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CHAPTER I  
 

INTRODUCTION 

1.1 Wireless Sensor Network 

Wireless Sensor Networks are used to monitor physical or environmental conditions such  

as temperature, sound or vibrations co-operatively. These sensors are now finding  

applications in diverse fields such as in the battlefield, healthcare, space etc. A Wireless  

Sensor Network (WSN) consists of collections of sensor nodes and a base station. These  

miniature computers have very basic functionalities with interfaces and components.  

They are limited in power, computational capability and memory.  

 

                         
 
                                          Figure 1 Wireless Sensor Network  
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1.2 Constraints and Security issues on Wireless Sensor Networks 

Wireless Sensor Networks has some constraints. These have limited computational, storage 

and limited power resources. They are typically deployed in harsh environments and suffer 

from increased hardware and communication failure rates. These sensors may also be left 

unattended. 

 
1.3 Security in Wireless Sensor Networks 

 
The resource limitations of sensors mean that complex cryptographic techniques in  

Wireless Sensor Networks to secure data might be computationally too intensive. Sensor  

networks are therefore vulnerable to security attacks.  Since it is relatively easy for an  

attacker to break into a sensor network (due to the absence of complex cryptographic  

techniques), one way of protecting the network is for the sensor nodes to respond to an  

attacker by sending him false information or by deceiving. Deception will help to  

manipulate an attacker’s behavior. The objective is to protect the network. For example,  

if one part of the network is collecting critical data, the objective of deception will be to  

prevent the attacker from moving to that part of the network. The attacker behavior can  

be manipulated by sending him data that he expects if it is a sinkhole attack for example,  

and therefore he will not move to another critical part of the network. 

 
1.4 Deception framework 

 
In deception, the defender or deceiver deceives the attacker by learning the strategy of  

attack from the attacker and responding to the attacker as anticipated. Besides deceiving  

the attacker, it also deprives or drains the resources of the attacker. Furthermore, by  

sending wrong data to the attacker, it secures vital information.  
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A Deception framework analyzes past attacker behavior and determines the optimum  

response to deceive the attacker. If an attacker changes his behavior, the network has to  

adapt to the new strategy of the attacker.  We propose an approach to recognize this change 

in the strategy of an attacker. Once this change is detected the deception framework self-

adapts to these changes and modifies its response to the attacker. In this thesis we propose a 

method called multiple indexing for self adaptation of window size and tolerance value to 

maximize the performance and accuracy of our deception framework. 

 

In chapter 2, we briefly review the architecture of the Deception Framework. Chapter3 

presents the literature review. In chapter 4, proposed approach to self-adaptation is presented.  

We present an approach to determine the optimum window size and the optimum tolerance 

value. Chapter 5 presents simulation results and the conclusions are presented in chapter 6.
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CHAPTER II  

2.1 DECEPTION FRAMEWORK IN WSN 

The main objective of the deception framework is to deceive the attacker by providing wrong 

information to the attacker. We assume that sensor nodes are less powerful then the attacker. 

When a node has been attacked by a powerful attacker in a network, the deception framework 

collects the input data from the attacker and analyzes the data. Input data from the attacker is 

called a request message which is sent from the attacker to the node. During this process, the 

deception framework will understand the strategy or the pattern of attack.  

 

Once the pattern is recognized the deception framework aims to meet the expectation of  

the attacker by responding appropriately to the attacker. In this thesis we apply a simple 1:1 

request-response pattern. That is, the rate of response will approximately match the rate of 

the request. The response will contain fake sensor data. Other more complex request- 

response relationships may be implemented, but this depends on the type of attack. We model 

a simple sinkhole attack where increasing rate of requests from the attacker will result in 

increasing rate of responses to the attacker.  

 

Once the request pattern has been analyzed, the defender will predict the response (output  

data from a node to the attacker) that is expected by the attacker. Once the expected  

response has been predicted, the deception framework will generate the response to the  

attacker.
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2.2 Design and Architecture 

In this section we describe the design and architecture of self adaptation. Once the  

attacker has been identified, deception takes place in three phases. 

1) Initiation of the Environment 

2) Deceive 

3) Self Adaptation 

Figure 2 shows a block diagram of the deception framework architecture.  

 
Phase I: Initiation of an Environment  

In the first phase once the attack has been identified, initiation of an environment for 

deception is prepared by Distributed Deception Agents (DDA). DDAs are considered to 

have more storage memory and are able to handle more complex algorithms. DDAs are 

the agents in the network which selects the nodes to execute the deception algorithm 

while the other nodes carry normal communication within the network. The nodes 

selected to do the deception are called sacrificial nodes. Once the sacrificial nodes are 

selected, the deception variables are uploaded into the selected sacrificial nodes by the 

DDA.  

 
Phase II: Deceive 

In the second phase, the deception of the attacker begins by analyzing the input data 

(request message from the attacker).  It will predict the future expected request data and 

its response. Once this is done the deception framework responds to the attacker. 

 
Phase III : Self Adaptation  
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Self adaptation involves monitoring the attacker behavior, and adapting to the changed 

behavior of the attacker. As the input data from the attacker is analyzed and compared 

with the query sequence in phase II, changes in pattern can be identified. Query sequence 

is the future expected input data which is obtained by finding steady rate of input data. 

This is used as a reference to compare with the next input data to identify the change in 

pattern.  

 

Once the change in pattern is identified, in phase III the deception algorithm running on 

the DDA must change its variables (such as query sequence, window size, tolerance 

value) to adapt to the new pattern of input data. The query sequence is divided into n 

number of windows of length window size. Tolerance value is the maximum deviation of 

input data pattern that is allowed from the query sequence. 

