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CHAPTER |

INTRODUCTION

Sensor Networks are the collection of infrastructures that allow us to secsel,

analyze and respond to any natural or artificial phenomena. The sensor netwolils usual
consists of electronic devices called motes. Those motes are usuatigriipyter

system typically consisting of processing, storing and some sensialgldgpTheir

primary function is to sense the phenomena like temperature, soil composition etc. and
storing the data and communicating. They usually work in a group and communicate
using radio or other form of communication. Sensor networks are one of the important
technologies for the future. They have a wide variety of implementations friotaryni

medical, surveillance, robotics, industrial control etc.

Sensor networks run a small embedded operating system of their own. There ate severa
of them like TinyOS [1], Contiki [12], SOS [11] etc. but among them TinyOS is tis¢ m
popular and one of the first specifically designed for sensor networks. TinyOS was
designed at University of California at Berkeley [1]. It was programmedu) usi

programming language called Nesc which is an extension of C programminggangua

The user then writes an application for some special purpose and uploads the program in

the mote. The program can be uploaded by writing on the ROM inside a mote which is



very expensive power wise. That means it uses a lot of power and if we update the
program every now and then, its battery will be dead very soon. Another problem is
sometimes the motes are at unreachable places like inside the wall ofidivegbin

such cases, there is no easy way to update the software.

Virtual machine is a software representation of a computer systenmuldtemall the
functionalities of a specific hardware. Virtual machine is an efficient swidted
duplicate of a real machine [13]. They are very much popular today as theytiselate
underlying hardware from the system software running on it. There aralhasio
types of virtual machine. They are system virtual machine and process wigciaine.
The system virtual machine virtualizes the whole computer system liK@ itkevices,
memory, processors etc eg. Vmware [14]. The process virtual machine onljiaggua

the process. eg. JAVA.

The virtual machines stated above are too resource hungry to run on motes. So, the
researchers have come up with virtual machines for sensor networks. The adeats t
a middleware application which virtualizes the hardware and enables to write
applications in a virtual code. Those virtual codes can be easily uploaded using the
wireless network. They are all stored in memory instead of ROM which is expéns
write to. The virtual machine software is deployed to the motes by writingntine eode
to the ROM. Now the application is written in a virtual code. Then it is deployed by

either radio or connecting serially to the base station.

Several solutions has been provided so far including Mate [8], SwissQM [2]. But the

problem with them is they cannot be easily extended when the need arises. So, this



research tries to make a virtual machine which is extendible. This enables the

applications to extend the functionality without having to redeploy the wholersyste

So, the finding of this research could be very helpful for the development of

sensor network applications and its deployment.

1. OUR CONTRIBUTIONS

e The User will be able to define his own instruction and implement his own
handler code for his instruction.

e It will make the applications more flexible and will be able to do things the
traditional virtual machines could not.

e |t will consume less power than deluge because it writes only a portion of code

memory.

2. OUTLINE OF THE THESIS

e The introduction part introduces in brief the idea about sensor networks, virtual
machines and its relationship.

¢ In the review of literature, we talk about the various systems that wetectea
make mote reprogramming more convenient. Those systems include Deluge,

TinyDB, Mate, SwissQM and SOS.



In the Methodology section, we talk about how the TinyHlve system is designed.
It describes about architecture, data structures, memory managemauntfiorst

set architecture, virtual code interpreter and dynamic instructions.

In the Findings section, we describe the three test cases we used to test the
TinyHive system. We also present some code performance analysis.

In the conclusion and future work section, we talk about the contributions of the

TinyHive and also talk about how it can be improved.



CHAPTER Il

REVIEW OF LITERATURE

The virtual machine for sensor network is a very promising topic. So, several werks ha

been done in the field of virtual machine for sensor networks.

2.1. DELUGE

One of the earlier implementation was Deluge [5]. It is not a virtual madiut a
middleware application that allows sending binaries using a wirelessnkeflihe deluge
middleware receives the incoming network data and writes the new prograemiaryn
Though this technique does not require us to be physically present for reprogramming
the overhead of reprogramming is still there. It just sends the applicatiog bursarthe
network but the reprogramming still has to be done. And that process takes a lot of

power.

2.2. TINYDB

Another implementation that is designed to overcome the shortcoming mentioned above

is TinyDB[7]. TinyDB makes possible to write a sensor network applicatioridma



SQL like queries. It views the sensor network as a big relational tableii®ythe

gueries, we can extract the sensor data as an output of the query. As the dikmram be
shows the query is done using a PC which is known as base-station. The query is first
parsed and optimized so that the network transfer is minimal. The resulting gineny is
processed by the motes and the results are routed back to the base-statiochriifisete
addresses the problem of reprogramming and physical presence. This te@nijue i
dynamic. If we need to add a new query or feature, it has to be done in whole TinyDB.

