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CHAPTER 1

INTRODUCTION

The current era is an era of information where consumption, usage and manipulation of

information is made easy by the use of computers and computer networks. Computer net-

works and digital informations have become a precious asset for various organizations, for

example, e-commerce websites, government agencies, defense sites and growing indus-

tries. These networks are vulnerable to attacks, as today’s attackers are well equipped, and

with their advancing abilities in this field, there is an increased necessity to protect these

networks and websites.

Network intrusions and network attacks have increased recently on major sites and

networks; for example, major attacks have been launched on NATO, U.S. DOD, Pentagon

and the white house. The safeguard and security of these networks and sites are becoming

a very important and critical issue. As the technology and technical abilities of hackers

are increasing and becoming more sophisticated, it is necessary to develop an effective

intrusion detection system and intrusion prevention system which is more robust and more

efficient in identifying and preventing these attacks. In the early 1980’s and 1990’s attacks

like Denial of Service (DOS) and Sniffer were considered infrequent, but today a successful

DOS attack can put any e-commerce or other retail sites out of business. Safeguarding these

sites and networks is becoming more difficult and thus requires an advancement in the field

of intrusion detection.
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1.1 Intrusion and Intrusion Detection System

Intrusion is any set of action that attempts to compromise the integrity, confidentiality or

availability of the resource [14]. An intrusion detection system is something that would

identify these attacks and generate reports that would alarm the network administrator to

take suitable action against the intrusion, which could be either strengthening the firewall

or avoiding further occurrence of such attacks. If the intrusion detection system is properly

deployed, it will play an important role in indicating whether the system is under attack

or identifying any breach in the security [1], thus protecting the network against possible

threats.

1.1.1 Types of Intrusion Detection System

There are various types of intrusion detection systems (IDS) [28] [1]. Based on the infor-

mation source, IDS are classified as follows:

• Network based IDS: This uses network packets as the data source. The network

adapter are used to monitor and analyze the traffic in real time. It uses various detec-

tion techniques to analyze and recognize the attack type. Once the attack is detected

appropriate actions are taken by the network administrator like terminating the TCP

connection, blocking particular IP packets by reconfiguring firewall and saving evi-

dence to avoid further occurrences of such attacks [1]. Network based IDS includes

wireless network monitoring and network analysis [28] [29].

• Host based IDS: The IDS mainly uses security logs and information gathered through

a monitoring system, events and system logs. An intrusion is detected by analyzing

these logs and regular checks for unexpected deviations from what is set as regular

activity. A counteraction is taken, if an attack is detected, by either terminating the

user login or disabling the account [1] [28] [29].

Based on the method of analysis IDS [11][12] are classified as follows:
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• Anomaly based IDS: In anomaly based intrusion detection system the normal behav-

ior of the user or group of users are monitored and recorded. A proper knowledge

base is created for such normal activity. Anomaly based IDS identifies action that

strays too far from normal behavior and alarms an intrusion to the administrator [12]

[20] .

• Misuse based IDS: In misused based intrusion detection system the activities are

recorded. These activities are compared with the known behavior of attackers and

if there is a close match or the match is above the threshold then these activities are

identified as intrusion [1] [10] [9] [11]. The IDS alarm the system for the attack and

it’s the responsibility of the network administrator or intrusion protection system to

take the appropriate counter action.

1.2 Approaches to IDS

The major approaches to IDS are outlined below:

Data Mining: There are various techniques to create an effective intrusion detection

system. In the data mining approach we collect a large quantity of network data and audit

data to find normal usage patterns. In case of anomaly detection, any deviation from the

normal usage pattern should raise an alarm, and, in the case of misuse, we use audit data

for encoding and matching with known intrusion attacks [4].

Machine learning (Artificial neural network) : Neural network is a growing technique

in the field of intrusion detection. Neural network based intrusion detection is mainly clas-

sified as memory based and memory free. Memory based neural network is when we train

the network with absolutely error free data (anomaly detection). Once the training is com-

plete if the input data set does not match the k-nearest neighbor or a pre-trained neuron

the data is assumed to be anomalous and an alarm is raised. For the other case (misuse

detection) the neural network is trained with all types of intrusion attack data. The neural
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network is trained for these different attacks using their known patterns and signature. If

any data matches with any of these signatures, the alarm is raised for intrusion [4]. There

are more IDS approaches available like specification based, computer immunology, ab-

straction based intrusion detection; automatically build intrusion detection model, colored

petri net model and information theoretic measures [4].

1.2.1 Advantages of using Neural Networks for IDS

The nature of attacks changes constantly. The linear mapping or rule based approach for

intrusion detection is not enough to make a powerful network intrusion detection system.

We require a flexible system which could analyze the huge network data more efficiently

and accurately. Neural network could be a very effective approach to intrusion detection as

it analyzes the data in a less structured way. It posses the ability to analyze the information

from different network sources in nonlinear fashion which is a key factor in identifying such

changing attack patterns [10]. Moreover, neural networks will provide the flexibility that

any network would require. Network data or network information collected from different

sources might be incomplete, unclear, inconsistent or distorted. The neural network is

capable of learning such patterns and is also capable of analyzing data even though the

data is unclear or distorted.

1.3 Deficiencies with Current methods and Proposed Hybrid Approach

The current neural network based intrusion detection is considered to be an efficient ap-

proach in classifying patterns but they require extensive computation and time consuming

training. Training requires large amount of data which hinders most of its applications

which stands true for its use in intrusion detection applications as well [21]. For example,

an attack would be difficult to detect, if the attacker removes all its information from the

system immediately after the attack, and since there will be no information to train the

network for such kind of attack. Therefore, we would want to get the information about
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the attack before its too late. Another issue with current neural network is assigning initial

weights to neural networks which is an unresolved problem. Experiments conducted in

1998 showed different initial weights can give different results [18]. For these reasons we

need a better IDS that could provide better support to existing firewalls and show better

ability in identifying intrusions with more accuracy and fewer false positive and false neg-

ative rates [20]. The current misuse based IDS does not effectively identify a new attack in

real time, which is another major issue.

