

DECEPTION FRAMEWORK – MULTIPLE

INDEXING IN SELF ADAPTATION

By
RELANGI PADMAJA

Master’s of Science in Computer Science
Oklahoma State University

Stillwater, OK
2009

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

July, 2009

 ii

 DECEPTION FRAMEWORK – MULTIPLE

INDEXING IN SELF ADAPTATION

 Thesis Approved:

 Dr. Johnson Thomas

 Thesis Adviser

 Dr. Xiaolin Li

 Dr. Nohpill Park

 Dr. A. Gordon Emslie

 Dean of the Graduate College

 iii

ACKNOWLEDGMENTS

I thank my advisor Dr. Johnson Thomas for his advice and help during my research, and for
his tremendous support. I also thank my parents, brother and sister for all support and
encouragement; they always wished best for me. Thanks to Zhu Ling for her help in data
collection. I would also like to thank my committee members Dr.Xiaolin Li, Dr.Park and Dr.
Subhash Kak, head of department for their encouragement and support.

Most of all, I thank GOD for being with me in every season of my life. I also thank Him for
His promise “ That He will never leave me nor forsake me”.

 iv

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION……………………………………………………………………… 1

 1.1 Wireless Sensor Network………………………………………………………….. 1

 1.2 Constraints and Security issues on Wireless Sensor Networks…………………… 2

 1.3 Security in Wireless Sensor Networks…………………………………………….. 2

 1.4 Deception Framework……………………………………………………………... 2

II. DECEPTION FRAMEWORK………………………………………………………… 4

 2.1 Deception Framework in WSN ……………………………………………………..4

 2.2 Design and Architecture …………………………………………………………. 5

III. REVIEW OF LITERATURE…………………………………………………………..8

 3.1 FRM…………………………………………………………………………………8

 3.2 Dual-Match………………………………………………………………………….9

IV. SELF ADAPTATION ………………………………………………………………..11

 4.1 Self Adaptation ……………………………………………………………………11

 4.2 Problem in Self Adaptation ………………………………………………………12

 4. 3 Identifying Changes in Pattern of attack ………………………………………... 13

 4.4 Self adaptation to the changed pattern…………………………………………… 16

 4.5 Optimal Tolerance value…………………………………………………………..19

 4.6 Optimum Window size…………………………………………………………….23

 4.6.1 Calculation of Optimum Window size list…………………………………24

 4.6.2 Choosing the Optimum Window size …………………………………….25

 4.7 Algorithm…………………………………………………………………………31

 4.7.1 Self-adaptation……………………………………………………………...31

 v

Chapter Page

 4.7.2 Calculating Optimum window list and Window size………………………….32

 4.7.3 Calculating Optimum Tolerance value ……………………………………….33

V. SIMULATIONS RESULTS ………………………………………………………….34

 5.1 Network Simulation ………………………………………………………………34

 5.2 Simulation ………………………………………………………………………..35

 5.3 Attacking Strategy - Attacker …………………………………………………….35

 5.4 Determining change in pattern – Simulation results ……………………………..38

 5.4.1 Fixed window size vs optimum window size …………………………….39

 5.4.2 Fixed tolerance value vs optimum tolerance value ……………………….45

 5.4.3 Accuracy vs Window sizes ………………………………………… …47

5.4.4 Accuracy vs Tolerance value…………………………………………… 49

 5.5 Adaptation …………………………………………………………………….... 52

VI. CONCLUSION.. 54

VII. DEFINITIONS………………………………………………………………......… 55

REFERENCES …………………………………………………………………………..56

BIBILOGRAPHY………………………………………………………………………. 57

 vi

LIST OF TABLES

Table Page

1. Results of input 1 pattern with optimum window size…………… ……………… 40

2. Results of input 1 pattern with fixed window size…………… .…………………… 40

3. Results of input 2 pattern with fixed window size ………………… …………… 43

4. Results of input 2 pattern with optimum window size………………. ………...... 44

5. Accuracy measured with Fixed window size and Optimum window size…………... 49

6. Accuracy vs Optimum tolerance and fixed tolerance value…………………………. 51

7. Performance analysis of fixed optimum window size and tolerance value………...... 52

 vii

LIST OF EQUATIONS

Equation Page

4.1 Harmonic Mean………………………………………………………...............…. 15

4.2 Decrement of delta ………………………………………………………………… 16

4.3 Delta ……………………………………………………………………………........ 16

4.4 Mean Average Deviation……………………………………………………………. 20

4.5 Optimum Tolerance Limit ………………………………………………………….. 20

4.6 Optimum Tolerance Value…………………………………………………………... 21

4.7 Maximum Window size…………………………………… ……………………….. 26

.

 viii

LIST OF FIGURES

Figure Page

 1 Wireless Sensor Networks……………………………………………………………... 1

 2 Block Diagram of Deception Framework …………………………………………….7

 3 Performance with different window sizes………………………………..…………....10

 4 Self Adaptation Block diagram.. …………………………………….…………....... 12

 5 Effect of fixed tolerance value…… …………………………………………………. 17

 6 Self adaptation process flowchart…………………….…………………….…….….. .18

 7 Flowchart for Tolerance limit………… ……………………………………........ …22

 8 Flowchart for calculating the window list………….…………………………..………25

 9 Performance with different number of index size …………………………….… ….. 26

10 Flowchart of identifying pattern change …………………………………….…… ….28

11 Deception Scenarios ……………………………………………………………... ….34

12 Attacker is sending packets at changing frequencies…………………………….. ….37

13 Attacker Sending sensing message at random frequency ……………………….. …..38

14 Graph of Execution time with fixed window size vs Optimum window size……..….39

15 Consideration of time point in optimum window size……………………………… ..42

16 Performance analysis of Optimum window size to Fixed window size…………… ...43

17 Performance analysis of Optimum tolerance value to Fixed tolerance…………… …46

18 Accuracy of data vs window sizes with different length of query sequences…… …..48

19 Accuracy vs Optimum Tolerance value and Fixed tolerance value………………. …50

1

CHAPTER I

INTRODUCTION

1.1 Wireless Sensor Network

Wireless Sensor Networks are used to monitor physical or environmental conditions such

as temperature, sound or vibrations co-operatively. These sensors are now finding

applications in diverse fields such as in the battlefield, healthcare, space etc. A Wireless

Sensor Network (WSN) consists of collections of sensor nodes and a base station. These

miniature computers have very basic functionalities with interfaces and components.

They are limited in power, computational capability and memory.

 Figure 1 Wireless Sensor Network

 2

1.2 Constraints and Security issues on Wireless Sensor Networks

Wireless Sensor Networks has some constraints. These have limited computational, storage

and limited power resources. They are typically deployed in harsh environments and suffer

from increased hardware and communication failure rates. These sensors may also be left

unattended.

1.3 Security in Wireless Sensor Networks

The resource limitations of sensors mean that complex cryptographic techniques in

Wireless Sensor Networks to secure data might be computationally too intensive. Sensor

networks are therefore vulnerable to security attacks. Since it is relatively easy for an

attacker to break into a sensor network (due to the absence of complex cryptographic

techniques), one way of protecting the network is for the sensor nodes to respond to an

attacker by sending him false information or by deceiving. Deception will help to

manipulate an attacker’s behavior. The objective is to protect the network. For example,

if one part of the network is collecting critical data, the objective of deception will be to

prevent the attacker from moving to that part of the network. The attacker behavior can

be manipulated by sending him data that he expects if it is a sinkhole attack for example,

and therefore he will not move to another critical part of the network.