The figure below shows the flow of queries and data in the TinyDB.

SELECT nodeid, light
FROM SENSORS

N Quer PC
FIELDS
N - nodeid Mote
- light

] oPs
Result NULL

Result

Result

Fig 1: Transfer of queries and results [9]



2.3. MATE

One of the early virtual machines designed for sensor networks is mate [8]sMadiry
Virtual machine designed especially for sensor networks. It's a ByteiGtelpreter and
runs on a top of TinyOS. It runs a special form of code called ByteCode. The virtual
instructions are fed in fixed sized chunks called capsules which are 24 instructions in

size. If any of the programs is larger, then it is divided into several capsules

Subroutines Events
1 | I =
I
| | Mate
| 0 1 3 .
I |
Lo e ol = 0 — |
[ ]
gets/sets
Operand
PC nd ac
-'g Swck | Mate
|| Rewm Context
Fig 2: Mate architecture [8].
2.4. SWISSQM



Another important virtual machine for sensor networks is SwissQM [10]. Siviss@

virtual machine that interprets the virtual code which is written in Swiss@egEde.

The sensor nodes run the SwissQM program called Query machine. The query msachine
a ByteCode interpreter that interprets the program written for Swis$@efigure below
shows the SwissQM architecture. SwissQM is a stack based virtual mdthieans all

the operations are performed on the stack. There are no registers to storaliaterme

data. Besides the code interpreter, the SwissQM also contains the tramsimigir and

the synopsis. The transmission buffer is the buffer used for transmission grtcbrecé

data. The synopsis is also a buffer but have two different modes of access.

grouping aggregate expressions ( >
expressions(partial aggregate state)

Radio
— send
send/receive
line 1
line 2 2 3 4 5 6 7
Synopsis Transmlssmn Buffer
deployed load/store/merge 1 load/store
programs
- 0
- 22
— Bytecode 5o
— Interpreter
- 12
Scheduler -125
executing Operand Stack
program
sensors

A A A A A )

nodeid light temp noise tonevoltage



Fig 3: SwissQM architecture [10]

The SwissQM virtual machine also contains the gateway program. It runs on a base

station and is also used to generate the ByteCode and feed the ByteCode teshe mot

2.5. SOS

SOS [11] is an operating system designed for sensor networks. It was wri@e
programming language. The main distinction of SOS from other sensor network based
operating system is that it is dynamic in nature. It means the functjooiathe operating
system can be increased by using pluggable modules. The modules, whichtaneoyrit
users, can be deployed at runtime. This implementation closely resembtekdvhel

architecture [15].



Program Memory Layout

Jump Table
ker timer 1. Modules refer
1 —— to a fixed location
_ into the jump table
Module #0 == =F =
|
I 2. Jump table refers
I ™ to the function in
I the kernel.
Module #N :
SOS Kernel |
|
ker timer d—=}= =
—— > Re-directed Call
— — —»Desired Call

Fig 4: Linking and jump table layout in SOS [11]

Modules are the most important entity of the SOS system. They resemblesneornin

tinyos but they are pluggable at runtime. Most of the operating system fund¢yiomali
provided by the modules which are loaded later. The SOS operating system only provides
the bare minimum functionality like low level resource management. The S@S onl

needs redeployment if there is a need to change in those low level codes. Thes module

interact with each other to achieve the functionality of an application.

10



CHAPTER Il

METHODOLOGY

Virtual machine for sensor networks is becoming a very popular research tgic the
days. The research was started first by designing a very simple wdchine. It was
then further extended by implementing a feature of dynamic instructioewsers can
define and implement their own instruction set. This project shall now be referred as
TinyHive. The main components of the TinyHive are Instruction sets, votas

interpreter and memory manager.

3.1ARCHITECTURE

The TinyHive Virtual machine consists of four basic components. They are Memor
manager, virtual code interpreter, instruction set architecture and I/@geraihose
components interact with the TinyOS to use its services. The TinyOS furtheaits

with the hardware to achieve the functionality.

The Virtual program written in virtual code interacts with TinyHive throtigh
instruction set architecture. The virtual instructions are then emulatecipreted by
the virtual code interpreter subsystem. The basic working of TinyHive can be
demonstrated in the following figure.

11



Virtual Virtual Virtual
Program Program Program

\ 4 A 4 A 4

Instruction Set Architecture

Virtual Code Memory Manager I/0
Interpreter Manager

Tiny'OS

Mote Hardware

Fig 5: Architecture of TinyHive

As the above figure shows, the virtual program interacts with TinyHive whiclaatser

with TinyOS and which interacts with the underlying hardware.

