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CHAPTER I 

INTRODUCTION 

 

1.1 Random Numbers and Random Sequences: 

A random number is a number generated by some process so that the outcome is unpredictable. It 

is one number that can be drawn from a set of possible numbers, each of which is equally 

probable (in case of single numbers).  

When each number drawn from a set of numbers is statistically independent of the others then 

that sequence is said to be random sequence. Sometimes it is difficult to find whether the 

sequence is random or not. Many investigators have proposed definitions to characterize these 

random number sequences for overcoming the difficulties arising from the same. According to 

Knuth[1], “Random sequence is a sequence of independent numbers with a specified distribution 

and a specified probability of falling in any given range of values”. Scheneier[2] defined that “A 

sequence of random numbers is a sequence that has the same statistical properties as random bits, 

is unpredictable and cannot be reliably reproduced”.  

There are several types of random sequences of which algorithmically random and  pseudo 

random sequences are most important for our purposes. Algorithmically random sequence[3] is a 

sequence of an infinite sequence of binary digits which appear random to any algorithm. Pseudo 

random sequences[3] are those that typically exhibit statistical randomness in spite of being 

generated by an entirely deterministic casual process. This process not only makes it easier to 

produce but also helps in testing and fixation of software.  

Some examples for binary random number sequences are as follows: 

• 00000000000000000000000 
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• 01101010000010011110011 

• 11011110011101011111011 

On the examination of the above sequences, the second and third sequences appear random while 

the first one does not. From a frequency point of view each of these sequences is equally random, 

while from an algorithmic point of view the first one is clearly non-random. Random numbers are 

used for various purposes like generating data encryption and decryption keys, e-commerce, 

simulating and modeling of complex phenomena and selecting random samples from larger data 

sets. They also have applications in the arts including literature, music, games and even gambling. 

Random numbers that are generated by computers are pseudo-random numbers[3]. True random 

numbers[3] are numbers which are completely independent of the other numbers in the sequence 

and where the output is inherently unpredictable.  

In a recent article, Anthes [4] summarizes results on generating true random numbers. In 

particular, he mentions the work at Intel Corp. to use thermal noise on the central processing unit 

of the computer as random number generator (RNG) [5]. This is not unlike the RNGs based on 

quantum processes that have been proposed elsewhere [6], but quantum processes come with 

their own uncertainty [7]-[10]. 

Randomness is generally measured in terms of probability or of complexity. From the lens of 

probability, all binary sequences of length n are equivalent. From the point of view of complexity, 

it depends on the algorithm that has been used to generate the sequence. Ritter has provided a 

summary of several measures of algorithmic complexity [11]. 

1.2 Types of Random Number Generators: 

Given their many applications the need for a fast generation of random sequences using a 

computer program is essential. Two approaches have been developed for generating random 
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sequences using a computer program: Pseudo-Random Number Generators (PRNGs) and True 

Random Number Generators (TRNGs)[14]. 

PRNGs[14] are generators which uses algorithms that have mathematical formulae or just pre-

calculated tables to produce random number sequences. Linear congruential method is one of the 

good example for PRNGs. PRNGs are efficient when they can produce many numbers in a short 

time. Modern PRNGs have a period that is so long that it can be ignored for most practical 

purposes. 

TRNGs[14] are used to extract the randomness from the physical phenomena and introduce it into 

the computer. The best way to generate a TRNG is using quantum processes. Another method is 

to use is a radioactive source that is fed into the computer avoiding any buffering mechanisms in 

the operating system. 

 

1.3 Random Number Generation Methods: 

Traditionally, the first method used to generating random numbers by computer was Von 

Neumann’s mid-square method[15]. The idea behind this method was to take the square of 

previous random number and extract the middle digits. But the mid-square method was slow and 

unsatisfactory. To overcome with this drawback, congruential methods were introduced which 

give better results.  

Generally, an acceptable sequence of pseudo random numbers should satisfy the following 

properties: 

1. Uniformly distributed 

2. Statistically independent 

3. Reproducible and 
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4. Non-repeating for any desired length 

 

Composite generators[15] combine two separate conguential generators. By combining two 

separated generators, we can achieve better statistical behavior than separate generators. Here the 

composite generators uses the second congruential generator to shuffle the output of first 

congruential generator. The first generator is used to fill a vector with the first k random numbers 

of size n where as the second generator is used to generate a random integer r which is uniformly 

distributed over the numbers 1, 2, …, k. The random number which is stored in the rth position is 

returned as the first random number and then replaces the random number in rth position with a 

new random number. This process repeats and generates a random sequence. 

 

Tausworthe generators[15] are additive congruential generators which are obtained when the 

modulus m is equal to 2. 

The formula for these generators is: 

xi = (a1xi-1 + a2xi-2 + anxi-n) (mod 2) 

where xi can be either 0 or 1. These generators are independent of the computer used and its word 

size and also have very large cycles and even produce a stream of bits. Two or more Tausworthe 

generators can be combined in order to obtain statistically good output. 

 

This is a newer algorithm[15] whose output has very excellent statistical properties when 

compared to other generators and its period is very long i.e., 219937-1. This algorithm used 19937 

bits long seed value on a very large linear feedback shift register. 
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1.4 Applications of Random Numbers: 

Random numbers has many applications in several fields: 

• Monte Carlo simulation method 

• Spectrum spreading telecommunication systems 

• Generation of primes 

• Cryptography 

• Computer games and Gambling 

 

A Monte Carlo Method[16] is a technique which uses random numbers and probability to solve 

problems. It is mainly used when the model is complex, non linear, or has more uncertain 

parameters. Typically a simulation involves over 10,000 evaluations of a model. 

In spread-spectrum[17] random numbers are used in order to generate the signals to spread in the 

frequency domain. 

Random numbers are also used for generation of prime numbers. Random primes are used in 

RSA encryption. These numbers are uniformly distributed only on the primes in the range but not 

on the entire range because primes are not uniformly distributed over ranges of positive integers. 