1.4 Deception framework

In deception, the defender or deceiver deceives the attacker by learning the strategy of

attack from the attacker and responding to the attacker as anticipated. Besides deceiving

the attacker, it also deprives or drains the resources of the attacker. Furthermore, by

sending wrong data to the attacker, it secures vital information.

 3

A Deception framework analyzes past attacker behavior and determines the optimum

response to deceive the attacker. If an attacker changes his behavior, the network has to

adapt to the new strategy of the attacker. We propose an approach to recognize this change

in the strategy of an attacker. Once this change is detected the deception framework self-

adapts to these changes and modifies its response to the attacker. In this thesis we propose a

method called multiple indexing for self adaptation of window size and tolerance value to

maximize the performance and accuracy of our deception framework.

In chapter 2, we briefly review the architecture of the Deception Framework. Chapter3

presents the literature review. In chapter 4, proposed approach to self-adaptation is presented.

We present an approach to determine the optimum window size and the optimum tolerance

value. Chapter 5 presents simulation results and the conclusions are presented in chapter 6.

 4

CHAPTER II

2.1 DECEPTION FRAMEWORK IN WSN

The main objective of the deception framework is to deceive the attacker by providing wrong

information to the attacker. We assume that sensor nodes are less powerful then the attacker.

When a node has been attacked by a powerful attacker in a network, the deception framework

collects the input data from the attacker and analyzes the data. Input data from the attacker is

called a request message which is sent from the attacker to the node. During this process, the

deception framework will understand the strategy or the pattern of attack.

Once the pattern is recognized the deception framework aims to meet the expectation of

the attacker by responding appropriately to the attacker. In this thesis we apply a simple 1:1

request-response pattern. That is, the rate of response will approximately match the rate of

the request. The response will contain fake sensor data. Other more complex request-

response relationships may be implemented, but this depends on the type of attack. We model

a simple sinkhole attack where increasing rate of requests from the attacker will result in

increasing rate of responses to the attacker.

Once the request pattern has been analyzed, the defender will predict the response (output

data from a node to the attacker) that is expected by the attacker. Once the expected

response has been predicted, the deception framework will generate the response to the

attacker.

 5

2.2 Design and Architecture

In this section we describe the design and architecture of self adaptation. Once the

attacker has been identified, deception takes place in three phases.

1) Initiation of the Environment

2) Deceive

3) Self Adaptation

Figure 2 shows a block diagram of the deception framework architecture.

Phase I: Initiation of an Environment

In the first phase once the attack has been identified, initiation of an environment for

deception is prepared by Distributed Deception Agents (DDA). DDAs are considered to

have more storage memory and are able to handle more complex algorithms. DDAs are

the agents in the network which selects the nodes to execute the deception algorithm

while the other nodes carry normal communication within the network. The nodes

selected to do the deception are called sacrificial nodes. Once the sacrificial nodes are

selected, the deception variables are uploaded into the selected sacrificial nodes by the

DDA.

Phase II: Deceive

In the second phase, the deception of the attacker begins by analyzing the input data

(request message from the attacker). It will predict the future expected request data and

its response. Once this is done the deception framework responds to the attacker.

Phase III : Self Adaptation

 6

Self adaptation involves monitoring the attacker behavior, and adapting to the changed

behavior of the attacker. As the input data from the attacker is analyzed and compared

with the query sequence in phase II, changes in pattern can be identified. Query sequence

is the future expected input data which is obtained by finding steady rate of input data.

This is used as a reference to compare with the next input data to identify the change in

pattern.

Once the change in pattern is identified, in phase III the deception algorithm running on

the DDA must change its variables (such as query sequence, window size, tolerance

value) to adapt to the new pattern of input data. The query sequence is divided into n

number of windows of length window size. Tolerance value is the maximum deviation of

input data pattern that is allowed from the query sequence.

When the input data pattern is changed its query sequence length may vary from the

previous query sequence length. Hwan Lim, Pak, Kim [3], show that as the length of the

query sequence increases its execution time also increases, this is called the window

size effect. This degrades the performance of the deception algorithm. Our proposed

algorithm has to meet this constraint and increase the performance of self adaptation

by adapting variables such as window, and tolerance value to the optimum value.

 7

Figure 2 Block diagram of Deception Framework

 8

CHAPTER III

REVIEW OF LITERATURE

In the Deception framework, self adaptation plays a vital role. If the change in the

pattern of input data is not detected, the objective of deception may fail Previous work

had a fixed window size and fixed tolerance value. The disadvantage with fixed values is

performance degradations as the length of the query sequence varies. This is the so-

called window size effect [3]. The window size and tolerance value must therefore adapt

to the varying query sequence length as there is an optimum window size for each query

sequence length. Hwan et. al. [3] introduced a novel method called multiple indexing to

decrease the execution time during subsequence matching of two patterns, namely, the

input data pattern and the query sequence.

In their studies they found that as the window size increases according to the query

sequence, the execution time decreases. To determine the optimum window size many

studies were done in subsequence matching. We review two methods that are closest

to our approach, the FRM and dual match that calculate optimum window size.

However, due to the limitations of sensor networks, these methods are not directly

applicable.

3.1 FRM:

FRM [3] uses the concept of a window of fixed length for R*-tree indexing. It extracts a

 9

sliding window size of size w from every possible position inside each input data

sequence S of length len(S)(w), and then converts every sliding window into a point in

f(w)-dimensional space by using DFT. The total number of points extracted from each

data sequence S is (len(S) − w + 1). As a result, a large number of points appear in this

way, and thus the storage overhead for storing these points individually also gets large.

For alleviating this problem, FRM forms the minimum bounding rectangles (MBR)

enclosing multiple points and builds an R*-tree on these MBRs instead of points. For

subsequence matching, FRM extracts p disjoint windows of size w from a query sequence

of length len(Q)(w) where p = len(Q)/w , and then converts every disjoint window

into a point in f-dimensional space by using DFT. Thus in this method memory storage

for each dimensional point is the issue.

3.2 Dual-Match

Dual-Match was proposed in [6] to overcome the weakness of FRM addressed

above. Dual-Match extracts windows in the way opposite to FRM: It extracts disjoint

windows from data sequences and sliding windows from a query sequence. In Dual-

Match, instead of storing the MBRs containing multiple data windows as in FRM, each

data window is individually stored in the index. By constructing the index in this manner,

Dual-Match can dramatically reduce the number of false alarms, and can obtain search

performance much better than FRM. In dual match subsequence match is done by

extracting sliding windows for length of query sequence into f- dimensional space by

using DFT. Usually, Dual-Match sets the window size w which divides the query MBR to

be [(min(Len(Q)+1)/w]- 1). Index searching step constructs a candidate set by comparing

each query window point, thus discarding false alarms.

 10

In [3] fig 3 when the query sequence length is increased with constant window size,

execution time is increased simultaneously. In figure 3 when window sizes increases

with for a constant query sequence, execution time decreased.

These methods focus highly on variant time series like stock prices, weather forecasting,

temperature readings etc., Due to the limitations of sensor networks they are too complex

for sensor networks. Our method of self-adaptation is simpler with fewer calculations and

need less memory for better performance.