There are several ways to implement a virtual machine. One technique ighe use
intermediate registers to hold the intermediate data and the other is to usekHershe
operands and intermediate data. The latter is called stack based virtual machine.
TinyHive is a stack based virtual machine. All the operations are done in stackaf@er

no intermediate registers to store the results. For example to do a simptnaufdi

a=b+c, wedo

Push b

Push c

12



Add
Pop a

The reason for using the stack based virtual machine is that it makes the codet compa
and we don’t have to use separate instructions to move data to register and so on. So, the

implementation of TinyHive consists of a dedicated stack space for instrucéiontiex.

The flowchart below shows the flow of program in TinyHive.

Start

A 4

Initialize

A 4

| Radio/serial handler

Init_program

A 4

Dispatch_program New

program data

Check
availability

return

Run_program

Fig 6: Flowchart TinyHive
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Run_program

A 4

Get_next_instruction [¢ A

Valid
Instruction

’ return

Determine_code

A 4

Add.simulate

A 4
\ 4

Sub.simulate

return

Fig 7: Flowchart of flow of code in TinyHive

The flow of the program starts from the initialize function. The handle i govéhe
TinyHive after the usual TinyOS Bootstrap. That function is called &ilze”. That

function initialized all the global data into 0. Then it calls init_program whitlalizes

14



the stack and memory for program. Then dispatch_program is called, which checks if
there are any virtual program loaded in memory. If it finds the program, thels itheal
run_program function. It gets the virtual instruction one by one and execuiis it
instruction with opcode 0x00 is considered as the end of program. If it encounters
instruction not defined it is considered illegal instruction and is terminated. dgeapr

walits in the loop until another program is found. The programs are uploaded using radio
or serial communication. The handler for radio and serial loads the incomingrprogra

into the memory and its returns. The dispatch_program detects it and runs the new

program.

Besides the normal instructions, there a special instruction called the stlyitis a
dynamic instruction. The purpose of the instruction is to create a new useddefine
instruction which can later be used by other applications. A typical example if ¢his
customized mote hardware which is customized to get soil sensor data. Ifrthe use
application has to run in a virtual machine environment, there is no virtual instruction t
read the sensor data. In TinyHive, the developer can add a new instruction thtteeads
sensor data. All other applications can then use that instruction. To accomglish thi
behavior, the “dyninst” instruction should be able to upload the machine instruction to
accomplish that behavior and store it in program memory so that in can be run. So the
handler of the instruction should be able to find the free space in the program memory
and write the handler code to that space. TinyHive should also keep track of the new

virtual instructions added and its location, size, etc.

Now when the newly created instruction is used by the virtual application, yhe/én

interpreter determines it as a dynamic instruction and jumps the progranidoatien

15



where its code was written in program memory. After the code is exetuédarns

back.

3.2DATA STRUCTURES

There are some important data structures used in TinyHive. All theus&sielre
statically allocated. There is no dynamic allocation. The first streigsuthe stack
structure. It is used to store the runtime stack values of the program. Théd&ek is

fixed. It is implemented as

typedef struct stack {

nx_uint8_t top;

nx_uintl6_t data[16];

} stack _t;

Another important structure is the context structure. It is used to store thrtadnte

currently running virtual program. It is implemented as

typedef struct context {

stack_t stk;

nx_uintl6_t PC;

bool zflag;

struct program *pg;

16



} context_t;

Another important structure is the program structure. It holds all the virtuab¢oe
virtual program together with context and all necessary flags. Each prbgsaits own

program structure. It is implemented as

typedef struct program {

nx_uint8_t isfree;

context_t ctx;

nx_uint8_t pdatalMAX_PROGRAM_SIZE];

}program_t;

Besides these data structures, there are few global flags andestradilis used to

control the program flow.

typedef struct dyn_instr {

nx_uint8_t opcode, size;

bool free;

handler_t handler;

} dyn_instr_t;

typedef struct dyn_table {

struct dyn_instr dyn_instr[MAX_DYN];

17



} dyn_table t;

The dyn_table data structure is used to store the information about the newiamsruct
that are dynamically loaded. The total number of new instructions supported is
determined by MAX_DYN. Each new instruction has its opcode, handler size and the

function pointer to the handler of the function.

3.3MEMORY MANAGEMENT

Memory management is a very important component of any program. It is further
important in sensor networks which have limited memory. The dynamic memory
management is not available in TinyOS so all memory is statically tdtbead

managed. All the data structures mentioned above are stored in ram. So, it has@ddedica

memory of holding 4 different virtual programs which has a maximum size of 128 bytes.

The dynamic instruction uses the flash memory to store the data stramtupeogram

memory to store the hander binary.

0S + application Handlers of new

instructions
code

0x0 0x3C00 O0x3E00 OxFFFF

Fig 8: Program memory layout
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3.4INSTRUCTION SET ARCHITECTURE
Instruction sets are the bases of all computer systems. The virtual malsbinesembles

a physical computer system. So it must have its own instruction set.