In cryptography, random numbers are used for generation of the following[17]: 

• Nonce is an abbreviation of number used once. It is often a random or pseudo-random 

number generated from an authentication protocol which is used to avoid replay attacks. 

• Key is a piece of information or a parameter which determines the functional output of 

an algorithm. In encryption, a key transforms plain text into cipher text and cipher text 

into plain text in decryption. Keys are also used in other cryptographic algorithms such 
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as digital signature schemes and message authentication codes. Without a key, the 

algorithm would not produce useful result. 

• Challenge is a protocol where in one party presents a question (challenge) and another 

party must provide a valid answer (response) to be authenticated. An example for 

challenge-response protocol is password authentication where the challenge is asking for 

the password and the valid response is the correct password.  

• Initialization vector is a fixed size input to a cryptographic primitive that should be 

random or pseudorandom. Some cryptographic primitives require initialization vector 

only to be non-repeating where the required randomness is derived internally. 

• Padding byte is nothing but padding the input with the padding string of between 1 and 

8 bytes to make the total length a multiple of 8 bytes.  The value of each byte of the 

padding string is set to the number of bytes added - i.e. 8 bytes of value 0x08, 7 bytes of 

value 0x07, 2 bytes of 0x02, or one byte of value 0x01. 

• Blind Signature can be implemented by using a number of public key signing schemes, 

like RSA and DSA. In blind signature, the message is first blinded by combining it with 

a random blinding factor. The blinded message is passed to a signer, and then the signer 

signs it using a standard signing algorithm. The resulting message, along with the 

blinding factor, can be verified against the signer's public key. 

Random numbers plays a vital role in casinos and, in turn, entertainment[18]: 

• Role playing games – used to select the roles randomly. 

• Card shuffling – used for shuffling cards randomly. 

• Lottery tickets – used to obtain random numbers for the tickets. 

• Indoor tennis game – used for making new combination of players. 

• Dungeons and Dragons – based on the random rolls of dice. 
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Random graphs[19] are one of the mainstays of modern discrete mathematics. They have 

been employed extensively as models of real world networks of various types and in 

epidemiology. 

 

1.5 Statistical tests for Random Number Generators: 

The Diehard tests[20] are the statistical tests which are used for measuring the quality of 

a random number generator. These tests require input as a specially formatted binary file 

containing 3 million 32-bit integers. After producing this specially formatted binary file, 

Diehard tests are performed on the resulting file. The tests are: 

• Overlapping permutations: Analyze sequences of five consecutive random 

numbers. The 120 possible orderings should occur with statistically equal 

probability. 

• Birthday Spacings: Choose random points on a large interval. The spacings 

between the points should be asymptotically exponentially distributed. The name 

is based on the birthday paradox. 

• Monkey Tests: Treat sequences of some number of bits as "words". Count the 

overlapping words in a stream. The number of "words" that don't appear should 

follow a known distribution. The name is based on the infinite monkey theorem. 

• Ranks Of Matrices: Select some number of bits from some number of random 

numbers to form a matrix over {0,1}, then determine the rank of the matrix. 

Count the ranks. 
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• Parking Lot Test: Randomly place unit circles in a 100 x 100 square. If the circle 

overlaps an existing one, try again. After 12,000 tries, the number of successfully 

"parked" circles should follow a certain normal distribution. 

• Count The 1s: Count the 1 bits in each of either successive or chosen bytes. 

Convert the counts to "letters", and count the occurrences of five-letter "words". 

• Minimum Distance Test: Randomly place 8,000 points in a 10,000 x 10,000 

square, then find the minimum distance between the pairs. The square of this 

distance should be exponentially distributed with a certain mean. 

• Random Spheres Test: Randomly choose 4,000 points in a cube of edge 1,000. 

Center a sphere on each point, whose radius is the minimum distance to another 

point. The smallest sphere's volume should be exponentially distributed with a 

certain mean. 

• The Squeeze Test: Multiply 231 by random floats on [0,1) until you reach 1. 

Repeat this 100,000 times. The number of floats needed to reach 1 should follow 

a certain distribution. 

• Runs Test: Generate a long sequence of random floats on [0,1). Count ascending 

and descending runs. The counts should follow a certain distribution. 

• Overlapping Sums Test: Generate a long sequence of random floats on [0,1). 

Add sequences of 100 consecutive floats. The sums should be normally 

distributed with characteristic mean and sigma. 

• The Craps Test: Play 200,000 games of craps, counting the wins and the number 

of throws per game. Each count should follow a certain distribution. 
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CHAPTER II 
 

 

COMPARISION OF SOME RANDOM SEQUENCES 

2.1 Binary Decimal Sequences: 

Binary random sequences[21] are generated by starting with the decimal sequences. A 

decimal sequence is obtained by representing a number in a decimal form in a base r and it may 

terminate, repeat or be aperiodic. For a certain class of decimal sequences of 1/q, q prime, the 

digits spaced half a period apart add up to r-1, where r is the base in which the sequence is 

expressed. These decimal sequences are periodic and their randomness properties are checked 

only in one period. Decimal sequences are known to have good auto correlation properties and 

they can be used in applications involving pseudorandom sequences. 

Any periodic sequence can be represented as a generalized d-sequence m/n, where m and n are 

suitable natural numbers, i.e., positive integers. 

 

Figure 2.1: General Random sequences as a subset of d-sequences 
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2.1.1 Properties of Decimal Sequences: 

Properties of decimal sequences from [22] to [24], which are summarized below: 

Frequency Characteristics: 

Theorem 1: Any positive number x may be expressed as a decimal in the scale of r 

A1A2...As+1.a1.a2… 

Where 0 ≤ Ai < r , 0≤ ai < r, not all A and a are zero, and an infinity of the ai are less than (r-1). 

