same. 

However we use a different mote-key: 

Attacker 6D524D67F24F178B0A69933FDD6C6F7F 

Initialize: Comm,TimerC,LEdC 
 Get Communication and timer Parameters 
Include TinySec component for Secure transmit ion. 
Generate mote key 
 Make a neighbor list from nearby motes 
  
 Input: Ready to receive message from other motes 
 Compute: Check mote key for each packet received. 
     
Output: Retransmit messages only if they have a valid mote key.  
  Show output on Led: 
    Green on:      sending message; 
    Green off:     send done; 
Repeat operation. 
 



 75 
 

For counter, when we load the program, we give each mote a unique address. 

All the motes have the same mote-key: 

Default  6D524D67F24F178B0A69933FDD6C6F7E 

5.4.4 Simulation / Power Analysis of Sybil Attack with Encryption / 

Decryption:- 

The simulator cannot model the Sybil attack where a node takes 2 addresses. 

We instead measure the overhead involved in encrypting/ decryption information on a 

mote. Encryption/Decryption could avoid Sybil attacks by authenticating packets in 

the link layer. 

By default, TinySec will authenticate all messages, but encryption is turned 

off. TinySec allows the user dynamically to alter the combination of security 

mechanisms for the application with the TinySecMode interface. The “AUTH” mode 

would check for the CRC, and Encrypt/Decrypt would alter the contents of the 

message body with an Encrypt/Decrypt algorithm. 

 

 

 

Let 10 nodes run SybilAttack.od for 10 minutes, and we note the power 

consumption of CPU and Radio. Next 10 nodes run Surge.od.  

Node CPU Radio Total (CPU+Radio)
0 6.596606413420167 17.31140640288086 23.90801282 
1 6.577923743991699 17.31336554460449 23.89128929 
2 6.576597169171142 17.310418992700193 23.88701616 
3 6.576780789803711 17.311841223242187 23.88862201 
4 6.5762329404467765 17.310556632202143 23.88678957 
5 6.576346703816162 17.310786741162108 23.88713344 
6 6.5775006151975095 17.31308867314453 23.89058929 
7 6.576381706343506 17.31047837890625 23.88686009 
8 6.577122562812011 17.31144219033203 23.88856475 



 76 
 

9 6.575540114498535 17.31033415344238 23.88587427 
Total 65.78703276 173.1137189 238.90075166 

Table 5.4: Sybil Attack Average Radio Power Consumption 

 
Node CPU Radio Total (CPU+Radio)

0 6.436892733870361 17.28294848432617 23.71984122 
1 6.417669621845215 17.314971744116207 23.73264137 
2 6.417714777305175 17.314971744116207 23.73268652 
3 6.4179184683676755 17.314971744116207 23.73289021 
4 6.417709932837158 17.314971744116207 23.73268168 
5 6.419206613960204 17.322473176147458 23.74167979 
6 6.417693816689209 17.314971744116207 23.73266556 
7 6.41787958201709 17.314971744116207 23.73285133 
8 6.417750651114991 17.31497826911621 23.73272892 
9 6.41788059078003 17.31497826911621 23.73285886 

Total 64.19831679 173.1252087 237.32352549 
Table 5.4.1: Sybil Attack Average Power consumption - Overall 

 

23.60
23.65
23.70
23.75
23.80
23.85
23.90
23.95

0 1 2 3 4 5 6 7 8 9

Po
w

er
 (J

ou
le

)

with auth
without auth

 

Figure 5.37: Sybil Attack Power Consumption – Overall 

With Authentication but without Encryption/Decryption 

 

From the above chart, we can see that here, to authenticate a message (without 

encryption and decryption); about 0.15 Joule of extra powers will be consumed on 

each node. 

If encryption/decryption is implemented on the data, the data obtained from 

the corresponding program SybilAuthEncrypt.od(Encryption) for 10 minutes would 



 77 
 

be as below. 

