
A NEW SOFTWARE PROCESS MODEL DESIGNED

FROM THE BASICS OF EVOLUTIONARY BIOLOGY

AND SOFTWARE EVOLUTION

 By

 MURUGAPPAN RAMANATHAN

 Master of Science in Computer Science

 Oklahoma State University

 Stillwater, Oklahoma

 2007

 Submitted to the Faculty of the

 Graduate College of the

 Oklahoma State University

 in partial fulfillment of

 the requirements for

 the Degree of

 MASTER OF SCIENCE

 December, 2007

 ii

 A NEW SOFTWARE PROCESS MODEL DESIGNED

FROM THE BASICS OF EVOLUTIONARY BIOLOGY

AND SOFTWARE EVOLUTION

 Thesis Approved:

Dr. Johnson Thomas

 Thesis Adviser

 Dr.Venkatesh Sarangan

 Dr.Nophill Park

 Dr. A. Gordon Emslie

 Dean of the Graduate College

 iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION..1

II. REVIEW OF LITERATURE..4

 Reasons to Improve software development methods...4

 Similarities between software evolution and evolutionary biology.........................7

 Macro Level comparison ..8

 Micro Level Comparison ..9

III. METHODLOGY ...12

 Creating a new model ..12

 Existing Models ...12

IV. PROPOSED MODEL..15

 Infinity Model based software and biology ...15

 Evolution or Revolution...18

 Evolutionary Cycle Personnel...18

 Revolutionary Cycle Personnel...19

 Evolution in Software ...20

 Requirement (Mutation)...21

 Evolutionary Requirements ..23

 Revolutionary Requirements ..24

 Planning (Selection)...25

 Things to be planned...26

 Development (Genetic Pattern Generation)...27

 Group Personnel..29

 Evolution or Revolution...29

 Personnel Involved..30

 Technological Cycle ..31

 Coding and Internal Documentation (DNA Production)32

 Personnel Involved..33

 Testing and Documentation (Repair)...34

 iv

 Personnel Involved..35

 Packaging, Deployment and Feedback (DNA Replication)35

 Personnel Involved..36

V. CASE STUDY: SOFTWARE PROCESS MODEL EVALUATION....................39

 Water Fall Model ...39

 Critique ...40

 Spiral Model...42

 Critique ...43

 Prototyping...44

 Critique ...45

 Extreme Programming ..46

 Twelve Steps...46

 Critique ...47

 Staged Software Life Cycle Model..49

 Critique ...50

 PSPM Model..51

 Critique ...52

VI. CASE STUDY: EXAMPLES FROM COMPANY SOFTWARE........................54

 Avionics Case Study..54

 Microsoft Software ..57

 Embedded System..59

 Open Source Software ...60

 Device Driver...63

 Legacy Software: Department of Defense...65

 Evolution in Nature: Lizard ...66

VII. CONCLUSION ..70

REFERENCES ..72

APPENDIX..77

 v

LIST OF TABLES

Table Page

 1. Laws of Software Evolution ...5

 2. Classification of Software Evolution Challenges ...6

 3. Dependability perspective of evolution ..21

 4. Comparison between different software life cycle model53

 5. Types of requirement changes identified in the case study56

 6. Properties incorporated into the Infinity Model from the case studies69

 vi

LIST OF FIGURES

Figure Page

 1. Infinity Model ...17

 2. Evolution layers ..20

 3. Requirement engineering questions..24

 4. Loops in Infinity Model ..38

 5. Water fall model ...40

 6. Spiral Model..43

 7. Extreme programming ..47

 8. Staged Model ..49

 9. PSPM Model...51

 10. Number of requirement changes per software release ..55

 11. Total number of requirements per software release..55

 12. Data revealing the size and growth of sub-systems in the Linux Kernel60

 13. Growth of the lines of source code ...61

 14. Patterns of software system evolution for four different F/OSS systems...........62

 15. Application with Critical Vulnerabilities for Windows Vista63

 1

CHAPTER I

INTRODUCTION

 Software engineering can be defined as the application of a systematic,

disciplined, quantifiable approach to the development, operation, and maintenance of

software. This process of development of software is achieved by using different

software life cycle models to design, code and test the software. The main purpose of the

software process model is to create reliable and security oriented software.

 The software process model consists of several steps like collection of

requirements, designing the architecture, coding, testing and maintenance. Several

process models like the water fall model, spiral model and prototyping are used by

companies to create the software. But most of these models were designed for a single

generation of software. This is a major drawback because most of the software’s today

have started to have several versions and generations and the present models do not

support evolutionary software. For example software created today can be designed from

different models like waterfall or spiral, written in different languages like Java or VC++;

it can run on Windows or a Linux system and depends on the varied hardware

environment it runs on. With so many varied methods of development the idea of

software integration and quality in the software generations has become a major concern.

 2

Some of the problems in the existing methods are that they are not designed to

produce generations of software. Also a single model cannot be used by different types of

companies as some are non iterative like the waterfall model and some are more ad hoc

like the extreme programming method. Researchers such as Dr. MM Lehman have

started to look into the degrading quality in software and have postulated the eight laws

of software evolution [1] to help companies to understand the importance of evolution in

software. Several challenges [2] have been found in the creation of evolutionary software

such as the models used, the human resource involved, and the support available to the

end user. From these challenges several new methods have been designed like the staged

model and the PSPM model. But these models give more importance to the maintenance

phase rather than the whole software life cycle.

In this paper, we propose solutions to problems in existing models by applying

some of the principles of evolution in biology and biochemistry to software, and an

abstract model has been generated. It is also a unification model of all the existing models

and evolutionary principles. The basic building blocks in biology are the DNA,

genotypes, phenotypes and enzymes. By altering these basic properties by the methods of

mutation and selection, nature is able to create evolution in organisms. These basic

principles of evolution were incorporated into the varying steps in the process model to

generate an evolutionary process model. The model is called the Infinity Model. It is

named so because its basic structure is based on the infinity symbol and it signifies the

continuous iteration of software for several generations. It consists of a completely new

design cycle with the importance given to both the creation of software and maintaining

 3

the software. The main advantage of this model is that it is designed for evolutionary

software. In this model, methods to correct the problems in the existing models like

resource allocation, documentation and requirement updating have been incorporated.

Moreover several case studies of large company software and the problems they faced

were studied. From the case studies several methods like requirement evolution,

consolidation and architectural evolution have been incorporated into the Infinity Model.

In the next chapter, the reasons to improve the software process model are

assessed in detail. We then look into the various similarities between software and

biology and the various levels at which they can be compared. In Chapter three the

drawbacks in the existing software models are viewed and also the necessary

improvements are studied. In Chapter four the Infinity Model is proposed and the

different steps in the life cycle are looked at. In chapter five the first case study of the

various software models available today are studied as well as the disadvantages in these

models. The ideas and principles behind these models are explored. In the penultimate

chapter case studies from different companies are studied and the changes and ideas from

these case studies added into the Infinity Model. The thesis concludes in chapter 7.

 4

CHAPTER II

REVIEW OF LITERATURE

Reasons to improve software development methods

As stated earlier software today can be written in different languages for varying

hardware and run on various operating systems. Over a period of time the requirements

and the expectations of the software seem to increase, but the quality of the software

seems to decrease [1]. The initial problem here is the method followed by large

companies to code their software. Even big operating system companies tend to release

software with known bugs and errors [9]. If the quality is not achieved in the first

generation of the code then it becomes tougher in the future generations. The process

model used will define the whole lifetime of the system. If the model is not good then the

system has to be reprogrammed from scratch once again, leading to a waste of human and

economic resources.

If one takes into consideration operating systems (OS), each and every operating

system has a different method of functioning and no two OS can communicate with each

other directly. The problem here is the methods used in the development process. Small

software companies therefore find it difficult to code software to run on all operating

systems. This makes them code a lot of drivers to run in different systems and change it

 5

for newer generations. Hence the companies tend to write drivers with less quality.

Another issue is the methods of software development followed by the companies.

Even though there are so many models for creation, due to time and economical

constraints companies tend to perform various parts of the upgrade using the extreme

programming method. The main idea behind the extreme programming method is to

write codes in a simple fashion for immediate concerns without thinking of the future

[10]. Due to this the project goes to phase-out stage sooner.

When so many problems can occur in a single generation, the problem multiplies

for multi generation software. The various problems have been defined by the eight laws

of software evolution given by Dr. Lehman [1].

Table 1: Laws of Software Evolution [1]

 6

The challenges that are present today for evolutionary software have been

discussed in a workshop called Challenges on Soft-ware Evolution (ChaSE 2005) [2],

which was jointly organized by the ESF Research Network RELEASE (Research Links

to Explore and Advance Software Evolution) and the ERCIM Working Group on

Software Evolution. The table presenting the challenges in software evolution is given

below.

Table 2: Classification of software evolution challenges [2]

 7

Several different methods and solutions have been discussed to solve the

challenges shown in the table. These challenges can be faced only by improving the

process models, languages and human training [2]. Software engineers are now at a stage

where they will have to rethink strategies to achieve better results and produce good

software. To achieve this, one of the main requirements is to create a better process

model to code the software. In order to achieve a better model, one does not have to

develop new algorithms which have no base model or tested strategy. One just has to

look into nature to see how a biological entity works and how ecology, even though being

so diverse with all the living organisms, can control evolution by a common inbuilt code

called the DNA. By looking into biology and software generation techniques, a better

process model can be built.

Similarities between software evolution and evolutionary biology

 Nature controls all the organisms with a single code called DNA {B}. DNA is a

nucleic acid that contains the genetic instructions used in the development and

functioning of all known living organisms. By changing the DNA sequence in a micro

level the organism is able to perform drastic changes. For an example, although only 5%

of the chromosomes differ between a chimpanzee and a human, the difference between

these organisms is very huge. One has to look into nature at various levels (such as DNA

level, enzyme level, phenotype level etc…) to achieve a pattern and correlate our

software to a common pattern. By achieving this, software can be created in a more

quality oriented way.

