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PREFACE 

 

 As Real-time strategy (RTS) games become bigger and 

more ambitious, programmers search for more efficient ways 

to accomplish current tasks to leave more resources for 

introducing new features into the game.  One of the core 

routine tasks of this type of game is pathfinding for the 

units.  One optimizing technique is to use a steering 

behavior called flocking, which allows the path to be 

calculated for only one unit in a group.  As that unit 

moves toward its destination, the others flock together 

while following the leader.  Obstacles, however, can cause 

the group to break apart, leaving some units separated from 

others.  This paper addresses the problem by introduces 

some new tools for the units to allow them to stay 

together, even when navigating through obstacles.  These 

tools include concepts like chaining, memory, markers, and 

dynamic leadership. 
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CHAPTER I 

 

INTRODUCTION 

 

 As Real-time strategy (RTS) games become bigger and 

more ambitious, programmers search for more efficient ways 

to accomplish current tasks to leave more resources for 

introducing new features into the game.  One of the core 

routine tasks of this type of game is pathfinding for the 

units.  One optimizing technique is to use a steering 

behavior called flocking, which allows the path to be 

calculated for only one unit in a group.  As that unit 

moves toward its destination, the others flock together 

while following the leader.  Obstacles, however, can cause 

the group to break apart, leaving some units separated from 

others.  This paper addresses the problem by introduces 

some new tools for the units to allow them to stay 

together, even when navigating through obstacles.  These 

tools include concepts like chaining, memory, markers, and 

dynamic leadership. 

 



 2 

 Chapter 2 will highlight some recent trends in 

computer games and give a brief introduction to the 

elements of a real-time strategy game.  It will then 

discuss the background of flocking and how it is currently 

being integrated into modern games.  Lastly, some 

shortfalls with using flocking in an RTS context will be 

identified. 

 Chapter 3 will introduce some tools that can be used 

to help a group of units to navigate obstacles without 

losing cohesion.  After introducing each of the tools and 

discussing how they work, specifications of a sample 

navigation engine will be presented.  These specifications 

will be used to create a program that demonstrates the 

effectiveness of these tools in a 2-dimensional grid 

environment. 

 Chapter 4 discusses in detail the results of the 

demonstration program.  Two types of tests will take place.  

Validity tests will use a variety of maps to test whether 

these tools are effective in different type of situations.  

Performance test will use a specific map scaled to 

different sizes to measure the elapsed time for each update 

cycle. 

 Chapter 5 will recap the thesis as a whole and 

identify some areas where further study can be conducted. 
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CHAPTER II 

 

BACKGROUND 

 

Recent Developments in Computer Game Technology 

 

 One of the most rapidly growing industries is the 

video gaming industry, which is now even bigger than the 

motion picture industry [Fairclough1].  Developments in 

computer graphics technology in the last decade has given 

game developers the tools to create 3-dimensional 

environments with realistic characters and backgrounds.  

The introduction of the accelerated graphics port (AGP) to 

PCs in 1997 made a provision for a graphics card to access 

PC resources more quickly [Bolkan1].  Development of the 

graphics processing unit (GPU) and standardized graphics 

routines supported by hardware has significantly reduced 

the processing load on the central processing unit (CPU) of 

personal computers (PCs).  The first GPU was the GeForce 

256 chip developed by NVidia in 1999 [Vederman1].  Game 

developers are using some of the newly found spare CPU 
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power to increase a video game’s realism by improving the 

artificial intelligence (AI) coding for the computer 

characters.  Recent developments in AI in the computer 

gaming arena has resulted in computer characters that move 

and act “smarter” that their predecessors.  Flocking has 

enhanced video games by providing groups of background 

units that move naturally, which adds to the realism of the 

“virtual world” being created by game developers 

[Sweetser1].  Another enhancement provided by flocking is 

natural movement of computer-controlled  or player-

controlled characters, which also increases the realism of 

the digital world being created. 

 

Real-Time Strategy Games 

 

 One specific genre of computer games that is highly 

dependent of its AI coding is the real-time strategy (RTS) 

game.  In this type of game, the player takes the role of 

commander, the person in charge of a number of units 

displayed on the screen.  The player has a list of 

objectives to fulfill and can use any or all of the units 

he commands to complete those objectives.  An aspect that 

separates RTS gaming from other genres is the method used 

to move a unit.  In a first-person simulator, the player 
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explicitly controls all actions of a specific unit, 

including the path taken to a specific destination.  In an 

RTS game, the player issues a command to a unit or units to 

move to a specific location, but the player does not 

specify the path to be taken.  That responsibility is 

assumed by the game engine, which calculates a path for the 

units to be moved.  Typically, all the player does is to 

select the units to be moved and specify a destination for 

those units, and the game takes care of determining the 

path used to actually move the units from their current 

location to their destination.  Thus pathfinding plays a 

central role in this type of game. 

 Pathfinding is not a new concept in computer games 

[Tozour1].  The old “classic” computer games like Pac-Man 

used pathfinding to navigate the ghosts toward Pac-Man.  

Computerized chess games also uses pathfinding to evaluate 

the board and choose the next move for the computer-

controlled player.  However, these games do not face the 

constraints that today’s RTS games have.  Even though the 

ghosts chasing Pac-Man uses pathfinding in real-time, Pac-

Man’s movements are explicitly controlled by the player.  

If the player presses up on the joystick, Pac-Man moves up.  

If the player presses down on the joystick, Pac-Man moves 

down.  In chess, the player directly controls all movements 
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of his players.  The computer uses pathfinding to calculate 

moves for computer-controlled players, but the response 

time can take up to hours or even days.  In an RTS game, 

not only does the computer use pathfinding to calculate a 

path for units that a player commands to move, but it must 

be done in a timely fashion to prevent a delay in a “real-

time” environment.  In this type of game, the response time 

should be less than 1/10 of a second.  If a player wants to 

move a single unit to a specific destination, then this 

time restriction may not be much of an issue.  However, if 

the player wants to move a large number of units to a 

specific destination, then the time restriction may become 

a serious issue. 

 In real-time environments, there may not be sufficient 

time to calculate the best path for the units to be moved 

to a destination.  When this happens, two options are 

available.  The first option is to find the optimal path 

regardless of time requirements, which leads to periods of 

delay in the game cycle.  Although this delay allows 

optimal path calculation to be completed, it becomes an 

annoyance and a source of aggravation to the player because 

the RTS is not “responding” to the player’s commands within 

an acceptable period of time.  The other alternative is to 

compromise the quality of the path in the interest of 
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saving time.  This solution allows the RTS to be more 

“responsive” to the player’s commands but may not yield an 

optimal path.  In some cases, this solution may not result 

in a path that leads to the destination at all.   

 A variation of flocking has an opportunity to address 

this problem because it requires a path to be calculated 

only for the leader.  In this scenario, when a player 

selects a group of units to move to a destination, one of 

the units would be designated the leader, while the other 

units are the followers.  When the player gives the order 

for the group to move to a specific destination, the path 

is calculated for the leader, but the followers flock 

behind the leader.  This method reduces path-calculating 

time by an order of magnitude because the path does not 

have to be calculated for every unit moving to the 

destination.  This savings in calculation time can be used 

to either increase the quality of the path found, support 

larger maps, support more units or players, etc. 

 

History of Flocking 

 

 Flocking was a concept proposed by Craig Reynolds over 

15 years ago [Reynolds1].  The basic idea was to use a set 

of simple rules to give a group of autonomous characters 
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lifelike movement patterns.  His demonstration was to 

simulate the flocking patterns of birds.  Flocking 

afterwards branched off into a number of different 

directions.  Reynolds also addressed flocking in "Steering 

Behaviors for Autonomous Characters" [Reynolds2].  This 

paper conceptually described numerous steering behaviors 

and how they can be used to make a group of objects move in 

a lifelike manner.  In the film industry, flocking is used 

to give groups of artificially generated characters 

lifelike movement.  One of the first motion pictures to use 

flocking for computer-generated characters is Batman 

Returns.  Today, flocking is a popular tool for providing 

navigation for artificial characters.  Jim Pugh and 

Alcherio Martinoli from the Califonia Institute of 

Technology is currently applying flocking to robots 

[CORO1].  The University of Reading has applied directed 

flocking to robots [Reading1].  These robots move like a 

flock and follow a designated leader.  Flocking has also 

been used for research into exploration.  Texas A&M 

University produced a technical report describing the 

implementation of other steering behaviors used with 

flocking by sharing each flockmate's knowledge with the 

rest of the flock  [Bayazit1].  Thomas G. Grubb has created 

a demo in 2001 that implements formation into flocking 
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[Grubb1].  Formation flocking differs from standard 

flocking in that, instead of each flockmate attempting to 

move towards the leader, each flockmate attempts to 

maintain a position relative to the leader.  George Mason 

University collaborated with the GMU Center for Social 

Complexity to develop MASON, which is a library of 

simulations.  Among these simulations is WOIMS, a flocking 

simulation applied to worms, and WOIMS in 3D, a flocking 

simulation applied to worms in 3-D space [MASON1].  A 

number of game companies today are also applying flocking 

to their computer games [Fairclough1].  Among these 

companies are Epic, Sierra, and Winward Studios [DeLoura1].  