Figure 3 Performance with different window sizes

 11

CHAPTER IV

4.1 SELF ADAPTATION

Self Adaptation is the third and vital feature in Deception Framework. It is defined as

adapting to the changed pattern of attack and responding accordingly. Adaptation is

necessary to maintain deception and prevent the attacker from suspecting anything. In our

work, the objective of deception is to give the attacker what he expects. Self adaptation

considers the attackers own strategy to deceive him. It deceives the attacker by responding in

a pattern as expected by the attacker. This is learned and predicted from past experiences.

Self adaptation is an important feature because, if the deceiver cannot self-adapt, the

purpose of deception is defeated. If the purpose of deception is defeated it may be

suspected by the attacker, which will encourage him to choose other ways to attack

We first describe the problems in self adaptation and then discuss approaches to

solve them. We later propose an algorithm for self adaptation. Finally this chapter

concludes with future work.

 12

Figure 4 Self Adaptation Block diagram

4.2 Problem in Self Adaptation

In order to self adapt, the deceiver must first be able to identify the changes in pattern

and then must know how to respond to the changed pattern. We divide the problem into

three steps

1) Monitoring the attacker’s behavior and identify the changed pattern

2) Predict the response to the changed pattern

3) Self adapt with the changed pattern.

In this thesis we study the 1st and 3rd points.

Identify changed pattern : To identify the changed pattern the deceiver needs to know

a) The reference pattern or the query sequence. The reference pattern is

expected input pattern form the attacker. This is obtained by identifying the

steady rate of attack in the input data during the analysis of input data pattern.

b) The present data pattern or data sequence, to which we will compare the

 reference pattern.

SELF ADAPTATION

M ONITOR ATTACKER ’ S

BEHAVIORS
ADAPT TO CHANGED

BEHAVIOUR

 13

c) The Window size to compare both data and query sequences.

d) The Tolerance value to monitor and identify changes in the data pattern.

Self adapting to the changed pattern : Once the change in pattern is identified, the system

needs to adapt to the changes and continue the deception of the attacker. Below are the

features which the framework needs to adapt with the changed pattern.

1) Learn the present new pattern which is the requests sent by the attacker

2) Predict the new query sequence which is the expected request rate from the attacker.

This is based on the reference or query sequence.

3) Determine the window size for new query sequence to avoid window size

effect.(more detailed description of window size is given in section 4.6).

4) Change the tolerance value with the new pattern (which is used to identify

change in pattern).

In next two sections we focus on identifying the changes in pattern and adapting to the

new pattern.

4.3 IDENTIFIYING CHANGES IN PATTERN OF ATTACK

Any data that is collected in a certain time period can be represented in the form of a pattern.

This pattern can be a sine curve or straight line etc, in a time series sequence. Any series of

data that has been collected over time and represented graphically is called a time series. In

our method, we consider three types of time periods in a time series:

• Time point is the smallest unit of time over which the system collects data, e.g.,

ten seconds.

• Basic window is a consecutive subsequence of time points over which the system

 14

maintains a digest (i.e., a compressed representation) e.g., two minutes.

• Secondary window is a user-defined consecutive subsequence of basic windows over

which the user wants statistics, e.g., an hour.

Both time point and basic windows are system fixed variables. Secondary window is user

defined and can be varied.

In this thesis we consider a sinkhole attack in which the attacker claims to be close to the

base station to its neighboring nodes. Once the attack has been identified the

deception framework has to understand the pattern of attack. The deception framework

collects the attacking pattern from the attacker, learns the pattern and predicts the pattern

using the methods proposed by Zhang in [2] called F4(Fractal FOREcasting) for example.

Once the pattern is learned and reaches the steady state we consider the repeating pattern as a

query sequence and the steady rate as the objective of the deception. Subsequence matching

is a process, in which we search for the pattern in the input data time series which is similar

to a query sequence.

Self adaptation is a simpler process than the work done by Faloutsos et al (called

FRM) [3] and Dual form [6]. Since our problem is to not to find a similar pattern, but to

identify change in pattern which makes our job simpler then pattern matching. Given the

resource limitations of sensor networks, we use a simplistic approach which is efficient

to identify changes . To recognize the change in pattern we compare the unknown input data

time series with the known query sequence. For comparison input data and query sequence

are divided into window size. Window size is the length of window to divide both query

sequence and input data pattern to compare and identify the change in pattern (a more

 15

detailed explanation is given in section 4.6). The difference between both the input and

query sequence are compared with tolerance value (section 4.5) to identify the change in

pattern.

We assume the attacking data input time series is Nt is given. Nt = {n 1, n2, n3,….,nj }

where j is the time point and n is the value at the jth time. Secondary Window is represented

by Wi, basic window is represented by wk. First the steady rate of the input data is calculated

by finding the difference between the harmonic mean of two adjacent secondary windows.

The input sequence of the steady rate Vobj is considered as the query sequence. After the

query sequence is obtained, the optimum window size Wopt is calculated to avoid the window

size effect as explained in the previous section. The optimum tolerance value T is also

calculated to avoid false alarms. The query sequence and input data is divided into n

windows of length Wopt and each Wopt is divided into i secondary windows of length Wi .

Secondary window | Wi| = k where k is the number of time points.

Harmonic Mean of Secondary Window = total no of time points in each secondary window
 Sum of inverse of total time points

∑
=

=
k

j ji

i

n

k
WHMean

1 ,

1
)((4.1)

Once the harmonic means of two adjacent secondary windows are obtained, the normalized

difference of two adjacent secondary windows are calculated to determine the movement of

attack. It enables finding similar fluctuation patterns even though they are not close.

Let b be the basic window. Normalized difference (δ) helps us to find the difference between

the objective and input data time series. To find the measurement of deviation from Vobj we

define a term called delta (∆). Sometimes the ∆ value decreases over time.

 16

Decrement is represented by dec(x).

objV

obj2bn1bn V-)..W..........HMean(W +++

=δ

 ∆ t+1 = δ + dec (∆ t)

 dec (∆ t) = (1+ ∆ t)
e - 1 (4.2)

where e is close to zero. The closer the x in dec(x) is to 0, the lower the decreasing rate.

The difference δ comes in at a rate of once per secondary window. We define a time

series Dt as the difference time series.

 Dt = {Di , Di+1 , ………Dt+n}

Dt at every time is zero except at each secondary window. As a result we formalize the

cumulative measure of deviation. ∆ is the difference of each secondary window to the Vobj.

 ∆ is ∆ t+1 = D i+1 + dec(∆t)= Di+1 +(1+ ∆ t)
e (4.3)

If more than 50% of the secondary window in Dt is greater than maximum tolerance value

than we consider that length of input sequence as change in pattern.

4.4 Self Adaptation to the Changed pattern

Once the change in pattern is identified, the deception frame has to adopt to the new

pattern. There are two issues to be considered: what needs to be adapted and why it has to

be adapted. The previous section described how to find the change in pattern.

Once the change in pattern is identified the query sequence (steady rate of the input

pattern) also changes. As the query sequence changes, to avoid window size effect we

need to change the window size to an optimum value. Therefore, we propose an algorithm

which changes window size according to changes in the query sequence.

