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CHAPTER |

INTRODUCTION

1.1 Random Number s and Random Sequences:
A random number is a number generated by some process so thaiicthree is unpredictable. It
is one number that can be drawn from a set of possible nundmeails of which is equally

probable (in case of single numbers).

When each number drawn from a set of humbers is statistinddypendent of the others then
that sequence is said to be random sequence. Sometimes it asltdtffi find whether the

sequence is random or not. Many investigators have proposed defindticharacterize these
random number sequences for overcoming the difficulties arisimg fhe same. According to
Knuth[1], “Random sequence is a sequence of independent numbeesspigified distribution

and a specified probability of falling in any given range dfieg’. Scheneier[2] defined that “A
sequence of random numbers is a sequence that has the destieab{aroperties as random bits,

is unpredictable and cannot be reliably reproduced”.

There are several types of random sequences of which hifgmaily randomand pseudo
random sequens@re most important for our purposésgorithmically random sequence[3] is a
sequence of an infinite sequence of binary digits which appedom to any algorithni?seudo
random sequenceg[3] are those that typically exhibit statistical randomniesspite of being
generated by an entirely deterministic casual process.process not only makes it easier to

produce but also helps in testing and fixation of software.

Some examples for binary random number sequences are as follows:

e (00000000000000000000000



e 01101010000010011110011

e 11011110011101011111011

On the examination of the above sequences, the second and third esseqmuear random while
the first one does not. From a frequency point of view each o gexgiences is equally random,
while from an algorithmic point of view the first one is clgarbn-random. Random numbers are
used for various purposes like generating data encryption angptieor keys, e-commerce,
simulating and modeling of complex phenomena and selecting random s&mpldarger data

sets. They also have applications in the arts including literatureg,ngasnes and even gambling.

Random numbers that are generated by computers are pseudo-randons|@jumiree random
numbers[3] are numbers which are completely independent of thenofimers in the sequence

and where the output is inherently unpredictable.

In a recent article, Anthes [4] summarizes results on gtingrtrue random numbers. In
particular, he mentions the work at Intel Corp. to use thermad moighe central processing unit
of the computer as random number generator (RNG) [5]. This is rikeuhe RNGs based on
guantum processes that have been proposed elsewhere [6], but quantuseprooese with

their own uncertainty [7]-[10].

Randomness is generally measured in terms of probability ooroplexity. From the lens of
probability, all binary sequences of lengthre equivalent. From the point of view of complexity,
it depends on the algorithm that has been used to generategtiense. Ritter has provided a

summary of several measures of algorithmic complexity [11].

1.2 Typesof Random Number Generators:

Given their many applications the need for a fast generatiormrafom sequences using a

computer program is essential. Two approaches have been developgpehéoating random



sequences using a computer program: Pseudo-Random Number Gen@&RtdGs) and True

Random Number Generators (TRNGs)[14].

PRNGs[14] are generators which uses algorithms that have mattbal formulae or just pre-
calculated tables to produce random number sequences. Linear cdagjraetitod is one of the
good example for PRNGs. PRNGs are efficient when they can gaodacy numbers in a short
time. Modern PRNGs have a period that is so long that it cagrmeeid for most practical

purposes.

TRNGs[14] are used to extract the randomness from the physical phenordénaaduce it into
the computer. The best way to generate a TRNG is using quantwesses. Another method is
to use is a radioactive source that is fed into the computediagany buffering mechanisms in

the operating system.

1.3 Random Number Generation M ethods:

Traditionally, the first method used to generating random numbersolmputer was Von
Neumann’s mid-square method[15]. The idea behind this methodtovteke the square of
previous random number and extract the middle digits. But the midesmqethod was slow and
unsatisfactory. To overcome with this drawback, congruentighade were introduced which

give better results.

Generally, an acceptable sequence of pseudo random numbers shisiydtisa following

properties:

1. Uniformly distributed
2. Statistically independent

3. Reproducible and



4. Non-repeating for any desired length

Composite generators[15] combine two separate conguential geneByorombining two
separated generators, we can achieve better statistigatibethan separate generators. Here the
composite generators uses the second congruential generatbuftie she output of first
congruential generator. The first generator is used to Vi#tlchor with the first k random numbers
of size n where as the second generator is used to genesagoerinteger r which is uniformly
distributed over the numbers 1, 2, ..., k. The random number whitbrésisn the ' position is
returned as the first random number and then replaces the randadmemin " position with a

new random number. This process repeats and generates a random sequence.

Tausworthe generators[15] are additive congruential gensratoich are obtained when the

modulus m is equal to 2.
The formula for these generators is:
Xi = (@Xi1+ @Xi2 + @Xin) (Mod 2)

where xcan be either 0 or 1. These generators are independent of the exougaat and its word
size and also have very large cycles and even produce a sirbé#s Two or more Tausworthe

generators can be combined in order to obtain statistically good output.

This is a newer algorithm[15] whose output has very excebgatistical properties when
compared to other generators and its period is very long ’&-2 This algorithm used 19937

bits long seed value on a very large linear feedback shift register.



1.4 Applications of Random Numbers:

Random numbers has many applications in several fields:
¢ Monte Carlo simulation method
e Spectrum spreading telecommunication systems
e Generation of primes
e Cryptography

o Computer games and Gambling

A Monte Carlo Method[16] is a technique which uses random numbergrabdbility to solve
problems. It is mainly used when the model is complex, non linear, ombes uncertain

parameters. Typically a simulation involves over 10,000 evaluations of d.mode

In spread-spectrum[17] random numbers are used in order to geheratgnals to spread in the

frequency domain.

Random numbers are also used for generation of prime numbers. Rpndwes are used in
RSA encryption. These numbers are uniformly distributed only on tmegin the range but not

on the entire range because primes are not uniformly distributed oves rafngpsitive integers.