 8

This does not imply one can only compare software at the coding level. Software

also can be compared to evolutionary biology in the process model level. Several

questions like why mutation {C} happens, how nature does natural selection {D} and the

main characteristics of evolution that leads to the survivability of the organism can help

in creating an effective process model. Software and evolutionary biology can be

compared at two levels, the macro level and the micro level. This paper will investigate

the macro level idea first because only after the macro level black box is opened, will

researchers be able to open the micro level black box.

Macro Level Comparison

 At the macro level comparison huge similarities can be found between evolution

and software. For example, if the program code is compared to DNA, then a single

installation of the code is a cell and the whole software base for that code installed in

different systems is an organism (organism is similar to installed base). The survival and

reproduction of the organism depends on the code and the environment it runs on

(environment is the hardware and user) [12]. Looking closely, both software and

biological organisms have many functions in common for example, both try to replicate,

repair and upgrade for the given conditions.

The process of repair and upgrade is done by the methods of mutation and

selection in nature (Mutation, Selection are similar to Software Life Cycle). Mutation

occurs when a DNA gene is damaged or changed in such a way as to alter the genetic

 9

message carried by that gene. Natural selection is the process by which favorable traits

that are heritable become more common in successive generations of a population of

reproducing organisms, and unfavorable traits that are heritable become less common.

This is similar to the requirement collection and planning in software.

 Comparing the relation between an OS and the other applications, one can find

the similarity to the symbiosis {G} in nature [12]. The term symbiosis can be used to

describe various degrees of the close relationship between organisms of different species.

The various device drivers and the operating system works in the form of symbiosis. But

the most important part for survival of both software and nature is co-evolution {H}. In

biology, co-evolution is the mutual evolutionary influence between two species. Co-

evolution in software is improving the dependent software together (such as the operating

system and the drivers), so that the quality and security in both the software is maintained

through the generations. When all these biological properties are incorporated into the

corresponding steps in software, it leads to the creation of evolutionary software.

Micro Level Comparison

 Even though theoretical micro level comparison is possible at this time, the

methods to achieve software evolution at this level will not be possible, until the

architecture to create the evolutionary cycle in the macro level is defined. By taking a

closer look at the micro level comparison one can see that DNA and software have a lot

of similarities. For example, DNA is made of four codes - A, T, C and G and software is

 10

made of binary codes - 0 and 1. In DNA even though there are four codes, A is

complementary to T and C to G. They always occur as pairs and that makes them more

like the binary code. Moreover the white blood cells available in DNA for protection

from viruses are similar to how an anti-virus tries to protect code. In nature when an

organism gets hurt, the white blood cells immediately try to quarantine the bad cells and

stop the bleeding and then try to kill the virus. Similarly in most of the anti-virus today

the virus code after detection is quarantined and deleted.

In nature, genotype describes the genetic constitution of an individual that is the

specific allelic makeup of an individual, usually with reference to a specific character

under consideration. The phenotype of an individual organism describes one of its traits

or characteristics that is measurable and that is expressed in only a subset of the

individuals within. The genotype-phenotype distinction must be drawn when trying to

understand the inheritance of traits and their evolution. This genotype {E} –phenotype

{F} modularity {I} and inheritance present in nature can be compared to the module-

function relation present in the software [12]. When the phenotype is changed the

genotype changes, similarly when a function is changed in the code the corresponding

module undergoes a change.

 In nature, information is passed from DNA to RNA in the process of transcription

and from RNA to protein by translation. In software the assembly code is compiled to an

object code and that is executed to get the output. There are also similarities in the way

mutations take place. In software a singe function is taken and is changed according to

 11

the newer requirements; in biology, DNA tries to change the parts which can make the

organism survive in the new environment. Even though the similarities can be seen in this

level one still has to first get a high-level pattern to achieve greater understanding into

how to convert a code to a DNA sequence.

 Even though such similarities can be seen in evolutionary biology and software

evolution, there are a few differences also [13]. In biological evolution the pace is slow,

and the mutations that take place are random. However, in software the mutations are

decided in the requirement phase itself. Software has these variations because of human

involvement, but one does not have to copy nature completely to create the model, one

just has to understand the principles and incorporate them into software.

 12

CHAPTER III

METHODOLOGY

A new evolutionary biology based software process

 Whenever a new idea is thought of, one will have to go back and look into other

process models and see their working methods. That is the main idea of evolution and so

that is also the first step for creating the Infinity Model. When one looks into the existing

software one can get a better idea for the need of a new evolutionary software process

model.

Existing Models

 The most common place models available today are the waterfall model, spiral

model and extreme programming method. However when one looks into these software

models even though they may be useful in some projects, they will not be effective to

create an iterative cycle of integrated system software. In future, software is not going to

be a separate module or a part, each and every component is going to be virtualized and

the main requirement for those systems are going to be intercommunication, inter-

adaptability and security [14]. Many systems created today cannot run on other software

based systems and also if they are able to communicate their performance is poor. For

example even though the latest Apple systems allow Windows OS to run in their

 13

hardware, the systems tend to overheat and some operations cannot be performed as done

in the Windows based system. Another example is when a lot of audio and video formats

are present with no particular media player to play, leading to usage of unsafe software

packages to run these files.

Going back to the models, in the waterfall model, once a step is crossed one

cannot go back to that step, and this makes it only usable in very simple software [15].

There is no iteration in the waterfall model and therefore developments and upgrades

cannot be done before all the steps are completed. This leads to wastage of time, cost and

human resource. The spiral model even though it is iterative, does not include cycles for

maintenance of the software. In this model if an error is found or a new idea is to be

incorporated, it cannot be done before going to the next cycle. The spiral models

disadvantage is that it comes back in the next cycle to do the correction, taking up a lot of

time and resources. Furthermore, there are no process steps for upgrades or patches, and

this leads companies to use other methods to change the code, and the original

architecture is lost. The extreme programming method even though effective for small

companies has some major flaws like minimum or no documentation, and no group

programming. The other models like prototyping are costly and can be used by only large

companies.

There are two other models designed to solve the problem of software evolution.

They are the staged model [11] and the PSPM software life cycle [16]. Both the models

are new and have been designed with the software maintenance perspective. Ideas have

 14

been taken from them and incorporated into the Infinity Model.

There can be many kinds of models for small and less costly products which do

not go into an iterative process. However, for large projects with lot of iteration there

seems to be no universal process model and companies tend to build their own model,

which is not shared and which leads to software mismatch.

 15

CHAPTER IV

PROPOSED MODEL

Infinity Model based on software biology

 The model which is proposed in this paper is named the Infinity Model. The name

is to signify that this model is for processes and projects which keep going for

generations. Generation does not just mean a new version, but also upgrades and patches

within a single version. The main idea behind this process is iteration, but in a varied

style where both full cycles and half cycles of the model can be performed. The other

important advantages of this model are natural selection and future mutation. The ideas

that are going to be implemented from biology are genotype-phenotype hierarchy, gene-

robustness, and principles of symbiosis and gene duplication. These basic principles are

the building blocks in biology and this when incorporated into software gives a better

pattern, a simple and more effective design.

As stated before biology and software do have their differences and this leads us

to consider software evolution also. If a closer look is taken at the methods to develop

software, most of the software products today go in for updates and maintenance till the

phase-out of a generation. They then think about the next generation, and what changes

can be done in that generation but this will not help companies in the long run.

 16

In the Infinity Model, the cycle does not start from the beginning but from the

middle. This can be better understood when the model is explained. The idea of starting

the process in the middle is to achieve half cycles in the process. The advantage of this is

if one sees a problem in the methods which have been used, even though the planning

and development methods are finished, instead of going into coding and then coming

back one can straight away go back to planning. Furthermore, when a new upgrade for a

part or a patch has to be done, developers need not wait till all the steps are completed,

but can go to coding with all the initial documentation they have and try to create the

code. By this the company can have a continuous research and feedback cycle, and all the

time somebody will be working in either cycle of the model. The proposed approach will

therefore save time and resources, while generating better code.

Whenever a project is started there are the issues of cost. The companies tend to

spend more time on coding rather than designing, and ultimately waste more time. It is

better to have a slow and steady process than to go into an overnight finished product.

This doesn’t mean the company has to spend extra cost. They just have to plan to do the

process in parallel.

The method to do this is during the requirement [16] and the planning steps more

time is spent, and during the coding step project is divided in to effective modules and

created in parallel. Moreover, testing is made a part of the whole project. When these

steps are followed, initially the projects pace may seem slow but during the later steps the

pace will be quicker and the programming will be very effective.

 17

The various Steps of the Infinity Model are

1. Evolution Or Revolution

2. Requirements == Mutations

3. Planning == Selection

4. Development == Genetic Pattern Generation

5. Coding == DNA production

6. Testing == Repair

7. Packaging, Deployment and Feedback == DNA replication

The diagram given below gives the Infinity Model. The two cycles can be viewed, the

first cycle is called the diplomatic cycle and the second cycle is the technological cycle.

Figure 1: Infinity Model

 18

Evolution or Revolution

The initial step is not planning but evolution or revolution. This is because the

main idea of the project is selection, and this has to be done from the initial step. The

selection that takes place here is, whether it is going to be creation of a next generation

for existing software (evolution) or creation of completely new software (revolution).

Even though evolutionary biology states that there is no macro evolution, in terms of

software there is something that gives us a better understanding; both the creators and the

methods of creation are known.

If the goal is going to be creating a new generation then it is an evolution, and

documentation of the old project is taken into the diplomatic cycle. Each and every

developer going to be involved has to work with the old product to get an idea of what

they are going to do. The most important function to be performed is the collection of all

feedback from previous users, and selection of properties which are going to be

continued. If it is going to be a new project then all the modules created for other projects

which can be used have to be collected. The competitor products available have to be

thoroughly researched. The people involved in this step are based on the selection of

evolution or revolution type.