 
 
 

Node CPU Radio Total (CPU+Radio)
0 6.65703823563501 17.310620923217773 23.96765916 
1 6.648699144708251 17.32343519123535 23.97213434 
2 6.649376978411377 17.32364078818359 23.97301777 
3 6.6491497438186045 17.323546895678707 23.97269664 
4 6.650206918786621 17.325626301049805 23.97583322 
5 6.648507362891358 17.32324591301269 23.97175328 
6 6.648886167982421 17.324282210668944 23.97316838 
7 6.6487612824431155 17.323407421313476 23.9721687 
8 6.6508710611535635 17.3270611652832 23.97793223 
9 6.649017910360107 17.323569971606446 23.97258788 

Total 66.50051481 173.2284368 239.72895161 
Table 5.4.2: Sybil Attack Average Power consumption - Overall 

 

23.82
23.84
23.86
23.88
23.90
23.92
23.94
23.96
23.98
24.00

0 1 2 3 4 5 6 7 8 9

po
w

er
 (J

ou
le

)

Auth only Auth & Encrypt

 

Figure 5.38: Sybil Attack Power Consumption – Overall with 

Authentication – Encryption / Decryption 

5.4.4.1 Conclusion: 

About 0.09 Joule of extra powers is being consumed on encryption and 

decryption on each node with Authentication. Hence we can determine that the power 

consumption is normally greater in our proposed countermeasure. Real world 



 78 
 

experiments may differ, because of the type of authentication used and the level of 

encryption. 

 

 

 

 

 

 

 

 

5.5 Hello attack and countermeasure 

5.5.1 Action and result 

Attack 

- Action: The malicious mote sends messages by using stronger radio power, and 

pretend to be a base station or a node near the base station by modify its hop count 

value. However, motes far from the malicious node cannot send messages back 

successfully, because their radio power is low. 

- Result: Network confusion and data loss. 

High Level Pseudo Code for Hello Attack: 

 

 

 

 

 

Initialize: Comm,TimerC,LEdC 
 Get Communication and timer Parameters 
 
 Make a neighbor list from nearby motes 
 Set Hop count to 1. To Simulate a Base Station 
 
 Input: Ready to receive message from other motes 
 Compute: Send message every two seconds to all motes 
Output: Retransmit to all motes on the network.  
  
 Show output on Led: 
    Green on:      sending message; 
    Green off:     send done; 
 Repeat operation 
 Repeat operation. 



 79 
 

 

 

 

Countermeasure 

- Action: If a node fails to get through a reply message to a particular node which 

sends the HELLO, then that node is distrusted. 

- Result: Do not send messages to distrust nodes. 

 

 

 

 

 

High Level Pseudo Code for Hello Attack countermeasure: 

 

 

 

5.5.2 Network composition 

Hello Countermeasure 
 
 Initialize: Comm,TimerC,LEdC 
 Get Communication and timer Parameters 
 
 Input: when a message is received from any mote 
 Compute: If message is found to be not reaching the base station (malicious) 
    Stop sending anymore packets. 
 Output: Transmit only those packets that can reach a destination. 
 
 Show output on Led:  
    Green on:      sending message; 
    Green off:     send done; 
 
Repeat operation. 
 



 80 
 

Same as the Network composition in Figure 4.2 

5.5.3 Hello attack details 

The mote which runs the Hello attack program will pretend to be a mote near 

the base station (hop count is always 1) and broadcast hello messages in every 2 

seconds. 

5.5.4 Countermeasure details 

The strategy of route selecting was modified a little. If a node fails to reply to 

repeat HELLO messages from a node, that node will be distrusted. 

 

 
 
 
 
 
 
 
 
 

Figure 5.39: Failure to send message back – HELLO countermeasure 

In figure 5.35, Node B is the malicious mote that is sending Hello messages. 