In cryptography, random numbers are used for generation of the following[17]:

¢ Nonce is an abbreviation of number used once. It is often a random or psadion
number generated from an authentication protocol which is used to avoid regdhg.att

o Key is a piece of information or a parameter which determineduhctional output of
an algorithm. In encryption, a key transforms plain text into cipdsdrand cipher text

into plain text in decryption. Keys are also used in other crygpiiec algorithms such



as digital signature schemes and message authentication coilesutVe key, the
algorithm would not produce useful result.

Challenge is a protocol where in one party presents a question (challangeanother
party must provide a valid answer (response) to be authemgticAn example for
challenge-response protocol is password authentication wherhatenge is asking for
the password and the valid response is the correct password.

Initialization vector is a fixed size input to a cryptographic primitive that should be
random or pseudorandom. Some cryptographic primitives requiralizdtion vector
only to be non-repeating where the required randomness is derived internally.
Padding byte is nothing but padding the input with the padding string of betweer 1 a
8 bytes to make the total length a multiple of 8 bytes. Thaeevat each byte of the
padding string is set to the number of bytes added - i.e. 8 bytesuef@x08, 7 bytes of
value 0x07, 2 bytes of 0x02, or one byte of value 0x01.

Blind Signature can be implemented by using a number of public key signing schemes
like RSA and DSA. In blind signature, the message isliiistied by combining it with

a random blinding factor. The blinded message is passed to g sigdehen the signer
signs it using a standard signing algorithm. The resulting messdong with the

blinding factor, can be verified against the signer's public key.

Random numbers plays a vital role in casinos and, in turn, entertai@8jent|

Role playing games — used to select the roles randomly.

Card shuffling — used for shuffling cards randomly.

Lottery tickets — used to obtain random numbers for the tickets.
Indoor tennis game — used for making new combination of players.

Dungeons and Dragons — based on the random rolls of dice.



Random graphs[19] are one of the mainstays of modern discrete ratitserfihey have
been employed extensively as models of real world networks of vaspas and in

epidemiology.

1.5 Statistical testsfor Random Number Generators:

The Diehard tests[20] are the statistical tests whiclused for measuring the quality of
a random number generator. These tests require input as a sgeomdifted binary file
containing 3 million 32-bit integers. After producing this speciidlynatted binary file,

Diehard tests are performed on the resulting file. The tests are:

Overlapping permutations. Analyze sequences of five consecutive random
numbers. The 120 possible orderings should occur with statisticallyl equa
probability.

e Birthday Spacings. Choose random points on a large interval. The spacings
between the points should be asymptotically exponentially distributecharhe
is based on the birthday paradox.

e Monkey Tests: Treat sequences of some number of bits as "words". Count the
overlapping words in a stream. The number of "words" that don't appeald
follow a known distribution. The name is based on the infinite monkey theorem.

e Ranks Of Matrices: Select some number of bits from some number of random

numbers to form a matrix over {0,1}, then determine the rank of theixnatr

Count the ranks.



Parking Lot Test: Randomly place unit circles in a 100 x 100 square. If the circle
overlaps an existing one, try again. After 12,000 tries, the numliseicoéssfully
"parked" circles should follow a certain normal distribution.

Count The 1s: Count the 1 bits in each of either successive or chosen bytes.
Convert the counts to "letters", and count the occurrences of five-letter "words
Minimum Distance Test: Randomly place 8,000 points in a 10,000 x 10,000
square, then find the minimum distance between the pairs. The squthis of
distance should be exponentially distributed with a certain mean.

Random Spheres Test: Randomly choose 4,000 points in a cube of edge 1,000.
Center a sphere on each point, whose radius is the minimum distaaicether
point. The smallest sphere's volume should be exponentially distributtec w
certain mean.

The Squeeze Test: Multiply 2%! by random floats on [0,1) until you reach 1.
Repeat this 100,000 times. The number of floats needed to reach 1 should follow
a certain distribution.

Runs Test: Generate a long sequence of random floats on [0,1). Count ascending
and descending runs. The counts should follow a certain distribution.

Overlapping Sums Test: Generate a long sequence of random floats on [0,1).
Add sequences of 100 consecutive floats. The sums should be normally
distributed with characteristic mean and sigma.

The Craps Test: Play 200,000 games of craps, counting the wins and the number

of throws per game. Each count should follow a certain distribution.



CHAPTER Il

COMPARISION OF SOME RANDOM SEQUENCES

2.1 Binary Decimal Sequences:

Binary random sequences[21] are generated by starting with timadesequences. A
decimal sequence is obtained by representing a number in a biEriman a base r and it may
terminate, repeat or be aperiodic. For a certain class afhdesequences of 1/q, g prime, the
digits spaced half a period apart add up to r-1, where r i®ake in which the sequence is
expressed. These decimal sequences are periodic and their rasslgroerties are checked
only in one period. Decimal sequences are known to have good autotmorrptaperties and

they can be used in applications involving pseudorandom sequences.

Any periodic sequence can be represented as a generalizgdehsar/n, wherem andn are

suitable natural numbers, i.e., positive integers.

d-sequence

Random

Sequence |

Random

Sequence ||

Figure 2.1: General Random sequences as a subset of d-sequences



2.1.1 Properties of Decimal Sequences:

Properties of decimal sequences from [22] to [24], which are summhdrétew:

Frequency Characteristics:

Theorem 1: Any positive number x may be expressed as a decimal in the scale of r

AlAz...AS+]_.al.az...

Where < A;<r, X a<r, notall Aand a are zero, and an infinity of thara less than (r-1).

There is a one to one correspondence between the numbers and the dewimals, a

X=Ar+ A+ o+ A+ alr + alr’+ ...