In this thesis, we present a Hybrid network intrusion detection system which is not only

faster but also accurate. The intrusion detection system is based on the CC4 algorithm

developed by Kak [2][6] that can detect attacks instantaneously and helps resolving the

initial weight assigning issues of neural networks. The instantaneously trained CC4 neu-

ral network [2] operates alongside a two-layer feed-forward neural network given by The

Mathworks. The two-layer feed-forward backpropagation neural network identifies pattern

with more precision once it is well trained and give a very low false negative and false

positive rate and better accuracy. Thus the two IDS helps to create a hybrid IDS that is not

only faster, but also provides higher accuracy in detecting known and unknown attacks in

real time, and gives lesser false positives and false negatives rates. The hybrid system uses

the instantaneous training and detection ability of the CC4 neural network to identify new

signatures, i.e. detecting unknown attacks in real time. Detection of new attacks in real

time helps creating a more robust and better intrusion detection system. The hybrid system

does not just detect whether incoming network packets belongs to an intrusion or a non

intrusion type but it also detects the respective class of attack.

The rest of the document is divided into three sections: The next chapter gives a de-

tail description of the underlying neural networks with a brief description of the intrusion

dataset used for validating our approach. Chapter 3 describes the hybrid system and the

simulation of its components. Chapter 3 also includes the results and findings. Chapter 4

includes the conclusion and related possible future work.
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CHAPTER 2

BACKGROUND

2.1 Related Work

Intrusion detection system is an active area of research. Many approach and techniques

have been used to design an effective intrusion detection system The most common tech-

nique is the one using data mining and machine learning technique. Our thesis is focused

on machine learning based approach. In 1998, a neural network based intrusion detector

was proposed by Ryan J., Lin M.J. & Miikkulainen R. [12] which identified intrusions

based on the distribution of commands used by the user. This was an anomaly based in-

trusion detector. This system was divided into three phases; the first phase was to collect

data from the audit log from different users for some period and construct a vector from the

collected data to represent the command execution distribution from each user. The second

phase is to train the network to identify these users based on these distribution vector and

if the system identifies any significant deviation from normal behavior it was signaled as

intrusion. In 1998, J. Cannady [9][11] proposed a misuse based IDS which was mostly

to filter data from incoming packets for suspicious events. The data is send to expert sys-

tem or to a stand alone neural network application for identifying intrusions. The final

result was a two class identifier which detects normal and attack patterns for 89-90% of

the cases. Further work has been on misuse based intrusion detection system using feed

forward neural network and back propagation training algorithm by M. Moradi and Mo-

hammad Zulkernine in 2004. They proposed an offline trained neural network approach

which would detect known attacks with 91% of accuracy, here the novel attacks were not

taken into consideration. There are lots of work done on unknown attack patterns recogni-
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tion as well [9] [11] [12] [24] mostly based on anomaly based intrusion detection, i.e. by

identifying activities which substantially defer from normal, as intrusion. A hybrid system

was proposed by Stefanos Koutsoutos, Ioannis T. Christou and Sofoklis Efremidis in 2006

[23] using artificial neural network and rules based matching system to detect known and

unknown network intrusions. They used outputs of net pattern classifier and system call

classifier to make the decision whether to raise an alarm for intrusion or not. Both the neu-

ral network required good amount of training to detect the attacks. The experiment showed

good results for known attack and they were able to detect novel attack with an accuracy

of 80%. A similar work has been done by John Zhong Lei and Ali Ghorbani in 2004 [25]

to simulate neural network based hybrid IDS which used Self Organizing Map (SOM), an

unsupervised training algorithm to identify unknown attack by clustering the connection

based on their similarities and a improved competitive learning method to identify known

attacks.

Most of the work done is based on offline training of neural network and are mostly

ineffective in real time detection of novel attacks. The simulation of neural network based

IDS requires complex computation and time consuming training which hinders its real time

unknown pattern recognition capability. In our thesis we have used CC4 - instantaneously

trained neural network as a replacement to the existing more common neural network to

detect unknown attack patterns. The hybrid system we proposed handles the three possible

type of input: normal, known attacks with classified individual classes and unknown attacks

in more effective way.

2.2 CC4 Neural Network

The CC4 neural network is an instantaneously trained neural network proposed by Kak in

1992 [6]. The instantaneously trained neural network is an attempt to model biological

short term memory or the working memory. The amount of information the short term

memory can hold is limited but can be extended by grouping such information [5]. The
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corner classification network is based on the visio-spatial sketchpad and phonological loop

[6]. The concept of radius of generalization was introduced in CC3. The hamming distance

was used for classification between binary vectors, i.e. any test vector whose hamming

distance is smaller than the radius of generalization of the network is classified in the same

output class as that training vector [6]. A unique neuron is associated with each input vector

and all hidden neurons are completely connected to the neurons at input layer. Each node

in the network acts as filter for training samples to get the desired output. The algorithm

called Corner Classification technique, as a hyper plane (the filter) is used to separate the

corner of n dimensional cube by the training vectors [3].

The CC4 algorithm consist of three layered feed forward network, namely, Input Layer,

Hidden Layer, and Output Layer, with binary neurons which uses threshold logic as the

activation function. The input layer requires input to be in unary format which makes the

algorithm faster but hinders the applicability of the algorithm. Number of element in in-

put vector determines the number of neuron input layer. Each input neuron corresponds to

unique input vector, hence the input neurons is the sum of the range of the input vector. In

addition to this neuron there is a bias neuron which always takes input as 1. The hidden

layer contain hidden neurons which is connected to all the neuron in input layer. Each hid-

den neuron correspond to a single neuron in the training set. Therefore the size of hidden

neurons is equal to the size of the input vector. The output layer contains output neurons

which is equal to the minimum bits required to represent the output in the dataset in binary.

The output layer is also fully connected to the hidden neuron [8].

The weights on hidden neurons are assigned by using the training sample itself. There

can only be two possible values an input neuron can receive. Hence if an input neuron

receives a 1, the weight between the hidden and input neuron is set to 1 else it is set to -1.