Epic created the game Unreal, which used flocking for many 

of its computer-controlled characters.  The game Half-Life, 

done by Sierra, used flocking in a similar fashion.  

Winward Studios' Enemy Nations uses a type of formation 

flocking for characters. 

 A new area of study began in 1995 when social-

psychologist James Kennedy and electrical engineer Russell 

Eberhart used principles similar to flocking to develop 

algorithms to find the best solution in a solution space 

[Pomeroy1].  Named Particle Swarm Optimization (PSO), this 

concept is based, not on factors modeled after behavior, 

but on factors modeled after sociality [Corne1].  While 
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this area of study is still very young, it shows great 

promise in its ability to optimize binary problems, even 

more so than genetic algorithms [Kennedy1].  More 

information on PSO is available in the Morgan Kaufmann book 

entitled Swarm Intelligence.  

 

Components of Flocking 

 

 The ability to direct the path of computer-generated 

characters in a natural manner has been a subject of 

discussion for some time.  After all, what good is a 

realistic-looking character if the path that the character 

takes looks blatantly artificial?  The concept of flocking 

was submitted by Craig Reynolds in 1987.  This paper 

proposed that the flocking behavior of birds could be 

simulated by using three principles, which were separation, 

alignment, and cohesion.  

 Separation requires 

that the birds in a flock 

maintain a minimum distance 

from each other (Fig. 1).  

This rule prevents multiple 

birds from occupying the 

same space. 

Figure 1:  Separation rule 
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 Alignment allows a bird 

in a flock to match the 

heading of nearby birds in 

the same block (Fig. 2).  

So, a bird goes in the same 

general direction as the 

other birds in the same 

flock. 

 Cohesion is a rule 

that causes birds to move 

towards the other birds in 

a flock (Fig. 3).  This 

rule prevents birds from straying too far from the flock. 

 A fourth rule that was not originally included in 

flocking was added by Reynolds at a later date.  This rule, 

called avoidance, causes 

birds to avoid static 

obstacles (Fig. 4). 

 The combination of the 

above three principles 

governs the movement of a 

computer-generated flock of birds by instructing the 

members of that flock to head in the same general direction 

and speed as the other members of the same flock while 

Figure 2:  Alignment rule 

Figure 3:  Cohesion rule 

Figure 4:  Avoidance rule 
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maintaining a certain distance from their flockmates 

without straying too far from them.  The result is a 

completely artificial flock that moves in a surprisingly 

realistic manner. 

 The flocking model takes place in 3-dimensional space, 

which is appropriate for describing the movement patterns 

of a flock of flying birds.  The position of each member of 

a flock is described with a 3-dimensional coordinate (x, y, 

z).  Movement of a flock member from one position to 

another is managed with a 3-dimensional vector (x, y, z).  

Changes in a flock member’s vector are managed with three 

steering behaviors, which include roll, pitch, and yaw.  

Roll refers to a bird’s rotation about the Z-axis.  Pitch 

describes the bird’s rotation about the X-axis, and yaw 

describes the bird’s Y-axis rotation.  When a vector of a 

flock member changes, that change is made using these three 

steering behaviors. 

 To achieve some sense of realism in flocking, some 

limitations were implemented.  Each member of a flock has a 

limited “sight” for locating local flockmates.  Because a 

flock member’s velocity changes is based on the location 

and velocity of nearby local flockmates and not on every 

member of the flock, variations in velocity are possible 

within a flock and do occur frequently. 
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 Another limitation is a flock member’s change in 

velocity, or acceleration.  Allowing a flock member to make 

sharp changes in speed or direction fulfills the 

requirements of the three principles of flocking, but it 

does not produce “natural movement”, as birds do not 

instantly make a 180-degree turn or double its speed. 

 While this model was originally designed to mimic the 

movement patterns of birds, it is not used just for birds.  

A variety of animals including fish and penguins have been 

digitally animated in natural flock formations by using 

flocking. 

 Flocking has proven to valuable in the motion picture 

industry, which is increasingly using computer-generated 

characters in its films.  Computer technology, particularly 

graphics, has reached a point which allows multitudes of 

background characters or objects to be digitally created, 

which significantly reduces the cost of making a motion 

picture by removing the need to physically construct props 

or hire extras at epic proportions.  The challenge, now, is 

to make the digitally created actors to give a realistic 

performance so that they would be perceived as actual movie 

characters rather than computer-generated puppets.  In 

terms of moving large numbers of characters from one place 

to another, flocking has the ability to fulfill this role.  
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By setting up a 3-dimensional world that is modeled after 

the physical world appearing in a movie scene and setting 

up a number of computer-generated characters with an 

initial velocity, the flocking algorithm can move the 

digital characters from one place on the digital set to 

another in a natural-looking manner.  An example of this 

type of technique was used to navigate a flock of rocket-

armed digital penguins from one place to another in the 

movie Batman Returns. 

 

Problems with Flocking 

 

 There is a significant obstacle 

to using the flocking method to 

navigate units from their current 

position to their destination.  The 

obstacle to flocking is . . . 

obstacles.  While 

flocking is an 

effective steering tool in open areas 

(Fig. 5, 6), it has not originally been 

designed to deal with static obstacles, 

and, when the avoidance rule was 

Figure 5:  Start - flocking 
without obstacles 

Figure 6:  Finish - 
flocking without obstacles 
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implemented, it worked by causing members of the flock to 

split apart to avoid the obstacle.  Flocking was not meant 

to deal with crossing a bridge or navigating through a 

series of tunnels.  An algorithm closely based on the 

flocking method would usually handle these types of 

obstacles by changing the vectors of the units to avoid 

these obstacles while maintaining some speed.  The result 

would be a small number of units that successfully 

navigated through the obstacle and a 

large number of units that evaded the 

obstacle by steering away from it, 

separating themselves from the leader.  

These remaining units would wander 

aimlessly within flock formation 

because they lost contact with the 

leader.  In figure 8, all but one of the units eventually 

reached the leader after many of them 

wandered around the map while the 

opening was blocked by other units, 

but 30 to 45 extra seconds of 

wandering around the map is not a 

desirable feature to have in a real-

time game setting.  In some types of 

Figure 7:  Start - flocking 
with obstacles 

Figure 8:  Finish - 
flocking with obstacles 
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maps, the leader may be the only unit that reaches the 

destination, leaving the other units stranded.   
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CHAPTER III 

 

PROPOSAL 

 

Tools for Obstacle Management 

 

 This paper introduces four tools to address obstacle 

management in an RTS context:  chaining, memory, navigation 

markers, and dynamic leadership.  These tools were devised 

to address two major problems that would cause a flock to 

not reach its destination.  The first problem is a follower 

blocking the leader, and the second is a follower that has 

lost contact with the leader.  The forms that these two 

problems take in an RTS game are described below. 

 To address this problem, the different types of 

scenarios related to encountering an obstacle must be 

identified.  The solution to each of these scenarios would 

serve as a supplemental tool that can be applied to the 

flocking model to yield a model more suitable for 

simulating the movement patterns of people through terrain 

that includes obstacles.  This project deals with three 
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types of obstacles.  They are congestion, loss of contact 

with leader, and leader blocked by follower. 

 Congestion refers to a 

bottleneck type of 

obstacle.  When a large 

number of moving units 

encounter a narrow 

passageway to cross, only a 

few of the units can cross 

the obstacle at a time (Fig. 9).  This creates a bottleneck 

effect, where numerous units cannot proceed until the units 

in front of them have crossed the obstacle.  The standard 

flocking method would change the vector of the units which 

are unable to cross the obstacle right away so that they 

would avoid the obstacle altogether.  While the avoidance 

rule of flocking is satisfied, the units have moved “off 

course” from the leader and become separated.  The solution 

to this problem is to tweak the avoidance rule to limit the 

angle of deviation from an obstacle and allow the speed of 

the units to reach 0 when an obstacle is encountered that 

cannot be avoided without losing contact with the leader.  

