
COHESIVE OBSTACLE MANAGEMENT FOR

DIRECTED FLOCKING IN REAL-TIME

STRATEGY GAMES

By

John Phillip Schneider

Bachelor of Science

Oral Roberts University

Tulsa, Oklahoma

1996

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 2004

 ii

COHESIVE OBSTACLE MANAGEMENT FOR

DIRECTED FLOCKING IN REAL-TIME

STRATEGY GAMES

Thesis Approved:

Dr. Johnson Thomas

Thesis Advisor
Dr. John Chandler

Dr. Debao Chen

Dr. Gordon Emslie

Dean of the Graduate College

 iii

PREFACE

 As Real-time strategy (RTS) games become bigger and

more ambitious, programmers search for more efficient ways

to accomplish current tasks to leave more resources for

introducing new features into the game. One of the core

routine tasks of this type of game is pathfinding for the

units. One optimizing technique is to use a steering

behavior called flocking, which allows the path to be

calculated for only one unit in a group. As that unit

moves toward its destination, the others flock together

while following the leader. Obstacles, however, can cause

the group to break apart, leaving some units separated from

others. This paper addresses the problem by introduces

some new tools for the units to allow them to stay

together, even when navigating through obstacles. These

tools include concepts like chaining, memory, markers, and

dynamic leadership.

 iv

TABLE OF CONTENTS

Chapter Page

 I. INTRODUCTION. .1

 II. BACKGROUND. .3

 Recent Developments in Computer Games.3
 Real-time Strategy Games4
 History of Flocking.7
 Components of Flocking 10
 Problems with Flocking 14

III. PROPOSAL. 17

 Tools for Obstacle Management. 17
 Implementation: Building a Sample Navigation
 Engine. 23
 Ingredients of the Engine 24
 Unit State Information. 30
 Tasks of the Engine 34

 IV. RESULTS . 51

 Validation Results 52
 Performance Results. 65

 V. CONCLUSION. 78

 VI. BIBLIOGRAPHY. 81

 v

LIST OF FIGURES

Figure Page

 1. Separation rule.10

 2. Alignment rule11

 3. Cohesion rule.11

 4. Avoidance rule11

 5. Start - flocking without obstacles14

 6. Finish - flocking without obstacles.14

 7. Start - flocking with obstacles.15

 8. Finish - flocking with obstacles15

 9. Congestion obstacle.18

10. Loss of contact with leader obstacle19

11. Chaining solution.19

12. Memory solution.20

13. Navigation marker solution21

14. Leader blocked by follower22

15. Dynamic flock leadership23

16. Unit designation state diagram31

17. Unit status state diagram.33

18. Complete unit state diagram.50

19. Test 1 Start .53

 vi

Figure Page

20. Test 1 Finish (Catchup disabled)53

21. Test 1 Finish (Catchup enabled).53

22. Test 2 Start .54

23. Test 2 Finish (Catchup disabled)54

24. Test 2 Finish (Catchup enabled).54

25. Test 3 Start .55

26. Test 3 Finish (Catchup disabled)55

27. Test 3 Finish (Catchup enabled).55

28. Test 4 Start .56

29. Test 4 Finish (Catchup disabled)56

30. Test 4 Finish (Catchup enabled).56

31. Test 5 Start .57

32. Test 5 Finish (Catchup disabled)57

33. Test 5 Finish (Catchup enabled).57

34. Test 6 Start .58

35. Test 6 Finish (Catchup disabled)58

36. Test 6 Finish (Catchup enabled).58

37. Test 7 Start .59

38. Test 7 Finish (Catchup disabled)59

39. Test 7 Finish (Catchup enabled).59

40. Test 8 Start .60

41. Test 8 Finish (Catchup disabled)60

42. Test 8 Finish (Catchup enabled).60

 vii

Figure Page

43. Test 9 Start .61

44. Test 9 Finish (Catchup disabled)61

45. Test 9 Finish (Catchup enabled).61

46. Test 10 Start.62

47. Test 10 Finish (Catchup disabled).62

48. Test 10 Finish (Catchup enabled)62

49. Test 11 Start.63

50. Test 11 Finish (Catchup disabled).63

51. Test 11 Finish (Catchup enabled)63

52. Test 12 Performance.67

53. Test 13 Performance.69

54. Test 14 Performance.72

55. Cycle comparison74

56. Test 15/16 Performance77

 1

CHAPTER I

INTRODUCTION

 As Real-time strategy (RTS) games become bigger and

more ambitious, programmers search for more efficient ways

to accomplish current tasks to leave more resources for

introducing new features into the game. One of the core

routine tasks of this type of game is pathfinding for the

units. One optimizing technique is to use a steering

behavior called flocking, which allows the path to be

calculated for only one unit in a group. As that unit

moves toward its destination, the others flock together

while following the leader. Obstacles, however, can cause

the group to break apart, leaving some units separated from

others. This paper addresses the problem by introduces

some new tools for the units to allow them to stay

together, even when navigating through obstacles. These

tools include concepts like chaining, memory, markers, and

dynamic leadership.

 2

 Chapter 2 will highlight some recent trends in

computer games and give a brief introduction to the

elements of a real-time strategy game. It will then

discuss the background of flocking and how it is currently

being integrated into modern games. Lastly, some

shortfalls with using flocking in an RTS context will be

identified.

 Chapter 3 will introduce some tools that can be used

to help a group of units to navigate obstacles without

losing cohesion. After introducing each of the tools and

discussing how they work, specifications of a sample

navigation engine will be presented. These specifications

will be used to create a program that demonstrates the

effectiveness of these tools in a 2-dimensional grid

environment.

 Chapter 4 discusses in detail the results of the

demonstration program. Two types of tests will take place.

Validity tests will use a variety of maps to test whether

these tools are effective in different type of situations.

Performance test will use a specific map scaled to

different sizes to measure the elapsed time for each update

cycle.

 Chapter 5 will recap the thesis as a whole and

identify some areas where further study can be conducted.

 3

CHAPTER II

BACKGROUND

Recent Developments in Computer Game Technology

 One of the most rapidly growing industries is the

video gaming industry, which is now even bigger than the

motion picture industry [Fairclough1]. Developments in

computer graphics technology in the last decade has given

game developers the tools to create 3-dimensional

environments with realistic characters and backgrounds.

The introduction of the accelerated graphics port (AGP) to

PCs in 1997 made a provision for a graphics card to access

PC resources more quickly [Bolkan1]. Development of the

graphics processing unit (GPU) and standardized graphics

routines supported by hardware has significantly reduced

the processing load on the central processing unit (CPU) of

personal computers (PCs). The first GPU was the GeForce

256 chip developed by NVidia in 1999 [Vederman1]. Game

developers are using some of the newly found spare CPU

 4

power to increase a video game’s realism by improving the

artificial intelligence (AI) coding for the computer

characters. Recent developments in AI in the computer

gaming arena has resulted in computer characters that move

and act “smarter” that their predecessors. Flocking has

enhanced video games by providing groups of background

units that move naturally, which adds to the realism of the

“virtual world” being created by game developers

[Sweetser1]. Another enhancement provided by flocking is

natural movement of computer-controlled or player-

controlled characters, which also increases the realism of

the digital world being created.

Real-Time Strategy Games

 One specific genre of computer games that is highly

dependent of its AI coding is the real-time strategy (RTS)

game. In this type of game, the player takes the role of

commander, the person in charge of a number of units

displayed on the screen. The player has a list of

objectives to fulfill and can use any or all of the units

he commands to complete those objectives. An aspect that

separates RTS gaming from other genres is the method used

to move a unit. In a first-person simulator, the player

 5

explicitly controls all actions of a specific unit,

including the path taken to a specific destination. In an

RTS game, the player issues a command to a unit or units to

move to a specific location, but the player does not

specify the path to be taken. That responsibility is

assumed by the game engine, which calculates a path for the

units to be moved. Typically, all the player does is to

select the units to be moved and specify a destination for

those units, and the game takes care of determining the

path used to actually move the units from their current

location to their destination. Thus pathfinding plays a

central role in this type of game.

 Pathfinding is not a new concept in computer games

[Tozour1]. The old “classic” computer games like Pac-Man

used pathfinding to navigate the ghosts toward Pac-Man.

Computerized chess games also uses pathfinding to evaluate

the board and choose the next move for the computer-

controlled player. However, these games do not face the

constraints that today’s RTS games have. Even though the

ghosts chasing Pac-Man uses pathfinding in real-time, Pac-

Man’s movements are explicitly controlled by the player.

If the player presses up on the joystick, Pac-Man moves up.

If the player presses down on the joystick, Pac-Man moves

down. In chess, the player directly controls all movements

 6

of his players. The computer uses pathfinding to calculate

moves for computer-controlled players, but the response

time can take up to hours or even days. In an RTS game,

not only does the computer use pathfinding to calculate a

path for units that a player commands to move, but it must

be done in a timely fashion to prevent a delay in a “real-

time” environment. In this type of game, the response time

should be less than 1/10 of a second. If a player wants to

move a single unit to a specific destination, then this

time restriction may not be much of an issue. However, if

the player wants to move a large number of units to a

specific destination, then the time restriction may become

a serious issue.