Evolutionary cycle personnel involved

1. Project manager and programmers of existing generation

 19

2. Second set of programmers to start work in new phase

3. Financial advisor (Experienced)

4. Client

5. Testers – Old generation and new recruits

6. Users of the Old generation

7. Private Reviewers

Revolutionary Cycle personnel

1. Experienced project manager

2. Quality oriented programmers

3. Financial advisor (committee)

4. Client

5. Private Reviewer

6. Testers (well experienced)

By doing the selection, a clear idea of how the project is going to be continued

and also who are going to be involved is found. If the project is a continuation, the

company already has the knowledge of the time and money that is going to be involved.

The project should involve more experienced people to maintain quality. However if it is

going to be a completely new project then more new developers can be used and fewer

number of experienced people are enough.

 20

The Infinity Model has internal evolutions also other than the overall software

evolution, and these can be seen in the diagram below.

Evolution in Software

Figure 2: Evolution layers [17]

After the evolution or revolution step the various other evolutions like the

requirement evolution and the architectural evolution take place. The necessity of these

evolutions can be understood from the table below.

 21

Table 3: Dependability perspective of Evolution [17, 20, and 21]

Requirements (Mutations)

The next step after making the decision of going into an evolutionary cycle or a

revolutionary project is to get the requirements. In nature, the requirements that are

collected are the change in the climate, predators and ecology. This leads to the

 22

survivability and the adaptability of an organism. Nature takes in the input and does the

process of mutation. It generates both good and bad mutations. Next using the process of

selection, the good mutation (those that survive) are left and the bad mutations disappear.

Even though the path followed by nature is at a slow pace, the important thing for

software is, all the ideas generated during the requirement phase should be reviewed and

documented. The most important concept in evolution is to understand that mutation is

not the end of evolution but the beginning of a new one. Once a mutation takes place, a

set of new mutations take place to support the change and standardize it. Similarly in

software, the requirements are the starting step. Any new requirement is a starting point

for a number of future requirements which will arise within the software life cycle or

after a generation is released.

A continuous method of collection and implementation of the requirements is

necessary. This is achieved by getting all the ideas (requirements) noted down and

including them in the document. By this when the new project is going into generation all

the old ideas can be looked up, and useful ones can be applied to the new phase. After

getting all the requirements, they have to be arranged in the order of most interesting

ideas to the least ones and the most applicable ideas to the least ones. This has to be

documented and read by all the people involved in the project team before they come into

the planning phase. By doing this, the groups when coding, can look up the other

requirements and try to create modules in such a way that they can accommodate those

requirements in the future.

 23

The requirement maturity index [18, 19] for the software package is given by

RMI = RT – RC / RT

Where RMI is the requirement maturity index, RT is the total number of requirements

and RC is total number of changes. Using this formula, engineers can decide the change

in the size of the project and also the human resource involvement required. If the RMI

increases then the complexity of the code will increase, and more testing will be required

for the project.

In the Infinity Model, the requirement phase is performed with a different group

of people to collect different types of data for both the cycles. The requirements will vary

for both the cycles and the different requirements can be seen below.

Evolutionary requirement

The new set of requirements for this cycle is obtained from a number of people

1. Feedback from users

2. Requirements from the client

3. Ideas from the previous creators

4. Future changes that need to be done based on the software and hardware.

Checking into the future is required because the environment it is going to be

deployed into may change before the project is released. The requirements collection will

 24

have to proceed till the planned generation may exist theoretically in some form.

Revolution requirement

1. Complete requirement from the client

2. Questionnaire requirement from the future user

3. Future requirements if the product is going to go into cycles

The grouping of requirement engineering questions

Figure 3: Requirement engineering questions [17, 20]

Even though the project may be new to the company, if the company is planning

to venture into the market of the new software then a detailed study of how it is going to

work in the future has to be made in this phase. By doing this the company can decide

how to plan the human resource and the cost required for the project.

 25

Planning (Selection)

The planning phase is the phase of selection. In evolution even though a number

of mutants are created by nature, only those that survive are selected to be replicated. For

example when organisms started the generation of an eye, initially most of the organism

types did not have the biochemical components for an eye in them. When a change in the

DNA {B} led for the creation of a single cell biochemical reaction, it was replicated in all

the offsprings, and today almost all the organisms have some type of eye component in

them. The eye of each and every organism has improved on the environment it lives.

In software there is a necessity to produce successful products, but how one can

relate to evolution is by checking the survivability of software in the past and creating the

new generation [22]. For example, in the past the graphical user interface for software

was not available. All the computers worked on character based interface, but once the

graphical user interface came into existence all software were made with visual interface.

This leads to the point where during planning of software the visual aesthetics of the code

have to be given a lot of importance. Furthermore, planning the look and feel of the

software has to be discussed to get a successful product in the first release itself.

In the Infinity Model, during the planning phase the number of people should be

high to perform a better selection of the requirements. They should be divided into

groups. They will have to discuss about the various requirements to be selected for that

generation. Then all the groups have to present their selection. The method of voting has

 26

to be used to make the final selection of requirements from the different groups.

The groups should be allowed to make decisions on all parts of the project. The

group should consist of all the people who are going to be involved in the process like the

programmers, testers, hardware engineers, financial consultants, human resource

managers and the clients.

Things to be planned

1. What kind of resources will be required

2. How the project is going to be performed

3. Language

4. Hardware Environment

5. Tools

6. The number of layers in the project

7. Future improvements and methods to allow them

8. Functions to be reused

9. Functions to be changed

10. What will be the size of the group

11. Time and cost analysis

12. People going to be involved

a. Programmers

b. Testers

 27

Development (Genetic Pattern generation)

 The development phase is where the real architecture is decided. The most

important part in biological evolution is whenever a new DNA sequence helps the

organism’s survival it is incorporated into the existing DNA structure. When the

organism reproduces, the basic DNA code of the organism has the instruction for the next

generation DNA sequences also. The idea behind this is even if mutations are performed

in the organism continuously only the code of the surviving pattern is replicated.

In software when creating an algorithm or a flow chart the most important thing to

remember is that the properties of the old generation that survived and were liked by the

users have to be repeated. The general structure should always be maintained to improve

the success and security of the software.

In the development phase, a new evolutionary step starts which is the architecture

evolution. Here all the requirements are designed into a formal architecture. This leads to

new requirements and changes [17, 22] that have to be incorporated for standardizing the

architecture. The development phase is never ending and will always have to be repeated

to improve the system. The algorithms and the flowchart of the project are going to be

developed here. During the development the number of layers in the project and the

functions of the project have to be decided. For this group meetings have to be arranged

and the full group has to meet at the starting and at the end of the project. This is to make

sure that every one has an idea of the pattern that is going to be used in the project.

 28

During the end meeting a person from an old project or some other project has to be

called to inspect the phase, to make sure the planned components can be achieved with

the architecture. The layers have to be decided to allocate coding groups according to

each layer. The layers make it easy to calculate the time to be spent in the project.

Examples for layers are the basic kernel level, the visual display level etc. The

architectural properties which are decided here are functions, modules, GUI, partner

software compatibility and security.

 The biological concepts which are integrated in this phase are the gene-robustness

{I}, genotypes {E}, phenotypes {F} and symbiosis {G}. By incorporating gene-

robustness architectural stability is achieved. The core properties (inner most modules) of

the code are well secured and changes to them is limited. This is done to make the base

strong and secured. The internal kernel can undergo only minimal change in a generation

to safeguard the quality of the software. The genotypes and phenotypes are the modules

and functions that are going to be used in the project. In nature, when the phenotype is

changed the genotype changes accordingly. The genotypes are modular, and this helps to

reduce virus attacks. By making software more modular it is easier to make more changes

and also remove modules if they are not working. The last is the symbiosis; while

designing the system the architecture includes all the other codes which are going to

survive on the main code (kernel). These codes also share the hardware environment with

the main projects code. All these codes have to be collected and documented. This

information is important to standardize the functionality and the reliability of the code in

the hardware environment. By incorporating these biological concepts the survivability of

 29

the software increases.

Group personnel

1. Project manager

2. Programmers

3. Testers

4. Client

5. Outside project manager

6. Financial advisor

Evolution OR Revolution

By coming back to this step the changes in the state of the project can be studied.

For example different companies may have come up with similar products. New ideas

which could get a breakthrough may have been found. Changes to the architecture to

improve it or a new virus might have been found which could affect the code just

decided. A project cannot be stopped for up-gradations, but the developers can start a

new half cycle in the Infinity Model to look at methods to repair or improve the product

[2, 17, and 25]. This cannot be done at the end of the project because of the time delay.

Original ideas may be lost and changes that could have saved the system would

ultimately lead to a huge loss. At the beginning of the project the ideas are varied, and

groups involved want a lot of different things. Even though they may have sounded

 30

promising at the beginning, when the development phase is reached people have more

understanding to the project and realize its limitations. They are then in a better position

to make better decisions on where improvements could be really made.

 To achieve a better result from the project, the developers will have to redo the

selection of evolution or revolution. By doing this a pattern can be generated, and if a

new idea is found to improve the project or correct the problems found during the

algorithm generation, it can be sent to the next evolutionary cycle. If a completely new

requirement (an extra tool) outside the pattern is found then it goes to the revolutionary

cycle. This recycle is not done by the old personnel who are going into the technological

cycle, but by a new team who have been looking into the project from the outside from

the beginning. This new team starts the work on the improvements and by doing this the

company can have two teams who have a good idea of the project. The security and

upgrading can be done with little problems as the product has been in a continuous

improvement cycle.

Personnel Involved

1. Project manager (Two people)

2. Tester (One or Two teams)

3. Programmers (Two Teams)

4. Client

5. Financial consultant

 31

The original group should be used in the initial stage along with the new group. The

second group should take over and start the process again if there is place for

development.

Technological Cycle

The second cycle in the Infinity Model performs the technical side of the project.

This cycle is more private. It involves only company workers like programmers and

testers. However in the final step, the client is brought back to perform problem solving

and provide feedback. Software maintenance [2] is basically performed in this cycle. The

main advantage of the Infinity Model is to allow software maintenance to be a cycle in

the iterative model rather than a separate step.