 

When the input data pattern is changed its query sequence length may vary from the  

previous query sequence length. Hwan Lim, Pak, Kim [3], show that as the length of the  

query sequence increases its execution time also increases, this is called the window  

size effect. This degrades the performance of the deception algorithm. Our proposed  

algorithm has to meet this constraint and increase the performance of self adaptation  

by adapting variables such as window, and tolerance value to the optimum value. 
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Figure 2 Block diagram of Deception Framework 



 8

CHAPTER III 

REVIEW OF LITERATURE 

In the Deception framework, self adaptation plays a vital role. If the change in the  

pattern of input data is not detected, the objective of deception may fail  Previous work  

had a fixed window size and fixed tolerance value. The disadvantage with fixed values is  

performance degradations as  the length of the query sequence varies. This is the so- 

called window size effect [3]. The window size and tolerance value must therefore adapt  

to the varying query sequence length as there is an optimum window size for each query  

sequence length. Hwan et. al. [3] introduced a novel method called multiple indexing to  

decrease the execution time during subsequence matching of two patterns, namely,  the  

input data pattern and the query sequence. 

 

In their studies they found that as the window size increases according to the query  

sequence, the execution time decreases. To determine the optimum window size many  

studies were done in subsequence matching. We review two methods that are closest  

to our approach, the  FRM and dual match that calculate optimum window size.  

However, due to the limitations of sensor networks, these methods are not directly  

applicable.  

 

3.1 FRM:  

FRM [3] uses the concept of a window of fixed length for R*-tree indexing. It extracts a 
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sliding window size of size w from every possible position inside each input data  

sequence S of length len(S)( w), and then converts every sliding window into a point in  

f( w)-dimensional space by using DFT. The total number of points extracted from each  

data sequence S is (len(S) − w + 1). As a result, a large number of points appear in this  

way, and thus the storage overhead for storing these points individually also gets large.  

For alleviating this problem, FRM forms the minimum bounding rectangles (MBR)  

enclosing multiple points and builds an R*-tree  on these MBRs instead of points. For  

subsequence matching, FRM extracts p disjoint windows of size w from a query sequence  

of length len(Q)( w) where p = len(Q)/w , and then converts every disjoint window  

into a point in f-dimensional space by using DFT. Thus in this method memory storage  

for each dimensional point is the issue.   

 

3.2  Dual-Match 

Dual-Match was proposed in [6] to overcome the weakness of FRM addressed 

above. Dual-Match extracts windows in the way opposite to FRM: It extracts disjoint 

windows from data sequences and sliding windows from a query sequence. In Dual- 

Match, instead of storing the MBRs containing multiple data windows as in FRM, each  

data window is individually stored in the index. By constructing the index in this manner,  

Dual-Match can dramatically reduce the number of false alarms, and can obtain search  

performance much better than FRM. In dual match subsequence match is done by  

extracting sliding windows for length of query sequence into f- dimensional space by  

using DFT. Usually, Dual-Match sets the window size w which divides the query MBR to  

be [(min(Len(Q)+1)/w]- 1). Index searching step constructs a candidate set by comparing  

each query window point, thus discarding false alarms.  
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In [ 3 ]  fig 3 when the query sequence length is increased with constant window size,  

execution time is increased simultaneously. In figure 3 when window sizes increases  

with for a constant query sequence, execution time decreased.  

 

These methods focus highly on variant time series like stock prices, weather forecasting,  

temperature readings etc., Due to the limitations of sensor networks they are too complex  

for sensor networks. Our method of self-adaptation is simpler with fewer calculations and 

need less memory for better performance. 

 

 

 
 
 

Figure 3   Performance with different window sizes 
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CHAPTER IV  
 
 

4.1 SELF ADAPTATION  
 

Self Adaptation is the third and vital feature in Deception Framework. It is defined as  

adapting to the changed pattern of attack and responding accordingly. Adaptation is  

necessary to maintain deception and prevent the attacker from suspecting anything. In our 

work, the objective of deception is to give the attacker what he expects. Self adaptation 

considers the attackers own strategy to deceive him. It deceives the attacker by responding in 

a pattern as expected by the attacker. This is learned and predicted from past experiences.  

 

Self adaptation is an important feature because, if the deceiver cannot self-adapt, the  

purpose of deception is defeated.  If the purpose of deception is defeated it may be  

suspected by the attacker, which will encourage him to choose other ways to attack 

We first describe the problems in self adaptation and then discuss approaches to  

solve them. We later propose an algorithm for self adaptation. Finally this chapter  

concludes with future work.
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Figure 4 Self Adaptation Block diagram 
 

4.2 Problem in Self Adaptation 

In order to self adapt, the deceiver must first be able to identify the changes in pattern  

and then must know how to respond to the changed pattern. We divide the problem into  

three steps  

1) Monitoring the attacker’s behavior and identify the changed pattern  

2) Predict the response to the changed pattern 

3) Self adapt with the changed pattern. 

In this thesis we study the 1st and 3rd points.  

 

Identify changed pattern :  To identify the changed pattern the deceiver needs to know 

a) The reference pattern or the query sequence. The reference pattern is  

expected input pattern form the attacker. This is obtained by identifying the 

steady rate of attack in the input data during the analysis of input data pattern. 

b) The present data pattern or data sequence, to which we will compare the  

   reference pattern. 

SELF ADAPTATION 

M ONITOR ATTACKER ’ S 

BEHAVIORS  
ADAPT TO CHANGED 

BEHAVIOUR  
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c) The Window size to compare both data and query sequences. 

d) The Tolerance value to monitor and identify changes in the data pattern. 

 

Self adapting to the changed pattern :   Once the change in pattern is identified, the system 

needs to adapt to the changes and continue the deception of the attacker.  Below are the 

features which the framework needs to adapt with the changed pattern. 

1) Learn the present new pattern which is the requests sent by the attacker 

2) Predict the new query sequence which is the expected request rate from the attacker. 

This is based on the reference or query sequence. 

3) Determine the window size for new query sequence to avoid window size 

effect.(more detailed description of window size is given in section 4.6). 

4) Change the tolerance value with the new pattern (which is used to identify  

change in pattern).  

In next two sections we focus on identifying the changes in pattern and adapting to the  

new pattern.  

 

4.3 IDENTIFIYING CHANGES IN PATTERN OF ATTACK 

Any data that is collected in a certain time period can be represented in the form of a pattern. 