The instructions in instruction set architecture of TinyHive are variadiength. There

are basically three types. They are:

Type 1 Opcode
Type 2 Opcode Operand
Type 3 Opcode length Opcode Data

Fig 9: Instruction types and their sizes

Type 1: They are single byte in length and do not require an operand. Most of the
instructions fall in this category. The instructions like add, sub, mul etc. are in this

category.

Type 2: They are 3 bytes in length and have a 2 byte operand. The instructions like push

and pop fall under this category.

Type 3: This is a special type and is only used for dynamic instruction. Tédeyudtiple
bytes in length and is of variable length. The first byte is opcode. Thedsbyte is the

length of the data and the third byte is the opcode of the new instruction to bd.create

19



The rest of the bytes are the machine codes that are to be executed asottedmii

the newly created instruction.

There are only a couple of instructions that have operands and they are push, pop and
dyninst. Other instructions do not require the operands because all the operands are
available in the stack through the push and pop instructions. The instruction set and thus
the program is fed to the interpreter in its binary form. This makes the prograpact

and easy to process. The current implement encodes the instruction in an 8 bit (1 byte
value and the operand as a 16 bit value except for dyninst for which operand is multibyt
So the binary program consists of an array of 1 byte and 3 bytes data. Theteterpr
determines whether the next byte is an instruction or operand by looking at the
instruction. The instructions have specific numbers it matches the numbers and finds out

if it has an operand or not. The typical program for the instruction below is

Push 4

Push 5

Add

Pop a (ais a variable so in a program it’s a location, say 100)

1 0 4 1 0 5 15 2 0 100

Fig 10: Sample virtual program

The instructions can further be divided into several types. They are divided acdording

what they do and what type of instructions they are. They are:

20



e Arithmetic Instructions:
This class of instructions does the arithmetic operations like addition, sudstracti
logical or, etc. All the instructions that fall in this category are type. they don’t

have operands.

The instructions that fall in this category are:

0 Add: It adds two values in the top of the stack. The result is then stored at
the top of the stack. It is identified by the opcode binary value of OxOF.

0 Sub: It subtracts two values in the top of the stack. The second value on
the top is subtracted from the first value. The result is then stored at the
top of the stack. It is identified by the binary value of 0x10.

o Mul: It multiplies two values in the top of the stack. The result is then
stored at the top of the stack. It is identified by the binary value of Ox11.

o Div: It divides the second value on the top of the stack with the top value.
The result is then stored at the top of the stack. It is identified by the
binary value of 0x12.

o Inc: It increments the value in the top of the stack. It is identified by the
binary value of 0x15.

o Dec: It decrements the value in the top of the stack. It is identified by the

binary value of 0x16.

21



e Logical Instructions:
This category of instructions do the logical operations like “and” and “or”. These
instructions also don’t need operands as the operands are taken from stack. The

instructions that fall in this category are:

0 And: It does the logical and between the two values in the top of the
stack. The result is then stored at the top of the stack. It is identified by the
binary value of 0x13.

o Or: It does the logical or between the two values in the top of the stack.
The result is then stored at the top of the stack. It is identified by the

binary value of 0x14.

e Stack Instructions:
This category of instructions does the stack operations like push and pop. They fall under
the type 2 instruction set i.e. they have a 16 bit operand. The instructions in thisycateg

are:

o Push: This instruction has an operand. It pushes the value in the operand to
the top of the stack. It is identified by the binary value of 0x01.

o Pop: This instruction also has an operand. It pops the value in the top of
the stack to the location determined by the operand. It is identified by the

binary value of 0x02.

e |/O Instructions

22



This class of instruction does the Input/ output operations. Currently there is only one
instruction which is the sense instruction. This category does not have operands. The

instructions are:

e Sense: This instruction is used to read the sensor data. The sensor to read
is determined by the value on the top of the stack. The result is then
stored at the top of the stack. It is identified by the binary value of 0x17.

e Dynamic Instruction

This is a special instruction which enable the dynamic feature on the TinyHirge. T
instruction has multibyte operand. The first byte is opcode. The second bytéeisgiie

of the data and the third byte is the opcode of the new instruction to be createdt The res
of the bytes are the machine codes that are to be executed as the microcodewlfythe
created instruction. The maximum length of the handler instruction can be 188 byte

The following table shows the list of instructions in TinyHive and its opcode values:

Opcode Value Operand length description
(if available)
Nop 0x00 N/A Null instruction; end of
program
push 0x01 2 bytes Push the operand into the
stack
pop 0x02 2 bytes Pop the data from the stack
add OxOF N/A Add the contents of the stack

23



sub 0x10 N/A Subtract the contents of stack

mul Ox11 N/A Multiply the contents of the
stack

div 0x12 N/A Divide the contents of the
stack

and 0x13 N/A Logical and of the contents

of the stack

or 0x14 N/A Logical or of the contents of
the stack
inc 0x15 N/A Increment of the value of the

topmost stack

dec 0x16 N/A Decrement the value of the

topmost stack

sense 0ox17 N/A Read the sensor value

defined by the topmost stagk

U

value. Another table define

those values

cmp 0x18 2 bytes Compare the values in
operand and stack top and set

the zero flag accordingly.

