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CHAPTER I 
 

 

INTRODUCTION 

Sensor Networks are the collection of infrastructures that allow us to sense, record, 

analyze and respond to any natural or artificial phenomena. The sensor networks usually 

consists of electronic devices called motes. Those motes are usually tiny computer 

system typically consisting of processing, storing and some sensing capability. Their 

primary function is to sense the phenomena like temperature, soil composition etc. and 

storing the data and communicating. They usually work in a group and communicate 

using radio or other form of communication. Sensor networks are one of the important 

technologies for the future. They have a wide variety of implementations from military, 

medical, surveillance, robotics, industrial control etc. 

Sensor networks run a small embedded operating system of their own. There are several 

of them like TinyOS [1], Contiki [12], SOS [11] etc. but among them TinyOS is the most 

popular and one of the first specifically designed for sensor networks. TinyOS was 

designed at University of California at Berkeley [1]. It was programmed using a 

programming language called Nesc which is an extension of C programming language. 

The user then writes an application for some special purpose and uploads the program in 

the mote. The program can be uploaded by writing on the ROM inside a mote which is  
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very expensive power wise. That means it uses a lot of power and if we update the 

program every now and then, its battery will be dead very soon.  Another problem is 

sometimes the motes are at unreachable places like inside the wall of the building. In 

such cases, there is no easy way to update the software.  

Virtual machine is a software representation of a computer system. It emulates all the 

functionalities of a specific hardware. Virtual machine is an efficient and isolated 

duplicate of a real machine [13]. They are very much popular today as they isolate the 

underlying hardware from the system software running on it. There are basically two 

types of virtual machine. They are system virtual machine and process virtual machine. 

The system virtual machine virtualizes the whole computer system like its I/O devices, 

memory, processors etc eg. Vmware [14]. The process virtual machine only virtualizes 

the process. eg. JAVA.   

The virtual machines stated above are too resource hungry to run on motes. So, the 

researchers have come up with virtual machines for sensor networks. The idea is to write 

a middleware application which virtualizes the hardware and enables to write 

applications in a virtual code. Those virtual codes can be easily uploaded using the 

wireless network. They are all stored in memory instead of ROM which is expensive to 

write to. The virtual machine software is deployed to the motes by writing the entire code 

to the ROM. Now the application is written in a virtual code. Then it is deployed by 

either radio or connecting serially to the base station.  

Several solutions has been provided so far including Mate [8], SwissQM [2]. But the 

problem with them is they cannot be easily extended when the need arises. So, this 
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research tries to make a virtual machine which is extendible. This enables the 

applications to extend the functionality without having to redeploy the whole system. 

 So, the finding of this research could be very helpful for the development of 

sensor network applications and its deployment. 

 

1. OUR CONTRIBUTIONS 

• The User will be able to define his own instruction and implement his own 

handler code for his instruction. 

• It will make the applications more flexible and will be able to do things the 

traditional virtual machines could not. 

• It will consume less power than deluge because it writes only a portion of code 

memory. 

  

2. OUTLINE OF THE THESIS 

• The introduction part introduces in brief the idea about sensor networks, virtual 

machines and its relationship. 

• In the review of literature, we talk about the various systems that were created to 

make mote reprogramming more convenient. Those systems include Deluge, 

TinyDB, Mate, SwissQM and SOS. 
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• In the Methodology section, we talk about how the TinyHIve system is designed. 

It describes about architecture, data structures, memory management, instruction 

set architecture, virtual code interpreter and dynamic instructions. 

• In the Findings section, we describe the three test cases we used to test the 

TinyHive system. We also present some code performance analysis. 

• In the conclusion and future work section, we talk about the contributions of the 

TinyHive and also talk about how it can be improved. 
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

The virtual machine for sensor network is a very promising topic. So, several works has 

been done in the field of virtual machine for sensor networks.  

 

2.1. DELUGE 

One of the earlier implementation was Deluge [5]. It is not a virtual machine but a 

middleware application that allows sending binaries using a wireless network. The deluge 

middleware receives the incoming network data and writes the new program to memory. 

Though this technique does not require us to be physically present for reprogramming, 

the overhead of reprogramming is still there. It just sends the application binary over the 

network but the reprogramming still has to be done. And that process takes a lot of 

power.  

 

2.2. TINYDB 

Another implementation that is designed to overcome the shortcoming mentioned above 

is TinyDB[7]. TinyDB makes possible to write a sensor network application in a form  
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SQL like queries. It views the sensor network as a big relational table. By using the 

queries, we can extract the sensor data as an output of the query. As the diagram below 

shows the query is done using a PC which is known as base-station. The query is first 

parsed and optimized so that the network transfer is minimal. The resulting query is then 

processed by the motes and the results are routed back to the base-station. This technique 

addresses the problem of reprogramming and physical presence. This technique is not 

dynamic. If we need to add a new query or feature, it has to be done in whole TinyDB. 

The figure below shows the flow of queries and data in the TinyDB. 