This pattern can be a sine curve or straight line etc, in a time series sequence.  Any series of 

data that has been collected over time and represented graphically is called a time series. In 

our method, we consider three types of time periods in a time series:  

• Time point is the smallest unit of time over which the system collects data, e.g., 

ten seconds. 

• Basic window is a consecutive subsequence of time points over which the system 
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maintains a digest (i.e., a compressed representation) e.g., two minutes. 

• Secondary window is a user-defined consecutive subsequence of basic windows over 

which the user wants statistics, e.g., an hour. 

Both time point and basic windows are system fixed variables.  Secondary window is user 

defined and can be varied.  

 

In this thesis we consider a sinkhole attack in which the attacker claims to be close to the 

base station to its neighboring nodes. Once the attack has been identified the  

deception framework has to understand the pattern of attack. The deception framework  

collects the attacking pattern from the attacker, learns the pattern and predicts the pattern  

using the methods proposed by Zhang in [2] called F4(Fractal FOREcasting) for example. 

Once the pattern is learned and reaches the steady state we consider the repeating pattern as a 

query sequence and the steady rate as the objective of the deception. Subsequence matching 

is a process, in which we search for the pattern in the input data time series which is similar 

to a query sequence.  

 

Self adaptation is a simpler process than the work done by Faloutsos et al (called  

FRM) [3] and Dual form [6]. Since our problem is to not to find a similar pattern, but to  

identify change in pattern which makes our job simpler then pattern matching.  Given the  

resource limitations of sensor networks, we use a simplistic approach which is efficient  

to identify changes . To recognize the change in pattern we compare the unknown input data 

time series with the known query sequence. For comparison input data and query sequence 

are divided into window size. Window size is the length of window to divide both query 

sequence and input data pattern to compare and identify the change in pattern (a more 
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detailed explanation is given in section 4.6 ). The difference between both the input and 

query sequence are compared with tolerance value (section 4.5) to identify the change in 

pattern. 

 

We assume the attacking data input time series is Nt is given. Nt = {n 1, n2,  n3,….,nj }  

where j is the time point and n is the value at the jth time. Secondary Window is represented 

by Wi, basic window is represented by wk. First the steady rate of the input data is calculated 

by finding the difference between the harmonic mean of two adjacent secondary windows. 

The input sequence of the steady rate Vobj is considered as the query sequence. After the 

query sequence is obtained, the optimum window size Wopt is calculated to avoid the window 

size effect as explained in the  previous section. The optimum tolerance value T is also 

calculated to avoid false alarms. The query sequence and input data is divided into n 

windows of length Wopt  and each Wopt is divided into i secondary windows of length Wi . 

Secondary window | Wi| = k where k is the number of time points.  

Harmonic Mean of Secondary Window  =   total no of time points in each secondary window  
                                                                                  Sum of inverse of total time points 
 

                         

∑
=

=
k

j ji

i

n

k
WHMean

1 ,

1
)(                               ( 4.1 ) 

Once the harmonic means of two adjacent secondary windows are obtained, the normalized  

difference of two adjacent secondary windows are calculated to determine the movement of 

attack. It enables finding similar fluctuation patterns even though they are not close.  

Let b be the basic window. Normalized difference (δ) helps us to find the difference between 

the objective and input data time series. To find the measurement of deviation from Vobj we 

define a term called delta (∆). Sometimes the ∆ value decreases over time.  
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Decrement is represented by dec(x).   

objV

obj2bn1bn V- )..W..........HMean(W +++

=δ  

                  ∆ t+1 = δ + dec ( ∆ t)          

   dec ( ∆ t ) = ( 1+ ∆ t ) 
e - 1                  (  4.2  )  

where e is close to zero. The closer the x in dec(x) is to 0, the lower the decreasing rate.  

The difference δ comes in at a rate of once per secondary window. We define a time 

series Dt as the difference time series.  

     Dt =  {Di , Di+1 , ………Dt+n}     

Dt at every time is zero except at each secondary window. As a result we formalize the 

cumulative measure of deviation. ∆ is the difference of each secondary window to the Vobj.  

 ∆ is        ∆ t+1 = D i+1 + dec( ∆t )= Di+1 +( 1+ ∆ t ) 
e     ( 4.3 ) 

If more than 50% of the secondary window in Dt is greater than maximum tolerance value  

than we consider that length of input sequence as change in pattern. 

 

4.4 Self Adaptation to the Changed pattern 

Once the change in pattern is identified, the deception frame has to adopt to the new  

pattern. There are two issues to be considered: what needs to be adapted and why it has to  

be adapted. The previous section described how to find the change in pattern.   

Once the change in pattern is identified the query sequence (steady rate of the input  

pattern) also changes. As the query sequence changes, to avoid window size effect we  

need to change the window size to an optimum value. Therefore, we propose an algorithm 

which changes window size according to changes in the query sequence.



 17

Similarly the tolerance value of the deception framework should also be changed with the  

new query sequence. Tolerance value is maximum value of difference that can be  

allowed for a query sequence of input data time series. As query sequence  

changes, the new pattern may increase or decrease from the previous pattern. There  

may also be a phase shift in the input pattern. Hence the tolerance value should change  

accordingly. If the tolerance value is not changed we may mistake the similar pattern as a  

change in pattern because tolerance value did not increase or decreases with the increase or 

decrease in query sequence. 

 

 
 

Figure 5 Effect of fixed tolerance value 
 
Figure 5 shows the effect of not changing the tolerance value. Here the old tolerance is 0.5 

delta. Around 200 time points, a change in pattern was detected. Because of the change in 

pattern, the query sequence also changed. However, since our original tolerance value of 0.5 

has not changed, it considers the changes after 200 as changes in pattern even though there is 

no change in the pattern. The tolerance value has therefore to be adapted to the new query 

sequence. Thus self adaptation is required for more accurate data or performance. Figure 6 

flowchart of self adaptation process.
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Self Adaptation Process 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6 Self adaptation process flowchart 
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4.5 Optimal Tolerance value 

Tolerance value is a nominal value of maximum difference allowed from the query sequence 

to the input data. Tolerance value is of vital importance as data traveling in a media like air 

can face disturbances or noise on its way to a node in the network. Noise might indicate as 

change in pattern which in fact is not a change in pattern. We name such alarms as false 

alarms. This tolerance value should be optimum; if Tolerance value is too small then the 

system may conclude consider a signal with noise as change in pattern. If tolerance value is 

too large then, the system may neglect a real change of attack as noise resulting in failure of 

deception.  