Many companies perform updating and correction of large projects by a method

called the extreme programming style. This is a separate method and is not a part of the

original process model. The main difference in the Infinity Model is to standardize the

methods and help companies to achieve better results than the methods they already

employ. For example even though extreme programming [10] is used to reduce time, the

amount of material the company has before starting coding is very limited and this leads

to programming errors and loop holes.

In the Infinity Model this cycle is a repetition. By performing this part of the cycle

 32

alone the architecture of the program is maintained, and newer changes are being

incorporated in the documentation. This cycle performs the upgrading and error

corrections. This cycle reduces the complexity and increases the quality of the software.

Coding and Internal Documentation (DNA production)

This is the start of the second cycle. The architecture is decided and algorithms

are given to the various groups. The groups were decided by the project manager and the

human resource personnel in the previous phase. The programmers are given the

functions and layers which they are going to code. The standard methods for inducing

security in the code [23, 24] are provided. A few years ago security in software [14] was

not a big issue and programmers where coding using different methods. With the latest

security threats, there is a need for programming methods with internal security. This can

be found in biology were DNA {B} has an internal code for repair called the white blood

cells [6].

The purpose of these cells is to quarantine and heel the parts which are affected

and protect the parts which are not. Whenever a DNA is created the basic pattern of

repair is also coded with it in all the repetitions, and it makes it easy for the organism to

detect viruses. For example if humans were attached by a virus, the body tries to increase

the body temperature and give symptoms to inform of the attack. It does not go straight

down to shutdown mode. Similar methods have to be performed in the coding phase. The

functions when joined have to coexist and protect themselves when attacked [16, 24].

 33

Check points and internal testing have to be constructed within the program.

The programmers have to follow the algorithm created in the development phase

seriously. No deviations are allowed from the main specs. Programmers also have to do

some testing before giving it to the test group. The tests should be in the form of grey box

testing [24] and should test the basic requirements. This has to be performed by the group

which did that particular module of the program and also by the groups which performed

the predecessor and successor modules.

Personnel Involved

1. Project manager

2. Programmers

3. Testers

This phase alone can be used to perform upgrades and maintenance. To do this the

company will have to create an algorithm to allow the changes in the architecture. The

algorithm should follow the pattern of the existing code and have the security measures

inbuilt in code. The group which does the program has to see the issues which led to

problems in the code, and try to create code patches without creating dormant code. The

style of programming differes according to the project size; for large projects larger

groups are used and a single group does a single module. For smaller projects, pair

programming is used.

 34

Testing and Documentation (Repair)

Testing [26] is the toughest part of the cycle. The testers will have to check if the

product meets requirements, and if the quality and security issues are met. They have to

look into the code without any prejudice and see if the code follows the check points, if

the algorithm was followed and if any dormant code was created. The tester should be

given permission to question the programmers on the parts which are doubtful. On the

whole, the project depends more on the testers than on the programmers. If the tester

misses an error, it leads to loss that cannot be corrected in that version.

Testing is the place where real mutations happen. The testers are the first users to

find new requirements, changes for the next generation and the necessary updates. They

give out not only the errors, but also the necessary first hand information on how the

product works and also the parts which need change.

As the testers have been involved with the project from the start, they should

create test modules before the programmers do the coding. They should also generate

tests to check the check points and virus checking mechanisms constructed into the

program. Extensive black box testing should then be performed and if the outputs are

wrong then white box testing is done. Some level of mutation testing has to be performed

to check for random errors that could have been created by the programmer. Testing

should be done not only by the personnel involved, but also by the client at the end to

make sure it meets the requirement. This is because, correcting a product already into

 35

production is tougher and would be a lot easier if there is an unofficial check by the client

beforehand. If it is a product like an operating system then the workers of the company

have to be made to use the product. The inputs have to be used by the testers and

programmers.

Documentation is an internal part of testing and the documents have to be updated

continuously to report a success or a failure. If there is a failure then the reason for its

occurrence and the corrective steps have to be documented. After the corrections are

mode, the changed modules and results should be attached to the document.

Personnel Involved

1. Test Lead

2. Junior Tester

3. Client

4. Programmer if required

 Testing is similar to planning, but here the selection takes place on the parts of the

code to be upgraded and the changes that need be made.

Packaging, Deployment and Feedback (DNA Replication)

This is the last step in a single cycle of the Infinity model. This by itself is not a

maintenance step like the waterfall model or the spiral model [23, 24, 28, and 29]. This is

 36

because maintenance is not a single step. Based on the feedback the maintenance may

require a full cycle or a half cycle repetition to get the required result.

 The first part of this step is packaging. The overall packaging of the software and

all the help utilities decides the survivability. In the finished product, the necessary help

topics are added to the code from the documentation. The next part is deployment. It may

be done in beta versions or as a full version. If it is released in beta then the feedback is

initiated in a large scale. If it is the full version the maintenance phase of the project

begins. The feedback is a multi-level, multi-loop and multi-user feedback. The feedback

is the most important step for any evolutionary product. The general public or users tend

to use the project in a way not decided by the creators and therefore are more likely to

suggest new ideas and report errors.

This is not an end step but the start of evolution for this generation and the next

[16]. The feedback from the help desk is the most important part of the documentation for

the evolutionary process model. The company will have to document all the new ideas

and errors without repetition. By doing this, when the cycle goes back to the evolution or

the revolution step the teams can sit around and analyze the next generation.

Personnel Involved

1. Help topic documentation writers

2. Project manager

 37

3. Programmer (Any of the Two groups)

4. Client

 In the next step of Evolution or Revolution, the updates and changes from the

feedback are done. The decision to go back to the diplomatic cycle is made.

Consolidation of the changes in equal intervals of time is done based on the number of

requirement changes (RMI). After all the parts are finished the company goes back to the

initial step. Here decisions to improve the product are made. The economical gains

achieved and the other clients for the product are explored. This is similar to nature where

the survivability and adaptability of the new organism [12, 13] is tested continuously. All

this leads to the next generation of the organism or software. The human resources

involved in this step are the programmers, testers and the clients. They have to decide

whether it is going to be a half cycle or the full cycle for upgrading the software. This is

the last step in a single full cycle.

In the figure below, the various steps are divided into appropriate parts. There are

two important cycles; they are the requirement – feedback cycle [17, 20] and the

development - coding cycle. Both provide requirements to the software in different ways.

The feedback – requirement cycle provides new ideas, consolidation and updates to be

added to the generation. The development - coding cycle allows changes which are used

to correct the requirements which are already available, and by natural selection the

required properties are incorporated in to the final product.

 38

Figure 4: Loops in Infinity Model

The Infinity model is an abstract model designed to help evolutionary software

and improve the methods of production of software. The Infinity model incorporates

several evolutions like the requirement evolution [17], architectural evolution [20],

system evolution [17, 21] and software evolution. It also contains the basic principles of

evolutionary biology. The model is designed in a way that any kind of company, small or

large could use it to design software

The Infinity model is designed to reduce the economical constraints [30] present

in evolutionary and legacy software. This is done by giving methods and ideas to

improve the human resource usage, time reduction and economic reuse of the functions in

the previous generations. Any company can take up the model and customize it to

incorporate the company policies and procedures. The process model is itself a starting

step for mutations.

 39

CHAPTER V

CASE STUDY: SOFTWARE PROCESS MODEL EVALUATION

In this chapter the methods followed by the existing process models are looked in

depth. The models disadvantages for evolutionary software are given in the form of a

critique. The models looked into are the waterfall model, spiral model, prototyping,

extreme programming, staged model and the PSPM model.

Waterfall Model

The waterfall model [23] is a purely sequential method of performing software

engineering. The first step is the requirement collection and after all the requirements are

obtained the process moves to design. In the design stage the method of development of

the software is planned and the architecture of the software is created. When the design is

fully completed, an implementation of that design is made by coders. During the coding

phase several programmers work in small teams and develop separate parts of the

software. At the end of this phase all the parts are integrated. After the implementation

and integration phases are complete, the software product is tested and debugged. Any

faults introduced in earlier phases are removed here. Then the software product is

installed, and maintenance is performed to introduce new functionality and remove

errors.

 40

Thus, in the waterfall model the team moves from one phase to the next only after

the preceding phase is completed and perfected. Phases of development in the waterfall

model are discrete, and there is no jumping back and forth or overlap between them.

However, there are various modified waterfall models that may include slight or major

variations upon this process.

Figure 5: Waterfall Model [23]

Critique

The waterfall model is the classic model. All the steps of software development

are defined in this model, but its major disadvantage is that it has no iteration [23, 31].

Unless those who specify requirements are highly competent, it is difficult to know

exactly what is needed in each phase of the software process before time is spent in the

 41

following phase [32]. The design phase may need feedback from the implementation

phase to identify problem design areas. The main idea behind the waterfall model is that

experienced designers may have worked on similar systems before, and so may be able to

accurately predict problem areas. Because of this, the developers do not have to spent

time in doing prototyping and implementing [32, 33]. Continous testing from the design,

implementation and verification phases is required to validate the phases preceding them.

Constant prototype design work is needed to ensure that requirements are non-

contradictory and possible to fulfill. The implementation has to be performed continously

to find and inform the problem areas to the design process. Constant integration and

verification of the implemented code is necessary to ensure that implementation remains

on track [33]. The counter-argument for the waterfall model is that constant

implementation and testing to validate the design and requirements is only needed if the

introduction of bugs is likely to be a problem. Frequent incremental builds are often

needed to build confidence for a software production team and their client.

It is difficult to estimate time and cost for each phase of the process without doing

some evaluation work in that phase, unless those estimating time and cost are highly

experienced with the type of software product. The waterfall model brings no formal

means of exercising management control over a project and planning. Moreover control

and risk management are not covered within the model [31, 33]. Very specific skill sets

are required for each phase; thus there is a requirement for multiple projects to run in

sequence to optimize resource use. All members have to stay through the course of a

given project, or the company will suffer skill levels by using inexperienced resources.

 42

Spiral Model

The spiral model [24], also known as the spiral lifecycle model, is a systems

development method (SDM). This model of development combines the features of the

prototyping model and the waterfall model. The spiral model is intended for large,

expensive, and complicated projects.