Implementing these two changes to the avoidance rule 

results in a flock whose members wait at the bottleneck for 

an opening to navigate instead of a flock whose members 

Figure 9:  Congestion obstacle 
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evade the bottleneck obstacle entirely when they cannot 

cross the obstacle right away. 

 Loss of contact with leader is a more complicated 

problem to solve.  This is the scenario in which a leader 

encounters an obstacle and 

maneuvers around it (or 

through it).  By doing so, 

the followers lose sight of 

the leader because the 

leader is now on the other 

side of the obstacle, 

through which the followers cannot see (Fig. 10).  Without 

the leader, the followers become lost and begin to flock 

aimlessly through the map.  Three tools are introduced to 

address this problem. 

 The first tool to address the loss of contact with 

leader problem is to store 

with each flock member the 

ID of the flock member it 

is following.  By default, 

all followers are following 

the leader.  So the 

leader’s ID is stored with 

Figure 10:  Loss of contact with leader obstacle 

Figure 11:  Chaining solution 
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each follower as the ID of the flock member being followed.  

When a follower loses sight of the leader, the follower 

checks the flock members it can see to find out who they 

are following (Fig. 11).  When a follower finds another 

flock member who is directly or indirectly following the 

leader, that flock member’s ID is stored as the ID of the 

flock member the “lost” flock member is following.  

Although, in real life, a person cannot determine just by 

looking that person A is following person B, who is 

following person C, who is the out-of-sight leader, using 

this method still produces a natural-looking result. 

 The first tool works unless a flock member has lost 

contact with all other members of the flock.  In this case, 

the unit cannot follow 

anyone else because it 

cannot see anyone else.  So 

a second tool is deployed 

to give that “lost” unit a 

chance to reacquire contact 

with the other flockmates.  

This tool is to create a 

memory unit that represents the last known location of the 

last member the lost unit was following (Fig. 12).  The ID 

of the memory unit is stored with the lost unit so that the 

Figure 12:  Memory solution 
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unit can follow what it “remembers” to be the last location 

of the unit it was following until it reaches that 

location.  The memory unit is created when a flock member 

becomes lost and is destroyed when the flock member reaches 

the location.  This tool also yields results that appear 

natural and can be quite effective for navigating around 

corners of obstacles. 

 The first two tools provide an effective method for 

followers to maintain contact with the leader and, 

ultimately, arrive at the leader’s destination with the 

leader.  However, both of these tools fail if a unit has 

lost contact with all other units and cannot reacquire 

contact with them after navigating to their last known 

position.  The last resort for these lost units to find 

their way to the leader is for the leader to leave a trail 

for the lost units to follow.  This is implemented by the 

creation of a list of 

waypoint markers placed by 

the leader for the units to 

find when they become lost.  

Not every space in the 

leader’s path has to be 

marked; only the ones where 

the leader changes direction requires marking.  The markers 

Figure 13:  Navigation marker solution 
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are indexed to indicate the relative position of the 

location in the leader’s path (Fig. 13).  So, followers who 

are lost and cannot find anyone to follow can follow these 

markers to the leader’s destination, where the unit 

reunites with the rest of the flock.  This tool does not 

produce natural-looking results because it is not 

reasonable for a lost unit to be able to find its way to 

the leader on its own in the most efficient manner 

possible.  However, this tool may be required in the RTS 

gaming context because players should not be expected to 

baby-sit lost units and herd them back to the flock.  In 

RTS games, the player must rely on the units ability to 

reach a destination, even if natural movement has to be 

sacrificed. 

 Leader blocked by 

follower is a scenario that 

can be encountered in a 

number of situations, which 

includes fighting in 

battles, encountering 

obstacles, or changing a destination.  Regardless of what 

may cause a leader to be blocked by one of its followers, 

the result is a leader who cannot reach a destination 

because the path is blocked by one or more of its followers 

Figure 14:  Leader blocked by follower 
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(Fig. 14), and the followers do not move because their 

objective is to stay with the leader.  To address this 

problem, 2 additional designations are added to the list of 

possible designations for each unit.  When a leader becomes 

blocked by a follower, the leader’s designation changes 

from leader to temporary follower, and the unit blocking 

the leader changes its 

designation from follower 

to temporary leader (Fig. 

15).  The ID of the 

temporary leader is stored 

with the temporary follower 

to make the original leader 

follow the new leader.  The temporary leader then receives 

knowledge of the path to be taken and follows that path 

until it reaches the destination or is blocked by another 

follower. 

 

Implementation:  Building a Sample Navigation Engine 

 

 To test the modifications to flocking, a generic RTS 

flocking engine is constructed.  It basically is a finite 

state machine (FSM) that cycles continuously.  This FSM is 

significantly less-sophisticated than a full-scale game 

Figure 15:  Dynamic flock leadership 
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engine, which would include other elements, such as teams, 

objectives, unit statistics, unit creation, unit actions, 

etc.  However, this model is sufficient for demonstrating 

the effectiveness of chaining, memory, navigation markers, 

and dynamic leadership for navigating a flock from one 

location on the map to another.  During each cycle, the 

state of each unit is checked.  Based on that state, a set 

of instructions runs to update the unit on the screen.  The 

screen displays a map, which represents the “world” in 

which the units move.  It is a 2-dimensional map with a 

predefined width and height.  The units are not allowed to 

move beyond the boundaries of the map.  The map also 

contains obstacles, which represents impassable terrain.  

The units are not allowed to pass through obstacles, 

either.  This engine also contains a destination, which is 

a location to which all units are to go. 

 

Ingredients of the engine 

 

Map The map is a rectangular region in which the units are 

located.  Maps have a predefined width and height, which 

defines the boundaries for unit locations.  Units are not 

allowed to navigate beyond the boundaries of the map.  

Locations are referenced in this region using a 2-
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dimensional coordinate (x,y).  The unit of measure using 

map coordinates is map units.  The following pieces of data 

govern the map: 

 - width(integer):  This number determines the width of 

the map in number of map units. 

 - height(integer):  This number determines the height 

of the map in number of map units. 

 - map(dynamic integer array):  This structure is a 

representation of the map with each coordinate occupying a 

location in the array.  The size of the map is equal to the 

width of the map times the height of the map times the data 

type of the array.  In this case, an integer is being used, 

but other data types can be used, depending on the 

requirements of the engine. 

Static Obstacles Static obstacles are locations on the map 

that are not passable.  Impassable terrain is commonly used 

in RTS games to make games more interesting and add more 

elements to strategy component of an RTS game.  Impassable 

terrain can represent anything including oceans, mountains, 

forests, caverns, space, etc.  In this exercise, an 

obstacle is defined by the map coordinate it occupies.  The 

obstacle completely fills the region defined by the map 

coordinate, which is 1 map units2.  Units are not allowed to 

occupy this location, nor are they allowed to move 
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diagonally around this location.  The following pieces of 

data governs static obstacles: 

 - map(offset):  This location is an offset of the map 

structure defined by the parameters of the map.  The value 

in this structure determines whether or not an obstacle 

occupies this location.  In this exercise, a value of 0 

indicates passable terrain, and a value of 1 indicates 

impassable terrain. 

Destination The destination is a location on the map to 

which all units are to move.  In an RTS game, this is a key 

component in the standard user interface cycle.  The cycle 

consists of:  1) Select units to move, and 2) Select a 

destination for the units.  The location of the destination 

can be any location inside the boundaries on the map, as 

long as it is not also the location of an obstacle.  

Destinations are governed by the following pieces of 

information: 

 - xdestination(integer):  This integer represents the 

x-coordinate of the destination on the map. 

 - ydestination(integer):  This integer represents the 

y-coordinate of the destination on the map. 

Path A path is a list of coordinates to follow for 

navigation from a unit's current location to its 

destination.  Pathfinding is one of the most important AI 
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components in an RTS game and can also be one of the most 

resource-intensive operations.  A popular choice for 

constructing a pathfinder for an RTS game is A*, which is 

used in this exercise to find a path from the destination 

to the leader.  The following pieces of data are used to 

operate the pathfinding component of this program: 

 - pathnode structure 

  - x-coordinate(integer):  This integer represents 

the x-coordinate of the map location being examined for 

pathfinding. 

  - y-coordinate(integer):  This integer represents 

the y-coordinate of the map location being examined for 

pathfinding. 