 

To obtain optimum tolerance value we need to first calculate the tolerance limit Tmax and Tmin 

for that query sequence. Tolerance limit is the range of maximum and minimum mean 

average deviation of new query sequence and old query sequence. Tolerance limit Tmax and 

Tmin are like the upper and lower tolerance limits in the new input sequence. Input data values 

that lie within this range are accepted. Data that goes beyond the tolerance values are 

considered as change in pattern. 

 
To identify change in pattern we need to know the difference instead of upper limit and lower 

limit as we are comparing two sequences: query sequence and input sequence.  

We call this difference value as tolerance value and it is represented by T. The upper bound 

difference is the difference between the Tmax and the value of the pattern. Similarly the lower 

bound difference is the difference between the Tmin  and the value of the pattern. The smaller 

of these differences is considered to be the value T.  When ∆ (deviation of the time series 

from objective) is more than T the deception framework considers that as change in pattern. 
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Tolerance Limit: 

We first propose a method to calculate tolerance limit from old query sequence and new 

query sequence. In this method we take mean average deviation of both old query sequence 

and new query sequence.  We multiply the mean average deviation with a constant value 

sigma where sigma is less than or equal to one. Then by either subtracting or adding the mean 

average deviation to the old tolerance limit we find tolerance limits Tmax and Tmin for the new 

query sequence. We assume that we know old tolerance limit from past experience.  

 

Let us consider P(t) as the new query sequence at time t , V(t) as the old query sequence. n is 

the length of the new query sequence. The old tolerance limits which we call old_Tmax and 

old_Tmin and  sigma (a constant value) is given. 

The Mean Average Deviation (MAD) is calculated as 
    

   n

tVtP
MAD

|)()(|∑ −
=  where 1 ≤ t ≤ n and                   (4.4)

    n is the total number of values. 

new_ Tmax= old_Tmax + sigma  * MAD 

  new_T min= old_Tmin  -  sigma  * MAD   (4.5) 

Optimum Tolerance Value T : 

Once the tolerance limit is obtained we need to know the maximum and minimum value in 

new query sequence as value_max and value_min respectively. Now subtract the value_max 

from Tmax and similarly value_min from Tmin as diff_max and diff_min. Compare both the 

values and smallest value is considered as T.. The reason to consider the smallest value is 

because the smaller the deviation, the more accurate the data.  
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 diff_max = Tmax - value_max 

 diff_min = value_min - Tmin 

 T = min(diff_max, diff_min)                                     (4.6 ) 

This method is more accurate because with a fixed tolerance value, sometimes the difference 

may be more than the defined value as the query sequence changes. This can result in 

incorrect identification of pattern change. Our method calculates tolerance value according to 

varying query sequence which give a more accurate tolerance value then fixed values.     
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Flowchart for Tolerance limit 
                            
 
 
  
                        
     
                       
  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 7 Flowchart for Tolerance limit 
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4.6 Optimum Window Size 

Window size is the length of window used to divide the query sequence into n windows. The 

window size is also used to divide the input data sequence into x number of windows. x may 

or may not be equal to n since the input data sequence may be of different length than the 

query sequence.  . We next compare the query sequence of n windows  with input data 

sequence of x windows of length window size to identify change in pattern.  

 

Determining optimum window size is of vital importance. Hwan, Park, Kim [3]  

show that as the length of the query sequence increases with fixed window size the execution 

time increases. They conclude that performance deteriorates as the difference  

between the window size and length of the query sequences get larger.  This phenomenon  

is called the window size effect.  

 

In the deception framework execution time is very important. As the data sent from  

the attacker to different nodes in the network are directed to sacrificial nodes, sacrificial  

nodes are overloaded with data which slows down the execution time reducing the  

effectiveness of deception. Furthermore, the window size effect deteriorates the situation  

even more. It is therefore important to obtain an optimum window size which can help  

to decrease the execution time and increase the performance.  

 

In [3] Hwan Lim, Park, Kim proposed a novel approach called index interpolation to 

overcome this performance degradation.  The drawback of the method is the limited 

resources available in sensors.  Index interpolation has complex calculations which involve 
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calculating the  cost of window size and based on the cost value, the window size is 

determined. Moreover the memory requirements are extensive since memory is needed to 

store the binary tree method used to calculate the window list. We propose a novel method to 

calculate the optimum window size which is less complex and needs less memory than 

complex index interpolation.  

 

4.6.1 Calculation of Optimum Window list 

Before we determine the optimum window size we calculate the window list. Window list is 

a set of different sizes of windows which are considered to be optimum for different query 

sequences. The values of these sizes lie in between the maximum and minimum length of 

query sequence. These maximum and minimum length of query sequence are obtained from 

analyzing past data. We assume that our deception framework will have query sequences 

within these values. 

 

Let Len(Q) be the length of query sequence, Len_max(Q) be the maximum length of the  

query sequence and Len_min(Q) be the minimum length of the query sequence and n the  

index number to store n window in the window list. In [4] lemma 5, the relation between the 

maximum window size and minimum length of query sequence is given. The maximum 

window size should be less than half of the minimum length of the query sequence.  