jmp 0x19 2 bytes Jump to the code location

pointed by operand

jz Ox1A 2 bytes Jump to the code location

24



pointed by operand if Zero

flag is set.

dinst 0x1B variable The instruction to load the

user defined instruction and

its handler
(other user OxFO-OxFF N/A User defined instructions
created
instructions)

Table 1: List of instructions and its details

The “sense” instruction depends on a value to determine what sensor to read from. It is

first pushed to the stack. The following table shows those values.

Sense Values Sensor to read from
0x01 Light Sensor
0x02 Temperature
0x03 Humidity
0x04 Voltage

Table 2: List of values for “sense” instruction

25



3.5VIRTUAL CODE INTERPRETER

This is the important component of the TinyHive system. This component does the work
of interpretation and emulation of all the instructions. When the program runs the opcode
is interpreted by it one by one. By seeing the value of the opcode it detewhiohs
emulation function to run. For eq: If it finds the opcode as OxOF, it determines that the

function to run is the add.simulate(). The detection is done by the switch statement.

The scheduling of the task is non-preemptive. So, the virtual program runs untilkthe ta
is over. The scheduling is on a first come first served (FCFS) basis. The VMajtsow

a loop until a virtual task is available to run.

3.6 DYNAMIC INSTRUCTION

The purpose of the research is to make the virtual machine dynamic. Using this
technique, the user can add a custom instruction or procedure and deploy it at runtime.

This addition can then be later used by other virtual programs.

A similar type of feature has been implemented in an Operating syst&arfsor
network called SOS [11]. In this operating system a module can be deployed a¢runtim
and other tasks can use its functions. This has made the SOS operating system very

dynamic. The idea is to use the similar feature for a TinyHive virtaghine.

The idea is to implement an instruction that uploads a procedure or a set of instructions
into the code memory. Now when the virtual program tries to execute the opcode of the

newly added virtual instruction, the code block is executed. The virtual machineastores

26



set of function pointers (location of added code). So when that virtual code is
encountered, the code block is run. We call that instruction dyninst. For the gateway
program, the program which is responsible for loading of virtual instructions to nsote, it
operand is a memory location of the procedure in the binary form. So, the loader program
(gateway) just sends the opcode for dyninst followed by length in bytes of theymece

followed by the binary code.

The sequence of binaries for the “dyninst” instruction is similar to the faybel

25 8 OxFO | 23 21 12 54 8 6 0

Opcode length new opcode binary codes in machine language

Fig 11: Sample virtual program with dynamic instruction

The implementation of the dynamic instruction capability involved writingla fiortion

of the code in the program memory and storing each new instructions code handler
location. TinyHive reserves a small portion of code memory to store the neuciitsts

code. The total number of new instruction supported by tinyHive is fixed and is
determined by the MAX_DYN macro. When the virtual code interpreter finds thesdyni
instruction, it looks if the max number of new instruction is reached. If therdds a s
available, it stores the information like start address, opcode and size and uploatts the da

to the program memory. The following flowchart describes how

Now when the new instruction is encountered in the virtual code, it searches the table t
see if the instruction is new instruction or an invalid instruction. If it finds theuictgin
in the table, it jumps to the handler of that new instruction. The handler of the iostruct

must contain the machine instruction that returns to the caller. The typicaplexa
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most architecture is the ret instruction. The following flow shows the workirgeof t

dynamic instruction.

Dinst_simulate

Simulate_dyn

Store_instructions

Fig 13: Dynamic instruction Flow

The implementation includes a small portion of an architecture dependent code. The use
of the architecture dependent code could not be avoided because of the flowing reasons.
Firstly, TinyOS did does not have any interfaces to write to the program 8a, the
architecture dependent code to write in the program flash was written. Sed¢backy

was no architecture independent way to call the program memory address withgut us
the assembly. For now dynamic instruction is only implemented for thesrinateuses
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the AVR cpu. Those motes include micaZ, mica2 and IRIS motes. All the atahite
dependent codes are written in a file called avr.c. There are two functions,variie tin
the flash memory and another to jump to flash memory location where the handler is

stored.
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CHAPTER IV

FINDINGS

4.1 INTRODUCTION

The purpose of the research is to make the virtual machine dynamic. Using this
technique, the user can add a custom instruction or procedure and deploy it at runtime.

This addition can than be later used by other virtual programs.

A similar type of feature has been implemented in an Operating syst&uarisor
network called SOS [11]. In this operating system a module can be deployed a¢runtim
and other tasks can use its functions. This has made the SOS operating system very

dynamic. The idea is to use the similar feature for a TinyHive vinaahine.