 

   Fig 1: Transfer of queries and results [9] 
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2.3. MATE 

One of the early virtual machines designed for sensor networks is mate [8]. Mate is a tiny 

Virtual machine designed especially for sensor networks. It’s a ByteCode interpreter and 

runs on a top of TinyOS. It runs a special form of code called ByteCode. The virtual 

instructions are fed in fixed sized chunks called capsules which are 24 instructions in 

size. If any of the programs is larger, then it is divided into several capsules.  

 

Fig 2: Mate architecture [8]. 

 

2.4. SWISSQM 
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Another important virtual machine for sensor networks is SwissQM [10]. SwissQM is a 

virtual machine that interprets the virtual code which is written in SwissQM ByteCode. 

The sensor nodes run the SwissQM program called Query machine. The query machine is 

a ByteCode interpreter that interprets the program written for SwissQm. The figure below 

shows the SwissQM architecture. SwissQM is a stack based virtual machine. It means all 

the operations are performed on the stack. There are no registers to store intermediate 

data. Besides the code interpreter, the SwissQM also contains the transmission buffer and 

the synopsis. The transmission buffer is the buffer used for transmission and reception of 

data. The synopsis is also a buffer but have two different modes of access. 
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    Fig 3: SwissQM architecture [10] 

The SwissQM virtual machine also contains the gateway program. It runs on a base 

station and is also used to generate the ByteCode and feed the ByteCode to the motes.  

 

2.5. SOS 

SOS [11] is an operating system designed for sensor networks. It was written in C 

programming language. The main distinction of SOS from other sensor network based 

operating system is that it is dynamic in nature. It means the functionality of the operating 

system can be increased by using pluggable modules. The modules, which are written by 

users, can be deployed at runtime. This implementation closely resembles Microkernel 

architecture [15].  
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  Fig 4: Linking and jump table layout in SOS [11] 

Modules are the most important entity of the SOS system. They resembles component in 

tinyos but they are pluggable at runtime. Most of the operating system functionality is 

provided by the modules which are loaded later. The SOS operating system only provides 

the bare minimum functionality like low level resource management. The SOS only 

needs redeployment if there is a need to change in those low level codes. The modules 

interact with each other to achieve the functionality of an application. 
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CHAPTER III 
 

 

METHODOLOGY 

Virtual machine for sensor networks is becoming a very popular research topic these 

days. The research was started first by designing a very simple virtual machine. It was 

then further extended by implementing a feature of dynamic instructions where users can 

define and implement their own instruction set. This project shall now be referred as 

TinyHive. The main components of the TinyHive are Instruction sets, virtual code 

interpreter and memory manager. 

 

3.1 ARCHITECTURE 

The TinyHive Virtual machine consists of four basic components. They are Memory 

manager, virtual code interpreter, instruction set architecture and I/O manager. Those 

components interact with the TinyOS to use its services. The TinyOS further interacts 

with the hardware to achieve the functionality.  

The Virtual program written in virtual code interacts with TinyHive through the 

instruction set architecture. The virtual instructions are then emulated or interpreted by 

the virtual code interpreter subsystem. The basic working of TinyHive can be 

demonstrated in the following figure. 
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   Fig 5: Architecture of TinyHive 

As the above figure shows, the virtual program interacts with TinyHive which interacts 

with TinyOS and which interacts with the underlying hardware.  

There are several ways to implement a virtual machine. One technique is to use the 

intermediate registers to hold the intermediate data and the other is to use the stack for the 

operands and intermediate data. The latter is called stack based virtual machine. 

TinyHive is a stack based virtual machine. All the operations are done in stack. There are 

no intermediate registers to store the results. For example to do a simple addition of  

a = b + c, we do 

 Push b 

 Push c 

Virtual 

Program 

Virtual 

Program 

Virtual 

Program 

                             Tiny OS 

                        Instruction Set Architecture 

Virtual Code 

Interpreter 

Memory Manager 

 

I/O 

Manager 

Mote Hardware 
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 Add 

 Pop a 

The reason for using the stack based virtual machine is that it makes the code compact 

and we don’t have to use separate instructions to move data to register and so on. So, the 

implementation of TinyHive consists of a dedicated stack space for instruction execution. 

The flowchart below shows the flow of program in TinyHive. 

 

    Fig 6: Flowchart TinyHive 

     Start 

Initialize 

      Dispatch_program 

Check 

availability 

     Run_program 

               return 

         Init_program 
Radio/serial handler 

New 

program data 
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Fig 7: Flowchart of flow of code in TinyHive 

The flow of the program starts from the initialize function. The handle is given to the 

TinyHive after the usual TinyOS Bootstrap. That function is called “initialize”. That 

function initialized all the global data into 0. Then it calls init_program which initializes 

Run_program 

Get_next_instruction 

Valid 

Instruction 

Determine_code 

Opcode 

== SUB 

Opcode 

== ADD 

Default 
return 

return 

Sub.simulate 

Add.simulate 
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the stack and memory for program. Then dispatch_program is called, which checks if 

there are any virtual program loaded in memory. If it finds the program, then it calls the 

run_program function. It gets the virtual instruction one by one and executes it. The 

instruction with opcode 0x00 is considered as the end of program. If it encounters 

instruction not defined it is considered illegal instruction and is terminated. The program 

waits in the loop until another program is found. The programs are uploaded using radio 

or serial communication. The handler for radio and serial loads the incoming program 

into the memory and its returns. The dispatch_program detects it and runs the new 

program.  