For example, ¥4 can be represented as 0.25 in the scale of 10 andtBé&dale of 2. The
decimal sequences of rational and irrational numbers may be possbb to generate
pseudorandom sequences and this is suggested by the following psopértiecimals of real

numbers.

Theorem 2: Almost all decimals, in any scale, contain all possible dighig&ch mean that the

property applies everywhere except to a set of measure zero.

Theorem 3: Almost all decimals, in any base, contain all possible sequerfiGasy humber of

digits.

10



Theorem 2 and 3 guarantee that a decimal sequence missingjiany ekceptional to know the

behavior of the digits for any particular decimal sequence.

For example: A number x is said to be simply normal in bafsi the decimal of x each of the r

possible digits occur with a frequency 1/r, i.e.,
Limn, / n— 1/r where n— «©

For all b, where the digit b occurgtimes in the first n places.

Theorem 4: Almost all numbers are normal in any base.

It may benoted, however, that while finite periodic decimal sequen@gsbma simply normal in
a given scale, they will not be simply normal in all scales. For exampledeons

x = 0.0123456789
which is simply normal in the scale of 10. In the scale of 1B&&ame number is x = .b where b
is 123456789, which is not simply normal, 1010-1 digits being missing. Sormal number
cannot be rational. Theorem 4 guarantees the existence of an atdtpuntinity of irrational
numbers, whose decimal representation would perfectly exhibitaatiomness properties.
Generating a periodic sequence from its rational number repagse is computationally less
complex than generating it from an irrational number.
Theorem 5: The decimal for a rational number p/q between 0 and 1 isrtatimg or recurring,
and any terminating and recurring decimal in the scale of 1qual o a rational number. If
(p,9)=1, =25, and max¢,p) = u, then the decimal terminates after u digits. If p,q)=2°H©,
where Q > 1, (Q,10) = 1, and v is the order of 10(mod q), then thenalecontains p non-

recurring and v recurring digits.

11



Theorem 6: Suppose 0 < x <1, x = p/g,(p,q) = 1. If g¥s.U, where s,t...u are the prime factors
of r, and p = max(,...y), then the decimal for x terminates at the pth digit. If girm@to r and

v is the order of r(mod ), then the decimal is pure recuaitdyhas period of v digits. If g=
St*...0Q, (Q>1), Q is prime to r, and v is the order of r(mod Q), tendecimal is mixed

recurring, and has p non-recurring and v recurring digits.

Theorem 7: A maximum length decimal sequence when multiplied by p, p < q, g¢gclic
permutation of itself.

The remainders 1,2,...9-1 obtained during the division of 1/q have av@ane&orrespondence
with the coefficients 0,1,...r-1. Since p/q starts off with aamaer rp(mod q) instead of r(mod

g), there would be a corresponding shift of a decimal sequence.

Theorem 8: if the decimal sequence, in the scale of r, of p/q; (p,9)=1, p wd) () = lis
shifted to the left in a cyclic manner, 1 times, the tesylsequence corresponds to the number

pY/a,(pt,g)=1,pt<q where p* = r* x p(mod q).

Theorem 9: For a maximum length decimal sequence 1/ggz @& k = g-1, in the scale of r:
&+ qgov = I-1

For example: x = {1/19} in base r =2

x<-000011010111100101

Here, a+ agq = r-1=1

The extension to the above theorem is stated below.

Theorem 10: If the period k of the decimal sequence of 1/q, q prime, is even in the scale r

a+ g = 1-1

12



Some additional structural properties of the remainder and thmalesequences digits are

presented below.

Theorem 11: For a maximal length decimal sequence the remainder sequemee.my, k = g-

1, satisfies the relations

mimg., = Mmy(mod q)

mimg; - 2 mmy; + m=0(mod q) for all I, j, I.

Theorem 12: The decimal sequence of 1/q, where q is of the form t when expressed in the

scale of r would be N consecutive zeros followed by N consecutive (r-1)’s.

Distance Properties:

Let the ith remainder in the division of 1/q be represented pwihere =1, m=r m; — qa

So, the following is obtained.
Miyj = fmp, — ak(+1)

where | (j+1) = fa + g, +... + 1 @y + 3.

Theorem 13: For a binary decimal sequence 1/q,"f2q, then all;i(m) are different.

For such a sequence, all subsequences of length m are different.

13



Theorem 14: The Hamming Distance tetween the binary maximum length sequence {1/q} and

its jth cyclic shift satisfies
d>kim,j#£0,j<Kk,
where 2'> q, k = g-1.

At least one of each m consecutive digits is differeainfiTheorem 13. Hence, the minimum
distance between each set of m digits is one. For a totaswétk group of digits, the distance is

k, and since the sequence considered is m times over, the distance is k/m.

Randomness Properties:

The randomness of a periodic binary sequence of +1's and -1's c@redleed by comparing the
run characteristics of +1's and -1's as well as its @anelation function to that obtained for a

normal number where the digits are independent.

Autocorrelation Properties:

Let the equation below represent the auto-correlation function of tialesequence;a.a..

1 n
Ck)==> aja,,
n i—0
For a normal number, the autocorrelation function is:

Cy(7) = E(a@n+)

Where the nth digit of the sequengela{0,1,2, ... r-1}. The autocorrelation function is two-
valued for a binary random sequence.