There is an extra input neuron called a bias neuron. The weight between bias neuron and

hidden neuron is computed as r-s+1 where ’s’ is the number of 1’s in the input vector of the

8



Figure 2.1: General Structure of CC4 Neural Network [26] [5] [ 3] [ 8 ]

training sample and ‘r’ is the user specified radius of generalization. Similarly the weights

between the hidden neuron and the output neuron are set to 1 or -1, but here we assume

there is no extra bias neuron[2] [8]. The activation function for both hidden neuron and

output layer for CC4 network is the binary step function given as [2][8]

y =

{
1 if x[n] > 0
0 otherwise

(2.1)

The CC4 algorithm can be summarized as below [2][8]

Y = f(f((x1, x2, x3, x4, x5, ..., xN , 1)×W )× U) (2.2)

The CC4 algorithm is as follows

for each training vector xk [n] do

sk =no. of 1s in xk[1:n-1]; // x = number of input vector

for j =1 to n-1 do

if xi[j] = 1 then

wi[j] = 1;

else // Input weights

wi[j] = -1;

9



end

end

wi[n] = r-si+1; // r = radius of generalization

// s = number of 1s in input vector

for k=1 to m do

if yi[k] =1 then // Y = number of bit in desired output.

ui[k] = 1;

else

ui[k] = -1; // output weights

end

end

end

Basic CC4 Algorithm [5]

The working of CC4 algorithm can be explained using following example.

XOR Function: The CC4 neural network can be used to evaluate XOR function. The

table 2.1 show the truth table of XOR function. As explained above input layer will have 3

input neuron which include 2 logic input and one neuron whose values is calculated as ” r-

s+1” as explained above. Since the truth table show 4 input vector therefore the number of

hidden neuron will be same as the number of input vector and are connected to one output

neuron in the output layer [3].

The three layers of CC4 neural network are fully connected [3]. Each input vector is

presented to network. The input interconnection weights are assigned as the sum of the

product of each input element of the input vector with its corresponding interconnection

weight elements. In this example input vector (1 0 1), where first two ones are the logic

inputs and last 1 is the number of binary ones in the logic input, represented by ’s’. Hence

10



Input Output

X1 X2 Y

0 0 0

0 1 1

1 0 1

1 1 0

Table 2.1: XOR Truth Table

the weight vector of hidden neuron is given as (1 -1 0) and thus using both input vector and

weight vector of hidden neuron we can determine the total input to the hidden neuron ( 1

* 1) + (-1 * 0) + (0 *1) = 1. The other hidden neuron will receive 0 or negative as input.

Similarly the input for all hidden neuron based on other input vector and corresponding

weight vector are determined. Similarly the weights of output layer and weights of hidden

layer can be used to determine the final output. Radius of generalization, r, is set as zero as

it is of no use in this example [3].

Input to Hidden Neuron Output of Hidden Neuron Input output

Input s Weights H1 H2 H3 H4 H1 H2 H3 H4 Y Y

0 0 1 0 -1 -1 1 1 0 0 -1 1 0 0 0 -1 0

0 1 1 1 -1 1 0 0 1 -1 0 0 1 0 0 1 1

1 0 1 1 1 -1 0 0 -1 1 0 0 0 1 0 1 1

1 1 1 2 1 1 -1 -1 0 0 1 0 0 0 1 -1 0

Table 2.2: CC4 network parameters for XOR Function

The operation of CC4 network i.e. its mapping of input to output is shown in table 2.2.

There are other neural network techniques available but their learning rate and speed of

pattern recognition is not real time i.e. other techniques are time consuming and requires

substantial training. The CC4 networks performance is better with respect to both general-

11



Figure 2.2: General structure of a CC4 neural network for XOR Function [8] [3] [5]

ization of network and training speed. The speed is extremely fast, thus helping the neural

network to identify various possible intrusions real time. The CC4 neural network is fast

but has certain limitations as it takes input in unary format only.

2.3 Two Layered Feed Forward Neural Network

The other neural network which we have used in our neural network based instantaneous

intrusion detection system is a two-layer feed-forward network developed by The Math-

works popularly known as Matlab neural network toolbox. In our thesis, we are calling the

two-layer feed-forward neural network based IDS as MLP based IDS just to shorten the

name. This is a network with sigmoid neurons and linear output neurons. The network will

be trained using the Levenberg-Marquardt algorithm [13] and the performance is measured

using mean squared error algorithm.

The flow diagram for two-layer feed-forward network neural network is shown in figure

12



2.4 [27].

Figure 2.3: Flow Diagram of a two-layer feed-forward network Neural Network [27]

The working of the two-layer feed-forward network Neural network can be demon-

strated by simulating a simple XOR function. The truth table of XOR is shown in figure

2.1. In this example we have 2 input neuron at the input level of two-layer feed-forward

network neural network. Each neuron takes one binary value as input and has one output

neuron at the output layer. We don’t have an input layer. Input level is not considered as

input layer because no processing takes place at this level, it just acts as a buffer, hence

this neural network architecture is termed as two layered feed forward network [17]. For

simulation of XOR function we are using newff() to create a new feed forward network

and train() function to train the network. Train function is an inbuilt Matlab function which

uses Levenberg-Marquardt algorithm for training. The network is simulated using the sim()

function.
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Input Output TestInput TestOutput

0 0 0 0 0 4.640e-12

0 1 1 0 1 1.0000

1 0 1 1 0 1.0000

1 1 0 1 1 1.1883 e-12

Table 2.3: Two-layer feed-forward network Network: Values at Input and Output Neuron

for XOR Function at Epoch=50

2.4 Intrusion Dataset

The data used for this experiment are the benchmark data collected by the Defense Ad-

vanced Research Projects Agency (DARPA) in 1998. It was collected by the Lincoln Lab-

oratory of Massachusetts Institute of Technology in 1998. The Knowledge Discovery and

Data Mining (KDD) dataset consist of different input cases of various attacks as well as

normal network packets. We have used subset this dataset for training and testing the two

respective intrusion detection system. There are 22 different intrusions signatures available

which include signatures for Back, BufferOverflow, LoadModule, MultiHop, Guesspass-

word, R2L, U2R, Portsweep, warezClient, warezMaster, FTPWrite, Rootkit, Nmap, Smurf,

Satan, Spy, Pod, Imap, Perl, PHF, TearDrop, IPSweep and Normal (legitimate TCP packet).