Besides the normal instructions, there a special instruction called the “dyninst”. It’s a 

dynamic instruction. The purpose of the instruction is to create a new user defined 

instruction which can later be used by other applications. A typical example of this is a 

customized mote hardware which is customized to get soil sensor data. If the user 

application has to run in a virtual machine environment, there is no virtual instruction to 

read the sensor data. In TinyHive, the developer can add a new instruction that reads the 

sensor data. All other applications can then use that instruction. To accomplish this 

behavior, the “dyninst” instruction should be able to upload the machine instruction to 

accomplish that behavior and store it in program memory so that in can be run. So the 

handler of the instruction should be able to find the free space in the program memory 

and write the handler code to that space. TinyHive should also keep track of the new 

virtual instructions added and its location, size, etc.  

Now when the newly created instruction is used by the virtual application, the tinyhive 

interpreter determines it as a dynamic instruction and jumps the program to the location 
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where its code was written in program memory. After the code is executed it returns 

back. 

 

3.2 DATA STRUCTURES 

There are some important data structures used in TinyHive. All the structures are 

statically allocated. There is no dynamic allocation. The first structure is the stack 

structure. It is used to store the runtime stack values of the program. The size of stack is 

fixed. It is implemented as 

typedef struct stack { 

 nx_uint8_t top; 

 nx_uint16_t data[16]; 

} stack_t; 

Another important structure is the context structure. It is used to store the context of 

currently running virtual program. It is implemented as 

typedef struct context { 

 stack_t stk; 

 nx_uint16_t PC; 

bool zflag; 

 struct program *pg; 
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} context_t; 

Another important structure is the program structure. It holds all the virtual code of the 

virtual program together with context and all necessary flags. Each program has its own 

program structure. It is implemented as   

typedef struct program { 

 nx_uint8_t isfree; 

 context_t ctx; 

 nx_uint8_t pdata[MAX_PROGRAM_SIZE]; 

}program_t; 

Besides these data structures, there are few global flags and variables that is used to 

control the program flow. 

typedef struct dyn_instr { 

 nx_uint8_t opcode, size; 

 bool free; 

 handler_t handler; 

} dyn_instr_t; 

typedef struct dyn_table { 

 struct dyn_instr dyn_instr[MAX_DYN]; 
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} dyn_table_t; 

The dyn_table data structure is used to store the information about the new instructions 

that are dynamically loaded. The total number of new instructions supported is 

determined by MAX_DYN. Each new instruction has its opcode, handler size and the 

function pointer to the handler of the function. 

 

 

3.3 MEMORY MANAGEMENT 

Memory management is a very important component of any program. It is further 

important in sensor networks which have limited memory. The dynamic memory 

management is not available in TinyOS so all memory is statically allocated and 

managed. All the data structures mentioned above are stored in ram. So, it has a dedicated 

memory of holding 4 different virtual programs which has a maximum size of 128 bytes.  

The dynamic instruction uses the flash memory to store the data structure and program 

memory to store the hander binary.  

 

 

      0x0              0x3C00    0x3E00         0xFFFF 

Fig 8: Program memory layout  

 

OS + application 

code 

Handlers of new 

instructions 
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3.4 INSTRUCTION SET ARCHITECTURE 

Instruction sets are the bases of all computer systems. The virtual machine also resembles 

a physical computer system. So it must have its own instruction set.  

The instructions in instruction set architecture of TinyHive are variable in length. There 

are basically three types. They are: 

 

  Fig 9: Instruction types and their sizes 

Type 1:  They are single byte in length and do not require an operand. Most of the 

instructions fall in this category. The instructions like add, sub, mul etc. are in this 

category. 

Type 2: They are 3 bytes in length and have a 2 byte operand. The instructions like push 

and pop fall under this category. 

Type 3: This is a special type and is only used for dynamic instruction. They are multiple 

bytes in length and is of variable length. The first byte is opcode. The second byte is the 

length of the data and the third byte is the opcode of the new instruction to be created. 

Opcode 

(1 byte) 

Opcode 

(1 byte) 

Operand 

(2 bytes) 

Type   1 

Type 2 

Opcode 

(1 byte) 

length 

(1 byte) 

Data 

(Multibyte) 

Type 3 Opcode 

(1 byte) 
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The rest of the bytes are the machine codes that are to be executed as the microcode of 

the newly created instruction. 