There is a one to one correspondence between the numbers and the decimals, and 

X = A1r
s + A2r

s-1 + … + As+1 + a1/r + a2/r
2 + ….. 

For example, ¼ can be represented as 0.25 in the scale of 10 and 0.01 in the scale of 2. The 

decimal sequences of rational and irrational numbers may be possibly used to generate 

pseudorandom sequences and this is suggested by the following properties of decimals of real 

numbers. 

 

Theorem 2: Almost all decimals, in any scale, contain all possible digits which mean that the 

property applies everywhere except to a set of measure zero. 

 

Theorem 3: Almost all decimals, in any base, contain all possible sequences of any number of 

digits. 
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Theorem 2 and 3 guarantee that a decimal sequence missing any digit is exceptional to know the 

behavior of the digits for any particular decimal sequence. 

For example: A number x is said to be simply normal in base r if in the decimal of x each of the r 

possible digits occur with a frequency 1/r, i.e., 

Limnb / n → 1/r where n → ∞ 

For all b, where the digit b occurs nb times in the first n places. 

 

Theorem 4: Almost all numbers are normal in any base. 

It may be noted, however, that while finite periodic decimal sequences may be simply normal in 

a given scale, they will not be simply normal in all scales. For example, consider 

x = 0.0123456789 

which is simply normal in the scale of 10. In the scale of 1010 the same number is x = .b where b 

is 123456789, which is not simply normal, 1010-1 digits being missing. So, a normal number 

cannot be rational. Theorem 4 guarantees the existence of an uncountably infinity of irrational 

numbers, whose decimal representation would perfectly exhibit all randomness properties. 

Generating a periodic sequence from its rational number representation is computationally less 

complex than generating it from an irrational number. 

Theorem 5: The decimal for a rational number p/q between 0 and 1 is terminating or recurring, 

and any terminating and recurring decimal in the scale of 10 is equal to a rational number. If 

(p,q)=1, q=2α5β, and max(α,β) = µ, then the decimal terminates after µ digits. If p,q)=1, q=2α5βQ, 

where Q > 1, (Q,10) = 1, and v is the order of 10(mod q), then the decimal contains µ non-

recurring and v recurring digits. 
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Theorem 6: Suppose 0 < x <1, x = p/q,(p,q) = 1. If q = sαtβ...uγ, where s,t…u are the prime factors 

of r, and µ = max(α,β…γ), then the decimal for x terminates at the µth digit. If q is prime to r and 

v is the order of r(mod q), then the decimal is pure recurring and has period of v digits. If q= 

sαtβ...uγQ, (Q>1), Q is prime to r, and v is the order of r(mod Q), then the decimal is mixed 

recurring, and has µ non-recurring and v recurring digits. 

 

Theorem 7: A maximum length decimal sequence when multiplied by p, p < q, is a cyclic 

permutation of itself. 

The remainders 1,2,…q-1 obtained during the division of 1/q have a one-way correspondence 

with the coefficients 0,1,…r-1. Since p/q starts off with a remainder rp(mod q) instead of r(mod 

q), there would be a corresponding shift of a decimal sequence. 

 

Theorem 8: if the decimal sequence, in the scale of r, of p/q; (p,q)=1, p < q, and (r,p) = 1is 

shifted to the left in a cyclic manner, 1 times, the resulting sequence corresponds to the number 

p¹/q,(p¹,q)=1,p¹<q where p¹ = r¹ × p(mod q). 

 

Theorem 9: For a maximum length decimal sequence 1/q = a1a2 …ak, k = q-1, in the scale of r: 

ai + ak/2+I = r-1 

For example: x = {1/19} in base r =2 

x ↔ 0 0 0 0 1 1 0 1 0 1 1 1 1 0 0 1 0 1 

Here, ai + ak/2+I = r-1=1 

The extension to the above theorem is stated below. 

 

Theorem 10: If the period k of the decimal sequence of 1/q, q prime, is even in the scale r: 

ai + ak/2+I = r-1 
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Some additional structural properties of the remainder and the decimal sequences digits are 

presented below. 

 

Theorem 11: For a maximal length decimal sequence the remainder sequence m1m1…mk, k = q-

1, satisfies the relations 

mimq-1 = m1(mod q) 

miml-i - 2 mjml-j + ml = 0(mod q) for all I, j, l. 

 

Theorem 12: The decimal sequence of 1/q, where q is of the form rN + 1 when expressed in the 

scale of r would be N consecutive zeros followed by N consecutive (r-1)’s. 

 

Distance Properties: 

Let the ith remainder in the division of 1/q be represented by mi, where m0 = 1, mi = r mi-1 – qai. 

So, the following is obtained. 

mi+j = rj+1mi-1 – qli(j+1) 

where li (j+1) = rjai + rj-1ai+1 +… + r ai+j-1 + ai+j. 

 

Theorem 13: For a binary decimal sequence 1/q, if 2m > q, then all li (m) are different. 

For such a sequence, all subsequences of length m are different. 
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Theorem 14: The Hamming Distance dj between the binary maximum length sequence {1/q} and 

its jth cyclic shift satisfies 

dj ≥ k/m, j ≠ 0, j < k, 

where 2m > q, k = q-1. 

At least one of each m consecutive digits is different from Theorem 13. Hence, the minimum 

distance between each set of m digits is one. For a total of k such group of digits, the distance is 

k, and since the sequence considered is m times over, the distance is k/m. 

 

Randomness Properties: 

The randomness of a periodic binary sequence of +1’s and -1’s can be checked by comparing the 

run characteristics of +1’s and -1’s as well as its autocorrelation function to that obtained for a 

normal number where the digits are independent. 