14



2.1.2 Generation of Decimal Sequences:

According to the standard method, the binary d-sequence is genhesitey the algorithm

below[16]:
a(i) = 2 mod p mod 2

where p is a prime number. The maximum length period (p-1) sequamcgenerated when 2 is

a primitive root of p.
This may be rewritten as:

a(0)= 2
b(i+1) = 2b(i) mod g

a(i)=b(i) mod 2

To generate decimal expansions of 1/p, one may use the following formula[17]:
If prime ends in 1,
a(i) =9 x 16mod p mod 10
If prime ends in 3,
a(i) = 3 x 10mod p mod 10
If prime ends in 7,
a(i) = 7 x 16mod p mod 10
If prime ends in 9,

15



a(i) = 10 mod p mod 10

The above formula produces a random sequence of decimal numiggrg riiom 0 to 9. These
decimals are then converted to an equivalent binary numbers, vesiahs in a sequence of

binary numbers.

2.1.3 Examplesfor Decimal Sequences:
1) For p=1117
The binary sequence equivalent to the above decimal sequence is:

000000000011101010101011111000111001010010111101110000111111010000010101000101
011100010111001001011101000011001001101011101101111001001111010011000101000110
010111000010000111101011010111111001000111111101101101010100100100011100001100
001001011001011000011101110010110100100110010001100010000101110110000001111100
101011010100001110011100000100110100000001100110101011001100111001000100010011
000001011011101011001001001110011000011010001000001000101101011000001111001000
000101000010101100010110001110110010000100111011010110111110011100111111011110
111111110100111111111100010101010100000111000110101101000010001111000000101111
101010111010100011101000110110100010111100110110010100010010000110110000101100
111010111001101000111101111000010100101000000110111000000010010010101011011011
100011110011110110100110100111100010001101001011011001101110011101111010001001
111110000011010100101011110001100011111011001011111110011001010100110011000110
111011101100111110100100010100110110110001100111100101110111110111010010100111
110000110111111010111101010011101001110001001101111011000100101001000001100011
000000100001000000001011

The period of binary sequence is 1116

The auto-correlation values of the above binary sequence are in the babdw gr

16
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m—Eriesl

-0.5

-15

Figure 2.2. Autocorrelation for binary sequence generated using p=1117; p&fit8.=

2) Forp=1541

The binary sequence equivalent to the above decimal sequence is:

000000000010101010000111001110011111101001011010000010100100110011000000000010
101010000111001110011111101001011010000010100100110011000000000010101010000111
001110011111101001011010000010100100110011000000000010101010000111001110011111
101001011010000010100100110011000000000010101010000111001110011111101001011010
000010100100110011000000000010101010000111001110011111101001011010000010100100
110011000000000010101010000111001110011111101001011010000010100100110011000000
000010101010000111001110011111101001011010000010100100110011000000000010101010
000111001110011111101001011010000010100100110011000000000010101010000111001110
011111101001011010000010100100110011000000000010101010000111001110011111101001
011010000010100100110011000000000010101010000111001110011111101001011010000010
100100110011000000000010101010000111001110011111101001011010000010100100110011
000000000010101010000111001110011111101001011010000010100100110011000000000010
101010000111001110011111101001011010000010100100110011000000000010101010000111
001110011111101001011010000010100100110011000000000010101010000111001110011111
101001011010000010100100110011000000000010101010000111001110011111101001011010
000010100100110011000000000010101010000111001110011111101001011010000010100100
110011000000000010101010000111001110011111101001011010000010100100110011000000
000010101010000111001110011111101001011010000010100100110011000000000010101010

17



000111001110011111101001011010000010100100110011000000000010101010000111001110
0111111010010110100000101001001100110000000000101010100001

The length of decimal sequence is 1541

The period of the binary sequence is 1540

The auto-correlation values of the above binary sequence are in the bagdw g

15

0.5

—Cariasl

-0.5

-1.5

Figure 2.2. Autocorrelation for binary sequence generated using p=1541; p&6d0.=

3) For p =1861

The binary sequence equivalent to the above decimal sequence is:

000000000010001100110111001010010110011111011011101011110001110101001100111001
010111001101101001110010001011001101100000111110101110100100000111000000111111
110100111111101100001100001111100010110101100101000110110101111111100001001011
111011101111000101000111111100011011000110010111001011011100111011000000110111
000001100011000010110010010001110100000110011101110010000010011010000100010101
010100100110011000010001111000100000001100000110101111011000111011101100111000
010000110010000100100110111011011111101011000101110011111101101010010101011001
000000000110100110100101011111000011011110010011000011010101011111100110101100
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000101101000111101010110100001101000100010111100001011101100010101000010111111
011110111111000100100100101110101000100000101111010100100001111110100011100011
110011001101001111010111110101010001010011000101100010010110110001000010100101
000100101001001000010110110101011100010011011001010110000111001110001100111111
111101110011001000110101101001100000100100010100001110001010110011000110101000
110010010110001101110100110010011111000001010001011011111000111111000000001011
000000010011110011110000011101001010011010111001001010000000011110110100000100
010000111010111000000011100100111001101000110100100011000100111111001000111110
011100111101001101101110001011111001100010001101111101100101111011101010101011
011001100111101110000111011111110011111001010000100111000100010011000111101111
001101111011011001000100100000010100111010001100000010010101101010100110111111
111001011001011010100000111100100001101100111100101010100000011001010011111010
010111000010101001011110010111011101000011110100010011101010111101000000100001
000000111011011011010001010111011111010000101011011110000001011100011100001100
110010110000101000001010101110101100111010011101101001001110111101011010111011
010110110111101001001010100011101100100110101001111000110001110011

The length of decimal sequence is 1861

The period of the binary sequence is 1860

The auto-correlation values of the above binary sequence are in the baghdw gr
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Figure 2.3. Autocorrelation for binary sequence generated using p=1861; p&860.=
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2.1.4 Randomness measured by Autocorrelation Function:

For simplicity, we consider only the autocorrelation functiommessure of randomness. Since
the randomness measure of discrete-time white noise seqehcghereas that of a constant
sequence is 0, this measure conforms to our intuitive expectaftemsalue of randomness for a
binary shift register maximum-length sequence is close todcdard with our expectations. The
function for a maximum-length d-sequence is has a negative pedk fof half the period

because of the anti-symmetry of the sequence.