 In real-time environments, there may not be sufficient

time to calculate the best path for the units to be moved

to a destination. When this happens, two options are

available. The first option is to find the optimal path

regardless of time requirements, which leads to periods of

delay in the game cycle. Although this delay allows

optimal path calculation to be completed, it becomes an

annoyance and a source of aggravation to the player because

the RTS is not “responding” to the player’s commands within

an acceptable period of time. The other alternative is to

compromise the quality of the path in the interest of

 7

saving time. This solution allows the RTS to be more

“responsive” to the player’s commands but may not yield an

optimal path. In some cases, this solution may not result

in a path that leads to the destination at all.

 A variation of flocking has an opportunity to address

this problem because it requires a path to be calculated

only for the leader. In this scenario, when a player

selects a group of units to move to a destination, one of

the units would be designated the leader, while the other

units are the followers. When the player gives the order

for the group to move to a specific destination, the path

is calculated for the leader, but the followers flock

behind the leader. This method reduces path-calculating

time by an order of magnitude because the path does not

have to be calculated for every unit moving to the

destination. This savings in calculation time can be used

to either increase the quality of the path found, support

larger maps, support more units or players, etc.

History of Flocking

 Flocking was a concept proposed by Craig Reynolds over

15 years ago [Reynolds1]. The basic idea was to use a set

of simple rules to give a group of autonomous characters

 8

lifelike movement patterns. His demonstration was to

simulate the flocking patterns of birds. Flocking

afterwards branched off into a number of different

directions. Reynolds also addressed flocking in "Steering

Behaviors for Autonomous Characters" [Reynolds2]. This

paper conceptually described numerous steering behaviors

and how they can be used to make a group of objects move in

a lifelike manner. In the film industry, flocking is used

to give groups of artificially generated characters

lifelike movement. One of the first motion pictures to use

flocking for computer-generated characters is Batman

Returns. Today, flocking is a popular tool for providing

navigation for artificial characters. Jim Pugh and

Alcherio Martinoli from the Califonia Institute of

Technology is currently applying flocking to robots

[CORO1]. The University of Reading has applied directed

flocking to robots [Reading1]. These robots move like a

flock and follow a designated leader. Flocking has also

been used for research into exploration. Texas A&M

University produced a technical report describing the

implementation of other steering behaviors used with

flocking by sharing each flockmate's knowledge with the

rest of the flock [Bayazit1]. Thomas G. Grubb has created

a demo in 2001 that implements formation into flocking

 9

[Grubb1]. Formation flocking differs from standard

flocking in that, instead of each flockmate attempting to

move towards the leader, each flockmate attempts to

maintain a position relative to the leader. George Mason

University collaborated with the GMU Center for Social

Complexity to develop MASON, which is a library of

simulations. Among these simulations is WOIMS, a flocking

simulation applied to worms, and WOIMS in 3D, a flocking

simulation applied to worms in 3-D space [MASON1]. A

number of game companies today are also applying flocking

to their computer games [Fairclough1]. Among these

companies are Epic, Sierra, and Winward Studios [DeLoura1].

Epic created the game Unreal, which used flocking for many

of its computer-controlled characters. The game Half-Life,

done by Sierra, used flocking in a similar fashion.

Winward Studios' Enemy Nations uses a type of formation

flocking for characters.

 A new area of study began in 1995 when social-

psychologist James Kennedy and electrical engineer Russell

Eberhart used principles similar to flocking to develop

algorithms to find the best solution in a solution space

[Pomeroy1]. Named Particle Swarm Optimization (PSO), this

concept is based, not on factors modeled after behavior,

but on factors modeled after sociality [Corne1]. While

 10

this area of study is still very young, it shows great

promise in its ability to optimize binary problems, even

more so than genetic algorithms [Kennedy1]. More

information on PSO is available in the Morgan Kaufmann book

entitled Swarm Intelligence.

Components of Flocking

 The ability to direct the path of computer-generated

characters in a natural manner has been a subject of

discussion for some time. After all, what good is a

realistic-looking character if the path that the character

takes looks blatantly artificial? The concept of flocking

was submitted by Craig Reynolds in 1987. This paper

proposed that the flocking behavior of birds could be

simulated by using three principles, which were separation,

alignment, and cohesion.

 Separation requires

that the birds in a flock

maintain a minimum distance

from each other (Fig. 1).

This rule prevents multiple

birds from occupying the

same space.

Figure 1: Separation rule

 11

 Alignment allows a bird

in a flock to match the

heading of nearby birds in

the same block (Fig. 2).

So, a bird goes in the same

general direction as the

other birds in the same

flock.

 Cohesion is a rule

that causes birds to move

towards the other birds in

a flock (Fig. 3). This

rule prevents birds from straying too far from the flock.

 A fourth rule that was not originally included in

flocking was added by Reynolds at a later date. This rule,

called avoidance, causes

birds to avoid static

obstacles (Fig. 4).

 The combination of the

above three principles

governs the movement of a

computer-generated flock of birds by instructing the

members of that flock to head in the same general direction

and speed as the other members of the same flock while

Figure 2: Alignment rule

Figure 3: Cohesion rule

Figure 4: Avoidance rule

 12

maintaining a certain distance from their flockmates

without straying too far from them. The result is a

completely artificial flock that moves in a surprisingly

realistic manner.

 The flocking model takes place in 3-dimensional space,

which is appropriate for describing the movement patterns

of a flock of flying birds. The position of each member of

a flock is described with a 3-dimensional coordinate (x, y,

z). Movement of a flock member from one position to

another is managed with a 3-dimensional vector (x, y, z).

Changes in a flock member’s vector are managed with three

steering behaviors, which include roll, pitch, and yaw.

Roll refers to a bird’s rotation about the Z-axis. Pitch

describes the bird’s rotation about the X-axis, and yaw

describes the bird’s Y-axis rotation. When a vector of a

flock member changes, that change is made using these three

steering behaviors.

 To achieve some sense of realism in flocking, some

limitations were implemented. Each member of a flock has a

limited “sight” for locating local flockmates. Because a

flock member’s velocity changes is based on the location

and velocity of nearby local flockmates and not on every

member of the flock, variations in velocity are possible

within a flock and do occur frequently.

 13

 Another limitation is a flock member’s change in

velocity, or acceleration. Allowing a flock member to make

sharp changes in speed or direction fulfills the

requirements of the three principles of flocking, but it

does not produce “natural movement”, as birds do not

instantly make a 180-degree turn or double its speed.

 While this model was originally designed to mimic the

movement patterns of birds, it is not used just for birds.

A variety of animals including fish and penguins have been

digitally animated in natural flock formations by using

flocking.

 Flocking has proven to valuable in the motion picture

industry, which is increasingly using computer-generated

characters in its films. Computer technology, particularly

graphics, has reached a point which allows multitudes of

background characters or objects to be digitally created,

which significantly reduces the cost of making a motion

picture by removing the need to physically construct props

or hire extras at epic proportions. The challenge, now, is

to make the digitally created actors to give a realistic

performance so that they would be perceived as actual movie

characters rather than computer-generated puppets. In

terms of moving large numbers of characters from one place

to another, flocking has the ability to fulfill this role.

 14

By setting up a 3-dimensional world that is modeled after

the physical world appearing in a movie scene and setting

up a number of computer-generated characters with an

initial velocity, the flocking algorithm can move the

digital characters from one place on the digital set to

another in a natural-looking manner. An example of this

type of technique was used to navigate a flock of rocket-

armed digital penguins from one place to another in the

movie Batman Returns.

Problems with Flocking

 There is a significant obstacle

to using the flocking method to

navigate units from their current

position to their destination. The

obstacle to flocking is . . .

obstacles. While

flocking is an

effective steering tool in open areas

(Fig. 5, 6), it has not originally been

designed to deal with static obstacles,

and, when the avoidance rule was

Figure 5: Start - flocking
without obstacles

Figure 6: Finish -
flocking without obstacles

 15

implemented, it worked by causing members of the flock to

split apart to avoid the obstacle. Flocking was not meant

to deal with crossing a bridge or navigating through a

series of tunnels. An algorithm closely based on the

flocking method would usually handle these types of

obstacles by changing the vectors of the units to avoid

these obstacles while maintaining some speed. The result

would be a small number of units that successfully

navigated through the obstacle and a

large number of units that evaded the

obstacle by steering away from it,

separating themselves from the leader.

These remaining units would wander

aimlessly within flock formation

because they lost contact with the

leader. In figure 8, all but one of the units eventually

reached the leader after many of them

wandered around the map while the

opening was blocked by other units,

but 30 to 45 extra seconds of

wandering around the map is not a

desirable feature to have in a real-

time game setting. In some types of

Figure 7: Start - flocking
with obstacles

Figure 8: Finish -
flocking with obstacles

 16

maps, the leader may be the only unit that reaches the

destination, leaving the other units stranded.