There are only a couple of instructions that have operands and they are push, pop and 

dyninst. Other instructions do not require the operands because all the operands are 

available in the stack through the push and pop instructions. The instruction set and thus 

the program is fed to the interpreter in its binary form. This makes the program compact 

and easy to process. The current implement encodes the instruction in an 8 bit (1 byte) 

value and the operand as a 16 bit value except for dyninst for which operand is multibyte. 

So the binary program consists of an array of 1 byte and 3 bytes data. The interpreter 

determines whether the next byte is an instruction or operand by looking at the 

instruction. The instructions have specific numbers it matches the numbers and finds out 

if it has an operand or not. The typical program for the instruction below is 

Push 4 

Push 5 

Add 

Pop a (a is a variable so in a program it’s a location, say 100) 

1 0 4 1 0 5 15 2 0 100 

 

Fig 10: Sample virtual program 

The instructions can further be divided into several types. They are divided according to 

what they do and what type of instructions they are. They are: 
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• Arithmetic Instructions: 

This class of instructions does the arithmetic operations like addition, subtraction, 

logical or, etc. All the instructions that fall in this category are type 1 i.e. they don’t 

have operands. 

The instructions that fall in this category are: 

o Add: It adds two values in the top of the stack. The result is then stored at 

the top of the stack. It is identified by the opcode binary value of 0x0F. 

o Sub: It subtracts two values in the top of the stack. The second value on 

the top is subtracted from the first value. The result is then stored at the 

top of the stack. It is identified by the binary value of 0x10. 

o Mul: It multiplies two values in the top of the stack. The result is then 

stored at the top of the stack. It is identified by the binary value of 0x11. 

o Div: It divides the second value on the top of the stack with the top value. 

The result is then stored at the top of the stack. It is identified by the 

binary value of 0x12. 

o Inc: It increments the value in the top of the stack. It is identified by the 

binary value of 0x15. 

o Dec: It decrements the value in the top of the stack. It is identified by the 

binary value of 0x16. 

 

 



22 

 

• Logical Instructions: 

This category of instructions do the logical operations like “and” and “or”. These 

instructions also don’t need operands as the operands are taken from stack. The 

instructions that fall in this category are: 

o   And: It does the logical and between the two values in the top of the 

stack. The result is then stored at the top of the stack. It is identified by the 

binary value of 0x13. 

o Or: It does the logical or between the two values in the top of the stack. 

The result is then stored at the top of the stack. It is identified by the 

binary value of 0x14. 

 

• Stack Instructions: 

This category of instructions does the stack operations like push and pop. They fall under 

the type 2 instruction set i.e. they have a 16 bit operand. The instructions in this category 

are: 

o Push: This instruction has an operand. It pushes the value in the operand to 

the top of the stack. It is identified by the binary value of 0x01. 

o Pop: This instruction also has an operand. It pops the value in the top of 

the stack to the location determined by the operand. It is identified by the 

binary value of 0x02. 

 

• I/O Instructions 
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This class of instruction does the Input/ output operations. Currently there is only one 

instruction which is the sense instruction. This category does not have operands. The 

instructions are: 

• Sense: This instruction is used to read the sensor data. The sensor to read 

is determined by the value on the top of the stack.  The result is then 

stored at the top of the stack. It is identified by the binary value of 0x17. 

• Dynamic Instruction 

This is a special instruction which enable the dynamic feature on the TinyHive. This 

instruction has multibyte operand. The first byte is opcode. The second byte is the length 

of the data and the third byte is the opcode of the new instruction to be created. The rest 

of the bytes are the machine codes that are to be executed as the microcode of the newly 

created instruction. The maximum length of the handler instruction can be 128 bytes. 

The following table shows the list of instructions in TinyHive and its opcode values: 

 

 Opcode Value Operand length 

(if available) 

description 

Nop 0x00 N/A Null instruction; end of 

program 

push 0x01 2 bytes Push the operand into the 

stack 

pop 0x02 2 bytes Pop the data from the stack 

add 0x0F N/A Add the contents of the stack 
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sub 0x10 N/A Subtract the contents of stack 

mul 0x11 N/A Multiply the contents of the 

stack 

div 0x12 N/A Divide the contents of the 

stack 

and 0x13 N/A Logical and of the contents 

of the stack 

or 0x14 N/A Logical or of the contents of 

the stack 

inc 0x15 N/A Increment of the value of the 

topmost stack 

dec 0x16 N/A Decrement the value of the 

topmost stack 

sense 0x17 N/A Read the sensor value 

defined by the topmost stack 

value. Another table defines 

those values 

cmp 0x18 2 bytes Compare the values in 

operand and stack top and set 

the zero flag accordingly. 

jmp 0x19 2 bytes Jump to the code location 

pointed by operand 

jz 0x1A 2 bytes Jump to the code location 
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pointed by operand if Zero 

flag is set. 

dinst 0x1B variable The instruction to load the 

user defined instruction and 

its handler 

(other user 

created 

instructions) 

0xF0-0xFF N/A User defined instructions 

 

Table 1: List of instructions and its details 

 

The “sense” instruction depends on a value to determine what sensor to read from. It is 

first pushed to the stack. The following table shows those values. 