 17

Similarly the tolerance value of the deception framework should also be changed with the

new query sequence. Tolerance value is maximum value of difference that can be

allowed for a query sequence of input data time series. As query sequence

changes, the new pattern may increase or decrease from the previous pattern. There

may also be a phase shift in the input pattern. Hence the tolerance value should change

accordingly. If the tolerance value is not changed we may mistake the similar pattern as a

change in pattern because tolerance value did not increase or decreases with the increase or

decrease in query sequence.

Figure 5 Effect of fixed tolerance value

Figure 5 shows the effect of not changing the tolerance value. Here the old tolerance is 0.5

delta. Around 200 time points, a change in pattern was detected. Because of the change in

pattern, the query sequence also changed. However, since our original tolerance value of 0.5

has not changed, it considers the changes after 200 as changes in pattern even though there is

no change in the pattern. The tolerance value has therefore to be adapted to the new query

sequence. Thus self adaptation is required for more accurate data or performance. Figure 6

flowchart of self adaptation process.

 18

Self Adaptation Process

Figure 6 Self adaptation process flowchart

Start

Attacker Input is given
Nt= { nt , nt+1, nt+2…, nt+n

}

Learn the new pattern. Find
rate by Harmonic mean

Once it reaches the steady
state Vobj, query sequence Q

Calculate Window
size , tolerance value
Tmax, Tmin of query
sequence, T

Find the ∆∆∆∆ data sequence
deviation from objective or
query sequence

Pattern changed

If ∆∆∆∆ > T

If
Diff > 50%

Pattern not changed

Predict the response
to request by

attacker

Continue the deception by
responding to attacker

No
quote

Yes

Yes

No
quote

 19

4.5 Optimal Tolerance value

Tolerance value is a nominal value of maximum difference allowed from the query sequence

to the input data. Tolerance value is of vital importance as data traveling in a media like air

can face disturbances or noise on its way to a node in the network. Noise might indicate as

change in pattern which in fact is not a change in pattern. We name such alarms as false

alarms. This tolerance value should be optimum; if Tolerance value is too small then the

system may conclude consider a signal with noise as change in pattern. If tolerance value is

too large then, the system may neglect a real change of attack as noise resulting in failure of

deception.

To obtain optimum tolerance value we need to first calculate the tolerance limit Tmax and Tmin

for that query sequence. Tolerance limit is the range of maximum and minimum mean

average deviation of new query sequence and old query sequence. Tolerance limit Tmax and

Tmin are like the upper and lower tolerance limits in the new input sequence. Input data values

that lie within this range are accepted. Data that goes beyond the tolerance values are

considered as change in pattern.

To identify change in pattern we need to know the difference instead of upper limit and lower

limit as we are comparing two sequences: query sequence and input sequence.

We call this difference value as tolerance value and it is represented by T. The upper bound

difference is the difference between the Tmax and the value of the pattern. Similarly the lower

bound difference is the difference between the Tmin and the value of the pattern. The smaller

of these differences is considered to be the value T. When ∆ (deviation of the time series

from objective) is more than T the deception framework considers that as change in pattern.

 20

Tolerance Limit:

We first propose a method to calculate tolerance limit from old query sequence and new

query sequence. In this method we take mean average deviation of both old query sequence

and new query sequence. We multiply the mean average deviation with a constant value

sigma where sigma is less than or equal to one. Then by either subtracting or adding the mean

average deviation to the old tolerance limit we find tolerance limits Tmax and Tmin for the new

query sequence. We assume that we know old tolerance limit from past experience.

Let us consider P(t) as the new query sequence at time t , V(t) as the old query sequence. n is

the length of the new query sequence. The old tolerance limits which we call old_Tmax and

old_Tmin and sigma (a constant value) is given.

The Mean Average Deviation (MAD) is calculated as

 n

tVtP
MAD

|)()(|∑ −
= where 1 ≤ t ≤ n and (4.4)

 n is the total number of values.

new_ Tmax= old_Tmax + sigma * MAD

 new_T min= old_Tmin - sigma * MAD (4.5)

Optimum Tolerance Value T :

Once the tolerance limit is obtained we need to know the maximum and minimum value in

new query sequence as value_max and value_min respectively. Now subtract the value_max

from Tmax and similarly value_min from Tmin as diff_max and diff_min. Compare both the

values and smallest value is considered as T.. The reason to consider the smallest value is

because the smaller the deviation, the more accurate the data.

 21

 diff_max = Tmax - value_max

 diff_min = value_min - Tmin

 T = min(diff_max, diff_min) (4.6)

This method is more accurate because with a fixed tolerance value, sometimes the difference

may be more than the defined value as the query sequence changes. This can result in

incorrect identification of pattern change. Our method calculates tolerance value according to

varying query sequence which give a more accurate tolerance value then fixed values.

 22

Flowchart for Tolerance limit

 Figure 7 Flowchart for Tolerance limit

Old query sequence, new query
sequence, n is Len(Q) length of new
query sequence
sigma < 1

MAD=
 ∑ [P(t)-V(t)]
 n
at time t

Start

Tmax=old_Tmax+sigma*M
AD

Tmin=old_Tmin-sigma*
MAD

 23

4.6 Optimum Window Size

Window size is the length of window used to divide the query sequence into n windows. The

window size is also used to divide the input data sequence into x number of windows. x may

or may not be equal to n since the input data sequence may be of different length than the

query sequence. . We next compare the query sequence of n windows with input data

sequence of x windows of length window size to identify change in pattern.

Determining optimum window size is of vital importance. Hwan, Park, Kim [3]

show that as the length of the query sequence increases with fixed window size the execution

time increases. They conclude that performance deteriorates as the difference

between the window size and length of the query sequences get larger. This phenomenon

is called the window size effect.

In the deception framework execution time is very important. As the data sent from

the attacker to different nodes in the network are directed to sacrificial nodes, sacrificial

nodes are overloaded with data which slows down the execution time reducing the

effectiveness of deception. Furthermore, the window size effect deteriorates the situation

even more. It is therefore important to obtain an optimum window size which can help

to decrease the execution time and increase the performance.

In [3] Hwan Lim, Park, Kim proposed a novel approach called index interpolation to

overcome this performance degradation. The drawback of the method is the limited

resources available in sensors. Index interpolation has complex calculations which involve

 24

calculating the cost of window size and based on the cost value, the window size is

determined. Moreover the memory requirements are extensive since memory is needed to

store the binary tree method used to calculate the window list. We propose a novel method to

calculate the optimum window size which is less complex and needs less memory than

complex index interpolation.

4.6.1 Calculation of Optimum Window list

Before we determine the optimum window size we calculate the window list. Window list is

a set of different sizes of windows which are considered to be optimum for different query

sequences. The values of these sizes lie in between the maximum and minimum length of

query sequence. These maximum and minimum length of query sequence are obtained from

analyzing past data. We assume that our deception framework will have query sequences

within these values.

Let Len(Q) be the length of query sequence, Len_max(Q) be the maximum length of the

query sequence and Len_min(Q) be the minimum length of the query sequence and n the

index number to store n window in the window list. In [4] lemma 5, the relation between the

maximum window size and minimum length of query sequence is given. The maximum

window size should be less than half of the minimum length of the query sequence.