The working of the spiral model starts with collecting of requirements. The new

system’s requirements are defined in detail. This usually involves interviewing a number

of users representing all the external or internal users and other aspects of the existing

system. A preliminary design is created for the new system. A prototype of the new

system is constructed from the preliminary design. This is usually a scaled-down system,

and represents an approximation of the characteristics of the final product. A second

prototype is evolved by a fourfold procedure: evaluating the first prototype; defining the

requirements of the second prototype; planning and designing the second prototype;

constructing and testing the second prototype. At the customer's option, the entire project

can be aborted if the risk is deemed too great. Risk factors might involve development

cost overruns, operating-cost miscalculation, or any other factor that could, in the

customer's judgment, result in a less-than-satisfactory final product.

The existing prototype is evaluated in the same manner as was the previous

prototype, and, if necessary, another prototype is developed from it according to the

fourfold procedure outlined above. The preceding steps are iterated until the customer is

satisfied that the refined prototype represents the final product desired. The final system

is constructed, based on the refined prototype. The final system is thoroughly evaluated

 43

and tested. Routine maintenance is carried out on a continuing basis to prevent large-

scale failures and to minimize downtime.

Figure 6: Spiral Model [24]

Critique

 This is the first model which used iterative cycles to produce software and there

are a few disadvantages with the model [34]. The model takes a lot of time to finish one

cycle. The risk assessment needed by the model cannot be done by all companies in the

beginning of the software development itself. Because of the risk assessment companies

will not be able to use it in general software production [35]. The process guidance in

determining objectives, constraints, and alternatives are not explicitly defined. Most of

the companies lack risk assessment expertise.

 44

 The assessment of project risks and their resolution is not an easy task. A lot of

experience in software projects is necessary to accomplish this task successfully [34, 35].

Because of the dynamic and risk driven approach of this model, the phase products and

milestones are hard to define.

 The main disadvantage from the point of view of software evolution is that it does

not perform any cycle for the maintenance of the generation. The time spent for the single

generation is good for real time products but cannot be used by commercial companies. It

is also expensive and requires a lot of prototypes. The time consumption and human

recourse distribution is not explained for the maintenance part of the software

development. Due to the well defined structure of the spiral model all the companies

cannot use it effectively. The time and cost do not allow small companies to perform such

large procedures and expertise [35]. It is however the best model for projects which

require reliability and quality at the highest standards.

Prototyping

 Software prototyping [28] is the process of creating an incomplete model of the

future software program. This model is used to let the users have a first idea of the

completed program or allow the clients to evaluate the program. The main advantage of

prototype is the software designer and implementer can obtain feedback from the users

early in the project. The client and the contractor can compare if the software made

matches to the software specification, according to which the software program is built. It

 45

also allows the software engineer some insight into the accuracy of initial project

estimates and whether the deadlines and milestones proposed can be successfully met.

The process of prototyping involves the following steps [28]

1. Identify Requirements: Determine basic requirements including the input and output

information desired. Details, such as security, can typically be ignored.

2. Develop Prototype: The initial prototype is developed that includes only user

interfaces.

3. Review: The customers, including end-users, examine the prototype and provide

feedback on additions or changes.

4. Revise and Enhance the Prototype: Using the feedback both the specifications and the

prototype can be improved. Negotiation about what is within the scope of the

contract/product may be necessary. If changes are introduced then a repeat of steps three

and four may be needed.

Critique

 The focus on a limited prototype can distract developers from properly analyzing

the complete project [36]. This can lead to overlooking better solutions, preparation of

incomplete specifications or the conversion of limited prototypes into poorly engineered

final projects that are hard to maintain. Further, since a prototype is limited in

functionality it may not scale well if the prototype is used as the basis of a final

deliverable. This may not be noticed if developers are too focused on building a

prototype as a model [37]. Users can begin to think that a prototype, intended to be

 46

thrown away, is actually a final system that merely needs to be finished or polished. This

can lead them to expect the prototype to accurately model the performance of the final

system when this is not the intent of the developers. Users can also become attached to

features that were included in a prototype for consideration and then removed from the

specification for a final system [36, 37]. If users are able to require all proposed features

be included in the final system this can lead to feature creep. Developers can also become

attached to prototypes they have spent a great deal of effort producing; this can lead to

problems like attempting to convert a limited prototype into a final system when it does

not have an appropriate underlying architecture. It cannot be used by small companies

because of the cost. It is an expensive method of software development which includes

several prototypes. The prototypes take a lot of time for creation and the company may

skip important requirements to reduce the time. This leads to incomplete generations of

software.

Extreme Programming

 Extreme Programming [29] is the mostly widely used agile methodology to date.

Originally formulated by Kent Beck with collaborators such as Ron Jefferies and Martin

Fowler, XP consists of approximately twelve interconnected practices, making it the most

well-defined agile process. It has been adopted by development groups around the world

in a variety of different companies.

The twelve practices of XP are: [29]

A. Planning Game

 47

B. Small Releases

C. Customer Acceptance Tests

D. Simple Design

E. Pair Programming

F. Test-Driven Development

G. Refactoring

H. Continuous Integration

I. Collective Code Ownership

J. Coding Standards

K. Metaphor

L. Sustainable Pace

Figure 7: Extreme Programming [38]

Critique

 The principles of extreme programming are to reduce cost and time and make it

usable by everyone [39]. The biggest problem with this method is that it does not look for

quality and reliability. The companies tend to use informal and flexible methods for

 48

servicing which leads to lot of loop holes in the software, and people trying to service it

in the future do not have a complete idea of what was done. Groups to control the

changes in the code are being used by the companies using extreme programming and

this is a sign that there are potential conflicts in project objectives and constraints

between multiple users [40]. XP's expedited methodology is somewhat dependent on

programmers being able to assume a unified client viewpoint, so the programmer can

concentrate on coding rather than documentation of compromise objectives and

constraints [39, 40]. This also applies when multiple programming organizations are

involved, particularly organizations which compete for shares of projects.

 The problems with extreme programming in case of quality are requirements are

expressed as automated acceptance tests rather than specification documents.

Requirements are defined incrementally, rather than trying to get them all in advance.

Software developers are required to work in pairs.

There is no big design up front. Most of the design activity takes place on the fly

and incrementally, starting with the simplest thing that could possibly work and adding

complexity only when it's required by failing tests [40]. A customer representative is

attached to the project. This role can become a single-point-of-failure for the project, and

some people have found it to be a source of stress. There is also the danger of micro-

management by a non-technical representative trying to dictate the use of technical

software features and architecture.

 Extreme programming can be used in small software which have minimal cost

and time involved. This software tends to be the weak links for the virus to attack.

 49

However, it has been claimed that XP has been used successfully on teams of over a

hundred developers [39]. It is not that extreme programming doesn't scale, just that few

people have tried to scale it, and proponents of XP refuse to speculate on this facet of the

process.

The Staged Software Life Cycle Model

 According to the staged model [11], the life cycle of a software system starts with

initial development where a first functional version of the software is produced. Then the

software moves on to evolution stage, during which the system’s functionality is

enhanced or adopted to satisfy the user’s requirements. The servicing phase allows minor

repairs and small functional changes only. From there, it is inevitable that the system

eventually passes on to the phase-out stage where the system is being kept alive but is not

changed any more. This is because no developer or maintainer dares to touch the system

after that. Finally, the system is closed down and replaced by the next generation.

Figure 8: Staged Model [11]

 50

Critique

 This model was designed to improve the working of large systems [16]. It

certainly helps in discussions between management and technical staff about the state of

a system and necessary technical decisions, and their consequences. However, it is not

well defined on issues that would be important for constructive improving of system

evolution. The model does not give any ideas on how to stay in the evolution stage as

long as possible. It uses, but does not define the term architectural integrity that according

to the model, seems to be one of the major pillars on which evolution of the software

relies [11].

 It also states that systems can not return from servicing back into evolution. There

are several counterexamples to this, if one thinks for example of Open Source Software

such as Linux or commercial products, such as SAP, that were successfully serviced and

evolved in several iterations over long periods of time [16]. A new user looking at the

model may come to the conclusion that the initial development is viewed separately from

the rest of the life cycle. The initial phase has a decisive impact on the life-time of the

system. Long running initial developments also are themselves composed out of

evolution and servicing steps.

Even though the model gives a good idea of the various maintenance phases it

does not define how a company can move back into other phases and it also does not give

a complete evolutionary model.

 51

PSPM model

 The main idea behind the PSPM model [16] is that from the starting of the life

cycle the system enters a process that alternates between evolution and consolidation

phases.

 The consolidation phase constitutes the bottom-up portion of the process. The

existing system is taken and modified according to technical aspects without actually

adding new features but changing what is already there. The evolution phase is the top-

down part of the PSPM. In this phase, requirements are elicited; refined and

corresponding features are integrated into the system. The primary focus of this phase is

to implement the requirements. The PSPM differs from other iterative processes models

significantly by respecting the role of both activities at the process level.

 This process spans the complete life cycle of the system until its phase out.

Between the major phase’s evolution and consolidation, the system is serviced, that is

minor corrections or enhancements are performed. The other main idea is that the single

servicing activity cannot degrade the quality of system but small changes over a long

time tends to weaken the system and pushes it to a phase out stage.

Figure 9: PSPM Model [16]

 52

Critique

 This model is very basic and gives a method to perform evolution in a

constructive way, but this model does not give the steps to be used for evolution or the

time to be spent on the servicing and consolidation steps. The model just states that at

equal intervals of time the whole code is to be consolidated. However when evolution

occurs and a new phase is released consolidating the old phase will be of less usage to a

company as they will be concentrating more on the new evolution [16]. The next biggest

advantage in this model is it helps software to stay in the evolution stage till the company

wants the software to phase-out, but this may lead to a legacy system.