There are 4900000 simulated records and each record has 41 different attributes. These 41

attribute network data features are labeled and shown in table 2.4.
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Label Network Data Feature Label Network Data Feature

A duration L logged in

B protocol type M num compromised

C service N root shell

D flag O su attempted

E src bytes P num root

F dst bytes Q num file creations

G land R num shells

H wrong fragment S num access files

I urgent T num outbound cmds

J hot U is host login

K num falied logins V is guest login

W count AH dst host same srv rate

X srv count AI dst host diff srv rate

Y serror rate AJ dst host same src port rate

Z srv serror rate AK dst host srv diff host rate

AA rerror rate AL dst host serror rate

AB srv rerror rate AM dst host srv serror rate

AC same srv rate AN dst host rerror rate

AD diff srv rate AO dst host srv rerror rate

AE srv diff host rate AF dst host count

AG dst host srv count

Table 2.4: Network Data Feature Labels.
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CHAPTER 3

HYBRID INSTANTANEOUS INTRUSION DETECTION SYSTEM

3.1 Problem Specification and goals

The major problems with current intrusion detection system is speed of detection and the

accuracy of detection while detecting both anomalies and misuse attacks. False positives is

when a detected intrusion is in fact not an intrusion, a false negative is when the attack is

detected as a non attack. The current misuse based intrusion detection systems are effective

against known attacks but are mostly ineffective against novel attacks (previously unknown

attacks). Moreover, the current intrusion detection systems are less effective with real time

detection of unknown attacks, as most neural network misuse based IDS are not trained

for identifying unknown attack patterns. The current misuse based IDS gives an incorrect

class type, when it encounters a new pattern. It is difficult to detect whether an abnormal

behavior is a new attack or a known behavior with lots of variation. In this thesis we

try to overcome the above mentioned issues with current misuse based intrusion detection

systems through a more effective hybrid instantaneous intrusion detection system.

3.2 Intrusion Dataset Evaluation

The 41 attributes shown in table 2.4 fields signifies the signature of a particular attack.

22 attributes out of 41 related to the connection and remaining 19 attributes describe the

connection to the same host in the last two seconds [21]. We have analyzed the signa-

tures of different intrusion types, in search for fields that would least contribute in uniquely

identifying a class of an attack. The purpose of analyzing these fields is to reduce the com-
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putational efforts of the training algorithm as each field is involved in matrix multiplication

and adds to the computational complexity. The method that we have used for analyzing is

Principal Component Analysis (PCA) [19]. PCA is used when we have obtained the num-

ber of variables and variable have certain redundancies. PCA is used to develop a smaller

number of artificial variable. We had an input vector the 41 different variable as listed in

table 2.4 and we used PCA to see if we could reduce the redundant variables which are

correlated and contribute least to determining the class of attack.

Figure 3.1: Column Value and Column- Distribution Plot for 17 different Intrusion Signa-

ture

Figure 3.1 shows the Attribute value vs the columns, this weight distribution plot is

obtained by testing sample inputs of 17 different intrusion attacks on the Matlab PCA

tool. It can be observed from the figure that column 7-22 has sparse significant value.
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The value of these six features (land, urgent, num failed logins,num shells, is host login

num outbound cmds) are mostly zero [21], but when we carefully analyze individual signa-

tures we came to the conclusion that all fields makes significant contribution. For example

in case of Śpyáttack’s signature, column 7-22 makes a significant contribution, thus we

cannot filter out these columns. Moreover, there are various other attacks whose signatures

are still unknown and these columns may have a significant effect on their detection. Srini-

vas Mukkamala & Andrew H. Sung, in 2002 [20] did a performance metric evaluation on

the data vector which ranked these features into important, secondary and unimportant fea-

tures based on the some tested rules [20]. The algorithm evaluates every input node based

on following 5 class. These classes contains three categories {Important},< Secondary>,

(Unimportant) and columns numbers are distributed accordingly.

• class 1: {1,3,5,6,8-10,14,15,17,20-23,25-29,33,35,36,38,39,41},

<2,4,7,11,12,16,18,19,24,30,31,34,37,40>, (13,32)

• class 2: {3,5,6,23,24,32,33}, <1,4,7-9,12-19,21,22,25-28,34-41>, (2,10,11,20,29,30,31,36,37)

• class 3: {1,3,5,6,8,19,23-28,32,33,35,36,38-41}, <2,7,9-11,14,17,20,22,29,30,34,37>,

(4,12,13,15,16,18,19,21,3 )

• class 4: {5,6,15,16,18,32,33}, <7,8,11,13,17,19-24,26,30,36-39>, (9,10,12,14,27,29,31,34,35,40,41)

• class 5: {3,5,6,24,32,33}, <2,4,7-23,26-31,34-41>, (1,20,25,38 )

Every network incoming packet is compared with these classes and based on the results, the

best suited class and its features are used for training, validation and testing. Evaluation of

every input vector against these classes increases the computational overhead and hinders

its real time applicability. Therefore all these reasons for our simulation we are not filtering

any of the attributes out.
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3.3 Proposed Approach

The IDS we propose in our thesis is a hybrid intrusion detection system which uses neu-

ral network machine learning approach for intrusion detection because of its advantages

of pattern matching, pattern recognition and speed of detection. The hybrid intrusion de-

tection system uses anomaly based and misuse based analysis for detecting unknown and

known intrusion attacks respectively. The hybrid system which we propose is based on two

different neural networks which are different in their learning speed and pattern recogni-

tion characteristics. The two neural networks are the CC4 instantaneously trained neural

network proposed by Kak in 1992 [6] and a simple two layered feed forward neural net-

work, available in MLP . The data used for this experiment are the benchmark data used by

Defense Advanced Research Projects Agency (DARPA)[16]. Figure 3.2 shows the basic

architecture of the proposed hybrid intrusion detection system.

Figure 3.2: Basic Architecture of Hybrid Intrusion Detection System

The Hybrid intrusion detection system consists of three major component CC4 IDS,
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MLP IDSs, and the Post Processing Unit. Each of these components have a specific role.

The idea behind using two different IDS is to use the advantages of their underlying neural

networks. The advantage of using CC4 based IDS is its property of instantaneous train-

ing and generalization which does not require a lot of training data and the computation is

simple. The instantaneous training helps faster learning of new patterns, which help iden-

tifying known and unknown attacks in real time. We are using the CC4 IDS as an anomaly

based IDS which considers all attacks whose signatures are pre-recorded in a signature

database as known behaviors of attack. If CC4 based IDS encounters any new behavior

which doesn’t match to any of the known behaviors of attacks in the signature database, it

considers that as an unknown attack and raises an alarm for it. The second component is a

two-layer feed-forward neural network ( by MLP ) based IDS which shows better accuracy

than CC4 IDS while detecting known patterns or known attacks when it is well trained. The

false positive and false negative rate is very low for MLP based IDS. We are using the CC4

IDS for only identifying unknown attacks and not for known intrusion detection. This is

because even though its speed of training is faster than the MLP based IDS, its accuracy for

detecting known attacks is comparatively low and gives a higher false negative rate. On the

other hand we are not using the MLP based IDS for unknown attack recognition because

when tested with unknown attack samples MLP based IDS doesn’t recognize patterns as a

new attack. Instead it identifies new attacks as one of the known attacks or in some cases

as normal data, which is not acceptable. Therefore, for these reasons we use CC4 IDS for

unknown attack pattern recognitions and MLP IDS for known attack pattern recognitions.