If Len_max(Q) is the maximum length of query sequence that we expect in the system,

Len_min(Q) is the minimum length of query sequence that we expect in the system, window

list is Wp, then the minimum window size Wmin and the maximum window size Wmax are

calculated as follows:

 Wmax = max{wi | we ≤ [(Len_max(Q)+1) / 2] (1 ≤ e ≤ n) }

 25

 Wmin = min{wi | we ≤ [(Len_min(Q)+1) / 2] (1 ≤ e ≤ n) }

 Wp= < w1,w2, . . . , wn > where Wmin <w1 < w2 < _ _ _ < wn < Wmax

Wmax and Wmin are the limits of the window list. The other window sizes are then obtaind by

dividing the range Wmax-Wmin evenly over the n indices of the window list. Since the

maximum value of window size will be less than or equal to half of the query

sequence, the chances of window size greater than the length of query sequence is very

unlikely. According to the window size effect, as a window size gets nearer to Len(Q),

the performance improves. However for accuracy the window size should be less than

(Len(Q)+1)/2). Therefore we evenly divide the windows between Wmax and Wmin into n

windows beginning from minimum window size Wmin.

Figure 8 Flowchart for calculating the Window list

4.6.2 Choosing the Optimum Window size

In this section we suggest a procedure to choose the optimum window size for a given

length of query sequence from the above calculated window list. The maximum

window size for a given query sequence should be less than half the length of the query

Start

Len_max(Q),Len_min(Q), n
index

Calculate Wmax=[Len_max(Q)+1]/2
and Wmin =[Len_min(Q)+1]/2

P

Diff= Wmax – Wmin
Increment=Diff/n

For i<n-1

 Wi=Wmin+ Increment
 i++

P

 26

sequence (from lemma 5 in [4]). If the length of the present query sequence is Len (Q),

maximum window size is

 wmax = [Len(Q)+1] /2 (4. 7)

 wmax is the maximum window size into which a given current query sequence can be

divided. we is the value in the window list that is lower than, but closest to wmax. To obtain the

optimum window size we select the window value we from the window list (4.6.1) which is

nearest to wmax .

 Wopt= we ≤ wmax Where we ∈ Wp={w1,w2,w3…….we, …wn}

For example, a window list has 9 indexes of windows 10 24 38 52 66 80 94 108

122. From equation (4.7) if new query sequence is of length =80 then wmax = 40 then optimum

window size Wopt=38. From Hwan et. al. [3] we know that as the number of indexes of the

window list increase, the execution time decreases which is show in figure 9.

Figure 9 Performance with different number of index sizes

In Fig 9 performance analysis of increasing indexes and execution time is shown as given

[3]. As the number of indexes of the window list increase, the execution performance

becomes better. Determining the optimum index size is left for future work.

 27

In figure 10 the self-adaptation process is explained. It is divided into three sections (a), (b),

(c). Each flowchart from each section is connected by connectors A, B, C, D. In (a) the self-

adaptation process to find the Harmonic mean between two adjacent secondary windows is

given. In (b) the optimum window size and optimum tolerance value is calculated. In (c) ∆

(deviation from the Vobj) is compared with T. A counter variable in this section is used to

keep track of the number of deviations to identify change in pattern.

 28

Figure 10 FLOWCHART OF IDENTIFYING PATTERN CHANGE
(a)

Start

Input data Nt={ne,
nt+1, nt+2,…..nt+n}
at tth time point, n is
data value

Time point t, basic
window bw, Secondary
window Wi

 Total number of time
point in window point
k= | W |

Consider input data of
and divide into “i “
no. of secondary
windows

 k
H.M(Wi)= --------------
 ∑ kj= 1 (1/ n i,j)
i th secondary window at
j th time point

V obj = Steady rate of
H.W (Wi+1 – Wi)

A

B

 29

(b)

Figure 10 Flowchart of Pattern change in Self adaptation (continued)

c

D

A

Find cumulative
deviation ∆∆∆∆ from the
Vobj at time point t.

Calculate max and min
Tolerance values Tmax ,
Tmin then T

 ∆∆∆∆t+1 = Dt+1 + dec (∆∆∆∆t)
dec (∆∆∆∆t) = (1+∆∆∆∆t)

e -1
Dt+1 is a Normalized
Difference time series

Optimum Tolerance T=
Max data value(query
sequence)-Tmax

Calculate Wopt . Find
deviation ∆∆∆∆

 30

 (c)

Figure 10 Flowchart of Pattern change in Self adaptation (continued)

C

B

Send the Predicted
response to the
attacker

If
∆ > T

Counter=counter+1

If
counter >

50%

Pattern changed
Pattern not changed

D

 31

4.7 Algorithm

4.7.1 Self Adaptation

Step 1: Given data sequence Nt = {nt, nt+1, …..nt+n}, secondary window Wi,

basic window wk,

Step 2: Find the steady rate Vobj of the sequence by finding the harmonic

 mean of the data sequence.

Step 3: Find the query sequence which is a steady rate sequence.

Step 4: Calculate the window size and tolerance limit for the query

 sequence as the Wopt and Tmax and Tmin.

Step 5: To avoid false alarms we use dec(x) function, if increment c ,

 if (δ < c) then inc = δ ; else

 if (δ > c) then inc = c ;

 Where δ is normal deviation to calculate the movement of attack.

Step 6: Find the ∆ difference of data from the query sequence

 ∆t+1 = δ + dec (∆ t)

 Dt+1 + dec (∆t)

 dec (∆t) = (1+∆t)
e -1

 Dt+1 is a Normalized Difference time series s

Step 7: To find the Optimum tolerance (allowed deviation from query

sequence)

 32

T = (Maximum input data value in query sequence –Tmax)

Step 8: If more than 50% of the values in window sizes > tolerance

value consider as change in pattern.

 if (∆ ≥ T) > 50%.

Step 9: If Step 8 true then pattern is changed so repeat the Step 1 to

Step 8

Step 10: If Step 8 is false then send the predicted response and continue

deception

4.7.2 Calculate Window size list and choose optimum window.

Step1: Declaration : Len_max(Q) , Len_min(Q), index[n] ,

Step 2: Given minimum and maximum length of query

 sequence of same multiple.

Step 3: Calculate maximum possible window size and minimum possible

window size by

 Wmax= [Len_max(Q) +1] / 2

 Wmin= [Len_min(Q)+1]/2

Step4: Evenly divide into n window sizes beginning from Wmin to Wmax.

Step 5: Store in values in n indexes of window list array

 33

Selecting Optimum window size

Step 6: Given Len(Q) then calculate wmax=(Len(Q)+1)/ 2

Step 7: Choose from n windows in window size list value closest

 to the max_win value as optimum window size.

 4.7.3 Find Optimum Tolerance value

Step 1: Give old query sequence, new query sequence, sigma value

 which is less than 1, length of query sequence Len(Q).

Step 2: Find the mean average deviation (MAD) of new query sequence to

the old query sequence of length Len(Q).

Step 3: old _Tmax + sigma * MAD= new_Tmax.

 old_Tmin - sigma * MAD= new_Tmin.

Step 4: Find the maximum and minimum displacement value in query

sequence. Let is be value_max, value_min.

Step 5: diff_max =new_ Tmax - value_max

 diff_min = value_min –new_ Tmin

Step 6: Select the minimum diff from the diff_max and diff_min. This is the

optimum tolerance value for our current query sequence.

 T = min(diff_max, diff_min)

 34

CHAPTER V

SIMULATION RESULTS

5.1 Network simulation

The proposed deception framework includes nodes and a base station. In fig 5.1 all the

nodes in the grey color send data to the base station (red color node). The attacker

(black color node) attacks its neighboring nodes saying that he is the base station. As a

result all the nodes near this region sends data to the attacker. This is a sink hole attack.