Node A receives the message and takes B as its neighbor. Moreover the hop count of 

B is 1, and B appears to be a good parent of A. However B is far away from A, when 

  task void SendData()  
  { 
    HelloMsg *p = (HelloMsg *)gMsgBuffer.data; 
     
    p->sourceaddr = p->originaddr = TOS_LOCAL_ADDRESS; 
    p->hopcount = 1; 
    p->seqno = gSendMsgNum; 
     
    dbg(DBG_USR1, "HelloM: Sending message from 0x%x to 0x%x.\n", p->sourceaddr, 
gMsgBuffer.addr); 
    call Leds.greenOn();       
    call SendMsg.send(TOS_BCAST_ADDR, sizeof(HelloMsg), &gMsgBuffer); 
}

Base station

A

B



 81 
 

A sends a message to B, it may be a failure and not reach B. A keeps count of as to 

how many HELLO replies have been sent out to B. After several failures, A will not 

trust B and does not send any message to B.  

5.5.5 Simulation / Power Analysis - Hello attack 

5.5.5.1 Before attack 

The Hello attack can be simulated by first running the normal Surge.od program in a 

typical setup of 9 (0 to 8) motes. We measure power consumption for even numbered 

motes. 0, 4, 8 respectively run for 10 minutes where the unit of measure is in Joules.  

 

 

    

Node CPU Led Radio Sensor 
Board 

Flash Total 

0 6.431 0.000 17.283 1.26 0.004 24.978 
4 6.416 0.000 17.315 1.26 0.004 24.995 
8 6.416 0.000 17.315 1.26 0.004 24.995 

 

Table 5.5: Typical Power consumption with Surge – 

Normal Operation Nodes 0, 4, 8 

 

5.5.5.2 After attack 

We inject a malicious node (node 9), into the network and run Program 

HelloAttack.od (Run 10 minutes, unit is Joule) .This malicious node will flood the 

network with a HELLO messages thus starting a chain reaction throughout the 

network. 

 
Node CPU Led Radio Sensor 

Board 
Flash Total 



 82 
 

0 6.465 0.000 17.283 1.26 0.004 25.012 
4 6.447 0.000 17.315 1.26 0.004 25.026 
8 6.447 0.000 17.315 1.26 0.004 25.026 
9 6.519 4.467 17.870 1.26 0.004 30.12 

 
Table 5.5.1: HELLO Attack Power consumption 

5.5.5.3 During counter measures 

In the Hello countermeasure, every node will maintain a list called a “neighbor list” to 

record information of its neighbor nodes. If the node finds that one of its neighbor 

fails by sending messages above a set limit at one time then this node is eliminated 

from the list or distrusted, and we do not send any more messages to it.  

 
Change Surge.od to HelloCounter.od, and run again. (Run 10 minutes, unit is Joule) 

 
Node CPU Led Radio Sensor 

Board 
Flash Total 

0 6.465 0.000 17.283 1.26 0.004 25.012 
4 6.447 0.000 17.315 1.26 0.004 25.026 
8 6.447 0.000 17.315 1.26 0.004 25.026 
9 6.519 4.705 17.867 1.26 0.004 30.355 

 
Table 5.5.2: HELLO countermeasure Power consumption 

 
 

Figure 5.40: Program Execution sequence. Surge – Normal, 

HELLOAttack - Attack, HELLOCounter – Countermeasures 
 
 

Normal Mode 
10 Motes 

All Running Surge 

Attack Mode 
10 Motes 

 
9-Surge 

 
1 – HELLO Attack 

CounterMeasure Mode 
10 Motes 

 
9 – HELLOCounter 

 
1- HELLOAttack 



 83 
 

5.5.5.4 Only radio power consumption comparison 

Now we compare radio power consumption before attack, after attack and 

during counter: (unit is Joule) 

Node Before After During 
0 17.28294848432617 17.28294848432617 17.28294778046875 
1 17.314971744116207 17.31989839802246 17.32471724689941 
2 17.31498044411621 17.314971744116207 17.314971040258786 
3 17.314971744824216 17.31498044411621 17.314971040258786 
4 17.314971744116207 17.31497826911621 17.314971040258786 
5 17.314971744116207 17.314971744116207 17.314971040258786 
6 17.314978269824216 17.316042755834957 17.32043320002441 
7 17.320433903881835 17.329430402319336 17.32300362814941 
8 17.31498261911621 17.314971744824216 17.314971040258786 
9  17.86987400952148 (do 

not add) 
17.867303853271483 (do 

not add) 
Total 155.8082107 155.823194 155.8259571 

 