Sense Values Sensor to read from 

0x01 Light Sensor 

0x02 Temperature 

0x03 Humidity 

0x04 Voltage 

 

Table 2: List of values for “sense” instruction 
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3.5 VIRTUAL CODE INTERPRETER 

This is the important component of the TinyHive system. This component does the work 

of interpretation and emulation of all the instructions. When the program runs the opcode 

is interpreted by it one by one. By seeing the value of the opcode it determines which 

emulation function to run. For eg: If it finds the opcode as 0x0F, it determines that the 

function to run is the add.simulate(). The detection is done by the switch statement.  

The scheduling of the task is non-preemptive. So, the virtual program runs until the task 

is over. The scheduling is on a first come first served (FCFS) basis. The VM just waits on 

a loop until a virtual task is available to run. 

 

3.6 DYNAMIC INSTRUCTION 

 The purpose of the research is to make the virtual machine dynamic. Using this 

technique, the user can add a custom instruction or procedure and deploy it at runtime. 

This addition can then be later used by other virtual programs. 

A similar type of feature has been implemented in an Operating system for Sensor 

network called SOS [11]. In this operating system a module can be deployed at runtime 

and other tasks can use its functions. This has made the SOS operating system very 

dynamic. The idea is to use the similar feature for a TinyHive virtual machine. 

The idea is to implement an instruction that uploads a procedure or a set of instructions 

into the code memory. Now when the virtual program tries to execute the opcode of the 

newly added virtual instruction, the code block is executed. The virtual machine stores a 
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set of function pointers (location of added code). So when that virtual code is 

encountered, the code block is run. We call that instruction dyninst. For the gateway 

program, the program which is responsible for loading of virtual instructions to mote, its 

operand is a memory location of the procedure in the binary form. So, the loader program 

(gateway) just sends the opcode for dyninst followed by length in bytes of the procedure 

followed by the binary code.  

The sequence of binaries for the “dyninst” instruction is similar to the fig below. 

25 8 0xF0 23 21 12 54 8 6 0 

Opcode   length   new opcode binary codes in machine language 

Fig 11: Sample virtual program with dynamic instruction 

The implementation of the dynamic instruction capability involved writing a little portion 

of the code in the program memory and storing each new instructions code handler 

location. TinyHive reserves a small portion of code memory to store the new instructions 

code. The total number of new instruction supported by tinyHive is fixed and is 

determined by the MAX_DYN macro. When the virtual code interpreter finds the dyninst 

instruction, it looks if the max number of new instruction is reached. If there is a slot 

available, it stores the information like start address, opcode and size and uploads the data 

to the program memory. The following flowchart describes how  

Now when the new instruction is encountered in the virtual code, it searches the table to 

see if the instruction is new instruction or an invalid instruction. If it finds the instruction 

in the table, it jumps to the handler of that new instruction. The handler of the instruction 

must contain the machine instruction that returns to the caller. The typical example in 
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most architecture is the ret instruction. The following flow shows the working of the 

dynamic instruction. 

 

Fig 13: Dynamic instruction Flow 

 

The implementation includes a small portion of an architecture dependent code. The use 

of the architecture dependent code could not be avoided because of the flowing reasons. 

Firstly, TinyOS did does not have any interfaces to write to the program flash. So, the 

architecture dependent code to write in the program flash was written. Secondly, there 

was no architecture independent way to call the program memory address without using 

the assembly. For now dynamic instruction is only implemented for the motes that uses 

Dinst_simulate 

Operan
d == 0 

Store_instructions 

Simulate_dyn Yes 

No 
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the AVR cpu. Those motes include micaZ, mica2 and IRIS motes. All the architecture 

dependent codes are written in a file called avr.c. There are two functions, one to write in 

the flash memory and another to jump to flash memory location where the handler is 

stored. 
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CHAPTER IV 
 

 

FINDINGS 

4.1 INTRODUCTION 

The purpose of the research is to make the virtual machine dynamic. Using this 

technique, the user can add a custom instruction or procedure and deploy it at runtime. 

This addition can than be later used by other virtual programs. 

A similar type of feature has been implemented in an Operating system for Sensor 

network called SOS [11]. In this operating system a module can be deployed at runtime 

and other tasks can use its functions. This has made the SOS operating system very 

dynamic. The idea is to use the similar feature for a TinyHive virtual machine. 

The idea is to implement a instruction that uploads a procedure or a set of instructions 

into the code memory. Now when the virtual program tries to execute the opcode of the 

newly added virtual instruction, the code block is executed. The virtual machine stores a 

set of function pointers (location of added code). So when that virtual code is 

encountered, the code block is run. For now I have called that instruction dyninst. For the 

gateway program, the program which is responsible for loading of virtual instructions to 

mote, its operand is a memory location of the procedure in the binary form. So, the loader 
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program (gateway) just sends the opcode for dyninst followed by length in bytes of the 

procedure followed by the binary code. 