In fig 5.1 the surrounding gray nodes within the dotted circle are sacrificial nodes which

deceive the attacker.

Figure 11 Deception Scenario

 35

5.2 Simulatin

The sink hole attack was simulated using the Tossim Simulator [1] and NesC Compiler. To

run the program for determining the pattern change and its execution time we used Hp

PC dv6000 with following configuration

• RAM : 1.0 GB

• Processor : 1.50 GHz

• Operating System : 32 bits Windows XP

• BCC C++ Compiler

• Text pad

 Tossim Simulator

The Tossim simulator [1] is a discrete event simulator for TinyOS sensor networks. Instead

of compiling TinyOS application on a mote you can compile it in the Tossim framework.

Tossim provides a basis for real test-bed deployment. Tossim is developed at UC, Berkely

and is widely used in the research community.

5.3 Attacking Strategy - Attacker

Sink Hole Attack:

In the Sink hole attack, the attacker pretends to be the base station or having the

best route to the real base station. This makes all nodes which are closer to the sinkhole

to divert their messages to the attacker until the sinkhole stops sending messages to the

nodes in the network. The data for the sinkhole was collected by Ling Zhu.

 36

Attacker Scheme:

In a sink-hole attack, the attacker claims himself as the base station with a highest link

quality to his neighboring nodes. The attacker changes his frequency of sending the routing

message. In this attack we generated three types of attacking patterns. The attacker is sending

message packets to different nodes in a random frequency, sine curve pattern, and in an

increasing pattern. The attacker is node 1 and the base station node 0. The format of the

packets were in decimal format such as [Msg type: Source Node, Local Time of Source node]

where Msg type is routing message, S is the source node, local time is the time at which the

source node (the attacker) sends message to neighboring nodes. For example [S: 1, 4] means

Node 1 forwarded a packet at the 4th second. We first look at the input patterns from the

attacker.

Input data 1:

In figure 12, the x-axis is the time points, y axis is no of packets sent by the attacker. The

attacker initially sends advertisements or routing messages at a slow rate of 1 packet for

every 16 seconds for the first 600 seconds or 10 minutes. Then the attacker increases

transmission to a rate of 4 packets per 16 seconds from time 600 second to 1000 second (6.6

minutes). Finally the attacker changes transmission to 8 packets, 4 packets and 2 packets into

sine wave pattern per every 16 seconds, from time 1000 second to 3000 second (33 minutes).

In input 1 the attacker frequency was 0.25 and suddenly increases to frequency 2. Frequency

is the rate of number of packets broadcasted per a time period. The y-axis is the ratio of

attacker frequency to normal frequency. A normal node transmits one packet every 4

seconds. In the first 600 seconds, the attacker sends 1 packet every 16 seconds; hence the

ratio is 0.25 as shown in the graph.

 37

Figure 12 Attacker input data requests 1

Input data 2:

In fig 13, the x-axis is time points, y axis is no of packets sent by the attacker. The attacker

sends advertisement or routing packets at a slow rate of 1 packet for every 6 seconds for the

first 150 seconds. Then the attacker changes transmission to a rate of 2 packets per 6 seconds

from 150 seconds to 270 seconds. Later the attacker increases the rate to 3 packets per 6

seconds from 270 seconds to 420 seconds. Transmission rate then decreases to a rate of 2

packets per 6 seconds from 420 seconds to 516 seconds. Finally the transmission changes to a

sine curve of 2 packets to 1 packet for every alternate second from 516 seconds to 1104

seconds.

 38

Figure 13 Attacker input data 2 with changing frequency

5.4 Determining Change in pattern – Simulation results

In this section we analyze the results of above inputs by applying the proposed algorithm of

self adaptation with multiple indexing and tolerance limit. The aim is to show the

effectiveness of the multiple indexing methodology used over the fixed window based

approach and the effectiveness of optimum tolerance value over a fixed tolerance value.

Results:

In this following section we analyse the results of the above input patterns. We compared the

efficiency of fixed and optimum values of window size, and tolerance value.

 39

5.4.1 Fixed Window Size Vs Optimum Window Size

Results of Input 1 data.

a) Attacker input data requests 1

Figure 14 Graph of Execution time with fixed window size vs optimum window size

 40

Table 1 : Execution time vs Optimum Window size

Table 2 : Execution time vs Fixed Window size

Fig 14 shows the result of input1 where the x axis represents window sizes and the y axis

represents execution time to identify a change in pattern in milliseconds. Execution time is

the time at which a change in pattern is identified. The red point in the figure represents

execution time with fixed window size at Len(Q)=80 (length of query sequence). The blue

line represents the execution times for different lengths of Len(Q) and the different optimum

window sizes generated for different lengths of query sequence Len(Q).In tables 1and 2,

Table 1: Optimum window size

W(opt) Time(milli

seconds)

Len(Q) T(old) T(new)

24 0.6 50 Max=5 Max=2

38 0.31 80 Min=3 Min=0

52 0 120

Table 2: Fixed Window size

W(fix) Time

(Milli seconds)

Len(Q) T(old) T(new)

12 0.62 80 Max=5 Max=2

52 1.41 80 Min=3 Min=0

 41

values of the execution time for Input 1 data pattern at change in input pattern from 0.25

frequency to 2 frequency is shown .

First the attacker sends 1 packet for every 16 seconds and suddenly increases to 4 packets for

every 16 seconds. Later he changes his pattern to sine curve with decrease in the number of

packests from 8 packets to 4 packets. Let us consider one change in the pattern which occurs

when there is a change from 0.25 frequency to 2. In table 1 the execution time to identify this

change in pattern with differnet optimum window sizes are given. When window size is 24

execution time is 0.6 milli second to identify the change in pattern. When Len(Q) increased

to 80, the window size changed to 38 and this took 0.31 milliseconds to identify the change

which is half the previous execution time. In table 2, using the same length of query sequence

Len(Q)=80 we randomly chose 12 and 52 as fixed window size. Our fixed value should not

be equal to our optimum window size value. When fixed window size =12 the time taken to

identify the change in pattern was 0.62 seconds which is double the optimum window size

execution time. When fixed window size=52 it did not detect the first three changes.but

detected change in pattern (the fourth change which is the sine wave) at 1.41 milli seconds

execution time. Hence the change from 0.25 to 2 to 1 to 1.5 was not detected. The change

detected was at the sine curve pattern. Therefore based upon the above results we can say that

the optimum window size improved the performance by halving the execution time.

Results of Input 2

In previous paragraph we observed that the execution time for optimum window size to

identify the change in pattern is half the execution time for fixed window size. In this

paragraph we will study if the optimum window size, besides reducing the execution time

identifies all changes in the pattern correctly.

 42

In this experiment we are considering one input 2 data pattern and assuming that we know

the length of query sequence Len(Q). Optimum window size is calculated by our algorithm.

We need to detect all changes in pattern and consider the time point value in the window at

which the change in pattern is identified. For example, in figure 15 if Wopt = 24, assume the

change in pattern is detected at time point 48 (which is optimum window 2), The execution

time is then considered to be at the end of the second window. In other words, the execution

time is defined to be the time at the end of the window that detects a change in pattern. This

is the time considered in table 3 where the window is fixed and in table 4 where the window

is optimum.