Table 5.5.3: HELLO Attack Radio Average Power consumption 

From section 4.6.8 
Power increase rate 1 = (After – Before)/before = 9.6165021937447870325e-5 

Power increase rate 2 = (During – Before)/before = 1.13899003911736725e-4 

17.24

17.26

17.28

17.30

17.32

17.34

0 1 2 3 4 5 6 7 8

Po
w

er
 (J

ou
le

)

Normal Attack CounterMeasure

 

Figure 5.41: HELLO Radio Power Consumption 

 



 84 
 

Total

155.80
155.80
155.81
155.81
155.82
155.82
155.83
155.83

Normal Attack Countermeasure

Po
w

er
 (J

ou
le

)

 

Figure 5.42: HELLO Radio Power Consumption - Overall 

In the HELLO attack radio power consumption is higher than the CPU due to 

the increase in traffic caused by the HELLO message. The base station sees very little 

traffic and only the nodes seem to be affected. This shows that the nodes are more 

vulnerable to this type of attack. 

 The reason countermeasure costs are higher is because the HELLO packet 

received from nodes which have been removed from the neighbor list for which no 

corresponding reply is sent back. 

Hello Attack

17.25
17.3

17.35
17.4

17.45
17.5

17.55

90 70 50 30 10

Percentage

R
ad

io

 

Figure 5.43: HELLO Attack Radio Power Consumption 



 85 
 

Hello Counter

17.2
17.25
17.3

17.35
17.4

17.45
17.5

17.55

10 30 50 70 90

Percentage
R

ad
io

 

Figure 5.44: HELLO Countermeasure Radio Power Consumption 

Fig 5.42 shows that Countermeasures consume a marginally higher power 

level than the attacks. Similarly from Figs 5.43 and 5.44 higher power levels can be 

noticed at 90:10 configuration (9 bad nodes and 1 good node) in attacks and 10:90 (1 

countermeasure node and 9 bad nodes) in Countermeasures, this is because of 

countermeasures not being entirely effective. In both cases a higher number of attack 

nodes caused more spikes in power levels than a smaller proportion. At 10:90 

(Counter: Attack) ratio, the counter attack power level was found to be lower when 

compared to a similar attack configuration of 90:10 (Attack: Normal).  

 

5.5.5.5 Only CPU power consumption comparison 

Node Before After During 
0 6.43128427829541 6.465208881431397 6.4649492134775395 
1 6.416177063417724 6.448134219654053 6.448881996545653 
2 6.416095092406739 6.446888423201415 6.446766703149903 
3 6.416248120197999 6.447075559896973 6.446752494543458 
4 6.416254074820801 6.44725894853125 6.44703907945459 
5 6.416176814234375 6.447446990879396 6.447067381527588 
6 6.416276387900878 6.447544859788085 6.448334918797851 
7 6.4173069449316404 6.450182401958985 6.448545011294677 
8 6.416049885391601 6.4471048535478515 6.446822740188965 
9  6.519386674160156 (do 6.519110843658691 (do 



 86 
 

not add) not add) 
Total 57.76186866 58.04684514 58.04515954 

 

Table 5.5.4: HELLO countermeasure CPU Average Power consumption 
 
From section 4.6.8 
 

Power increase rate 1 = (After – Before)/before = 0.004933643710134082770 

Power increase rate 2 = (During – Before)/before = 0.00490446182874582922 

 

 

6.39
6.40
6.41
6.42
6.43
6.44
6.45
6.46
6.47

0 1 2 3 4 5 6 7 8

Po
w

er
 (J

ou
le

)

Normal Attack CounterMeasure

 

Figure 5.45: HELLO attack CPU Power Consumption 

 



 87 
 

Total

57.60

57.70

57.80

57.90

58.00

58.10

Normal Attack Countermeasure

Po
w

er
 (J

ou
le

)

 

Figure 5.46: HELLO attack CPU Power Consumption - Overall 

CPU power consumption is smaller in magnitude when compared to the radio 

traffic. This is because of the small number of tasks given to a CPU in a mote when a 

HELLO attack occurs. Countermeasures power levels are smaller when compared to 

the attacking modes. The CPU is only involved in maintaining the neighbor list. 