 After collecting all the advantages and disadvantages of the various models, we

created a table comparing the existing models with the Infinity Model. In the table the

important properties required for software evolution are compared for the different

models. The comparison of the various models gives us the advantages of the Infinity

model for creating evolutionary software. This can be noted from the table below.

 53

Table 4: Comparison between different software life cycle models

 54

CHAPTER VI

CASE STUDY: EXAMPLES FROM COMPANY SOFTWARE

In this chapter, various problems faced by different types of companies due to

software evolution are studied. The case studies cover different types of software such as

operating systems, embedded software, real time software and device drivers. The

methods incorporated into the Infinity Model to improve the problems in these case

studies are described at the end of each case study. The final case study is about evolution

in a biological organism (lizard). From this case study the necessary mechanisms for

survival of an organism are studied and the comparative software mechanisms are

incorporated into the Infinity Model.

Avionics case study

 In an avionics case study [41, 42], the evolution of requirement in a real time

software environment is studied. In the case study, the authors have published the various

stages the software goes through. They have showed that the requirement phase is not a

single entity but takes place through out the life of the software. To understand this better

the important points of avionics case study are shown in this paper. In the case study 22

 55

releases [17, 41] of the different generations of the avionics software were taken and

requirement changes that occurred in the generations of software were displayed.

 A closer look into the study shows the requirements for software constantly

change within a generation of the software and updating for the old software is required

constantly. This can be better understood from the diagram below.

Figure 10: Number of requirement changes per software release [41]

Figure 11: Total number of requirements per software release [17, 41]

 56

 From the picture above one can find that the number of requirement changes is

very few when a completely new generation comes out. Moreover the requirements grew

drastically [42] with succeeding generations. This shows that the rate of requirements

goes up in comparison to the complexity of the software. The constant need for

improvement leads to constant up-gradation of a generation.

 The main idea behind requirements evolution is to improve the life cycle of the

software. By better understanding and documenting the requirements they overall quality

and reliability of the software can be improved.

Table 5: Types of requirement changes identified in the case study [17, 41]

 From the table above, one is able to find the various types of requirement changes

that had occurred in the avionics software. These are the changes which occur in most of

 57

the software. From this table one can find out the various changes to be noted down by

the project team when they perform a requirement collection. It also gives an idea of

where future changes could be found in the software.

 This concept has been absorbed into Infinity Model and throughout the course of

the software life cycle, the requirements of user, clients and coders are documented and

evaluated for the next cycle [17]. By constantly reviewing the requirements in the model

a company will be able ready for the future changes and the customer requirements.

Microsoft Software

 The information for this case study was collected from the Microsoft case study

[11, 43]. From this study sees that Microsoft does not use the traditional software

maintenance followed in general by other software companies. They use the method of

releasing their operating system to their users, and then starting to update the software

from the errors and requirements reported by the user.

 By this process they reduce the time in the development phase. This also helps to

reduce the economical cost [11]. This process cannot be used for real time software but

may be helpful for commercial software. Although the method has been successful for

Microsoft, there may be huge problems if they have a competition in the operating

system field [43]. If there is competition they will have to improve their software

structure and also think of reliability during the production of the software than at the end

 58

of the life cycle. The main principles they might have to incorporate to improve their

software would be to start the whole process of software generations with multi user

requirements. They will then have to create more modules and functions [43] to make the

software more secured and reliable. Many of their competitors tend to use these methods

and produce software which is far more reliable.

 The Infinity Model incorporates ideas from the existing method used by

Microsoft and as well the changes required. In the Infinity Model the versioning system

is used to mark each and every cycle, it can be used for half cycles also. When a complete

change is made it is incorporated into the next generation and released along with the

older code. The process of programming used in the Infinity Model also gives an idea of

the necessity for maximum modularization of the code.

The method used for the maintenance of the software leads to complete

documentation of the changes, and leads to better consolidation and understanding of the

changes. The most important thing to be understood from the Microsoft case study is the

method used by them for evolution. They always start the next generation of the software

once the older generation has reached a standard point. By this they do not become a

legacy system and also the environmental changes are completely utilized by the later

generations. This constantly keeps them up to date in the operating system software. The

cycle model in the Infinity Model allows such a scheme.

 59

Embedded System

 In the embedded system case study [11, 44] one can see how small embedded

system companies create their software, and also the problems they face with every new

generation of the operating system. These small software companies tend to use little or

no documentation during the development of their software. They use methods like

extreme programming to perform the coding, and so they tend to create programs with a

lot of errors even for a single generation. These drivers tend to be open links for the virus

to attack the operating system. These codes with no quality or standards tend to waste the

hardware resources and reduce the quality of the operating systems [44].

 The case study shows that these companies use C, C++ or BASIC to code the

software. Moreover consolidations [11] of the codes are not planned at any stage. With

every new change or new generation of the OS the device drivers have to be rewritten or

changed completely. There is no level of planning for the next generation and this leads

to phase out the codes written for the embedded system. Considering all of this,

traditional software maintenance offers little help. If the Infinity Model is used, the

methods to collect the requirements from the partner company’s on the changes in next

generation are given. The model also gives the necessary consolidation techniques

needed to improve the quality of software created [11]. If the companies understand the

process of requirement - feedback cycle then they will be able to produce software with

better quality, and the components created for a single generation can be used in the next

generations also.

 60

Open Source Software

 Dr.Scacchi made a case study on open source software like Linux, Apache server

and Mozilla Fire Fox [45, 46]. In this case study, several important lessons could be

learned on how open source software develops and also what makes open source

software successful.

 In all open source software, programmers constantly change the code to adapt to

new requirements. Each and every change, according to the grouped requirements is

updated in to the code [46]. The decision of consolidation and selection of updating leads

to the main survival of the system in the evolving hardware. As an example the number

of changes Linux has gone through in the last 10 years can be seen from the figure below.

Figure 12: Data showing the size and growth of sub-systems in the Linux Kernel [45, 46].

 61

 In open source software, several number of programmers from different places

tend to improve the way the single code works. There is also a downside to this method

of development; as there no rules on the programming style if one of the programmers

makes a mistake or creates junk code then the code will fail for a new user. The open

source software will always be helpful only when experts use the code and have a

through knowledge of the code [47]. If an inexperienced user tends to work on the code it

will lead to errors.

 The number of programmers who work in open source software is so large that

the ideas that are input to open source software are vast. All these ideas may not be

helpful and useful to all the users and this leads to wastage of memory and poor

performance in the hardware. The number of people who have worked on the Linux

kernel since 1993 can be viewed in the diagram below [45, 47].

Figure 13: Growth of the lines of source code added as the number of software

developers contributing code to the GNOME user interface grows [45, 47].

 62

From this what one can infer for the Infinity Model is that a code developed for

open source software should be created with maximum compatibility and modularity.

This will help the programmers who tend to work on the code to be able to make changes

easily and securely [48]. The diagram below shows us how updating and compaction

takes place in the open source software, and how moving the selected updates to the next

generation helps the survivability of the code.

Figure 14: Patterns of software system evolution forking and joining across releases

(nodes in each graph) for four different F/OSS systems [45, 48].

 The ideas pf modularity and consolidation are added into the Infinity Model. The

open source software developers can also use the Infinity Model for the development and

consolidation of the software in a more professional and quality oriented way. When

software is released in the open source, the documents of how it was developed and the

methods of development should also be available so that the others can work on it.

 63

Device Drivers

 The device drivers and applications being developed for each and every

generation of software are dependent on the OS completely. If the companies new

generation do not allow old drivers to work or are not calibrated to accept future growth

of drivers, then this leads to a lot of errors and virus attacks [49]. The Windows Vista

released in 2007 has similar types of virus attack related problems in the new generation

and they are listed below.

Figure 15: Application with Critical Vulnerabilities for Windows Vista [49].

 The drivers that are developed for the older generation should be allowed to work

with the new generation and should not create errors. Windows Vista has a bug with the

 64

drivers created for XP [2, 49]. Most of the drivers which are not preloaded in Vista are

not allowed to install or are not saved in the hard disk, and are referred again and again

with security violations being stated as the reason. A common issue with driver

installation failures is associated directly with the driver package which lacks non-system

driver files. In Windows Vista all the driver files have the INF reference. All the other

driver files must be imported into the driver store before the package can be installed.

Otherwise the files are not imported successfully and the installation fails.

There are problems concerning the installation of class installers and co-installers

also. Some of the problems are related to the device installations that occur in an

interactive system context [50]. Vista requires class installers and co-installers not to

display a user interface with the exception of the finish-install action. Windows Vista also

no longer attempts a client-side install [49, 50] in a scenario where the system-based

install would return an error code.

 These are problems in evolution when one of the companies does not share the

information of the development of the new generation to the other partners. This leads the

companies to use the old code or style of execution when the latest version of OS does

not allow that. In a rush the driver companies tend to create new code with less quality to

quickly supply a working driver for the new generation. Changes in generation should not

affect people using other packages. In the Infinity Model the principles of symbiosis and

co-evolution are used in the architecture evolution phase and the coding phase to avoid

such problems.

 65

Legacy System: Department of Defense

 Rajlich and Bennett [11, 51] report on the method of software development used

in the defense department in the USA, in particular, the problems faced by the company

because of evolution and lack of expertise. This has led the company to rethink its

strategies and may lead to a new generation developed from scratch. This has occurred

due to the lack of change in the systems for a long time, and not deploying new members

and techniques to change the code for the later generation.

The various findings of the paper are given below [11]:

1. The defense systems which have been in use for a very long period were

developed in assembly language. They require continuous change to adapt to

the new hardware.

2. The software is very important as they are all real time and errors or loss in

software will lead to a disaster.

3. In the past, experts in both software and hardware had created the system and

continuously worked on it. They were trying to improve the system and were

trying to free it from ad hoc patches. They documented all the processes and

tried to understand the impact of the software.

 66

4. However, in recent times several of the experts has moved out, and there are a

lot of decays in the old system when they are updated for the new hardware.

There structural decays are a serous problem. The department feels it is

impossible to reengineer the system as there are not enough experts and feels

if the situation continues they will have to develop a whole new system from

scratch.