 

If Len_max(Q) is the maximum length of query sequence that we expect in the system, 

Len_min(Q) is the minimum length of query sequence that we expect in the system, window 

list is Wp, then the minimum window size Wmin and the  maximum window size Wmax  are 

calculated as follows: 

 Wmax =  max{wi | we ≤  [ (Len_max(Q)+1) / 2 ] (1 ≤  e ≤ n) } 
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 Wmin =  min{wi | we ≤  [ (Len_min(Q)+1) / 2 ] (1 ≤  e ≤ n) } 

       Wp= < w1,w2,  . . . , wn  > where  Wmin <w1 < w2 < _ _ _ < wn < Wmax 

Wmax and Wmin are the limits of the window list. The other window sizes are then obtaind by 

dividing the range Wmax-Wmin evenly over the n indices of the window list. Since the 

maximum value of window size will be less than or equal to half of the query  

sequence, the chances of window size greater than the length of query sequence is very  

unlikely. According to the window size effect, as a window size gets nearer to Len(Q),  

the performance improves. However for accuracy the window size should be less than   

(Len(Q)+1)/2). Therefore we evenly divide the windows between Wmax and Wmin into n 

windows beginning from minimum window size Wmin. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8 Flowchart for calculating the Window list 

4.6.2 Choosing the Optimum Window size 

In this section we suggest a procedure to choose the optimum window size for a given  

length of query sequence from the above calculated window list. The maximum  

window size for a given query sequence should be less than half  the length of the query  

Start 

Len_max(Q),Len_min(Q), n 
index 

Calculate Wmax=[Len_max(Q)+1]/2 
and Wmin =[Len_min(Q)+1]/2 

P 

Diff= Wmax – Wmin 
Increment=Diff/n 

For i<n-1 

  Wi=Wmin+ Increment 
  i++ 

P 
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sequence (from lemma 5 in [4]). If the length of the present query sequence is Len (Q),  

maximum window size is 

    wmax =  [Len(Q)+1] /2                        (4. 7) 

 wmax  is the maximum window size into which a given current query sequence can be 

divided. we is the value in the window list that is lower than, but closest to wmax. To obtain the 

optimum window size we select the window value we from the window list (4.6.1) which is 

nearest to wmax . 

 Wopt= we ≤  wmax      Where we ∈    Wp={w1,w2,w3…….we, …wn} 

For example, a window list has 9 indexes of windows 10   24   38   52   66   80   94   108   

122. From equation (4.7) if new query sequence is of length =80 then wmax = 40 then optimum 

window size Wopt=38. From Hwan et. al. [3] we know that as the number of indexes of the 

window list increase, the execution time decreases which is show in figure 9.  

 

Figure 9 Performance with different number of index sizes 

In Fig 9 performance analysis of increasing indexes and execution time is shown as given  

[3]. As the number of indexes of the window list increase, the execution performance 

becomes better. Determining the optimum index size is left for future work.  
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In figure 10 the self-adaptation process is explained. It is divided into three sections (a), (b), 

(c). Each flowchart from each section is connected by connectors A, B, C, D. In (a) the self-

adaptation process to find the Harmonic mean between two adjacent secondary windows is 

given. In (b) the optimum window size and optimum tolerance value is calculated. In (c) ∆ 

(deviation from the Vobj) is compared with T. A counter variable in this section is used to 

keep track of the number of deviations to identify change in pattern. 
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Figure 10  FLOWCHART OF IDENTIFYING PATTERN CHANGE  
(a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Start 

Input data Nt={ne, 
nt+1, nt+2,…..nt+n} 
at tth time point, n is 
data value 

Time point t, basic 
window bw, Secondary 
window Wi  

 Total number of time 
point in window point 
k= | W  | 

Consider input data of 
and divide into  “i “  
no. of secondary 
windows 

                        k 
H.M(Wi)= -------------- 
              ∑ kj= 1 ( 1/ n i,j) 
i th  secondary window at 
j th  time point 

V obj = Steady rate of  
H.W (Wi+1 – Wi )  

A 

B 



 29

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                   
    

 
 
 
 
 
 
 
 

   
 
 
 
 
 
 
 
 
 
 

(b) 
 
 

Figure 10 Flowchart of Pattern change in Self adaptation (continued) 
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Figure 10 Flowchart of Pattern change in Self adaptation ( continued) 
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4.7 Algorithm 

 

4.7.1 Self Adaptation  

Step 1:  Given data sequence Nt = {nt, nt+1, …..nt+n}, secondary window Wi, 

basic window wk, 

Step 2:  Find the steady rate Vobj of the sequence by finding the harmonic  

  mean of the data sequence. 

Step 3:  Find the query sequence which is a steady rate sequence. 

Step 4:  Calculate the window size and tolerance limit for the query  

  sequence as the Wopt and Tmax and Tmin. 

Step 5:  To avoid false alarms we use dec(x) function, if increment c , 

             if ( δ < c ) then inc = δ ; else  

             if ( δ > c ) then inc = c ;  

           Where δ is normal deviation to calculate the movement of attack. 

Step 6:  Find the ∆ difference of data from the query sequence  

                 ∆t+1 = δ + dec ( ∆ t) 

      Dt+1  + dec (∆t)  

      dec ( ∆t ) = ( 1+∆t )
e -1 

    Dt+1  is a Normalized Difference time series s 

Step 7:  To find the Optimum tolerance (allowed deviation from query 

sequence)  
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T =  (Maximum input data value in query sequence –Tmax) 

    

Step 8:  If more than 50% of the values in window sizes > tolerance  

value consider as change in pattern. 

     if (∆ ≥ T ) > 50%. 

Step 9:  If Step 8 true then pattern is changed so repeat the Step 1 to  

Step 8  

Step 10:  If Step 8 is false then send the predicted response and continue 

deception  

 

4.7.2 Calculate Window size list and choose optimum window. 

Step1:   Declaration : Len_max(Q) , Len_min(Q), index[n] ,   

Step 2:  Given minimum and maximum length of query  

           sequence of same multiple. 

Step 3:   Calculate maximum possible window size and minimum possible 

window size by 

    Wmax= [ Len_max(Q) +1 ] / 2  

             Wmin= [Len_min(Q)+1]/2 

Step4:  Evenly divide into n window sizes beginning from Wmin to Wmax. 

Step 5:  Store in values in n indexes of window list array    
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Selecting Optimum window size  

Step 6:    Given Len(Q) then calculate wmax=(Len(Q)+1)/ 2 

Step 7:      Choose from n windows in window size list value closest  

       to the max_win value as optimum window size. 

        

 4.7.3 Find Optimum Tolerance value  

Step 1:   Give old query sequence, new query sequence, sigma value  

      which is less than 1, length of query sequence Len(Q). 