 

Hello Attack

6.42

6.44

6.46

6.48

6.5

6.52

90 70 50 30 10

Percentage

C
PU

 

Figure 5.47: HELLO attack CPU Power Consumption 



 88 
 

Hello Counter

6.35

6.4

6.45

6.5

6.55

10 30 50 70 90

Percentage

C
P

U

 

Figure 5.48: HELLO Countermeasure CPU Power Consumption 

5.5.5.6 Conclusion 

A hello attack costs very little power to counter. The overall power consumed 

in the countermeasure is much less when compared to the other forms of attacks. 

HELLO message acknowledgment limit is set to 25 in our experiments, bringing this 

number down would still limit the power consumption further. 

The difference in power levels (Radio) is as much as 0.09% and 0.11 % on 

attacks and countermeasures. The difference between the two is not significant but the 

reason for a countermeasure being much higher is the flooding of the network with lot 

of HELLO messages. On the contrary, CPU power expenditure is lower for 

countermeasures compared to Radio power consumption. 



 89 
 

Hello Attacks

23.6
23.7
23.8
23.9

24
24.1
24.2

90 70 50 30 10

Percentage

To
ta

l C
P

U
+R

ad
io

 

Figure 5.49: HELLO Attack Power Consumption – Overall 

Hello Counter - Overall

23.4

23.6

23.8

24

24.2

24.4

10 30 50 70 90

Percentage

To
ta

l C
P

U 
+ 

R
ad

io

 

Figure 5.50: HELLO Countermeasure Power Consumption – Overall 

 

 

 

 

 

5.6 Wormhole attack 

 
A wormhole attack can be defined as one where two motes on a network being 

far apart from each other deceive the other motes on the network into thinking that the 



 90 
 

distance is shorter to reach the base station if the packets travel between them. A 

decision to take that route would result in packets being lost or getting delayed. A 

wormhole attack is difficult to detect and countermeasure. In our experiment we 

decided to use different channels to simulate an attack. For example the two motes in 

question would be on channel 17 and the rest of the motes on the network would use 

channel 22. [11] Or they could be on a different frequency, 433 and 916 MHz. 

Theoretically this setup can work on a simulator but cannot be duplicated with real 

motes. Motes work on a fixed frequency and this is a limitation of the radio that’s 

built onto them. 

Similarly for countermeasure, it is impossible to check and modify a Channel 

ID of a mote during runtime. A node can only modify its own channel ID, by using 

the functions available in the CC2420 radio stack such as “TuneManual ()”. A 

malicious node would not change its channel ID by itself in this regard. 

 

Let node 8 and node 9 transmit data at 916MHz channel, and node 0 – 7 

transmit data at 433MHz. 

 

 

Node CPU Radio Total (CPU+Radio)
0 6.5174162215937494 17.292089890568032 23.80950611 
1 6.511739680535156 17.38051706500651 23.89225675 
2 6.511564614624755 17.380540147680662 23.89210476 
3 6.511588183932617 17.380497939982096 23.89208612 
4 6.5118502423281255 17.38050924910482 23.89235949 

  To Change the channel in a mote 
 
Changes in the Make File to include 
CFLAGS += -DCC2420_DEF_CHANNEL=x 
Where x is between channel 11 and 26 
 
CFLAGS=-DCC2420_DEF_CHANNEL=22 make telos 
CFLAGS=-DCC2420 DEF CHANNEL=13 make telos



 91 
 

5 6.511660555369873 17.380519677539063 23.89218023 
6 6.5118372968234866 17.380595147241213 23.89243244 
7 6.511551576320801 17.38052602746582 23.8920776 
8 6.512465730357178 17.382710398746745 23.89517613 
9 6.5143572003942865 17.408891925105795 23.92324913 