  - previous pathnode(pathnode pointer):  This 

pointer points to the location on the map from which the 

current location is reached.  This field is used to 

navigate the leader to the destination after a route to the 

destination is found. 

  - g-cost(float):  This number represents the 

movement cost from the destination to the current node 

being examined. 

  - h-cost(float):  This number represents an 

estimate of the movement cost from the current position to 
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the leader.  Both g-cost and h-cost is used to find the 

shortest possible path from the destination to the leader. 

Units Units are the computer characters that are controlled 

by a player in an RTS game.  Common type of commands that a 

player can issue to a unit is to move, attack, defend, 

hide, use special abilities, etc.  For this exercise, the 

move command is processed.  These units move from their 

starting location on the map toward the destination.  Their 

shape is a regular octagon with an apothem of 0.3 map 

units.  One unit can move diagonally around another unit, 

but it cannot move diagonally around an obstacle.  Because 

units have state information, they require more attention 

when coding to manage the state transisions.  Here is the 

information associated with each unit: 

 - unit structure 

  - x-position(float):  This number represents the 

current animated x-coordinate of the unit on the map. 

  - y-position(float):  This number represents the 

current animated y-coordinate of the unit on the map. 

  - from-x(integer):  This integer represents the 

x-coordinate on the map from which the unit is moving to 

its next location. 
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  - from-y(integer):  This integer represents the 

y-coordinate on the map from which the unit is moving to 

its next location. 

  - to-x(integer):  This integer represents the x-

coordinate on the map to which the unit is currently 

moving. 

  - to-y(integer):  This integer represents the y-

coordinate on the map to which the unit is currently 

moving. 

  - designation(character):  This character 

represents the current designation of the unit.  The 

designation of the unit influences how it behaves. 

   - L:  leader 

   - l:  temporary leader 

   - F:  follower 

   - f:  temporary follower 

   - M:  memory (special units only) 

   - N:  navigation marker (special units only) 

  - status(character):  This character represents 

the current status of the unit.  The status of the unit 

determines what action it takes next. 

   - N:  idle 

   - M:  moving 

   - B:  blocked 
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   - L:  lost 

  - unit's leader(unit pointer):  This pointer 

indicates what this unit is following.  Initially, it 

follows the leader but can change to another follower, the 

memory of a leader or follower's location, or even markers 

left by the leader. 

  - next unit(unit pointer):  This pointer 

indicates the next unit in the unit list.  This list is 

constructed at the beginning of program execution from 

units loaded from the unit file. 

 

Unit state information 

 

Designations The leader is the one unit on the screen that 

has global knowledge of the map and the path required to 

reach a destination.  This unit navigates exclusively 

according to the path that leads that unit to the 

destination.  A leader can become a temporary follower if 

it is blocked by a follower (Fig. 16). 

 The followers are units that do not have global 

knowledge of the map, nor do they have knowledge of the 

path that the leader is taking.  To reach the destination, 

they are dependent on guidance from the leader.  These 

units navigate according to the RTS directed flocking 
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guidelines.  A follower can become a temporary leader if it 

blocks a leader or a temporary leader. 

 A temporary follower is what a leader becomes after it 

has been blocked by one of its followers and passes 

leadership status to that unit.  When a leader becomes a 

temporary follower, it no longer has global knowledge of 

the map or the path required to reach the destination.  It 

uses RTS directed flocking to follow the new leader to the 

destination.  A temporary follower can become a leader 

again if it blocks a temporary leader. 

 A temporary leader is a follower that has blocked a 

leader or a 

temporary leader 

and has received 

leadership status 

from them.  A 

temporary leader 

has global 

knowledge of the 

map and the path 

calculated to 

reach the 

destination.  It navigates to the destination the same way 

that the original leader did, which was by following the 

Figure 16:  Unit designation state diagram 

L:  Leader l:  Temporary Leader 
F:  Follower f:  Temporary Follower 
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calculated path.  A temporary leader can become a follower 

again if it is blocked by a follower. 

 Special units are not really units.  They describe a 

location but do not have a physical shape or size.  They 

are more like navigation points used to aid lost followers.  

Two types of special units are being used in accordance 

with RTS directed flocking to help followers that need it. 

 Memory units are special units that represent the last 

known location of a unit that the lost unit was following 

before contact was lost.  Memory units are dynamically 

created when the follower lost contact with the unit it was 

following and assigned as the unit to follow.  So the 

follower goes to where it last saw the unit it was 

following.  When the follower reaches the memory unit, the 

memory unit is destroyed, and the follower attempts to 

reestablish visual contact with other units. 

 Marker units are special units that represent a 

direction change made by the leader.  When a leader changes 

direction, it dynamically creates a marker for lost 

followers to find.  If necessary, the followers can follow 

the trail of markers all the way to the destination, 

although it may look a bit unnatural.  These markers are 

not destroyed in this program until the program exits, but, 
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in a game, a marker can be destroyed after all units have 

passed it while moving towards the destination. 

Statuses Idle units either are at their initial state or 

have just completed a move from one location to the next.  

The next action for an idle unit is to determine its next 

move.  If it can find a move to make, its status changes 

from idle to moving (Fig. 17).  If all possible moves are 

blocked by other 

units, its status 

changes to blocked.  

If it has lost 

contact with all 

other units, has 

reached the memory 

unit, and cannot find 

any other units or 

markers, its status 

changes from idle 

to lost. 

 Moving units are currently in motion from its previous 

position to its next position.  The unit's current position  

progressively changes from its previous location to its 

next location until the new position is reached.  Once the 

Figure 17:  Unit status state diagram 

I:  idle  M:  moving B:  blocked L:  lost 
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unit reaches its new location, its status changes from 

moving to idle. 

 Blocked units cannot move to its next position because 

it is blocked by other units.  These units continue to 

search for moves that it can make.  Once a move becomes 

available, its status changes from blocked to moving. 

 Lost units have lost all contact with the flock and 

currently do not know which direction to go.  They can 

either continue to move based on its own movement behavior 

as a flock of one unit, or it can maintain its current 

position.  Lost units continue to be lost until contact is 

established between that unit and other unit, in which case 

its status would change from lost to moving or blocked, 

depending on whether a move is available.  For this 

exercise, no unit should reach this status. 

 

Tasks of the engine 

 

 The above components of the engine keep track of some 

aspects of an RTS game, like map size, map obstacles, 

number of units, location of units, group leader, and 

destination.  What makes these pieces function are the 

different chores that the RTS engine does to continually 

update the properties of these pieces. 
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Pathfinding Pathfinding is a core element in an RTS game.  

It interprets a player’s request to move a set of units 

from location to another as a list of paths for the units 

to follow to fulfill that request.  In this program, one 

path is calculated from the leader’s location to the 

destination, which takes place when the user presses the 

start key. 

 The pathfinding algorithm used for this exercise is 

A*.  This algorithm is popular among computer game 

programmers because of its ease of use.  At the core of A* 

is the concept of estimating a movement cost from a given 

position to its goal.  We call this cost h, which is 

calculated by a heuristic function.  In this exercise, h is 

simply the distance from the given position to the 

destination.  Another type of movement cost used in A* is 

the cost of moving a unit from the start position to a 

given position.  This cost is called g.  In this program, g 

is the total distance traveled to reach the current 

position.  It is not necessarily the distance between the 

current position and the start position.  So, two costs can 

be associated with every position on a map.  The cost of 

moving a unit from the start position to a specific 

location on a map, and the estimated cost of moving that 

unit from there to its destination.  The sum of these two 
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costs gives the total cost of the unit's trip from start to 

destination (f). 

 A* uses a collection of nodes to represent movement 

cost for any location on the map.  Each node contains a map 

position, the accumulated movement cost so far (g), the 

estimated cost for the rest of the trip to the destination 

(h), and a pointer to another node from which this node was 

reached.  Two lists are used in this algorithm.  The open 

list contains nodes on paths that have not yet been 

explored, and the closed list contains nodes on paths that 

have already been explored.  For each iteration of A*, a 

node is selected from the open list for examination.  The 

algorithm checks if the node represents the location of the 

destination.  If so, a path from the starting location to 

the destination has been found, and A* stops.  Otherwise, 

possible locations from the location being examined are 

added to the open list as new nodes.  For each new node 

created, cost information is calculated.  The current node 

being examined is also assigned as the previous node for 

all the new nodes created because those new locations are 

reached from the current one.  Possible locations for the 

creation of new nodes are positions adjacent to the current 

position.  That is, from a given position, a unit is 

allowed to move 1 space up, down, left, right, or 
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diagonally.  A node selected from the open list for 

examination is placed into the closed list. 