 

Autocorrelation Properties: 

Let the equation below represent the auto-correlation function of the decimal sequence a1…an. 

kj

n

j
jaa

n
kC

+

=

∑=
0

1
)(  

For a normal number, the autocorrelation function is: 

C1(τ) = E(anan+τ) 

Where the nth digit of the sequence an ϵ {0,1,2, … r-1}. The autocorrelation function is two-

valued for a binary random sequence. 
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2.1.2 Generation of Decimal Sequences: 

According to the standard method, the binary d-sequence is generated using the algorithm 

below[16]: 

a(i) = 2i mod p mod 2 

where p is a prime number. The maximum length period (p-1) sequences are generated when 2 is 

a primitive root of p. 

This may be rewritten as:  
 

     a(0)= 2 

b(i+1) = 2b(i)  mod q 

a(i)=b(i) mod 2 

 

To generate decimal expansions of 1/p, one may use the following formula[17]: 

If prime ends in 1, 

a(i) = 9 × 10i mod p mod 10 

If prime ends in 3, 

a(i) = 3 × 10i mod p mod 10 

If prime ends in 7, 

a(i) = 7 × 10i mod p mod 10 

If prime ends in 9, 
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a(i) = 10i mod p mod 10 

The above formula produces a random sequence of decimal numbers ranging from 0 to 9. These 

decimals are then converted to an equivalent binary numbers, which results in a sequence of 

binary numbers. 

 

2.1.3 Examples for Decimal Sequences: 

1) For p=1117 

The binary sequence equivalent to the above decimal sequence is: 

000000000011101010101011111000111001010010111101110000111111010000010101000101
011100010111001001011101000011001001101011101101111001001111010011000101000110
010111000010000111101011010111111001000111111101101101010100100100011100001100
001001011001011000011101110010110100100110010001100010000101110110000001111100
101011010100001110011100000100110100000001100110101011001100111001000100010011
000001011011101011001001001110011000011010001000001000101101011000001111001000
000101000010101100010110001110110010000100111011010110111110011100111111011110
111111110100111111111100010101010100000111000110101101000010001111000000101111
101010111010100011101000110110100010111100110110010100010010000110110000101100
111010111001101000111101111000010100101000000110111000000010010010101011011011
100011110011110110100110100111100010001101001011011001101110011101111010001001
111110000011010100101011110001100011111011001011111110011001010100110011000110
111011101100111110100100010100110110110001100111100101110111110111010010100111
110000110111111010111101010011101001110001001101111011000100101001000001100011
000000100001000000001011 

The period of binary sequence is 1116 

The auto-correlation values of the above binary sequence are in the below graph: 
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Figure 2.2. Autocorrelation for binary sequence generated using p=1117; period = 1116. 

 

2) For p = 1541 

The binary sequence equivalent to the above decimal sequence is: 

000000000010101010000111001110011111101001011010000010100100110011000000000010
101010000111001110011111101001011010000010100100110011000000000010101010000111
001110011111101001011010000010100100110011000000000010101010000111001110011111
101001011010000010100100110011000000000010101010000111001110011111101001011010
000010100100110011000000000010101010000111001110011111101001011010000010100100
110011000000000010101010000111001110011111101001011010000010100100110011000000
000010101010000111001110011111101001011010000010100100110011000000000010101010
000111001110011111101001011010000010100100110011000000000010101010000111001110
011111101001011010000010100100110011000000000010101010000111001110011111101001
011010000010100100110011000000000010101010000111001110011111101001011010000010
100100110011000000000010101010000111001110011111101001011010000010100100110011
000000000010101010000111001110011111101001011010000010100100110011000000000010
101010000111001110011111101001011010000010100100110011000000000010101010000111
001110011111101001011010000010100100110011000000000010101010000111001110011111
101001011010000010100100110011000000000010101010000111001110011111101001011010
000010100100110011000000000010101010000111001110011111101001011010000010100100
110011000000000010101010000111001110011111101001011010000010100100110011000000
000010101010000111001110011111101001011010000010100100110011000000000010101010
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000111001110011111101001011010000010100100110011000000000010101010000111001110
0111111010010110100000101001001100110000000000101010100001 

The length of decimal sequence is 1541 

The period of the binary sequence is 1540 

The auto-correlation values of the above binary sequence are in the below graph: 

 

Figure 2.2. Autocorrelation for binary sequence generated using p=1541; period = 1540. 

 

3) For p = 1861 

The binary sequence equivalent to the above decimal sequence is: 

000000000010001100110111001010010110011111011011101011110001110101001100111001
010111001101101001110010001011001101100000111110101110100100000111000000111111
110100111111101100001100001111100010110101100101000110110101111111100001001011
111011101111000101000111111100011011000110010111001011011100111011000000110111
000001100011000010110010010001110100000110011101110010000010011010000100010101
010100100110011000010001111000100000001100000110101111011000111011101100111000
010000110010000100100110111011011111101011000101110011111101101010010101011001
000000000110100110100101011111000011011110010011000011010101011111100110101100
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000101101000111101010110100001101000100010111100001011101100010101000010111111
011110111111000100100100101110101000100000101111010100100001111110100011100011
110011001101001111010111110101010001010011000101100010010110110001000010100101
000100101001001000010110110101011100010011011001010110000111001110001100111111
111101110011001000110101101001100000100100010100001110001010110011000110101000
110010010110001101110100110010011111000001010001011011111000111111000000001011
000000010011110011110000011101001010011010111001001010000000011110110100000100
010000111010111000000011100100111001101000110100100011000100111111001000111110
011100111101001101101110001011111001100010001101111101100101111011101010101011
011001100111101110000111011111110011111001010000100111000100010011000111101111
001101111011011001000100100000010100111010001100000010010101101010100110111111
111001011001011010100000111100100001101100111100101010100000011001010011111010
010111000010101001011110010111011101000011110100010011101010111101000000100001
000000111011011011010001010111011111010000101011011110000001011100011100001100
110010110000101000001010101110101100111010011101101001001110111101011010111011
010110110111101001001010100011101100100110101001111000110001110011 

The length of decimal sequence is 1861 

The period of the binary sequence is 1860 

The auto-correlation values of the above binary sequence are in the below graph: 

 

Figure 2.3. Autocorrelation for binary sequence generated using p=1861; period = 1860. 
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2.1.4 Randomness measured by Autocorrelation Function: 

For simplicity, we consider only the autocorrelation function as measure of randomness. Since 

the randomness measure of discrete-time white noise sequence is 1 whereas that of a constant 

sequence is 0, this measure conforms to our intuitive expectations. The value of randomness for a 

binary shift register maximum-length sequence is close to 1, in accord with our expectations. The 

function for a maximum-length d-sequence is has a negative peak of -1 for half the period 

because  of the anti-symmetry of the sequence. 