Total 65.1260313 173.7473975 238.8734288 
 

Table 5.6.1: Wormhole Power consumption (433MHz & 916MHz) – Average 
 

Node CPU Radio Total (CPU+Radio)
0 6.516963577461426 17.29209536669922 23.80905894 
1 6.51114897164209 17.380584572745768 23.89173354 
2 6.510851532647949 17.380632121752928 23.89148365 
3 6.511435345177002 17.386137372965496 23.89757272 
4 6.511041412078857 17.380480457080075 23.89152187 
5 6.511179158916017 17.380578258683265 23.89175742 
6 6.510981817732666 17.38201775579427 23.89299957 
7 6.5113287342290045 17.385510646166992 23.89683938 
8 6.511048169243897 17.380615702490235 23.89166387 
9 6.510974629222657 17.38051327855631 23.89148791 

Total 65.11695335 173.7291655 238.84611885 
 

Table 5.6.1: Wormhole Power consumption 433MHz  
 

23.74
23.76
23.78
23.80
23.82
23.84
23.86
23.88
23.90
23.92
23.94

0 1 2 3 4 5 6 7 8 9

Po
w

er
 (J

ou
le

)

wormhole

surge

 

Figure 5.51: Wormhole Power Consumption - Comparison 

The above setup yielded constant power consumption and erratic changes not 

influenced by both the frequencies.  This is because in a real world experiment the 

two malicious motes would be far apart and working in a particular channel/frequency 



 92 
 

thus deceiving the other motes into believing that they are actually closer, a shortcut 

to the base station. 

5.6.1 Conclusion: 

Wormhole attacks would consume more power with the malicious motes that 

are involved in the attack; this is because of the quantity of traffic that may propagate 

through them.  Countermeasures if devised would be effective in stopping packets 

from reaching these motes altogether, they would need to maintain a routing table and 

work on finding the actual path to the base station. It would be interesting to see the 

effects of an actual Wormhole attack on such motes. 

 

 

 

 

 

 

 

 

 

 

 

 

6. Conclusion and Future Work 

 

Research on sensor networks has been on the mainstream for the past couple 



 93 
 

of years. One of the major focuses has been on the security and the quantity of power 

they consume. Relating these two fields would yield us some valuable insight on how 

they would perform in a given scenario. The different attacks defined for sensors were 

simulated with the resulting countermeasures. Some of the attacks were damaging as 

in they consumed more power than usual and some of the countermeasures applied 

were effective in curtailing the power consumed. Sometimes it may be more effective 

to quarantine the network and restrict the influence of malicious nodes, instead of 

resorting to counter measures.  

  Countermeasures were effective in stopping the attack with minimal power 

expenditure for Spoof attack, compared to selective forwarding and Sinkhole attacks, 

where the power consumed was much higher. The power consumed in spoof 

countermeasures was less than that consumed during an attack enabling the motes to 

recover with minimal loss of power. With Selective forwarding the effects were just 

the opposite with more power being consumed during countermeasures. Hello 

attack/countermeasures showed a mixed mode of power consumption, with attacks 

and countermeasures consuming the same levels. The normal operations of most of 

these motes were documented using the Surge program which showed a consistent 

power level. Though the magnitude of power difference ( E.g.: 0.1% - 0.6% for 10 

minutes) in most of our experiments is not significant enough to alter the power 

consumption of the single sensor, the study when extrapolated to a bigger network 

with larger number of motes working for longer periods of time would offer 

significant benefits. 

The decision to apply a countermeasure or not depends on the current power 

level left on the mote. It also depends on factors like the motes ability to recover from 

such an attack and provide seamless service for the rest of its operational life. Future 



 94 
 

works in this area could be to develop effective detection and prevention mechanisms. 