3.4 Component1: CC4 IDS and its Simulation

We are using the basic CC4 training algorithm for training and evaluating the test data

sample for intrusion. While implementing CC4 based IDS, every attribute in the input vec-

tor has to be separately converted to unary code[8] which is an issue in our case, as the

data which has been collected is a 41 floating point network data (TCPDUMP). Since CC4
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training algorithm accepts only the unary data, the intrusion data is converted into unary

format using quantization mapping. A quantization mapping is a way of lossy compres-

sion; a process of representing a large possibly infinite set of values with a much smaller

set [15]. The quantization mapping we used is shown in the table 3.1 below. The table

shows the mapping of the different floating point values into their respective unary value.

When observed the dataset in detail, we found the most of the network data lies more or

less in these particular range. This range covers all the data values possibly present in the

intrusion dataset. We decided to use these range based on the density range of 41 inputs

values. The maximum value in the dataset for attributes is 0.6 and minimum is 0. Based on

the 41 attributes values in entire dataset we came with following data range and mapping

which actually helps distinguish between attacks signature in a better way. The range is

not regular but its based on the concentration on attribute values which lies with the given

range. We can have a regular range of data for better accuracy with known attacks detec-

tion but this irregular range give us better results while distinguishing between known and

unknown signatures of attacks. This supports our sole purpose of identifying new attacks

signatures more prominently. The conversion of real floating point network data to 410

unary values input vector and comparison of 410 bit output with all the available signa-

tures adds approx. 0.9 seconds to computation and output generation of every input packet.

Adding for the neural network to generate its output the total time is 3.4 seconds. This is

for a 4.0 GB of memory and i5 core processor with a speed of 3.33 GHz system with Linux

operating system (Fedora).

Each input for training and testing the CC4 network will be (41 attributes × 10 quan-

tized bits) unary data and the output for training is either 0 or 1 based on the inputs, network

weight and learning algorithm. These converted unary data will now be in the same format

as that of the signatures of different intrusion attacks. The CC4 network size increases as

the different class of training sample increases and so the performance of a single network
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Figure 3.3: Regular Range Mapping

Figure 3.4: Irregular Range Mapping
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Range Mapping

0.0 0000000000

0.00000001 - 0.0000001 0000000001

0.0000001 - 0.000001 0000000011

0.000001 - 0.00001 0000000111

0.00001 - 0.0001 0000001111

0.0001 - 0.001 0000011111

0.001 - 0.01 0000111111

0.01 - 0.1 0001111111

0.1 - 0.3 0011111111

0.3 - 0.5 0111111111

0.5 - 0.7 1111111111

Table 3.1: Quantization mapping of floating point data to unary data

handling large network data mitigates. We are using a divide and conquer strategy in a

parallel CC4 network i.e. a chain of smaller CC4 network executing together to reduce the

computation complexity of a single network, which would allow the network to have better

generalization thus resulting in output with lesser error. We are using a parallel chain of

CC4 neural network which has 410 neural network running in parallel, each generating one

bit (0/1) as output per network as shown in figure 3.5.

The result of all these 410 neural networks together will be a match to one of the known

intrusion signature or a legitimate data signature (Normal) and that will be the class of the

input packet. The 410 output one from each of 410 neural network will be compared with

each of the 410 bit signature of a known attack that is pre-saved, for example as shown

in table 3.2, we gave normal network data as input to the CC4 chain and its output is

compared with all known signatures available. Later we calculate the best percentage of

match with all respective signatures of known types which includes signatures of normal

23



Figure 3.5: 410 Parallel CC4 Neural Network

data as well. The best match between them will decide whether the input belongs to normal

or a particular class of known intrusion. For example, table 3.3 shows 10 different network

data given as input to CC4 IDS and the output from CC4 IDS is compared against signature

of 7 different known signatures (Smurf, Normal, Satan, Nmap, Neptune, Spy, Waraz) and

based of their best match the class of network packet is decided. In our thesis, the graph

obtained by analyzing the outputs from CC4 IDS is the percentage best match graph.

Figure 3.6 shows the percentage best match graph generated when CC4 based IDS is

tested with 260 different network input data which includes randomly distributed 17 dif-

ferent intrusion types. The CC4 IDS with radius of generalization r=0 is tested for Land,

Bufferoverflow, Pod, Teardrop, Warazmaster, Neptune, Loadmodule, Guesspaswwrod, Smurf,

Rootkit, Nmap, Ftpwrite, Spy, Phf, Perl, Multihop and Warazclient gave a 81.583% accu-

racy. The training and detection time for 410 parallel running CC4 to detect any class of

attack (normal /unknown/ known) is approx. 3.4 sec per signature when simulated on a

system with Linux operating system (Fedora) with 4.0 GB of memory and i5 core proces-
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S No. Network Output Smurf Signature Normal Signature Satan Signature Neptune Signature

1 0 0 0 0 0

2 1 0 1 0 0

3 0 1 0 1 1

4 1 1 1 0 1

5 0 0 0 0 0

6 1 0 1 1 0

.. .. .. .. .. ..

410 1 1 1 0 0

Table 3.2: Comparising the output from CC4 IDS with all available signatures

Smurf Normal Satan Nmap Neptune Waraz Spy Best Match Attack Type

100 89.97 84.40 93.09 79.28 86.41 85.30 100 Smurf

89.75 99.77 82.18 90.86 85.53 91.75 88.41 99.77 Normal

79.28 85.30 80.62 80.84 100 84.40 81.51 100 Neptune

85.30 88.19 79.06 91.31 81.51 90.86 100 100 Spy

86.41 91.53 79.28 92.42 84.40 100 90.86 100 Waraz

88.41 93.54 81.29 90.42 86.41 97.99 88.86 97.99 Waraz

93.09 90.64 78.84 100 80.84 92.42 91.31 100 Nmap

100 89.97 84.40 93.09 79.28 86.41 85.30 100 Smurf

100 89.97 84.40 93.09 79.28 86.41 85.30 100 Smurf

100 89.97 84.40 93.09 79.28 86.41 85.30 100 Smurf

Table 3.3: Best Match Comparison to Determine Normal/Intrusion type Input
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sor with a speed of 3.33 GHz. The CC4 IDS used an one pass algorithm for training i.e.

the CC4 algorithm, requires one iteration to detect any class of pattern. This instantaneous

training property of CC4 IDS helps in real time identification of attacks.