Figure 15 Consideration of time point in optimum window size

 a) Input 2 from attacker with changing frequency

Input pattern

Wopt=24 Wopt=24

48 24 0

 43

Figure 16 Performance analysis of Optimum window size to Fixed window size

Table 3: Execution time vs Fixed Window size

Table 3: Fixed window size =12

Window Time Len(Q)

24 0.15 50

36 0.15 50

48 1.71 50

60 1.71 50

 44

Table 4 Execution time vs Optimum window size

Fig 16 shows the result of input 2 where the x axis represents the secondary window and the

y axis represents execution time to identify a change in pattern in milliseconds. Length of

query sequence Len(Q)=50. The red line in the figure represents execution time to identify

the change in the pattern for a fixed window size. The blue line represents the execution

times to identify changes in pattern with optimum window size. In tables 3 and 4, values of

the execution time to identify changes in pattern for data Input 2 using fixed window and

optimum window is shown.

If we consider the values from table 4 using optimum window size 24 change in patterns are

identified at different time points; at 48 time point (second optimum window), 72 time point

(third optimum window), 96 time point (fourth optimum window), 102 time point (fifth

optimum window). In table 3 with fixed window size 12 changes in pattern are identified at 4

different windows 24, 36, 48, 60 (second, third, fourth, fifth fixed windows respectively). If

execution time is compared, optimum window size execution times at 0.15 & 1.71 are half

the execution times 0.31, 1.88 of fixed window size. Even though both fixed and optimum

window sizes identifies all the changes in pattern, execution time differs. Since execution

Table 4: Optimum window size =24

Window Time Len(Q)

48 0.15 50

72 0.15 50

96 1.71 50

120 1.71 50

 45

time is an important aspect in network sensor we consider our method as optimum method to

increase the performance by decresing the execution time.

5.4.2 Fixed Tolerance value Vs Optimum Tolerance Value

In this section results of input 2 data pattern are used to compare the accuracy of

identifying the change in pattern with optimum tolerance value and fixed tolerance

value.

a) Input 2 from the attacker with changing frequency

Fig 17 (b) and (c) shows the results for a fixed window size of 10 using data input 2. Here the

x axis represents the window (refer figure 17 (a)) and the y axis represents execution time to

identify a change in pattern in milliseconds. In (b) we considered fixed tolerance value of

more than 5 change in pattern were identified at 20, 30, 40, 50, 60 etc. time points. In 17 (c)

changes in pattern were identified four times at 25, 40, 68, 90 time points.

 46

\

Figure 17 Performance analysis of Optimum tolerance value to Fixed tolerance

 47

In 17(a) input pattern we only see 4 changes in pattern at time points 25, 40 , 68 and 90 This

is approximately equal to 17(c) with uses optimum tolerance value. Therefore we can

conclude that accuracy of optimum tolerance value is better than the accuracy of fixed

tolerance value.

From the above results with window size and tolerance value we can say that optimum

tolerance value does improve the accuracy of data and optimum window size does improve

the performance by decreasing execution time.

5.4.3 Accuracy vs Window sizes

In this section we study the accuracy of identifying the change in pattern with optimum

window size and fixed window size. We considered the range of value for accuracy from 4 to

1. If the accuracy is 4 which means that all four pattern changes have been identified, that is,

the detection rate. If the accuracy is 1 then only 1 of the four pattern changes are detected.

 48

Figure 18 Accuracy of data vs window sizes with different length of query sequences.

a) Accuracy Vs Optimum window size

Optimum Window size Accuracy Len(Q)

10 3 25

24 3 50

38 2 80

 49

b) Accuracy Vs Fixed window size

Fixed Window size Accuracy Len(Q)

12 4 30

24 1 30

34 1 30

34 1 10

10 3 10

Table 5 Accuracy measured with Fixed window size and Optimum window size

Figure 18 gives the accuracy vs window size graph where x-axis measures the window sizes

and y-axis measures the accuracy of data obtained. In table 5 (a) optimum window size is

considered where the accuracy of detection obtained is 3 or 2. In 18 (b) for fixed window size

the accuracy obtained between 4 or 1. The accuracy of detection decreases as the fixed

window size increases. At small window sizes the detection rate is very high, but there will

be a lot of false alarms. From above fig 18 the overall accuracy of optimum window size is

therefore more than the accuracy of the fixed window size.

5.4.4 Accuracy vs Tolerance Value

In figure 19 we compare the accuracy of identifying the change in pattern with optimum

tolerance value and fixed tolerance value. We considered the range of value for accuracy

from 4 to 1. If the accuracy is 4 which means that all four pattern changes have been

 50

identified, that is, the detection rate. If the accuracy is 1 then only 1 of the four pattern

changes are detected.

Figure 19 Accuracy vs Optimum Tolerance value and Fixed tolerance value.

 51

a) Accuracy vs Optimum tolerance value

Old Tolerance

limit

Tolerance

Limit

Tolerance

value

Accuracy of

Input 1

Accuracy of

Input 2

2 2 0 4 3

5 3 1 4 3

7 3 1 4 3

b) Accuracy with Fixed Tolerance

Value

Fixed

Tolerance

Accuracy of

Input 1

Accuracy of

Input 2

1 2 3

2 2 3

4 2 1

5 2 1

Table 6 Accuracy vs Optimum tolerance and fixed tolerance value.

 When the optimum tolerance value is considered the accuracy of identifying the change in

pattern is more accurate when compared to fixed tolerance value. In fig 19 (a) accuracy is

obtained with optimum tolerance values. In fig 19 (b) accuracy is calculated with different

fixed tolerance values. For the fixed tolerance values, the tolerance value depends on the

previous tolerance value. As the tolerance value increases the accuracy of detecting pattern

 52

change decreased. From the above results we can conclude that optimum tolerance value is

more accurate in identifying the change in pattern compared to a fixed tolerance value. For

both input 1 and input 2, we roughly estimate the detection rate using optimum tolerance

value to be approximately 80% better than the detection rate using fixed tolerance value.

In table 7 based up on the above results we estimate the detection accuracy percentage with

optimum window size and optimum tolerance value. This value will be different for different

input data patterns.

Table 7 Performance analysis of fixed & optimum of window size and tolerance values.

 Fixed values Optimum Values Results
Window size Eg : Window =12 Eg: Optimum = 24, 38 etc

changes according to length
of query sequence

Optimum window size shows 50
% (approx) performance increase
over Fixed window size.

Tolerance value Eg: Max=5, min =3 Eg: Max= 2, Min = 1 Optimum window size gives 80%
(approx) more accuracy of
detection over Fixed window size

5.5 Adaptation

After the change in pattern is detected, self adaptation algorithm adapts to the new

pattern by changing the query sequence, optimum window size based on the length of

the new query sequence and the tolerance value for better performance and more accurate

detection of pattern change.

Our results show that if the query sequence is small then a fixed optimum window is

sufficient and there is no need to determine an optimum window. However, in general small

attacks of small query sequences are unlikely in which the proposed approach is executed.

One concern not considered in this work is the index of the window size list.

 53

As the number of indexes increase, the execution time decreases [3]. We leave for future

work to find the optimum value of index.