So, this technique will make the sensor platform more dynamic. This will enable the user 

to write a new instruction and load it so that other applications can easily use it. So this 

means that the feature has added flexibility to the platform. The table below shows the 

cost versus flexibility comparisons. 

Method Flexibility Cost 

Bytecode Medium Low 

New Binary Very High Very High 

TinyHive High Medium 

 

Table 3: Cost versus Flexibility 

To demonstrate the flexibility and to do the performance analysis, two test cases have 

been created. 

 

4.2 CASE STUDY 1 

The first case study is created to show the simple working of a virtual machine. The 

results from this case study are used to analyze the performance of the virtual machine 

without the use of dynamic instruction. 
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For this case study, a very simple virtual application is written. It uses some of the simple 

instructions implemented by TinyHive. The program is written as: 

Push 0x05 

Push 0x04 

Add  

Push 0x02 

Mul 

Sense 0x01 

The instructions above just do some additions, multiplications and get the light sensor 

data. The table below shows the size of the overall TinyHive code and compares it with 

other virtual machines. 

 

 Code (ROM) bytes Data (RAM) bytes 

Mate 16044 849 

SwissQM 33000 3000 

SOS 20464 2699 

TinyOS with Deluge 21132 597 

TinyHive 12084 1242 

 

Table 4: Code and data footprint [11] 
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One of the side effects of a virtual machine is that the instruction is always slower than 

the native instructions. Let us take an example of a simple and instruction, in micaz 

hardware, it is just few cycles. But in a virtual machine, it needs to be emulated and needs 

several memory access. So, it takes far more cycles in virtual machine. The table below 

shows the comparison of the clock cycle taken for native execution and interpretation by 

TinyHive. It does not take into consideration the fetching and decoding of instruction in 

TinyHive. 

 TinyHive Native 

Add 314 1 

Push 174 2 

 

Table 5: Native execution versus emulation 

Another overhead in a virtual machine is that it needs to do a lot of work for fetch and 

decode cycles. In order to fetch the code, the program needs to access the memory where 

the virtual program is stored. In order to decode the instruction, it needs to check the 

instructions it supports and compare it. The table below shows the clock cycle needed for 

the fetch and decodes cycles in TinyHive.  

 Clock Cycles 

Fetch 28 

Decode 37 

 

Table 6: TinyHive fetch decode overhead 



34 

 

 

4.3 CASE STUDY 2 

The next case study is a simple test program to demonstrate how to use the dynamic 

instruction and how to write a handler. In this test case the handler contains a minimal 

code which must be present in every handler. That code is the “ret” instruction. This 

instruction is used to return to code which called this handler. In case of TinyHive, the 

execution is returned to the interpreter which interpreted the new user created instruction.  

In this simple test, a few mandatory instructions were only used. They are:  

(i) dyninst:  the dynamic instruction used to define the new instruction. 

(ii)  New instruction: the newly defined instruction itself. 

(iii)  Ret: the return instruction which is in the data section of the dyninst 

instruction. 

Eg. Code: 

Dyninst 0x02F09508  

// here 0x02 = length of handler 

// 0xF0 = opcode of the newly created instruction 

// 0x95 0x08 = machine instruction for AVR instruction ret 

0xF0 

// execute the instruction 
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Firstly, the dyninst instruction loads the handler in the program memory and later the 

newly created instruction is executed. 

 

4.4 CASE STUDY 3 

In the next case study, we implement a test program which is used get the soil moisture 

sensor data. In this case study we demonstrate how we can use other customized sensors 

which are not supported by other virtual machines. This is a real world example where 

the TinyHive could be used. 

A small program is written to get the sensor data from a soil moisture sensor. In order to 

get a soil moisture data, we create a new instruction called “get_moist”. We first upload 

the handler to that instruction and then later call that instruction to get the data. The 

handler is written in a native code to the AVR processor. The virtual application is 

written using a TinyHive instruction set. 

The initial part of the code dynamically installs the code into the TinyHive system. And 

the latter part executes that newly created instruction. The result will be in the stack. The 

following table shows the total cycles required for upload. The numbers are dependent on 

the size of the handler code.  

 Load (cycles) Execution (cycles) 

Case study 2 application 2600 162 

 

Table 7: Dynamic instruction overhead 
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4.4 ENERGY USAGE ANALYSIS 

One of the other most important benefits of virtual machine is the energy usage while 

reprogramming. On a system without virtual machine there are only two ways to 

reprogram the mot. One is to physically access the mote which might not be feasible. 

Another option is to use middleware application like Deluge. The Deluge middleware 

application receives the whole binary through radio and writes the whole program in the 

flash. Writing in a flash memory is expensive as it used a lot of power.  

On a system with a virtual machine it does not need to write in program memory but it 

not flexible. In TinyHIve, a new instructed can be added whose handler in written in 

program memory. Since the handler is very small compared to the whole binary, it 

consumes less power than deluge. In ATMega128, we can only write one page at a time 

which is 256 bytes. The energy required to write 1 page is 0.31 mJ [11]. In this analysis, 

the power used to transmit the code and execute the code is not taken into consideration. 