 The next node to be selected from the open list 

depends on the estimated total cost stored on the node.  

The goal is to pick the most direct route from the starting 

location to the ending location.  Such a path would have a 

minimal movement cost.  So, the next node to be picked from 

the open list would have the smallest sum of g and h. 

 Obstacles or boundaries can be an issue with 

pathfinding because choosing a path through in immovable 

obstacle is not a desired result.  One solution to this 

problem would be to add a cost penalty if the location 

being examined is the location of an obstacle or if it is 

out of bounds.  By placing an excessively high cost on 

making such a move when that node is created and placed 

into the open list, the other nodes in the list that do not 

make such illegal moves is examined first. 

A* algorithm [Nilsson1]: 

 1)  Create a search graph G, consisting of the start 

node.  Place the start node in the OPEN list. 

 2)  Create a CLOSED list that is initially empty. 

 3)  If the OPEN list is empty, exit with failure.\ 

 4)  Select the first node on OPEN, remove it from 

OPEN, and put it on CLOSED.  Call this node n. 
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 5)  If n is the goal node, exit with success.  The 

solution is a path traced from the current node back to the 

start node using the previous node pointers. 

 6)  Expand node n, creating the set M of its 

successors.  Install these members of M as successors of n 

in G. 

 7)  Establish a pointer to n from each of those 

members of M that were not already in G.  Add these members 

of M to OPEN. 

 8)  Reorder the OPEN list in order of increasing f 

values.  (Ties are broken in favor of deeper nodes in the 

search tree). 

 9)  Go to step 3. 

Movement calculation Calculating a units next move is 

driven by the RTS directed flocking rules based from 

Reynolds flocking rules but modified for an RTS game 

setting for obstacle management.  Each rule calculates a 

weighted vector for calculating the next direction for a 

follower to move.  After all calculations are completed and 

averaged, the new direction is assigned to the follower. 

 Separation acts a force field that repels one unit 

from another, maintaining a minimum distance between them.  

RTS directed flocking allows one unit to be adjacent to 

another.  For this exercise, the only type of separation 
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required is that the two units to not collide with each 

other.  For that reason, the separation rule is implemented 

in the code for the avoidance rule.  Thus nearby units and 

obstacles is both treated the same way. 

 Alignment works almost like a compass.  For this rule, 

a unit looks for nearby units.  For each unit found within 

a specified range of the unit performing the alignment 

calculation, its current heading is added to a vector 

accumulator.  For a blocked or lost unit, eligible units 

are units within a specified distance of that unit that are 

not obstructed by an obstacle.  After all eligible units 

are scanned, their headings are averaged.  The resulting 

vector is weighted and used to calculate the vector to be 

assigned to the unit. 

Alignment algorithm: 

 1) Initialize totalalignment_vector 

 2) For each unit in the flock 

 3)  If distance of unit to current unit < 

MAXALIGNMENTDISTANCE 

 4)   If (unit's status is not blocked and not 

lost) 

 5)   Calculate vector from unit's previous 

position to next position. 

 6)   Add vector to totalalignment vector 
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 7)  End if 

 8) End if 

 9) End for 

 Cohesion works similarly to alignment, except that 

instead of averaging the headings of all nearby units, the 

vectors from a given unit to the nearby flockmates are 

averaged, giving a vector toward the average position of 

the units that the given unit saw.  Instead of moving in 

the same direction of the flock, this rule causes a unit to 

move towards the flock. 

Cohesion algorithm: 

 1)  Initialize totalcohesion vector 

 2)  For each unit in the flock 

 3)  If distance of unit to current unit < 

MAXCOHESIONDISTANCE 

 5)  Calculate vector from current unit's current 

position to unit's current position 

 6)  Add vector to totalcohesion vector 

 7)  End if 

 8)  End for 

 Follow the leader is a rule added for directed 

flocking.  This rule calculates the vector from a given 

unit to a leader, as long as the leader is within visible 

range of the given unit and not hidden by any obstacles. 
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Follow the leader algorithm: 

 1) Initialize followtheleader vector 

 2) If distance of leader to current unit < 

MAXLEADERDISTANCE 

 4) Calculate vector from current unit's current 

position to leader's current position 

 5) Add vector to followtheleader vector 

 6)  End if 

 After vectors for alignment, cohesion, and follow the 

leader are calculated, the vectors are weighted and 

averaged.  The resulting vector is used to assign the next 

space to which a given unit moves.  This vector is weighted 

most heavily on follow the leader because contact with the 

leader is required to reach a destination.  Cohesion takes 

second priority, which keep a group of units together.  

Alignment is given the lowest priority, and can be used 

make movement look more natural for units that are already 

in close proximity to each other and have contact with the 

leader. 

 After the directional vector is calculated for a unit 

attempting to make a move, it is translated to an angle 

that is used to determine a direction that the unit can 

attempt to make.  The resulting direction can still be 

modified by the avoidance algorithm if the direction takes 
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the unit into an obstacle or another unit.  The angle to 

direction translations are as follows: 

 - 339 - 360 degrees, 0 - 22 degrees:  East 

 - 23 - 67 degrees:  Southeast 

 - 68 - 113 degrees:  South 

 - 114 - 158 degrees:  Southwest 

 - 159 - 203 degrees:  West 

 - 204 - 248 degrees:  Northwest 

 - 249 - 293 degrees:  North 

 - 294 - 338 degrees:  Northeast 

 Avoidance functions more like an overriding factor 

than a weighted factor in RTS directed flocking.  After a 

new space is calculated for a unit, that new space is check 

for obstacles or flockmates.  If either are found, then the 

new space becomes invalid for the given unit, and alternate 

spaces are checked for obstacles.  Units are permitted to 

deviate from –90 degrees to +90 degrees from the new vector 

to find an available space to move.  If a space is found, 

then that space becomes the next space for the unit.  

Otherwise the unit becomes blocked and continues to check 

for an opportunity to move to the next space. 

Avoidance algorithm: 

 1) While (next position occupied by obstacle or 

another unit) and (vector from current position to next 
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position deviates from unit's directional vector by less 

than 90 degrees) 

 2)  Next position = <next closest possible move to 

unit's directional vector 

 3) End while 

 4) If (vector from current position to next position 

deviates from unit's directional vector by 90+ degrees) 

 5) Unit's status = blocked 

 6) End if 

Animating Moving a unit provides a smooth motion for units 

moving from one space to another.  A single movement cycle 

moves a unit 1/10 of the distance between the unit’s 

previous space and the unit’s next space.  So, in 10 

cycles, a unit has navigated completely from one space to 

another. 

Animate algorithm: 

 1) If (distance from unit's current position to unit's 

next position is less than 1/10 the distance from the 

unit's previous position to the unit's next position) 

 2)  Unit's current position = unit's next position 

 3) Unit's status = idle 

 4) Else 
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 5) Unit's current position = unit's current position 

+ (1/10 * vector from the unit's previous position to the 

unit's next position) 

 6) End if 

RTS directed flocking engine interface The interface for 

this RTS directed flocking engine is much less 

sophisticated than the interfaces found in today's RTS 

games.  The initial state of the RTS directed flocking 

engine is loaded from three data files, which are loaded 

when the program first starts. 

 The map file contains information about the map and 

its obstacles.  There are two record types in this file.  

The first record gives the dimensions of the map in width 

and height, both of which are integers delimited by a 

space.  Each remaining record gives a location of a static 

obstacle with and x- and y-coordinate, again delimited by a 

space. 

 The map parameters are loaded into the map width and 

height variables, defining the boundaries of the map.  Then 

a structure in memory is allocated and initialized to 

represent the map.  As each obstacle record is loaded, that 

location in memory has its value changed from 0 to 1, 

indicating the presence of an impassable obstacle at that 

location. 
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 The path file contains the destination, which is given 

as an x-coordinate, a space, and a y-coordinate.  When this 

record is loaded, the destination variables are set and 

used to calculate a path from the leader to the 

destination. 

 The unit file contains the starting locations for all 

units being loaded into the map.  The first unit record is 

the leader, and the remaining records are all followers.  

Each location is given as an x-coordinate and a y-

coordinate, delimited by a space. 

 All units loaded are placed into a unit list.  Each 

unit's current position, previous position, and next 

position is initialized to the position loaded from the 

unit file.  The leader has an initial designation of 'L' 

and an initial unit leader of NULL, while the remaining 

units have an initial designation of 'F' and the leader as 

the initial unit leader.  All units initially have an idle 

status. 