Step 2:   Find the mean average deviation (MAD) of new query sequence to 

the old query sequence of length Len(Q).  

Step 3:   old _Tmax + sigma * MAD= new_Tmax.  

             old_Tmin  - sigma * MAD= new_Tmin. 

Step 4:  Find the maximum and minimum displacement value in query 

sequence. Let is be value_max,  value_min. 

Step 5:  diff_max =new_ Tmax - value_max 

 diff_min = value_min –new_ Tmin 

Step 6:  Select the minimum diff from the diff_max and diff_min. This is the 

optimum tolerance value for our current query sequence. 

   T = min(diff_max, diff_min)                        
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CHAPTER V 

SIMULATION RESULTS  

5.1 Network simulation 

The proposed deception framework includes nodes and a base station. In fig 5.1 all the  

nodes in the grey color send data to the base station (red color node). The attacker  

(black color node) attacks its neighboring nodes saying that he is the base station. As a  

result all the nodes near this region sends data to the attacker. This is a sink hole attack.  

In fig 5.1 the surrounding gray nodes within the dotted circle are sacrificial nodes which  

deceive the attacker.   

 

Figure 11    Deception Scenario
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5.2 Simulatin 

The sink hole attack was simulated using the Tossim Simulator [1] and NesC Compiler. To 

run the program for determining the pattern change and its execution time we used Hp  

PC dv6000 with following configuration 

• RAM : 1.0 GB 

• Processor : 1.50 GHz 

• Operating System : 32 bits Windows XP  

• BCC C++ Compiler 

• Text pad 

 Tossim Simulator  

The Tossim simulator [1] is a discrete event simulator for TinyOS sensor networks. Instead 

of compiling TinyOS application on a mote you can compile it in the Tossim framework. 

Tossim provides a basis for real test-bed deployment. Tossim is developed at UC, Berkely 

and is widely used in the research community. 

 

5.3 Attacking Strategy  - Attacker 

Sink Hole Attack:  

In the Sink hole attack, the attacker pretends to be the base station or having the  

best route to the real base station. This makes all nodes which are closer to the sinkhole  

to divert their messages to the attacker until the sinkhole stops sending messages to the  

nodes in the network. The data for the sinkhole was collected by Ling Zhu. 
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Attacker Scheme:  

In a sink-hole attack, the attacker claims himself as the base station with a highest link 

quality to his neighboring nodes. The attacker changes his frequency of sending the routing 

message. In this attack we generated three types of attacking patterns. The attacker is sending 

message packets to different nodes in a random frequency, sine curve pattern, and in an 

increasing pattern. The attacker is node 1 and the base station node 0. The format of the 

packets were in decimal format such as [Msg type: Source Node, Local Time of Source node] 

where Msg type is routing message, S is the source node, local time is the time at which the 

source node (the attacker) sends message to neighboring nodes. For example [S: 1, 4] means 

Node 1 forwarded a packet at the 4th second. We first look at the input patterns from the 

attacker.  

 

Input data 1: 

In figure 12, the x-axis is the time points, y axis is no of packets sent by the attacker. The 

attacker initially sends advertisements or routing messages at a slow rate of 1 packet for 

every 16 seconds for the first 600 seconds or 10 minutes. Then the attacker increases 

transmission to a rate of 4 packets per 16 seconds from time 600 second to 1000 second (6.6 

minutes). Finally the attacker changes transmission to 8 packets, 4 packets and 2 packets into 

sine wave pattern per every 16 seconds, from time 1000 second to 3000 second (33 minutes). 

In input 1 the attacker frequency was 0.25 and suddenly increases to frequency 2. Frequency 

is the rate of number of packets broadcasted per a time period. The y-axis is the ratio of 

attacker frequency to normal frequency. A normal node transmits one packet every 4 

seconds. In the first 600 seconds, the attacker sends 1 packet every 16 seconds; hence the 

ratio is 0.25 as shown in the graph.  
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Figure 12 Attacker input data requests 1 
 

Input data 2: 

In fig 13, the x-axis is time points, y axis is no of packets sent by the attacker. The attacker 

sends advertisement or routing packets at a slow rate of 1 packet for every 6 seconds for the 

first 150 seconds. Then the attacker changes transmission to a rate of 2 packets per 6 seconds 

from 150 seconds to 270 seconds. Later the attacker increases the rate to 3 packets per 6 

seconds from 270 seconds to 420 seconds. Transmission rate then decreases to a rate of 2 

packets per 6 seconds from 420 seconds to 516 seconds. Finally the transmission changes to a 

sine curve of 2 packets to 1 packet for every alternate second from 516 seconds to 1104 

seconds.  
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Figure 13 Attacker input data 2 with changing frequency 

 

5.4 Determining Change in pattern – Simulation results 

In this section we analyze the results of above inputs by applying the proposed algorithm of 

self adaptation with multiple indexing and tolerance limit. The aim is to show the 

effectiveness of the multiple indexing methodology used over the fixed window based 

approach and the effectiveness of optimum tolerance value over a fixed tolerance value.  

Results: 

In this following section we analyse the results of the above input patterns. We compared the 

efficiency of fixed and optimum values of window size, and tolerance value.  
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5.4.1 Fixed Window Size Vs Optimum Window Size 

Results of  Input 1 data.  

 

 

 

 

 

 

 

a) Attacker input data requests 1 
 

 

 

Figure 14 Graph of Execution time with fixed window size vs optimum window size 
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Table 1 : Execution time vs Optimum Window size 

 

 

 

 

 

 

 

Table 2 : Execution time vs Fixed Window size 

Fig 14 shows the result of input1 where the x axis represents window sizes and the y axis 

represents execution time to identify a change in pattern in milliseconds. Execution time is 

the time at which a change in pattern is identified. The red point in the figure represents 

execution time with fixed window size at Len(Q)=80 (length of query sequence). The blue 

line represents the execution times for different lengths of Len(Q) and the different optimum 

window sizes generated for different lengths of query sequence Len(Q).In tables 1and 2, 

Table 1: Optimum window size 

W(opt) Time(milli 

seconds) 

Len(Q) T(old) T(new) 

24 0.6 50 Max=5 Max=2 

38 0.31 80 Min=3 Min=0 

52 0 120   

Table 2: Fixed Window size 

W(fix) Time        

(Milli seconds) 

Len(Q) T(old) T(new) 

12 0.62 80 Max=5 Max=2 

52 1.41 80 Min=3 Min=0 
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values of the execution time for Input 1 data pattern at change in input pattern from 0.25 

frequency to 2 frequency is shown .  