The power only required to write the program memory is considered because the design 

of TinyHive improves power usage while handler is written in program memory.  

 

The following table shows the energy usage while writing to the program memory. 
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System Bytes to load 

(typical program 

size) 

Write cost per page 

(mJ) 

Total cost 

(mJ) 

SwissQM 46 0 0 

Mate 46 0 0 

Tinyos (through 

deluge)  

21132 0.31 25.58 

TinyHive 128 0.31 0.31 

 

Table 8:  Power Usage Comparison 
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CHAPTER V 
 

 

CONCLUSION 

Virtual machine for sensor network is becoming a very popular topic these days. One of 

the main benefits of a virtual machine is the flexibility it provides. Though, this flexibility 

comes with a tradeoff of execution cost. But the flexibility it provides is far more than the 

execution cost. 

The developers started thinking about making sensor network application more flexible 

by first designing systems like deluge. Deluge made the system flexible but it had major 

power cost involved. Later, the virtual machines were developed for sensor networks. 

The virtual machines like Mate and SwissQM had the ability to send a new program 

through radio. But those programs’s functionality was limited by the instruction set they 

provided. 

So, this research has come up with a technique which enables the expansion of 

functionality of a virtual machine. This is achieved by adding the ability to add a user 

defined instruction. The user can write the handler according to the needs of his 

application. The handler is written in a native code executed by the underlying micro-

controller. This makes the virtual machine very dynamic. The working of this 

functionality is shown by two use cases described in results section. 
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The first test case shows how one can write an application using TinyHive instructions. 

The second test case shows how one can define his own instruction which does a specific 

job which is not possible without that feature. As an example soil moisture sensor is used 

for this purpose. The results show that though the virtual programs take more CPU cycles 

than native instructions, they are much more flexible. From the results we can see that, 

TinyHive is more flexible than regular virtual machines like mate and SwissQM. It can 

also be seen from the results section that it consumes less power than having to write the 

whole program in flash. 

So we can conclude that TinyHive is very flexible and dynamic. And it consumes less 

power even though it needs some program memory writes. There are also few problems 

with this system. One problem is that program memory can only be written 10,000 times. 

So this loading of new instruction has to be rare. Secondly, TinyHive is in the infant age 

of its development. So there is no easy way to write a handler function than to use a 

native instruction. Thus, TinyHive can help in creating more dynamic applications for 

sensor networks. 

The TinyHive in currently in the infant stage and needs a lot of work. The following are 

the future work that can be either improved or implemented in TinyHive.  

• A new GUI based gateway program can be implemented. It could load the 

TinyHive virtual application. In addition, it could also enable the user to write 

virtual applications in simple English. 

• Another efficient way could be developed to write the handler of the new user 

created instruction.  
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• We can implement the radio code where there virtual applications can be 

transmitted through the radio. 

• The size of the program can currently be as big as the maximum size of the 

packet. This can be extended by implementing the feature where 1 application can 

be sent using multiple packets. 

• The instructions related to the use of radio and serial can be added. we can have 

send and receive instructions for both radio and serial. 

These are some of the things that can be implemented in TinyHive as future work.
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APPPENDIX A: MANUAL 
 

 

The Source code of the TinyHive is stored in a SVN server. We have created a repository 

for TinyHive project in SVN. The path to the project is 

https://www.cs.okstate.edu/svn/s3lab/tinyhive/. In order to check out the code, the user 

should use the command: 

svn checkout https://www.cs.okstate.edu/svn/s3lab/tinyhive --username <your cs server 

username> 

After checking out you can make the changes to the files. If you wish to commit the 

changes do svn commit -m "put your comment on what changes you made in short". 

Please make sure you fix all compile errors before committing. 

Currently, the access is for Oklahoma State University Computer science students only. 

In order to compile the code, the architecture dependent code needs to be compiled 

separately. It is written in C. It can be compiled as follows for MicaZ platforms (or any 

other platform that used AVR). 

avr-gcc -c –mmcu=atmega128 avr.c 

Then the remaining code can be compiled as: 

 

Make micaz
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Then it can be written to the mote as: 

Make micaz reinstall mib520, <serial port> 

where, serial port is the serial port name. In Linux, it is usually /dev/TTYUSB0. Mib520 
is the board we used. 