Randomness may be quantified by measuring how much the autocorrelation departs from the 

ideal of white noise. Kak defines this randomness measure R(x) [26] by the expression below: 

 

I have calculated the randomness measure for several d-sequences which have the results as 

follows: 

R(1117) = 0.986390678 

R(1861) = 0.990382 

R(2843) = 0.993393 

This shows that d-sequences are quite random from the perspective of this measure. 

2.2 Binary sequences from Windows PC 

Different random number generators are used for PC applications. Here I have taken an online 

random number generator and generated random numbers to determine their autocorrelation 

function. 
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I downloaded the random number generator from www.cnet.com to my PC where it asks for the 

type of random sequence to be generated, such as decimal, binary etc, and also the length of the 

sequence.  

The binary random sequence generated for a length of 2000 is shown below: 

100010110101000111100100110011010100001110111101101001111011010000001010111100
011111001010100011110001001100011110001011110100000111010111000101010101110111
011010011000000101101000111001101010100000101110111100100110110000101100101010
010001011000011100001011111001000101110010001000110011011100010010011011110010
001101100101100010111001111110010110101000001010000110111010010110001010000111
110101011011010110100011001110000111101011000010100100111010001010101101100100
010010100011011110001000110011010010001101100010100000100000011000010010111100
011111101111011010010101011111001010111000010100110110111000010001001000010100
110000100101001001111110010000111110100100011010111011110100010110100101001101
000100110000101100101101100101000101000101101001011000111010110111110111100101
010110110101010111011000111110101110110111000110101010111100100101101100001001
100110100011000011001110001011110001111001100010001110001111100110101000110111
110111010110011010100111110101110011001110000110011000110010111111011111011101
001100010000010100111000011111110110010010010011101011101010111110010111101011
101001000110110010000011111111100001001110010000001001100010111000010001100111
001010101010101000101000011000010000110011000010000010000100001000000001001010
011011010100110010000110001000000110110001100100010001010100101001111111001100
101111110011010100101100101010010010010011000111011110010111100100000011111101
101001010111101000111001011010110010000010010111100010011001001011100110111111
010010111010101100111010110000110110000001110000000000101100111010000111110101
111011101101100100101101111001101111110001010100101110001100111101101000110110
000001001110010001010100000110011110100000000100100111100000010011000100100101
001110101111001111011110111010100001100001001101111111000011111000010110001010
011110110110110101101100110011011110111011110101011100100110101100001010111010
100101000010110001110000011101001100000000011011010100110010111111011111000010
11110010010000000000100101000100101000111111111001 
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The auto-correlation values of the above binary sequence are in the below graph: 

 

Figure 2.5. Autocorrelation for binary sequence generated from windows PC. 

The randomness measure for this binary sequence is: 

R(x) = 0.981007 

 

This value is lower than the values found for d-sequences. But just this fact should not lead to the 

conclusion that d-sequences are superior owing to their obvious structure in the sense that the 

second half of the sequence is a complement of the first half. 
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CHAPTER III 
 

 

MESH ARRAY SCRAMBLING OF NUMBERS 

 

This chapter presents the use of mesh array for matrix multiplication [27]-[28] for generating 

random sequences.  

 

3.1 Standard and Mesh Arrays: 

In contrast to the standard array that requires 3n-2 steps to complete its computation, the mesh 

array requires only 2n-1 steps[27]. 

When we consider the problem of matrix multiplication, the standard array to compute the 

product of two 3 × 3 matrices is shown in Figure 3.1. It can be easily seen that the number of 

steps to solve this problem is (3n-2). The numbers inside the circle are the indices of the product 

matrix. 
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Figure 3.1: Standard Array matrix multiplication of two 3×3 matrices 

 

The mesh array [27] of Figure 3.2 is more efficient than the standard array of Figure 3.1. The 

time taken to execute matrix multiplication on it is (2n-1). 

 

3.2 Matrix Multiplication on a Mesh Array: 

Matrix multiplication[27]-[28] is basic to many computational problems. In signal processing, the 

signal is usually transformed by a matrix. For an image the signal itself is a matrix, and for a one-

dimensional signal, a large data set can be represented as a matrix. 
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Figure 3.2 presents the mesh array for multiplying two 4 × 4 matrices which takes 7 steps, 

whereas the standard array requires the same number of steps to multiply two 3 × 3 matrices. The 

speedup of the mesh array is a consequence of the fact that no zeros are padded in its inputs. 

 

Figure 3.2: Mesh Array matrix multiplication of two 4×4 matrices C = AB 

 

In the mesh array for the matrix multiplication the top layer has the diagonal terms 11, 22, 33, etc 

as goes from left to right. These numbers are written in the array as below. 
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11   22   33   44 

12   31   24   43 

32   14   41   23 

34   42   13   21 

We can see that the fourth row is the mirror reversed image of the second row and the third row 

has symmetry within itself. 