Figure 3.6: Testing CC4 for 17 different known intrusion type data with r=0

3.4.1 Use of CC4 for Detecting New Attack Signatures

As explained above CC4 generates outputs matching close to one of the known signature

only if the input belongs to one of the known attack classes for which we have a proper

signature. We have set a threshold based on the observation of various simulations that

we have run with various known and unknown type attack as input. Based on the this

threshold we decide whether network has encountered a known or an unknown attack. If

the percentage of best match amongst all known signature falls below this threshold there

is possibility of input belonging to a known type class with lot of variation in it or its a new

attack altogether. We have set 91% and above as threshold and any best match below it will

alarm a signal for the network administrator. We have set 91% as our threshold because

26



after multiple simulation runs we found the minimum percentage of the best matches any

input of a known class to a known signature is above 92 % on average. In a simulation the

CC4 neural network was intentionally fed with ”Back” intrusion type attack without any

prior training for it i.e. we are assuming we have a new kind of attack coming through the

network and we don’t have any signature available to identify the exact intrusion type. So in

this case the best match goes below the set threshold and we can indicate the administrator

for abnormal activity of unknown attack type.

Figure 3.7: Best Match Graph of CC4 Based IDS Before Training for Back

Figure 3.7 shows the best match graph that falls below the threshold when the IDS en-

countered a new attack ”Back” thus indicating abnormal malicious activity. The abnormal

input packets are extracted and tested and, if it is a unique signature not seen before, the

CC4 based IDS will update itself with the new signature. The signature database for MLP

IDS which contains the training dataset for the IDS, will also be updated. Figure 3.8 shows

the best match graph of CC4 IDS with proper identification when trained with the new

signatures and tested against the same dataset which we used before the training. The IDS
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now identifies the class of new attack with graph showing all the matches to be above the

threshold percentage.

Figure 3.8: Best Match Graph of CC4 Based IDS After Training for Back

3.5 Component 2: MLP IDS and its Simulation

In addition to the CC4 network we created an intrusion detection system using the two-layer

feed-forward neural network tool that uses the Levenberg-Marquardt algorithm to train the

network. The reason behind developing another IDS is due to fact that even though the

speed of training the network using CC4 algorithm is faster than the two-layer feed-forward

neural network, the percentage of accuracy in case of detection is considerably lower and

the false negative alarms are comparatively higher. The MLP neural network tool uses a

two layered feed forward network and utilizes the Levenberg-Marquardt algorithm to train

the network. The tool uses the mean square error method to calculate the performance.

The two-layer feed-forward neural network contains 41 neuron at the input level and
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15 hidden neuron at the hidden layer. The neurons at the output layer vary, depending on

the number of known attacks. We have varied the number of neurons at the output layer

depending on our simulation run. Every new signature detected adds 1 to the number of

output neurons. Table show 3.4 shows the output layer with 5 neurons used to train the

two-layer feed-forward neural network for 5 unique signatures.

Record Type Output Vector

Normal 0 0 0 0 1

Satan 0 0 0 1 0

Smurf 0 0 1 0 0

Neptune 0 1 0 0 0

Nmap 1 0 0 0 0

Table 3.4: Output Vector Used for Training and Evaluating MLP IDS

The initial training of the two-layer feed-forward neural network is slow as it takes lots

of iterations to adjust the internal weights. Figure 3.9 shows the accuracy of two-layer feed-

forward after ’1’ epoch or iteration and figure 3.10 shows the accuracy after ’50’ epoch or

iterations. After a substantial amount of training, the accuracy is good and shows less false

positives and false negative rates.

Table 3.5 shows the distribution of data vectors in different subsets for training valida-

tion and testing set.

MLP IDS give inaccurate results, if the MLP IDS is not sufficiently trained with respect

to the number in the training sample. The MLP IDS gives better performance if it has better

a understanding of the patterns it is looking for. In a simulation run, the training dataset

contained 6010 packets, which included 1000 packets each for 6 other attack class and

just 10 packets of teardrop i.e. MLP IDS was trained with 10 training packets of Teardrop

attack. MLP IDS was later tested for its performance to detect the TearDrop attack. While

testing, Due to improper training, instead of detecting the samples as a ’Teardrop’ Attack,
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Record Type Training Set Validation Set Test Set

Normal 1000 1000 50

Satan 1000 1000 50

Smurf 1000 1000 50

Neptune 1000 1000 50

Nmap 1000 1000 50

Table 3.5: Distribution of Data Vectors in Different Subsets used for Training, Validation

and Testing Set

Figure 3.9: Accuracy of MLP IDS after 1 iteration(0% Accuracy)
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Figure 3.10: Accuracy of MLP IDS after 50 iteration(100% Accuracy)

multiple attacks were detected in the sample inputs. Figure 3.11 (a) shows the output of

MLP IDS with multiple attacks detection. Figure 3.11 (b) shows a better performance for

Teardrop attack detection when MLP IDS was fed 1000 samples of the Teardrop attack

while training and tested against the same test dataset which was used before the training.

The accuracy was approx. 100% for this dataset.

MLP based IDS uses the network data in their original form as it does not require

any mapping unlike the case of CC4 IDS. MLP IDS requires a good amount of training

for better performance and it learns gradually with every iteration which requires a large

number of training data and more iterations. Once the training is complete, the accuracy

is very high, with a 92% of accuracy. The false positive and false negative rate is fairly

low if the IDS have well understood patterns of the incoming network packets. The MLP

IDS learns better with more number of samples. The first time training of the MLP IDS

requires good number of iterations. On average MLP IDS took 15-50 epochs to validate the

training dataset of 7000 training samples. The training and detection time of MLP based

31



(a) Before Proper Training

(b) After Proper Training

Figure 3.11: MLP IDS Performance Before and After Proper Training
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IDS to detect any class of attack (normal /unknown/ known) is approx. 1.5 - 2.5 minutes

when simulated on a system with windows vista operating system, 4.0 GB of memory and

i5 core processor with a speed of 3.33 GHz. This training time depends on the number of

epochs set for training and the size of training dataset.