 17

CHAPTER III

PROPOSAL

Tools for Obstacle Management

 This paper introduces four tools to address obstacle

management in an RTS context: chaining, memory, navigation

markers, and dynamic leadership. These tools were devised

to address two major problems that would cause a flock to

not reach its destination. The first problem is a follower

blocking the leader, and the second is a follower that has

lost contact with the leader. The forms that these two

problems take in an RTS game are described below.

 To address this problem, the different types of

scenarios related to encountering an obstacle must be

identified. The solution to each of these scenarios would

serve as a supplemental tool that can be applied to the

flocking model to yield a model more suitable for

simulating the movement patterns of people through terrain

that includes obstacles. This project deals with three

 18

types of obstacles. They are congestion, loss of contact

with leader, and leader blocked by follower.

 Congestion refers to a

bottleneck type of

obstacle. When a large

number of moving units

encounter a narrow

passageway to cross, only a

few of the units can cross

the obstacle at a time (Fig. 9). This creates a bottleneck

effect, where numerous units cannot proceed until the units

in front of them have crossed the obstacle. The standard

flocking method would change the vector of the units which

are unable to cross the obstacle right away so that they

would avoid the obstacle altogether. While the avoidance

rule of flocking is satisfied, the units have moved “off

course” from the leader and become separated. The solution

to this problem is to tweak the avoidance rule to limit the

angle of deviation from an obstacle and allow the speed of

the units to reach 0 when an obstacle is encountered that

cannot be avoided without losing contact with the leader.

Implementing these two changes to the avoidance rule

results in a flock whose members wait at the bottleneck for

an opening to navigate instead of a flock whose members

Figure 9: Congestion obstacle

 19

evade the bottleneck obstacle entirely when they cannot

cross the obstacle right away.

 Loss of contact with leader is a more complicated

problem to solve. This is the scenario in which a leader

encounters an obstacle and

maneuvers around it (or

through it). By doing so,

the followers lose sight of

the leader because the

leader is now on the other

side of the obstacle,

through which the followers cannot see (Fig. 10). Without

the leader, the followers become lost and begin to flock

aimlessly through the map. Three tools are introduced to

address this problem.

 The first tool to address the loss of contact with

leader problem is to store

with each flock member the

ID of the flock member it

is following. By default,

all followers are following

the leader. So the

leader’s ID is stored with

Figure 10: Loss of contact with leader obstacle

Figure 11: Chaining solution

 20

each follower as the ID of the flock member being followed.

When a follower loses sight of the leader, the follower

checks the flock members it can see to find out who they

are following (Fig. 11). When a follower finds another

flock member who is directly or indirectly following the

leader, that flock member’s ID is stored as the ID of the

flock member the “lost” flock member is following.

Although, in real life, a person cannot determine just by

looking that person A is following person B, who is

following person C, who is the out-of-sight leader, using

this method still produces a natural-looking result.

 The first tool works unless a flock member has lost

contact with all other members of the flock. In this case,

the unit cannot follow

anyone else because it

cannot see anyone else. So

a second tool is deployed

to give that “lost” unit a

chance to reacquire contact

with the other flockmates.

This tool is to create a

memory unit that represents the last known location of the

last member the lost unit was following (Fig. 12). The ID

of the memory unit is stored with the lost unit so that the

Figure 12: Memory solution

 21

unit can follow what it “remembers” to be the last location

of the unit it was following until it reaches that

location. The memory unit is created when a flock member

becomes lost and is destroyed when the flock member reaches

the location. This tool also yields results that appear

natural and can be quite effective for navigating around

corners of obstacles.

 The first two tools provide an effective method for

followers to maintain contact with the leader and,

ultimately, arrive at the leader’s destination with the

leader. However, both of these tools fail if a unit has

lost contact with all other units and cannot reacquire

contact with them after navigating to their last known

position. The last resort for these lost units to find

their way to the leader is for the leader to leave a trail

for the lost units to follow. This is implemented by the

creation of a list of

waypoint markers placed by

the leader for the units to

find when they become lost.

Not every space in the

leader’s path has to be

marked; only the ones where

the leader changes direction requires marking. The markers

Figure 13: Navigation marker solution

 22

are indexed to indicate the relative position of the

location in the leader’s path (Fig. 13). So, followers who

are lost and cannot find anyone to follow can follow these

markers to the leader’s destination, where the unit

reunites with the rest of the flock. This tool does not

produce natural-looking results because it is not

reasonable for a lost unit to be able to find its way to

the leader on its own in the most efficient manner

possible. However, this tool may be required in the RTS

gaming context because players should not be expected to

baby-sit lost units and herd them back to the flock. In

RTS games, the player must rely on the units ability to

reach a destination, even if natural movement has to be

sacrificed.

 Leader blocked by

follower is a scenario that

can be encountered in a

number of situations, which

includes fighting in

battles, encountering

obstacles, or changing a destination. Regardless of what

may cause a leader to be blocked by one of its followers,

the result is a leader who cannot reach a destination

because the path is blocked by one or more of its followers

Figure 14: Leader blocked by follower

 23

(Fig. 14), and the followers do not move because their

objective is to stay with the leader. To address this

problem, 2 additional designations are added to the list of

possible designations for each unit. When a leader becomes

blocked by a follower, the leader’s designation changes

from leader to temporary follower, and the unit blocking

the leader changes its

designation from follower

to temporary leader (Fig.

15). The ID of the

temporary leader is stored

with the temporary follower

to make the original leader

follow the new leader. The temporary leader then receives

knowledge of the path to be taken and follows that path

until it reaches the destination or is blocked by another

follower.

Implementation: Building a Sample Navigation Engine

 To test the modifications to flocking, a generic RTS

flocking engine is constructed. It basically is a finite

state machine (FSM) that cycles continuously. This FSM is

significantly less-sophisticated than a full-scale game

Figure 15: Dynamic flock leadership

 24

engine, which would include other elements, such as teams,

objectives, unit statistics, unit creation, unit actions,

etc. However, this model is sufficient for demonstrating

the effectiveness of chaining, memory, navigation markers,

and dynamic leadership for navigating a flock from one

location on the map to another. During each cycle, the

state of each unit is checked. Based on that state, a set

of instructions runs to update the unit on the screen. The

screen displays a map, which represents the “world” in

which the units move. It is a 2-dimensional map with a

predefined width and height. The units are not allowed to

move beyond the boundaries of the map. The map also

contains obstacles, which represents impassable terrain.

The units are not allowed to pass through obstacles,

either. This engine also contains a destination, which is

a location to which all units are to go.

Ingredients of the engine

Map The map is a rectangular region in which the units are

located. Maps have a predefined width and height, which

defines the boundaries for unit locations. Units are not

allowed to navigate beyond the boundaries of the map.

Locations are referenced in this region using a 2-

 25

dimensional coordinate (x,y). The unit of measure using

map coordinates is map units. The following pieces of data

govern the map:

 - width(integer): This number determines the width of

the map in number of map units.

 - height(integer): This number determines the height

of the map in number of map units.

 - map(dynamic integer array): This structure is a

representation of the map with each coordinate occupying a

location in the array. The size of the map is equal to the

width of the map times the height of the map times the data

type of the array. In this case, an integer is being used,

but other data types can be used, depending on the

requirements of the engine.

Static Obstacles Static obstacles are locations on the map

that are not passable. Impassable terrain is commonly used

in RTS games to make games more interesting and add more

elements to strategy component of an RTS game. Impassable

terrain can represent anything including oceans, mountains,

forests, caverns, space, etc. In this exercise, an

obstacle is defined by the map coordinate it occupies. The

obstacle completely fills the region defined by the map

coordinate, which is 1 map units2. Units are not allowed to

occupy this location, nor are they allowed to move

 26

diagonally around this location. The following pieces of

data governs static obstacles:

 - map(offset): This location is an offset of the map

structure defined by the parameters of the map. The value

in this structure determines whether or not an obstacle

occupies this location. In this exercise, a value of 0

indicates passable terrain, and a value of 1 indicates

impassable terrain.

Destination The destination is a location on the map to

which all units are to move. In an RTS game, this is a key

component in the standard user interface cycle. The cycle

consists of: 1) Select units to move, and 2) Select a

destination for the units. The location of the destination

can be any location inside the boundaries on the map, as

long as it is not also the location of an obstacle.

Destinations are governed by the following pieces of

information:

 - xdestination(integer): This integer represents the

x-coordinate of the destination on the map.

 - ydestination(integer): This integer represents the

y-coordinate of the destination on the map.

Path A path is a list of coordinates to follow for

navigation from a unit's current location to its

destination. Pathfinding is one of the most important AI

 27

components in an RTS game and can also be one of the most

resource-intensive operations. A popular choice for

constructing a pathfinder for an RTS game is A*, which is

used in this exercise to find a path from the destination

to the leader. The following pieces of data are used to

operate the pathfinding component of this program:

 - pathnode structure

 - x-coordinate(integer): This integer represents

the x-coordinate of the map location being examined for

pathfinding.

 - y-coordinate(integer): This integer represents

the y-coordinate of the map location being examined for

pathfinding.

 - previous pathnode(pathnode pointer): This

pointer points to the location on the map from which the

current location is reached. This field is used to

navigate the leader to the destination after a route to the

destination is found.