 

First the attacker sends 1 packet for every 16 seconds and suddenly increases to 4 packets for 

every 16 seconds. Later he changes his pattern to sine curve with decrease in the number of 

packests from  8 packets to 4 packets. Let us consider one change in the pattern which occurs 

when there is a change from 0.25 frequency to 2. In table 1 the execution time to identify this 

change in pattern with  differnet optimum window sizes are given. When window size is 24 

execution time is 0.6 milli second to identify the change in pattern. When Len(Q) increased 

to 80, the window size changed to 38 and this took 0.31 milliseconds to identify the change 

which is half the previous execution time. In table 2, using the same length of query sequence 

Len(Q)=80 we randomly chose 12 and 52 as fixed window size.  Our fixed value should not 

be equal to our optimum window size value.   When fixed window size =12 the time taken to 

identify the change in pattern was 0.62 seconds which is double the optimum window size 

execution time. When fixed window size=52 it did not detect the first three changes.but 

detected change in pattern (the fourth change which is the sine wave) at 1.41 milli seconds 

execution time. Hence the change from 0.25 to 2 to 1 to 1.5 was not detected. The change 

detected was at the sine curve pattern. Therefore based upon the above results we can say that 

the optimum window size improved the performance by halving the execution time. 

 

Results of Input 2  

In previous paragraph we observed that the execution time for optimum window size to 

identify the change in pattern is half the execution time for fixed window size. In this  

paragraph we will study if the optimum window size, besides reducing the execution time 

identifies all changes in the pattern correctly. 
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In this experiment we are considering one input 2 data pattern and assuming that we know 

the length of query sequence Len(Q). Optimum window size is calculated by our algorithm. 

We need to detect all changes in pattern and consider the time point value in the window  at 

which the change in pattern is identified. For example, in figure 15 if Wopt = 24, assume the 

change in pattern is detected at time point 48  (which is optimum window 2), The execution 

time is then considered to be at the end of the second window. In other words, the execution 

time is defined to be the time at the end of the window that detects a change in pattern. This 

is the time considered in table 3 where the window is fixed and in table 4 where the window 

is optimum.   

 

 

 

Figure 15  Consideration of time point in optimum window size 

 

 a) Input 2 from attacker with changing frequency 

Input pattern 

Wopt=24 Wopt=24 

48 24 0 
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Figure 16 Performance analysis of Optimum window size to Fixed window size 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Execution time vs Fixed Window size 
 

 

Table 3: Fixed window size =12 

Window Time Len(Q) 

24 0.15 50 

36 0.15 50 

48 1.71 50 

60 1.71 50 
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Table 4 Execution time vs Optimum window size 

Fig 16 shows the result of input 2 where the x axis represents the secondary window and the 

y axis represents execution time to identify a change in pattern in milliseconds. Length of 

query sequence Len(Q)=50. The red line in the figure represents execution time to identify 

the change in the pattern for a fixed window size. The blue line represents the execution 

times to identify changes in pattern  with optimum window size. In tables 3 and 4, values of 

the execution time to identify changes in pattern  for data Input 2 using fixed window and 

optimum window is shown.  

 

If we consider the values from table 4 using optimum window size 24 change in patterns are 

identified at different time points;  at 48 time point (second optimum window), 72 time point 

(third optimum window), 96 time point (fourth optimum window), 102 time point  (fifth 

optimum window). In table 3 with fixed window size 12 changes in pattern are identified at 4 

different windows 24, 36, 48, 60  (second, third, fourth, fifth fixed windows respectively). If 

execution time is compared, optimum window size execution times at 0.15 & 1.71 are half 

the execution times 0.31, 1.88 of fixed window size. Even though both fixed and optimum 

window sizes identifies all the changes in pattern, execution time differs. Since execution 

Table 4: Optimum window size =24 

Window Time Len(Q) 

48 0.15 50 

72 0.15 50 

96 1.71 50 

120 1.71 50 
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time is an important aspect in network sensor we consider our method as optimum method to 

increase the performance by  decresing the execution time. 

 

5.4.2 Fixed Tolerance value Vs Optimum Tolerance Value 

In this section results of input 2 data pattern are used to compare the accuracy of  

identifying the change in pattern  with optimum tolerance value and  fixed tolerance  

value.  

 

a) Input 2 from the attacker with changing frequency 

Fig 17 (b) and (c) shows the results for a fixed window size of 10 using data input 2. Here the 

x axis represents the window (refer figure 17 (a))  and the y axis represents execution time to 

identify a change in pattern in milliseconds.  In (b) we considered fixed tolerance value of 

more than 5 change in pattern were identified at 20, 30, 40, 50, 60 etc. time points. In 17 (c) 

changes in pattern were identified four times at 25, 40, 68, 90 time points.  
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Figure 17 Performance analysis of Optimum tolerance value to Fixed tolerance  
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In 17(a) input pattern we only see 4 changes in pattern at time points 25, 40 , 68 and 90 This 

is approximately equal  to 17(c) with uses optimum tolerance value. Therefore we can 

conclude that accuracy of optimum tolerance value is better than the accuracy of fixed 

tolerance value.  

 

From the above results with window size and tolerance value we can say that optimum 

tolerance value does improve the accuracy of data and optimum window size does improve 

the performance by decreasing execution time.  