Randomness may be quantified by measuring how much the autocorrelatiots diepa the

ideal of white noise. Kak defines this randomness measure R(X)\y26k expression below:

n—1

> C(k)\
R(x)=1-*—
n—1

| have calculated the randomness measure for several d-sesughich have the results as

follows:

R(1117) = 0.986390678

R(1861) = 0.990382

R(2843) = 0.993393

This shows that d-sequences are quite random from the perspective afdbigen

2.2 Binary sequences from Windows PC

Different random number generators are used for PC applicatiors.l Have taken an online
random number generator and generated random numbers to determireutbedrrelation

function.
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| downloaded the random number generator franw.cnet.comto my PC where it asks for the
type of random sequence to be generated, such as decimal, binanydettso the length of the

sequence.

The binary random sequence generated for a length of 2000 is shown below:

100010110101000111100100110011010100001110111101101001111011010000001010111100
011111001010100011110001001100011110001011110100000111010111000101010101110111
011010011000000101101000111001101010100000101110111100100110110000101100101010
010001011000011100001011111001000101110010001000110011011100010010011011110010
001101100101100010111001111110010110101000001010000110111010010110001010000111
110101011011010110100011001110000111101011000010100100111010001010101101100100
010010100011011110001000110011010010001101100010100000100000011000010010111100
011111101111011010010101011111001010111000010100110110111000010001001000010100
110000100101001001111110010000111110100100011010111011110100010110100101001101
000100110000101100101101100101000101000101101001011000111010110111110111100101
010110110101010111011000111110101110110111000110101010111100100101101100001001
100110100011000011001110001011110001111001100010001110001111100110101000110111
110111010110011010100111110101110011001110000110011000110010111111011111011101
001100010000010100111000011111110110010010010011101011101010111110010111101011
101001000110110010000011111111100001001110010000001001100010111000010001100111
001010101010101000101000011000010000110011000010000010000100001000000001001010
011011010100110010000110001000000110110001100100010001010100101001111111001100
101111110011010100101100101010010010010011000111011110010111100100000011111101
101001010111101000111001011010110010000010010111100010011001001011100110111111
010010111010101100111010110000110110000001110000000000101100111010000111110101
111011101101100100101101111001101111110001010100101110001100111101101000110110
000001001110010001010100000110011110100000000100100111100000010011000100100101
001110101111001111011110111010100001100001001101111111000011111000010110001010
011110110110110101101100110011011110111011110101011100100110101100001010111010
100101000010110001110000011101001100000000011011010100110010111111011111000010
11110010010000000000100101000100101000111111111001
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The auto-correlation values of the above binary sequence are in the babdw gr
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—Cariasl

Figure 2.5. Autocorrelation for binary sequence generated from windows PC.

The randomness measure for this binary sequence is:

R(x) =0.981007

This value is lower than the values found for d-sequences. 8uhja fact should not lead to the
conclusion that d-sequences are superior owing to their obviagusér in the sense that the

second half of the sequence is a complement of the first half.
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CHAPTER Il

MESH ARRAY SCRAMBLING OF NUMBERS

This chapter presents the use of mesh array for matrixptication [27]-[28] for generating

random sequences.

3.1 Standard and Mesh Arrays:

In contrast to the standard array that requires 3n-2 stepsriplete its computation, the mesh

array requires only 2n-1 steps[27].

When we consider the problem of matrix multiplication, the standaraly to compute the
product of two 3 x 3 matrices is shown in Figure 3.1. It can bayeseen that the number of
steps to solve this problem is (3n-2). The numbers insideiritie are the indices of the product

matrix.
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Figure 3.1: Standard Array matrix multiplication of two 3x3 matrices

d; @p @8; 0 0

The mesh array [27] of Figure 3.2 is more efficient thanstaedard array of Figure 3.1. The

time taken to execute matrix multiplication on it is (2n-1).

3.2 Matrix Multiplication on a Mesh Array:

Matrix multiplication[27]-[28] is basic to many computatiopabblems. In signal processing, the
signal is usually transformed by a matrix. For an imageiteal itself is a matrix, and for a one-

dimensional signal, a large data set can be represented as a matrix.
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Figure 3.2 presents the mesh array for multiplying two 4 x #iecea which takes 7 steps,
whereas the standard array requires the same number ofcstephiply two 3 x 3 matrices. The

speedup of the mesh array is a consequence of the fact that no zeros aténpiégldeuts.

Figure 3.2: Mesh Array matrix multiplication of two 4x4 matrices C = AB

In the mesh array for the matrix multiplication the topelalyas the diagonal terms 11, 22, 33, etc

as goes from left to right. These numbers are written in the arrayoas. bel
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11 22 33 44
12 31 24 43
32 14 41 23
34 42 13 21

We can see that the fourth row is the mirror reversed iroagee second row and the third row

has symmetry within itself.
For the 5x5 matrix, the product components are as follows:

11 22 33 44 55
12 31 24 53 45
32 14 51 25 43
34 52 15 41 23
54 35 42 13 21

3.3 Scrambling Transformations:

We have seen that the product matrix values do not appearstatidard arrangement[28]. The
new arrangement when a matrix is multiplied with the idemtitrix may be called scrambling

transformation S. Given a total of nxn Zitems, the total number of permutations%s n
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0 a8y 0 0 83 Ay 1
0 a3 ay; 0 1 8335 8y 0
0 a5 ay 1 0 83 8y 0
1 an ay 0 0 a3 ayg 0