Attacks

23.4
23.5
23.6
23.7
23.8
23.9

24
24.1

90 70 50 30 10

Percentage

To
ta

l P
ow

er
 - 

ea
ch

 N
od

e 

Sinkhole Spoof Selective Forward Hello

 

Figure 5.52: Comprehensive Attacks Power Consumption - Comparison 

Countermeasure

23.4
23.5
23.6
23.7
23.8
23.9

24
24.1

10 30 50 70 90

Percentage

To
ta

l P
ow

er
 (e

ac
h 

N
od

e)

Sinkhole Spoof Selective Forward Hello

 

Figure 5.53: Comprehensive Countermeasure Power Consumption – 

Comparison 

 

 

 

 



 95 
 

 
REFERENCES 

 
[1] Chris Karlof and David Wagner. “Secure Routing in Sensor Networks: Attacks 
and Countermeasures”,, Ad hoc Networks,  Vol 1, issues 2--3, pp. 293-315, Elsevier, 
September 2003  
 
[2] M. Pirretti, S. Zhu, N. Vijaykrishnan, P. McDaniel, M. Kandemir and R. Brooks, 
“The Sleep Deprivation Attack in Sensor Networks: Analysis and Methods of 
Defense”, Proc. Conference on Innovations and Commercial Applications of 
Distributed Sensor Networks, October, 2005 
 
[3] Victor Shnayder, Mark Hempstead, Borrong Chen, Geoff Werner Allen, and Matt 
Welsh, “Simulating the Power Consumption of Large-Scale Sensor Network 
Applications”, Proc. Conference on Embedded Network Sensor Systems, pp. 199 – 
200 , 2004 
 
[4] Prabal Dutta, Mike Grimmer, Anish Arora, Steven Bibyk, and David Culler, 
“Design of a Wireless Sensor Network Platform for Detecting Rare, Random, and        
Ephemeral Events”, Proc Fourth International Symposium on Information Processing 
in Sensor Networks  pp 497 – 502, IPSN 2005 
 

 [5] J. Deng, R. Han, S. Mishra, "A Performance Evaluation of Intrusion Tolerant 
Routing in Wireless Sensor Networks",Proc  IEEE 2nd International Workshop on 
Information Processing in Sensor Networks, 2003 
 
[6] A. Ledeczi, P. Volgyesi, M. Maroti, G. Simon, G. Baloga, A. Nadas, B. Kusy, and 
S. Dora. “Multiple Simultaneous Acoustic Source Localization in Urban Terrain” 
Proc Fourth International Symposium on Information Processing in Sensor Networks 
pp 491-496 IPSN, 2005 
 
[7] A. Sinha and A. Chandrakasan, "Joule Track - A web based tool for software 
energy profiling",  Proc. Design Automation Conf., pp. 220--225, June 2001 
 
[8] TinyOS Documentation, http://tinyos.net/tinyos-1.x/doc/  [last accessed - May 10, 
2006] 
 
[9] Chris Karlof,Naveen Sastry,David Wagner  , TinyOS Documentation 
http://www.tinyos.net/tinyos-1.x/doc/tinysec.pdf  [last accessed - May 10 , 2006] 
 
[10] Chris Karlof,Naveen Sastry,David Wagner - TinySec: User Manual, 
http://www.tinyos.net/tinyos-1.x/doc/multihop/multihop_routing.html [last accessed - 
May 10, 2006] 
 
[11]Tiny OS Resource on TinyOS.net MICA2 Radio Stack for TinyOS 
 http://www.tinyos.net/tinyos-1.x/doc/mica2radio/CC1000.html [last accessed - May 
10, 2006] 
 
[12]Avrora Simulator on UCLA web server 



 96 
 

  http://compilers.cs.ucla.edu/avrora/releases/avrora-beta-1.6.0.jar [last accessed - 
May 10, 2006] 
 
 
[13] Tiny OS Resource on TinyOS.net - Multi Hop Routing 
  http://www.tinyos.net/tinyos-1.x/doc/multihop/multihop_routing.html [last accessed 
- May 10, 2006] 
 