The Post Processing Unit will use the output of MLP based IDS to determine the class

of network packet based on known signature for which MLP IDS is trained until and unless

there is no new attack encountered. If a new attack is encountered the CC4 output will be

considered because of its instantaneous learning even with less amount of data and quick

pattern recognition which helps identifying new attacks in real time.

3.6 Component 3: Post Processing Unit

The Post Processing Unit is responsible to determine whether the incoming packet from

the network belongs to normal legitimate class type, a known attack type or a unknown

attack type i.e. a new attack. It use the basic architecture of the hybrid IDS as shown in

figure 3.1 for determining whether packet belongs to normal or known attack class. This

architecture is extended to a hybrid IDS as shown in figure 3.16 to determine the unknown

attack class. The Post Processing Unit will utilize the output from both CC4 IDS and MLP

IDSs to determine the class of incoming packets. he There will be three cases depending

on the class of incoming network packet.

1. Normal Packets: If all the values of the ”percentage best match graph” of CC4 IDS

is above the threshold (91%) and output from MLP IDS shows that the packet belongs to

normal class, the Post Processing Unit declares it as normal packet. Figure 3.12 (a) shows

the percentage best match graph of CC4 for incoming packet of normal class and figure

3.12 (b) shows the output of MLP IDS for packets of normal class, when both IDSs were

tested with the same dataset.

2. Known Attack: If all the values of the percentage best match graph of CC4 IDS is

above the threshold and output graph for MLP IDS shows the packet belongs to one of the
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(a) Best Match Graph Output of CC4 IDS for Normal Packets

(b) Output of MLP IDS Showing 100 % Accuracy for Normal Packets

Figure 3.12: Post Processing Unit Outputs ”Normal” for Normal Incoming Packets
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Record Type Test Set

Normal 50

Smurf 50

Satan 30

Back 50

Teardrop 20

Netpune 30

Nmap 40

Table 3.6: Distribution of Data Vector for CC4 IDS and MLP IDS Test Set

Record Type Training Set Validation set Test Set

Normal 1000 1000 50

Smurf 1000 1000 50

Satan 1000 1000 30

Back 1000 1000 50

Teardrop 1000 1000 20

Neptune 1000 1000 30

Nmap 1000 1000 40

Table 3.7: Distribution of Data Vector in Different Subset for Training, Validation and

Testing Set for MLP IDS
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known intrusion attack classes, the Post Processing Unit declares that this packet belong

to the respective class of attack. Figure 3.13 (a) show the best match graph of CC4 for

incoming packet of Smurf attack class and figure 3.13 (b) show the output of MLP IDS for

packets of Smurf attack, when tested with same test dataset.

3. Unknown Attack: Unknown attacks are identified when output graph of MLP IDS

and best match output graph of CC4 IDS contradicts each other. The hybrid system mon-

itors the CC4 graph carefully for any drop in the best match percentage graph below the

threshold. The CC4 IDS doesn’t give a 100% accurate detection for all attacks if there is a

huge variation amongst two input packets belonging to a same class graph may fall below

the threshold for that particular input case as shown in figure 3.14. After various test run

for CC4 IDS it is observed that the accuracy of correct detection of attack class for CC4

IDS lies between 80-85% if Radius of generalization is set to zero i.e. r=0 CC4 IDS gives

best performance. Radius of Generalization is the term given to classification of input vec-

tor within the Hamming distance from the stored vector as belonging to the same class of

stored vector [3]. Figure 3.15 shows CC4 IDS’s accuracy vs number of intrusions in test

sample at different radius of generalization values. We have kept a waiting time for hybrid

system. The hybrid system waits for 15 inputs packets to make sure whether the fall in the

percentage best match graph is just a huge variation or a new attack altogether. If even after

the wait time the packets show similar behavior i.e. percentage best match graph value for

these packets is still below the threshold percentage (91%), the Post Processing Unit saves

these input packets into the signature database. The signature database is then used as the

training set to train the MLP IDS. We chose to scan 15 input before deciding whether to

save the input packet or not because any attack normally take more than 15 packets to start

an attack and moreover, MLP based IDS gives very low accuracy when trained with less

than 15 data samples for a given attack as explained above in figure 3.11.

The Hybrid system has a backup MLP IDS, MLP IDS-2 as shown in figure 3.16, which

is trained offline whenever the system encounters a new signature or a new attack type for
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(a) Best Match Graph Output of CC4 IDS for Smurf Attack Packets

(b) Output of MLP IDS Showing 100 % Accuracy for Smurf Attack Packets

Figure 3.13: Post Processing Unit Outputs ”Smurf Attack” for Smurf Incoming Packets
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Figure 3.14: Irregularity within packets belonging to Smurf Attack type

Figure 3.15: No. of intrusion Vs Accuracy of CC4 IDS at different ROG
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which the live MLP IDS, i.e. the MLP IDS-1, is not trained for. As mentioned above

there are two cases for which the graph falls below the threshold value. Firstly, when

hybrid system encounters new attack and secondly, when there is a huge variation in packets

belonging to known attack class. The Hybrid system behaves differently for both cases.

Case 1: If the best match percentage graph is still below the threshold value even after

the wait time, the system assumes it’s a new attack and uses the saved signatures from the

signature database to train MLP IDS-2 immediately with the new training dataset which

now includes the signature of new attacks. As soon as MLP IDS-2 updates itself with the

new signatures and start correctly identifying the new attack, MLP IDS-1 will be swapped

with MLP IDS-2 instantaneously without any delay. The network therfore gets protected

immediately, which is our primary concern. Now MLP IDS-2 will go live with its updated

signature and MLP IDS-1 will wait offline until the system encounters an unknown attack

via CC4 IDS. This process is repeated for every new attack found.

Case 2: If the best match percentage graph comes back above threshold value before

the wait time, the hybrid system assumes that the input was just a variation not a new attack

and the system takes no action.