 - g-cost(float): This number represents the

movement cost from the destination to the current node

being examined.

 - h-cost(float): This number represents an

estimate of the movement cost from the current position to

 28

the leader. Both g-cost and h-cost is used to find the

shortest possible path from the destination to the leader.

Units Units are the computer characters that are controlled

by a player in an RTS game. Common type of commands that a

player can issue to a unit is to move, attack, defend,

hide, use special abilities, etc. For this exercise, the

move command is processed. These units move from their

starting location on the map toward the destination. Their

shape is a regular octagon with an apothem of 0.3 map

units. One unit can move diagonally around another unit,

but it cannot move diagonally around an obstacle. Because

units have state information, they require more attention

when coding to manage the state transisions. Here is the

information associated with each unit:

 - unit structure

 - x-position(float): This number represents the

current animated x-coordinate of the unit on the map.

 - y-position(float): This number represents the

current animated y-coordinate of the unit on the map.

 - from-x(integer): This integer represents the

x-coordinate on the map from which the unit is moving to

its next location.

 29

 - from-y(integer): This integer represents the

y-coordinate on the map from which the unit is moving to

its next location.

 - to-x(integer): This integer represents the x-

coordinate on the map to which the unit is currently

moving.

 - to-y(integer): This integer represents the y-

coordinate on the map to which the unit is currently

moving.

 - designation(character): This character

represents the current designation of the unit. The

designation of the unit influences how it behaves.

 - L: leader

 - l: temporary leader

 - F: follower

 - f: temporary follower

 - M: memory (special units only)

 - N: navigation marker (special units only)

 - status(character): This character represents

the current status of the unit. The status of the unit

determines what action it takes next.

 - N: idle

 - M: moving

 - B: blocked

 30

 - L: lost

 - unit's leader(unit pointer): This pointer

indicates what this unit is following. Initially, it

follows the leader but can change to another follower, the

memory of a leader or follower's location, or even markers

left by the leader.

 - next unit(unit pointer): This pointer

indicates the next unit in the unit list. This list is

constructed at the beginning of program execution from

units loaded from the unit file.

Unit state information

Designations The leader is the one unit on the screen that

has global knowledge of the map and the path required to

reach a destination. This unit navigates exclusively

according to the path that leads that unit to the

destination. A leader can become a temporary follower if

it is blocked by a follower (Fig. 16).

 The followers are units that do not have global

knowledge of the map, nor do they have knowledge of the

path that the leader is taking. To reach the destination,

they are dependent on guidance from the leader. These

units navigate according to the RTS directed flocking

 31

guidelines. A follower can become a temporary leader if it

blocks a leader or a temporary leader.

 A temporary follower is what a leader becomes after it

has been blocked by one of its followers and passes

leadership status to that unit. When a leader becomes a

temporary follower, it no longer has global knowledge of

the map or the path required to reach the destination. It

uses RTS directed flocking to follow the new leader to the

destination. A temporary follower can become a leader

again if it blocks a temporary leader.

 A temporary leader is a follower that has blocked a

leader or a

temporary leader

and has received

leadership status

from them. A

temporary leader

has global

knowledge of the

map and the path

calculated to

reach the

destination. It navigates to the destination the same way

that the original leader did, which was by following the

Figure 16: Unit designation state diagram

L: Leader l: Temporary Leader
F: Follower f: Temporary Follower

 32

calculated path. A temporary leader can become a follower

again if it is blocked by a follower.

 Special units are not really units. They describe a

location but do not have a physical shape or size. They

are more like navigation points used to aid lost followers.

Two types of special units are being used in accordance

with RTS directed flocking to help followers that need it.

 Memory units are special units that represent the last

known location of a unit that the lost unit was following

before contact was lost. Memory units are dynamically

created when the follower lost contact with the unit it was

following and assigned as the unit to follow. So the

follower goes to where it last saw the unit it was

following. When the follower reaches the memory unit, the

memory unit is destroyed, and the follower attempts to

reestablish visual contact with other units.

 Marker units are special units that represent a

direction change made by the leader. When a leader changes

direction, it dynamically creates a marker for lost

followers to find. If necessary, the followers can follow

the trail of markers all the way to the destination,

although it may look a bit unnatural. These markers are

not destroyed in this program until the program exits, but,

 33

in a game, a marker can be destroyed after all units have

passed it while moving towards the destination.

Statuses Idle units either are at their initial state or

have just completed a move from one location to the next.

The next action for an idle unit is to determine its next

move. If it can find a move to make, its status changes

from idle to moving (Fig. 17). If all possible moves are

blocked by other

units, its status

changes to blocked.

If it has lost

contact with all

other units, has

reached the memory

unit, and cannot find

any other units or

markers, its status

changes from idle

to lost.

 Moving units are currently in motion from its previous

position to its next position. The unit's current position

progressively changes from its previous location to its

next location until the new position is reached. Once the

Figure 17: Unit status state diagram

I: idle M: moving B: blocked L: lost

 34

unit reaches its new location, its status changes from

moving to idle.

 Blocked units cannot move to its next position because

it is blocked by other units. These units continue to

search for moves that it can make. Once a move becomes

available, its status changes from blocked to moving.

 Lost units have lost all contact with the flock and

currently do not know which direction to go. They can

either continue to move based on its own movement behavior

as a flock of one unit, or it can maintain its current

position. Lost units continue to be lost until contact is

established between that unit and other unit, in which case

its status would change from lost to moving or blocked,

depending on whether a move is available. For this

exercise, no unit should reach this status.

Tasks of the engine

 The above components of the engine keep track of some

aspects of an RTS game, like map size, map obstacles,

number of units, location of units, group leader, and

destination. What makes these pieces function are the

different chores that the RTS engine does to continually

update the properties of these pieces.

 35

Pathfinding Pathfinding is a core element in an RTS game.

It interprets a player’s request to move a set of units

from location to another as a list of paths for the units

to follow to fulfill that request. In this program, one

path is calculated from the leader’s location to the

destination, which takes place when the user presses the

start key.

 The pathfinding algorithm used for this exercise is

A*. This algorithm is popular among computer game

programmers because of its ease of use. At the core of A*

is the concept of estimating a movement cost from a given

position to its goal. We call this cost h, which is

calculated by a heuristic function. In this exercise, h is

simply the distance from the given position to the

destination. Another type of movement cost used in A* is

the cost of moving a unit from the start position to a

given position. This cost is called g. In this program, g

is the total distance traveled to reach the current

position. It is not necessarily the distance between the

current position and the start position. So, two costs can

be associated with every position on a map. The cost of

moving a unit from the start position to a specific

location on a map, and the estimated cost of moving that

unit from there to its destination. The sum of these two

 36

costs gives the total cost of the unit's trip from start to

destination (f).

 A* uses a collection of nodes to represent movement

cost for any location on the map. Each node contains a map

position, the accumulated movement cost so far (g), the

estimated cost for the rest of the trip to the destination

(h), and a pointer to another node from which this node was

reached. Two lists are used in this algorithm. The open

list contains nodes on paths that have not yet been

explored, and the closed list contains nodes on paths that

have already been explored. For each iteration of A*, a

node is selected from the open list for examination. The

algorithm checks if the node represents the location of the

destination. If so, a path from the starting location to

the destination has been found, and A* stops. Otherwise,

possible locations from the location being examined are

added to the open list as new nodes. For each new node

created, cost information is calculated. The current node

being examined is also assigned as the previous node for

all the new nodes created because those new locations are

reached from the current one. Possible locations for the

creation of new nodes are positions adjacent to the current

position. That is, from a given position, a unit is

allowed to move 1 space up, down, left, right, or

 37

diagonally. A node selected from the open list for

examination is placed into the closed list.

 The next node to be selected from the open list

depends on the estimated total cost stored on the node.

The goal is to pick the most direct route from the starting

location to the ending location. Such a path would have a

minimal movement cost. So, the next node to be picked from

the open list would have the smallest sum of g and h.

 Obstacles or boundaries can be an issue with

pathfinding because choosing a path through in immovable

obstacle is not a desired result. One solution to this

problem would be to add a cost penalty if the location

being examined is the location of an obstacle or if it is

out of bounds. By placing an excessively high cost on

making such a move when that node is created and placed

into the open list, the other nodes in the list that do not

make such illegal moves is examined first.

A* algorithm [Nilsson1]:

 1) Create a search graph G, consisting of the start

node. Place the start node in the OPEN list.

 2) Create a CLOSED list that is initially empty.

 3) If the OPEN list is empty, exit with failure.\

 4) Select the first node on OPEN, remove it from

OPEN, and put it on CLOSED. Call this node n.

 38

 5) If n is the goal node, exit with success. The

solution is a path traced from the current node back to the

start node using the previous node pointers.

 6) Expand node n, creating the set M of its

successors. Install these members of M as successors of n

in G.

 7) Establish a pointer to n from each of those

members of M that were not already in G. Add these members

of M to OPEN.

 8) Reorder the OPEN list in order of increasing f

values. (Ties are broken in favor of deeper nodes in the

search tree).