 

5.4.3 Accuracy vs Window sizes 

In this section we study the accuracy of identifying the change in pattern with optimum 

window size and fixed window size. We considered the range of value for accuracy from 4 to 

1. If the accuracy is 4 which means that all four pattern changes have been identified, that is, 

the detection rate. If the accuracy is 1 then only 1 of the four pattern changes are detected.  
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Figure 18 Accuracy of data vs window sizes with different length of query sequences. 

a) Accuracy Vs Optimum window size 

Optimum Window size Accuracy Len(Q) 

10 3 25 

24 3 50 

38 2 80 
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b) Accuracy Vs Fixed window size 

Fixed Window size Accuracy Len(Q) 

12 4 30 

24 1 30 

34 1 30 

34 1 10 

10 3 10 

 

 

Table 5 Accuracy measured with Fixed window size and Optimum window size 

 

Figure 18 gives the accuracy vs window size graph where x-axis measures the window sizes 

and y-axis measures the accuracy of data obtained. In table 5 (a) optimum window size is 

considered where the accuracy of detection obtained is 3 or 2. In 18 (b) for fixed window size 

the accuracy obtained between 4 or 1. The accuracy of detection decreases as the fixed 

window size increases. At small window sizes the detection rate is very high, but there will 

be a lot of false alarms. From above fig 18 the overall accuracy of optimum window size is 

therefore more than the accuracy of the fixed window size.  

 

5.4.4 Accuracy vs Tolerance Value 

In figure 19 we compare the accuracy of identifying the change in pattern with optimum 

tolerance value and fixed tolerance value. We considered the range of value for accuracy 

from 4 to 1. If the accuracy is 4 which means that all four pattern changes have been 
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identified, that is, the detection rate. If the accuracy is 1 then only 1 of the four pattern 

changes are detected.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19 Accuracy vs Optimum Tolerance value and Fixed tolerance value. 
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a) Accuracy vs Optimum tolerance value 

Old Tolerance 

limit 

Tolerance 

Limit 

Tolerance 

value 

Accuracy of 

Input 1 

Accuracy of 

Input 2 

2 2 0 4 3 

5 3 1 4 3 

7 3 1 4 3 

 

 

b) Accuracy with Fixed Tolerance 

Value 

Fixed 

Tolerance 

Accuracy of 

Input 1 

Accuracy of 

Input 2 

1 2 3 

2 2 3 

4 2 1 

5 2 1 

 

Table 6 Accuracy vs Optimum tolerance and fixed tolerance value. 

 When the optimum tolerance value is considered the accuracy of identifying the change in 

pattern is more accurate when compared to fixed tolerance value. In fig 19 (a) accuracy is 

obtained with optimum tolerance values.  In fig 19 (b) accuracy is calculated with different 

fixed tolerance values. For the fixed tolerance values, the tolerance value depends on the 

previous tolerance value. As the tolerance value increases the accuracy of detecting pattern 
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change decreased. From the above results we can conclude that optimum tolerance value is 

more accurate in identifying the change in pattern compared to a fixed tolerance value. For 

both input 1 and input 2, we roughly estimate the detection rate using optimum tolerance 

value to be approximately 80% better than the detection rate using fixed tolerance value. 

 

In table 7 based up on the above results we estimate the detection accuracy percentage with 

optimum window size and optimum tolerance value. This value will be different for different   

input data patterns. 

Table 7 Performance analysis of fixed & optimum of window size and tolerance values. 
 
 Fixed values  Optimum Values Results 
Window size  Eg : Window =12  Eg: Optimum = 24, 38 etc 

changes according to length 
of query sequence  

Optimum window size shows 50 
% (approx) performance increase 
over Fixed window size. 

Tolerance value  Eg: Max=5, min =3 Eg: Max= 2, Min = 1 Optimum window size gives 80%  
(approx) more accuracy of 
detection over Fixed window size 

 
 
 

5.5 Adaptation  

After the change in pattern is detected, self adaptation algorithm adapts to the new  

pattern by changing the query sequence, optimum window size based on the length of  

the new query sequence and the tolerance value for better performance and more accurate  

detection of pattern change.  

 

Our results show that if the query sequence is small then a fixed optimum window is 

sufficient and there is no need to determine an optimum window. However, in general small 

attacks of small query sequences are unlikely in which the proposed approach is executed. 

One concern not considered in this work is the index of the window size list.  
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As the number of indexes increase, the execution time decreases [3]. We leave for future 

work to find the optimum value of index.



 54

CHAPTER VI 

CONCLUSION  

In this thesis, we proposed a method to increase the performance of self-adaptation in a  

deception framework. In deception framework whenever the attacker in a network tries  

to attack neighboring nodes, the deception framework after detecting the attack, tries to 

outsmart the attacker by self adapting his strategies and responding as the attacker  

anticipates. To increase the performance we proposed a method to calculate the optimum 

window size and optimum tolerance value. This method increases the performance by 

reducing the execution time and increasing the accuracy of detecting pattern changes. The 

results show that using our approach, the execution time to identify pattern changes by using 

an optimum window size decreased by 50% and the accuracy of detection using an optimum 

tolerance value increased by 80%.  

 

There are a number of deficiencies with the proposed approach which can be addressed in 

future work.  As the number of indexes of the window size list increases the performance of 

the deception framework also increases. The index size is directly proportional to the 

execution time. Larger number of indexes means more memory is needed. Determining the 

optimum index number for window size list is left for future work. The proposed approach 

should also be applied to other attacks besides the sink-hole attack. 



 55

 
CHAPTER VII  

 
DEFINITIONS 

 
 

Time point:  The smallest unit of time over which the system collects  

data. eg: ten seconds. 

Basic window: A consecutive subsequence of time points over which the 

system maintains a digest e.g., two minutes. 

Secondary window:  a user-defined consecutive subsequence of basic windows  

over which the user wants statistics e.g., an hour. 

Data Sequence:  Input data values collected from the attacker over a time 

period. 

Query Sequence:   Steady rate of expected input pattern which is used to 

compare with the input data pattern to identify change in 

pattern. 

Tolerance limit:     The permitted range of maximum and minimum value in input 

data pattern.  

Tolerance value:   Maximum deviation allowed in the current input pattern from 

the query sequence. 

Window size: Window size is length into which query sequence and input  

 data sequence are divided to identify the pattern change. 
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