This is because of the negligence of constant updating to the next generation and

also the deployment of human resources [51]. From this case study it becomes clear that

updating alone will not suffice, but migration and evolution are also needed for the

survivability of a software system. The Infinity Model tries to involve new human

resource in each and every cycle of the process. The Infinity model also incorporates the

principles of migration whereby every project when it comes into the next cycle, the

change in the environment and user requirements are studied.

Evolution in Nature: Lizard evolution

 In nature, evolution takes place continuously in a slow but steady pace. All

organisms have an inbuilt code called DNA, and all the organisms are constantly

mutating at a very slow speed in the micro level. Here in this case study a particular

organism is looked into and the mutations that occur on the organism in the given

environment are studied.

 67

 The organism under study is the lizard and the different environment, in which it

survives, differentiates the appearance of the lizards. The experiment [52], provided

scientists with important information as they observed what they thought would be the

extinction of the introduced lizards. But the lizards adapted to their new environments,

and the focus of the experiment changed to studying this rapid evolution. An experiment

with lizards in the Caribbean has demonstrated that evolution moves in predictable ways

and can occur so rapidly that changes emerge in as little as a decade [52, 53]. The

experiment bears on two theories of evolution; one is punctuated equilibrium and the next

is gradualism. Gradualism states that evolution is a relatively slow, constant process,

producing changes over millions of years [54]. Punctuated equilibrium states that

environmental constraints hold species remain unchanged for millions of years, which

then undergo rapid evolution when environmental changes demand it.

The experiment involved the introduction of one species of lizard to fourteen

small, lizard-free Caribbean islands [52, 54]. The lizards were left for fourteen years.

Lizards on Caribbean islands have been carefully studied by biologists for their

adaptation to different conditions on different islands with corresponding changes in

body shape. One of the important differences in the lizards noted by scientists over the

years has been that lizards that inhabit large trees tend to have long legs, whereas those

lizards that live on twig-like plants have short legs [53]. The more the vegetation differed

from that of their original home the more the lizards should evolve. The scientists had

predicted that evolutionary pressure would cause the long-legged lizards to produce

short-legged forms as the Caribbean islands are almost treeless. Losos and his colleagues

 68

report in the journal Nature, that the lizards evolved in the direction as predicted [52].

Those with the shortest legs are found on islands with the scrubbiest vegetation.

A long-standing issue in biology is whether micro small evolutionary changes are

the same as macro evolutionary changes seen over millions of years. Douglas Futuyama

of the State University of New York at Stony Brook, states that while there are many

known instances of rapid evolution in biochemistry, such as evolving resistance to

pesticide, there are fewer examples of bodily changes. One well known macro

evolutionary event is the specialization of lizards on Caribbean islands. Lizards have

evolved into 150 different species spread across these islands.

The rate of evolutionary change is measured in units called darwins [52]. Darwins

provide a measure of the proportional change in a given organ over time. Changes

typically seen over millions of years in the fossil record usually amount to 1 darwin or

less. The transplanted lizards evolved at rates of up to 2000 darwins.

From the case study the main idea incorporated into Infinity Model is for the

survival of an organism rapid mutation based on environmental conditions is required.

Change in hardware should always be studied. Rate of mutation depends on rate of

change of environment. In the software world, the environment is both hardware and

user. Hence according to hardware updates or user requirements the next generation

software should be made available.

 69

The table below displays the various problems faced by the companies and the

corresponding methodologies incorporated into the Infinity Model to reduce the

problems. These problems can be defined as the requirements to build evolutionary

software. If the solutions to these problems are incorporated into the process model then

the software created will be more quality oriented. This has been done in the Infinity

Model and this can be viewed in the table below.

Table 6: Properties incorporated into the Infinity Model from the different case studies

 70

CHAPTER VII

CONCLUSION

 By designing the new model we plan to start a new generation of process models.

This is also an effort to make people look into nature to find different patterns and

methods to create better software. When the understanding of the principles become

clearer then the designing of better modes and projects will become more quality

oriented.

The Infinity Model is an abstract model and also a unification theory of all

existing models. It is designed from the basics of software evolution and also the

important principles from evolutionary biology. The main purpose is to give an idea of

the measures needed to make evolutionary software in the future.

 From the various case studies of existing models the various advantages and

disadvantages could be understood and also methods to decrease the disadvantages are

tried in the Infinity Model. In the case studies of the various companies and projects the

idea of the various changes needed in the existing methods used to design software could

be found. The Infinity Model tries to improve the methods in those areas. From the case

studies an idea of the advantages of the Infinity Model could be gathered.

 71

 The Infinity Model is a step towards creating methods and procedures to produce

quality software. This model also includes evolution to be used in the future maintenance

and development of the software. The model is a basic idea to create evolutionary

software and a model on the time and cost involved to create the software is needed. The

model also needs some improvements in the maintenance cycle to accommodate the

requirements of different types of companies. A real-world software design is needed to

test the effectiveness of the proposed model.

 72

REFERENCES

1. M. M. Lehman, “Rules and Tools for Software Evolution Planning and

Management”, Annals of Software Engineering, Vol. 1, No. 6, pg. 15-44, 1997.

2. T. Mens, S. Demeyer, M. Wermelinger, S. Duccase, R Hirschfeld, M. Jazayeri,

“Challenges of Software Evolution”, IEEE, Eighth International Workshop on

Principles of Software Evolution (IWPSE’05), pg. 13-22, 2005.

3. W. Scacchi, “Understanding open source software evolution”, Report, Institute of

Software Research, 2004.

4. M. Kim, “Understanding and Aiding Code Evolution by Inferring Change

Patterns”, Proceedings IEEE International Conference on Software Engineering,

(ICSE 2007), pg. 101-102, 2007.

5. Luqi, “A graph model for software evolution”, IEEE Software Engineering, Vol.

16, No.8, Pg. 918-927, 1990.

6. C. Corby, “Introduction to evolutionary biology”, www.talkorgins.org, 1996.

[Date last accessed : Dec 05, 2007]

7. E. Garfield, “Highly cited articles. 35. Biochemistry papers published in the

1940s”. Current Contents No. 8, pg. 5-11, 1977,

8. “Molecular Evolution”, http://en.wikipedia.org/wiki/Molecular_evolution , 2007.

[Date last accessed : Dec 05, 2007]

9. “Windows Bugs”, http://audacityteam.org/wiki/index.php?title=Windows_Bugs,

2007. [Date last accessed : Dec 05, 2007]

10. “Extreme Programming”, http://en.wikipedia.org/wiki/Extreme_programming,

2007. [Date last accessed : Dec 05, 2007]

11. V. T. Rajlich, K. H. Bennett, “A Staged model for software life cycle”, IEEE

Computer, Vol. 33, No.7, 2000.

 73

12. L. Yu, S. Ramaswamy, “Software and Biological Evolvability: A Comparison

Using Key Properties”, Proceedings IEEE International Conference on Software

Engineering, pg.82-88, 2006.

13. C.L.Nehaniv, J.A.Hewitt, B.Christianson, P.D.Wernick, “What Software

Evolution and Biological Evolution Don’t Have in Common”, Proceedings IEEE

International Conference on Software Engineering, pg. 58 -65, 2006.

14. G. McGraw, “Software Security”, IEEE Security and Piracy, Vol. 2, no. 2, pg.

80-83, 2004.

15. “A Survey of System Development Process Models”, CTG.MFA – 003, Center for

Technology in Government, 1998.

16. T. Seifert, M Pizka, “Supporting Software Evolution at the process level”, IEEE

Software, Vol. 20, No. 3, pg. 106-107, 2004.

17. Stuart Anderson and Massimo Felici. “Controlling requirements evolution: An

avionics case study”. In Proceedings of SAFECOMP 2000, 19th International

Conference on Computer Safety, Reliability and Security, LNC S 1943, pg. 361–

370, Rotterdam, The Netherlands, October 2000.

18. Stuart Anderson and Massimo Felici.” Requirements engineering questionnaire”,

version 1.0, January 2001.

19. Tom Gilb. Principles of Software Engineering Management. Addison-Wesley,

1988.

20. IEEE. IEEE Std 982.1 - IEEE Standard Dictionary of Measures to Produce

Reliable Software, 1988.

21. IEEE. IEEE Std 982.2 - IEEE Guide for the Use of IEEE Standard Dictionary of

Measures to Produce Reliable Software, 1988.

22. Ian Sommerville. Software Engineering. Addison-Wesley, sixth edition, 2000.

23. Royce, “Managing the Development of Large Software Systems”, Proceedings of

IEEE WESCON 26 (August): 1-9, 1970.

24. Barry W. Boehm. “A spiral model of software development and enhancement”.

IEEE Computer, Vol. 21, No. 2, pg. 61–72, May 1998.

25. Juha Kuusela. “Architectural evolution. In Patrick Donohoe”, editor, Software

Architecture, TC2 First Working IFIP Conference on Software Architecture

(WICSA1), pages 471–478, San Antonio, Texas, USA, 1999. IFIP, Kluwer

Academic Publishers.

 74

26. G. T. Laycock: The Theory and Practice of Specification Based Software Testing.

PhD Thesis, Dept of Computer Science, Sheffield University, UK, 1993.