Figure 3.3: Mesh Array matrix multiplication of matrix A with Identity tvia

Let the scrambling transformation is denoted by S, if thenduliag transformation is applied
repeatedly, we obtain the original standard array in soméeuaf steps. For the 4x4 matrix, the

original array will be obtained in 7 steps[28].
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11
21
31
41

11
31
44
24

11
44
22
33

3.3.1 Generating Cycles:

As shown in [28], the items of both standard array and mesh array for the 4x4lchsewntten

in an array as follows:

12
22
32
42

32
14
21
42

21
12
31
42

13
23
33
43

34
43
23
41

43
34
13
24

14
24
34
44

12
13
43
22

32
23
41
14

S

s

11 22 33 44
12 31 24 43

32 14 41 23

34 42 13 21

11 14 23 22

12 31 24 42
21 12 24 13
43 42 34 31

11 12 13 14
21 22 23 24
31 32 33 34
41 42 43 44

2

S

11 31 41 21

22 32 43 13
14 44 34 24
23 42 33 12

11 44 24 31

14 21 41 34
12 22 43 33
13 42 23 32

11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44

)

11 22 33 44 12 31 24 43 32 14 41 23 34 42 13 21
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By using the above arrangement, we can write the standard ahdamags into cycles. The

cycles generated from the above arrangement are as follows:

= (11) (42) (12 22 31 32 14 44 21) (13 33 41 34 23 24 43)

By writing the standard array and mesh array into cyclesge&tethe period of the
scrambling transformations. The period is nothing but the maximulangths of the
cycles since the lengths of the cycles are {1,1,7,7}, the periothefscrambling

transformation = 7.

3.3.2PrimePeriods:

Some periods of the cycles associated with matrices of nrdeare prime. Over the range of n

from 2 to 1000, the matrices associated with prime periods have theifigldistribution[29]:

e 101-200----15
e 201-300---10
e 301-400----11
e 401-500---5
e 501-600----3
e 601-700----8
e 701-800---5

e 801-900---4
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e 901 -1000----12

3.4 Generating Binary Sequence:

We can create a binary sequence of the periods in terms ofd18savhere the even period is
represented as 1 and odd period is represented as 0[29].rEng $equence for the periods of

orders 2 to 1000 is as follows:

111011011000011000000100000000000000010000000010000000000000001000001000000000
000000000000010100000110000000001000100000001010110000010000000000000000000000
101000000100000000000000001000000100000001000001100000000010000000010000100010
000000000000000000000000001000100000000000000000000000100000010000000000010000
000010000000000011000000000000010000000000010000000000000000000000000000000000
001101110000000000000000000000010100000000000000000001000000000000000000100000
000010000000000000000000000000000000000000000100000000000000000000000000000000
000000000000000000000000000000000000010001000000000000000000001000001100100000
000000000000000000000000000100000000000000000000000110000100000000000000000000
000000000000010000000000000000000000000000110000000000000001000000000000000000
000000000000000100000000000000000000000010000001000000000001000000000010000000
000000000000000000000000000000000000000010000000100100000000001000000000000000
000000000110000000000001000000101000000000100000000000000001000

The autocorrelation function for k ranging from 0 to 1000 is shown in Figure 3.4.
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Figure 3.4: Autocorrelation Function of periods of mesh array

The randomness measure for random sequence generated from the Me&h Array

R(x) =0.972194

This is quite close to but not as high as the values obtainedsaquences.
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CHAPTER IV

CRYPTOGRAPHIC HARDENING OF PSEUDORANDOM SEQUENCES

In this chapter, we investigate results of a method of cryppddc strengthening of RNGs.
Basically the idea is to apply a many—to-one mapping to the bingpyt of the RNG, increasing
the complexity of the reverse process. We wish to consideugbeof a 3-to-1 and higher
mappings where each group of Os and 1s is replaced by whatether nsajority to see if it
improves the autocorrelation function of the resultant sequence.wilhibe tried both for the

Windows based RNGs as well as d-sequences

4.1 The PR(n) Sequence:

The PR(n) sequences[32] emerges by mapping each group of adjduién (n odd) of the PR
sequence to 0 or 1 depending on whether it has a majoriy@f Ds. We have done experiments
on many d-sequences and we find that PR(3) provides significant iempeo and that there is

no significant advantage in taking larger values of n.

Let us take some examples for d-sequences, then the PR(n) sequdrtzeasvibllows:

P=1571.

Original Sequence or PR(1):

000000000010100110110111010100101001111000010000100111110000101011101010111110
101001111101011110010110011001111111011011011111111001011110110101101100010111
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010011010110011100100110010010110100100011010111000110010100000111111111000001
011011010000010000010010111001110001000101101111100111111000100000010000111100
100111100110010000001101101100000010011100011011110111010111010000101111100101
010001101000111100010010101111010101101000011101000000010111011101110001111001
111000111010010101100101110110001001000010110011111001101001010001001001101001
111010110111011111000101010101100011001111010001101110001010000001011000101001
011000111110001111111000110101000111110111001100110101010010010010101010000111
111001110011101100100110111100100010011000100001100100011000010001111011001100
010101111111111010110010010001010110101100001111011110110000011110101000101010
000010101100000101000011010011001100000001001001000000001101000010010100100111
010001011001010011000110110011011010010110111001010001110011010111110000000001
111101001001011111011111011010001100011101110100100000110000001110111111011110
000110110000110011011111100100100111111011000111001000010001010001011110100000
110101011100101110000111011010100001010100101111000101111111010001000100011100
001100001110001011010100110100010011101101111010011000001100101101011101101100
101100001010010001000001110101010100111001100001011100100011101011111101001110
101101001110000011100000001110010101110000010001100110010101011011011010101011
110000001100011000100110110010000110111011001110111100110111001111011100001001
1001110101
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Figure 4.1: Autocorrelation function for PR(1) for 1/1571
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3-numbersor PR(3):