 
[14] Qinghua Zhang, Pan Wang, Douglas S. Reeves, Peng Ning 
“Defending against Sybil Attacks in Sensor Networks”,Proc International Conference 
on Distributed Computing Systems Workshops, pp 185-191, 2005  
 
[15] L. Hu and D. Evans, “Using Directional Antennas to Prevent Wormhole 
Attacks”, Proceedings of Network and Distributed System Security Symposium 
(NDSS), 2004 
 
[16] Chien – Liang Fok “Tiny OS Tutorial” 
http://www.cse.wustl.edu/~lu/cs520s/slides/tinyos_tutorial.pdf [last accessed - May 
10, 2006] 
 
 
[17] James Newsome, Elaine Shi, Dawn Xiaodong Song, Adrian Perrig, “The sybil 
attack in sensor networks: analysis & defenses”, Proc Information Processing in 
Sensor Networks, 259-268, 2004 
 
[18] Issa Khalil, Saurabh Bagchi, Ness B. Shroff, “A Lightweight Countermeasure for 
the Wormhole Attack in Multihop Wireless Networks”, Proc International Conference 
on Dependable Systems and Networks , pp. 612-621 , 2005 



VITA 

Karthikram Sheshachalam 

Candidate for the Degree of 

Masters of Science 

 

Thesis: ENERGY CONSUMPTION DURING ATTACKS AND 
               COUNTERMEASURES IN SENSOR NETWORKS. 

 

Major Field: Computer Science. 

 

Biographical:  

Personal Data:  Born in Coimbatore, India on June 28th, the son of  

                            Mr. V.G.Sheshachalam and Mrs.Renuka Sheshachalam 

 

Education: Obtained Senior High School Diploma from Stanes H.S.S, India in May 

1998. Received my Bachelors in Computer Science and Enggineering from 

Annamalai University,Annamalai Nagar, May 2002. Completed the requirements for 

Master of Science at Oklahoma State University, Stillwater, May 2006. 

 

Experience: Jan 2004 – Dec 2004 Para-Professional, Technology Operations, 

           Oklahoma State University, Stillwater. 

  

           Jan 2005 – Dec 2005 Graduate Assistant, CEAT Labs,  

                     Oklahoma State University, Stillwater. 

 

 
Name: Karthikram Sheshachalam                        Date of Degree: May, 2006 



 2 
 

 
Institution: Oklahoma State University              Location: Stillwater, Oklahoma 
 

Title of Study: ENERGY CONSUMPTION DURING ATTACKS AND 
                         COUNTERMEASURES IN SENSOR NETWORKS 

 
 

Pages of Study: 93                   Candidate for the Degree of Master of Science 
 
Major Field: Computer Science 
 
Scope and Method of Study: 
 Sensors have found several useful applications. Sensor Networks are 
formed with a number of small low cost sensor devices which connect 
wirelessly to gather data. A sensor has the ability to collect data from its 
surroundings and transmit to a central base station where it can be processed 
into meaningful information. These devices have limited power supply on 
deployment and cannot be replaced or renewed. Although many secure 
aspects of sensor networks have been proposed, little work has been 
reported on the impact of malicious attacks and countermeasures on the 
energy levels. Our study looks at some aspects of efficiency and power 
consumption during attacks and countermeasures. Decisions based on the 
data would enable the nodes in the network to take an optimum course of 
action to conserve power and prolong their life. 
 
 
Findings and Conclusions: 
 The attacks and countermeasures defined for Sensor Networks were 
designed and simulated using Avrora – a simulator and power analysis tool. 
The data gathered from this setup was analyzed and compared to find the 
best solution in defending a network. The results showed that only some of 
the countermeasures applied were economical with relation to power. Results 
showed that countermeasures for attacks such as Hello, Selective Forward 
and Sinkhole consumed more power than countermeasures to other attacks. 
This study also shows that attacks such as Hello and Spoof are more energy 
intensive than attacks such as Selective Forwarding, Sinkhole, Sybil and 
Wormhole Attacks. 
 
 
 
 
 
ADVISER’S APPROVAL:   Dr.Johnson P Thomas 
                                                             