For the 5×5 matrix, the product components are as follows: 

11   22   33   44   55 

12   31   24   53   45 

32   14   51   25   43 

34   52   15   41   23 

54   35   42   13   21 

3.3 Scrambling Transformations: 

We have seen that the product matrix values do not appear in the standard arrangement[28]. The 

new arrangement when a matrix is multiplied with the identity matrix may be called scrambling 

transformation S. Given a total of n×n = n2 items, the total number of permutations is n2!.  
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Figure 3.3: Mesh Array matrix multiplication of matrix A with Identity Matrix 

 

Let the scrambling transformation is denoted by S, if the scrambling transformation is applied 

repeatedly, we obtain the original standard array in some number of steps. For the 4×4 matrix, the 

original array will be obtained in 7 steps[28]. 
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11   12   13   14  S 11   22   33   44  S2 11   31   41   21  S3  

21   22   23   24  → 12   31   24   43  → 22   32   43   13  → 

31   32   33   34   32   14   41   23   14   44   34   24 

41   42   43   44   34   42   13   21   23   42   33   12 

 

 

11   32   34   12  S4 11   14   23   22  S5 11   44   24   31  S6 

31   14   43   13  → 12   31   24   42  → 14   21   41   34  → 

44   21   23   43   21   12   24   13   12   22   43   33 

24   42   41   22   43   42   34   31   13   42   23   32 

 

 

11   21   43   32  S7 11   12   13   14 

44   12   34   23  → 21   22   23   24 

22   31   13   41   31   32   33   34  

33   42   24   14   41   42   43   44  

 

3.3.1 Generating Cycles: 

As shown in [28], the items of both standard array and mesh array for the 4×4 case will be written 

in an array as follows: 

 

   11  12  13  14  21  22  23  24  31  32  33  34  41  42  43  44 

(               ) 

   11  22  33  44  12  31  24  43  32  14  41  23  34  42  13  21 
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By using the above arrangement, we can write the standard and mesh arrays into cycles. The 

cycles generated from the above arrangement are as follows: 

= (11) (42) (12 22 31 32 14 44 21) (13 33 41 34 23 24 43) 

 

By writing the standard array and mesh array into cycles, we get the period of the 

scrambling transformations. The period is nothing but the maximum of lengths of the 

cycles since the lengths of the cycles are {1,1,7,7}, the period of the scrambling 

transformation = 7. 

 

3.3.2 Prime Periods: 

Some periods of the cycles associated with matrices of order n×n are prime. Over the range of n 

from 2 to 1000, the matrices associated with prime periods have the following distribution[29]: 

• 101 – 200 ---- 15 

• 201 – 300 ---- 10 

• 301 – 400 ---- 11 

• 401 – 500 ---- 5 

• 501 – 600 ---- 3 

• 601 – 700 ---- 8 

• 701 – 800 ---- 5 

• 801 – 900 ---- 4 
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• 901 – 1000---- 12 

 

3.4 Generating Binary Sequence: 

We can create a binary sequence of the periods in terms of 1s and 0s where the even period is 

represented as 1 and odd period is represented as 0[29]. The binary sequence for the periods of 

orders 2 to 1000 is as follows: 

 

111011011000011000000100000000000000010000000010000000000000001000001000000000

000000000000010100000110000000001000100000001010110000010000000000000000000000

101000000100000000000000001000000100000001000001100000000010000000010000100010

000000000000000000000000001000100000000000000000000000100000010000000000010000

000010000000000011000000000000010000000000010000000000000000000000000000000000

001101110000000000000000000000010100000000000000000001000000000000000000100000

000010000000000000000000000000000000000000000100000000000000000000000000000000

000000000000000000000000000000000000010001000000000000000000001000001100100000

000000000000000000000000000100000000000000000000000110000100000000000000000000

000000000000010000000000000000000000000000110000000000000001000000000000000000

000000000000000100000000000000000000000010000001000000000001000000000010000000

000000000000000000000000000000000000000010000000100100000000001000000000000000

000000000110000000000001000000101000000000100000000000000001000 

 

The autocorrelation function for k ranging from 0 to 1000 is shown in Figure 3.4. 



31 

 

 

Figure 3.4: Autocorrelation Function of periods of mesh array 

 

The randomness measure for random sequence generated from the Mesh Array is: 

R(x) = 0.972194 

 

This is quite close to but not as high as the values obtained for d-sequences.
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CHAPTER IV 
 

 

CRYPTOGRAPHIC HARDENING OF PSEUDORANDOM SEQUENCES 

 

In this chapter, we investigate results of a method of cryptographic strengthening of RNGs. 

Basically the idea is to apply a many–to-one mapping to the binary output of the RNG, increasing 

the complexity of the reverse process. We wish to consider the use of a 3-to-1 and higher 

mappings where each group of 0s and 1s is replaced by whatever is the majority to see if it 

improves the autocorrelation function of the resultant sequence. This will be tried both for the 

Windows based RNGs as well as d-sequences  

4.1 The PR(n) Sequence: 

The PR(n) sequences[32] emerges by mapping each group of adjacent n bits (n odd) of the PR 

sequence to 0 or 1 depending on whether it has a majority of 0s or 1s. We have done experiments 

on many d-sequences and we find that PR(3) provides significant improvement and that there is 

no significant advantage in taking larger values of n.  

Let us take some examples for d-sequences, then the PR(n) sequences will be as follows: 

P=1571: 

Original Sequence or PR(1): 

000000000010100110110111010100101001111000010000100111110000101011101010111110
101001111101011110010110011001111111011011011111111001011110110101101100010111
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010011010110011100100110010010110100100011010111000110010100000111111111000001
011011010000010000010010111001110001000101101111100111111000100000010000111100
100111100110010000001101101100000010011100011011110111010111010000101111100101
010001101000111100010010101111010101101000011101000000010111011101110001111001
111000111010010101100101110110001001000010110011111001101001010001001001101001
111010110111011111000101010101100011001111010001101110001010000001011000101001
011000111110001111111000110101000111110111001100110101010010010010101010000111
111001110011101100100110111100100010011000100001100100011000010001111011001100
010101111111111010110010010001010110101100001111011110110000011110101000101010
000010101100000101000011010011001100000001001001000000001101000010010100100111
010001011001010011000110110011011010010110111001010001110011010111110000000001
111101001001011111011111011010001100011101110100100000110000001110111111011110
000110110000110011011111100100100111111011000111001000010001010001011110100000
110101011100101110000111011010100001010100101111000101111111010001000100011100
001100001110001011010100110100010011101101111010011000001100101101011101101100
101100001010010001000001110101010100111001100001011100100011101011111101001110
101101001110000011100000001110010101110000010001100110010101011011011010101011
110000001100011000100110110010000110111011001110111100110111001111011100001001
1001110101 