 9) Go to step 3.

Movement calculation Calculating a units next move is

driven by the RTS directed flocking rules based from

Reynolds flocking rules but modified for an RTS game

setting for obstacle management. Each rule calculates a

weighted vector for calculating the next direction for a

follower to move. After all calculations are completed and

averaged, the new direction is assigned to the follower.

 Separation acts a force field that repels one unit

from another, maintaining a minimum distance between them.

RTS directed flocking allows one unit to be adjacent to

another. For this exercise, the only type of separation

 39

required is that the two units to not collide with each

other. For that reason, the separation rule is implemented

in the code for the avoidance rule. Thus nearby units and

obstacles is both treated the same way.

 Alignment works almost like a compass. For this rule,

a unit looks for nearby units. For each unit found within

a specified range of the unit performing the alignment

calculation, its current heading is added to a vector

accumulator. For a blocked or lost unit, eligible units

are units within a specified distance of that unit that are

not obstructed by an obstacle. After all eligible units

are scanned, their headings are averaged. The resulting

vector is weighted and used to calculate the vector to be

assigned to the unit.

Alignment algorithm:

 1) Initialize totalalignment_vector

 2) For each unit in the flock

 3) If distance of unit to current unit <

MAXALIGNMENTDISTANCE

 4) If (unit's status is not blocked and not

lost)

 5) Calculate vector from unit's previous

position to next position.

 6) Add vector to totalalignment vector

 40

 7) End if

 8) End if

 9) End for

 Cohesion works similarly to alignment, except that

instead of averaging the headings of all nearby units, the

vectors from a given unit to the nearby flockmates are

averaged, giving a vector toward the average position of

the units that the given unit saw. Instead of moving in

the same direction of the flock, this rule causes a unit to

move towards the flock.

Cohesion algorithm:

 1) Initialize totalcohesion vector

 2) For each unit in the flock

 3) If distance of unit to current unit <

MAXCOHESIONDISTANCE

 5) Calculate vector from current unit's current

position to unit's current position

 6) Add vector to totalcohesion vector

 7) End if

 8) End for

 Follow the leader is a rule added for directed

flocking. This rule calculates the vector from a given

unit to a leader, as long as the leader is within visible

range of the given unit and not hidden by any obstacles.

 41

Follow the leader algorithm:

 1) Initialize followtheleader vector

 2) If distance of leader to current unit <

MAXLEADERDISTANCE

 4) Calculate vector from current unit's current

position to leader's current position

 5) Add vector to followtheleader vector

 6) End if

 After vectors for alignment, cohesion, and follow the

leader are calculated, the vectors are weighted and

averaged. The resulting vector is used to assign the next

space to which a given unit moves. This vector is weighted

most heavily on follow the leader because contact with the

leader is required to reach a destination. Cohesion takes

second priority, which keep a group of units together.

Alignment is given the lowest priority, and can be used

make movement look more natural for units that are already

in close proximity to each other and have contact with the

leader.

 After the directional vector is calculated for a unit

attempting to make a move, it is translated to an angle

that is used to determine a direction that the unit can

attempt to make. The resulting direction can still be

modified by the avoidance algorithm if the direction takes

 42

the unit into an obstacle or another unit. The angle to

direction translations are as follows:

 - 339 - 360 degrees, 0 - 22 degrees: East

 - 23 - 67 degrees: Southeast

 - 68 - 113 degrees: South

 - 114 - 158 degrees: Southwest

 - 159 - 203 degrees: West

 - 204 - 248 degrees: Northwest

 - 249 - 293 degrees: North

 - 294 - 338 degrees: Northeast

 Avoidance functions more like an overriding factor

than a weighted factor in RTS directed flocking. After a

new space is calculated for a unit, that new space is check

for obstacles or flockmates. If either are found, then the

new space becomes invalid for the given unit, and alternate

spaces are checked for obstacles. Units are permitted to

deviate from –90 degrees to +90 degrees from the new vector

to find an available space to move. If a space is found,

then that space becomes the next space for the unit.

Otherwise the unit becomes blocked and continues to check

for an opportunity to move to the next space.

Avoidance algorithm:

 1) While (next position occupied by obstacle or

another unit) and (vector from current position to next

 43

position deviates from unit's directional vector by less

than 90 degrees)

 2) Next position = <next closest possible move to

unit's directional vector

 3) End while

 4) If (vector from current position to next position

deviates from unit's directional vector by 90+ degrees)

 5) Unit's status = blocked

 6) End if

Animating Moving a unit provides a smooth motion for units

moving from one space to another. A single movement cycle

moves a unit 1/10 of the distance between the unit’s

previous space and the unit’s next space. So, in 10

cycles, a unit has navigated completely from one space to

another.

Animate algorithm:

 1) If (distance from unit's current position to unit's

next position is less than 1/10 the distance from the

unit's previous position to the unit's next position)

 2) Unit's current position = unit's next position

 3) Unit's status = idle

 4) Else

 44

 5) Unit's current position = unit's current position

+ (1/10 * vector from the unit's previous position to the

unit's next position)

 6) End if

RTS directed flocking engine interface The interface for

this RTS directed flocking engine is much less

sophisticated than the interfaces found in today's RTS

games. The initial state of the RTS directed flocking

engine is loaded from three data files, which are loaded

when the program first starts.

 The map file contains information about the map and

its obstacles. There are two record types in this file.

The first record gives the dimensions of the map in width

and height, both of which are integers delimited by a

space. Each remaining record gives a location of a static

obstacle with and x- and y-coordinate, again delimited by a

space.

 The map parameters are loaded into the map width and

height variables, defining the boundaries of the map. Then

a structure in memory is allocated and initialized to

represent the map. As each obstacle record is loaded, that

location in memory has its value changed from 0 to 1,

indicating the presence of an impassable obstacle at that

location.

 45

 The path file contains the destination, which is given

as an x-coordinate, a space, and a y-coordinate. When this

record is loaded, the destination variables are set and

used to calculate a path from the leader to the

destination.

 The unit file contains the starting locations for all

units being loaded into the map. The first unit record is

the leader, and the remaining records are all followers.

Each location is given as an x-coordinate and a y-

coordinate, delimited by a space.

 All units loaded are placed into a unit list. Each

unit's current position, previous position, and next

position is initialized to the position loaded from the

unit file. The leader has an initial designation of 'L'

and an initial unit leader of NULL, while the remaining

units have an initial designation of 'F' and the leader as

the initial unit leader. All units initially have an idle

status.

 A graphics screen is used to display the elements of

the RTS directed flocking engine. Obstacles appear as red

squares. Units appear as small octagons. The destination

is displayed as a small, white square. Keyboard zoom

controls are available for adjusting what is viewed on the

screen. The following zoom controls are available:

 46

 - +: Zoom in

 - -: Zoom out

 - A: Scroll right

 - D: Scroll left

 - W: Scroll down

 - X: Scroll up

 Initially, the screen is static. No activity takes

place until the start key (g) is pressed. Once the start

key is pressed, the pathfinder algorithm executes to find a

path for the leader. Once that is completed, the units

start to move toward the destination. At any time, the

program can be terminated by pressing the quit key (q).

RTS engine update cycle walkthrough

 When all of the above routines operate on the objects

in memory, the result in a digital recreation of moving a

flock of units from one place to another while calculating

a path for only the leader. The state information of each

unit is updated by running a continuous update cycle, which

checks each unit and updates it according to its status and

the status of the environment (Fig. 18). The following

walkthrough provides a clearer understanding of what

happens within a single update cycle.

Leader / temporary leader cycle update For idle leaders,

the next position in the leader's path is checked to see if

 47

it is currently occupied by another unit or if it is

currently the next location of another unit. If so, then

the leader is blocked by that follower. The leader's

designation is changed to temporary follower, and the

leader's status is changed to blocked. The follower's

designation is changed to temporary leader and assumes

leadership of the flock. However, if the next location in

the path is not blocked by a follower, then that location

becomes the next location of the leader. The leader's

current location becomes its previous location, and the

leader's status is changed from idle to moving.

 A moving leader is currently in transit to its next

location. Its current position is first checked to see if

it within 1/10 the distance from its previous location and

its next one. If so, then the leader's current position is

changed to its next location, and its status is changed

from moving to idle. If the leader is not within range of

its next location yet, then its current position is changed

by 1/10 of the vector from its previous location to its

next one, bringing it closer to its next position.

 Leaders cannot become blocked or lost. A leader who

is blocked by a follower transfers leadership to that

follower and becomes a blocked temporary follower. So, the

leader is no longer the leader. As for being lost, the

 48

leader is following the path to the destination, so it

cannot become lost in this exercise.