 A graphics screen is used to display the elements of 

the RTS directed flocking engine.  Obstacles appear as red 

squares.  Units appear as small octagons.  The destination 

is displayed as a small, white square.  Keyboard zoom 

controls are available for adjusting what is viewed on the 

screen.  The following zoom controls are available: 
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 - +:  Zoom in 

 - -:  Zoom out 

 - A:  Scroll right 

 - D:  Scroll left 

 - W:  Scroll down 

 - X:  Scroll up 

 Initially, the screen is static.  No activity takes 

place until the start key (g) is pressed.  Once the start 

key is pressed, the pathfinder algorithm executes to find a 

path for the leader.  Once that is completed, the units 

start to move toward the destination.  At any time, the 

program can be terminated by pressing the quit key (q). 

RTS engine update cycle walkthrough 

 When all of the above routines operate on the objects 

in memory, the result in a digital recreation of moving a 

flock of units from one place to another while calculating 

a path for only the leader.  The state information of each 

unit is updated by running a continuous update cycle, which 

checks each unit and updates it according to its status and 

the status of the environment (Fig. 18).  The following 

walkthrough provides a clearer understanding of what 

happens within a single update cycle. 

Leader / temporary leader cycle update For idle leaders, 

the next position in the leader's path is checked to see if 
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it is currently occupied by another unit or if it is 

currently the next location of another unit.  If so, then 

the leader is blocked by that follower.  The leader's 

designation is changed to temporary follower, and the 

leader's status is changed to blocked.  The follower's 

designation is changed to temporary leader and assumes 

leadership of the flock.  However, if the next location in 

the path is not blocked by a follower, then that location 

becomes the next location of the leader.  The leader's 

current location becomes its previous location, and the 

leader's status is changed from idle to moving. 

 A moving leader is currently in transit to its next 

location.  Its current position is first checked to see if 

it within 1/10 the distance from its previous location and 

its next one.  If so, then the leader's current position is 

changed to its next location, and its status is changed 

from moving to idle.  If the leader is not within range of 

its next location yet, then its current position is changed 

by 1/10 of the vector from its previous location to its 

next one, bringing it closer to its next position. 

 Leaders cannot become blocked or lost.  A leader who 

is blocked by a follower transfers leadership to that 

follower and becomes a blocked temporary follower.  So, the 

leader is no longer the leader.  As for being lost, the 
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leader is following the path to the destination, so it 

cannot become lost in this exercise. 

Follower update cycle Idle followers attempt to find their 

next positions.  To accomplish this, the engine first calls 

the three flocking functions to get vectors for follow the 

leader, cohesion, and alignment.  The resulting three 

vectors are weighted and averaged.  Afterwards, an angle is 

calculated from that vector.  This angle represents the 

follower's next heading.  This next heading then translated 

to the follower's proposed next move (N, NE, E, SE, S, SW, 

W, or NW).  This move is then tested for static obstacles 

or other units.  If that move is not available, then all 

moves within 45 degrees of the attempted move is checked 

for obstacles.  If an available location is found, then 

that location becomes the follower's next location.  The 

follower's current location then becomes its previous 

location, and its status changes from idle to moving.  If 

no available space is found, then the follower's status 

changes to blocked.  If no other units are visible to the 

follower, and if the follower cannot find an available 

memory unit or a marker unit, then its status changes from 

idle to lost. 

 Followers move the same way as the leader (or 

temporary leader).  Followers with a current status of 
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moving are updated with a position change that 

progressively moves its current location closer to its next 

position.  When the follower is close enough to its next 

position, then its next position becomes its current 

position, and its status changes from moving to idle. 

 Blocked and lost followers follow the same procedure 

as idle followers.  They continue to attempt to find 

another move until it finds one.  

 Temporary leaders behave the same way as followers do.  

It follows the rules of RTS directed flocking for 

navigation until it becomes the leader again. 
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Figure 18:  Complete unit state diagram 

IL:  idle leader Il:  idle temp leader IF:  idle follower  If:  idle temp follower 
ML:  moving leader    Ml:  moving temp leader    MF:  moving follower    Mf: moving temp follower 
BF:  blocked follower    Bf:  blocked temp follower    LF:  lost follower    Lf:  lost temp follower 
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CHAPTER IV 

 

RESULTS 

 

 A directed flocking simulator with the new obstacle 

management tools was written in C.  The program contained 

2535 lines of code and 36 lines of documentation.  This 

program was used to perform the following experiments. 

 Three types of tests were conducted with the obstacle 

management tools.  The first set of tests includes a 

variety of maps, units and destinations, which test the 

validity of the tools in specific situations.  By testing a 

sample of conditions that lead to obstacle-related 

problems, one can achieve a general idea of the tools' 

effectiveness in dealing with obstacles. 

 The second set of tests log the elapsed time for each 

cycle in the navigation engine.  Instead of using several 

different maps, a single map reproduced to several 

different scales are used to test the playability limits of 

the engine.  Each scaled map is tested with a different 

number of
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 units to further determine the capabilities of the engine. 

 The first two sets of tests were conducted in two 

modes.  The first mode sets the speed of all units to the 

same magnitude, when moving.  The second mode doubles the 

speed of units that have lost contact with the leader or 

were over 10 units away from the leader.  This mode allows 

the straggling units to catch up with the leader. 

 The third set of tests also measures the elapsed time 

for each cycle in the navigation engine.  Unlike the second 

test, this test compares performance between a map with no 

obstacles against a map with a bottleneck obstacle. 

 

Validation Results 

 

 A total of 11 tests were conducted to determine if all 

units could reach a specific destination.  These tests 

range from testing a single type of obstacle to testing 

situations encountered in an RTS game.  The test results 

are as follows: 

 

 

 

 

 



 53 

Test 1 

Size of map:  25 x 25 

Number of units:  26 

 

 

 

 

 

 

 

 

 

 

 

Result:  OK 

 This test features a progressive bottleneck.  As the 

units pass through more obstacles, the bottlenecks become 

more extreme.  This map tests the ability of the blocked 

units to remain with the flock and pass through the 

obstacle when the opening finally becomes available. 

 

 

 

 

Figure 1 9:  Test 1 Start 

Figure 20:  Test 1 Finish 
(Catchup disabled) 

Figure 21: Test 1 Finish 
(Catchup enabled) 
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Test 2 

 

Map size:  25 x 25 

Number of units:  26 

 

 

 

 

 

 

 

 

 

 

 

Result:  OK 

 This test features a single bottleneck.  The units 

move in a relatively normal fashion until they reach the 

obstacle, through which only one unit can pass at a time.  

Like the previous map, this map tests the ability of the 

blocked units to remain with the flock and pass through the 

obstacle when the opening finally becomes available. 

 

Figure 22:  Test 2 Start 

Figure 23:  Test 2 Finish 
(Catchup disabled) 

Figure 24:  Test 2 Finish 
(Catchup enabled) 
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Test 3 

 

 

Map size:  25 x 25 

Number of units:  2 

 

 

 

 

 

 

 

 

 

Result:  OK 

 This test features a leader, a follower, and a single 

obstacle.  As the leader moves behind the obstacle, the 

follower loses sight of the leader because the sight is 

blocked by the obstacle.  This map tests the follower's 

ability to use its memory of the leader's position to move 

its leader's former position and reacquire contact with the 

leader. 

Figure 25:  Test 3 Start 

Figure 27:  Test 3 Finish 
(Catchup enabled) 

Figure 26:  Test 3 Finish 
(Catchup disabled) 
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Test 4 

 

 

Map size:  25 x 25 

Number of units:  2 

 

 

 

 

 

 

 

 

 

 

Result:  OK 

 This test also features a leader and a single 

follower.  The map is a bit more complex.  This map tests 

the follower's ability to follow the markers dropped by the 

leader to reacquire contact with the leader near the 

destination. 

 

Figure 28:  Test 4 Start 

Figure 30:  Test 4 Finish 
(Catchup enabled) 

Figure 29:  Test 4 Finish 
(Catchup disabled) 
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Test 5 

 

 

Map size:  25 x 25 

Number of Units:  26 

 

 

 

 

 

 

 

 

 

 

 

Result:  OK 

 This test places the leader at the rear of the flock.    

The leader is unable to proceed because its path is blocked 

by followers.  Specifically, this map tests the leader's 

ability to transfer leadership to the follower blocking it. 