 

Figure 4.1: Autocorrelation function for PR(1) for 1/1571 
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3-numbers or PR(3): 

000001110010100001101110111011110110111111101111100101011001001001010100011100
110000001010011101100000100101000110001011110100110100101000110110110001111010
101001011100001110100000101011110101010100110000101010110110110111001100001001
101110011000100000100011000111101000011001111011101000100101010000000001000001
001001011110011000110110001100111110001110001001111101101111000111010000001100
111011011000001101110000100001010010011110100011111010000000110010001001111101
11010100010110000101111011100010011001110110110110000100 

 

 

Figure 4.2: Autocorrelation function for PR(3) for 1/1571 

The autocorrelation function in Figure 4.2 is better than that in Figure $.1 because the negative 

peak for half the sequence has been reduced. 
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5 numbers or PR(5): 

000110010010111111101111111110101110010110001101000110011100010100010001111010
011001010001111101011000111000011110001101001000101001110100101110110000000110
011100110110100000001000000000101000110100111001011100110001110101110111000010
110011010111000001010011100011110000111001011011101011000101101000100111111100
11 

 

Figure 4.3: Autocorrelation function for PR(5) for 1/1571 

 

The autocorrelation function in Figure 4.3 is unchanged for Figure 4.1 as 5 divides 1570. 

 

7 numbers or PR(7): 

001101010110111111111011100010011000010111000100001110100101100011110110011001
111101000000110010100011110000011011001010100100000000010011010010011110100011
001101000101101001010100010110011100011010111100010001110000011111010 
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Figure 4.4: Autocorrelation function for PR(7) for 1/1571 

 

 

9 numbers or PR(9): 

001000011111111101100000101010010011010110101010001110100100111101100011010000
111000010110111000000000010001101100110100100101000011100110000011011000110011
1001001110011111010 
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Figure 4.5: Autocorrelation function for PR(9) for 1/1571 

 

 

11 numbers or PR(11): 

011000111111111100101101011010101110101001111011011101100011100110100001100100
00100000011010111100110110010110010001010110010111001001100011100 
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Figure 4.6: Autocorrelation function for PR(11) for 1/1571 

 

 

From the above graphs, we can say that the negative peak for half the period gets smaller and 

smaller as we increase n in PR(n) and the improvement in randomness for PR(11) is quite 

impressive. 

 

The tables below provide the list of the largest values of the autocorrelation function for the given 

sequences. The off-1 or -1 values are 0.33 and -0.33 for PR(1). We see that these values have 

reduced to 0.11 and -0.13 for the d-sequence corresponding to 1907[32]. There is corresponding 

improvement (not necessarily of the same extent) for the other examples given below. 
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1541: 

Table 4.1: Reduction in the largest value Autocorrelation function values for d-sequence 1541 

PR(1) PR(3) PR(5) PR(7) PR(9) PR(11) 

1.0 1.0 1.0 1.0 1.0 1.0 

-1.0 -0.26 -0.28 -0.19 -0.22 -0.31 

0.33 0.94 0.74 0.65 0.86 -0.94 

-0.33 -0.24 -0.26 -0.15 -0.17 -0.27 

0.19 0.71 0.47 0.51 0.74 -0.88 

-0.19 -0.21 -0.21 -0.14 -0.13 -0.24 

0.14 0.57 0.31 0.42 0.49 -0.77 

-0.14 -0.19 -0.19 -0.12 -0.08 -0.21 

 

1907: 

Table 4.2: Reduction in the largest value Autocorrelation function values for d-sequence 1907 

PR(1) PR(3) PR(5) PR(7) PR(9) PR(11) 

1.0 1.0 1.0 1.0 1.0 1.0 

-1.0 -0.50 -0.37 -0.46 -0.81 -0.38 

0.33 0.11 0.11 0.18 0.19 0.26 

-0.33 -0.13 -0.12 -0.13 -0.21 -0.17 

0.20 0.08 0.10 0.12 0.18 0.18 

-0.20 -0.10 -0.11 -0.12 -0.20 -0.16 

0.14 0.07 0.09 0.10 0.17 0.17 

-0.14 -0.07 -0.10 -0.10 -0.18 -0.13 

 

2243: 

Table 4.3: Reduction in the largest value Autocorrelation function values for d-sequence 2243 

PR(1) PR(3) PR(5) PR(7) PR(9) PR(11) 

1.0 1.0 1.0 1.0 1.0 1.0 

-1.0 -0.49 -0.38 -0.42 -0.39 -0.80 

0.33 0.19 0.12 0.11 0.12 0.2 

-0.33 -0.12 -0.09 -0.19 -0.21 -0.2 

0.19 0.09 0.11 0.10 0.11 0.19 

-0.19 -0.08 -0.07 -0.11 -0.20 -0.19 

0.14 0.08 0.10 0.09 0.10 0.14 
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-0.14 -0.07 -0.06 -0.09 -0.19 -0.14 

 

2333: 

Table 4.4: Reduction in the largest value Autocorrelation function values for d-sequence 2333 

PR(1) PR(3) PR(5) PR(7) PR(9) PR(11) 