The idea is to implement a instruction that uploads a procedure or a set of ims$ructi

into the code memory. Now when the virtual program tries to execute the opcode of the
newly added virtual instruction, the code block is executed. The virtual machineastores
set of function pointers (location of added code). So when that virtual code is
encountered, the code block is run. For now | have called that instruction dyninst. For the
gateway program, the program which is responsible for loading of virtual istsito

mote, its operand is a memory location of the procedure in the binary form. So, the loader
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program (gateway) just sends the opcode for dyninst followed by length in bytes of

procedure followed by the binary code.

So, this technique will make the sensor platform more dynamic. This will ehablesdr
to write a new instruction and load it so that other applications can easily us¢his S
means that the feature has added flexibility to the platform. The table bletovs the

cost versus flexibility comparisons.

Method Flexibility Cost
Bytecode Medium Low
New Binary Very High Very High
TinyHive High Medium

Table 3: Cost versus Flexibility

To demonstrate the flexibility and to do the performance analysis, two $est ltave

been created.

4.2 CASE STUDY 1

The first case study is created to show the simple working of a virtual machae. T
results from this case study are used to analyze the performance ofulkemathine

without the use of dynamic instruction.
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For this case study, a very simple virtual application is written. It uses sf the simple

instructions implemented by TinyHive. The program is written as:
Push 0x05

Push 0x04

Add

Push 0x02

Mul

Sense 0x01

The instructions above just do some additions, multiplications and get the light sensor
data. The table below shows the size of the overall TinyHive code and compdths it

other virtual machines.

Code (ROM) bytes Data (RAM) bytes
Mate 16044 849
SwissQM 33000 3000
SOS 20464 2699
TinyOS with Deluge 21132 597
TinyHive 12084 1242

Table 4: Code and data footprint [11]
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One of the side effects of a virtual machine is that the instruction is ashaysr than

the native instructions. Let us take an example of a simple and instruction, m mica
hardware, it is just few cycles. But in a virtual machine, it needs to be emulatededsd ne
several memory access. So, it takes far more cycles in virtual machent&able below
shows the comparison of the clock cycle taken for native execution and intevprbtat

TinyHive. It does not take into consideration the fetching and decoding of instructi

TinyHive.
TinyHive Native
Add 314 1
Push 174 2

Table 5: Native execution versus emulation

Another overhead in a virtual machine is that it needs to do a lot of work for fetch and
decode cycles. In order to fetch the code, the program needs to access the wierery
the virtual program is stored. In order to decode the instruction, it needs to check the
instructions it supports and compare it. The table below shows the clock cycle r@eded f

the fetch and decodes cycles in TinyHive.

Clock Cycles
Fetch 28
Decode 37

Table 6: TinyHive fetch decode overhead
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4.3 CASE STUDY 2

The next case study is a simple test program to demonstrate how to use the dynami
instruction and how to write a handler. In this test case the handler containsnalmini
code which must be present in every handler. That code is the “ret” instruction. This
instruction is used to return to code which called this handler. In case of Tinyhéve, t

execution is returned to the interpreter which interpreted the new user cresatection.

In this simple test, a few mandatory instructions were only used. They are:

0] dyninst: the dynamic instruction used to define the new instruction.
(i) New instruction: the newly defined instruction itself.
(i)  Ret: the return instruction which is in the data section of the dyninst

instruction.

Eg. Code:

Dyninst 0x02F09508

/I here 0x02 = length of handler

/l OXFO = opcode of the newly created instruction

/I 0x95 0x08 = machine instruction for AVR instruction ret

OxFO

/I execute the instruction
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Firstly, the dyninst instruction loads the handler in the program memongatandHe

newly created instruction is executed.

4.4 CASE STUDY 3

In the next case study, we implement a test program which is used get theistiten
sensor data. In this case study we demonstrate how we can use other cdstensaes
which are not supported by other virtual machines. This is a real world exaimgrie w

the TinyHive could be used.

A small program is written to get the sensor data from a soil moisture sensor.ritoorde
get a soil moisture data, we create a new instruction called “get_moistfir&dupload

the handler to that instruction and then later call that instruction to get the data. The
handler is written in a native code to the AVR processor. The virtual application is

written using a TinyHive instruction set.

The initial part of the code dynamically installs the code into the Tinysigéeem. And
the latter part executes that newly created instruction. The result wilithe stack. The
following table shows the total cycles required for upload. The numbers are dependent on

the size of the handler code.

Load (cycles) Execution (cycles)

Case study 2 application 2600 162

Table 7: Dynamic instruction overhead
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4.4 ENERGY USAGE ANALYSIS

One of the other most important benefits of virtual machine is the energy usage while
reprogramming. On a system without virtual machine there are only two ways to
reprogram the mot. One is to physically access the mote which might not ibé&efeas
Another option is to use middleware application like Deluge. The Deluge middlewa
application receives the whole binary through radio and writes the whole progrfaen in t

flash. Writing in a flash memory is expensive as it used a lot of power.