The files in the TinyOS code directory are: 

S3vm.h 

Avr.c 

Arith.nc 

Control.nc 

Dyninst.nc 

Makefile 

S3vm.nc 

S3vmapp.nc 

S3vmc.nc 

S3vmisa.nc 

Sensor.nc 

Serialcomm.nc 

Stack.nc 

Stackc.nc 

Stackops.nc 
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APPENDIX B: SOME SOURCE CODES 

 

 

1 Makefile: 

 

COMPONENT=S3vmApp 

CFLAGS += -I$(TOSDIR)/lib/printf 

CFLAGS += -Wl,--section-start=.bootloader=0xF000 

LDFLAGS += avr.o 

 

include $(MAKERULES) 

 

2. s3vm.h 

#ifndef S3VM_H__ 

#define S3VM_H__ 

 

#define MAX_PROGRAM_SIZE 128 

#define MAX_PROGRAMS  2 

#define MAX_STACK  16 

#define S3VM_BUSY  1 

#define S3VM_FREE  0 

#define PROTOCOL_ID_SER  9 

 

#define INST_NULL 0 
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#define INST_PUSH 1 

#define INST_POP 2 

#define INST_LOAD 3 

#define INST_STORE 4 

 

#define INST_ADD 15 

#define INST_SUB 16 

#define INST_MUL 17 

#define INST_DIV 18 

#define INST_AND 19 

#define INST_OR 20 

#define INST_INC 21 

#define INST_DEC 22 

 

#define INST_SENSE 23 

#define INST_CMP 24 

#define INST_JMP 25 

#define INST_JZ 26 

#define INST_DYN 27 

#define SENSOR_LIGHT  1 

#define SENSOR_TEMPERATURE 2 

#define SENSOR_HUMIDITY  3 

#define SENSOR_VOLTAGE  4 

#define MAX_DYN   5 

#define TOSBOOT_START  0x1E000 
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#define DYN_START  (TOSBOOT_START - 1024) 

 

typedef struct stack { 

 nx_int8_t top; 

 nx_uint16_t data[MAX_STACK]; 

} stack_t; 

typedef struct context { 

 stack_t stk; 

 nx_uint16_t PC; 

 bool zflag; 

 struct program *pg; 

} context_t; 

 

typedef struct program { 

 nx_uint8_t isfree; 

 context_t ctx; 

 nx_uint8_t pdata[MAX_PROGRAM_SIZE]; 

}program_t; 

 

typedef struct dyn_instr { 

 nx_uint8_t opcode, size; 

 bool free; 

 nx_uint32_t start; 

} dyn_instr_t; 

typedef struct dyn_table { 
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 struct dyn_instr dyn_instr[MAX_DYN]; 

} dyn_table_t; 

extern int copy_to_flash(nx_uint32_t addr, nx_uint8_t *data, nx_uint8_t len); 

 

#endif // S3VM_H__  

 

3. avr.c 

int BOOTLOADER_SECTION copy_to_flash(uint32_t addr, uint8_t *data, uint8_t len) 

{ 

  uint16_t* instr = (uint16_t*)data; 

  uint32_t i; 

  uint8_t pgmdata, sreg; 

 

  if ( addr + len > 0x1f000 ) 

  return 0;     

 

 

  sreg = SREG; 

eeprom_busy_wait (); 

 

  boot_page_erase( addr ); 

 

  while( boot_rww_busy() ) 

   boot_rww_enable(); 
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  for (i=0; i<SPM_PAGESIZE; i+=2) 

         { 

              boot_page_fill(addr + i, *instr++); 

         } 

 

  boot_page_write (addr);     // Store buffer in flash page. 

 

  while ( boot_rww_busy() ) 

        boot_rww_enable(); 

 

  SREG = sreg; 

  return 1;   

 }  

 

4. s3vmapp.nc 

#include "printf.h" 

 

#include "s3vm.h" 

 

 

configuration S3vmApp { 

 provides interface S3vmC; 

} 

 

implementation { 
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 components MainC, s3vm, LedsC, StackC; 

 components new TimerMilliC() as Timer; 

 components new TimerMilliC() as Timer0; 

 components StackOps, arith, dyninst; 

 components SerialComm; 

 components SerialActiveMessageC as AM; 

  

 S3vmC = s3vm.S3vmC; 

 s3vm.Boot -> MainC; 

 s3vm.Stack -> StackC.Stack; 

 

 // Instructions 

 s3vm.S3vmISA[INST_PUSH] -> StackOps.push; 

 s3vm.S3vmISA[INST_POP] -> StackOps.pop; 

 

 s3vm.S3vmISA[INST_ADD] -> arith.add; 

 s3vm.S3vmISA[INST_SUB] -> arith.sub; 

 s3vm.S3vmISA[INST_MUL] -> arith.mul; 

 s3vm.S3vmISA[INST_DIV] -> arith.div; 

 s3vm.S3vmISA[INST_INC] -> arith.inc; 

 s3vm.S3vmISA[INST_DEC] -> arith.dec; 

 s3vm.S3vmISA[INST_AND] -> arith.and; 

 s3vm.S3vmISA[INST_OR] -> arith.or; 

 

 s3vm.S3vmISA[INST_DYN] -> dyninst.dinst; 



54 

 

 dyninst.Leds -> LedsC; 

 StackOps.Stack -> StackC.Stack; 

 arith.Stack -> StackC.Stack; 

 SerialComm.Control -> AM; 

 SerialComm.Receive -> AM.Receive[PROTOCOL_ID_SER]; 

 SerialComm.Timer -> Timer0; 

 SerialComm.Packet -> AM; 

  

 SerialComm.S3vmC -> s3vm.S3vmC; 

} 
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