27. Lawler LP, Pannu HK, Fishman EK, “MDCT evaluation of the coronary arteries,

2004: How we do it— Data acquisition, post processing, display, and

interpretation”, AJR Am J Roentgenol, Vol 184: pg. 1402-1412, 2005;

28. Joseph E. Urban, “Software Prototyping and Requirements Engineering”, Report,

Rome Laboratory, Rome, NY, 2003

29. Ken Auer and Roy Miller: Extreme Programming Applied: Playing To Win,

Addison-Wesley. 2005

30. Barry W. Boehm. Software Engineering Economics. Prentice-Hall, 1981.

31. Nilesh Parekh, “The Waterfall Model”, http://www.buzzle.com/editorials/1-5-

2005-63768.asp, 2005. [Date last accessed : Dec 05, 2007]

32. Adrian Als & Charles Greenidge,

http://scitec.uwichill.edu.bb/cmp/online/cs22l/waterfall_model.htm , 2003. [Date

last accessed : Dec 05, 2007]

33. Phillip A. Laplante and Colin J. Neill, "The Demise of the Waterfall Model Is

Imminent and Other Urban Myths”, ACM Queue, 2004

34. Adrian Als & Charles Greenidge,

http://scitec.uwichill.edu.bb/cmp/online/cs22l/spiralmodel.htm , 2003. [Date last

accessed : Dec 05, 2007]

35. ComTech, Disadvantages of Spiral Model,

http://inhairstudio.blogspot.com/2007/10/disadvantages-of-spiral-model.html,

2007. [Date last accessed : Dec 05, 2007]

36. C. Melissa Mcclendon, Larry Regot, Gerri Akers, What is Prototyping,

http://www.umsl.edu/~sauterv/analysis/prototyping/proto.html, 1999. [Date last

accessed : Dec 05, 2007]

37. Keng Siau, www.ait.unl.edu/siau/mgmt454/Chapter6.rtf, University of Nebraska,

2000. [Date last accessed : Dec 05, 2007]

38. Don Wells, Extreme Programming, http://www.extremeprogramming.org/, 2000,

2001. [Date last accessed : Dec 05, 2007]

39. Matt Stephens, Disadvantages of Extreme Programming,

http://www.softwarereality.com/lifecycle/xp/safety_net.jsp , 1998- 2007. [Date

last accessed : Dec 05, 2007]

 75

40. Matt Stephens and Doug Rosenberg , Extreme Programming Refactored: The

Case Against XP, Apress, July 2003

41. Stuart Anderson and Massimo Felici, “Requirements changes risk/cost analyses:

An avionics case study”. In M.P. Cottam, D.W. Harvey, R.P. Pape, and J. Tait,

editors, Foresight and Precaution, Proceedings of ESREL 2000, SARS and SRA-

EUROPE Annual Conference, volume 2, pg. 921–925, Edinburgh, Scotland,

United Kingdom, May 2000.

42. Stuart Anderson and Massimo Felici, “Controlling requirements evolution: An

avionics case study”. In Proceedings of SAFECOMP 2000, 19th International

Conference on Computer Safety, Reliability and Security, LNC S 1943, pages

361–370, Rotterdam, The Netherlands, October 2000. Springer- Verlag.

43. M.A. Cusumano and R.W. Selby, Microsoft Secrets, Simon & Schuster, New

York, 1998.

44. Michael A. Cusumano and Richard W. Selby, How Microsoft Competes,

http://www.trudelgroup.com/bookr2.htm, Research Technology Management. Pg.

26-30, 1997

45. Walt Scacchi, “Understanding Open Source Software Evolution”, Proceedings

IEEE Software Engineering Workshop ’06, Pg. 47-58, 2006

46. J. Erenkrantz, “Release Management within Open Source Projects”, Proc. 3rd.

Workshop on Open Source Software Engineering, 25th Intern. Conf. Software

Engineering, Portland, OR, May 2003.

47. C. DiBona, S. Ockman and M. Stone, Open Sources: Voices from the Open

Source Revolution, O’Reilly Press, Sebastopol, CA 1999.

48. M.W. Godfrey and Q. Tu, “Evolution in Open Source Software: A Case Study”,

Proc. 2000 International Conference on Software Maintenance (ICSM-00), San

Jose, California, October 2000.

49. “Top Ten Worst Windows Applications”,

http://slashmyblog.blogspot.com/2007/11/top-10-absolute-worst-windows.html,

2007. [Date last accessed : Dec 05, 2007]

50. Ron Schenone, “Microsoft Windows Vista - Driver Problems Still a Problem”,

http://www.lockergnome.com/blade/2007/02/19/microsoft-windows-vista-drivers-

problems-still-a-problem/, 2007. [Date last accessed : Dec 05, 2007]

51. George Stark, Al Skillicorn, and Ryan Ameele. “An examination of the effects of

requirements changes on software releases”, CROSSTALK the Journal of Defense

Software Engineering, pg. 11–16, December 1998.

 76

52. Dr. George Johnson, “DNA and Darwin: Evolution repeats itself in Caribbean

lizards”, http://www.txtwriter.com/Onscience/Articles/losos.html, 2001. [Date last

accessed : Dec 05, 2007]

53. Allen E Greer,”Lizards - How They Evolved and Lost Their Limbs”,

http://www.amonline.net.au/factSheets/lizards.htm, 2003. [Date last accessed :

Dec 05, 2007]

54. Jeff Poling, “Lizard experiment suggests rapid evolution”,

http://www.dinosauria.com/jdp/evol/lizard.html, 1997. [Date last accessed : Dec

05, 2007]

 77

APPENDIX

A. Biological Evolution: In biology, evolution is the change in the inherited traits of

a population from generation to generation. These traits are the expression of

genes that are copied and passed on to offspring during reproduction. Mutations

in these genes can produce new or altered traits, resulting in heritable differences

between organisms. New traits can also come from transfer of genes between

populations, as in migration, or between species, in horizontal gene transfer.

Evolution occurs when these heritable differences become more common or rare

in a population, either non-randomly through natural selection or randomly

through genetic drift.

B. DNA: Deoxyribonucleic acid, or DNA, is a nucleic acid that contains the genetic

instructions used in the development and functioning of all known living

organisms. The main role of DNA molecules is the long-term storage of

information and DNA is often compared to a set of blueprints, since it contains

the instructions needed to construct other components of cells, such as proteins

and RNA molecules.

C. Mutation: A Mutation occurs when a DNA gene is damaged or changed in such a

way as to alter the genetic message carried by that gene. A Mutagen is an agent of

substance that can bring about a permanent alteration to the physical composition

of a DNA gene such that the genetic message is changed.

D. Natural Selection: Natural selection is the process by which favorable traits that

are heritable become more common in successive generations of a population of

reproducing organisms, and unfavorable traits that are heritable become less

common. Natural selection acts on the phenotype, or the observable

characteristics of an organism, such that individuals with favorable phenotypes

are more likely to survive and reproduce than those with less favorable

phenotypes.

E. Genotype: Genotype describes the genetic constitution of an individual that is the

specific allelic makeup of an individual, usually with reference to a specific

character under consideration. It is a generally accepted theory that inherited

genotype, transmitted epigenetic factors, and non-hereditary environmental

variation contribute to the phenotype of an individual.

 78

F. Phenotype: The phenotype of an individual organism describes one of its traits or

characteristics that is measurable and that is expressed in only a subset of the

individuals within that population. Examples include "blue eyes", or "aggressive

behavior".

G. Symbiosis: The term symbiosis can be used to describe various degrees of close

relationship between organisms of different species. Sometimes it is used only for

cases where both organisms benefit; sometimes it is used more generally to

describe all varieties of relatively tight relationships.

H. Co-Evolution: In biology, co-evolution is the mutual evolutionary influence

between two species. Each party in a co-evolutionary relationship exerts selective

pressures on the other, thereby affecting each others' evolution.

I. Genotype-Phenotype Mapping: The genotype-phenotype distinction must be

drawn when trying to understand the inheritance of traits and their evolution. The

genotype of an organism represents its exact genetic makeup, that is, the

particular set of genes it possesses. The term "genotype" refers, then, to the full

hereditary information of an organism. The phenotype of an organism, on the

other hand, represents its actual physical properties, such as height, weight, hair

color, and so on. It is the organism's physical properties that directly determine its

chances of survival and reproductive output. The mapping of a set of genotypes to

a set of phenotypes is sometimes referred to as the genotype-phenotype map.

VITA

Murugappan Ramanathan

Candidate for the Degree of

Master of Science

Thesis: A NEW SOFTWARE PROCESS MODEL DESIGNED FROM THE BASICS

OF EVOLUTIONARY BIOLOGY AND SOFTWARE EVOLUTION

Major Field: Computer Science

Biographical:

Personal Data: Born in Coimbatore, Tamilnadu, India.

Education: Graduated from G.R.T Mahalakshmi High School, Chennai, India

in May 2001; received Bachelor of Technology in Information

Technology from Anna University, Chennai, India in May 2005.

Completed the requirements for the Master of Science degree in

Computer Science at Oklahoma State University, Stillwater, Oklahoma

in December, 2007.

Experience: Graduate Assistant, Oklahoma State University, College of

Engineering and Architecture, January to December 2006; Teaching

Assistant, Oklahoma State University, Department of Computer Science,

January to July 2006 and as a Graduate Lab Assistant, Oklahoma State

University, Department of English, January 2007 to present.

ADVISER’S APPROVAL: Dr. Johnson Thomas

Name: Murugappan Ramanathan Date of Degree: December, 2007

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: A NEW SOFTWARE PROCESS MODEL DESIGNED FROM THE

BASICS OF EVOLUTIONARY BIOLOGY AND SOFTWARE EVOLUTION

Pages in Study: 78 Candidate for the Degree of Master of Science

Major Field: Computer Science

Scope and Method of Study: The process of software development is achieved by using

different software life cycle models to design, code and test the software. Process

models like the water fall model, spiral model and prototyping are used by

companies. Most of these models were designed for a single generation of

software. In this research, methods to correct the problems in existing models are

proposed based on the principles of evolution in biology and biochemistry, and an

abstract model has been generated. The model is called the Infinity Model. The

basic principles of biological evolution have been incorporated into the varying

steps in the Infinity Model to generate an evolutionary process model. It consists

of a completely new design cycle which incorporates both the creation of software

and the maintenance of software. In this model, methods to correct deficiencies

like resource allocation, documentation and requirement updating in the existing

models have been incorporated. Several case studies of large company software

and the problems they faced were studied. From the case studies several methods

like requirement evolution, consolidation and architectural evolution have been

incorporated into the Infinity Model.

Findings and Conclusions: The Infinity Model is an abstract, unification model. It

improves the quality and survivability of the software. It incorporates ideas from

several models to create an evolutionary model for software. Using the Infinity

Model different types of companies can create quality oriented evolutionary

software.