On a system with a virtual machine it does not need to write in program memory but it
not flexible. In TinyHIve, a new instructed can be added whose handler imvnitte

program memory. Since the handler is very small compared to the whole binary, it
consumes less power than deluge. In ATMegal28, we can only write one page at a time
which is 256 bytes. The energy required to write 1 page is 0.31 mJ [11]. In this analysis
the power used to transmit the code and execute the code is not taken into consideration.
The power only required to write the program memory is considered becausadhe des

of TinyHive improves power usage while handler is written in program memory.

The following table shows the energy usage while writing to the progranomem
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System Bytes to load Write cost per page Total cost
(typical program (mJ) (mJ)
size)
SwissQM 46 0 0
Mate 46 0 0
Tinyos (through 21132 0.31 25.58
deluge)
TinyHive 128 0.31 0.31

Table 8: Power Usage Comparison
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CHAPTER V

CONCLUSION

Virtual machine for sensor network is becoming a very popular topic these days. One of
the main benefits of a virtual machine is the flexibility it provides. Though, lexility
comes with a tradeoff of execution cost. But the flexibility it provides isifare than the

execution cost.

The developers started thinking about making sensor network application moreflexibl
by first designing systems like deluge. Deluge made the systeiidléxit it had major
power cost involved. Later, the virtual machines were developed for sensor networks
The virtual machines like Mate and SwissQM had the ability to send a new program
through radio. But those programs’s functionality was limited by the insiruset they

provided.

So, this research has come up with a technique which enables the expansion of
functionality of a virtual machine. This is achieved by adding the abiliagtba user
defined instruction. The user can write the handler according to the needs of his
application. The handler is written in a native code executed by the underlyirmg mic
controller. This makes the virtual machine very dynamic. The working of this

functionality is shown by two use cases described in results section.
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The first test case shows how one can write an application using TinyHirectizs.

The second test case shows how one can define his own instruction which does a specific
job which is not possible without that feature. As an example soil moisture sensat is us

for this purpose. The results show that though the virtual programs take more CPU cycles
than native instructions, they are much more flexible. From the results weectras

TinyHive is more flexible than regular virtual machines like mate ands&ik It can

also be seen from the results section that it consumes less power than havirgttewrit

whole program in flash.

So we can conclude that TinyHive is very flexible and dynamic. And it conseses |

power even though it needs some program memory writes. There are also few problems
with this system. One problem is that program memory can only be written 10,080 time
So this loading of new instruction has to be rare. Secondly, TinyHive is in the inéant ag
of its development. So there is no easy way to write a handler function than to use a
native instruction. Thus, TinyHive can help in creating more dynamic applicétions

sensor networks.

The TinyHive in currently in the infant stage and needs a lot of work. The follaweng

the future work that can be either improved or implemented in TinyHive.

e A new GUI based gateway program can be implemented. It could load the
TinyHive virtual application. In addition, it could also enable the user to write
virtual applications in simple English.

e Another efficient way could be developed to write the handler of the new user

created instruction.
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e We can implement the radio code where there virtual applications can be

transmitted through the radio.

e The size of the program can currently be as big as the maximum sinee of
packet. This can be extended by implementing the feature where 1 application can
be sent using multiple packets.

e The instructions related to the use of radio and serial can be added. we can have

send and receive instructions for both radio and serial.

These are some of the things that can be implemented in TinyHive as future work.
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APPPENDIX A: MANUAL

The Source code of the TinyHive is stored in a SVN server. We have createdtamgpos
for TinyHive project in SVN. The path to the project is

https://www.cs.okstate.edu/svn/s3lab/tinyhiva/order to check out the code, the user

should use the command:

svn checkout https://www.cs.okstate.edu/svn/s3lab/tinyhive --username <\smives

username>

After checking out you can make the changes to the files. If you wish to ¢tonemi
changes do svn commit -m "put your comment on what changes you made in short".

Please make sure you fix all compile errors before committing.

Currently, the access is for Oklahoma State University Computer sciedeats only.

In order to compile the code, the architecture dependent code needs to be compiled
separately. It is written in C. It can be compiled as follows for MicaZgslas (or any

other platform that used AVR).
avr-gcc -c —-mmcu=atmegal28 avr.c

Then the remaining code can be compiled as:

Make micaz
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Then it can be written to the mote as:
Make micaz reinstall mib520, <serial port>

where, serial port is the serial port name. In Linux, it is usually /dev/T BOJSIiIb520
is the board we used.