000001110010100001101110111011110110111111101111100101011001001001010100011100
110000001010011101100000100101000110001011110100110100101000110110110001111010
101001011100001110100000101011110101010100110000101010110110110111001100001001
101110011000100000100011000111101000011001111011101000100101010000000001000001
001001011110011000110110001100111110001110001001111101101111000111010000001100
111011011000001101110000100001010010011110100011111010000000110010001001111101
11010100010110000101111011100010011001110110110110000100

1.z

—Eriesl

-0.6

Figure 4.2: Autocorrelation function for PR(3) for 1/1571
The autocorrelation function in Figure 4.2 is better than that in Figure $.adeeitee negative

peak for half the sequence has been reduced.
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5 numbersor PR(5):

000110010010111111101111111110101110010110001101000110011100010100010001111010
011001010001111101011000111000011110001101001000101001110100101110110000000110
011100110110100000001000000000101000110100111001011100110001110101110111000010
110011010111000001010011100011110000111001011011101011000101101000100111111100
11

15
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Figure 4.3: Autocorrelation function for PR(5) for 1/1571

The autocorrelation function in Figure 4.3 is unchanged for Figure 4.1 as 5 divides 1570

7 numbersor PR(7):

001101010110111111111011100010011000010111000100001110100101100011110110011001
111101000000110010100011110000011011001010100100000000010011010010011110100011
001101000101101001010100010110011100011010111100010001110000011111010
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Figure 4.4: Autocorrelation function for PR(7) for 1/1571

9 numbersor PR(9):

001000011111111101100000101010010011010110101010001110100100111101100011010000
111000010110111000000000010001101100110100100101000011100110000011011000110011
1001001110011111010
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Figure 4.5: Autocorrelation function for PR(9) for 1/1571

11 numbersor PR(11):

011000111111111100101101011010101110101001111011011101100011100110100001100100
00100000011010111100110110010110010001010110010111001001100011100
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Figure 4.6: Autocorrelation function for PR(11) for 1/1571

From the above graphs, we can say that the negative peak fféhéhaleriod gets smaller and
smaller as we increase n in PR(n) and the improvement in randsnfme PR(11) is quite

impressive.

The tables below provide the list of the largest values of the atgtataon function for the given
sequences. The off-1 or -1 values are 0.33 and -0.33 for PR(1)e&\hat these values have
reduced to 0.11 and -0.13 for the d-sequence corresponding to 1907[32]. Tdwresponding

improvement (not necessarily of the same extent) for the other exarivardglow.
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1541:

Table 4.1: Reduction in the largest value Autocorrelation function véduelssequence 1541

PR(1) | PR(3) | PR(5) | PR(7) | PR(9) | PR(11)
1.0 1.0 1.0 1.0 1.0 1.0
-1.0 |-0.26 | -0.28 | -0.19 | -0.22 | -0.31
033 | 094 |0.74 | 0.65 | 0.86 | -0.94
-0.33 | -0.24 | -0.26 | -0.15 | -0.17 | -0.27
0.19 | 0.71 | 0.47 | 051 |0.74 | -0.88
-0.19 | -0.21 | -0.21 | -0.14 | -0.13 | -0.24
0.14 | 0.57 |0.31 | 042 |0.49 |-0.77
-0.14 | -0.19 | -0.19 | -0.12 | -0.08 | -0.21

1907:

Table 4.2: Reduction in the largest value Autocorrelation function ¥&tuel-sequence 1907

PR(1) | PR(3) | PR(5) | PR(7) | PR(9) | PR(11)
1.0 1.0 1.0 1.0 1.0 1.0
-1.0 |-0.50|-0.37 | -0.46 | -0.81 | -0.38
033 | 0.11 |0.11 |0.18 | 0.19 | 0.26
-0.33 | -0.13 | -0.12 | -0.13 | -0.21 | -0.17
0.20 | 0.08 | 0.10 | 0.12 | 0.18 | 0.18
-0.20 | -0.10 | -0.11 | -0.12 | -0.20 | -0.16
0.14 | 0.07 | 0.09 |0.10 |0.17 | 0.17
-0.14 | -0.07 | -0.10 | -0.10 | -0.18 | -0.13

2243:

Table 4.3: Reduction in the largest value Autocorrelation function véduelssequence 2243

PR(1) | PR(3) [ PR(5) | PR(7) | PR(9) | PR(11)
10 |10 [10 |10 |10 |10
-1.0 |-0.49 |-0.38 | -0.42 | -0.39 | -0.80
033 [0.19 [0.12 |[0.11 [0.12 |0.2
-0.33 | -0.12 | -0.09 | -0.19 | -0.21 | -0.2
0.19 |0.09 |[0.11 |[0.10 |0.11 |0.19
-0.19 | -0.08 | -0.07 | -0.11 | -0.20 | -0.19
0.14 |0.08 |[0.10 |0.09 |0.10 | 0.14
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| -0.14 | -0.07 | -0.06 | -0.09 | -0.19 | -0.14 |

2333:

Table 4.4: Reduction in the largest value Autocorrelation function véduelssequence 2333

PR(1) | PR(3) [ PR(5) | PR(7) | PR(9) | PR(11)
1.0 |10 [10 |10 |10 |10
-1.0 |-0.52 |-0.40 | -0.39 [ -0.35 | -1.0
033 [0.09 |1.13 |[0.12 |0.15 |0.21
-0.33 | -0.10 | -0.11 | -0.17 | -0.21 | -0.21
0.19 | 0.06 |0.08 |0.11 |0.14 |0.19
-0.19 | -0.09 | -0.09 | -0.14 | -0.18 | -0.19
0.14 |0.05 007 |[0.10 |0.12 |0.18
-0.14 | -0.08 | -0.08 | -0.13 | -0.15 | -0.18