 54

CHAPTER VI

CONCLUSION

In this thesis, we proposed a method to increase the performance of self-adaptation in a

deception framework. In deception framework whenever the attacker in a network tries

to attack neighboring nodes, the deception framework after detecting the attack, tries to

outsmart the attacker by self adapting his strategies and responding as the attacker

anticipates. To increase the performance we proposed a method to calculate the optimum

window size and optimum tolerance value. This method increases the performance by

reducing the execution time and increasing the accuracy of detecting pattern changes. The

results show that using our approach, the execution time to identify pattern changes by using

an optimum window size decreased by 50% and the accuracy of detection using an optimum

tolerance value increased by 80%.

There are a number of deficiencies with the proposed approach which can be addressed in

future work. As the number of indexes of the window size list increases the performance of

the deception framework also increases. The index size is directly proportional to the

execution time. Larger number of indexes means more memory is needed. Determining the

optimum index number for window size list is left for future work. The proposed approach

should also be applied to other attacks besides the sink-hole attack.

 55

CHAPTER VII

DEFINITIONS

Time point: The smallest unit of time over which the system collects

data. eg: ten seconds.

Basic window: A consecutive subsequence of time points over which the

system maintains a digest e.g., two minutes.

Secondary window: a user-defined consecutive subsequence of basic windows

over which the user wants statistics e.g., an hour.

Data Sequence: Input data values collected from the attacker over a time

period.

Query Sequence: Steady rate of expected input pattern which is used to

compare with the input data pattern to identify change in

pattern.

Tolerance limit: The permitted range of maximum and minimum value in input

data pattern.

Tolerance value: Maximum deviation allowed in the current input pattern from

the query sequence.

Window size: Window size is length into which query sequence and input

 data sequence are divided to identify the pattern change.

 56

REFERENCES

[1] Phil L., Nelson L., Matt W., “TOSSIM: Accurate and Scalable Simulation of

Entire TinyOS Applications”, Proceedings First ACM Conference on Embedded

Networked Sensor Systems (SenSys'03), pp. 126-137, 1, 2003.

[2] Ruiyi Z.M.V.M., Johnson P.T., “ Deception framework for sensor networks", in

 Proceedings 3rd International Conference on Security and Privacy in Communication

Networks (SecureComm 2007), 2007.

[3] Seung-Hwan L., Heejin P., & Sang-Wook K., “Using multiple indexes for

efficient subsequences matching in time series databases”, Information Sciences,

Vol. 177, No 24, pp. 5691-5706, 2007.

[4] Yang-Sae M., Kyu-Young W.,& Wook-Shin H., “General match: a subsequence

matching method in time series databases based on generalized windows”,

Proceedings of the 2002 ACM SIGMOD International Conference on Management

of Data, pp. 382-393, 2002.

[5] Kil R.M., Seon Hee P., & Seunghwan K., “Optimum window size for time series

prediction”, Proceedings of the 19th Annual International Conference of the

IEEE, Vol 4, No 30 Oct-Nov 2, 1997, pp. 1421-1424, 1997.

[6] Yang-Sae M., Kyu-Young W., & Woong-Kee L., “Efficient time-series

subsequence matching using duality in constructing windows”, Information

Systems, Vol. 26, No 4, pp. 279-293, 2001.

 57

BIBILOGRAPHY

[7] Wook-Shin H., Jinsoo L., Yang-Sae M., and Haifeng J., “Ranked Subsequence

matching in time-series databases”, Proceedings of the 33rd International

Conference on Very Large Data Bases, pp. 423-434, 2007.

[8] Deepayan C., Christos F., “F4: Large-Scale Automated Forecasting Using

Fractals”, Proceedings of the 11th International Conference on Information

and Knowledge Management, pp. 2-9, 2002.

[9] Tripti N., Veena B., “ Time series: similarity search and its application”,

www.iitk.ac.in/ime/veena/PAPERS/icsci05.pdf, [last accessed-April 2009]

[10] Ranganathan M., Faloutosos C., and Manolopoulos Y., “Fast subsequence

matching in time-series databases”, Proceedings of the ACMSIGMOD

Conference on Management of Data, pp. 419-429, 1994.

[11] Guttman A., “R-trees: A dynamic index structure for spatial searching”,

Proceedings of ACM SIGMOD, pp. 47–57, 1984.

[12] Zhang S., Perng C.S., Wang H., and D. S. Parker S.D., “Landmark: A new

technique for similarity based pattern querying in time series databases”,

Proceedings 16th International Conference of Data Engineering, pp. 33-42, 2000.

[14] Lazos L., and Poovendran R., “Secure broadcast in energy-aware wireless sensor

networks," Proceedings IEEE International Symposium on Advances in Wireless

Communications (ISWC'02), 2002.

 58

[15] Wood A.D., and Stankovic A.J., “Denial of service in sensor networks,"

Computer, vol. 35, no. 10, pp. 54-62, 2002.

[16] Project T.H., “ Know Your Enemy”, Boston: Addison-Wesley, 2002.

[17] Rowe N., “Designing good deceptions in defense of information systems,"

Proceedings of the 20th Annual Computer Security applications Conference,

pp. 418-427, 2004.

[18] Rowe N., “A model of deception during cyber-attacks on information

systems", Proceedings IEEE First Symposium on Multi-Agent Security and

Survivability, pp. 21-30, 2004.

[19] Cohen F., “A mathematical structure of simple defensive network

deceptions, "Computers and Security, vol. 19, no. 6, pp. 520 -528, 2000.

[20] Rakesh A., King-Ip L., Harpreet S., Kyuseok S., “Fast similarity search in

the presence of noise, scaling and translation in time-series databases”,

Proceedings of 21st VLDB Conference, pp. 490–501, 1995.

RELANGI PADMAJA

Candidate for the Degree of

Master of Science in Computer Science

Thesis: DECEPTION FRAMEWORK – MULTIPLE INDEXING IN SELF ADAPTATION

Major Field: Computer Science

Biographical:

Personal Data:

Born in Hyderabad, Andhra Pradesh, India on February 13,1982.

Education:

Completed the requirements for the Master of Science in Computer Science at

Oklahoma State University, Stillwater, Oklahoma in July, 2009.

Received the B.S degree from JNTU University, Andhra Pradesh, India,

2003, in Computer Science.

ADVISER’S APPROVAL: Dr.Johnson Thomas

Name: Padmaja Relangi Date of Degree: July, 2009

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: DECEPTION FRAMEWORK – MULTIPLE INDEXING IN SELF

ADAPTATION

Pages in Study: 58 Candidate for the Degree of Master of Science

Major Field: Computer Science

Scope and Method of Study:

In this thesis we propose deception as a security mechanism. In deception an attacker’s
behavior is manipulated by sending him misleading information. One of the critical phases in
deception is self-adaptation where the defender has to adapt to the changing pattern of the
attacker and respond accordingly. However, determining the change pattern must be efficient
and accurate. In this thesis we propose a novel algorithm that is based on a windowing
scheme and a tolerance value. Our approach aims to find the optimum window size and
tolerance value from an efficiency and accuracy perspective.

Findings and Conclusions:

 In this thesis we derive the optimum window size and optimum tolerance value which is
adaptable to the reference (query sequence) or attack. Simulation results show that using our
approach, execution time with optimum window value is less when compared to a fixed
window size. Similarly, identifying a change in pattern is more accurate with the proposed
optimum tolerance than with a fixed tolerance value.