Follower update cycle Idle followers attempt to find their

next positions. To accomplish this, the engine first calls

the three flocking functions to get vectors for follow the

leader, cohesion, and alignment. The resulting three

vectors are weighted and averaged. Afterwards, an angle is

calculated from that vector. This angle represents the

follower's next heading. This next heading then translated

to the follower's proposed next move (N, NE, E, SE, S, SW,

W, or NW). This move is then tested for static obstacles

or other units. If that move is not available, then all

moves within 45 degrees of the attempted move is checked

for obstacles. If an available location is found, then

that location becomes the follower's next location. The

follower's current location then becomes its previous

location, and its status changes from idle to moving. If

no available space is found, then the follower's status

changes to blocked. If no other units are visible to the

follower, and if the follower cannot find an available

memory unit or a marker unit, then its status changes from

idle to lost.

 Followers move the same way as the leader (or

temporary leader). Followers with a current status of

 49

moving are updated with a position change that

progressively moves its current location closer to its next

position. When the follower is close enough to its next

position, then its next position becomes its current

position, and its status changes from moving to idle.

 Blocked and lost followers follow the same procedure

as idle followers. They continue to attempt to find

another move until it finds one.

 Temporary leaders behave the same way as followers do.

It follows the rules of RTS directed flocking for

navigation until it becomes the leader again.

 50

Figure 18: Complete unit state diagram

IL: idle leader Il: idle temp leader IF: idle follower If: idle temp follower
ML: moving leader Ml: moving temp leader MF: moving follower Mf: moving temp follower
BF: blocked follower Bf: blocked temp follower LF: lost follower Lf: lost temp follower

 51

CHAPTER IV

RESULTS

 A directed flocking simulator with the new obstacle

management tools was written in C. The program contained

2535 lines of code and 36 lines of documentation. This

program was used to perform the following experiments.

 Three types of tests were conducted with the obstacle

management tools. The first set of tests includes a

variety of maps, units and destinations, which test the

validity of the tools in specific situations. By testing a

sample of conditions that lead to obstacle-related

problems, one can achieve a general idea of the tools'

effectiveness in dealing with obstacles.

 The second set of tests log the elapsed time for each

cycle in the navigation engine. Instead of using several

different maps, a single map reproduced to several

different scales are used to test the playability limits of

the engine. Each scaled map is tested with a different

number of

 52

 units to further determine the capabilities of the engine.

 The first two sets of tests were conducted in two

modes. The first mode sets the speed of all units to the

same magnitude, when moving. The second mode doubles the

speed of units that have lost contact with the leader or

were over 10 units away from the leader. This mode allows

the straggling units to catch up with the leader.

 The third set of tests also measures the elapsed time

for each cycle in the navigation engine. Unlike the second

test, this test compares performance between a map with no

obstacles against a map with a bottleneck obstacle.

Validation Results

 A total of 11 tests were conducted to determine if all

units could reach a specific destination. These tests

range from testing a single type of obstacle to testing

situations encountered in an RTS game. The test results

are as follows:

 53

Test 1

Size of map: 25 x 25

Number of units: 26

Result: OK

 This test features a progressive bottleneck. As the

units pass through more obstacles, the bottlenecks become

more extreme. This map tests the ability of the blocked

units to remain with the flock and pass through the

obstacle when the opening finally becomes available.

Figure 1 9: Test 1 Start

Figure 20: Test 1 Finish
(Catchup disabled)

Figure 21: Test 1 Finish
(Catchup enabled)

 54

Test 2

Map size: 25 x 25

Number of units: 26

Result: OK

 This test features a single bottleneck. The units

move in a relatively normal fashion until they reach the

obstacle, through which only one unit can pass at a time.

Like the previous map, this map tests the ability of the

blocked units to remain with the flock and pass through the

obstacle when the opening finally becomes available.

Figure 22: Test 2 Start

Figure 23: Test 2 Finish
(Catchup disabled)

Figure 24: Test 2 Finish
(Catchup enabled)

 55

Test 3

Map size: 25 x 25

Number of units: 2

Result: OK

 This test features a leader, a follower, and a single

obstacle. As the leader moves behind the obstacle, the

follower loses sight of the leader because the sight is

blocked by the obstacle. This map tests the follower's

ability to use its memory of the leader's position to move

its leader's former position and reacquire contact with the

leader.

Figure 25: Test 3 Start

Figure 27: Test 3 Finish
(Catchup enabled)

Figure 26: Test 3 Finish
(Catchup disabled)

 56

Test 4

Map size: 25 x 25

Number of units: 2

Result: OK

 This test also features a leader and a single

follower. The map is a bit more complex. This map tests

the follower's ability to follow the markers dropped by the

leader to reacquire contact with the leader near the

destination.

Figure 28: Test 4 Start

Figure 30: Test 4 Finish
(Catchup enabled)

Figure 29: Test 4 Finish
(Catchup disabled)

 57

Test 5

Map size: 25 x 25

Number of Units: 26

Result: OK

 This test places the leader at the rear of the flock.

The leader is unable to proceed because its path is blocked

by followers. Specifically, this map tests the leader's

ability to transfer leadership to the follower blocking it.

Figure 31: Test 5 Start

Figure 33: Test 5 Finish
(Catchup enabled)

Figure 32: Test 5 Finish
(Catchup disabled)

 58

Test 6

Map size: 25 x 25

Number of Units: 26

Result: OK

 Similar to test 5, the leader is again at the rear of

the flock. Although it has some room to move, it is soon

blocked by its followers as it moves toward the

destination. This map also tests tests the leader's

ability to transfer leadership to the follower blocking it.

Figure 34: Test 6 Start

Figure 36: Test 6 Finish
(Catchup enabled)

Figure 35: Test 6 Finish
(Catchup disabled)

 59

Test 7

Map size: 25 x 25

Number of units: 26

Result: OK

 This test simulates terrain that can be found in an

RTS game. The map is composed of two land masses connected

by three bridges. This map tests the flock's ability to

cross a bridge.

Figure 37: Test 7 Start

Figure 38: Test 7 Finish
(Catchup disabled)

Figure 39: Test 7 Finish
(Catchup enabled)

 60

Test 8

Map size: 25 x 25

Number of units: 26

Result: OK

 This test uses the same map as the previous test but

also simulates an ambush at the bridge being crossed,

forcing the flock to retreat back across the bridge. This

map tests the flock's ability to cross a bridge with the

leader starting behind the followers.

Figure 40: Test 8 Start

Figure 42: Test 8 Finish
(Catchup enabled)

Figure 41: Test 8 Finish
(Catchup disabled)

 61

Test 9

Map size: 25 x 25

Number of units: 25

Result: OK

 This test features scattered obstacles and scattered

units. The followers in this test are not adjacent to the

leader but do have visual contact with the leader. This

map test the scattered flock's ability to reach the

destination.

Figure 43: Test 9 Start

Figure 45: Test 9 Finish
(Catchup enabled)

Figure 44: Test 9 Finish
(Catchup disabled)

 62

Test 10

Map size: 25 x 25

Number of units: 25

Result: OK

 This test uses the same map as test 4 but uses more

followers, creating traffic and occasional traffic jams.

As units become blocked, they start using more of the

obstacle management tools in an attempt to get moving

again. This map tests the flocks ability to reach the

destination in an increased traffic setting.

Figure 46: Test 10 Start

Figure 47: Test 10 Finish
(Catchup disabled)

Figure 48: Test 10 Finish
(Catchup enabled)

 63

Test 11

Map size: 25 x 25

Number of units: 25

Result: OK

 This test is a variation of test 9 but with a

different destination. The leader's path in this test is

less direct, as it weaves around the obstacles. This map

tests the scattered flock's ability to reach the

destination when the path is less straightforward.

Figure 49: Test 11 Start

Figure 50: Test 11 Finish
(Catchup disabled)

Figure 51: Test 11 Finish
(Catchup enabled)

 64

 The above tests demonstrate the ability of chaining,

memory, navigation, and dynamic leadership to allow a group

of units to move from one location to another without

losing cohesion. The tests were successful, but it is

possible for a test to fail if a unit is forced to move to

an alternate location by another unit and if, from this

alternate location, the unit has no contact with any units,

any markers, and its memory of what it was following.

Although the test results do not guarantee that the tools

always work, they do demonstrate a degree of flexibility in

managing obstacles.

 A couple of "odd" behaviors were observed during the

validation tests. In test 2 with catchup enabled, the last

unit had to backtrack to the leader's starting location to

reacquire contact with the other units, which had already

moved through the narrow opening in the obstacle. This was

caused from the last unit competing with another unit to

move to the opening in the obstacle on the map. The last

unit was cut off by the other unit and was forced to move

to an alternate location within its field of view. When

the last unit moved to this location, it lost contact with

all other units because they were on the other side of the

obstacle. To reacquire contact, the last unit moved

 65

towards the last marker dropped by the leader that it could

see, which was at the leader's starting location.

 Another odd behavior was also observed in the test 10

map. The latter half of the path contains a u-turn around

an obstacle to reach a destination. As the followers

approached the u-turn, some of them cut others off, forcing

them to wait or to move to alternate spaces in a direction

away from the u-turn.