The files in the TinyOS code directory are:
S3vm.h

Avr.c

Arith.nc
Control.nc
Dyninst.nc
Makefile
S3vm.nc
S3vmapp.nc
S3vmc.nc
S3vmisa.nc
Sensor.nc
Serialcomm.nc
Stack.nc
Stackc.nc

Stackops.nc
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APPENDIX B: SOME SOURCE CODES

1 Makefile:

COMPONENT=S3vmApp
CFLAGS += -I$(TOSDIR)/lib/printf
CFLAGS += -WI,--section-start=.bootloader=0xF000

LDFLAGS += avr.o

include $(MAKERULES)

2.s3vm.h

#ifndef SSVM_H__

#define S3VM_H___

#define MAX_PROGRAM_SIZE 128

#define MAX_PROGRAMS 2
#define MAX_STACK 16
#define S3VM_BUSY 1
#define S3VM_FREE 0

#define PROTOCOL_ID_SER 9

#define INST_NULL O
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#define INST_PUSH 1
#define INST_POP 2
#define INST_LOAD 3

#define INST_STORE 4

#define INST_ADD 15
#define INST_SUB 16
#define INST_MUL 17
#define INST_DIV 18
#define INST_AND 19
#define INST_OR 20
#define INST_INC 21

#define INST_DEC 22

#define INST_SENSE 23

#define INST_CMP 24

#define INST_JMP 25

#define INST_JZ 26

#define INST_DYN 27

#define SENSOR_LIGHT 1

#define SENSOR_TEMPERATURE 2

#define SENSOR_HUMIDITY 3
#define SENSOR_VOLTAGE 4
#define MAX_DYN 5

#define TOSBOOT_START O0x1EO000
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#define DYN_START (TOSBOOT_START - 1024)

typedef struct stack {

nx_int8_t top;

nx_uintl6_t data[MAX_STACK];
} stack _t;
typedef struct context {

stack _t stk;

nx_uintl6_t PC;

bool zflag;

struct program *pg;

} context_t;

typedef struct program {
nX_uint8_t isfree;
context_t ctx;
nx_uint8_t pdatalMAX_PROGRAM_SIZE];

}program_t;

typedef struct dyn_instr {
nXx_uint8_t opcode, size;
bool free;
nx_uint32_t start;

} dyn_instr_t;

typedef struct dyn_table {
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struct dyn_instr dyn_instr[MAX_DYN];
} dyn_table t;

extern int copy_to_flash(nx_uint32_t addr, nx_uint8_t *data, nx_uint8_t len);

#endif // S3VM_H__

3. avr.c

int BOOTLOADER_SECTION copy_to_flash(uint32_t addr, uint8_t *data, uint8_t len)

{
uintl6_t* instr = (uintl6_t*)data;
uint32_ti;

uint8_t pgmdata, sreg;

if (addr + len > 0x1f000 )

return O;

sreg = SREG;

eeprom_busy_wait ();

boot_page erase( addr);

while( boot_rww_busy() )

boot_rww_enable();
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for (i=0; i<SPM_PAGESIZE; i+=2)

{
boot_page_fill(addr + i, *instr++);
}
boot_page write (addr); // Store buffer in flash page.
while ( boot_rww_busy() )
boot_rww_enable();
SREG = sreg;
return 1;
}

4. s3vmapp.nc

#include "printf.h"

#include "s3vm.h"

configuration S3vmApp {

provides interface S3vmcC,;

implementation {
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components MainC, s3vm, LedsC, StackC,;
components new TimerMilliC() as Timer;
components new TimerMilliC() as Timer0;
components StackOps, arith, dyninst;
components SerialComm;

components SerialActiveMessageC as AM,;

S3vmC = s3vm.S3vmC;
s3vm.Boot -> MainC;

s3vm.Stack -> StackC.Stack;

/I Instructions
s3vm.S3vmISA[INST_PUSH] -> StackOps.push;

s3vm.S3vmISA[INST_POP] -> StackOps.pop;

s3vm.S3vmISA[INST_ADD] -> arith.add;
s3vm.S3vmISA[INST_SUB] -> arith.sub;
s3vm.S3vmISA[INST_MUL] -> arith.mul;
s3vm.S3vmISA[INST_DIV] -> arith.div;

s3vm.S3vmISA[INST_INC] -> arith.inc;

s3vm.S3vmISA[INST_DEC] -> arith.dec;
s3vm.S3vmISA[INST_AND] -> arith.and;

s3vm.S3vmISA[INST_OR] -> arith.or;

s3vm.S3vmISA[INST_DYN] -> dyninst.dinst;
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dyninst.Leds -> LedsC;

StackOps.Stack -> StackC.Stack;

arith.Stack -> StackC.Stack;

SerialComm.Control -> AM,;

SerialComm.Receive -> AM.Receive[PROTOCOL_ID_SER];
SerialComm.Timer -> Timer0;

SerialComm.Packet -> AM:;

SerialComm.S3vmC -> s3vm.S3vmC;
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