 

Figure 31:  Test 5 Start 

Figure 33:  Test 5 Finish 
(Catchup enabled) 

Figure 32:  Test 5 Finish 
(Catchup disabled) 
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Test 6 

 

 

Map size:  25 x 25 

Number of Units:  26 

 

 

 

 

 

 

 

 

 

 

 

 

Result:  OK 

 Similar to test 5, the leader is again at the rear of 

the flock.  Although it has some room to move, it is soon 

blocked by its followers as it moves toward the 

destination.  This map also tests tests the leader's 

ability to transfer leadership to the follower blocking it. 

Figure 34:  Test 6 Start 

Figure 36:  Test 6 Finish 
(Catchup enabled) 

Figure 35:  Test 6 Finish 
(Catchup disabled) 
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Test 7 

 

 

Map size:  25 x 25 

Number of units:  26 

 

 

 

 

 

 

 

 

 

 

 

Result:  OK 

 This test simulates terrain that can be found in an 

RTS game.  The map is composed of two land masses connected 

by three bridges.  This map tests the flock's ability to 

cross a bridge. 

 

Figure 37:  Test 7 Start 

Figure 38:  Test 7 Finish 
(Catchup disabled) 

Figure 39:  Test 7 Finish 
(Catchup enabled) 
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Test 8 

 

 

Map size:  25 x 25 

Number of units:  26 

 

 

 

 

 

 

 

 

 

 

 

Result:  OK 

 This test uses the same map as the previous test but 

also simulates an ambush at the bridge being crossed, 

forcing the flock to retreat back across the bridge.  This 

map tests the flock's ability to cross a bridge with the 

leader starting behind the followers.  

Figure 40:  Test 8 Start 

Figure 42:  Test 8 Finish 
(Catchup enabled) 

Figure 41:  Test 8 Finish 
(Catchup disabled) 
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Test 9 

 

 

Map size:  25 x 25 

Number of units:  25 

 

 

 

 

 

 

 

 

 

 

 

Result:  OK 

 This test features scattered obstacles and scattered 

units.  The followers in this test are not adjacent to the 

leader but do have visual contact with the leader.  This 

map test the scattered flock's ability to reach the 

destination.   

Figure 43:  Test 9 Start 

Figure 45:  Test 9 Finish 
(Catchup enabled) 

Figure 44:  Test 9 Finish 
(Catchup disabled) 
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Test 10 

 

 

Map size:  25 x 25 

Number of units:  25 

 

 

 

 

 

 

 

 

 

 

 

Result:  OK 

 This test uses the same map as test 4 but uses more 

followers, creating traffic and occasional traffic jams.  

As units become blocked, they start using more of the 

obstacle management tools in an attempt to get moving 

again.  This map tests the flocks ability to reach the 

destination in an increased traffic setting. 

Figure 46:  Test 10 Start 

Figure 47:  Test 10 Finish 
(Catchup disabled) 

Figure 48:  Test 10 Finish 
(Catchup enabled) 
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Test 11 

 

Map size:  25 x 25 

Number of units:  25 

 

 

 

 

 

 

 

 

 

 

 

 

 

Result:  OK 

 This test is a variation of test 9 but with a 

different destination.  The leader's path in this test is 

less direct, as it weaves around the obstacles.  This map 

tests the scattered flock's ability to reach the 

destination when the path is less straightforward. 

Figure 49:  Test 11 Start 

Figure 50:  Test 11 Finish 
(Catchup disabled) 

Figure 51:  Test 11 Finish 
(Catchup enabled) 
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 The above tests demonstrate the ability of chaining, 

memory, navigation, and dynamic leadership to allow a group 

of units to move from one location to another without 

losing cohesion.  The tests were successful, but it is 

possible for a test to fail if a unit is forced to move to 

an alternate location by another unit and if, from this 

alternate location, the unit has no contact with any units, 

any markers, and its memory of what it was following.  

Although the test results do not guarantee that the tools 

always work, they do demonstrate a degree of flexibility in 

managing obstacles. 

 A couple of "odd" behaviors were observed during the 

validation tests.  In test 2 with catchup enabled, the last 

unit had to backtrack to the leader's starting location to 

reacquire contact with the other units, which had already 

moved through the narrow opening in the obstacle.  This was 

caused from the last unit competing with another unit to 

move to the opening in the obstacle on the map.  The last 

unit was cut off by the other unit and was forced to move 

to an alternate location within its field of view.  When 

the last unit moved to this location, it lost contact with 

all other units because they were on the other side of the 

obstacle.  To reacquire contact, the last unit moved 
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towards the last marker dropped by the leader that it could 

see, which was at the leader's starting location. 

 Another odd behavior was also observed in the test 10 

map.  The latter half of the path contains a u-turn around 

an obstacle to reach a destination.  As the followers 

approached the u-turn, some of them cut others off, forcing 

them to wait or to move to alternate spaces in a direction 

away from the u-turn.   

 

Performance Results 

 

 Performance tests were conducted on three scaled 

versions of the test 10 map.  This map features a winding 

path for which the units will use a variety of tools to 

reach the leader.  For each map, elapsed times were 

recorded for path calculation and each update cycle for the 

screen.  Each map is tested with a variety of number of 

units to determine the maximum number of units that can be 

used without experiencing significant performance 

degradation.  As stated earlier, an update cycle should not 

take longer than 1/10 of a second.  Because navigation was 

only one component of an update cycle in a commercial RTS 

game, this experiment had a target elapsed time of 1/100 of 

a second for a multiple-flock environment.  These tests 
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were conducted on a PC with a 2.40 GHz Intel Pentium 4 CPU 

with 512 MB of RAM.  The test results were as follows: 

 

Test 12 

Map size:  25 x 25 

 - 25 Unit test (catchup disabled): 

  - Cycles to destination:  740 

  - Best time:  0.000 s 

  - Worst time:  0.003 s 

  - Average time:  0.000 s 

 - 25 Unit test (catchup enabled): 

  - Cycles to destination:  460 

  - Best time:  0.000 s 

  - Worst time:  0.003 s 

  - Average time:  0.000 s   

 - 50 Unit test (catchup disabled): 

  - Cycles to destination:  810 

  - Best time: 0.002 s 

  - Worst time: 0.013 s 

  - Average time:  0.005 s 

 - 50 Unit test (catchup enabled): 

  - Cycles to destination:  530 

  - Best time:  0.002 s 

  - Worst time:  0.014 s 
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  - Average time:  0.006 s 

 - 100 Unit test (catchup disabled): 

  - Cycles to destination:  910 

  - Best time:  0.006 s 

  - Worst time:  0.027 s 

  - Average time:  0.016 s 

 - 100 Unit test (catchup enabled): 

  - Cycles to destination:  610 

  - Best time:  0.009 s 

  - Worst time:  0.027 s 

  - Average time:  0.018 s 

 

 

 

 

 

 

 

 

 

 

Test 13 

Map size:  50 x 50 

 - 25 Unit test (catchup disabled): 

Figure 52:  Test 12 Performance 
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  - Cycles to destination:  1170 

  - Best time:  0.000 s 

  - Worst time:  0.003 s 

  - Average time:  0.000 s 

 - 25 Unit test (catchup enabled): 

  - Cycles to destination:  740 

  - Best time:  0.000 s 

  - Worst time:  0.003 s 

  - Average time:  0.001 s 

 - 50 Unit test (catchup disabled): 

  - Cycles to destination:  1290 

  - Best time:  0.002 s 

  - Worst time:  0.013 s 

  - Average time:  0.004 s 

 - 50 Unit test (catchup enabled): 

  - Cycles to destination:  770 

  - Best time:  0.002 s 

  - Worst time:  0.016 s 

  - Average time:  0.006 s 

 - 100 Unit test (catchup disabled): 

  - Cycles to destination:  1470 

  - Best time:  0.011 s 

  - Worst time:  0.047 s 

  - Average time:  0.024 s 
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 - 100 Unit test (catchup enabled): 

  - Cycles to destination:  820 

  - Best time:  0.017 s 

  - Worst time:  0.050 s 

  - Average time:  0.030 s 

 - 250 Unit test (catchup disabled): 

  - Cycles to destination:  1920 

  - Best time:  0.097 s 

  - Worst time:  0.595 s 

  - Average time:  0.288 s 

 - 250 Unit test (catchup enabled): 

  - Cycles to destination:  1100 

  - Best time:  0.195 s 

  - Worst time:  0.622 s 

  - Average time:  0.314 s 

 

 

 

 

 

 

 

 

Figure 53:  Test 13 Performance 
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Test 14 