Performance Results

 Performance tests were conducted on three scaled

versions of the test 10 map. This map features a winding

path for which the units will use a variety of tools to

reach the leader. For each map, elapsed times were

recorded for path calculation and each update cycle for the

screen. Each map is tested with a variety of number of

units to determine the maximum number of units that can be

used without experiencing significant performance

degradation. As stated earlier, an update cycle should not

take longer than 1/10 of a second. Because navigation was

only one component of an update cycle in a commercial RTS

game, this experiment had a target elapsed time of 1/100 of

a second for a multiple-flock environment. These tests

 66

were conducted on a PC with a 2.40 GHz Intel Pentium 4 CPU

with 512 MB of RAM. The test results were as follows:

Test 12

Map size: 25 x 25

 - 25 Unit test (catchup disabled):

 - Cycles to destination: 740

 - Best time: 0.000 s

 - Worst time: 0.003 s

 - Average time: 0.000 s

 - 25 Unit test (catchup enabled):

 - Cycles to destination: 460

 - Best time: 0.000 s

 - Worst time: 0.003 s

 - Average time: 0.000 s

 - 50 Unit test (catchup disabled):

 - Cycles to destination: 810

 - Best time: 0.002 s

 - Worst time: 0.013 s

 - Average time: 0.005 s

 - 50 Unit test (catchup enabled):

 - Cycles to destination: 530

 - Best time: 0.002 s

 - Worst time: 0.014 s

 67

 - Average time: 0.006 s

 - 100 Unit test (catchup disabled):

 - Cycles to destination: 910

 - Best time: 0.006 s

 - Worst time: 0.027 s

 - Average time: 0.016 s

 - 100 Unit test (catchup enabled):

 - Cycles to destination: 610

 - Best time: 0.009 s

 - Worst time: 0.027 s

 - Average time: 0.018 s

Test 13

Map size: 50 x 50

 - 25 Unit test (catchup disabled):

Figure 52: Test 12 Performance

0

0.005

0.01

0.015

0.02

0.025

0.03

25 50 75 100

Units

T
im

e
(s

)

Best w/o catchup

Worst w/o catchup

Ave w/o catchup

Best w/ catchup

Worst w/ catchup

Avg w/ catchup

 68

 - Cycles to destination: 1170

 - Best time: 0.000 s

 - Worst time: 0.003 s

 - Average time: 0.000 s

 - 25 Unit test (catchup enabled):

 - Cycles to destination: 740

 - Best time: 0.000 s

 - Worst time: 0.003 s

 - Average time: 0.001 s

 - 50 Unit test (catchup disabled):

 - Cycles to destination: 1290

 - Best time: 0.002 s

 - Worst time: 0.013 s

 - Average time: 0.004 s

 - 50 Unit test (catchup enabled):

 - Cycles to destination: 770

 - Best time: 0.002 s

 - Worst time: 0.016 s

 - Average time: 0.006 s

 - 100 Unit test (catchup disabled):

 - Cycles to destination: 1470

 - Best time: 0.011 s

 - Worst time: 0.047 s

 - Average time: 0.024 s

 69

 - 100 Unit test (catchup enabled):

 - Cycles to destination: 820

 - Best time: 0.017 s

 - Worst time: 0.050 s

 - Average time: 0.030 s

 - 250 Unit test (catchup disabled):

 - Cycles to destination: 1920

 - Best time: 0.097 s

 - Worst time: 0.595 s

 - Average time: 0.288 s

 - 250 Unit test (catchup enabled):

 - Cycles to destination: 1100

 - Best time: 0.195 s

 - Worst time: 0.622 s

 - Average time: 0.314 s

Figure 53: Test 13 Performance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200 250

Units

T
im

e
(s

)

Best w/o catchup

Worst w/o catchup

Ave w/o catchup

Best w/ catchup

Worst w/ catchup

Avg w/ catchup

 70

Test 14

Map size: 100 x 100

 - 25 Unit test (catchup disabled):

 - Cycles to destination: 2170

 - Best time: 0.000 s

 - Worst time: 0.005 s

 - Average time: 0.001 s

 - 25 Unit test (catchup enabled):

 - Cycles to destination: 1250

 - Best time: 0.000 s

 - Worst time: 0.006 s

 - Average time: 0.001 s

 - 50 Unit test (catchup disabled):

 - Cycles to destination: 2270

 - Best time: 0.000 s

 - Worst time: 0.019 s

 - Average time: 0.005 s

 - 50 Unit test (catchup enabled):

 - Cycles to destination: 1290

 - Best time: 0.002 s

 - Worst time: 0.028 s

 - Average time: 0.007 s

 - 100 Unit test (catchup disabled):

 - Cycles to destination: 2510

 71

 - Best time: 0.000 s

 - Worst time: 0.059 s

 - Average time: 0.025 s

 - 100 Unit test (catchup enabled):

 - Cycles to destination: 1390

 - Best time: 0.009 s

 - Worst time: 0.117 s

 - Average time: 0.035 s

 - 250 Unit test (catchup disabled):

 - Cycles to destination: 2930

 - Best time: 0.084 s

 - Worst time: 0.984 s

 - Average time: 0.232 s

 - 250 Unit test (catchup enabled):

 - Cycles to destination: 1630

 - Best time: 0.153 s

 - Worst time: 0.713 s

 - Average time: 0.320 s

 - 500 Unit test (catchup disabled):

 - Cycles to destination: 3830

 - Best time: 0.070 s

 - Worst time: 5.313 s

 - Average time: 1.555 s

 - 500 Unit test (catchup enabled):

 72

 - Cycles to destination: 1950

 - Best time: 0.970 s

 - Worst time: 4.869 s

 - Average time: 1.940 s

 These test results reveal that the cycle time for a

specific number of units on a map has little dependence on

the size of the map. The cycle time for 100 units on a map

of one size is close to the cycle time for 100 units on a

map of another size.

 The 25 and 50 unit tests reveal an acceptable cycle

time, less than 1/100 of a second. The 100-unit test

begins to show an impact on the system's response time with

an average response time of 2 to 4 hundredths of a second.

Figure 54: Test 14 Performance

0

1

2

3

4

5

6

0 100 200 300 400 500

Units

T
im

e
(s

)

Best w/o catchup

Worst w/o catchup

Ave w/o catchup

Best w/ catchup

Worst w/ catchup

Avg w/ catchup

 73

Performance continues to degrade with the 250 and 500 unit

tests, which show cycle times ranging from 23/100 of a

second to nearly two seconds.

 The code that selects a new unit for a unit to follow

is computationally expensive, as it considers all units on

the map, markers dropped by the leader, and the unit's

memory of its former leader's last known position. This

piece of logic executes every time a unit attempts to

determine the location to which it moves next. When

traffic is light, this logic does not execute all of the

time because the units typically are able to move to the

next location without obstruction. However, in high-

traffic areas, units are constantly blocking each other,

forcing them to continually re-evaluate who to follow as

they attempt to recalculate their next moves.

 Enabling the catchup feature allowed the units in the

rear to reach test destination earlier. It also increased

the cycle time by about 25 percent on the average. Units

starting farther away from the leader on a map see the

greatest benefit from using the catchup ability. Units

starting close to the leader see a smaller benefit. Using

the catchup ability can also increase the number of blocked

units by increasing the number of units attempting to

occupy a limited amount of space.

 74

Obstacle Performance Results

 Obstacle performance tests were conducted on two maps.

The first map is identical to the test 5 map, which has no

obstacles. The second map is similar to the test 2 map,

which features a bottleneck obstacle. For this test, the

bottleneck is located at Y = 13, instead of Y = 11.

Locating the obstacle at this center line on the map allows

more units on either side of the obstacle. For each of the

two maps, elapsed times were recorded for each update cycle

for the screen. Each map is tested with a variety of

number of units to determine the maximum number of units

Figure 55: Cycle Comparison

0 1000 2000 3000 4000 5000

12 / 25
12 / 50

12 / 100

13 / 25
13 / 50

13 / 100
13 / 250

14 / 25
14 / 50

14 / 100
14 / 250
14 / 500

T
es

t
/ U

n
it

s

Cycles

Catchup

Normal

 75

that can be used without experiencing significant

performance degradation. Again, the target elapsed time is

1/100 of a second. The test results were as follows:

Test 15

Map size: 25 x 25

 - 25 Unit test:

 - Best time: 0.000 s

 - Worst time: 0.003 s

 - Average time: 0.000 s

 - 50 Unit test:

 - Best time: 0.002 s

 - Worst time: 0.013 s

 - Average time: 0.005 s

 - 100 Unit test:

 - Best time: 0.011 s

 - Worst time: 0.050 s

 - Average time: 0.025 s

Test 16

Map size: 25 x 25

 - 25 Unit test:

 - Best time: 0.000 s

 - Worst time: 0.003 s

 76

 - Average time: 0.001 s

 - 50 Unit test:

 - Best time: 0.002 s

 - Worst time: 0.013 s

 - Average time: 0.009 s

 - 100 Unit test:

 - Best time: 0.017 s

 - Worst time: 0.067 s

 - Average time: 0.049 s

 This test shows how the presence of an obstacle can

cause the update cycle to degrade in performance. This is

caused by the number of blocked units on the screen.