1.0 1.0 1.0 1.0 1.0 1.0 

-1.0 -0.52 -0.40 -0.39 -0.35 -1.0 

0.33 0.09 1.13 0.12 0.15 0.21 

-0.33 -0.10 -0.11 -0.17 -0.21 -0.21 

0.19 0.06 0.08 0.11 0.14 0.19 

-0.19 -0.09 -0.09 -0.14 -0.18 -0.19 

0.14 0.05 0.07 0.10 0.12 0.18 

-0.14 -0.08 -0.08 -0.13 -0.15 -0.18 

 

2843: 

Table 4.5: Reduction in the largest value Autocorrelation function values for d-sequence 2843 

PR(1) PR(3) PR(5) PR(7) PR(9) PR(11) 

1.0 1.0 1.0 1.0 1.0 1.0 

-1.0 -0.44 -0.4 -1.0 -0.74 -0.4 

0.33 0.17 0.15 0.17 0.14 0.10 

-0.33 -0.16 -0.10 -0.17 -0.12 -0.19 

0.19 0.07 0.10 0.16 0.11 0.09 

-0.19 -0.10 -0.08 -0.16 -0.10 -0.18 

0.14 0.06 0.09 0.15 0.10 0.08 

-0.14 -0.07 -0.07 -0.15 -0.09 -0.13 

 

It should also be noted that the performance of PR(n) for a larger value of n does not always 

imply improved results as far as the autocorrelation function is concerned.  
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4.2 PR(n) sequences from Windows PC: 

For binary sequences generated by random number generators in windows PC the performance of 

many-to-one mapping on the quality of the autocorrelation function is given in the table below: 

The results for the windows PC RNG are shown in the table below: 

PR(1) PR(3) PR(5) PR(7) PR(9) PR(11) 

1.0 1.0 1.0 1.0 1.0 1.0 

-0.07 -0.12 -0.15 -0.19 -0.20 -0.16 

0.06 0.10 0.14 0.18 0.16 0.19 

-0.06 -0.10 -0.14 -0.15 -0.14 -0.15 

0.05 0.09 0.12 0.16 0.14 0.18 

-0.05 -0.09 -0.13 -0.14 -0.13 -0.12 

0.04 0.08 0.11 0.15 0.13 0.13 

-0.04 -0.08 -0.10 -0.13 -0.12 -0.11 

Table 4.6: The largest value autocorrelation values for Windows RNG 

We see that the use of applying the many-to-one mapping does not improve the autocorrelation 

function of this RNG. 

4.3 Mesh PR(n) Sequence: 

The results of autocorrelation function for PR(n) sequence are given in the table below: 

Table 4.7: The largest value autocorrelation values for the mesh array sequence 

PR(1) PR(3) PR(5) PR(7) PR(9) PR(11) 

1.0 1.0 1.0 1.0 1.0 1.0 

-0.08 -0.14 -0.22 -0.18 -0.19 -0.23 

0.08 0.12 0.22 0.19 0.19 0.17 

-0.07 -0.13 -0.16 -0.16 -0.17 -0.15 

0.07 0.11 0.18 0.18 0.18 0.15 

-0.06 -0.11 -0.15 -0.15 -0.16 -0.13 

0.06 0.10 0.14 0.15 0.15 0.13 

-0.05 -0.10 -0.12 -0.13 -0.14 -0.10 
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The performance of the mesh array sequence to the many-to-one mapping is similar to that for the 

windows RNG. 

4.4 Nested PR(n) Sequences: 

Nested PR(n) sequences are nothing but taking the PR(n) sequences for the PR(n) sequences. 

Below table shows the nested PR(n) sequences for Windows PC. It is significant that the 

performance of nested PR(n) sequences for the windows PRNG is not very good as given by the 

results in the table below: 

Table 4.8: Nested values for windows RNG 

PR(1) PR(3) PR3(3) PR3(PR3(3)) 

1.0 1.0 1.0 1.0 

-0.07 -0.12 -0.12 -0.21 

0.06 0.10 0.15 0.18 

-0.06 -0.10 -0.10 -0.18 

0.05 0.09 0.14 0.16 

-0.05 -0.09 -0.09 -0.13 

0.04 0.08 0.13 0.13 

-0.04 -0.08 -0.08 -0.10 

 

The randomness measure for the random sequences and PR(n) sequences are calculated as 

follows: 
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Table 4.9: PR(n) values for all the sequences 

 

 

 

 

 

 

From the above examples, we can see that the majority of d-sequences have the highest value of 

randomness measure for the PR(3) sequence. 

For Windows PC, the randomness measure value is high for the PR(11) sequence and is very low 

for PR(9) sequence. For Mesh Array, the randomness measure value is high for the PR(7) 

sequence and is very low for PR(11) sequence. As mentioned before, for Windows PC and Mesh 

Array, the use of applying  the many-to-one mapping does not improve the randomness measure 

value. 

 

 

 P=1117 P=1861 P=2843 Win PC Mesh Array 

PR(1) 0.986390678 0.990382 0.993393 0.981007 0.972194 

PR(3) 0.951072 0.964047 0.977966 0.966357 0.950941 

PR(5) 0.943512 0.945826 0.968162 0.954581 0.940452 

PR(7) 0.932415 0.943862 0.949445 0.947845 0.923323 

PR(9) 0.896452 0.93822 0.949137 0.935778 0.896104 

PR(11) 0.892918 0.935363 0.943303 0.930733 0.895849 
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CHAPTER V 
 

 

CONCLUSION 

 

From the analysis of the above random sequences, we conclude that d-sequences have an 

excellent randomness measure. However, they are not cryptographically strong when compared 

to the random sequences generated from Windows PC and the mesh array random sequences 

because of the linear structure behind their generation. We have used many-to-one mappings to 

improve the cryptographic strength of d-sequences. 

 

For the autocorrelation function of d-sequences, we can see that in many cases the negative peak 

for half period gets progressively smaller as we increase n in PR(n). The best results are obtained 

when n=3. However, the use of applying the many-to-one mapping does not improve the 

autocorrelation function for random sequences from Windows PC and Mesh random sequences. 
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