Map size:  100 x 100 

 - 25 Unit test (catchup disabled): 

  - Cycles to destination:  2170 

  - Best time:  0.000 s 

  - Worst time:  0.005 s 

  - Average time:  0.001 s 

 - 25 Unit test (catchup enabled): 

  - Cycles to destination:  1250 

  - Best time:  0.000 s 

  - Worst time:  0.006 s 

  - Average time:  0.001 s 

 - 50 Unit test (catchup disabled): 

  - Cycles to destination:  2270 

  - Best time:  0.000 s 

  - Worst time:  0.019 s 

  - Average time:  0.005 s 

 - 50 Unit test (catchup enabled): 

  - Cycles to destination:  1290 

  - Best time:  0.002 s 

  - Worst time:  0.028 s 

  - Average time:  0.007 s 

 - 100 Unit test (catchup disabled): 

  - Cycles to destination:  2510 
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  - Best time:  0.000 s 

  - Worst time:  0.059 s 

  - Average time:  0.025 s 

 - 100 Unit test (catchup enabled): 

  - Cycles to destination:  1390 

  - Best time:  0.009 s 

  - Worst time:  0.117 s 

  - Average time:  0.035 s 

 - 250 Unit test (catchup disabled): 

  - Cycles to destination:  2930 

  - Best time:  0.084 s 

  - Worst time:  0.984 s 

  - Average time:  0.232 s 

 - 250 Unit test (catchup enabled): 

  - Cycles to destination:  1630 

  - Best time:  0.153 s 

  - Worst time:  0.713 s 

  - Average time:  0.320 s 

 - 500 Unit test (catchup disabled): 

  - Cycles to destination:  3830 

  - Best time:  0.070 s 

  - Worst time:  5.313 s 

  - Average time:  1.555 s 

 - 500 Unit test (catchup enabled): 
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  - Cycles to destination:  1950 

  - Best time:  0.970 s 

  - Worst time:  4.869 s 

  - Average time:  1.940 s 

 

 

 

 

 

 

 

 

 

 

 

 These test results reveal that the cycle time for a 

specific number of units on a map has little dependence on 

the size of the map.  The cycle time for 100 units on a map 

of one size is close to the cycle time for 100 units on a 

map of another size. 

 The 25 and 50 unit tests reveal an acceptable cycle 

time, less than 1/100 of a second.  The 100-unit test 

begins to show an impact on the system's response time with 

an average response time of 2 to 4 hundredths of a second.  

Figure 54:  Test 14 Performance 
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Performance continues to degrade with the 250 and 500 unit 

tests, which show cycle times ranging from 23/100 of a 

second to nearly two seconds. 

 The code that selects a new unit for a unit to follow 

is computationally expensive, as it considers all units on 

the map, markers dropped by the leader, and the unit's 

memory of its former leader's last known position.  This 

piece of logic executes every time a unit attempts to 

determine the location to which it moves next.  When 

traffic is light, this logic does not execute all of the 

time because the units typically are able to move to the 

next location without obstruction.  However, in high-

traffic areas, units are constantly blocking each other, 

forcing them to continually re-evaluate who to follow as 

they attempt to recalculate their next moves. 

 Enabling the catchup feature allowed the units in the 

rear to reach test destination earlier.  It also increased 

the cycle time by about 25 percent on the average.  Units 

starting farther away from the leader on a map see the 

greatest benefit from using the catchup ability.  Units 

starting close to the leader see a smaller benefit.  Using 

the catchup ability can also increase the number of blocked 

units by increasing the number of units attempting to 

occupy a limited amount of space. 
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Obstacle Performance Results 

 

 Obstacle performance tests were conducted on two maps.  

The first map is identical to the test 5 map, which has no 

obstacles.  The second map is similar to the test 2 map, 

which features a bottleneck obstacle.  For this test, the 

bottleneck is located at Y = 13, instead of Y = 11.  

Locating the obstacle at this center line on the map allows 

more units on either side of the obstacle.  For each of the 

two maps, elapsed times were recorded for each update cycle 

for the screen.  Each map is tested with a variety of 

number of units to determine the maximum number of units 

Figure 55:  Cycle Comparison 
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that can be used without experiencing significant 

performance degradation.  Again, the target elapsed time is 

1/100 of a second.  The test results were as follows: 

 

Test 15 

Map size:  25 x 25 

 - 25 Unit test: 

  - Best time:  0.000 s 

  - Worst time:  0.003 s 

  - Average time:  0.000 s 

 - 50 Unit test: 

  - Best time: 0.002 s 

  - Worst time: 0.013 s 

  - Average time:  0.005 s 

 - 100 Unit test: 

  - Best time:  0.011 s 

  - Worst time:  0.050 s 

  - Average time:  0.025 s 

 

Test 16 

Map size:  25 x 25 

 - 25 Unit test: 

  - Best time:  0.000 s 

  - Worst time:  0.003 s 
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  - Average time:  0.001 s 

 - 50 Unit test: 

  - Best time: 0.002 s 

  - Worst time: 0.013 s 

  - Average time:  0.009 s 

 - 100 Unit test: 

  - Best time:  0.017 s 

  - Worst time:  0.067 s 

  - Average time:  0.049 s 

 This test shows how the presence of an obstacle can 

cause the update cycle to degrade in performance.  This is 

caused by the number of blocked units on the screen.  

During an update cycle, a unit either calculates its next 

move or is moving to its next position.  Calculating a 

unit's next position is computationally more expensive than 

incrementally updating the unit's position between its 

previous position and its next position.  The bottleneck 

obstacle increases the number of blocked units because only 

a few of them can pass through the obstacle at a time.  As 

the number of units increases, the performance penalty from 

the number of blocked units also increases. 
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 The optimal number of units for a flock is about 25 - 

50 units.  The response time for a 25-unit flock is quick 

enough to allow a program to manage a significant number of 

flocks without experiencing an unacceptable level of 

performance degradation.  The response time for a 50-unit 

flock is quick enough to allow a program to manage a 

limited number of flocks of this size without experiencing 

an unacceptable level of performance degradation.  Although 

50 may be too small a number for an epic-scale force, it is 

large enough to be usable in many flavors of an RTS game. 
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Figure 56:  Test 15 / 16 Performance 
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CHAPTER V 

 

CONCLUSION 

 

 Pathfinding is a CPU-intensive operation in RTS games, 

which makes it a good candidate for optimization.  

Calculating a path for only one unit in a group is a good 

way to save CPU time, but it also introduces a new problem.  

With only one path being used, all units in a group who is 

not the group leader must use some type of steering 

behavior to keep up with the leader as it moves towards its 

destination. 

 Directed flocking is a good system to use because it 

allows followers to track the leader, avoid each other, and 

move together in a way that looks natural.  The problem 

with using flocking in an RTS setting is that obstacles in 

the map can cause the group to lose cohesion and fragment 

into subgroups.  A follower can also be an obstacle if it 

blocks the leader from reaching its destination.  In this 

type of situation, the leader would wait behind the 

follower while waiting for it to move.  Meanwhile, the 
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followers would wait next to the leader, waiting for the 

leader to move. 

 The tools presented in this paper are effective with 

dealing with different types of obstacles in a way that 

allow the entire group to reach its destination.  While the 

experiment does not guarantee success, it does show that 

these tools do have the potential to successfully deal with 

many different types of obstacles in an RTS game setting.  

These tools also appear to be efficient enough to be 

deployed in a game without causing significant performance 

degradation unless the game allows the user to control over 

50 units at a time. 

 Further study would be necessary to determine if these 

tools would be appropriate for an RTS game setting.  Some 

additional aspects of these tools to study include flock 

interaction with allies, enemies, or neutral flocks, flock 

interaction with static or moving obstacles, flock members 

of different sizes, movement cost, and types of movement.  

If the obstacle management tools can work properly under 

these type of conditions, then implementing these tools in 

a game may become a more feasible idea. 

 In addition to games, these tools can feasibly be used 

in any software system which implements flocking in a way 

that emphasizes cohesive movement patterns, which rules out 
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exploration.  It can be used in the motion picture industry 

to set up flocks which navigate cohesively through 

obstacles, whether the flocks be animals, machines, people, 

etc.  Because of the nature of these tools and how 

communication takes place between two units, they may not 

be as applicable to robotics, unless the leader robot is 

capable of dropping a physical transmitting navigation 

marker for other robots to follow.  Whether the application 

be software, hardware, entertainment, or business, the 

obstacle management tools presented may help groups to go 

from point A from point B without its members becoming 

lost. 
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