During an update cycle, a unit either calculates its next

move or is moving to its next position. Calculating a

unit's next position is computationally more expensive than

incrementally updating the unit's position between its

previous position and its next position. The bottleneck

obstacle increases the number of blocked units because only

a few of them can pass through the obstacle at a time. As

the number of units increases, the performance penalty from

the number of blocked units also increases.

 77

 The optimal number of units for a flock is about 25 -

50 units. The response time for a 25-unit flock is quick

enough to allow a program to manage a significant number of

flocks without experiencing an unacceptable level of

performance degradation. The response time for a 50-unit

flock is quick enough to allow a program to manage a

limited number of flocks of this size without experiencing

an unacceptable level of performance degradation. Although

50 may be too small a number for an epic-scale force, it is

large enough to be usable in many flavors of an RTS game.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

25 50 75 100

Units

T
im

e
(s

)
best w/o obstacle

worst w/o obstacle

avg w/o obstacle

best w/obstacle

worst w/obstacle

avg w/obstacle

Figure 56: Test 15 / 16 Performance

 78

CHAPTER V

CONCLUSION

 Pathfinding is a CPU-intensive operation in RTS games,

which makes it a good candidate for optimization.

Calculating a path for only one unit in a group is a good

way to save CPU time, but it also introduces a new problem.

With only one path being used, all units in a group who is

not the group leader must use some type of steering

behavior to keep up with the leader as it moves towards its

destination.

 Directed flocking is a good system to use because it

allows followers to track the leader, avoid each other, and

move together in a way that looks natural. The problem

with using flocking in an RTS setting is that obstacles in

the map can cause the group to lose cohesion and fragment

into subgroups. A follower can also be an obstacle if it

blocks the leader from reaching its destination. In this

type of situation, the leader would wait behind the

follower while waiting for it to move. Meanwhile, the

 79

followers would wait next to the leader, waiting for the

leader to move.

 The tools presented in this paper are effective with

dealing with different types of obstacles in a way that

allow the entire group to reach its destination. While the

experiment does not guarantee success, it does show that

these tools do have the potential to successfully deal with

many different types of obstacles in an RTS game setting.

These tools also appear to be efficient enough to be

deployed in a game without causing significant performance

degradation unless the game allows the user to control over

50 units at a time.

 Further study would be necessary to determine if these

tools would be appropriate for an RTS game setting. Some

additional aspects of these tools to study include flock

interaction with allies, enemies, or neutral flocks, flock

interaction with static or moving obstacles, flock members

of different sizes, movement cost, and types of movement.

If the obstacle management tools can work properly under

these type of conditions, then implementing these tools in

a game may become a more feasible idea.

 In addition to games, these tools can feasibly be used

in any software system which implements flocking in a way

that emphasizes cohesive movement patterns, which rules out

 80

exploration. It can be used in the motion picture industry

to set up flocks which navigate cohesively through

obstacles, whether the flocks be animals, machines, people,

etc. Because of the nature of these tools and how

communication takes place between two units, they may not

be as applicable to robotics, unless the leader robot is

capable of dropping a physical transmitting navigation

marker for other robots to follow. Whether the application

be software, hardware, entertainment, or business, the

obstacle management tools presented may help groups to go

from point A from point B without its members becoming

lost.

 81

SELECTED BIBLIOGRAPHY

[Bayazit1] Bayazit, O. Burchan, et al. "Better Flocking
 Behaviors in Complex Environments using Global
Roadmaps." Department of Computer Science, Texas A&M
University. TR# TR02-003. URL http://
 parasol-www.cs.tamu.edu/dsmft/Papers/tr02-003.pdf.

[Bolkan1] Bolkan, J. V. "What's Up With APG?" PC Games,
 July/August 1998.

[CORO1] Collective Robotics Research Group. "Flocking in
 Embedded Robotic Systems." California Institute of
 Technology. URL http://www.coro.Caltech.edu/Projects/
 Flocking/ab_flocking.htm.

[Corne1] Corne, David et al. New Ideas in Optimization.
McGraw-Hill International (UK) Limited, 1999.

[DeLoura1] DeLoura, Mark A. Game Programming Gems.
 Charles River Media. 2000.

[Fairclough1] Fairclough, Chris, et al. "Research
 Directions for AI in Computer Games." Trinity
 College, Dublin 2, Ireland. URL http://
 www.cs.tcd.ie/publications/tech-reports/reports.01/
 TCD-CS-2001-29.pdf.

[Grubb1] Grubb, Thomas G. "Formations Flocking Demo."
 URL http://riversoftavg.com/formation_flocking.htm.

[Kennedy1] Kennedy, J. and Spears, W.M. Matching
 algorithms to problems: an experimental test of the
 particle swarm and some genetic algorithms on the
 multimodal problem generator, in Proceedings of the
 1998 International Conference on Evolutionary
 Computation, IEEE Press, pp. 78-83.

[Kennedy2] Kennedy, James, et al. Swarm Intelligence.
 Morgan Kaufmann Publishers, Inc. 2001.

 82

[MASON1] ECLab Evolutionary Computation Laboratory, GMU
 Center for Social Complexity. "MASON." George Mason
 University. URL http://cs.gmu.edu/~eclab/projects/
 mason/.

[Nilsson1] Nilsson, Nils J. Artificial Intelligence:
 A New Synthesis. Morgan Kaufmann Publishers, Inc.
 1998.

[Pomeroy1] Pomeroy, Paul. "An Introduction to Particle
 Swarm Optimization." URL http://www.adaptiveview.com/
 articles/ipsoprnt.html.

[Reading1] Cybernetic Intelligence Research Group.
 "Flocking Seven Dwarf Robots." The University of
 Reading. URL http://www.cyber.rdg.ac.uk/CIRG/robots/
 flocking.htm.

[Reynolds1] Reynolds, Craig W. "Flocks, Herds, and
 Schools: A Distributed Behavioral Model." Symbolics
 Graphics Division. URL http://www.red3d.com/cwr/
 papers/1987/SIGGRAPH87.pdf.

[Reynolds2] Reynolds, Craig W. "Steering Behaviors For
 Autonomous Characters." Sony Computer Entertainment
 America. URL http://www.red3d.com/cwr/steer/gdc99/.

[Sweetser1] Sweetser, Penelope. "Current AI in Games: A
 Review." University of Queensland. URL http://
 www.itee.uq.edu.au/~penny/Game%20AI%20Review.pdf.

[Tozour1] Tozour, Paul. "The Evolution of Game AI." Ion
 Storm Austin. URL http://www.charlesriver.com/books/
 AIchap.pdf.

[Vederman1] Vederman, Greg. "3D's Next Giant Leap." PC
 Gamer, November 1999.

[Woodcock1] Woodcock, Steven. "AI Roundtable
 Moderator's Report." 2002 Game Developer's
 Conference. URL http://www.gameai.com/
 cgdc02notes.html.

VITA

John Phillip Schneider

Candidate for the Degree of

Master of Science

Thesis: COHESIVE OBSTACLE MANAGEMENT FOR DIRECTED FLOCKING
 IN REAL-TIME STRATEGY GAMES

Major Field: Computer Science

Biographical:

 Education: Graduated from Life Christian School,
 Oklahoma City, Oklahoma in May 1992; received
 Bachelor of Science degree in Secondary Math
 Education with a minor in Computer Science from
 Oral Roberts University, Tulsa, Oklahoma in May
 1996. Completed the requirements for the Master
 of Science degree with a major in Computer
 Science at Oklahoma State University in December
 2004.

 Experience: Employed by Eckerd Drug as an over-the-
 counter drug clerk during summers in high school;
 employed by Oral Roberts University as a tutor
 during undergraduate college; employed by Member
 Service Life Insurance Company as a computer
 operator, programmer, and programmer analyst,
 1997 to present.

Name: John P. Schneider Date of Degree: December, 2004

Institution: Oklahoma State University Location: Tulsa, Oklahoma

Title of Study: COHESIVE OBSTACLE MANAGEMENT FOR DIRECTED
 FLOCKING IN REAL-TIME STRATEGY GAMES

Pages in Study: 82 Candidate for the Degree of Master of Science

Major Field: Computer Science

Scope and Method of Study: The purpose of this study was to introduce
 additional rules to directed flocking which allowed a flock to navigate
 obstacles while maintaining cohesion. These rules were chaining,
 memory, navigation markers, and dynamic leadership. Validation and
 performance tests were conducted to determine how effective the new
 rules were and how many units in a flock could be used in a real-time
 setting.

Findings and Conclusions: The new rules were effective in allowing a flock to
 reach the destination while navigating obstacles. However, a few odd
 behaviors were observed during testing. The optimal flock size for
 performance considerations ranged from 25 to 50 units. Units allowed to
 catch up with the leader after falling behind could do so when bottleneck
 obstacles were absent, but catching up came at the cost of additional
 processing overhead. Performance deteriorated when the number of
 blocked units increased, which occurred when units were blocked by
 other units or by bottleneck obstacles.

ADVISER'S APPROVAL: Dr. Johnson Thomas--

	Preface
	Table of Contents
	List of Figures
	Chapter I
	Chapter II
	Chapter III
	Chapter IV
	Chapter V
	Bibliography
	Vita
	Abstract