2843:

Table 4.5: Reduction in the largest value Autocorrelation function viduelssequence 2843

PR(1) | PR(3) [ PR(5) | PR(7) | PR(9) | PR(11)
10 |10 [10 |10 |10 |10
-1.0 |-044|-04 [-10 |-0.74|-04
033 [0.17 |0.15 [0.17 |0.14 |0.10
-0.33 | -0.16 | -0.10 | -0.17 | -0.12 | -0.19
0.19 |0.07 |[0.10 |0.16 |0.11 |0.09
-0.19 | -0.10 | -0.08 | -0.16 | -0.10 | -0.18
0.14 |[0.06 |[0.09 |0.15 |0.10 |0.08
-0.14 | -0.07 | -0.07 | -0.15 | -0.09 | -0.13

It should also be noted that the performance of PR(n) forgarlasalue of n does not always

imply improved results as far as the autocorrelation function is aueater
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4.2 PR(n) sequences from Windows PC:

For binary sequences generated by random number generators in wir@ltvesgerformance of

many-to-one mapping on the quality of the autocorrelation functionés givthe table below:

The results for the windows PC RNG are shown in the table below:

PR(1) | PR(3) | PR(5) | PR(7) | PR(9) | PR(11)
1.0 1.0 1.0 1.0 1.0 1.0
-0.07 | -0.12 | -0.15 | -0.19 | -0.20 | -0.16
0.06 | 0.10 | 0.14 | 0.18 | 0.16 | 0.19
-0.06 | -0.10 | -0.14 | -0.15 | -0.14 | -0.15
0.05 | 0.09 |0.12 |0.16 | 0.14 | 0.18
-0.05 | -0.09 | -0.13 | -0.14 | -0.13 | -0.12
0.04 |0.08 |0.11 |0.15 |0.13 |0.13
-0.04 | -0.08 | -0.10 | -0.13 | -0.12 | -0.11
Table 4.6: The largest value autocorrelation values for Windows R

We see that the use of applying the many-to-one mapping doesprove the autocorrelation

function of this RNG.

4.3 Mesh PR(n) Sequence:
The results of autocorrelation function for PR(n) sequence are giviea falile below:

Table 4.7: The largest value autocorrelation values for the meshsequence

PR(1) | PR(3) [ PR(5) | PR(7) | PR(9) | PR(11)
1.0 |10 |10 |10 |10 |10
-0.08 | -0.14 | -0.22 | -0.18 | -0.19 | -0.23
008 [0.12 [022 [0.19 |0.19 |0.17
-0.07 | -0.13 | -0.16 | -0.16 | -0.17 | -0.15
007 |0.11 |0.18 |[0.18 |0.18 |0.15
-0.06 | -0.11 | -0.15 | -0.15 | -0.16 | -0.13
0.06 |0.10 [0.14 |0.15 |0.15 |0.13
-0.05 | -0.10 | -0.12 | -0.13 | -0.14 | -0.10
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Theperformance of the mesh array sequence to the many-to-one mapping isteithié for the

windows RNG.

4.4 Nested PR(n) Sequences:

Nested PR(n) sequences are nothing but taking the PR(n) seqientes PR(n) sequences.
Below table shows the nested PR(n) sequences for Windowdt R significant that the
performance of nested PR(n) sequences for the windows PRiNG ¥ery good as given by the

results in the table below:

Table 4.8: Nested values for windows RNG

PR(1) | PR(3) | PR3(3) | PR3(PR3(3))
1.0 |10 [1.0 1.0

-0.07 | -0.12 | -0.12 |-0.21

0.06 |0.10 |0.15 |0.18

-0.06 | -0.10 | -0.10 | -0.18

0.05 | 0.09 |[0.14 |o0.16

-0.05 | -0.09 |-0.09 |-0.13

0.04 |0.08 [013 |o0.13

-0.04 | -0.08 | -0.08 |-0.10

The randomness measure for the random sequences and PR(n) sequencasulated as

follows:
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Table 4.9: PR(n) values for all the sequences

P=1117 P=1861 | P=2843 | Win PC | Mesh Array
PR(1) | 0.986390678 0.990382| 0.993393| 0.981007| 0.972194
PR(3) 0.951072 | 0.964047| 0.977966| 0.966357| 0.950941
PR(5) 0.943512 | 0.945826| 0.968162| 0.954581| 0.940452
PR(7) 0.932415 | 0.943862| 0.949445| 0.947845| 0.923323
PR(9) 0.896452 | 0.93822 | 0.949137| 0.935778] 0.896104
PR(11) | 0.892918 | 0.9353680.943303) 0.930733| 0.895849

From the above examples, we can see that the majority afugisees have the highest value of

randomness measure for the PR(3) sequence.

For Windows PC, the randomness measure value is high foR{fid Psequence and is very low
for PR(9) sequence. For Mesh Array, the randomness measuee igsahigh for the PR(7)
sequence and is very low for PR(11) sequence. As mentioned,defoféindows PC and Mesh
Array, the use of applying the many-to-one mapping does nobvmhe randomness measure

value.
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CHAPTER V

CONCLUSION

From the analysis of the above random sequences, we conclude tltptedess have an
excellent randomness measure. However, they are not cryptogtigpsicang when compared
to the random sequences generated from Windows PC and the meshaad@am sequences
because of the linear structure behind their generationhaMe used many-to-one mappings to

improve the cryptographic strength of d-sequences.

For the autocorrelation function of d-sequences, we can seia tinahy cases the negative peak
for half period gets progressively smaller as we incradaaePR(n). The best results are obtained
when n=3. However, the use of applying the many-to-one mapping does praivémthe

autocorrelation function for random sequences from Windows PC and Mesh rampmmncss.
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