3.7 Comparison of MLP IDS and CC4 IDS

3.7.1 Accuracy of MLP IDS Vs CC4 IDS based on number of Iterations

The behavior of percentage best match graph of CC4 IDS remains unchanged unless its

radius of generalization is changed, on the other, hand MLP IDS’s accuracy increases with

number of iterations. Figure 3.17 show the accuracy of MLP IDS Vs CC4 IDS for increas-

ing number of iterations. The MLP IDS and CC4 IDS where tested with a fixed number of

test inputs with included 4 different attacks types (Smurf , Neptune, Nmap and Satan) and

normal data. The accuracy of CC4 IDS remained the same irrespective of the number of

iterations because CC4 has a one pass training algorithm and is based on prescriptive learn-
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Figure 3.16: Modified Architecture of Hybrid IDS for Detecting and Training IDS for

Unknown Attacks
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ing,whereas MLP IDS’s learns better with every iteration and hence its accuracy increase

with the number of iterations.

Figure 3.17: CC4 IDS vs MLP IDS on Variable Number of Iterations

3.7.2 False positive and false negative comparison of MLP IDS Vs CC4 IDS

MLP IDS shows a very low, close to 0% false positive and false negative rate when it is fully

trained with signatures of known intrusion attack types and with signature of normal type.

The CC4 IDS shows some false negative behavior. Figure 3.18 and figure 3.19 show the

graph of CC4 based IDS and MLP IDS when both where tested with the same dataset. For

better understanding and better comparison we just used one output neuron at the output

layer which will output ’1’ if the input vector belongs to any of the known attack classes

and ’0’ if input the vector belongs to a normal data class of input. MLP IDS gave 0% false

negative and false positive rate whereas CC4 IDS gave 1.515% false negative rate when

tested with the first 183 attack type data and next 80 normal type data.
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Figure 3.18: CC4 IDS False Positive and False Negative rate

Figure 3.19: MLP IDS False Positive and False Negative Rate
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3.7.3 Performance of MLP IDS Vs CC4 IDS for Unknown Attack

Multiple simulation run on MLP IDS showed more false positive rate and even identified a

wrong class of attack for an unknown attack input, for which it had no prior training. The

main purpose of the hybrid system is to avoid this behavior of MLP IDS. The CC4 IDS

on the other hand shows a downfall in its percentage best match graph below the threshold

for any unknown input data, which helps to identify the abnormal behavior of the input

against all known patterns. Both the IDSs can be trained for new attacks by collecting their

signatures and retraining the neural networks. Thus further occurrences to that particular

unknown attack can be detected properly. Figure 3.20 (a) shows percentage best match

graph of CC4 IDS before training for ”Back” attack and figure 3.20 (b) shows graph with

the test dataset shown in table 3.7 after training. Similarly figure 3.21 (a) shows the output

graph of MLP IDS before training for ”Back” attack and figure 3.21 (b) show output graph

with same dataset after training for ”Back” attack. Figure 3.22 shows the mean square error

of the Levenberg-Marquardt training for MLP IDS procedure vs the training epochs for a

two layer feed forward neural network with configuration- {41 10 10 6}. The decrease in

the error was completely satisfactory for intrusion detection.

Record Type Training Set Validation set Test Set

Normal 1000 1000 45

Satan 1000 1000 45

Smurf 1000 1000 45

Back 1000 1000 45

Teardrop 1000 1000 45

Neptune 1000 1000 45

Table 3.8: Distribution of Data Vectors in Different Subsets used for Training, Validation

and Testing Set for MLP IDS and CC4 IDS to Analyze their behavior for an Unknown

Attack
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(a) CC4 IDS Percentage Best Match graph for Unknown Attack before training

(b) CC4 IDS Percentage Best Match graph for Unknown Attack after training

Figure 3.20: Behavior of MLP IDS vs CC4 IDS for Unknown Attack Before Training
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(a) MLP IDS graph for Unknown Attack Before Training

(b) MLP IDS graph for Unknown Attack After Training

Figure 3.21: Behavior of MLP IDS vs CC4 IDS for Unknown Attack After Training
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Figure 3.22: The Mean Square Error of the Levenberg-Marquardt Training Procedure vs

Training Epochs
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CHAPTER 4

CONCLUSIONS

4.1 Summary

We have successfully implemented an instantaneous and accurate intrusion detection sys-

tem using a hybrid network architecture and proved that instantaneous intrusion detection

system is very efficient with both known and unknown attack detection. The hybrid sys-

tem uses an anomaly based analysis to identify new attacks which is implemented using the

CC4 algorithm- an instantaneously trained neural network and uses a misuse based analysis

for known attack detection which is implemented using a basic two layered feed forward

network, the MLP neural network tool.

It is observed that the hybrid IDS with three components, the CC4 IDS, two-layer feed-

forward based IDS and the Post Processing Unit work together to increase the accuracy

of intrusion detection. The hybrid intrusion detection system detects not just whether the

input is an attack or a non attack, but its also tells to which class the attack belongs. The

Hybrid system reduces false positive and false negative rates through a well trained two

layered feed forward network IDS. The Hybrid system is capable of instantaneous detec-

tion of unknown attacks, hence the name Instantaneous Intrusion Detection System. The

simulation on the 1998 KDD dataset shows that the instantaneous intrusion detection sys-

tem is capable of real time detection of known and unknown attacks with high accuracy

and low false positive and false negative rates.
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4.2 Summary of Results

In our thesis we present an effective intrusion detection system which can detect normal,

specific attack class as well as unknown attacks, thus improving on current misuse based

intrusion detection system. The results shows the hybrid system is capable of detecting

attack classes with 90-92% accuracy and with less than 3% of false positive and false

negative rate, when two-layer feed-forward neural network based IDS is well trained. The

hybrid system detects new or unknown attack with an accuracy of 80-85%.

4.3 Critique

• The CC4 algorithm requires data to be converted into unary form which requires

extra computation efforts

• The results of both the IDS should be synchronized to analyze the output of both the

IDS in real time scenario.

4.4 Future Work

• The CC4 based IDS requires quantization mapping to convert floating point values

to unary value. A fast classification network was proposed by Kun Won Tang and

Subhash Kak [22] in 2002, which possesses the same generalization characteristics

and fast training speed as that of CC4 neural network and does not require any data

conversions. This could be a replacement to CC4 IDS and may give better results in

terms of detection speed as pre mapping and post output comparisons can be avoided.

• A better data mining approach can be used to get an ideal input vector which contains

fewer attributes than the original input vector, to qualify for all possible attacks class.

• The hybrid system can be implemented and tested with real time network data and

see its performance. A evaluated delay can be added to synchronize the output from
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the respective intrusion detection systems.
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